Sample records for exponentially growing mouse

  1. Loss of EGF binding and cation transport response during differentiation of mouse neuroblastoma cells.

    PubMed

    Mummery, C L; van der Saag, P T; de Laat, S W

    1983-01-01

    Mouse neuroblastoma cells (clone N1E-115) differentiate in culture upon withdrawal of serum growth factors and acquire the characteristics of neurons. We have shown tht exponentially growing N1E-115 cells possess functional epidermal growth factor (EGF) receptors but that the capacity for binding EGF and for stimulation of DNA synthesis is lost as the cells differentiate. Furthermore, in exponentially growing cells, EGF induces a rapid increase in amiloride-sensitive Na+ influx, followed by stimulation of the (Na+-K+)ATPase, indicating that activation of the Na+/H+ exchange mechanism in N1E-115 cells [1] may be induced by EGF. The ionic response is also lost during differentiation, but we have shown that the stimulation of both Na+ and K+ influx is directly proportional to the number of occupied receptors in all cells whether exponentially growing or differentiating, thus only indirectly dependent on the external EGF concentration. The linearity of the relationships indicates that there is no rate-limiting step between EGF binding and the ionic response. Our data would suggest that as neuroblastoma cells differentiate and acquire neuronal properties, their ability to respond to mitogens, both biologically and in the activation of cation transport processes, progressively decreases owing to the loss of the appropriate receptors.

  2. Sodium and calcium currents in neuroblastoma x glioma hybrid cells before and after morphological differentiation by dibutyryl cyclic AMP.

    PubMed

    Bodewei, R; Hering, S; Schubert, B; Wollenberger, A

    1985-04-01

    Sodium and calcium inward currents (INa and ICa) were measured in neuroblastoma X glioma hybrid cells of clones 108CC5 and 108CC15 by a single suction pipette method for internal perfusion and voltage clamp. Morphologically undifferentiated, exponentially growing cells were compared with cells differentiated by cultivation with 1 mmol/l dibutyryl cyclic AMP. Outward currents were eliminated by perfusing the cells with a K+-free solution. Voltage dependence and ion selectivity as well as steady state inactivation characteristics of INa and ICa resembled those of differentiated mouse neuroblastoma cells, clone N1E-115 (Moolenaar and Spector 1978, 1979). These parameters were identical in undifferentiated and differentiated cells of both clones. After differentiation the average density of the peak sodium and calcium currents was increased two and four-fold, respectively, in both cell lines. Our data indicate that exponentially growing, morphologically undifferentiated 108CC5 and 108CC15 neuroblastoma X glioma hybrid cells possess functional Na+ and Ca2+ channels undistinguishable from those of non-proliferating cells of these clones differentiated morphologically by treatment with dibutyryl cyclic AMP. That Na+ and Ca2+ spikes were not detected by other authors in these cells prior to morphological differentiation by dibutyryl cyclic AMP may be attributed to the fact that at the low resting membrane potential measured the Na+ and Ca2+ channels are inactivated.

  3. The mouse thermoregulatory system: Its impact on translating biomedical data to humans

    EPA Science Inventory

    The laboratory mouse has become the predominant test species in biomedical research. The number of papers that translate or extrapolate data from mouse to human has grown exponentially since the year 2000. There are many physiological and anatomical factors to consider in the pro...

  4. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Bragg, Andrew D.

    2018-03-01

    In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows exponentially in time, leading to incredibly strong irreversibility in the dispersion. This is in striking contrast to the irreversibility of their relative dispersion in the inertial range, where the difference between FIT and BIT is constant in time according to Richardson's phenomenology.

  5. Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252

    PubMed Central

    Parsons, Joshua B.; Kukula, Maciej; Jackson, Pamela; Pulse, Mark; Simecka, Jerry W.; Valtierra, David; Weiss, William J.; Kaplan, Nachum

    2013-01-01

    This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC0–48]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria. PMID:23459481

  6. Spontaneous emergence of catalytic cycles with colloidal spheres

    NASA Astrophysics Data System (ADS)

    Zeravcic, Zorana; Brenner, Michael P.

    2017-04-01

    Colloidal particles endowed with specific time-dependent interactions are a promising route for realizing artificial materials that have the properties of living ones. Previous work has demonstrated how this system can give rise to self-replication. Here, we introduce the process of colloidal catalysis, in which clusters of particles catalyze the creation of other clusters through templating reactions. Surprisingly, we find that simple templating rules generically lead to the production of huge numbers of clusters. The templating reactions among this sea of clusters give rise to an exponentially growing catalytic cycle, a specific realization of Dyson’s notion of an exponentially growing metabolism. We demonstrate this behavior with a fixed set of interactions between particles chosen to allow a catalysis of a specific six-particle cluster from a specific seven-particle cluster, yet giving rise to the catalytic production of a sea of clusters of sizes between 2 and 11 particles. The fact that an exponentially growing cycle emerges naturally from such a simple scheme demonstrates that the emergence of exponentially growing metabolisms could be simpler than previously imagined.

  7. Applications in Data-Intensive Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Anuj R.; Adkins, Joshua N.; Baxter, Douglas J.

    2010-04-01

    This book chapter, to be published in Advances in Computers, Volume 78, in 2010 describes applications of data intensive computing (DIC). This is an invited chapter resulting from a previous publication on DIC. This work summarizes efforts coming out of the PNNL's Data Intensive Computing Initiative. Advances in technology have empowered individuals with the ability to generate digital content with mouse clicks and voice commands. Digital pictures, emails, text messages, home videos, audio, and webpages are common examples of digital content that are generated on a regular basis. Data intensive computing facilitates human understanding of complex problems. Data-intensive applications providemore » timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements through the development of new classes of software, algorithms, and hardware.« less

  8. A gamma variate model that includes stretched exponential is a better fit for gastric emptying data from mice

    PubMed Central

    Bajzer, Željko; Gibbons, Simon J.; Coleman, Heidi D.; Linden, David R.

    2015-01-01

    Noninvasive breath tests for gastric emptying are important techniques for understanding the changes in gastric motility that occur in disease or in response to drugs. Mice are often used as an animal model; however, the gamma variate model currently used for data analysis does not always fit the data appropriately. The aim of this study was to determine appropriate mathematical models to better fit mouse gastric emptying data including when two peaks are present in the gastric emptying curve. We fitted 175 gastric emptying data sets with two standard models (gamma variate and power exponential), with a gamma variate model that includes stretched exponential and with a proposed two-component model. The appropriateness of the fit was assessed by the Akaike Information Criterion. We found that extension of the gamma variate model to include a stretched exponential improves the fit, which allows for a better estimation of T1/2 and Tlag. When two distinct peaks in gastric emptying are present, a two-component model is required for the most appropriate fit. We conclude that use of a stretched exponential gamma variate model and when appropriate a two-component model will result in a better estimate of physiologically relevant parameters when analyzing mouse gastric emptying data. PMID:26045615

  9. Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.

    PubMed

    Armour, E P; Li, G C; Hahn, G M

    1985-09-01

    Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.

  10. Exponential Nutrient Loading as a Means to Optimize Bareroot Nursery Fertility of Oak Species

    Treesearch

    Zonda K. D. Birge; Douglass F. Jacobs; Francis K. Salifu

    2006-01-01

    Conventional fertilization in nursery culture of hardwoods may involve supply of equal fertilizer doses at regularly spaced intervals during the growing season, which may create a surplus of available nutrients in the beginning and a deficiency in nutrient availability by the end of the growing season. A method of fertilization termed “exponential nutrient loading” has...

  11. Review of "Going Exponential: Growing the Charter School Sector's Best"

    ERIC Educational Resources Information Center

    Garcia, David

    2011-01-01

    This Progressive Policy Institute report argues that charter schools should be expanded rapidly and exponentially. Citing exponential growth organizations, such as Starbucks and Apple, as well as the rapid growth of molds, viruses and cancers, the report advocates for similar growth models for charter schools. However, there is no explanation of…

  12. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.

    PubMed

    Maji, Kaushik; Kouri, Donald J

    2011-03-28

    We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.

  13. Growth-dependent regulation of rRNA synthesis is mediated by a transcription initiation factor (TIF-IA).

    PubMed

    Buttgereit, D; Pflugfelder, G; Grummt, I

    1985-11-25

    Mouse RNA polymerase I requires at least two chromatographically distinct transcription factors (designated TIF-IA and TIF-IB) to initiate transcription accurately and efficiently in vitro. In this paper we describe the partial purification of TIF-IA by a four-step fractionation procedure. The amount or activity of TIF-IA fluctuates in response to the physiological state of the cells. Extracts from quiescent cells are incapable of specific transcription and do not contain detectable levels of TIF-IA. Transcriptionally inactive extracts can be restored by the addition of TIF-IA preparations that have been highly purified from exponentially growing cells. During the fractionating procedure TIF-IA co-purifies with RNA polymerase I, suggesting that it is functionally associated with the transcribing enzyme. We suggest that only those enzyme molecules that are associated with TIF-IA are capable to interact with TIF-IB and to initiate transcription.

  14. Fluorescence lifetime imaging of endogenous molecules in live mouse cancer models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Svindrych, Zdenek; Wang, Tianxiong; Hu, Song; Periasamy, Ammasi

    2017-02-01

    NADH and FAD are important endogenous fluorescent coenzymes participating in key enzymatic reactions of cellular metabolism. While fluorescence intensities of NADH and FAD have been used to determine the redox state of cells and tissues, this simple approach breaks down in the case of deep-tissue intravital imaging due to depth- and wavelength-dependent light absorption and scattering. To circumvent this limitation, our research focuses on fluorescence lifetimes of two-photon excited NADH and FAD emission to study the metabolic state of live tissues. In our custom-built scanning microscope we combine tunable femtosecond Ti:sapphire laser (operating at 740 nm for NADH excitation and 890 nm for FAD excitation), two GaAsP hybrid detectors for registering individual fluorescence photons and two Becker and Hickl time correlator boards for high precision lifetime measurements. Together with our rigorous FLIM analysis approach (including image segmentation, multi-exponential decay fitting and detailed statistical analysis) we are able to detect metabolic changes in cancer xenografts (human pancreatic cancer MPanc96 cells injected subcutaneously into the ear of an immunodeficient nude mouse), relative to surrounding healthy tissue. Advantageously, with the same instrumentation we can also take high-resolution and high-contrast images of second harmonic signal (SHG) originating from collagen fibers of both the healthy skin and the growing tumor. The combination of metabolic measurements (NADH and FAD lifetime) and morphological information (collagen SHG) allows us to follow the tumor growth in live mouse model and the changes in tumor microenvironment.

  15. On the Time-Dependent Analysis of Gamow Decay

    ERIC Educational Resources Information Center

    Durr, Detlef; Grummt, Robert; Kolb, Martin

    2011-01-01

    Gamow's explanation of the exponential decay law uses complex "eigenvalues" and exponentially growing "eigenfunctions". This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any…

  16. Release of specific proteins from nuclei of HL-60 and MOLT-4 cells by antitumor drugs having affinity to nucleic acids.

    PubMed

    Lassota, P; Melamed, M R; Darzynkiewicz, Z

    The binding sites for mitoxantrone (MIT), Ametantrone (AMT), doxorubicin (DOX), actinomycin D (AMD) and ethidium bromide (EB) in nuclei from exponentially growing and differentiating human promyelocytic HL-60 and lymphocytic leukemic MOLT-4 cells were studied by gel electrophoresis of proteins selectively released during titration of these nuclei with the drugs. Each drug at different drug: DNA binding ratios resulted in a characteristic pattern of protein elution and/or retention. For example, in nuclei from exponentially growing HL-60 cells, MIT affected 44 nuclear proteins that were different from those affected by EB; of these 29 were progressively released at increasing MIT:DNA ratios, 11 were transiently released (i.e. only at a low MIT:DNA ratio) and 4 entrapped. Patterns of proteins displaced from nuclei of exponentially growing HL-60 cells differed from those of cells undergoing myeloid differentiation as well as from those of exponentially growing MOLT-4 cells. The first effects were seen at a binding density of approximately one drug molecule per 10-50 base pairs of DNA. The observed selective displacement of proteins may reflect drug-altered affinity of the binding sites for those proteins, for example due to a change of nucleic acid or protein conformation upon binding the ligand. The data show that the binding site(s) for each of the ligands studied is different and the differences correlate with variability in chemical structure between the ligands. The nature of the drug-affected proteins may provide clues regarding antitumor or cytotoxic mechanisms of drug action.

  17. Wind-forced modulations in crossing sea states over infinite depth water

    NASA Astrophysics Data System (ADS)

    Debsarma, Suma; Senapati, Sudipta; Das, K. P.

    2014-09-01

    The present work is motivated by the work of Leblanc ["Amplification of nonlinear surface waves by wind," Phys. Fluids 19, 101705 (2007)] which showed that Stokes waves grow super exponentially under fair wind as a result of modulational instability. Here, we have studied the effect of wind in a situation of crossing sea states characterized by two obliquely propagating wave systems in deep water. It is found that the wind-forced uniform wave solution in crossing seas grows explosively with a super-exponential growth rate even under a steady horizontal wind flow. This is an important piece of information in the context of the formation of freak waves.

  18. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozan, S.; Faye, J.C.; Tournier, J.F.

    1985-11-27

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combinedmore » treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.« less

  19. Self-charging of identical grains in the absence of an external field.

    PubMed

    Yoshimatsu, R; Araújo, N A M; Wurm, G; Herrmann, H J; Shinbrot, T

    2017-01-06

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study.

  20. Self-charging of identical grains in the absence of an external field

    NASA Astrophysics Data System (ADS)

    Yoshimatsu, R.; Araújo, N. A. M.; Wurm, G.; Herrmann, H. J.; Shinbrot, T.

    2017-01-01

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study.

  1. Something from nothing: self-charging of identical grains

    NASA Astrophysics Data System (ADS)

    Shinbrot, Troy; Yoshimatsu, Ryuta; Nuno Araujo, Nuno; Wurm, Gerhard; Herrmann, Hans

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study. I acknowledge support from NSF/DMR, award 1404792.

  2. Self-charging of identical grains in the absence of an external field

    PubMed Central

    Yoshimatsu, R.; Araújo, N. A. M.; Wurm, G.; Herrmann, H. J.; Shinbrot, T.

    2017-01-01

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study. PMID:28059124

  3. Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Radha, R.; Kumar, V. Ramesh

    2007-11-01

    In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.

  4. Power law incidence rate in epidemic models. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    Allen, Linda J. S.

    2016-09-01

    Dr. Chowell and colleagues emphasize the importance of considering a variety of modeling approaches to characterize the growth of an epidemic during the early stages [1]. A fit of data from the 2009 H1N1 influenza pandemic and the 2014-2015 Ebola outbreak to models indicates sub-exponential growth, in contrast to the classic, homogeneous-mixing SIR model with exponential growth. With incidence rate βSI / N and S approximately equal to the total population size N, the number of new infections in an SIR epidemic model grows exponentially as in the differential equation,

  5. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  6. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  7. Mutant number distribution in an exponentially growing population

    NASA Astrophysics Data System (ADS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  8. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast, there was a dose-dependent increase in ICAM-1 immunofluorescence in confluent, but not exponentially-growing cells. These results suggest that proton irradiation downregulates beta 1-integrin and upregulates ICAM-1, potentially contributing to cell death or to aberrant differentiation via modulation of anchorage and/or signal transduction functions. Quantification of the expression levels of the CAMs by Western analysis is in progress.

  9. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  10. Diethylglyoxal bis(guanylhydrazone), a potent inhibitor of mammalian S-adenosylmethionine decarboxylase. Effects on cell proliferation and polyamine metabolism in L1210 leukemia cells.

    PubMed

    Svensson, F; Kockum, I; Persson, L

    1993-07-21

    The polyamines are cell constituents essential for growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the polyamine biosynthetic pathway. Methylglyoxal bis(guanylhydrazone) (MGBG) is an anti-leukemic agent with a strong inhibitory effect against AdoMetDC. However, the lack of specificity limits the usefulness of MGBG. In the present report we have used an analog of MGBG, diethylglyoxal bis(guanylhydrazone) (DEGBG), with a much greater specificity and potency against AdoMetDC, to investigate the effects of AdoMetDC inhibition on cell proliferation and polyamine metabolism in mouse L1210 leukemia cells. DEGBG was shown to effectively inhibit AdoMetDC activity in exponentially growing L1210 cells. The inhibition of AdoMetDC was reflected in a marked decrease in the cellular concentrations of spermidine and spermine. The concentration of putrescine, on the other hand, was greatly increased. Treatment with DEGBG resulted in a compensatory increase in the synthesis of AdoMetDC demonstrating an efficient feedback control. Cells seeded in the presence of DEGBG ceased to grow after a lag period of 1-2 days, indicating that the cells contained an excess of polyamines which were sufficient for one or two cell cycles in the absence of polyamine synthesis. The present results indicate that analogs of MGBG, having a greater specificity against AdoMetDC, might be valuable for studies concerning polyamines and cell proliferation.

  11. Theoretical and Experimental Study of Bacterial Colony Growth in 3D

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya

    2014-03-01

    Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.

  12. Conditional Allele Mouse Planner (CAMP): software to facilitate the planning and design of breeding strategies involving mice with conditional alleles.

    PubMed

    Hoffert, Jason D; Pisitkun, Trairak; Miller, R Lance

    2012-06-01

    Transgenic and conditional knockout mouse models play an important role in biomedical research and their use has grown exponentially in the last 5-10 years. Generating conditional knockouts often requires breeding multiple alleles onto the background of a single mouse or group of mice. Breeding these mice depends on parental genotype, litter size, transmission frequency, and the number of breeding rounds. Therefore, a well planned breeding strategy is critical for keeping costs to a minimum. However, designing a viable breeding strategy can be challenging. With so many different variables this would be an ideal task for a computer program. To facilitate this process, we created a Java-based program called Conditional Allele Mouse Planner (CAMP). CAMP is designed to provide an estimate of the number of breeders, amount of time, and costs associated with generating mice of a particular genotype. We provide a description of CAMP, how to use it, and offer it freely as an application.

  13. Seeing How Money Grows.

    ERIC Educational Resources Information Center

    Metz, James

    2001-01-01

    Describes an activity designed to help students connect the ideas of linear growth and exponential growth through graphs of the future value of accounts that earn simple interest and accounts that earn compound interest. Includes worksheets and solutions. (KHR)

  14. Drawing from Rural Ideals for Sustainable School Music

    ERIC Educational Resources Information Center

    Bates, Vincent C.

    2013-01-01

    Archetypal images in stories and lyrics such as Lehi's Dream in the Book of Mormon, Country Mouse and the City Mouse, and selected Country music lyrics grow from perceptions of social, cultural, and geographical realities. For their purveyors, they likely stem from personal experience as the proverbial Country Mouse in the city and/or from…

  15. Power law versus exponential state transition dynamics: application to sleep-wake architecture.

    PubMed

    Chu-Shore, Jesse; Westover, M Brandon; Bianchi, Matt T

    2010-12-02

    Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.

  16. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  17. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  18. Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Dold, Dominic

    2017-03-01

    For any cosmological constant {Λ = -3/ℓ2 < 0} and any {α < 9/4}, we find a Kerr-AdS spacetime {({M}, g_{KAdS})}, in which the Klein-Gordon equation {Box_{g_{KAdS}}ψ + α/ℓ2ψ = 0} has an exponentially growing mode solution satisfying a Dirichlet boundary condition at infinity. The spacetime violates the Hawking-Reall bound {r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.

  19. GABA signaling stimulates α-cell-mediated β-like cell neogenesis.

    PubMed

    Napolitano, Tiziana; Avolio, Fabio; Vieira, Andhira; Ben-Othman, Nouha; Courtney, Monica; Gjernes, Elisabet; Hadzic, Biljana; Druelle, Noémie; Navarro Sanz, Sergi; Silvano, Serena; Mansouri, Ahmed; Collombat, Patrick

    2017-01-01

    Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.

  20. Archiving and Distributing Mouse Lines by Sperm Cryopreservation, IVF, and Embryo Transfer

    PubMed Central

    Takahashi, Hideko; Liu, Chengyu

    2012-01-01

    The number of genetically modified mouse lines has been increasing exponentially in the past few decades. In order to safeguard them from accidental loss and genetic drifting, to reduce animal housing cost, and to efficiently distribute them around the world, it is important to cryopreserve these valuable genetic resources. Preimplantation-stage embryos from thousands of mouse lines have been cryopreserved during the past two to three decades. Although reliable, this method requires several hundreds of embryos, which demands a sizable breeding colony, to safely preserve each line. This requirement imposes significant delay and financial burden for the archiving effort. Sperm cryopreservation is now emerging as the leading method for storing and distributing mouse lines, largely due to the recent finding that addition of a reducing agent, monothioglycerol, into the cryoprotectant can significantly increase the in vitro fertilization (IVF) rate in many mouse strains, including the most widely used C57BL/6 strain. This method is quick, inexpensive, and requires only two breeding age male mice, but it still remains tricky and strain-dependent. A small change in experimental conditions can lead to significant variations in the outcome. In this chapter, we describe in detail our sperm cryopreservation, IVF, and oviduct transfer procedures for storing and reviving genetically modified mouse lines. PMID:20691860

  1. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  2. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production.

    PubMed

    Stevens, Marc J A; Vollenweider, Sabine; Meile, Leo; Lacroix, Christophe

    2011-08-03

    Lactobacillus reuteri metabolizes glycerol to 3-hydroxypropionaldehyde (3-HPA) and further to 1,3-propanediol (1,3-PDO), the latter step catalysed by a propanediol dehydrogenase (PDH). The last step in this pathway regenerates NAD+ and enables therefore the energetically more favourable production of acetate over ethanol during growth on glucose. A search throughout the genome of L. reuteri DSM 20016 revealed two putative PDHs encoded by ORFs lr_0030 and lr_1734. ORF lr_1734 is situated in the pdu operon encoding the glycerol conversion machinery and therefore likely involved in 1,3-PDO formation. ORF lr_0030 has not been associated with PDH-activity so far. To elucidate the role of these two PDHs, gene deletion mutant strains were constructed. Growth behaviour on glucose was comparable between the wild type and both mutant strains. However, on glucose + glycerol, the exponential growth rate of Δlr_0030 was lower compared to the wild type and the lr_1734 mutant. Furthermore, glycerol addition resulted in decreased ethanol production in the wild type and Δlr_1734, but not in Δlr_0030. PDH activity measurements using 3-HPA as a substrate revealed lower activity of Δlr_0030 extracts from exponential growing cells compared to wild type and Δlr_1734 extracts.During biotechnological 3-HPA production using non-growing cells, the ratio 3-HPA to 1,3-PDO was approximately 7 in the wild type and Δlr_0030, whereas this ratio was 12.5 in the mutant Δlr_1734. The enzyme encoded by lr_0030 plays a pivotal role in 3-HPA conversion in exponential growing L. reuteri cells. The enzyme encoded by lr_1734 is active during 3-HPA production by non-growing cells and this enzyme is a useful target to enhance 3-HPA production and minimize formation of the by-product 1,3-PDO.

  3. Function of the growth-regulated transcription initiation factor TIF-IA in initiation complex formation at the murine ribosomal gene promoter.

    PubMed

    Schnapp, A; Schnapp, G; Erny, B; Grummt, I

    1993-11-01

    Alterations in the rate of cell proliferation are accompanied by changes in the transcription of rRNA genes. In mammals, this growth-dependent regulation of transcription of genes coding for rRNA (rDNA) is due to reduction of the amount or activity of an essential transcription factor, called TIF-IA. Extracts prepared from quiescent cells lack this factor activity and, therefore, are transcriptionally inactive. We have purified TIF-IA from exponentially growing cells and have shown that it is a polypeptide with a molecular mass of 75 kDa which exists as a monomer in solution. Using a reconstituted transcription system consisting of purified transcription factors, we demonstrate that TIF-IA is a bona fide transcription initiation factor which interacts with RNA polymerase I. Preinitiation complexes can be assembled in the absence of TIF-IA, but formation of the first phosphodiester bonds of nascent rRNA is precluded. After initiation, TIF-IA is liberated from the initiation complex and facilitates transcription from templates bearing preinitiation complexes which lack TIF-IA. Despite the pronounced species specificity of class I gene transcription, this growth-dependent factor has been identified not only in mouse but also in human cells. Murine TIF-IA complements extracts from both growth-inhibited mouse and human cells. The analogous human activity appears to be similar or identical to that of TIF-IA. Therefore, despite the fact that the RNA polymerase transcription system has evolved sufficiently rapidly that an rDNA promoter from one species will not function in another species, the basic mechanisms that adapt ribosome synthesis to cell proliferation have been conserved.

  4. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  5. Is it growing exponentially fast? -- Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics.

    PubMed

    Chowell, Gerardo; Viboud, Cécile

    2016-10-01

    The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.

  6. Electronic Catalog Of Extragalactic Objects

    NASA Technical Reports Server (NTRS)

    Helou, George; Madore, Barry F.

    1993-01-01

    NASA/IPAC Extragalactic Database (NED) is publicly accessible computerized catalog of published information about extragalactic observations. Developed to accommodate increasingly large sets of data from surveys, exponentially growing literature, and trend among astronomers to take multispectral approach to astrophysical problems. Accessible to researchers and librarians.

  7. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota.

    PubMed

    Leatham-Jensen, Mary P; Frimodt-Møller, Jakob; Adediran, Jimmy; Mokszycki, Matthew E; Banner, Megan E; Caughron, Joyce E; Krogfelt, Karen A; Conway, Tyrrell; Cohen, Paul S

    2012-05-01

    Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the "Restaurant" hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results.

  8. Lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes

    PubMed Central

    Park, Jinkyu; McCormick, Sean P.; Chakrabarti, Mrinmoy; Lindahl, Paul A.

    2014-01-01

    Fermenting cells growing exponentially on rich (YPAD) medium transitioned to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transitionary period, the high-affinity Fe import rate declined slower than the cell growth rate declined, causing Fe to accumulate, initially as FeIII oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once in slow-growth mode, Fe import and cell growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during exponential phase and transitioned to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in stationary state. Fe initially accumulated as nanoparticles and high-spin FeII species, but vacuolar FeIII also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more ROS damage than younger cells, suggesting that Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included Fe import via a regulated high-affinity pathway and an unregulated low-affinity pathway. Fe import from the cytosol into vacuoles and mitochondria, and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles accumulate. The lack of regulation of Fe in yeast is perhaps unique compared to the tight regulation of other cellular metabolites. This phenomenon likely derives from the unique chemistry associated with Fe nanoparticle formation. PMID:24344915

  9. Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2017-04-01

    The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.

  10. A note on free and forced Rossby wave solutions: The case of a straight coast and a channel

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2017-03-01

    The free Rossby wave (RW) solutions in an ocean with a straight coast when the offshore wavenumber of incident (l1) and reflected (l2) wave are equal or complex are discussed. If l1 = l2 the energy streams along the coast and a uniformly valid solution cannot be found; if l1,2 are complex it yields the sum of an exponentially decaying and growing (away from the coast) Rossby wave. The channel does not admit these solutions as free modes. If the wavenumber vectors of the RWs are perpendicular to the coast, the boundary condition of no normal flow is trivially satisfied and the value of the streamfunction does not need to vanish at the coast. A solution that satisfies Kelvin's theorem of time-independent circulation at the coast is proposed. The forced RW solutions when the ocean's forcing is a single Fourier component are studied. If the forcing is resonant, i.e. a free Rossby wave (RW), the linear response will depend critically on whether the wave carries energy perpendicular to the channel or not. In the first case, the amplitude of the response is linear in the direction normal to the channel, y, and in the second it has a parabolic profile in y. Examples of these solutions are shown for channels with parameters resembling the Mozambique Channel, the Tasman Sea, the Denmark Strait and the English Channel. The solutions for the single coast are unbounded, except when the forcing is a RW trapped against the coast. If the forcing is non-resonant, exponentially decaying or trapped RWs could be excited in the coast and both the exponentially ;decaying; and exponentially ;growing; RW could be excited in the channel.

  11. Growth and differentiation of human lens epithelial cells in vitro on matrix

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  12. Response of a mouse hybridoma cell line to heat shock, agitation, and sparging

    NASA Technical Reports Server (NTRS)

    Passini, Cheryl A.; Goochee, Charles F.

    1989-01-01

    A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.

  13. Programmed cell death of tobacco BY-2 cells induced by still culture conditions is affected by the age of the culture under agitation.

    PubMed

    Hiraga, Asahi; Kaneta, Tsuyoshi; Sato, Yasushi; Sato, Seiichi

    2010-01-25

    Evans Blue staining indicated that actively growing tobacco BY-2 cells in the exponential phase died more rapidly than quiescent cells in the stationary phase when the cells cultured under agitation were placed under still conditions. Fifty percent cell death was induced at about 18, 26, 80 and 140 h for early, mid, late exponential- and stationary-phase cells, respectively. Actively growing cells became TUNEL (transferase-mediated dUTP nick end labelling)-positive more rapidly than quiescent cells, suggesting that the cell death evaluated by Evans Blue is accompanied by DNA cleavages. Electrophoresis of genomic DNA showed a typical 'DNA laddering' pattern formed by multiples of about 200 bp internucleosomal units. Chromatin condensation was first detected at least within 24 h by light microscopy, and then cell shrinkage followed. These findings suggest that the death of BY-2 cells induced by still conditions is PCD (programmed cell death).

  14. Optimal savings and the value of population.

    PubMed

    Arrow, Kenneth J; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P

    2007-11-20

    We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium.

  15. Optimal savings and the value of population

    PubMed Central

    Arrow, Kenneth J.; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P.

    2007-01-01

    We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium. PMID:17984059

  16. Polypeptide multilayer films on colloidal particles: an in situ electro-optical study.

    PubMed

    Radeva, Tsetska; Kamburova, Kamelia

    2007-04-15

    The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.

  17. Analysis of the Chinese air route network as a complex network

    NASA Astrophysics Data System (ADS)

    Cai, Kai-Quan; Zhang, Jun; Du, Wen-Bo; Cao, Xian-Bin

    2012-02-01

    The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.

  18. Bounding entanglement spreading after a local quench

    NASA Astrophysics Data System (ADS)

    Drumond, Raphael C.; Móller, Natália S.

    2017-06-01

    We consider the variation of von Neumann entropy of subsystem reduced states of general many-body lattice spin systems due to local quantum quenches. We obtain Lieb-Robinson-like bounds that are independent of the subsystem volume. The main assumptions are that the Hamiltonian satisfies a Lieb-Robinson bound and that the volume of spheres on the lattice grows at most exponentially with their radius. More specifically, the bound exponentially increases with time but exponentially decreases with the distance between the subsystem and the region where the quench takes place. The fact that the bound is independent of the subsystem volume leads to stronger constraints (than previously known) on the propagation of information throughout many-body systems. In particular, it shows that bipartite entanglement satisfies an effective "light cone," regardless of system size. Further implications to t density-matrix renormalization-group simulations of quantum spin chains and limitations to the propagation of information are discussed.

  19. Elucidation of the tumoritropic principle of hypericin

    PubMed Central

    Van de Putte, M; Roskams, T; Vandenheede, J R; Agostinis, P; de Witte, P A M

    2005-01-01

    Hypericin is a potent agent in the photodynamic therapy of cancers. To better understand its tumoritropic behaviour, we evaluated the major determinants of the accumulation and dispersion of hypericin in subcutaneously growing mouse tumours. A rapid exponential decay in tumour accumulation of hypericin as a function of tumour weight was observed for each of the six tumour models investigated, and a similar relationship was found between tumour blood flow and tumour weight. Moreover, there was a close correlation between the higher hypericin uptake in RIF-1 tumours compared to R1 tumours and tumour vessel permeability. To define the role of lipoproteins in the transport of hypericin through the interstitial space, we performed a visual and quantitative analysis of the colocalisation of hypericin and DiOC18-labelled lipoproteins in microscopic fluorescent overlay images. A coupled dynamic behaviour was found early after injection (normalised fluorescence intensity differences were on the whole less than 10%), while a shifted pattern in localisation of hypericin and DiOC18 was seen after 24 h, suggesting that during its migration through the tumour mass, hypericin is released from the lipoprotein complex. In conclusion, we were able to show that the tumour accumulation of hypericin is critically determined by a combination of biological (blood flow, vessel permeability) and physicochemical elements (affinity for interstitial constituents). PMID:15812555

  20. Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics

    PubMed Central

    Lin, Wei; Feng, Rui; Li, Hongzhe

    2014-01-01

    In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of co-variates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online. PMID:26392642

  1. Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soo-Young

    2009-10-15

    We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.

  2. The National Network of Fusion Centers: Perception and Reality

    DTIC Science & Technology

    2014-12-01

    growing exponentially to the post-recession era of austerity. As this pendulum moved from one side to the other, perceptions and attitudes about the...decline. The article provides insight into the advantages and drawbacks of the development of a national marketing strategy and highlights factors

  3. Fatty acid synthesis in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1967-01-01

    1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mμmoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C17-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO42− or Mg2+, was growth-limiting there was a small accumulation of C17-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH4+ or PO43− was growth-limiting and there were adequate supplies of glycerol, Mg2+ and SO42−, there was a marked accumulation of C17-cyclopropane acid and C19-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C17-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg2+ and SO42− stimulated cyclopropane acid formation in resting cells. PMID:5340364

  4. Teaching with Laptops

    ERIC Educational Resources Information Center

    Zucker, Andrew A.; King, Karen E.

    2009-01-01

    The declining cost of computers and wireless networks has made laptop programs more affordable than ever. At the same time, the internet resources available to teachers and students have grown exponentially in the 15 years since web browsers first became practical. As a result of these trends, growing numbers of students nationwide are provided…

  5. Exploring Cloud Computing for Distance Learning

    ERIC Educational Resources Information Center

    He, Wu; Cernusca, Dan; Abdous, M'hammed

    2011-01-01

    The use of distance courses in learning is growing exponentially. To better support faculty and students for teaching and learning, distance learning programs need to constantly innovate and optimize their IT infrastructures. The new IT paradigm called "cloud computing" has the potential to transform the way that IT resources are utilized and…

  6. Impact of abiotic stress on corn yield and quality: A Review

    USDA-ARS?s Scientific Manuscript database

    Corn production is an essential part of the world’s grain supply, and supports the exponentially growing human population either directly through consumption or indirectly through livestock feed. As an additional demand, there is increasing use of corn for the production of ethanol as a renewable en...

  7. The Classroom, Board Room, Chat Room, and Court Room: School Computers at the Crossroads.

    ERIC Educational Resources Information Center

    Stewart, Michael

    2000-01-01

    In schools' efforts to maximize technology's benefits, ethical considerations have often taken a back seat. Computer misuse is growing exponentially and assuming many forms: unauthorized data access, hacking, piracy, information theft, fraud, virus creation, harassment, defamation, and discrimination. Integrated-learning activities will help…

  8. Modeling Population Growth and Extinction

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2009-01-01

    The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…

  9. Building a Champagne Network on a Beer Budget

    ERIC Educational Resources Information Center

    Dolan, Jon; Pederson, Curt

    2004-01-01

    Oregon State University's demand for bandwidth to support scientific collaboration and research continues to grow exponentially, while state funding declines due to hard economic times. The challenge faced by these authors was to find creative yet fiscally responsible ways to meet OSU's bandwidth demands. Looking at their options for high-capacity…

  10. Uncovering Discovery Layer Services

    ERIC Educational Resources Information Center

    Kennedy, Sean P.

    2014-01-01

    Today's electronic information landscape is growing exponentially with no signs of slowing. This poses a significant challenge for academic libraries. Librarians must continually learn and adapt to harness this explosion of resources. To fulfill their claim as the leaders in the information field they must be effective in providing access and…

  11. The Next Computer Revolution.

    ERIC Educational Resources Information Center

    Peled, Abraham

    1987-01-01

    Discusses some of the future trends in the use of the computer in our society, suggesting that computing is now entering a new phase in which it will grow exponentially more powerful, flexible, and sophisticated in the next decade. Describes some of the latest breakthroughs in computer hardware and software technology. (TW)

  12. Team-Based Learning in a Physical Therapy Gross Anatomy Course

    ERIC Educational Resources Information Center

    Killins, Anita M.

    2015-01-01

    As medical knowledge grows exponentially and healthcare systems continue to utilize interdisciplinary care, it is essential that physical therapy (PT) graduates be prepared to practice efficiently and effectively on healthcare teams. Team-based learning (TBL) is a teaching pedagogy used in medicine to improve academic performance and teamwork…

  13. Quantifying growing versus non-growing ovarian follicles in the mouse.

    PubMed

    Uslu, Bahar; Dioguardi, Carola Conca; Haynes, Monique; Miao, De-Qiang; Kurus, Meltem; Hoffman, Gloria; Johnson, Joshua

    2017-01-13

    A standard histomorphometric approach has been used for nearly 40 years that identifies atretic (e.g., dying) follicles by counting the number of pyknotic granulosa cells (GC) in the largest follicle cross-section. This method holds that if one pyknotic granulosa nucleus is seen in the largest cross section of a primary follicle, or three pyknotic cells are found in a larger follicle, it should be categorized as atretic. Many studies have used these criteria to estimate the fraction of atretic follicles that result from genetic manipulation or environmental insult. During an analysis of follicle development in a mouse model of Fragile X premutation, we asked whether these 'historical' criteria could correctly identify follicles that were not growing (and could thus confirmed to be dying). Reasoning that the fraction of mitotic GC reveals whether the GC population was increasing at the time of sample fixation, we compared the number of pyknotic nuclei to the number of mitotic figures in follicles within a set of age-matched ovaries. We found that, by itself, pyknotic nuclei quantification resulted in high numbers of false positives (improperly categorized as atretic) and false negatives (improperly categorized intact). For preantral follicles, scoring mitotic and pyknotic GC nuclei allowed rapid, accurate identification of non-growing follicles with 98% accuracy. This method most often required the evaluation of one follicle section, and at most two serial follicle sections to correctly categorize follicle status. For antral follicles, we show that a rapid evaluation of follicle shape reveals which are intact and likely to survive to ovulation. Combined, these improved, non-arbitrary methods will greatly improve our ability to estimate the fractions of growing/intact and non-growing/atretic follicles in mouse ovaries.

  14. Host range and cell cycle activation properties of polyomavirus large T-antigen mutants defective in pRB binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, R.; Bauer, P.H.; Benjamin, T.L.

    1994-11-01

    The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, whilemore » those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.« less

  15. Production of a Biosurfactant from Torulopsis bombicola

    PubMed Central

    Cooper, D. G.; Paddock, D. A.

    1984-01-01

    Two types of carbon sources—carbohydrate and vegetable oil—are necessary to obtain large yields of biosurfactant from Torulopsis bombicola ATCC 22214. Most of the surfactant is produced in the late exponential phase of growth. It is possible to grow the yeast on a single carbon source and then add the other type of substrate, after the exponential growth phase, and cause a burst of surfactant production. This product is a mixture of glycolipids. The maximum yield is 70 g liter−1, or 35% of the weight of the substrate used. An economic comparison demonstrated that this biosurfactant could be produced significantly more cheaply than any of the previously reported microbial surfactants. PMID:16346455

  16. Exponentially growing tearing modes in Rijnhuizen Tokamak Project plasmas.

    PubMed

    Salzedas, F; Schüller, F C; Oomens, A A M

    2002-02-18

    The local measurement of the island width w, around the resonant surface, allowed a direct test of the extended Rutherford model [P. H. Rutherford, PPPL Report-2277 (1985)], describing the evolution of radiation-induced tearing modes prior to disruptions of tokamak plasmas. It is found that this model accounts very well for the observed exponential growth and supports radiation losses as being the main driving mechanism. The model implies that the effective perpendicular electron heat conductivity in the island is smaller than the global one. Comparison of the local measurements of w with the magnetic perturbed field B showed that w proportional to B1/2 was valid for widths up to 18% of the minor radius.

  17. Internet Addiction Risk in the Academic Environment

    ERIC Educational Resources Information Center

    Ellis, William F.; McAleer, Brenda; Szakas, Joseph S.

    2015-01-01

    The Internet's effect on society is growing exponentially. One only has to look at the growth of e-commerce, social media, wireless data access, and mobile devices to see how communication is changing. The need and desire for the Internet, especially in such disciplines as Computer Science or Computer Information Systems, pose a unique risk for…

  18. Latinas in College: "Contra Viento y Marea" (Against Winds and Tides)

    ERIC Educational Resources Information Center

    Diaz De Sabates, Gabriela

    2007-01-01

    With the rapid demographic changes in the United States in general and in the state of Kansas in particular, educational institutions are challenged with a gigantic task: to educate a very diverse population with multifaceted linguistic and cultural backgrounds, needs, and challenges that is growing exponentially. To illustrate this demographic…

  19. Mountain pine beetle in high-elevation five-needle white pine ecosystems

    Treesearch

    Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six

    2011-01-01

    Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...

  20. Learning Outcomes for Peer Educators: The National Survey on Peer Education

    ERIC Educational Resources Information Center

    Wawrzynski, Matthew R.; LoConte, Carl L.; Straker, Emily J.

    2011-01-01

    Peer education programs have gained popularity on college campuses because peer educators can communicate with other students in ways that faculty and administrators cannot. Peer education programs continue to grow exponentially because college-age students often feel more comfortable talking with peers when it comes to sensitive issues such as…

  1. A Survey of English-Medium Instruction in Italian Higher Education

    ERIC Educational Resources Information Center

    Costa, Francesca; Coleman, James A.

    2013-01-01

    English-taught Programmes (ETPs) have increased exponentially in European universities over the last 10 years, leading to growing numbers of bilingual graduates. This study reports on the most recent survey of ETPs in Italian higher education. A questionnaire completed in 2010 by 50% of Italian universities addressed both organisational factors…

  2. Higher Education Faculty Utilization of Online Technological Tools: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Jackson, Brianne L.

    2017-01-01

    As online learning and the use of online technological tools in higher education continues to grow exponentially, higher education faculty are expected to incorporate these tools into their instruction. However, many faculty members are reluctant to embrace such tools, for a variety of professional and personal reasons. This study employs survey…

  3. Citizen Science: A Gateway for Innovation in Disease-Carrying Mosquito Management?

    PubMed

    Bartumeus, Frederic; Oltra, Aitana; Palmer, John R B

    2018-05-21

    Traditional methods for tracking disease-carrying mosquitoes are hitting budget constraints as the scales over which they must be implemented grow exponentially. Citizen science offers a novel solution to this problem but requires new models of innovation in the public health sector. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Intelligence Surveillance And Reconnaissance Full Motion Video Automatic Anomaly Detection Of Crowd Movements: System Requirements For Airborne Application

    DTIC Science & Technology

    The collection of Intelligence , Surveillance, and Reconnaissance (ISR) Full Motion Video (FMV) is growing at an exponential rate, and the manual... intelligence for the warfighter. This paper will address the question of how can automatic pattern extraction, based on computer vision, extract anomalies in

  5. Government-owned CubeSat Next Generation Bus Reference Architecture

    DTIC Science & Technology

    2014-08-02

    satellites placed in orbit has been growing exponentially since 1999 as demonstrated by more than 40 CubeSats being launched in the last quarter of 2013...Emhart Helicoil #2(.086)-56 x 0.172 inch long, Nitronic 60 stainless steel. A trade-study was conducted regarding the choice of metric versus SAE

  6. EUA's Open Access Checklist for Universities: A Practical Guide on Implementation

    ERIC Educational Resources Information Center

    Morais, Rita; Lourenço, Joana; Smith, John H.; Borrell-Damian, Lidia

    2015-01-01

    Open Access (OA) to research publications has received increased attention from the academic community, scientific publishers, research funding agencies and governments. This movement has been growing exponentially in recent years, both in terms of the increasing number of Open Access journals and the proliferation of policies on this topic. The…

  7. The Impact of Writing Assignments in Business Education: Toward a Competitive Advantage in the Workplace

    ERIC Educational Resources Information Center

    Washington, Melvin C.

    2014-01-01

    Twenty-first century organizations are increasingly becoming global information networks where the emphasis on written communication is growing exponentially. Effective writing skills are becoming more essential to workplace success and thus a central focus in business programs across the country. This article addresses writing issues in business…

  8. The "Magic" of Wireless Access in the Library

    ERIC Educational Resources Information Center

    Balas, Janet L.

    2006-01-01

    It seems that the demand for public access computers grows exponentially every time a library network is expanded, making it impossible to ever have enough computers available for patrons. One solution that many libraries are implementing to ease the demand for public computer use is to offer wireless technology that allows patrons to bring in…

  9. Cloud-Based Technologies: Faculty Development, Support, and Implementation

    ERIC Educational Resources Information Center

    Diaz, Veronica

    2011-01-01

    The number of instructional offerings in higher education that are online, blended, or web-enhanced, including courses and programs, continues to grow exponentially. Alongside the growth of e-learning, higher education has witnessed the explosion of cloud-based or Web 2.0 technologies, a term that refers to the vast array of socially oriented,…

  10. Pay Big to Publish Fast: Academic Journal Rackets

    ERIC Educational Resources Information Center

    Truth, Frank

    2012-01-01

    In the context of open-access (OA) academic publishing, the mounting pressure cross global academe to publish or perish has spawned an exponentially growing number of dodgy academic e-journals charging high fees to authors, often US$300-650, and even triple that amount, promising super-fast processing and publication open-access (OA) online.…

  11. Garbage in, Garbage Stays: How ERPs Could Improve Our Data-Quality Issues

    ERIC Educational Resources Information Center

    Riccardi, Richard I.

    2009-01-01

    As universities begin to implement business intelligence tools such as end-user reporting, data warehousing, and dashboard indicators, data quality becomes an even greater and more public issue. With automated tools taking nightly snapshots of the database, the faulty data grow exponentially, propagating as another layer of the data warehouse.…

  12. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  13. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  14. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    PubMed

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  15. Induction of a global stress response during the first step of Escherichia coli plate growth.

    PubMed

    Cuny, Caroline; Lesbats, Maïalène; Dukan, Sam

    2007-02-01

    We have investigated the first events that occur when exponentially grown cells are transferred from a liquid medium (Luria-Bertani [LB]) to a solid medium (LB agar [LBA]). We observed an initial lag phase of 180 min for the wild type MG1655 without any apparent growth. This lack of growth was independent of the bacterial physiological state (either the stationary or the exponential phase), the solid medium composition, or the number of cells on the plate, but it was dependent on the bacterial genotype. Using lacZ-reporter fusions and two-dimensional electrophoresis analysis, we observed that when cells from exponential-phase cultures were plated on LBA, several global regulons, like heat shock regulons (RpoH, RpoE, CpxAR) and oxidative-stress regulons (SoxRS, OxyR, Fur), were immediately induced. Our results indicate that in order to grow on plates, bacteria must not only adapt to new conditions but also perceive a real stress.

  16. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS

    PubMed Central

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2015-01-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses. PMID:26166910

  17. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase.

    PubMed

    Bojsen, Rasmus; Regenberg, Birgitte; Folkesson, Anders

    2014-12-04

    Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. We used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially growing planktonic cells, voriconazole had limited antifungal activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the response of growing biofilms to antifungal drugs was similar to the response of exponentially growing planktonic cells. The response in mature biofilm was similar to that of non-growing planktonic cells. These results confirmed the importance of growth phase on drug efficacy. We showed that in vitro susceptibility to antifungal drugs was independent of biofilm or planktonic growth mode. Instead, drug tolerance was a consequence of growth arrest achievable by both planktonic and biofilm populations. Our results suggest that efficient strategies for treatment of yeast biofilm might be developed by targeting of non-dividing cells.

  18. To grow or not to grow: Hair morphogenesis and human genetic hair disorders

    PubMed Central

    Duverger, Olivier; Morasso, Maria I.

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. PMID:24361867

  19. Standards Based Design: Teaching K-12 Educators to Build Quality Online Courses

    ERIC Educational Resources Information Center

    Quiroz, René E.; Ritter, Nicola L.; Li, Yun; Newton, Rhonda C.; Palkar, Trupti

    2016-01-01

    The number of online courses, programs, and schools are growing exponentially in K-12 education. Given the unique nature of online courses and the distinct skills necessary to create a quality online course, it is essential that effective professional development be provided for teachers designing online courses. Online courses need to be of the…

  20. Combating Inequalities in Two-Way Language Immersion Programs: Toward Critical Consciousness in Bilingual Education Spaces

    ERIC Educational Resources Information Center

    Cervantes-Soon, Claudia G.; Dorner, Lisa; Palmer, Deborah; Heiman, Dan; Schwerdtfeger, Rebecca; Choi, Jinmyung

    2017-01-01

    This chapter reviews critical areas of research on issues of equity/equality in the highly proclaimed and exponentially growing model of bilingual education: two-way immersion (TWI). There is increasing evidence that TWI programs are not living up to their ideal to provide equal access to educational opportunity for transnational emergent…

  1. Transformative Role of Epigenetics in Child Development Research: Commentary on the Special Section

    ERIC Educational Resources Information Center

    Keating, Daniel P.

    2016-01-01

    Lester, Conradt, and Marsit (2016) have assembled a set of articles that bring to readers of "Child Development" the scope and impact of the exponentially growing research on epigenetics and child development. This commentary aims to place this work in a broader context of theory and research by (a) providing a conceptual framework for…

  2. Points of View: A Survey of Survey Courses--Are They Effective? Argument Favoring a Survey as the First Course for Majors

    ERIC Educational Resources Information Center

    Ledbetter, Mary Lee; Campbell, A. Malcolm

    2005-01-01

    Reasonable people disagree about how to introduce undergraduate students to the marvels and complexities of the biological sciences. With intrinsically varied subdisciplines within biology, exponentially growing bases of information, and new unifying theories rising regularly, introduction to the curriculum is a challenge. Some decide to focus…

  3. Analysing a Whole CLIL School: Students' Attitudes, Motivation, and Receptive Vocabulary Outcomes

    ERIC Educational Resources Information Center

    Arribas, Mario

    2016-01-01

    CLIL keeps on gaining ground in the European educational context, one clear example is Spain, where the number of schools adopting this methodology has kept growing exponentially in recent years. The present study has a dual perspective looking at the motivation of students towards English and CLIL and showing students' receptive vocabulary…

  4. Mobile Learning in Teacher Education: Insight from Four Programs That Embraced Change

    ERIC Educational Resources Information Center

    Burke, Diane M.; Foulger, Teresa S.

    2014-01-01

    Access to and use of mobile technologies are growing exponentially. The authors of this study identified four schools of education in the United States that self-identified as having a fully implemented curriculum for teachers on mobile technology use in PK-12 classrooms. In-depth interviews were conducted with a representative from each…

  5. Encrypted IP video communication system

    NASA Astrophysics Data System (ADS)

    Bogdan, Apetrechioaie; Luminiţa, Mateescu

    2010-11-01

    Digital video transmission is a permanent subject of development, research and improvement. This field of research has an exponentially growing market in civil, surveillance, security and military aplications. A lot of solutions: FPGA, ASIC, DSP have been used for this purpose. The paper presents the implementation of an encrypted, IP based, video communication system having a competitive performance/cost ratio .

  6. The Use of Mobile Learning in Science: A Systematic Review

    ERIC Educational Resources Information Center

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-01-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from…

  7. K-12 Online Learning and the Training Needs for School Psychology Practitioners

    ERIC Educational Resources Information Center

    Tysinger, P. Dawn; Tysinger, Jeff; Diamanduros, Terry; Kennedy, Kathryn

    2013-01-01

    K-12 online learning is growing at an exponential rate in the United States and around the world. Students and teachers are entering and embracing the K-12 online learning environment. Thus, it becomes imperative for school psychologists to follow. In order to offer the most productive learning environment for all students, the services provided…

  8. Multiplicative Forests for Continuous-Time Processes

    PubMed Central

    Weiss, Jeremy C.; Natarajan, Sriraam; Page, David

    2013-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability. PMID:25284967

  9. Multiplicative Forests for Continuous-Time Processes.

    PubMed

    Weiss, Jeremy C; Natarajan, Sriraam; Page, David

    2012-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability.

  10. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    NASA Astrophysics Data System (ADS)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  11. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Day, D. F.; Koenig, D. W.; Pierson, D. L.

    2001-01-01

    Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose-simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm.

  12. Exploring Mouse Protein Function via Multiple Approaches.

    PubMed

    Huang, Guohua; Chu, Chen; Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning; Cai, Yu-Dong

    2016-01-01

    Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in reality.

  13. The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation.

    PubMed

    Dekkers, Susan; Miller, Mark R; Schins, Roel P F; Römer, Isabella; Russ, Mike; Vandebriel, Rob J; Lynch, Iseult; Belinga-Desaunay, Marie-France; Valsami-Jones, Eugenia; Connell, Shea P; Smith, Ian P; Duffin, Rodger; Boere, John A F; Heusinkveld, Harm J; Albrecht, Catrin; de Jong, Wim H; Cassee, Flemming R

    2017-08-01

    Development and manufacture of nanomaterials is growing at an exponential rate, despite an incomplete understanding of how their physicochemical characteristics affect their potential toxicity. Redox activity has been suggested to be an important physicochemical property of nanomaterials to predict their biological activity. This study assessed the influence of redox activity by modification of cerium dioxide nanoparticles (CeO 2 NPs) via zirconium (Zr) doping on the biodistribution, pulmonary and cardiovascular effects in mice following inhalation. Healthy mice (C57BL/6 J), mice prone to cardiovascular disease (ApoE -/- , western-diet fed) and a mouse model of neurological disease (5 × FAD) were exposed via nose-only inhalation to CeO 2 NPs with varying amounts of Zr-doping (0%, 27% or 78% Zr), or clean air, over a four-week period (4 mg/m 3 for 3 h/day, 5 days/week). Effects were assessed four weeks post-exposure. In all three mouse models CeO 2 NP exposure had no major toxicological effects apart from some modest inflammatory histopathology in the lung, which was not related to the amount of Zr-doping. In ApoE -/- mice CeO 2 did not change the size of atherosclerotic plaques, but there was a trend towards increased inflammatory cell content in relation to the Zr content of the CeO 2 NPs. These findings show that subacute inhalation of CeO 2 NPs causes minimal pulmonary and cardiovascular effect four weeks post-exposure and that Zr-doping of CeO 2 NPs has limited effect on these responses. Further studies with nanomaterials with a higher inherent toxicity or a broader range of redox activities are needed to fully assess the influence of redox activity on the toxicity of nanomaterials.

  14. Exploring Mouse Protein Function via Multiple Approaches

    PubMed Central

    Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning

    2016-01-01

    Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in reality. PMID:27846315

  15. To grow or not to grow: hair morphogenesis and human genetic hair disorders.

    PubMed

    Duverger, Olivier; Morasso, Maria I

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. Published by Elsevier Ltd.

  16. Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates▿

    PubMed Central

    Romera-Castillo, Cristina; Sarmento, Hugo; Álvarez-Salgado, Xosé Antón; Gasol, Josep M.; Marrasé, Celia

    2011-01-01

    An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton and bacteria. The induced fluorescent emission of CDOM produced by prokaryotes was an order of magnitude higher than that of CDOM produced by eukaryotes. We have also examined the final compositions of the bacterial communities growing on the exudates, which differed markedly depending on the phytoplankton species of origin. Alteromonas and Roseobacter were dominant during all the incubations on Chaetoceros sp. and Prorocentrum minimum exudates, respectively. Alteromonas was the dominant group growing on Skeletonema costatum exudates during the exponential growth phase, but it was replaced by Roseobacter afterwards. On Micromonas pusilla exudates, Roseobacter was replaced by Bacteroidetes after the exponential growth phase. Our work shows that fluorescence excitation-emission matrices of CDOM can be a helpful tool for the identification of microbial sources of DOM in the marine environment, but further studies are necessary to explore the association of particular bacterial groups with specific fluorophores. PMID:21742918

  17. Structure of small-scale magnetic fields in the kinematic dynamo theory.

    PubMed

    Schekochihin, Alexander; Cowley, Steven; Maron, Jason; Malyshkin, Leonid

    2002-01-01

    A weak fluctuating magnetic field embedded into a a turbulent conducting medium grows exponentially while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl number is very large, so a broad spectrum of growing magnetic fluctuations is excited at small (subviscous) scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to the field variation across itself (rapid transverse direction reversals), while the scale of the field variation along itself stays approximately constant. Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power tail extending to large values of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature, therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corroborated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results also directly apply to the problem of statistical geometry of the material lines in a random flow.

  18. Investigating Students' Attitude and Intention to Use Social Software in Higher Institution of Learning in Malaysia

    ERIC Educational Resources Information Center

    Shittu, Ahmed Tajudeen; Basha, Kamal Madarsha; AbdulRahman, Nik Suryani Nik; Ahmad, Tunku Badariah Tunku

    2011-01-01

    Purpose: Social software usage is growing at an exponential rate among the present generation of students. Yet, there is paucity of empirical study to understand the determinant of its use in the present setting of this study. This study, therefore, seeks to investigate factors that predict students' attitudes and intentions to use this…

  19. North Carolina Read to Achieve: An Inside Look

    ERIC Educational Resources Information Center

    Foundation for Excellence in Education, 2017

    2017-01-01

    Learning to read by the end of third grade is the gateway to lifelong success. When students are not able to read by the end of third grade, their risk of falling behind grows exponentially. In fact, research shows that nine out of ten high school dropouts were struggling readers in third grade. Students reading below grade level are almost six…

  20. Student Perspectives on International Education: An Examination into the Decline of Japanese Studying Abroad

    ERIC Educational Resources Information Center

    Lassegard, James P.

    2013-01-01

    The number of students going abroad for study purposes continues to grow exponentially, even despite the global economic downturns of recent years. One exception is Japan, where the number of students going overseas has continued to decline since the mid-2000s. This paper first explores various explanations for the persistent decline in Japanese…

  1. Distance Guidance for Lifelong Learners in Hong Kong: Development of an Online Programme Preference Assessment Instrument

    ERIC Educational Resources Information Center

    Zhang, Weiyuan; Ng, Tak-Kay

    2006-01-01

    In order to build a knowledge-based society and meet the needs of lifelong education, open learning opportunities are growing at exponential rates. While such growth is commendable, there appears to be a very strong demand for distance guidance services in open education programme selection. The purpose of this study was to develop the online…

  2. Using Technology to Compare the Instructional Effectiveness of Read Aloud and Read Along Materials in an Elementary Classroom

    ERIC Educational Resources Information Center

    Black, Narda; Brill, Ann; Eber, Debra; Suomala, Lisa

    2005-01-01

    Background: The options for technology in an educational setting is growing exponentially. But the question remains, how can technology be used to improve reading instruction in an elementary classroom? It has been proposed that using an LCD projector to enable all students to see the text and pictures could increase reading comprehension.…

  3. Internal friction and nonequilibrium unfolding of polymeric globules.

    PubMed

    Alexander-Katz, Alfredo; Wada, Hirofumi; Netz, Roland R

    2009-07-10

    The stretching response of a single collapsed homopolymer is studied using Brownian dynamic simulations. The irreversibly dissipated work is found to be dominated by internal friction effects below the collapse temperature, and the internal viscosity grows exponentially with the effective cohesive strength between monomers. These results explain friction effects of globular DNA and are relevant for dissipation at intermediate stages of protein folding.

  4. Comparing growth of ponderosa pine in two growing media

    Treesearch

    R. Kasten Dumroese

    2009-01-01

    I compared growth of container ponderosa pine (Pinus ponderosa) seedlings grown in a 1:1 (v:v) Sphagnum peat moss:coarse vermiculite medium (P:V) and a 7:3 (v:v) Sphagnum peat moss:Douglas-fir sawdust medium (P:S) at three different irrigation regimes. By using exponential fertilization techniques, I was able to supply seedlings with similar amounts...

  5. Rural Student Entrepreneurs: Linking Commerce and Community. (Benefits)[Squared]: The Exponential Results of Linking School Improvement and Community Development, Issue Number Three.

    ERIC Educational Resources Information Center

    Boethel, Martha

    In many rural areas, both communities and schools are threatened by decreasing population and changing economic conditions. To boost both the local economy and student achievement, a growing number of rural schools are turning to entrepreneurial education. In school entrepreneurship programs, students create small businesses under the guidance of…

  6. Research Trends in the Use of Mobile Learning in Mathematics

    ERIC Educational Resources Information Center

    Crompton, Helen; Burke, Diane

    2015-01-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This research was a systematic review of 36 studies in mobile learning in mathematics from the year 2000 onward. Eight new findings…

  7. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H.

    PubMed

    Gorkovenko, A; Roberts, M F

    1993-07-01

    A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris.

  8. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H.

    PubMed Central

    Gorkovenko, A; Roberts, M F

    1993-01-01

    A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris. Images PMID:8320225

  9. An exactly solvable, spatial model of mutation accumulation in cancer

    NASA Astrophysics Data System (ADS)

    Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej

    2016-12-01

    One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.

  10. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle

    PubMed Central

    Royer, Leandro; Pouvreau, Sandrine; Ríos, Eduardo

    2008-01-01

    Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca2+ from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca2+] within the store. In contrast with cardiac muscle, where depletion of Ca2+ in the sarcoplasmic reticulum is a crucial determinant of termination of Ca2+ release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca2+ level on Ca2+ release. To address this issue we measured Ca2+ transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca2+ monitor rhod-2. The evolution of Ca2+ release flux was quantified during long-lasting depolarizations that reduced severely the Ca2+ content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca2+, was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca2+ buffering power B of the SR, thus quantifying the ‘evacuability’ or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca2+ output under conditions of diminishing store Ca2+ load. PMID:18687715

  11. Systematic Onset of Periodic Patterns in Random Disk Packings

    NASA Astrophysics Data System (ADS)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A. C.

    2018-04-01

    We report evidence of a surprising systematic onset of periodic patterns in very tall piles of disks deposited randomly between rigid walls. Independently of the pile width, periodic structures are always observed in monodisperse deposits containing up to 1 07 disks. The probability density function of the lengths of disordered transient phases that precede the onset of periodicity displays an approximately exponential tail. These disordered transients may become very large when the channel width grows without bound. For narrow channels, the probability density of finding periodic patterns of a given period displays a series of discrete peaks, which, however, are washed out completely when the channel width grows.

  12. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Trevor M.; Hutchinson, Trevor M.; Awe, Thomas James

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  13. Non-exponential growth of Mycobacterium leprae Thai-53 strain cultured in vitro.

    PubMed

    Amako, Kazunobu; Iida, Ken-Ichiro; Saito, Mitsumasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Yoshida, Shin-Ichi

    2016-12-01

    In this study, attempts were made to culture this bacterium in media supplemented with a variety of biological materials to determine why cultivation of Mycobacterium leprae in vitro has not this far been successful. A slight increase in the number of cells in medium supplemented with human blood plasma and an extract of nude mouse tissue as observed after more than 3 months of cultivation at 30 °C. To ascertain whether this increase was real growth, the growth was analyzed by droplet digital PCR, which showed a slow increase in the copy number of cell-associated DNA and the release of a large amount of DNA into the culture medium from bacterial cells during cultivation. These results were supported by electron microscopic examination of M. leprae in infected mouse tissues, which showed that most of the replicated bacteria had degenerated and only a few cells survived. Based on these results, it was postulated that many of the replicated cells degenerate during M. leprae growth and that only a few cells remain to participate in the next growth stage. This means that, unlike other cultivable bacteria, the growth of M. leprae is not exponential and the number of cells therefore increase extremely slowly. Thus, accurate judging of the success of M. leprae cultivation requires observation of growth over a long period of time and careful measurement of the increase in number of viable cells. © 2016 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd.

  14. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    PubMed Central

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  15. Exact calculations of survival probability for diffusion on growing lines, disks, and spheres: The role of dimension.

    PubMed

    Simpson, Matthew J; Baker, Ruth E

    2015-09-07

    Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard non-growing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.

  16. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  17. Research on the exponential growth effect on network topology: Theoretical and empirical analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; You, Zongjun

    Integrated circuit (IC) industry network has been built in Yangtze River Delta with the constant expansion of IC industry. The IC industry network grows exponentially with the establishment of new companies and the establishment of contacts with old firms. Based on preferential attachment and exponential growth, the paper presents the analytical results in which the vertices degree of scale-free network follows power-law distribution p(k)˜k‑γ (γ=2β+1) and parameter β satisfies 0.5≤β≤1. At the same time, we find that the preferential attachment takes place in a dynamic local world and the size of the dynamic local world is in direct proportion to the size of whole networks. The paper also gives the analytical results of no-preferential attachment and exponential growth on random networks. The computer simulated results of the model illustrate these analytical results. Through some investigations on the enterprises, this paper at first presents the distribution of IC industry, composition of industrial chain and service chain firstly. Then, the correlative network and its analysis of industrial chain and service chain are presented. The correlative analysis of the whole IC industry is also presented at the same time. Based on the theory of complex network, the analysis and comparison of industrial chain network and service chain network in Yangtze River Delta are provided in the paper.

  18. Evo-SETI: A Mathematical Tool for Cladistics, Evolution, and SETI.

    PubMed

    Maccone, Claudio

    2017-04-06

    The discovery of new exoplanets makes us wonder where each new exoplanet stands along its way to develop life as we know it on Earth. Our Evo-SETI Theory is a mathematical way to face this problem. We describe cladistics and evolution by virtue of a few statistical equations based on lognormal probability density functions (pdf) in the time . We call b -lognormal a lognormal pdf starting at instant b (birth). Then, the lifetime of any living being becomes a suitable b -lognormal in the time . Next, our "Peak-Locus Theorem" translates cladistics : each species created by evolution is a b -lognormal whose peak lies on the exponentially growing number of living species. This exponential is the mean value of a stochastic process called "Geometric Brownian Motion" (GBM). Past mass extinctions were all-lows of this GBM. In addition, the Shannon Entropy (with a reversed sign) of each b -lognormal is the measure of how evolved that species is, and we call it EvoEntropy. The "molecular clock" is re-interpreted as the EvoEntropy straight line in the time whenever the mean value is exactly the GBM exponential. We were also able to extend the Peak-Locus Theorem to any mean value other than the exponential. For example, we derive in this paper for the first time the EvoEntropy corresponding to the Markov-Korotayev (2007) "cubic" evolution: a curve of logarithmic increase.

  19. Enhancing the violation of the einstein-podolsky-rosen local realism by quantum hyperentanglement.

    PubMed

    Barbieri, Marco; De Martini, Francesco; Mataloni, Paolo; Vallone, Giuseppe; Cabello, Adán

    2006-10-06

    Mermin's observation [Phys. Rev. Lett. 65, 1838 (1990)] that the magnitude of the violation of local realism, defined as the ratio between the quantum prediction and the classical bound, can grow exponentially with the size of the system is demonstrated using two-photon hyperentangled states entangled in polarization and path degrees of freedom, and local measurements of polarization and path simultaneously.

  20. Allometry, nitrogen status, and carbon stable isotope composition of Pinus ponderosa seedlings in two growing media with contrasting nursery irrigation regimes

    Treesearch

    R. Kasten Dumroese; Deborah S. Page-Dumroese; Robert E. Brown

    2011-01-01

    Nursery irrigation regimes that recharged container capacity when target volumetric water content reached 72%, 58%, and 44% (by volume) influenced Pinus ponderosa Douglas ex Lawson & C. Lawson growth more than either a 1:1 (by volume) Sphagnum peat - vermiculite (PV) or a 7:3 (by volume) Sphagnum peat - sawdust (PS) medium. Exponential fertilization avoided...

  1. "Opening" a New Kind of High School: The Story of the Open High School of Utah

    ERIC Educational Resources Information Center

    Tonks, DeLaina; Weston, Sarah; Wiley, David; Barbour, Michael K.

    2013-01-01

    The use of online learning at the primary and secondary school level is growing exponentially in the United States. Much of this growth is with full-time online schools, most of which are operated by for-profit companies that use proprietary online course content. In this article we trace the development of, and philosophy behind, a full-time…

  2. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  3. Cancer immunotherapy by immunosuppression.

    PubMed

    Prehn, Richmond T; Prehn, Liisa M

    2010-12-15

    We have previously suggested that the stimulatory effect of a weak immune reaction on tumor growth may be necessary for the growth of incipient tumors. In the present paper, we enlarge upon and extend that idea by collecting evidence in the literature bearing upon the new hypothesis that a growing cancer, whether in man or mouse, is throughout its lifespan, probably growing and progressing because of continued immune stimulation by a weak immune reaction. We also suggest that prolonged immunosuppression might interfere with progression and thus be an aid to therapy. While most of the considerable evidence that supports the hypothesis comes from observations of experimental mouse tumors, there is suggestive evidence that human tumors may behave in much the same way, and as far as we can ascertain, there is no present evidence that necessarily refutes the hypothesis.

  4. Mousetrap: An integrated, open-source mouse-tracking package.

    PubMed

    Kieslich, Pascal J; Henninger, Felix

    2017-10-01

    Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .

  5. Proliferation kinetics of cultured cells after irradiation with X-rays and 14 MeV neutrons studied by time-lapse cinematography.

    PubMed

    Kooi, M W; Stap, J; Barendsen, G W

    1984-06-01

    Exponentially growing cells of an established line derived from a mouse osteosarcoma (MOS) have been studied by time-lapse cinematography after irradiation with 3 Gy of 200 kV X-rays or 1.5 Gy of 14 MeV neutrons. Cell cycle times (Tc) of individual cells and their progeny in three subsequent generations as well as the occurrence of aberrant mitosis have been determined to evaluate the variation in expression of damage in relation to the stage in the intermitotic cycle and the radiation quality. The results show that the radiation doses applied cause an equal elongation of the mean Tc, which is largest in the irradiated cells but persists in the three subsequent generations. After 3 Gy of X-rays, mitotic delay is largest in cells irradiated in later stages of the cycle, but this difference is not observed after 1.5 Gy of 14 MeV neutrons. In subsequent generations the Tc values show larger variations among descendents of cells treated in the same stage of the cycle as compared to controls but this variation is equal for the doses of X-rays and neutrons applied. Division probability was significantly reduced in irradiated cells as well as in subsequent generations, whereby with neutrons as compared to X-rays the damage is expressed in earlier generations, with less variation as a function of the cell cycle.

  6. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    PubMed

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  7. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  8. Polychlorinated biphenyls in tree bark near a former manufacturing plant in Anniston, Alabama.

    PubMed

    Hermanson, Mark H; Johnson, Glenn W

    2007-05-01

    Tree bark samples were collected to identify the relative amounts and congener profiles of atmospheric polychlorinated biphenyls dissolved into bark lipids from the gas phase in Anniston, Alabama, USA, where PCBs were manufactured from the 1920s until 1971. The area is heavily contaminated with PCBs: At least 4550 metric tons (mt) of PCB and 14000 mt of PCB distillation residue, known as Montar, remain buried in two landfills near the plant site. A minimum of 20.5 mt of PCBs were emitted to the atmosphere by the plant between 1953 and 1971 based on emissions figures for 1970. Bark results show that total PCB concentrations range over more than three orders of magnitude from 171927 ng/g lipid near the plant/landfill area, dropping exponentially to 35 ng/g lipid at a distance of about 7 km. The exponential trend is highly correlated (r=-0.77) and significant (p<0.05). The most concentrated tree started growing after 1971 showing that atmospheric PCB concentrations remained high after PCB production ended. All PCB congener profiles show persistent congeners 31+28, 52, 66, 153, 138, and 180. Congener profiles from trees growing near the plant/landfill all have somewhat similar profiles but those growing during PCB production show high molecular mass compounds not usually found in the atmosphere and not found in younger trees, even in the most concentrated sample. We believe that high-temperature Montar disposal released high molecular mass PCBs into the gas phase which were dissolved into older tree bark lipids.

  9. Performance and state-space analyses of systems using Petri nets

    NASA Technical Reports Server (NTRS)

    Watson, James Francis, III

    1992-01-01

    The goal of any modeling methodology is to develop a mathematical description of a system that is accurate in its representation and also permits analysis of structural and/or performance properties. Inherently, trade-offs exist between the level detail in the model and the ease with which analysis can be performed. Petri nets (PN's), a highly graphical modeling methodology for Discrete Event Dynamic Systems, permit representation of shared resources, finite capacities, conflict, synchronization, concurrency, and timing between state changes. By restricting the state transition time delays to the family of exponential density functions, Markov chain analysis of performance problems is possible. One major drawback of PN's is the tendency for the state-space to grow rapidly (exponential complexity) compared to increases in the PN constructs. It is the state space, or the Markov chain obtained from it, that is needed in the solution of many problems. The theory of state-space size estimation for PN's is introduced. The problem of state-space size estimation is defined, its complexities are examined, and estimation algorithms are developed. Both top-down and bottom-up approaches are pursued, and the advantages and disadvantages of each are described. Additionally, the author's research in non-exponential transition modeling for PN's is discussed. An algorithm for approximating non-exponential transitions is developed. Since only basic PN constructs are used in the approximation, theory already developed for PN's remains applicable. Comparison to results from entropy theory show the transition performance is close to the theoretic optimum. Inclusion of non-exponential transition approximations improves performance results at the expense of increased state-space size. The state-space size estimation theory provides insight and algorithms for evaluating this trade-off.

  10. Pore‐Scale Hydrodynamics in a Progressively Bioclogged Three‐Dimensional Porous Medium: 3‐D Particle Tracking Experiments and Stochastic Transport Modeling

    PubMed Central

    Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.

    2018-01-01

    Abstract Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3‐D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean‐squared displacements, are found to be non‐Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered. PMID:29780184

  11. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling

    NASA Astrophysics Data System (ADS)

    Carrel, M.; Morales, V. L.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2018-03-01

    Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3-D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean-squared displacements, are found to be non-Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered.

  12. Exponential asymptotics of homoclinic snaking

    NASA Astrophysics Data System (ADS)

    Dean, A. D.; Matthews, P. C.; Cox, S. M.; King, J. R.

    2011-12-01

    We study homoclinic snaking in the cubic-quintic Swift-Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319-54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement.

  13. Division of Labor, Bet Hedging, and the Evolution of Mixed Biofilm Investment Strategies

    PubMed Central

    McNally, Luke; Ratcliff, William C.

    2017-01-01

    ABSTRACT Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. PMID:28790201

  14. Bird strike and electrocutions at power lines, communication towers, and wind turbines: state of the art and state of the science - next steps toward mitigation

    Treesearch

    Albert M. Manville II

    2005-01-01

    Migratory birds suffer considerable human-caused mortality from structures built to provide public services and amenities. Three such entities are increasing nationwide: communication towers, power lines, and wind turbines. Communication towers have been growing at an exponential rate over at least the past 6 years. The U.S. Fish and Wildlife Service is especially...

  15. Preparing for the Cyber Battleground of the Future

    DTIC Science & Technology

    2015-12-01

    market . 23. Cade Metz, “Mavericks Invent Future Internet Where Cisco Is Meaningless,” Wired, 16 April 2012, http://www.wired.com/2012/04/nicira/; and...growing due to the cyberspace domain’s exponential nature, the trajectory of market forces in the civilian world, and the strategic integration by...consumers also seem to not yet be dissuaded by security concerns. Market -Driven Cyber Dependency These characteristics and conditions present a paradox

  16. Cancer immunotherapy by immunosuppression

    PubMed Central

    2010-01-01

    We have previously suggested that the stimulatory effect of a weak immune reaction on tumor growth may be necessary for the growth of incipient tumors. In the present paper, we enlarge upon and extend that idea by collecting evidence in the literature bearing upon this new hypothesis that a growing cancer, whether in man or mouse, is throughout its lifespan, probably growing and progressing because of continued immune stimulation by a weak immune reaction. We also suggest that prolonged immunosuppression might interfere with progression and thus be an aid to therapy. While most of the considerable evidence that supports the hypothesis comes from observations of experimental mouse tumors, there is suggestive evidence that human tumors may behave in much the same way, and as far as we can ascertain, there is no present evidence that necessarily refutes the hypothesis. PMID:21159199

  17. In vivo growth of 60 non-screening detected lung cancers: a computed tomography study.

    PubMed

    Mets, Onno M; Chung, Kaman; Zanen, Pieter; Scholten, Ernst T; Veldhuis, Wouter B; van Ginneken, Bram; Prokop, Mathias; Schaefer-Prokop, Cornelia M; de Jong, Pim A

    2018-04-01

    Current pulmonary nodule management guidelines are based on nodule volume doubling time, which assumes exponential growth behaviour. However, this is a theory that has never been validated in vivo in the routine-care target population. This study evaluates growth patterns of untreated solid and subsolid lung cancers of various histologies in a non-screening setting.Growth behaviour of pathology-proven lung cancers from two academic centres that were imaged at least three times before diagnosis (n=60) was analysed using dedicated software. Random-intercept random-slope mixed-models analysis was applied to test which growth pattern most accurately described lung cancer growth. Individual growth curves were plotted per pathology subgroup and nodule type.We confirmed that growth in both subsolid and solid lung cancers is best explained by an exponential model. However, subsolid lesions generally progress slower than solid ones. Baseline lesion volume was not related to growth, indicating that smaller lesions do not grow slower compared to larger ones.By showing that lung cancer conforms to exponential growth we provide the first experimental basis in the routine-care setting for the assumption made in volume doubling time analysis. Copyright ©ERS 2018.

  18. Evo-SETI: A Mathematical Tool for Cladistics, Evolution, and SETI

    PubMed Central

    Maccone, Claudio

    2017-01-01

    The discovery of new exoplanets makes us wonder where each new exoplanet stands along its way to develop life as we know it on Earth. Our Evo-SETI Theory is a mathematical way to face this problem. We describe cladistics and evolution by virtue of a few statistical equations based on lognormal probability density functions (pdf) in the time. We call b-lognormal a lognormal pdf starting at instant b (birth). Then, the lifetime of any living being becomes a suitable b-lognormal in the time. Next, our “Peak-Locus Theorem” translates cladistics: each species created by evolution is a b-lognormal whose peak lies on the exponentially growing number of living species. This exponential is the mean value of a stochastic process called “Geometric Brownian Motion” (GBM). Past mass extinctions were all-lows of this GBM. In addition, the Shannon Entropy (with a reversed sign) of each b-lognormal is the measure of how evolved that species is, and we call it EvoEntropy. The “molecular clock” is re-interpreted as the EvoEntropy straight line in the time whenever the mean value is exactly the GBM exponential. We were also able to extend the Peak-Locus Theorem to any mean value other than the exponential. For example, we derive in this paper for the first time the EvoEntropy corresponding to the Markov-Korotayev (2007) “cubic” evolution: a curve of logarithmic increase. PMID:28383497

  19. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  20. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    PubMed Central

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  1. Tachyon search speeds up retrieval of similar sequences by several orders of magnitude.

    PubMed

    Tan, Joshua; Kuchibhatla, Durga; Sirota, Fernanda L; Sherman, Westley A; Gattermayer, Tobias; Kwoh, Chia Yee; Eisenhaber, Frank; Schneider, Georg; Maurer-Stroh, Sebastian

    2012-06-15

    The usage of current sequence search tools becomes increasingly slower as databases of protein sequences continue to grow exponentially. Tachyon, a new algorithm that identifies closely related protein sequences ~200 times faster than standard BLAST, circumvents this limitation with a reduced database and oligopeptide matching heuristic. The tool is publicly accessible as a webserver at http://tachyon.bii.a-star.edu.sg and can also be accessed programmatically through SOAP.

  2. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  3. Genetic attack on neural cryptography.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido

    2006-03-01

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.

  4. New dimensions for wound strings: The modular transformation of geometry to topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, John; Silverstein, Eva; Starr, David

    2007-02-15

    We show, using a theorem of Milnor and Margulis, that string theory on compact negatively curved spaces grows new effective dimensions as the space shrinks, generalizing and contextualizing the results in E. Silverstein, Phys. Rev. D 73, 086004 (2006).. Milnor's theorem relates negative sectional curvature on a compact Riemannian manifold to exponential growth of its fundamental group, which translates in string theory to a higher effective central charge arising from winding strings. This exponential density of winding modes is related by modular invariance to the infrared small perturbation spectrum. Using self-consistent approximations valid at large radius, we analyze this correspondencemore » explicitly in a broad set of time-dependent solutions, finding precise agreement between the effective central charge and the corresponding infrared small perturbation spectrum. This indicates a basic relation between geometry, topology, and dimensionality in string theory.« less

  5. Genetic attack on neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka

    2006-03-15

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold formore » the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.« less

  6. Genetic attack on neural cryptography

    NASA Astrophysics Data System (ADS)

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido

    2006-03-01

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.

  7. THE INFLUENCE OF HYDROCORTISONE ON THE ACTION OF EXCESS VITAMIN A ON LIMB BONE RUDIMENTS IN CULTURE

    PubMed Central

    Fell, Honor B.; Thomas, Lewis

    1961-01-01

    The effect of hydrocortisone has been studied in organ cultures of the cartilaginous long bone rudiments from 7-day chick embryos and of the well ossified limb bones from late fetal mice. In the chick rudiments, which grow rapidly in culture, the growth rate was much reduced by hydrocortisone, less intercellular material was formed, and the hypertrophic cells of the shaft were much smaller than in the controls in normal medium. In the late fetal mouse bones, which grow very little in culture, hydrocortisone had no obvious effect on growth but arrested resorption of the cartilage. These effects resemble those described by others in the skeleton of animals treated with cortisone or hydrocortisone. The influence of hydrocortisone on the response of the chick and mouse explants to excess vitamin A was investigated. In the presence of excess vitamin A, cartilage (chick, mouse) and bone (mouse) rapidly disintegrated, but when hydrocortisone also was added to the medium, this dissolution of the intercellular material was much retarded, though not suppressed. The retardative action of hydrocortisone on the changes produced by excess vitamin A in skeletal tissue in culture, contrasts sharply with the strongly additive effect of the two agents on the skeleton in the intact animal (Selye, 1958). It is suggested that this discrepancy between the results obtained in vitro and in vivo is probably due to systemic factors that operate in the body but are eliminated in organ cultures. PMID:13698768

  8. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.

    PubMed

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V; Martinon, Fabio; Modlin, Robert L; Speiser, Daniel E; Gilliet, Michel

    2015-12-15

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, amore » putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. - Highlights: • Mouse embryo fibroblasts (MEFs) lacking SWAP-70 do not cause spontaneous transform. • Adding back of SWAP-70 to SWAP-70-deficient MEFs induces spontaneous transformation. • SWAP-70 is required for spontaneous transformation of MEFs.« less

  10. Efficacy of DL-methionine hydroxy analogue-free acid in comparison to DL-methionine in growing male white Pekin ducks.

    PubMed

    Kluge, H; Gessner, D K; Herzog, E; Eder, K

    2016-03-01

    The present study was performed to assess the bioefficacy of DL-methionine hydroxy analogue-free acid (MHA) in comparison to DL-methionine (DLM) as sources of methionine for growing male white Pekin ducks in the first 3 wk of life. For this aim, 580 1-day-old male ducks were allocated into 12 treatment groups and received a basal diet that contained 0.29% of methionine, 0.34% of cysteine and 0.63% of total sulphur containing amino acids or the same diet supplemented with either DLM or MHA in amounts to supply 0.05, 0.10, 0.15, 0.20, and 0.25% of methionine equivalents. Ducks fed the control diet without methionine supplement had the lowest final body weights, daily body weight gains and feed intake among all groups. Supplementation of methionine improved final body weights and daily body weight gains in a dose dependent-manner. There was, however, no significant effect of the source of methionine on all of the performance responses. Evaluation of the data of daily body weight gains with an exponential model of regression revealed a nearly identical efficacy (slope of the curves) of both compounds for growth (DLM = 100%, MHA = 101%). According to the exponential model of regression, 95% of the maximum values of daily body weight gain were reached at methionine supplementary levels of 0.080% and 0.079% for DLM and MHA, respectively. Overall, the present study indicates that MHA and DLM have a similar efficacy as sources of methionine for growing ducks. It is moreover shown that dietary methionine concentrations of 0.37% are required to reach 95% of the maximum of daily body weight gains in ducks during the first 3 wk of life. © 2015 Poultry Science Association Inc.

  11. [Nucleolus transformation in oocytes of mouse antral follicles. Revealing of coilin and RNA polymerase I complex components].

    PubMed

    Pochukalina, G N; Parfenov, V N

    2008-01-01

    This study is the continuation of our previous investigation of the nucleolus transformation in growing oocytes from mouse multilayer follicles (Pochukalina, Parfenov, 2006). Here in the present research we have examined the features of organization and molecular composition of nucleolus like body, or postnucleolus, in two groups of oocytes with different chromatin configuration from mouse antral follicles. Using light and electron immunocytochemistry, we have defined the dynamics of ribosomal RNA synthesis and processing molecular component distribution in postnucleolus. Considerable changes in RNA polymerase I distribution and its colocalization with coilin at the periphery of postnucleolus were revealed. Putative role of coilin in formation of complexes with ribosomal RNA synthesis/processing components is discussed.

  12. The Importance of Data Quality in Using Health Information Exchange (HIE) Networks to Improve Health Outcomes: Case Study of a HIE Extracted Dataset of Patients with Congestive Heart Failure Participating in a Regional HIE

    ERIC Educational Resources Information Center

    Cartron-Mizeracki, Marie-Astrid

    2016-01-01

    Expenditures on health information technology (HIT) for healthcare organizations are growing exponentially and the value of it is the subject of criticism and skepticism. Because HIT is viewed as capable of improving major health care indicators, the government offers incentives to health care providers and organizations to implement solutions.…

  13. Growth rate for blackhole instabilities

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik; Wald, Robert

    2015-04-01

    Hollands and Wald showed that dynamic stability of stationary axisymmetric black holes is equivalent to positivity of canonical energy on a space of linearised axisymmetric perturbations satisfying certain boundary and gauge conditions. Using a reflection isometry of the background, we split the energy into kinetic and potential parts. We show that the kinetic energy is positive. In the case that potential energy is negative, we show existence of exponentially growing perturbations and further obtain a variational formula for the growth rate.

  14. The Impact of Religiosity on Midshipman Adjustment and Feelings of Acceptance

    DTIC Science & Technology

    2006-06-01

    the military nature , if a midshipman is accepting of homosexuals he is often looked on as strange. Like if you have a gay friend it is looked on...grown exponentially over the past fifty years. Significant growth of religious diversity and religious media support the growing nature of popular...however, is still limited in scope and depth. The covert or personal nature of an individual’s beliefs makes acceptance and tolerance issues more

  15. Amplification of nonlinear surface waves by wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblanc, Stephane

    2007-10-15

    A weakly nonlinear analysis is conducted to study the evolution of slowly varying wavepackets with small but finite amplitudes, that evolve at the interface between air and water under the effect of wind. In the inviscid assumption, wave envelopes are governed by cubic nonlinear Schroedinger or Davey-Stewartson equations forced by a linear term corresponding to Miles' mechanism of wave generation. Under fair wind, it is shown that Stokes waves grow exponentially and that Benjamin-Feir instability becomes explosive.

  16. Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2016-10-01

    The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.

  17. The Socio-Cultural and Leadership Experiences of Latina Four-Year College and University Presidents: A Traves de sus Voces (Through Their Voices)

    ERIC Educational Resources Information Center

    Maes, Johanna B.

    2012-01-01

    The Latina population in the United States is one of the largest of all racial and ethnic groups, and it is expected to grow exponentially within the next forty years. Despite these large numbers of Latinas in the U.S., there is a disparity with this population who are leading our nation's four-year colleges and universities. A reason for…

  18. Vacuum statistics and stability in axionic landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masoumi, Ali; Vilenkin, Alexander, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-03-01

    We investigate vacuum statistics and stability in random axionic landscapes. For this purpose we developed an algorithm for a quick evaluation of the tunneling action, which in most cases is accurate within 10%. We find that stability of a vacuum is strongly correlated with its energy density, with lifetime rapidly growing as the energy density is decreased. On the other hand, the probability P(B) for a vacuum to have a tunneling action B greater than a given value declines as a slow power law in B. This is in sharp contrast with the studies of random quartic potentials, which foundmore » a fast exponential decline of P(B). Our results suggest that the total number of relatively stable vacua (say, with B>100) grows exponentially with the number of fields N and can get extremely large for N∼> 100. The problem with this kind of model is that the stable vacua are concentrated near the absolute minimum of the potential, so the observed value of the cosmological constant cannot be explained without fine-tuning. To address this difficulty, we consider a modification of the model, where the axions acquire a quadratic mass term, due to their mixing with 4-form fields. This results in a larger landscape with a much broader distribution of vacuum energies. The number of relatively stable vacua in such models can still be extremely large.« less

  19. Diauxic shift-dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes

    PubMed Central

    Drummond, Sheona P.; Hildyard, John; Firczuk, Helena; Reamtong, Onrapak; Li, Ning; Kannambath, Shichina; Claydon, Amy J.; Beynon, Robert J.; Eyers, Claire E.; McCarthy, John E. G.

    2011-01-01

    Dhh1 and Pat1 in yeast are mRNA decapping activators/translational repressors thought to play key roles in the transition of mRNAs from translation to degradation. However, little is known about the physical and functional relationships between these proteins and the translation machinery. We describe a previously unknown type of diauxic shift-dependent modulation of the intracellular locations of Dhh1 and Pat1. Like the formation of P bodies, this phenomenon changes the spatial relationship between components involved in translation and mRNA degradation. We report significant spatial separation of Dhh1 and Pat1 from ribosomes in exponentially growing cells. Moreover, biochemical analyses reveal that these proteins are excluded from polysomal complexes in exponentially growing cells, indicating that they may not be associated with active states of the translation machinery. In contrast, under diauxic growth shift conditions, Dhh1 and Pat1 are found to co-localize with polysomal complexes. This work suggests that Dhh1 and Pat1 functions are modulated by a re-localization mechanism that involves eIF4A. Pull-down experiments reveal that the intracellular binding partners of Dhh1 and Pat1 change as cells undergo the diauxic growth shift. This reveals a new dimension to the relationship between translation activity and interactions between mRNA, the translation machinery and decapping activator proteins. PMID:21712243

  20. Protein CoAlation and antioxidant function of Coenzyme A in prokaryotic cells.

    PubMed

    Tsuchiya, Yugo; Zhyvoloup, Alexander; Bakovic, Jovana; Thomas, Naam; Yi Kun Yu, Bess; Das, Sayoni; Orengo, Christine; Newell, Clare; Ward, John; Saladino, Giorgio; Comitani, Federico; Gervasio, Francesco L; Malanchuk, Oksana M; Khoruzhenko, Antonina I; Filonenko, Valeriy; Peak-Chew, Sew Yeu; Skehel, Mark; Gout, Ivan

    2018-04-06

    In all living organisms, Coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of S. aureus gene products were shown to be CoAlated in response to diamide-induced stress . In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase (SaGAPDH) was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide (H 2 O 2 ). These findings suggest that in exponentially growing bacteria CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low molecular weight antioxidant in response to oxidative and metabolic stress. ©2018 The Author(s).

  1. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    PubMed

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  2. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  3. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].

    PubMed

    Lü, Yu-liang; Liu, Shi-rong; Sun, Peng-sen; Liu, Xing-liang; Zhang, Rui-pu

    2007-11-01

    Based on field measurements of throughfall and stemflow in combination with climatic data collected from the meteorological station adjacent to the studied sub-alpine dark coniferous forest in Wolong, Sichuan Province, canopy interception of sub-alpine dark coniferous forests was analyzed and modeled at both stand scale and catchment scale. The results showed that monthly interception rate of Fargesia nitida, Bashania fangiana--Abies faxoniana old-growth ranged from 33% Grass to 72%, with the average of 48%. In growing season, there was a linear or powerful or exponential relationship between rainfall and interception an. a negative exponential relationship between rainfall and interception rate. The mean maximum canopy interception by the vegetation in the catchment of in.44 km was 1.74 ment and the significant differences among the five communities occurred in the following sequence: Moss-Fargesia nitida, Bashan afanglana-A. faxoniana stand > Grass-F. nitida, B. fangiana-A. faxoniana stand > Moss-Rhododendron spp.-A. faxoniana stand > Grass-Rh. spp.-A. faxoniana stand > Rh. spp. shrub. In addition, a close linear relationship existed between leaf area index (LAI) and maximum canopy interception. The simulated value of canopy interception rate, maximum canopy interception rate and addition interception rate of the vegetation in the catchment were 39%, 25% and 14%, respectively. Simulation of the canopy interception model was better at the overall growing season scale, that the mean relative error was 9%-14%.

  4. On the high frequency transfer of mechanical stimuli from the surface of the head to the macular neuroepithelium of the mouse.

    PubMed

    Jones, Timothy A; Lee, Choongheon; Gaines, G Christopher; Grant, J W Wally

    2015-04-01

    Vestibular macular sensors are activated by a shearing motion between the otoconial membrane and underlying receptor epithelium. Shearing motion and sensory activation in response to an externally induced head motion do not occur instantaneously. The mechanically reactive elastic and inertial properties of the intervening tissue introduce temporal constraints on the transfer of the stimulus to sensors. Treating the otoconial sensory apparatus as an overdamped second-order mechanical system, we measured the governing long time constant (Τ(L)) for stimulus transfer from the head surface to epithelium. This provided the basis to estimate the corresponding upper cutoff for the frequency response curve for mouse otoconial organs. A velocity step excitation was used as the forcing function. Hypothetically, the onset of the mechanical response to a step excitation follows an exponential rise having the form Vel(shear) = U(1-e(-t/TL)), where U is the applied shearing velocity step amplitude. The response time of the otoconial apparatus was estimated based on the activation threshold of macular neural responses to step stimuli having durations between 0.1 and 2.0 ms. Twenty adult C57BL/6 J mice were evaluated. Animals were anesthetized. The head was secured to a shaker platform using a non-invasive head clip or implanted skull screws. The shaker was driven to produce a theoretical forcing step velocity excitation at the otoconial organ. Vestibular sensory evoked potentials (VsEPs) were recorded to measure the threshold for macular neural activation. The duration of the applied step motion was reduced systematically from 2 to 0.1 ms and response threshold determined for each duration (nine durations). Hypothetically, the threshold of activation will increase according to the decrease in velocity transfer occurring at shorter step durations. The relationship between neural threshold and stimulus step duration was characterized. Activation threshold increased exponentially as velocity step duration decreased below 1.0 ms. The time constants associated with the exponential curve were Τ(L) = 0.50 ms for the head clip coupling and T(L) = 0.79 ms for skull screw preparation. These corresponded to upper -3 dB frequency cutoff points of approximately 318 and 201 Hz, respectively. T(L) ranged from 224 to 379 across individual animals using the head clip coupling. The findings were consistent with a second-order mass-spring mechanical system. Threshold data were also fitted to underdamped models post hoc. The underdamped fits suggested natural resonance frequencies on the order of 278 to 448 Hz as well as the idea that macular systems in mammals are less damped than generally acknowledged. Although estimated indirectly, it is argued that these time constants reflect largely if not entirely the mechanics of transfer to the sensory apparatus. The estimated governing time constant of 0.50 ms for composite data predicts high frequency cutoffs of at least 318 Hz for the intact otoconial apparatus of the mouse.

  5. Expression, Biochemistry, and Stabilization with Camel Antibodies of Membrane Proteins: Case Study of the Mouse 5-HT3 Receptor.

    PubMed

    Hassaïne, Ghérici; Deluz, Cédric; Grasso, Luigino; Wyss, Romain; Hovius, Ruud; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Peclinovska, Lucie; Minniberger, Sonja; Mebarki, Lamia; Li, Xiao-Dan; Vogel, Horst; Nury, Hugues

    2017-01-01

    There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.

  6. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng

    The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growthmore » conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.« less

  7. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium.

    PubMed

    Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng; Mitchell, Hugh; Gaffrey, Matt; Orr, Galya; DeAngelis, Kristen M

    2017-01-01

    The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.

  8. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium

    PubMed Central

    Chaput, Gina; Markillie, Lye Meng; Mitchell, Hugh; Gaffrey, Matt; Orr, Galya; DeAngelis, Kristen M.

    2017-01-01

    The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future. PMID:29049419

  9. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium

    DOE PAGES

    Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng; ...

    2017-10-19

    The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growthmore » conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, mid-exponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.« less

  10. From Experiment to Theory: What Can We Learn from Growth Curves?

    PubMed

    Kareva, Irina; Karev, Georgy

    2018-01-01

    Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.

  11. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  12. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  13. Development of the Hearts of Lizards and Snakes and Perspectives to Cardiac Evolution

    PubMed Central

    Jensen, Bjarke; van den Berg, Gert; van den Doel, Rick; Oostra, Roelof-Jan; Wang, Tobias; Moorman, Antoon F. M.

    2013-01-01

    Birds and mammals both developed high performance hearts from a heart that must have been reptile-like and the hearts of extant reptiles have an unmatched variability in design. Yet, studies on cardiac development in reptiles are largely old and further studies are much needed as reptiles are starting to become used in molecular studies. We studied the growth of cardiac compartments and changes in morphology principally in the model organism corn snake (Pantherophis guttatus), but also in the genotyped anole (Anolis carolinenis and A. sagrei) and the Philippine sailfin lizard (Hydrosaurus pustulatus). Structures and chambers of the formed heart were traced back in development and annotated in interactive 3D pdfs. In the corn snake, we found that the ventricle and atria grow exponentially, whereas the myocardial volumes of the atrioventricular canal and the muscular outflow tract are stable. Ventricular development occurs, as in other amniotes, by an early growth at the outer curvature and later, and in parallel, by incorporation of the muscular outflow tract. With the exception of the late completion of the atrial septum, the adult design of the squamate heart is essentially reached halfway through development. This design strongly resembles the developing hearts of human, mouse and chicken around the time of initial ventricular septation. Subsequent to this stage, and in contrast to the squamates, hearts of endothermic vertebrates completely septate their ventricles, develop an insulating atrioventricular plane, shift and expand their atrioventricular canal toward the right and incorporate the systemic and pulmonary venous myocardium into the atria. PMID:23755108

  14. The re-incarnation, re-interpretation and re-demise of the transition probability model.

    PubMed

    Koch, A L

    1999-05-28

    There are two classes of models for the cell cycle that have both a deterministic and a stochastic part; they are the transition probability (TP) models and sloppy size control (SSC) models. The hallmark of the basic TP model are two graphs: the alpha and beta plots. The former is the semi-logarithmic plot of the percentage of cell divisions yet to occur, this results in a horizontal line segment at 100% corresponding to the deterministic phase and a straight line sloping tail corresponding to the stochastic part. The beta plot concerns the differences of the age-at-division of sisters (the beta curve) and gives a straight line parallel to the tail of the alpha curve. For the SC models the deterministic part is the time needed for the cell to accumulate a critical amount of some substance(s). The variable part differs in the various variants of the general model, but they do not give alpha and beta curves with linear tails as postulated by the TP model. This paper argues against TP and for an elaboration of SSC type of model. The main argument against TP is that it assumes that the probability of the transition from the stochastic phase is time invariant even though it is certain that the cells are growing and metabolizing throughout the cell cycle; a fact that should make the transition probability be variable. The SSC models presume that cell division is triggered by the cell's success in growing and not simply the result of elapsed time. The extended model proposed here to accommodate the predictions of the SSC to the straight tailed parts of the alpha and beta plots depends on the existence of a few percent of the cell in a growing culture that are not growing normally, these are growing much slower or are temporarily quiescent. The bulk of the cells, however, grow nearly exponentially. Evidence for a slow growing component comes from experimental analyses of population size distributions for a variety of cell types by the Collins-Richmond technique. These subpopulations existence is consistent with the new concept that there are a large class of rapidly reversible mutations occurring in many organisms and at many loci serving a large range of purposes to enable the cell to survive environmental challenges. These mutations yield special subpopulations of cells within a population. The reversible mutational changes, relevant to the elaboration of SSC models, produce slow-growing cells that are either very large or very small in size; these later revert to normal growth and division. The subpopulations, however, distort the population distribution in such a way as to fit better the exponential tails of the alpha and beta curves of the TP model.

  15. [Observation of animal behavior by revolving activity cage method: A new automatic measuring and recording system of motor activity of a mouse by means of revolving activity cage is presented (author's transl)].

    PubMed

    Nakamura, K

    1978-09-01

    With this system, several parameters can be recorded continuously over several months without exterior stimuli. Time per revolution is counted and punched into the paper tape as binary coded numbers, and the number of revolutions and the frequency of "passage" in a given time are printed out on a rolled paper by a digital recorder. "Passage" is defined as one revolving trial without a pause over a fixed time (criterion time) and used as a behavioral unit of "stop and go". The raw data on the paper tape are processed and analyzed with a general-purpose computer. It was confirmed that when a mouse became well accustomed to the revolving activity cage, the time per revolution followed the law of exponential distribution probability, while the length of passage (i.e. the number of revolutions per revolving trial) followed that of geometrical distribution probability. The revolving activity of mice treated with single subcutaneous injection of methamphetamine was examined using these parameters.

  16. Chess players' fame versus their merit.

    PubMed

    Simkin, M V; Roychowdhury, V P

    2015-12-12

    We investigate a pool of international chess title holders born between 1901 and 1943. Using Elo ratings, we compute for every player his expected score in a game with a randomly selected player from the pool. We use this figure as the player's merit. We measure players' fame as the number of Google hits. The correlation between fame and merit is 0.38. At the same time, the correlation between the logarithm of fame and merit is 0.61. This suggests that fame grows exponentially with merit.

  17. Regulation of Hemopoietic Stem Cell Turnover and Population Size in Neonatal Mice

    DTIC Science & Technology

    1975-04-01

    Following birth the hematopoietic stem cell population of the liver as measured by the in vivo spleen nodule assay (CFU) declines with a halving time...of about 48 hours. The stem cell population of the spleen grows exponentially with a doubling time of about 17 hours. In vitro incubation with high...single spleen colonies derived from neonatal liver and spleen CFU that both stem cell populations have a high self-renewal capacity. Thus, the decline in

  18. Porous silicon - rare earth doped xerogel and glass composites

    NASA Astrophysics Data System (ADS)

    Balakrishnan, S.; Gun'ko, Yurii K.; Perova, T. S.; Rafferty, A.; Astrova, E. V.; Moore, R. A.

    2005-06-01

    The development of components for photonics applications is growing exponentially. The sol-gel method is now recognised as a convenient and flexible way to deposit oxide or glass films on a variety of hosts, including porous silicon. In the present work we incorporated erbium and europium doped xerogel into porous silicon and developed new porous silicon - rare earth doped glass composites. Various characteris-ation techniques including FTIR, Raman Spectroscopy, Thermal Gravimetric Analysis and Scanning Electron Microscopy were employed in this work.

  19. [Health personnel: graduates from the medical school of the University of the Republic, Uruguay].

    PubMed

    Meerhoff, R

    1987-01-01

    The article summarizes the initial findings of a study of the medical labor market, done by the Uruguayan Planning Office and cofinanced by PAHO. The survey, starting in 1880 for graduates and in 1915 for students, brings out the exponential growth of their numbers, the growing participation of women--who are now a majority in the profession--and other indicators that affect health services. The conclusion is that there should be an explicit policy on the training of medical manpower.

  20. Causal Reasoning on Biological Networks: Interpreting Transcriptional Changes

    NASA Astrophysics Data System (ADS)

    Chindelevitch, Leonid; Ziemek, Daniel; Enayetallah, Ahmed; Randhawa, Ranjit; Sidders, Ben; Brockel, Christoph; Huang, Enoch

    Over the past decade gene expression data sets have been generated at an increasing pace. In addition to ever increasing data generation, the biomedical literature is growing exponentially. The PubMed database (Sayers et al., 2010) comprises more than 20 million citations as of October 2010. The goal of our method is the prediction of putative upstream regulators of observed expression changes based on a set of over 400,000 causal relationships. The resulting putative regulators constitute directly testable hypotheses for follow-up.

  1. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  2. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates

    PubMed Central

    Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C.; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2016-01-01

    Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class. PMID:27441598

  3. Viscous bursting of suspended films

    NASA Astrophysics Data System (ADS)

    Debrégeas, G.; Martin, P.; Brochard-Wyart, F.

    1995-11-01

    Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.

  4. Effects of medium composition on penicillin-induced hydrolysis and loss of RNA and culture turbidity in group A streptococci.

    PubMed Central

    McDowell, T D; Reed, K E

    1989-01-01

    Exposure to penicillin G of exponentially growing cultures of group A streptococci growing in chemically defined medium (CDM) can lead to extensive loss of culture turbidity. Significant reductions in culture turbidity did not accompany comparable treatments of group A streptococci growing in Todd-Hewitt broth (THB). Studies with THB and a high-molecular-weight (greater than 12,000) fraction of THB demonstrated that components in this complex medium inhibited the efflux of RNA hydrolysis products from otherwise intact cells. Hydrolysis products accumulated intracellularly and inhibited the extensive hydrolysis of RNA and consequently the loss of culture turbidity. Results of survival studies with cultures of group A streptococci exposed to penicillin G in THB demonstrated that this treatment protocol produces conditions of phenotypic tolerance relative to exposure in CDM. In combination, these findings provide further support for the hypothesis of RNA hydrolysis as the bactericidal mechanism of penicillin G action in this nonlytic death phenotype. PMID:2480343

  5. Effects of medium composition on penicillin-induced hydrolysis and loss of RNA and culture turbidity in group A streptococci.

    PubMed

    McDowell, T D; Reed, K E

    1989-12-01

    Exposure to penicillin G of exponentially growing cultures of group A streptococci growing in chemically defined medium (CDM) can lead to extensive loss of culture turbidity. Significant reductions in culture turbidity did not accompany comparable treatments of group A streptococci growing in Todd-Hewitt broth (THB). Studies with THB and a high-molecular-weight (greater than 12,000) fraction of THB demonstrated that components in this complex medium inhibited the efflux of RNA hydrolysis products from otherwise intact cells. Hydrolysis products accumulated intracellularly and inhibited the extensive hydrolysis of RNA and consequently the loss of culture turbidity. Results of survival studies with cultures of group A streptococci exposed to penicillin G in THB demonstrated that this treatment protocol produces conditions of phenotypic tolerance relative to exposure in CDM. In combination, these findings provide further support for the hypothesis of RNA hydrolysis as the bactericidal mechanism of penicillin G action in this nonlytic death phenotype.

  6. Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component in Mycobacterium bovis BCG.

    PubMed

    Sinha, Indrajit; Boon, Calvin; Dick, Thomas

    2003-10-10

    Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation.

  7. The Model Optimization, Uncertainty, and SEnsitivity analysis (MOUSE) toolbox: overview and application

    USDA-ARS?s Scientific Manuscript database

    For several decades, optimization and sensitivity/uncertainty analysis of environmental models has been the subject of extensive research. Although much progress has been made and sophisticated methods developed, the growing complexity of environmental models to represent real-world systems makes it...

  8. RNA SYNTHESIS IN THE MOUSE OOCYTE

    PubMed Central

    Moore, G. P. M.; Lintern-Moore, Sue; Peters, Hannah; Faber, M.

    1974-01-01

    RNA synthesis in the oocyte and granulosa cell nuclei of growing follicles has been studied in the mouse ovary. The RNA precursor [3H]uridine was administered intraperitoneally to adult mice and the amount of label incorporated into ovarian RNA was quantitated autoradiographically using grain-counting procedures. Uridine incorporation into the nucleus is low in oocytes of small, resting follicles but increases during follicle growth and reaches a peak prior to the beginning of antrum formation. Thereafter uptake rapidly declines and is very low in the oocytes of maturing follicles. Uridine incorporation into granulosa cell nuclei, in contrast to that found in the oocyte, increases gradually during most of the period of follicle growth. Qualitative studies of the activity of endogenous, DNA-dependent RNA polymerases have also been made in fixed oocytes isolated from follicles at different stages of growth. Polymerase activity is demonstrable in the nucleolus and nucleoplasm of oocytes from growing follicles, but is absent from maturing oocytes of large follicles. PMID:4813213

  9. The role of vertebrate models in understanding craniosynostosis.

    PubMed

    Holmes, Greg

    2012-09-01

    Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.

  10. Using the Textpresso Site-Specific Recombinases Web server to identify Cre expressing mouse strains and floxed alleles.

    PubMed

    Condie, Brian G; Urbanski, William M

    2014-01-01

    Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.

  11. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    PubMed Central

    Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas

    2015-01-01

    Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

  12. CBESW: sequence alignment on the Playstation 3.

    PubMed

    Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil

    2008-09-17

    The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. For large datasets, our implementation on the PlayStation 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. The results from our experiments demonstrate that the PlayStation 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications.

  13. CBESW: Sequence Alignment on the Playstation 3

    PubMed Central

    Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil

    2008-01-01

    Background The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. Results For large datasets, our implementation on the PlayStation® 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. Conclusion The results from our experiments demonstrate that the PlayStation® 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications. PMID:18798993

  14. Rogue Waves for a (2+1)-Dimensional Coupled Nonlinear Schrödinger System with Variable Coefficients in a Graded-Index Waveguide

    NASA Astrophysics Data System (ADS)

    Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang

    2018-05-01

    Studied in this paper is a (2+1)-dimensional coupled nonlinear Schrödinger system with variable coefficients, which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. According to the similarity transformation, we derive the type-I and type-II rogue-wave solutions. We graphically present two types of the rouge wave and discuss the influence of the diffraction parameter on the rogue waves. When the diffraction parameters are exponentially-growing-periodic, exponential, linear and quadratic parameters, we obtain the periodic rogue wave and composite rogue waves respectively. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

  15. Open-access databases as unprecedented resources and drivers of cultural change in fisheries science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Utz, Ryan

    2014-01-01

    Open-access databases with utility in fisheries science have grown exponentially in quantity and scope over the past decade, with profound impacts to our discipline. The management, distillation, and sharing of an exponentially growing stream of open-access data represents several fundamental challenges in fisheries science. Many of the currently available open-access resources may not be universally known among fisheries scientists. We therefore introduce many national- and global-scale open-access databases with applications in fisheries science and provide an example of how they can be harnessed to perform valuable analyses without additional field efforts. We also discuss how the development, maintenance, and utilizationmore » of open-access data are likely to pose technical, financial, and educational challenges to fisheries scientists. Such cultural implications that will coincide with the rapidly increasing availability of free data should compel the American Fisheries Society to actively address these problems now to help ease the forthcoming cultural transition.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Dipak; Vijaya, R.; Centre for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur 208016

    Well-ordered opaline photonic crystals are grown by inward growing self-assembly method from Rhodamine B dye-doped polystyrene colloids. Subsequent to self-assembly, the crystals are infiltrated with gold nanoparticles of 40 nm diameter. Measurements of the stopband features and photoluminescence intensity from these crystals are supplemented by fluorescence decay time analysis. The fluorescence decay times from the dye-doped photonic crystals before and after the infiltration are dramatically different from each other. A lowered fluorescence decay time was observed for the case of gold infiltrated crystal along with an enhanced emission intensity. Double-exponential decay nature of the fluorescence from the dye-doped crystal gets convertedmore » into single-exponential decay upon the infiltration of gold nanoparticles due to the resonant radiative process resulting from the overlap of the surface plasmon resonance with the emission spectrum. The influence of localized surface plasmon due to gold nanoparticles on the increase in emission intensity and decrease in decay time of the emitters is established.« less

  17. Analysis of Isoaccepting Transfer Ribonucleic Acid Species of Bacillus subtilis: Chromatographic Differences Between Transfer Ribonucleic Acids from Spores and Cells in Exponential Growth

    PubMed Central

    Vold, Barbara S.

    1973-01-01

    Differences between the transfer ribonucleic acid (tRNA) of spores and exponentially growing cells of Bacillus subtilis 168 were compared by co-chromatography on reversed-phase column RPC-5. This system gave excellent resolution of isoaccepting species in 1 to 2 hr using a 200-ml gradient. Two methods were used to extract spore tRNAs, a procedure using a Braun homogenizer and a pretreatment with dithiothreitol followed by lysis with lysozyme. Where changes were observed, column elution profiles of spore tRNAs were independent of the extraction method used. Three kinds of changes between the profiles of vegetative cell tRNA and spore tRNA were observed: (i) no change; phe-, val-, ala-, asp-, ileu-, pro-, met-, fmet-, and his-tRNAs, (ii) a change in the ratio of existing peaks; gly-, tyr-, leu-, ser-, thr-, aspn-, and arg-tRNAs, and (iii) the appearance or disappearance of unique peaks; lys-, glu-, and trp-tRNAs. PMID:4632322

  18. T7 phage factor required for managing RpoS in Escherichia coli.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Barker, Declan; Burchell, Lynn; Qimron, Udi; Matthews, Steve J; Wigneshweraraj, Sivaramesh

    2018-06-05

    T7 development in Escherichia coli requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ 70 , by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit Eσ S , the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growing E. coli as a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development in E. coli cells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.

  19. Evaluation of five diffeomorphic image registration algorithms for mouse brain magnetic resonance microscopy.

    PubMed

    Fu, Zhenrong; Lin, Lan; Tian, Miao; Wang, Jingxuan; Zhang, Baiwen; Chu, Pingping; Li, Shaowu; Pathan, Muhammad Mohsin; Deng, Yulin; Wu, Shuicai

    2017-11-01

    The development of genetically engineered mouse models for neuronal diseases and behavioural disorders have generated a growing need for small animal imaging. High-resolution magnetic resonance microscopy (MRM) provides powerful capabilities for noninvasive studies of mouse brains, while avoiding some limits associated with the histological procedures. Quantitative comparison of structural images is a critical step in brain imaging analysis, which highly relies on the performance of image registration techniques. Nowadays, there is a mushrooming growth of human brain registration algorithms, while fine-tuning of those algorithms for mouse brain MRMs is rarely addressed. Because of their topology preservation property and outstanding performance in human studies, diffeomorphic transformations have become popular in computational anatomy. In this study, we specially tuned five diffeomorphic image registration algorithms [DARTEL, geodesic shooting, diffeo-demons, SyN (Greedy-SyN and geodesic-SyN)] for mouse brain MRMs and evaluated their performance using three measures [volume overlap percentage (VOP), residual intensity error (RIE) and surface concordance ratio (SCR)]. Geodesic-SyN performed significantly better than the other methods according to all three different measures. These findings are important for the studies on structural brain changes that may occur in wild-type and transgenic mouse brains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Overview and application of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) toolbox

    USDA-ARS?s Scientific Manuscript database

    For several decades, optimization and sensitivity/uncertainty analysis of environmental models has been the subject of extensive research. Although much progress has been made and sophisticated methods developed, the growing complexity of environmental models to represent real-world systems makes it...

  1. In situ synthesis of gold nanoparticles in exponentially-growing layer-by-layer films

    PubMed Central

    Shen, Liyan; Rapenne, Laetitia; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2014-01-01

    In situ synthesis of inorganic nanoparticles (NPs) in polyelectrolytes multilayers (PEMs) has recently gained much attention. Due to the versatility of their composition, PEMs offer a unique opportunity to synthesize a variety of NPs. So far, mostly cationic precursors have been used and only few studies have investigated the possibility of using amine groups to bind anionic precursors. Here, we use exponentially growing poly(L-lysine)/hyaluronan (PLL/HA) films as a nanoreservoir to bind and sequester aurochlorate (AuCl4−) anions thanks to the large number of free amine groups. The polypeptide-polysaccharide reactive template enabled the formation in a spatially-confined environment of gold NP at a very high yield. The synthesized gold NPs were homogenous and well-dispersed in the nanocomposite. Importantly, there was no particular effect of the film-ending layer (either PLL or HA). The largest particles of ~ 9 nm and the largest amount of gold were obtained at acidic pH of 3. When the pH was increased, smaller and more numerous NPs were synthesized but the total amount of gold was lower. Based on UV-visible spectrometry, FTIR and TEM data, we finally propose a scheme for the mechanism of gold NPs formation, in which several groups of PLL and HA contribute to the binding of gold ions, the nucleation and growth of NPs, and their stabilization in the “bulk” of the film. PMID:22981588

  2. The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-10-01

    The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.

  3. Resistive tearing instability in electron MHD: application to neutron star crusts

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Hollerbach, Rainer

    2016-12-01

    We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as γ ∝ B2/3σ-1/3, where B is the magnetic field and σ the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 1042 erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas.

  4. Neural Synchronization and Cryptography

    NASA Astrophysics Data System (ADS)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  5. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing

    PubMed Central

    Pérez-García, M Teresa; Colinas, Olaia; Miguel-Velado, Eduardo; Moreno-Domínguez, Alejandro; López-López, José Ramón

    2004-01-01

    As there are wide interspecies variations in the molecular nature of the O2-sensitive Kv channels in arterial chemoreceptors, we have characterized the expression of these channels and their hypoxic sensitivity in the mouse carotid body (CB). CB chemoreceptor cells were obtained from a transgenic mouse expressing green fluorescent protein (GFP) under the control of tyrosine hydroxylase (TH) promoter. Immunocytochemical identification of TH in CB cell cultures reveals a good match with GFP-positive cells. Furthermore, these cells show an increase in [Ca2+]i in response to low PO2, demonstrating their ability to engender a physiological response. Whole-cell experiments demonstrated slow-inactivating K+ currents with activation threshold around −30 mV and a bi-exponential kinetic of deactivation (τ of 6.24 ± 0.52 and 32.85 ± 4.14 ms). TEA sensitivity of the currents identified also two different components (IC50 of 17.8 ± 2.8 and 940.0 ± 14.7 μm). Current amplitude decreased reversibly in response to hypoxia, which selectively affected the fast deactivating component. Hypoxic inhibition was also abolished in the presence of low (10–50 μm) concentrations of TEA, suggesting that O2 interacts with the component of the current most sensitive to TEA. The kinetic and pharmacological profile of the currents suggested the presence of Kv2 and Kv3 channels as their molecular correlates, and we have identified several members of these two subfamilies by single-cell PCR and immunocytochemistry. This report represents the first functional and molecular characterization of Kv channels in mouse CB chemoreceptor cells, and strongly suggests that O2-sensitive Kv channels in this preparation belong to the Kv3 subfamily. PMID:15034123

  6. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    NASA Astrophysics Data System (ADS)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  7. Effect of amino acid starvation on UV sensitivity of Lactobacillus acidophilus cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soška, J.; Nečasová, J.

    1973-11-01

    In Lactobacillus acidophilus cultures uv irradiated in the exponential phase of growth, the dose-survival curve was of the simple exponential type, without any shoulder. If the bacteria were subjected to amino acid starvation prior to irradiation, a shoulder corresponding to a quasi-threshold dose (D) of about 780 ergs/mm/sup 2/ appeared in the curve. The administration of protein- or RNA-synthesis inhibitors prior to irradiation had the same effect. The effect of pre-irradiation amino acid starvation was abolished by simuitaneous thymidine starvation. It was likewise abolished if amino acid starvation was followed by incubation in the presence of amino acids (without thymidine)more » and then by irradiation of the cells. Post-irradiation amino acid starvation did not lead to the formation of a shoulder but if combined with thymidine starvation it did. It can be concluded from the results that post-irradiation repair processes are facilitated or promoted if, during the post-irradiation interval DNA synthesis is delayed. This delay represents a compensation of the pre-irradiation increase of cellular DNA-content, taking place during inhibition of proteosynthesis. The post-irradiation administration of caffeine did not abolish the formation of the shoulder induced by pre-irradiation amino acid starvation; on the contrary, it induced its formation even in exponentially growing, irradiated control bacteria. (auth)« less

  8. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model.

    PubMed

    Wang, Jake; Perry, Curtis J; Meeth, Katrina; Thakral, Durga; Damsky, William; Micevic, Goran; Kaech, Susan; Blenman, Kim; Bosenberg, Marcus

    2017-07-01

    Human melanomas exhibit relatively high somatic mutation burden compared to other malignancies. These somatic mutations may produce neoantigens that are recognized by the immune system, leading to an antitumor response. By irradiating a parental mouse melanoma cell line carrying three driver mutations with UVB and expanding a single-cell clone, we generated a mutagenized model that exhibits high somatic mutation burden. When inoculated at low cell numbers in immunocompetent C57BL/6J mice, YUMMER1.7 (Yale University Mouse Melanoma Exposed to Radiation) regresses after a brief period of growth. This regression phenotype is dependent on T cells as YUMMER1.7 tumors grow significantly faster in immunodeficient Rag1 -/- mice and C57BL/6J mice depleted of CD4 and CD8 T cells. Interestingly, regression can be overcome by injecting higher cell numbers of YUMMER1.7, which results in tumors that grow without effective rejection. Mice that have previously rejected YUMMER1.7 tumors develop immunity against higher doses of YUMMER1.7 tumor challenge. In addition, escaping YUMMER1.7 tumors are sensitive to anti-CTLA-4 and anti-PD-1 therapy, establishing a new model for the evaluation of immune checkpoint inhibition and antitumor immune responses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. COMPARATIVE NITROGEN REQUIREMENTS OF SMALL MAMMALS FOR REPRODUCTION: CONSEQUESCES OF DIETARY NICHE OR LIFE-HISTORY STRATEGY?

    EPA Science Inventory

    Nitrogen dynamics in animal communities are of increasing interest, given growing amounts of environmental nitrogen and the key nutritional role of this element. We performed feeding trials on the hispid cotton rat (Sigmodon hispidus) and the fulvous harvest mouse (Reithrodontom...

  10. COMPARATIVE NITROGEN REQUIREMENTS OF SMALL MAMMALS FOR REPRODUCTION: CONSEQUENCES OF DIETARY NICHE OR LIFE-HISTORY STRATEGY?

    EPA Science Inventory

    Nitrogen dynamics in animal communities are of increasing interest, given growing amounts of environmental nitrogen and the key nutritional role of this element. We performed feeding trials on the hispid cotton rat (Sigmodon hispidus) and the fulvous harvest mouse (Reithrodontom...

  11. Cellular Therapy to Obtain Spine Fusion

    DTIC Science & Technology

    2012-07-01

    competent and incompetent models the radio-micrographs show a distinct scoliosis in 6 month old growing mice, which received the Ad5BMP2 transduced cells...cells. Panel C, shows obvious curvature of the spine suggesting a significant scoliosis , as compared to the normal mouse spine, shown in panel B

  12. Magnetic field amplification via protostellar disc dynamos

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Koldoba, A. V.; Wasserman, I.

    2018-06-01

    We numerically investigate the generation of a magnetic field in a protostellar disc via an αΩ-dynamo and the resulting magnetohydrodynamic (MHD) driven outflows. We find that for small values of the dimensionless dynamo parameter αd, the poloidal field grows exponentially at a rate σ ∝ Ω _K √{α _d}, before saturating to a value ∝ √{α _d}. The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of the order of 10^{-9} M_{⊙} yr^{-1} for T Tauri stars. This suggests that αΩ-dynamos may be responsible for generating magnetic fields strong enough to launch observed outflows.

  13. Interactive effects of temperature, pH, and water activity on the growth kinetics of Shiga toxin-producing Escherichia coli O104:H4 3.

    PubMed

    Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan

    2014-05-01

    The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed.

  14. Self-excited electrostatic pendulum showing electrohydrodynamic-force-induced oscillation

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.; Hernandez Guerrero, José M.

    2017-12-01

    The electrohydrodynamic (EHD) effect ("ion wind") associated with corona discharges in air has been extensively investigated and modeled. We present a simple experiment that shows how both the magnitude and direction of EHD forces can change in such a way as to impart energy continuously to an oscillating electrostatic pendulum. The amplitude of oscillations of an electrostatic pendulum subject to EHD forces can grow approximately exponentially over a period of minutes, and we describe a qualitative theory to account for this effect, along with implications of these experiments for theories of ball lightning.

  15. Network patterns in exponentially growing two-dimensional biofilms

    NASA Astrophysics Data System (ADS)

    Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos

    2017-10-01

    Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.

  16. The Tricky Tear Trough

    PubMed Central

    Belden, Sarah; Miller, Richard A.

    2015-01-01

    There is a growing demand for noninvasive anti-aging products for which the periorbital region serves as a critical aspect of facial rejuvenation. This article reviews a multitude of cosmeceutical ingredients that have good scientific data, specifically for the periorbital region. Topical treatment options have exponentially grown from extensively studied retinoids, to recently developed technology, such as growth factors and peptides. With a focus on the periorbital anatomy, the authors review the mechanisms of action of topical cosmeceutical ingredients, effectiveness of ingredient penetration through the stratum corneum, and validity of clinical trials. PMID:26430490

  17. Optically induced melting of colloidal crystals and their recrystallization.

    PubMed

    Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi

    2007-04-15

    Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.

  18. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics.

    PubMed

    Kooreman, Nigel G; de Almeida, Patricia E; Stack, Jonathan P; Nelakanti, Raman V; Diecke, Sebastian; Shao, Ning-Yi; Swijnenburg, Rutger-Jan; Sanchez-Freire, Veronica; Matsa, Elena; Liu, Chun; Connolly, Andrew J; Hamming, Jaap F; Quax, Paul H A; Brehm, Michael A; Greiner, Dale L; Shultz, Leonard D; Wu, Joseph C

    2017-08-22

    There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830

  20. Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor.

    PubMed

    Zheng, X; Goodwin, A F; Tian, H; Jheon, A H; Klein, O D

    2017-11-01

    The role of Ras signaling during tooth development is poorly understood. Ras proteins-which are activated by many upstream pathways, including receptor tyrosine kinase cascades-signal through multiple effectors, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways. Here, we utilized the mouse incisor as a model to study how the MAPK and PI3K pathways regulate dental epithelial stem cells and amelogenesis. The rodent incisor-which grows continuously throughout the life of the animal due to the presence of epithelial and mesenchymal stem cells-provides a model for the study of ectodermal organ renewal and regeneration. Utilizing models of Ras dysregulation as well as inhibitors of the MAPK and PI3K pathways, we found that MAPK and PI3K regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation in the mouse incisor.

  1. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    PubMed

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. CHARACTERISTICS OF GROWTH OF SARCOMA AND CARCINOMA CULTIVATED IN VITRO

    PubMed Central

    Lambert, Robert A.; Hanes, Frederic M.

    1911-01-01

    1. The transplantable sarcomata of rats and mice grow very readily by the method of cultivating tissues in vitro. 2. Sarcomatous tissue grows in conformity to a type which may be regarded as characteristic for tissues of mesenchymal origin. 3. The growth of sarcoma cells in vitro consists in ameboid wandering into the surrounding plasma, karyokinetic proliferation. and evidences of active metabolism on the part of the cells. 4. Mouse carcinomata can be cultivated in vitro. The outgrowth of carcinoma cells assumes a sheet-like form, only one cell in thickness. They migrate into the plasma by ameboid movement, the advancing edge showing numerous prolongations of the cytoplasm into pseudopods. 5. Karyokinetic figures are frequently seen in growing carcinoma cells. The cells show evidences of active metabolism. 6. Both sarcoma and carcinoma cells cultivated in vitro show active phagocytosis; carmin particles placed in the plasma are taken up rapidly by the growing cells. PMID:19867430

  3. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Donnini, Claudia

    2005-05-01

    The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.

  4. Inflating bacterial cells by increased protein synthesis

    PubMed Central

    Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence

    2015-01-01

    Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362

  5. The Rise of the Graphical User Interface.

    ERIC Educational Resources Information Center

    Edwards, Alastair D. N.

    1996-01-01

    Discusses the history of the graphical user interface (GUI) and the growing realization that adaptations must be made to it lest its visual nature discriminate against nonsighted or sight-impaired users. One of the most popular commercially developed adaptations is to develop sounds that signal the location of icons or menus to mouse users.…

  6. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse

    USDA-ARS?s Scientific Manuscript database

    Background: There is a growing interest in exploiting the induction of beige or “brite” (brown in white) adipocytes (beigeing) to combat obesity and its comorbidities. However, there is some uncertainty regarding the best markers to evaluate the occurrence or magnitude of beigeing in white adipose t...

  7. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse

    USDA-ARS?s Scientific Manuscript database

    Beige or brite (brown in white) adipocytes are cells that arise in white adipose tissue (WAT) in response to stimuli like excess energy, exercise, or cold exposure. The induction of beige adipocytes (beigeing) confers resistance to obesity and type-2 diabetes in animal models. There is a growing int...

  8. Vocal development and auditory perception in CBA/CaJ mice

    NASA Astrophysics Data System (ADS)

    Radziwon, Kelly E.

    Mice are useful laboratory subjects because of their small size, their modest cost, and the fact that researchers have created many different strains to study a variety of disorders. In particular, researchers have found nearly 100 naturally occurring mouse mutations with hearing impairments. For these reasons, mice have become an important model for studies of human deafness. Although much is known about the genetic makeup and physiology of the laboratory mouse, far less is known about mouse auditory behavior. To fully understand the effects of genetic mutations on hearing, it is necessary to determine the hearing abilities of these mice. Two experiments here examined various aspects of mouse auditory perception using CBA/CaJ mice, a commonly used mouse strain. The frequency difference limens experiment tested the mouse's ability to discriminate one tone from another based solely on the frequency of the tone. The mice had similar thresholds as wild mice and gerbils but needed a larger change in frequency than humans and cats. The second psychoacoustic experiment sought to determine which cue, frequency or duration, was more salient when the mice had to identify various tones. In this identification task, the mice overwhelmingly classified the tones based on frequency instead of duration, suggesting that mice are using frequency when differentiating one mouse vocalization from another. The other two experiments were more naturalistic and involved both auditory perception and mouse vocal production. Interest in mouse vocalizations is growing because of the potential for mice to become a model of human speech disorders. These experiments traced mouse vocal development from infant to adult, and they tested the mouse's preference for various vocalizations. This was the first known study to analyze the vocalizations of individual mice across development. Results showed large variation in calling rates among the three cages of adult mice but results were highly consistent across all infant vocalizations. Although the preference experiment did not reveal significant differences between various mouse vocalizations, suggestions are given for future attempts to identify mouse preferences for auditory stimuli.

  9. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.

    PubMed

    Raamsdonk, L M; Diderich, J A; Kuiper, A; van Gaalen, M; Kruckeberg, A L; Berden, J A; Van Dam, K; Kruckberg, A L

    2001-08-01

    In previous studies it was shown that deletion of the HXK2 gene in Saccharomyces cerevisiae yields a strain that hardly produces ethanol and grows almost exclusively oxidatively in the presence of abundant glucose. This paper reports on physiological studies on the hxk2 deletion strain on mixtures of glucose/sucrose, glucose/galactose, glucose/maltose and glucose/ethanol in aerobic batch cultures. The hxk2 deletion strain co-consumed galactose and sucrose, together with glucose. In addition, co-consumption of glucose and ethanol was observed during the early exponential growth phase. In S.cerevisiae, co-consumption of ethanol and glucose (in the presence of abundant glucose) has never been reported before. The specific respiration rate of the hxk2 deletion strain growing on the glucose/ethanol mixture was 900 micromol.min(-1).(g protein)(-1), which is four to five times higher than that of the hxk2 deletion strain growing oxidatively on glucose, three times higher than its parent growing on ethanol (when respiration is fully derepressed) and is almost 10 times higher than its parent growing on glucose (when respiration is repressed). This indicates that the hxk2 deletion strain has a strongly enhanced oxidative capacity when grown on a mixture of glucose and ethanol. Copyright 2001 John Wiley & Sons, Ltd.

  10. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dynamics of epidemic diseases on a growing adaptive network

    PubMed Central

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-01-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146

  12. Dynamics of epidemic diseases on a growing adaptive network.

    PubMed

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-10

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  13. Dynamics of epidemic diseases on a growing adaptive network

    NASA Astrophysics Data System (ADS)

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  14. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  15. Classification of Mobile Laser Scanning Point Clouds from Height Features

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Lemmens, M.; van Oosterom, P.

    2017-09-01

    The demand for 3D maps of cities and road networks is steadily growing and mobile laser scanning (MLS) systems are often the preferred geo-data acquisition method for capturing such scenes. Because MLS systems are mounted on cars or vans they can acquire billions of points of road scenes within a few hours of survey. Manual processing of point clouds is labour intensive and thus time consuming and expensive. Hence, the need for rapid and automated methods for 3D mapping of dense point clouds is growing exponentially. The last five years the research on automated 3D mapping of MLS data has tremendously intensified. In this paper, we present our work on automated classification of MLS point clouds. In the present stage of the research we exploited three features - two height components and one reflectance value, and achieved an overall accuracy of 73 %, which is really encouraging for further refining our approach.

  16. Quantum ergodicity in the SYK model

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry

    2018-05-01

    We present a replica path integral approach describing the quantum chaotic dynamics of the SYK model at large time scales. The theory leads to the identification of non-ergodic collective modes which relax and eventually give way to an ergodic long time regime (describable by random matrix theory). These modes, which play a role conceptually similar to the diffusion modes of dirty metals, carry quantum numbers which we identify as the generators of the Clifford algebra: each of the 2N different products that can be formed from N Majorana operators defines one effective mode. The competition between a decay rate quickly growing in the order of the product and a density of modes exponentially growing in the same parameter explains the characteristics of the system's approach to the ergodic long time regime. We probe this dynamics through various spectral correlation functions and obtain favorable agreement with existing numerical data.

  17. Robotics in Orthopedics: A Brave New World.

    PubMed

    Parsley, Brian S

    2018-02-16

    Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Modeling of mixing processes: Fluids, particulates, and powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino, J.M.; Hansen, S.

    Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is foundmore » that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.« less

  19. Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome.

    PubMed

    Cohen-Tannoudji, M; Babinet, C

    1998-10-01

    The emergence of gene inactivation by homologous recombination methodology in embryonic stem cells has revolutionized the field of mouse genetics. Indeed, the availability of a rapidly growing number of mouse null mutants has represented an invaluable source of knowledge on mammalian development, cellular biology and physiology and has provided many models for human inherited diseases. In recent years, improvements of the original 'knock-out' strategy, as well as the exploitation of exogenous enzymatic systems that are active in the recombination process, have considerably extended the range of genetic manipulations that can be produced. For example, it is now possible to create a mouse bearing a targeted point mutation as the unique change in its entire genome therefore allowing very fine dissection of gene function in vivo. Chromosome alterations such as large deletions, inversions or translocations can also be designed and will facilitate the global functional analysis of the mouse genome. This will extend the possibilities of creating models of human pathologies that frequently originate from various chromosomal disorders. Finally, the advent of methods allowing conditional gene targeting will open the way for the analysis of the consequence of a particular mutation in a defined organ and at a specific time during the life of a mouse.

  20. Rapid cell death in Xanthomonas campestris pv. glycines.

    PubMed

    Gautam, Satyendra; Sharma, Arun

    2002-04-01

    Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.

  1. Biased phylodynamic inferences from analysing clusters of viral sequences

    PubMed Central

    Xiang, Fei; Frost, Simon D. W.

    2017-01-01

    Abstract Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources. PMID:28852573

  2. Coarsening of ion-beam-induced surface ripple in Si: Nonlinear effect vs. geometrical shadowing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Debi Prasad; Chini, Tapas Kumar

    The temporal evolution of a periodic ripple pattern on a silicon surface undergoing erosion by 30 keV argon ion bombardment has been studied for two angles of ion incidence of 60 deg. and 70 deg. using ex situ atomic force microscopy (AFM) in ambient condition. The roughness amplitude (w) grows exponentially with sputtering time for both the angle of ion incidence followed by a slow growth process that saturates eventually with almost constant amplitude. Within the exponential growth regime of amplitude, however, ripple wavelength (l) remains constant initially and increases subsequently as a power law fashion l{proportional_to}t{sup n}, where n=0.47{+-}0.02more » for a 60 deg. angle of ion incidence followed by a saturation. Wavelength coarsening was also observed for 70 deg. but ordering in the periodic ripple pattern is destroyed quickly for 70 deg. as compared to 60 deg. . The ripple orientation, average ripple wavelength at the initial stage of ripple evolution, and the exponential growth of ripple amplitude can be described by a linear continuum model. While the wavelength coarsening could possibly be explained in the light of recent hydrodynamic model based continuum theory, the subsequent saturation of wavelength and amplitude was attributed to the effect of geometrical shadowing. This is an experimental result that probably gives a hint about the upper limit of the energy of ion beam rippling for applying the recently developed type of nonlinear continuum model.« less

  3. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  4. Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Street, Rachel A.; Duckham, S. Craig; Hewitt, C. Nicholas

    1996-10-01

    Isoprene and monoterpene emission rates were measured from Sitka spruce (Picea sitchensis Bong.) with a dynamic flow-through branch enclosure, both in the laboratory and in the field in the United Kingdom. In the laboratory, emission rates of isoprene comprised over 94% of the identified VOC species, and were exponentially related to temperature over a period of 1 day. This exponential relationship broke down at ˜33°C. Field measurements were taken on five sampling days in 1992 and 1993, in Grizedale Forest, Cumbria. Total emission rates were in the range 36-3771 ng g-1 h-1. Relative emissions were more variable than suggested by laboratory measurements, with monoterpenes contributing at least 64% to the total emissions in most cases. There was a significant variation in the basal emission rate both across the growing season and between different ages of vegetation, the causes of which are as yet unknown. Total emission rates, in July 1993, were estimated to be between 0.01 and 0.27% of assimilated carbon.

  5. Long-wave theory for a new convective instability with exponential growth normal to the wall.

    PubMed

    Healey, J J

    2005-05-15

    A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.

  6. The need for data science in epidemic modelling. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    Danon, Leon; Brooks-Pollock, Ellen

    2016-09-01

    In their review, Chowell et al. consider the ability of mathematical models to predict early epidemic growth [1]. In particular, they question the central prediction of classical differential equation models that the number of cases grows exponentially during the early stages of an epidemic. Using examples including HIV and Ebola, they argue that classical models fail to capture key qualitative features of early growth and describe a selection of models that do capture non-exponential epidemic growth. An implication of this failure is that predictions may be inaccurate and unusable, highlighting the need for care when embarking upon modelling using classical methodology. There remains a lack of understanding of the mechanisms driving many observed epidemic patterns; we argue that data science should form a fundamental component of epidemic modelling, providing a rigorous methodology for data-driven approaches, rather than trying to enforce established frameworks. The need for refinement of classical models provides a strong argument for the use of data science, to identify qualitative characteristics and pinpoint the mechanisms responsible for the observed epidemic patterns.

  7. Lamination and mixing in laminar flows driven by Lorentz body forces

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Doorly, D.; Kustrin, D.

    2012-01-01

    We present a new approach to the design of mixers. This approach relies on a sequence of tailored flows coupled with a new procedure to quantify the local degree of striation, called lamination. Lamination translates to the distance over which the molecular diffusion needs to act to finalise mixing. A novel in situ mixing is achieved by the tailored sequence of flows. This sequence is shown with the property that material lines and lamination grow exponentially, according to processes akin to the well-known baker's map. The degree of mixing (stirring coefficient) likewise shows exponential growth before the saturation of the stirring rate. Such saturation happens when the typical striations' thickness is smaller than the diffusion's length scale. Moreover, without molecular diffusion, the predicted striations' thickness would be smaller than the size of an atom of hydrogen within 40 flow turnover times. In fact, we conclude that about 3 minutes, i.e. 15 turnover times, are sufficient to mix species with very low diffusivities, e.g. suspensions of virus, bacteria, human cells, and DNA.

  8. Statistical steady states in turbulent droplet condensation

    NASA Astrophysics Data System (ADS)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  9. Effects of mutation and some environmental factors on the physiology and pathogenicity of selected bacteria

    NASA Technical Reports Server (NTRS)

    Decicco, B. T.

    1974-01-01

    Studies with mutants of Staphylococcus aureus lacking some virulence factors suggest that the presence of deoxyribonuclease correlates with mouse pathogenicity of S. aureus, while the ability to ferment mannitol or the possession of coagulases are not required for virulence. Autotrophy investigations on mycobacteria demonstrate a complete correlation between the ability to grow with hydrogen and the species of scotochromogenic mycobacterium tested. All tested strains of M. gordonae, a saprophyte, could grow autotrophically while none of the tested strains of M. scrofulaceum, a clinically important species, possessed this ability. A series of heat tolerant mutants of Pseudomonas fluorescences were obtained which can grow at temperatures up to 54 C, in contrast to a maximum growth temperature of 37 C for the wild type.

  10. Mouse models of ageing and their relevance to disease.

    PubMed

    Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E

    2016-12-01

    Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Influence of caffeine on X-ray-induced killing and mutation in V79 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, S.B.; Bhattacharyya, N.; Chatterjee, S.

    1987-02-01

    Effects produced by caffeine on X-irradiated Chinese hamster V79 cells depended on the growth conditions of the cells. For exponentially growing cells, nontoxic concentrations of caffeine decreased the shoulder width from the survival curve, but the slope remained unchanged. The yield of mutants under the same conditions also remained unaffected. In case of density-inhibited cells, delaying trypsinization for 24 h after X irradiation increased the survival and decreased the yield of mutants. The presence of caffeine during this incubation period inhibited such recovery and significantly increased the yield of X-ray-induced mutants.

  12. Storage media for computers in radiology.

    PubMed

    Dandu, Ravi Varma

    2008-11-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits.

  13. Evolution of resistance and progression to disease during clonal expansion of cancer.

    PubMed

    Durrett, Richard; Moseley, Stephen

    2010-02-01

    Inspired by previous work of Iwasa et al. (2006) and Haeno et al. (2007), we consider an exponentially growing population of cancerous cells that will evolve resistance to treatment after one mutation or display a disease phenotype after two or more mutations. We prove results about the distribution of the first time when k mutations have accumulated in some cell, and about the growth of the number of type-k cells. We show that our results can be used to derive the previous results about a tumor grown to a fixed size. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Tachyon search speeds up retrieval of similar sequences by several orders of magnitude

    PubMed Central

    Tan, Joshua; Kuchibhatla, Durga; Sirota, Fernanda L.; Sherman, Westley A.; Gattermayer, Tobias; Kwoh, Chia Yee; Eisenhaber, Frank; Schneider, Georg; Maurer-Stroh, Sebastian

    2012-01-01

    Summary: The usage of current sequence search tools becomes increasingly slower as databases of protein sequences continue to grow exponentially. Tachyon, a new algorithm that identifies closely related protein sequences ~200 times faster than standard BLAST, circumvents this limitation with a reduced database and oligopeptide matching heuristic. Availability and implementation: The tool is publicly accessible as a webserver at http://tachyon.bii.a-star.edu.sg and can also be accessed programmatically through SOAP. Contact: sebastianms@bii.a-star.edu.sg Supplementary information: Supplementary data are available at the Bioinformatics online. PMID:22531216

  15. High Efficiency Transformation of Cultured Tobacco Cells 1

    PubMed Central

    An, Gynheung

    1985-01-01

    Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants. Images Fig. 1 PMID:16664453

  16. Circularly Polarized Luminescence from Simple Organic Molecules

    PubMed Central

    Sánchez-Carnerero, Esther M.; Agarrabeitia, Antonia R.; Moreno, Florencio; Maroto, Beatriz L.; Muller, Gilles; Ortiz, María J.

    2015-01-01

    This article aims to show the identity of “CPL-active simple organic molecules” as a new concept in Organic Chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and nonaggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  17. Holographic s-wave and p-wave Josephson junction with backreaction

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Qiang; Liu, Shuai

    2016-11-01

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  18. Opinion: Why we need a centralized repository for isotopic data

    USGS Publications Warehouse

    Pauli, Jonathan N.; Newsome, Seth D.; Cook, Joseph A.; Harrod, Chris; Steffan, Shawn A.; Baker, Christopher J. O.; Ben-David, Merav; Bloom, David; Bowen, Gabriel J.; Cerling, Thure E.; Cicero, Carla; Cook, Craig; Dohm, Michelle; Dharampal, Prarthana S.; Graves, Gary; Gropp, Robert; Hobson, Keith A.; Jordan, Chris; MacFadden, Bruce; Pilaar Birch, Suzanne; Poelen, Jorrit; Ratnasingham, Sujeevan; Russell, Laura; Stricker, Craig A.; Uhen, Mark D.; Yarnes, Christopher T.; Hayden, Brian

    2017-01-01

    Stable isotopes encode and integrate the origin of matter; thus, their analysis offers tremendous potential to address questions across diverse scientific disciplines (1, 2). Indeed, the broad applicability of stable isotopes, coupled with advancements in high-throughput analysis, have created a scientific field that is growing exponentially, and generating data at a rate paralleling the explosive rise of DNA sequencing and genomics (3). Centralized data repositories, such as GenBank, have become increasingly important as a means for archiving information, and “Big Data” analytics of these resources are revolutionizing science and everyday life.

  19. Hadron mass spectrum from lattice QCD.

    PubMed

    Majumder, Abhijit; Müller, Berndt

    2010-12-17

    Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.

  20. Laplace-transform-based method to calculate back-reflected radiance from an isotropically scattering half-space

    NASA Astrophysics Data System (ADS)

    Rinzema, K.; Hoenders, B. J.; Ferwerda, H. A.

    1997-07-01

    We present a method to determine the back-reflected radiance from an isotropically scattering half-space with matched boundary. This method has the advantage that it leads very quickly to the relevant equations, the numerical solution of which is also quite easy. Essentially, the method is derived from a mathematical criterion that effectively forbids the existence of solutions to the transport equation which grow exponentially as one moves away from the surface and deeper into the medium. Preliminary calculations for infinitely wide beams yield results which agree very well with what is found in the literature.

  1. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  2. The future cost of cancer in South Africa: An interdisciplinary cost management strategy.

    PubMed

    Sartorius, K; Sartorius, B; Govender, P S; Sharma, V; Sherriff, A

    2016-09-06

    The exponential rise in cancer costs in South Africa (SA) was illustrated in a recent Sunday Times article entitled 'The cost of cancer can be a debt sentence'. Our Minister of Health talks of a 'war' against the high costs of cancer drugs, and epidemiologists project a sharply rising incidence. Eminent international medical journals, such as The Lancet, underline the fact that cancer cost is a growing international problem that confronts even the richest countries. If richer countries in the world are battling to cover the costs of cancer, what is the prognosis for SA?

  3. On extinction time of a generalized endemic chain-binomial model.

    PubMed

    Aydogmus, Ozgur

    2016-09-01

    We considered a chain-binomial epidemic model not conferring immunity after infection. Mean field dynamics of the model has been analyzed and conditions for the existence of a stable endemic equilibrium are determined. The behavior of the chain-binomial process is probabilistically linked to the mean field equation. As a result of this link, we were able to show that the mean extinction time of the epidemic increases at least exponentially as the population size grows. We also present simulation results for the process to validate our analytical findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Evidence for fast dynamo action in a chaotic web

    NASA Technical Reports Server (NTRS)

    Gilbert, A. D.; Childress, S.

    1990-01-01

    The evolution of a magnetic field in a chaotic web is studied. The model flow possessing the web is closely related to the nearly integrable ABC flow with A = B and C much less than 1. The magnetic diffusivity is taken to be zero and the field is followed using the Cauchy solution. It is found that the flow folds the magnetic field constructively, in the sense that the average magnetic field in a chaotic region grows exponentially in time. This is suggestive of fast dynamo action, although the effect of diffusion of the strong streamwise magnetic field remains to be assessed.

  5. Neutralization of Staphylococcal Enterotoxin B by an Aptamer Antagonist

    PubMed Central

    Wang, Kaiyu; Gan, Longjie; Jiang, Li; Zhang, Xianhui; Yang, Xiangyue; Chen, Min

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a major virulence factor for staphylococcal toxic shock syndrome (TSS). SEB activates a large subset of the T lymphocytic population, releasing proinflammatory cytokines. Blocking SEB-initiated toxicity may be an effective strategy for treating TSS. Using a process known as systematic evolution of ligands by exponential enrichment (SELEX), we identified an aptamer that can antagonize SEB with nanomolar binding affinity (Kd = 64 nM). The aptamer antagonist effectively inhibits SEB-mediated proliferation and cytokine secretion in human peripheral blood mononuclear cells. Moreover, a PEGylated aptamer antagonist significantly reduced mortality in a “double-hit” mouse model of SEB-induced TSS, established via sensitization with d-galactosamine followed by SEB challenge. Therefore, our novel aptamer antagonist may offer potential therapeutic efficacy against SEB-mediated TSS. PMID:25624325

  6. Self-organized Segregation on the Grid

    NASA Astrophysics Data System (ADS)

    Omidvar, Hamed; Franceschetti, Massimo

    2018-02-01

    We consider an agent-based model with exponentially distributed waiting times in which two types of agents interact locally over a graph, and based on this interaction and on the value of a common intolerance threshold τ , decide whether to change their types. This is equivalent to a zero-temperature ising model with Glauber dynamics, an asynchronous cellular automaton with extended Moore neighborhoods, or a Schelling model of self-organized segregation in an open system, and has applications in the analysis of social and biological networks, and spin glasses systems. Some rigorous results were recently obtained in the theoretical computer science literature, and this work provides several extensions. We enlarge the intolerance interval leading to the expected formation of large segregated regions of agents of a single type from the known size ɛ >0 to size ≈ 0.134. Namely, we show that for 0.433< τ < 1/2 (and by symmetry 1/2<τ <0.567), the expected size of the largest segregated region containing an arbitrary agent is exponential in the size of the neighborhood. We further extend the interval leading to expected large segregated regions to size ≈ 0.312 considering "almost segregated" regions, namely regions where the ratio of the number of agents of one type and the number of agents of the other type vanishes quickly as the size of the neighborhood grows. In this case, we show that for 0.344 < τ ≤ 0.433 (and by symmetry for 0.567 ≤ τ <0.656) the expected size of the largest almost segregated region containing an arbitrary agent is exponential in the size of the neighborhood. This behavior is reminiscent of supercritical percolation, where small clusters of empty sites can be observed within any sufficiently large region of the occupied percolation cluster. The exponential bounds that we provide also imply that complete segregation, where agents of a single type cover the whole grid, does not occur with high probability for p=1/2 and the range of intolerance considered.

  7. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  8. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    PubMed

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mouse and Guinea Pig Models of Tuberculosis.

    PubMed

    Orme, Ian M; Ordway, Diane J

    2016-08-01

    This article describes the nature of the host response to Mycobacterium tuberculosis in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).

  10. Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer.

    PubMed

    Kochall, Susan; Thepkaysone, May-Linn; García, Sebastián A; Betzler, Alexander M; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian

    2017-07-18

    Despite the advantages of easy applicability and cost-effectiveness, subcutaneous mouse models have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Orthotopic mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in hollow organs such as the large bowel. In order to produce uniform tumors which reliably grow and metastasize, standardized techniques of tumor cell preparation and injection are critical. We have developed an orthotopic mouse model of colorectal cancer (CRC) which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor cells from either primary tumors, 2-dimensional (2D) cell lines or 3-dimensional (3D) organoids are injected into the cecum and, depending on the metastatic potential of the injected tumor cells, form highly metastatic tumors. In addition, CTCs can be found regularly. We here describe the technique of tumor cell preparation from both 2D cell lines and 3D organoids as well as primary tumor tissue, the surgical and injection techniques as well as the isolation of CTCs from the tumor-bearing mice, and present tips for troubleshooting.

  11. Mouse-based genetic modeling and analysis of Down syndrome

    PubMed Central

    Xing, Zhuo; Li, Yichen; Pao, Annie; Bennett, Abigail S.; Tycko, Benjamin; Mobley, William C.; Yu, Y. Eugene

    2016-01-01

    Introduction Down syndrome (DS), caused by human trisomy 21 (Ts21), can be considered as a prototypical model for understanding the effects of chromosomal aneuploidies in other diseases. Human chromosome 21 (Hsa21) is syntenically conserved with three regions in the mouse genome. Sources of data A review of recent advances in genetic modeling and analysis of DS. Using Cre/loxP-mediated chromosome engineering, a substantial number of new mouse models of DS have recently been generated, which facilitates better understanding of disease mechanisms in DS. Areas of agreement Based on evolutionary conservation, Ts21 can be modeled by engineered triplication of Hsa21 syntenic regions in mice. The validity of the models is supported by the exhibition of DS-related phenotypes. Areas of controversy Although substantial progress has been made, it remains a challenge to unravel the relative importance of specific candidate genes and molecular mechanisms underlying the various clinical phenotypes. Growing points Further understanding of mechanisms based on data from mouse models, in parallel with human studies, may lead to novel therapies for clinical manifestations of Ts21 and insights to the roles of aneuploidies in other developmental disorders and cancers. PMID:27789459

  12. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    PubMed

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  13. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse

    PubMed Central

    Eppig, Janan T.

    2017-01-01

    Abstract The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. PMID:28838066

  14. Compound haplotypes at Xp11.23 and human population growth in Eurasia.

    PubMed

    Alonso, S; Armour, J A L

    2004-09-01

    To investigate patterns of diversity and the evolutionary history of Eurasians, we have sequenced a 2.8 kb region at Xp11.23 in a sample of African and Eurasian chromosomes. This region is in a long intron of CLCN5 and is immediately flanked by a highly variable minisatellite, DXS255, and a human-specific Ta0 LINE. Compared to Africans, Eurasians showed a marked reduction in sequence diversity. The main Euro-Asiatic haplotype seems to be the ancestral haplotype for the whole sample. Coalescent simulations, including recombination and exponential growth, indicate a median length of strong linkage disequilibrium, up to approximately 9 kb for this area. The Ka/Ks ratio between the coding sequence of human CLCN5 and its mouse orthologue is much less than 1. This implies that the region sequenced is unlikely to be under the strong influence of positive selective processes on CLCN5, mutations in which have been associated with disorders such as Dent's disease. In contrast, a scenario based on a population bottleneck and exponential growth seems a more likely explanation for the reduced diversity observed in Eurasians. Coalescent analysis and linked minisatellite diversity (which reaches a gene diversity value greater than 98% in Eurasians) suggest an estimated age of origin of the Euro-Asiatic diversity compatible with a recent out-of-Africa model for colonization of Eurasia by modern Homo sapiens.

  15. ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells

    PubMed Central

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z.; Higgs, Douglas R.; Gibbons, Richard J.

    2014-01-01

    The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells. PMID:24651726

  16. Serial bull cloning by somatic cell nuclear transfer.

    PubMed

    Kubota, Chikara; Tian, X Cindy; Yang, Xiangzhong

    2004-06-01

    Although the list of species successfully cloned continues to grow, serial cloning has not been reported in species other than the mouse. Here we describe two live births of second-generation clones of a bull. Clones of the first and second generations appear healthy and have normal telomere lengths. Our attempts to produce the third generation of clones were unsuccessful.

  17. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    PubMed Central

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  18. Expression of Genes Associated with DNA Damage Sensing in Human Fibroblasts Exposed to Low-dose-rate Gamma Rays

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Mehta, Satish; Hammond, Diane; Pierson, Duane; Jeevarajan, Antony; Cucinotta, Francis; Rohde, Larry; Wu, Honglu

    2007-01-01

    Understanding of the molecular response to low-dose and low-dose-rate radiation exposure is essential for the extrapolation of high-dose radiation risks to those at dose levels relevant to space and other environmental concerns. Most of the reported studies of gene expressions induced by low-dose or low-dose-rate radiation were carried out on exponentially growing cells. In the present study, we analyzed expressions of 84 genes associated with DNA damage sensing using real time PCR in human fibroblasts in mostly G1 phase of the cell cycle. The cells were exposed continuously to gamma rays at a dose rate of 0.8 cGy/hr for 1, 2, 6 or 24 hrs at 37 C throughout the exposure. The total RNA was isolated immediately after the exposure was terminated. Of the 84 genes, only a few showed significant changes of the expression level. Some of the genes (e.g. DDit3 and BTG2) were found to be up or down regulated only after a short period of exposure, while other genes (e.g. PRKDC) displayed a highest expression level at the 24 hr time point. The expression profiles for the exposed cells which had a smaller portion of G1 cells indicated more cell cycle signaling and DNA repair genes either up or down regulated. Interestingly, the panel of genes changed from radiation exposure in G1 cells is different from the panel in cells having less G1 arrest cells. The gene expression profile of the cells responding to low-dose-radiation insult apparently depends on the cell growth stage. The response pathway in G1 cells may differ from that in exponentially growing cells.

  19. The use of real-time PCR to study Penicillium chrysogenum growth kinetics on solid food at different water activities.

    PubMed

    Arquiza, J M R Apollo; Hunter, Jean

    2014-09-18

    Fungal growth on solid foods can make them unfit for human consumption, but certain specialty foods require fungi to produce their characteristic properties. In either case, a reliable way of measuring biomass is needed to study how various factors (e.g. water activity) affect fungal growth rates on these substrates. Biochemical markers such as chitin, glucosamine or ergosterol have been used to estimate fungal growth, but they cannot distinguish between individual species in mixed culture. In this study, a real-time polymerase chain reaction (rt-PCR) protocol specific for a target fungal species was used to quantify its DNA while growing on solid food. The measured amount of DNA was then related to the biomass present using an experimentally determined DNA-to-biomass ratio. The highly sensitive rt-PCR biomass assay was found to have a wide range, able to quantify the target DNA within a six orders-of-magnitude difference. The method was used to monitor germination and growth of Penicillium chrysogenum spores on a model porous food (cooked wheat flour) at 25°C and different water activities of 0.973, 0.936, and 0.843. No growth was observed at 0.843, but lag, exponential and stationary phases were identified in the growth curves for the higher water activities. The calculated specific growth rates (μ) during the exponential phase were almost identical, at 0.075/h and 0.076/h for aw=0.973 and 0.936, respectively. The specificity of the method was demonstrated by measuring the biomass of P. chrysogenum while growing together with Aspergillus niger on solid media at aw=0.973. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Biases in simulation of the rice phenology models when applied in warmer climates

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, T.; Yang, X.; Simelton, E.

    2015-12-01

    The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.

  1. Evapotranspiration Measurement and Crop Coefficient Estimation over a Spring Wheat Farmland Ecosystem in the Loess Plateau

    PubMed Central

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m−2). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day−1. Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values. PMID:24941017

  2. Evapotranspiration measurement and crop coefficient estimation over a spring wheat Farmland ecosystem in the Loess Plateau.

    PubMed

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m(-2)). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day(-1). Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values.

  3. Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-05-01

    We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

  4. A quantitative analysis of the state of knowledge of turtles of the United States and Canada

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.

    2013-01-01

    The “information age” ushered in an explosion of knowledge and access to knowledge that continues to revolutionize society. Knowledge about turtles, as measured by number of published papers, has been growing at an exponential rate since the early 1970s, a phenomenon mirrored in all scientific disciplines. Although knowledge about turtles, as measured by number of citations for papers in scientific journals, has been growing rapidly, this taxonomic group remains highly imperiled suggesting that knowledge is not always successfully translated into effective conservation of turtles. We reviewed the body of literature on turtles of the United States and Canada and found that: 1) the number of citations is biased toward large-bodied species, 2) the number of citations is biased toward wide-ranging species, and 3) conservation status has little effect on the accumulation of knowledge for a species, especially after removing the effects of body size or range size. The dispersion of knowledge, measured by Shannon Weiner diversity and evenness indices across species, was identical from 1994 to 2009 suggesting that poorly studied species remained poorly-studied species while well-studied species remained well studied. Several species listed as threatened or endangered under the U.S. Endangered Species Act (e.g., Pseudemys alabamensis, Sternotherus depressus, and Graptemys oculifera) remain poorly studied with the estimated number of citations for each ranging from only 13-24. The low number of citations for these species could best be explained by their restricted distribution and/or their smaller size. Despite the exponential increase in knowledge of turtles in the United States and Canada, no species of turtle listed under the Endangered Species Act has ever been delisted for reason of recovery. Therefore, increased knowledge does not necessarily contribute appreciably to recovery of threatened turtles.

  5. Emergent structures and dynamics in suspensions of self-phoretic colloids

    NASA Astrophysics Data System (ADS)

    Scagliarini, Andrea; Pagonabarraga, Ignacio

    2013-11-01

    Active fluids, such as suspensions of self-propelled particles , are a fascinating example of Soft Matter displaying complex collective behaviours which provide challenges in non-equilibrium Statistical Physics. The recent development of techniques to assemble miniaturized devices has led to a growing interest for micro and nanoscale engines that can perform autonomous motion (``microrobots''), as, for instance, self-phoretic colloids, for which the propulsion is induced by the generation of a chemical species in a reaction catalyzed at the particle surface. We perform a mesoscopic numerical study of suspensions of self-phoretic colloids. We show that, at changing the sign of the phoretic mobility (which accounts for the colloid-solute interactions), the system switches from a cluster phase to a state with slowed dynamics. We find that the cluster size distribution follows an exponential behaviour, with a characteristic size growing linearly with the colloid activity, while the density fluctuations grow as a power-law with an exponent depending on the cluster fractal dimension.We single out hydrodynamic interactions, showing that their effect is to work against cluster formation. For positive μ, we observe that colloids tend to reach an ordered state on a triangular lattice.

  6. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng

    The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growthmore » conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, midexponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.« less

  7. Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.

    PubMed

    Martin-Perez, Miguel; Villén, Judit

    2015-04-07

    Quantitative proteomics studies of yeast that use metabolic labeling with amino acids rely on auxotrophic mutations of one or more genes on the amino acid biosynthesis pathways. These mutations affect yeast metabolism and preclude the study of some biological processes. Overcoming this limitation, it has recently been described that proteins in a yeast prototrophic strain can also be metabolically labeled with heavy amino acids. However, the temporal profiles of label incorporation under the different phases of the prototroph's growth have not been examined. Labeling trajectories are important in the study of protein turnover and dynamics, in which label incorporation into proteins is monitored across many time points. Here we monitored protein labeling trajectories for 48 h after a pulse with heavy lysine in a yeast prototrophic strain and compared them with those of a lysine auxotrophic yeast. Labeling was successful in prototroph yeast during exponential growth phase but not in stationary phase. Furthermore, we were able to determine the half-lives of more than 1700 proteins during exponential phase of growth with high accuracy and reproducibility. We found a median half-life of 2 h in both strains, which corresponds with the cellular doubling time. Nucleolar and ribosomal proteins showed short half-lives, whereas mitochondrial proteins and other energy production enzymes presented longer half-lives. Except for some proteins involved in lysine biosynthesis, we observed a high correlation in protein half-lives between prototroph and auxotroph strains. Overall, our results demonstrate the feasibility of using prototrophs for proteomic turnover studies and provide a reliable data set of protein half-lives in exponentially growing yeast.

  8. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    NASA Astrophysics Data System (ADS)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  9. Shock wave induced sonoporation and gene transfer

    NASA Astrophysics Data System (ADS)

    Miller, Douglas L.

    2003-10-01

    During shockwave (SW) treatment, cavitation activity can be applied for cell killing. A bonus is that some surviving cells appear to be briefly permeabilized, or sonoporated, allowing them to take up large molecules including DNA. In vitro research has indicated that as the number of SW increased, survival declined exponentially but the number of sonoporated cells increased to better than 50% of survivors for 1000 SW. In vivo tests have demonstrated SW-induced tumor ablation could indeed be accompanied by the transfection of marker plasmids into mouse B16 melanoma tumors in vivo. With intratumor injection of plasmid DNA and air bubbles, significant results were obtained for only 400 SW. In a trial of cancer therapy, the effects of 500 SW combined with interleukin-12 immuno-gene therapy was observed on the progression of two mouse tumors, B16 melanoma and RENCA renal carcinoma. The combination of SW and IL-12 plasmid injection provided a statistically significant inhibition of tumor growth relative to SW alone for both tumor models, demonstrating feasibility for this treatment method. In the future, the development of intravenous gene delivery and improved transfection, together with image-guided ultrasound treatment, should lead to the clinical application of ultrasound enhanced gene therapy. [Work supported by NIH Grant No. EB002782.

  10. Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles.

    PubMed

    Mendez, Uziel; Zhou, Hong; Shikanov, Ariella

    2018-01-01

    The functional unit within the ovary is the ovarian follicle, which is also a morphological unit composed of three basic cell types: the oocyte, granulosa, and theca cells. Similar to human ovarian follicles, mouse follicles can be isolated from their ovarian environment and cultured in vitro to study folliculogenesis, or follicle development for days or weeks. Over the course of the last decade, follicle culture in a three-dimensional (3D) environment exponentially improved the outcomes of in vitro folliculogenesis. Follicle culture in 3D environments preserves follicle architecture and promotes the cross talk between cells in the follicle. Hydrogels, such as polyethylene glycol (PEG), have been used for various physiological systems for regenerative purposes because they provide a 3D environment similar to soft tissues, allow diffusion of nutrients, and can be readily modified to present biological signals, including cell adhesion ligands and proteolytic degradation facilitated by enzymes secreted by the encapsulated cells. This chapter outlines the application of PEG hydrogels to the follicle culture, including the procedures to isolate, encapsulate, and culture mouse ovarian follicles. The tunable properties of PEG hydrogels support co-encapsulation of ovarian follicles with somatic cells, which further promote follicle survival and growth in vitro through paracrine and juxtacrine interactions.

  11. Mangifera indica L. extract (Vimang) and mangiferin modulate mouse humoral immune responses.

    PubMed

    García, D; Leiro, J; Delgado, R; Sanmartín, M L; Ubeira, F M

    2003-12-01

    The present study investigated the effects of orally administered Vimang (an aqueous extract of Mangifera indica) and mangiferin (the major polyphenol present in Vimang) on mouse antibody responses induced by inoculation with spores of microsporidian parasites. Inoculation induced specific antibody production with an exponential timecourse, peaking after about one month. Vimang significantly inhibited this antibody production from about three weeks post-inoculation, and most markedly by four weeks post-inoculation; by contrast, mangiferin had no significant effect. Determination of Ig isotypes showed that the IgM to IgG switch began about four weeks post-inoculation, with IgG2a predominating. Vimang significantly inhibited IgG production, but had no effect on IgM. Mangiferin did no affect either IgM or IgG2a, but significantly enhanced production of IgG1 and IgG2b. Neither Vimang nor mangiferin enhanced specific antibody secretion by splenic plasma cells from mice inoculated with microsporidian spores, whether administered in vivo before serum extraction or in vitro to the culture medium. Inoculation with spores induced splenomegaly, which was significantly reduced by Vimang and significantly enhanced by mangiferin. These results suggest that components of Mangifera indica extracts may be of potential value for modulating the humoral response in different immunopathological disorders. Copyright 2003 John Wiley & Sons, Ltd.

  12. A Computer Program for Practical Semivariogram Modeling and Ordinary Kriging: A Case Study of Porosity Distribution in an Oil Field

    NASA Astrophysics Data System (ADS)

    Mert, Bayram Ali; Dag, Ahmet

    2017-12-01

    In this study, firstly, a practical and educational geostatistical program (JeoStat) was developed, and then example analysis of porosity parameter distribution, using oilfield data, was presented. With this program, two or three-dimensional variogram analysis can be performed by using normal, log-normal or indicator transformed data. In these analyses, JeoStat offers seven commonly used theoretical variogram models (Spherical, Gaussian, Exponential, Linear, Generalized Linear, Hole Effect and Paddington Mix) to the users. These theoretical models can be easily and quickly fitted to experimental models using a mouse. JeoStat uses ordinary kriging interpolation technique for computation of point or block estimate, and also uses cross-validation test techniques for validation of the fitted theoretical model. All the results obtained by the analysis as well as all the graphics such as histogram, variogram and kriging estimation maps can be saved to the hard drive, including digitised graphics and maps. As such, the numerical values of any point in the map can be monitored using a mouse and text boxes. This program is available to students, researchers, consultants and corporations of any size free of charge. The JeoStat software package and source codes available at: http://www.jeostat.com/JeoStat_2017.0.rar.

  13. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis

    PubMed Central

    Peters, Brian M.; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M.; Rogers, P. David

    2017-01-01

    ABSTRACT We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro, it does not seem to affect azole susceptibility in vivo. PMID:28348159

  14. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    PubMed

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  15. Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.

    PubMed

    Pedotti, Rosetta; Musio, Silvia; Scabeni, Stefano; Farina, Cinthia; Poliani, Pietro Luigi; Colombo, Emanuela; Costanza, Massimo; Berzi, Angela; Castellucci, Fabrizio; Ciusani, Emilio; Confalonieri, Paolo; Hemmer, Bernhard; Mantegazza, Renato; Antozzi, Carlo

    2013-09-15

    The pathogenic role of antibodies in multiple sclerosis (MS) is still controversial. We transferred to mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, IgG antibodies purified from a MS patient presenting a dramatic clinical improvement during relapse after selective IgG removal with immunoadsorption. Passive transfer of patient's IgG exacerbated motor paralysis and increased mouse central nervous system (CNS) inflammation and demyelination. Binding of patient's IgG was demonstrated in mouse CNS, with a diffuse staining of white matter oligodendrocytes. These data support a growing body of evidence that antibodies can play an important role in the pathobiology of MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Evo-SETI SCALE to measure Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2016-04-01

    Darwinian Evolution over the last 3.5 billion years was an increase in the number of living species from 1 (RNA?) to the current 50 million. This increasing trend in time looks like being exponential, but one may not assume an exactly exponential curve since many species went extinct in the past, even in mass extinctions. Thus, the simple exponential curve must be replaced by a stochastic process having an exponential mean value. Borrowing from financial mathematics (;Black-Scholes models;), this ;exponential; stochastic process is called Geometric Brownian Motion (GBM), and its probability density function (pdf) is a lognormal (not a Gaussian) (Proof: see ref. Maccone [3], Chapter 30, and ref. Maccone [4]). Lognormal also is the pdf of the statistical number of communicating ExtraTerrestrial (ET) civilizations in the Galaxy at a certain fixed time, like a snapshot: this result was found in 2008 by this author as his solution to the Statistical Drake Equation of SETI (Proof: see ref. Maccone [1]). Thus, the GBM of Darwinian Evolution may also be regarded as the extension in time of the Statistical Drake equation (Proof: see ref. Maccone [4]). But the key step ahead made by this author in his Evo-SETI (Evolution and SETI) mathematical model was to realize that LIFE also is just a b-lognormal in time: every living organism (a cell, a human, a civilization, even an ET civilization) is born at a certain time b (;birth;), grows up to a peak p (with an ascending inflexion point in between, a for adolescence), then declines from p to s (senility, i.e. descending inflexion point) and finally declines linearly and dies at a final instant d (death). In other words, the infinite tail of the b-lognormal was cut away and replaced by just a straight line between s and d, leading to simple mathematical formulae (;History Formulae;) allowing one to find this ;finite b-lognormal; when the three instants b, s, and d are assigned. Next the crucial Peak-Locus Theorem comes. It means that the GBM exponential may be regarded as the geometric locus of all the peaks of a one-parameter (i.e. the peak time p) family of b-lognormals. Since b-lognormals are pdf-s, the area under each of them always equals 1 (normalization condition) and so, going from left to right on the time axis, the b-lognormals become more and more ;peaky;, and so they last less and less in time. This is precisely what happened in human history: civilizations that lasted millennia (like Ancient Greece and Rome) lasted just centuries (like the Italian Renaissance and Portuguese, Spanish, French, British and USA Empires) but they were more and more advanced in the ;level of civilization;. This ;level of civilization; is what physicists call ENTROPY. Also, in refs. Maccone [3] and [4], this author proved that, for all GBMs, the (Shannon) Entropy of the b-lognormals in his Peak-Locus Theorem grows LINEARLY in time. The Molecular Clock, well known to geneticists since 50 years, shows that the DNA base-substitutions occur LINEARLY in time since they are neutral with respect to Darwinian selection. In simple words: DNA evolved by obeying the laws of quantum physics only (microscopic laws) and not by obeying assumed ;Darwinian selection laws; (macroscopic laws). This is Kimura's neutral theory of molecular evolution. The conclusion is that the Molecular Clock and the b-lognormal Entropy are the same thing. At last, we reach the new, original result justifying the publication of this paper. On exoplanets, molecular evolution is proceeding at about the same rate as it did proceed on Earth: rather independently of the physical conditions of the exoplanet, if the DNA had the possibility to evolve in water initially. Thus, Evo-Entropy, i.e. the (Shannon) Entropy of the generic b-lognormal of the Peak-Locus Theorem, provides the Evo-SETI SCALE to measure the evolution of life on exoplanets.

  17. Kinetics of chromatid break repair in G2-human fibroblasts exposed to low- and high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; George, K.; Furusawa, Y.; Gotoh, E.; Takai, N.; Wu, H.; Cucinotta, F. A.

    2001-01-01

    The purpose of this study is to determine the kinetics of chromatid break rejoining following exposure to radiations of different quality. Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290 MeV/u), silicon (490 MeV/u) and iron (200 MeV/u, 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Prematurely condensed chromosomes were collected after several post-irradiation incubation times, ranging from 5 to 600 minutes, and the number of chromatid breaks and exchanges in G2 cells were scored. The relative biological effectiveness (RBE) for initial chromatid breaks per unit dose showed LET dependency having a peak at 55 keV/micrometers silicon (2.4) or 80 keV/micrometers carbon particles (2.4) and then decreased with increasing LET. The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components. Chromatid breaks decreased rapidly after exposure, and then continued to decrease at a slower rate. The rejoining kinetics was similar for exposure to each type of radiation, although the rate of unrejoined breaks was higher for high-LET radiation. Chromatid exchanges were also formed quickly.

  18. Braid Entropy of Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-12-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.

  19. Control of three-dimensional waves on thin liquid films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios

    2017-11-01

    We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. We explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. We also may consider the influence of transverse modes on overlying film flows, these modes are damped out if uncontrolled. We also consider the more physical concept of point actuated controls which are modelled using Dirac delta functions. We first study the case of proportional control, where the actuation at a point depends on the local interface height alone. Here, we study the influence of control strength and number/location of actuators on the possible stabilization of the zero solution. We also consider the full feedback problem, which assumes that we can observe the full interface and allow communication between actuators. Using these controls we can obtain exponential stability where proportional controls fail, and stabilize non-trivial solutions.

  20. Exponential growth and selection in self-replicating materials from DNA origami rafts

    NASA Astrophysics Data System (ADS)

    He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.

    2017-10-01

    Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.

  1. Hydrostatic equilibrium of stars without electroneutrality constraint

    NASA Astrophysics Data System (ADS)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Yudin, A. V.

    2018-04-01

    The general solution of hydrostatic equilibrium equations for a two-component fluid of ions and electrons without a local electroneutrality constraint is found in the framework of Newtonian gravity theory. In agreement with the Poincaré theorem on analyticity and in the context of Dyson's argument, the general solution is demonstrated to possess a fixed (essential) singularity in the gravitational constant G at G =0 . The regular component of the general solution can be determined by perturbation theory in G starting from a locally neutral solution. The nonperturbative component obtained using the method of Wentzel, Kramers and Brillouin is exponentially small in the inner layers of the star and grows rapidly in the outward direction. Near the surface of the star, both components are comparable in magnitude, and their nonlinear interplay determines the properties of an electro- or ionosphere. The stellar charge varies within the limits of -0.1 to 150 C per solar mass. The properties of electro- and ionospheres are exponentially sensitive to variations of the fluid densities in the central regions of the star. The general solutions of two exactly solvable stellar models without a local electroneutrality constraint are also presented.

  2. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  3. Super-resolution binding activated localization microscopy through reversible change of DNA conformation.

    PubMed

    Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph

    2018-01-01

    Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.

  4. Protein sequence comparison based on K-string dictionary.

    PubMed

    Yu, Chenglong; He, Rong L; Yau, Stephen S-T

    2013-10-25

    The current K-string-based protein sequence comparisons require large amounts of computer memory because the dimension of the protein vector representation grows exponentially with K. In this paper, we propose a novel concept, the "K-string dictionary", to solve this high-dimensional problem. It allows us to use a much lower dimensional K-string-based frequency or probability vector to represent a protein, and thus significantly reduce the computer memory requirements for their implementation. Furthermore, based on this new concept, we use Singular Value Decomposition to analyze real protein datasets, and the improved protein vector representation allows us to obtain accurate gene trees. © 2013.

  5. Association between gravitational force and tissue metabolism in periparturient rats

    NASA Technical Reports Server (NTRS)

    Zakrzewska, E. I.; Maple, R.; Lintault, L.; Wade, C.; Baer, L.; Ronca, A.; Plaut, K.

    2004-01-01

    Recently, interest in mammalian reproduction and offspring survival in altered gravity has been growing. Because successful lactation is critical for mammalian neonate survival, we have been studying the effect of gravity metabolism. We have shown an exponential relationship between glucose metabolic rate in mammary tissue of periparturient rats and an increase in gravity load. In this study we showed that changes in mammary metabolic rate due to gravity force were accompanied by a decrease in glucose metabolism in adipose tissue and by a reduced size of adipocytes. We assume that these changes are likely due to changes in prolactin or leptin levels related to altered gravity load.

  6. Autism Disorder (AD): An Updated Review for Paediatric Dentists.

    PubMed

    J, Udhya; M M, Varadharaja; J, Parthiban; Srinivasan, Ila

    2014-02-01

    Over the past two decades, there has been an explosion of interest in Autism Disorder (AD). Knowledge and awareness on the condition has grown exponentially at all levels among the general public, parents, health professionals, the research community and more recently, at parliamentary level. The world has begun to recognize the scope of this problem and act internationally and locally to improve the lives of the growing number of individuals and families affected by this devastating disorder. This article reviews the dental literature since 1969 and it summarizes characteristics of patients with AD, oral health status and dental management of patients with AD.

  7. Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field.

    PubMed

    Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti; Sonin, Edouard

    2018-01-12

    We have investigated tunneling current through a suspended graphene Corbino disk in high magnetic fields at the Dirac point, i.e. at filling factor ν = 0. At the onset of the dielectric breakdown the current through the disk grows exponentially before ohmic behaviour, but in a manner distinct from thermal activation. We find that Zener tunneling between Landau sublevels dominates, facilitated by tilting of the source-drain bias potential. According to our analytic modelling, the Zener tunneling is strongly affected by the gyrotropic force (Lorentz force) due to the high magnetic field.

  8. Coherent virtual absorption for discretized light

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2018-05-01

    Coherent virtual absorption (CVA) is a recently-introduced phenomenon for which exponentially growing waves incident onto a conservative optical medium are neither reflected nor transmitted, at least transiently. CVA has been associated to complex zeros of the scattering matrix and can be regarded as the time reversal of the decay process of a quasi-mode sustained by the optical medium. Here we consider CVA for discretized light transport in coupled resonator optical waveguides or waveguide arrays and show that a distinct kind of CVA, which is not related to complex zero excitation of quasi-modes, can be observed. This result suggests that scattering matrix analysis can not fully capture CVA phenomena.

  9. Autism Disorder (AD): An Updated Review for Paediatric Dentists

    PubMed Central

    J., Udhya; M.M, Varadharaja; J., Parthiban; Srinivasan, Ila

    2014-01-01

    Over the past two decades, there has been an explosion of interest in Autism Disorder (AD). Knowledge and awareness on the condition has grown exponentially at all levels among the general public, parents, health professionals, the research community and more recently, at parliamentary level. The world has begun to recognize the scope of this problem and act internationally and locally to improve the lives of the growing number of individuals and families affected by this devastating disorder. This article reviews the dental literature since 1969 and it summarizes characteristics of patients with AD, oral health status and dental management of patients with AD. PMID:24701555

  10. Storage media for computers in radiology

    PubMed Central

    Dandu, Ravi Varma

    2008-01-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182

  11. PATTERNS IN BIOMEDICAL DATA-HOW DO WE FIND THEM?

    PubMed

    Basile, Anna O; Verma, Anurag; Byrska-Bishop, Marta; Pendergrass, Sarah A; Darabos, Christian; Lester Kirchner, H

    2017-01-01

    Given the exponential growth of biomedical data, researchers are faced with numerous challenges in extracting and interpreting information from these large, high-dimensional, incomplete, and often noisy data. To facilitate addressing this growing concern, the "Patterns in Biomedical Data-How do we find them?" session of the 2017 Pacific Symposium on Biocomputing (PSB) is devoted to exploring pattern recognition using data-driven approaches for biomedical and precision medicine applications. The papers selected for this session focus on novel machine learning techniques as well as applications of established methods to heterogeneous data. We also feature manuscripts aimed at addressing the current challenges associated with the analysis of biomedical data.

  12. Selective Population of Edge States in a 2D Topological Band System.

    PubMed

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2015-12-11

    We consider a system of interacting spin-one atoms in a hexagonal lattice under the presence of a synthetic gauge field. Quenching the quadratic Zeeman field is shown to lead to a dynamical instability of the edge modes. This, in turn, leads to a spin current along the boundary of the system which grows exponentially fast in time following the quench. Tuning the magnitude of the quench can be used to selectively populate edge modes of different momenta. Implications of the intrinsic symmetries of the Hamiltonian on the dynamics are discussed. The results hold for atoms with both antiferromagnetic and ferromagnetic interactions.

  13. Super-resolution binding activated localization microscopy through reversible change of DNA conformation

    PubMed Central

    Knecht, Hans; Dobrucki, Jurek; Mai, Sabine

    2018-01-01

    ABSTRACT Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine. PMID:29297245

  14. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  15. Transcriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer

    PubMed Central

    Pittet, Vanessa; Phister, Trevor G.; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P . claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria. PMID:24040005

  16. Cell division in Escherichia coli cultures monitored at single cell resolution

    PubMed Central

    Roostalu, Johanna; Jõers, Arvi; Luidalepp, Hannes; Kaldalu, Niilo; Tenson, Tanel

    2008-01-01

    Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli. PMID:18430255

  17. Deviation of Zipf's and Heaps' Laws in Human Languages with Limited Dictionary Sizes

    PubMed Central

    Lü, Linyuan; Zhang, Zi-Ke; Zhou, Tao

    2013-01-01

    Zipf's law on word frequency and Heaps' law on the growth of distinct words are observed in Indo-European language family, but it does not hold for languages like Chinese, Japanese and Korean. These languages consist of characters, and are of very limited dictionary sizes. Extensive experiments show that: (i) The character frequency distribution follows a power law with exponent close to one, at which the corresponding Zipf's exponent diverges. Indeed, the character frequency decays exponentially in the Zipf's plot. (ii) The number of distinct characters grows with the text length in three stages: It grows linearly in the beginning, then turns to a logarithmical form, and eventually saturates. A theoretical model for writing process is proposed, which embodies the rich-get-richer mechanism and the effects of limited dictionary size. Experiments, simulations and analytical solutions agree well with each other. This work refines the understanding about Zipf's and Heaps' laws in human language systems. PMID:23378896

  18. Guinea pig for meat production: A systematic review of factors affecting the production, carcass and meat quality.

    PubMed

    Sánchez-Macías, Davinia; Barba-Maggi, Lida; Morales-delaNuez, Antonio; Palmay-Paredes, Julio

    2018-09-01

    In developing countries, interest in guinea pig farming is growing exponentially because it provides a regular source of high quality animal protein for domestic consumption. Guinea pigs (Cavia porcellus) are prolific animals, grow and are capable of reproduction on a flexible diet, and are adaptable to a wide range of climates. This article mainly reviews findings on guinea pig meat production, including factors affecting raising guinea pigs, carcass and meat quality. We also present some studies that describe biological and pathologic effects on carcass component composition. During the last decades no standard procedure has been established for guinea pig carcass evaluation, which makes very difficult any comparison of results with other studies around the world. Herein we highlight a variety of factors that significantly affect carcass and meat quality. Some of these factors are production systems, environmental and genetic factors, management systems, the diet and health status, age, sex and reproductive management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  20. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases.

    PubMed

    Crawford, Melissa; Leclerc, Valerie; Dagnino, Lina

    2017-08-15

    Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSA mT/mG and Tyr::CreER T2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM) substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage. © 2017. Published by The Company of Biologists Ltd.

  1. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases

    PubMed Central

    Crawford, Melissa; Leclerc, Valerie

    2017-01-01

    ABSTRACT Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSAmT/mG and Tyr::CreERT2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM) substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage. PMID:28642245

  2. Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research.

    PubMed

    Zhou, Ting; Kinney, Marsha C; Scott, Linda M; Zinkel, Sandra S; Rebel, Vivienne I

    2015-08-27

    Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease. © 2015 by The American Society of Hematology.

  3. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production.

    PubMed

    Willrodt, Christian; Hoschek, Anna; Bühler, Bruno; Schmid, Andreas; Julsing, Mattijs K

    2016-06-01

    The microbial production of isoprenoids has recently developed into a prime example for successful bottom-up synthetic biology or top-down systems biology strategies. Respective fermentation processes typically rely on growing recombinant microorganisms. However, the fermentative production of isoprenoids has to compete with cellular maintenance and growth for carbon and energy. Non-growing but metabolically active E. coli cells were evaluated in this study as alternative biocatalyst configurations to reduce energy and carbon loss towards biomass formation. The use of non-growing cells in an optimized fermentation medium resulted in more than fivefold increased specific limonene yields on cell dry weight and glucose, as compared to the traditional growing-cell-approach. Initially, the stability of the resting-cell activity was limited. This instability was overcome via the optimization of the minimal fermentation medium enabling high and stable limonene production rates for up to 8 h and a high specific yield of ≥50 mg limonene per gram cell dry weight. Omitting MgSO4 from the fermentation medium was very promising to prohibit growth and allow high productivities. Applying a MgSO4 -limitation also improved limonene formation by growing cells during non-exponential growth involving a reduced biomass yield on glucose and a fourfold increase in specific limonene yields on biomass as compared to non-limited cultures. The control of microbial growth via the medium composition was identified as a key but yet underrated strategy for efficient isoprenoid production. Biotechnol. Bioeng. 2016;113: 1305-1314. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. What Goes Around Can Come Around: An Unexpected Deleterious Effect of Using Mouse Running Wheels for Environmental Enrichment

    PubMed Central

    Leduc, Renee Y M; Rauw, Gail; Baker, Glen B; McDermid, Heather E

    2017-01-01

    Environmental enrichment items such as running wheels can promote the wellbeing of laboratory mice. Growing evidence suggests that wheel running simulates exercise effects in many mouse models of human conditions, but this activity also might change other aspects of mouse behavior. In this case study, we show that the presence of running wheels leads to pronounced and permanent circling behavior with route-tracing in a proportion of the male mice of a genetically distinct cohort. The genetic background of this cohort includes a mutation in Arhgap19, but genetic crosses showed that an unknown second-site mutation likely caused the induced circling behavior. Behavioral tests for inner-ear function indicated a normal sense of gravity in the circling mice. However, the levels of dopamine, serotonin, and some dopamine metabolites were lower in the brains of circling male mice than in mice of the same genetic background that were weaned without wheels. Circling was seen in both singly and socially housed male mice. The additional stress of fighting may have exacerbated the predisposition to circling in the socially housed animals. Singly and socially housed male mice without wheels did not circle. Our current findings highlight the importance and possibly confounding nature of the environmental and genetic background in mouse behavioral studies, given that the circling behavior and alterations in dopamine and serotonin levels in this mouse cohort occurred only when the male mice were housed with running wheels. PMID:28315651

  5. The interaction of hydroxyurea and ionizing radiation in human cervical carcinoma cells.

    PubMed

    Kuo, M L; Kunugi, K A; Lindstrom, M J; Kinsella, T J

    1997-01-01

    The results from prior in vitro and in vivo studies and recent phase 3 clinical trials suggest a significant potential role for hydroxyurea (HU) as a clinical radiosensitizer for cervix cancer. However, a detailed study of possible cellular mechanisms of radiosensitization in human cervix cancer cells as a consequence of dose and timing of HU and ionizing radiation (IR) has not been performed. This in vitro study analyses the interactions of HU and IR in a human cervical carcinoma cell line, Caski. Exponentially growing Caski cells were continuously exposed to clinically achievable but minimally cytotoxic concentrations of HU (0.3-3.0 mM) for various time intervals (6, 12, 18, 24, and 30 hours) up to one population doubling time either prior to or immediately following IR (2-8 Gy). The radiation survival data were analyzed using our modification of the linear-quadratic model to test for an interaction (greater than additive). The effects of HU alone, IR alone, and the combination on cell cycle progression and on apoptotic cell death in exponentially growing Caski cells were measured. We report a significant HU-IR interaction (radiosensitization) based on the sequence of HU exposure (post- > pre-IR) and with increasing concentrations of HU (0.3-3.0 mM), but no effect on radiosensitization with the duration of exposure to HU for up to one cell population doubling (6-30 hours). HU concentration has a significant effect on both alpha and beta linear-quadratic values in the post-IR sequences. Exposures of exponentially growing Caski cells to 1 mM and 3 mM HU alone result in a complete block in early S phase throughout the 30-hour exposure, while 0.3 mM HU causes a transient early S-phase block over the initial 12 to 18 hours of exposure. HU alone has no effect on cell cycle progression in G1 or G2/M populations but results in a large apoptotic population (31% following 1 mM HU x 30 hours), which appears to be the principal mechanism of drug cytotoxicity in these cells. IR alone (4 or 6 Gy) results in a significant G2 delay for 6 to 18 hours following IR but no G1 delay and a small apoptotic population at 30 hours post-IR (5.4% vs 2.1% in non-IR controls). The use of HU (0.3 or 1.0 mM) following IR (4 or 6 Gy) results in a significantly larger G2 delay compared with IR alone, but with only an additive effect on the apoptotic population. These in vitro data demonstrate that radiosensitization of Caski cells is more significant with post-IR exposures to clinically achievable concentrations of HU. This HU-IR interaction is associated with an increased G2 delay, suggesting a reduction in IR damage repair. However, this interaction appears to be independent of the cytotoxicity (principally by apoptosis) from HU alone.

  6. Assisted reproduction treatment and epigenetic inheritance

    PubMed Central

    van Montfoort, A.P.A.; Hanssen, L.L.P.; de Sutter, P.; Viville, S.; Geraedts, J.P.M.; de Boer, P.

    2012-01-01

    BACKGROUND The subject of epigenetic risk of assisted reproduction treatment (ART), initiated by reports on an increase of children with the Beckwith–Wiedemann imprinting disorder, is very topical. Hence, there is a growing literature, including mouse studies. METHODS In order to gain information on transgenerational epigenetic inheritance and epigenetic effects induced by ART, literature databases were searched for papers on this topic using relevant keywords. RESULTS At the level of genomic imprinting involving CpG methylation, ART-induced epigenetic defects are convincingly observed in mice, especially for placenta, and seem more frequent than in humans. Data generally provide a warning as to the use of ovulation induction and in vitro culture. In human sperm from compromised spermatogenesis, sequence-specific DNA hypomethylation is observed repeatedly. Transmittance of sperm and oocyte DNA methylation defects is possible but, as deduced from the limited data available, largely prevented by selection of gametes for ART and/or non-viability of the resulting embryos. Some evidence indicates that subfertility itself is a risk factor for imprinting diseases. As in mouse, physiological effects from ART are observed in humans. In the human, indications for a broader target for changes in CpG methylation than imprinted DNA sequences alone have been found. In the mouse, a broader range of CpG sequences has not yet been studied. Also, a multigeneration study of systematic ART on epigenetic parameters is lacking. CONCLUSIONS The field of epigenetic inheritance within the lifespan of an individual and between generations (via mitosis and meiosis, respectively) is growing, driven by the expansion of chromatin research. ART can induce epigenetic variation that might be transmitted to the next generation. PMID:22267841

  7. Comparative analysis of Homo sapiens and Mus musculus cyclin-dependent kinase (CDK) inhibitor genes p16 (MTS1) and p15 (MTS2).

    PubMed

    Jiang, P; Stone, S; Wagner, R; Wang, S; Dayananth, P; Kozak, C A; Wold, B; Kamb, A

    1995-12-01

    Cyclin-dependent kinase inhibitors are a growing family of molecules that regulate important transitions in the cell cycle. At least one of these molecules, p16, has been implicated in human tumorigenesis while its close homolog, p15, is induced by cell contact and transforming growth factor-beta (TGF-beta). To investigate the evolutionary and functional features of p15 and p16, we have isolated mouse (Mus musculus) homologs of each gene. Comparative analysis of these sequences provides evidence that the genes have similar functions in mouse and human. In addition, the comparison suggests that a gene conversion event is part of the evolution of the human p15 and p16 genes.

  8. Exponential Sum-Fitting of Dwell-Time Distributions without Specifying Starting Parameters

    PubMed Central

    Landowne, David; Yuan, Bin; Magleby, Karl L.

    2013-01-01

    Fitting dwell-time distributions with sums of exponentials is widely used to characterize histograms of open- and closed-interval durations recorded from single ion channels, as well as for other physical phenomena. However, it can be difficult to identify the contributing exponential components. Here we extend previous methods of exponential sum-fitting to present a maximum-likelihood approach that consistently detects all significant exponentials without the need for user-specified starting parameters. Instead of searching for exponentials, the fitting starts with a very large number of initial exponentials with logarithmically spaced time constants, so that none are missed. Maximum-likelihood fitting then determines the areas of all the initial exponentials keeping the time constants fixed. In an iterative manner, with refitting after each step, the analysis then removes exponentials with negligible area and combines closely spaced adjacent exponentials, until only those exponentials that make significant contributions to the dwell-time distribution remain. There is no limit on the number of significant exponentials and no starting parameters need be specified. We demonstrate fully automated detection for both experimental and simulated data, as well as for classical exponential-sum-fitting problems. PMID:23746510

  9. Tularemia: Current Diagnosis and Treatment Options

    DTIC Science & Technology

    2008-04-01

    for growing F. tularensis, which include cysteine blood agar, Thayer–Martin agar and cysteine heart agar with 9% heated sheep red blood cells (CHAB...samples contain inhibitors to PCR reactions, such the heme component of red blood cells [36]. These inhibitors cause the limit of detection of the organism...signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells . Microb. Pathog. 38, 239–247 (2005). 16 Hrstka R

  10. Photons for Therapy: Targeted Photodynamic Therapy for Infected and Contaminated Wounds

    DTIC Science & Technology

    2004-09-01

    caused by Staphylococcus aureus that had been allowed to grow in abscesses below the skin. Conjugate injected into the infected area together with...16] these authors showed that several strains responsible for periodontal disease were efficiently inactivated by visible light irradiation in the...counting. Rocchetta et al studied the growth of bioluminescent E. coli in the neutropenic mouse-thigh abscess model of infection [25]. They found that

  11. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.

    PubMed

    Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya

    2015-10-01

    The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.

  12. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor

    PubMed Central

    Seidel, Kerstin; Ahn, Christina P.; Lyons, David; Nee, Alexander; Ting, Kevin; Brownell, Isaac; Cao, Tim; Carano, Richard A. D.; Curran, Tom; Schober, Markus; Fuchs, Elaine; Joyner, Alexandra; Martin, Gail R.; de Sauvage, Frederic J.; Klein, Ophir D.

    2010-01-01

    In many organ systems such as the skin, gastrointestinal tract and hematopoietic system, homeostasis is dependent on the continuous generation of differentiated progeny from stem cells. The rodent incisor, unlike human teeth, grows throughout the life of the animal and provides a prime example of an organ that rapidly deteriorates if newly differentiated cells cease to form from adult stem cells. Hedgehog (Hh) signaling has been proposed to regulate self-renewal, survival, proliferation and/or differentiation of stem cells in several systems, but to date there is little evidence supporting a role for Hh signaling in adult stem cells. We used in vivo genetic lineage tracing to identify Hh-responsive stem cells in the mouse incisor and we show that sonic hedgehog (SHH), which is produced by the differentiating progeny of the stem cells, signals to several regions of the incisor. Using a hedgehog pathway inhibitor (HPI), we demonstrate that Hh signaling is not required for stem cell survival but is essential for the generation of ameloblasts, one of the major differentiated cell types in the tooth, from the stem cells. These results therefore reveal the existence of a positive-feedback loop in which differentiating progeny produce the signal that in turn allows them to be generated from stem cells. PMID:20978073

  13. Carbon isotopic patterns of amino acids associated with various microbial metabolic pathways and physiological conditions

    NASA Astrophysics Data System (ADS)

    Wang, P. L.; Hsiao, K. T.; Lin, L. H.

    2017-12-01

    Amino acids represent one of the most important categories of biomolecule. Their abundance and isotopic patterns have been broadly used to address issues related to biochemical processes and elemental cycling in natural environments. Previous studies have shown that various carbon assimilative pathways of microorganisms (e.g. autotrophy, heterotrophy and acetotrophy) could be distinguished by carbon isotopic patterns of amino acids. However, the taxonomic and catabolic coverage are limited in previous examination. This study aims to uncover the carbon isotopic patterns of amino acids for microorganisms remaining uncharacterized but bearing biogeochemical and ecological significance in anoxic environments. To fulfill the purpose, two anaerobic strains were isolated from riverine wetland and mud volcano in Taiwan. One strain is a sulfate reducing bacterium (related to Desulfovibrio marrakechensis), which is capable of utilizing either H2 or lactate, and the other is a methanogen (related to Methanolobus profundi), which grows solely with methyl-group compounds. Carbon isotope analyses of amino acids were performed on cells grown in exponential and stationary phase. The isotopic patterns were similar for all examined cultures, showing successive 13C depletion along synthetic pathways. No significant difference was observed for the methanogen and lactate-utilizing sulfate reducer harvested in exponential and stationary phases. In contrast, the H2-utilizing sulfate reducer harvested in stationary phase depleted and enriched 13C in aspartic acid and glycine, respectively when compared with that harvested in exponential phase. Such variations might infer the change of carbon flux during synthesis of these two amino acids in the reverse TCA cycle. In addition, the discriminant function analysis for all available data from culture studies further attests the capability of using carbon isotope patterns of amino acids in identifying microbial metabolisms.

  14. The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.

    2016-12-01

    Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.

  15. Comparison of bi-exponential and mono-exponential models of diffusion-weighted imaging for detecting active sacroiliitis in ankylosing spondylitis.

    PubMed

    Sun, Haitao; Liu, Kai; Liu, Hao; Ji, Zongfei; Yan, Yan; Jiang, Lindi; Zhou, Jianjun

    2018-04-01

    Background There has been a growing need for a sensitive and effective imaging method for the differentiation of the activity of ankylosing spondylitis (AS). Purpose To compare the performances of intravoxel incoherent motion (IVIM)-derived parameters and the apparent diffusion coefficient (ADC) for distinguishing AS-activity. Material and Methods One hundred patients with AS were divided into active (n = 51) and non-active groups (n = 49) and 21 healthy volunteers were included as control. The ADC, diffusion coefficient ( D), pseudodiffusion coefficient ( D*), and perfusion fraction ( f) were calculated for all groups. Kruskal-Wallis tests and receiver operator characteristic (ROC) curve analysis were performed for all parameters. Results There was good reproducibility of ADC /D and relatively poor reproducibility of D*/f. ADC, D, and f were significantly higher in the active group than in the non-active and control groups (all P < 0.0001, respectively). D* was slightly but significant lower in the active group than in the non-active and control group ( P = 0.0064, 0.0215). There was no significant difference in any parameter between the non-active group and the control group (all P > 0.050). In the ROC analysis, ADC had the largest AUC for distinguishing between the active group and the non-active group (0.988) and between the active and control groups (0.990). Multivariate logistic regression analysis models showed no diagnostic improvement. Conclusion ADC provided better diagnostic performance than IVIM-derived parameters in differentiating AS activity. Therefore, a straightforward and effective mono-exponential model of diffusion-weighted imaging may be sufficient for differentiating AS activity in the clinic.

  16. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    PubMed

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  17. Actin polymerization drives septation of Listeria monocytogenes namA hydrolase mutants, demonstrating host correction of a bacterial defect.

    PubMed

    Alonzo, Francis; McMullen, P David; Freitag, Nancy E

    2011-04-01

    The Gram-positive bacterial cell wall presents a structural barrier that requires modification for protein secretion and large-molecule transport as well as for bacterial growth and cell division. The Gram-positive bacterium Listeria monocytogenes adjusts cell wall architecture to promote its survival in diverse environments that include soil and the cytosol of mammalian cells. Here we provide evidence for the enzymatic flexibility of the murein hydrolase NamA and demonstrate that bacterial septation defects associated with a loss of NamA are functionally complemented by physical forces associated with actin polymerization within the host cell cytosol. L. monocytogenes ΔnamA mutants formed long bacterial chains during exponential growth in broth culture; however, normal septation could be restored if mutant cells were cocultured with wild-type L. monocytogenes bacteria or by the addition of exogenous NamA. Surprisingly, ΔnamA mutants were not significantly attenuated for virulence in mice despite the pronounced exponential growth septation defect. The physical force of L. monocytogenes-mediated actin polymerization within the cytosol was sufficient to sever ΔnamA mutant intracellular chains and thereby enable the process of bacterial cell-to-cell spread so critical for L. monocytogenes virulence. The inhibition of actin polymerization by cytochalasin D resulted in extended intracellular bacterial chains for which septation was restored following drug removal. Thus, despite the requirement for NamA for the normal septation of exponentially growing L. monocytogenes cells, the hydrolase is essentially dispensable once L. monocytogenes gains access to the host cell cytosol. This phenomenon represents a notable example of eukaryotic host cell complementation of a bacterial defect.

  18. Estimating Distances from Parallaxes. II. Performance of Bayesian Distance Estimators on a Gaia-like Catalogue

    NASA Astrophysics Data System (ADS)

    Astraatmadja, Tri L.; Bailer-Jones, Coryn A. L.

    2016-12-01

    Estimating a distance by inverting a parallax is only valid in the absence of noise. As most stars in the Gaia catalog will have non-negligible fractional parallax errors, we must treat distance estimation as a constrained inference problem. Here we investigate the performance of various priors for estimating distances, using a simulated Gaia catalog of one billion stars. We use three minimalist, isotropic priors, as well an anisotropic prior derived from the observability of stars in a Milky Way model. The two priors that assume a uniform distribution of stars—either in distance or in space density—give poor results: The root mean square fractional distance error, {f}{rms}, grows far in excess of 100% once the fractional parallax error, {f}{true}, is larger than 0.1. A prior assuming an exponentially decreasing space density with increasing distance performs well once its single parameter—the scale length— has been set to an appropriate value: {f}{rms} is roughly equal to {f}{true} for {f}{true}\\lt 0.4, yet does not increase further as {f}{true} increases up to to 1.0. The Milky Way prior performs well except toward the Galactic center, due to a mismatch with the (simulated) data. Such mismatches will be inevitable (and remain unknown) in real applications, and can produce large errors. We therefore suggest adopting the simpler exponentially decreasing space density prior, which is also less time-consuming to compute. Including Gaia photometry improves the distance estimation significantly for both the Milky Way and exponentially decreasing space density prior, yet doing so requires additional assumptions about the physical nature of stars.

  19. Comparing Exponential and Exponentiated Models of Drug Demand in Cocaine Users

    PubMed Central

    Strickland, Justin C.; Lile, Joshua A.; Rush, Craig R.; Stoops, William W.

    2016-01-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model, but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use), whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values impact demand parameters and their association with drug-use outcomes when using the exponential model, but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency, in addition to demonstrating construct validity and generalizability. PMID:27929347

  20. Comparing exponential and exponentiated models of drug demand in cocaine users.

    PubMed

    Strickland, Justin C; Lile, Joshua A; Rush, Craig R; Stoops, William W

    2016-12-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, or 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use) whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values affects demand parameters and their association with drug-use outcomes when using the exponential model but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency and demonstrating construct validity and generalizability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter.

    PubMed Central

    Clos, J; Buttgereit, D; Grummt, I

    1986-01-01

    A transcription factor that is specific for mouse rDNA has been partially purified from Ehrlich ascites cells. This factor [designated transcription initiation factor (TIF)-IB] is required for accurate in vitro synthesis of mouse rRNA in addition to RNA polymerase I and another regulatory factor, TIF-IA. TIF-IB activity is present in extracts both from growing and nongrowing cells in comparable amounts. Prebinding competition experiments with wild-type and mutant templates suggest that TIF-IB interacts with the core control element of the rDNA promoter, which is located immediately upstream of the initiation site. The specific binding of TIF-IB to the RNA polymerase I promoter is demonstrated by exonuclease III protection experiments. The 3' border of the sequences protected by TIF-IB is shown to be on the coding strand at position -21 and on the noncoding strand at position -7. The results suggest that direct binding of TIF-IB to sequences in the core promoter element is the mechanism by which this factor imparts promoter selectivity to RNA polymerase I. Images PMID:3456157

  2. Parabolic replicator dynamics and the principle of minimum Tsallis information gain

    PubMed Central

    2013-01-01

    Background Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth. Results We consider a model of a population that reproduces according to the parabolic growth law and show that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a constant total size and provide an “implicit” solution for this system. We show that in this case, the frequencies of the individuals in the population also minimize the Tsallis information gain at each moment of the ‘internal time” of the population. Conclusions The results of this analysis show that the general MaxEnt principle is the underlying law for the evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this “non-reductionist” nature of parabolic replicator systems might reflect the importance of group selection and competition between ensembles of cooperating replicators. Reviewers This article was reviewed by Viswanadham Sridhara (nominated by Claus Wilke), Puushottam Dixit (nominated by Sergei Maslov), and Nick Grishin. For the complete reviews, see the Reviewers’ Reports section. PMID:23937956

  3. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data.

    PubMed

    Trachet, Bram; Bols, Joris; De Santis, Gianluca; Vandenberghe, Stefaan; Loeys, Bart; Segers, Patrick

    2011-12-01

    Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murray's law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that - even if there is sometimes significant variation in the flow fractions going to a particular branch - the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murray's law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murray's law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.

  4. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    PubMed

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  5. Leo Szilard Lectureship Award Talk: From Reductionism to Complexity; A Theoretical Physicist's Journey into Biology and the Social Sciences

    NASA Astrophysics Data System (ADS)

    West, Geoffrey

    2013-04-01

    In this talk I review how a high energy physicist serendipitously migrated from quarks and gluons, dark matter and string theory to thinking about equally big topics like why we live for 100 years (and not a thousand or 2-3 like a mouse), how is this generated from molecular time scales, why do we sleep and where does 8 hours come from, and how is this related to the rate at which we evolve, can there be a quantitative, mathematisable science of cities and companies, and can our exponentially expanding socio-economic universe be sustained, etc, etc? I consider these as integral parts of physics, related to the interface between Reductionism and Complexity, Thermodynamics and Information Theory. The saga will be a personal one ranging from issues connected with the demise of the SSC and attacks on science to the future role of physics and transdisciplinary thinking.

  6. A "Brief History" of Developmental Biology in Israel.

    PubMed

    Sela-Donenfeld, Dalit; Frank, Dale

    2017-01-01

    While the history of developmental biology in Israel is relatively short, its impact is far-reaching, so we wanted to present a concise perspective on the Israeli developmental biology community, past-present-future. This community has undergone a wonderful, nearly exponential growth over the last three decades. How exactly did this happen? There are approximately fifty research groups that focus on developmental biology questions in Israel today that are members of the Israel Society of Developmental Biology (IsSDB; http://issdb.org/). The community has representative groups in a plethora of model systems, such as Nematostella, C. elegans, Drosophila, sea urchin, ascidians, zebrafish, Xenopus, chick and mouse, as well as plants, representing all the major universities and their branches, which include Bar-Ilan University, Ben-Gurion University of the Negev, The Hebrew University of Jerusalem, The University of Haifa, Technion - Israel Institute of Technology, Tel Aviv University and the Weizmann Institute of Science.

  7. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, P.; Rall, W.F.; Leibo, S.P.

    To avoid intracellular freezing and its usually lethal consequences, cells must lose their freezable water before reaching their ice-nucleation temperature. One major factor determining the rate of water loss is the temperature dependence of water permeability, L/sub p/ (hydraulic conductivity). Because of the paucity of water permeability measurements at subzero temperatures, that temperature dependence has usually been extrapolated from above-zero measurements. The extrapolation has often been based on an exponential dependence of L/sub p/ on temperature. This paper compares the kinetics of water loss based on that extrapolation with that based on an Arrhenius relation between L/sub p/ and temperature,more » and finds substantial differences below -20 to -25/sup 0/C. Since the ice-nucleation temperature of mouse ova in the cryoprotectants DMSO and glycerol is usually below -30/sup 0/C, the Arrhenius form of the water-loss equation was used to compute the extent of supercooling in ova cooled at rates between 1 and 8/sup 0/C/min and the consequent likelihood of intracellular freezing. The predicted likelihood agrees well with that previously observed. The water-loss equation was also used to compute the volumes of ova as a function of cooling rate and temperature. The computed cell volumes agree qualitatively with previously observed volumes, but differed quantitatively. 25 references, 5 figures, 3 tables.« less

  8. Rossby wave instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-08-01

    A brief review is given of the Rossby wave instability in astrophysical discs. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disc surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (\\propto \\exp \\,({ { i}}m\\phi ) , m = 1,2,…) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in proto-planetary discs. The Rossby vortices in the discs around stars and black holes may cause the observed quasi-periodic modulations of the disc's thermal emission.

  9. A high-energy-density, high-Mach number single jet experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J. F.; Dittrich, T. R.; Elliott, J. B.

    2011-08-15

    A high-energy-density, x-ray-driven, high-Mach number (M{>=} 17) single jet experiment shows constant propagation speeds of the jet and its bowshock into the late time regime. The jet assumes a characteristic mushroom shape with a stalk and a head. The width of the head and the bowshock also grow linearly in time. The width of the stalk decreases exponentially toward an asymptotic value. In late time images, the stalk kinks and develops a filamentary nature, which is similar to experiments with applied magnetic fields. Numerical simulations match the experiment reasonably well, but ''exterior'' details of the laser target must be includedmore » to obtain a match at late times.« less

  10. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  11. Rayleigh convective instability in a cloud medium

    NASA Astrophysics Data System (ADS)

    Shmerlin, B. Ya.; Shmerlin, M. B.

    2017-09-01

    The problem of convective instability of an atmospheric layer containing a horizontally finite region filled with a cloud medium is considered. Solutions exponentially growing with time, i.e., solitary cloud rolls or spatially localized systems of cloud rolls, have been constructed. In the case of axial symmetry, their analogs are convective vortices with both ascending and descending motions on the axis and cloud clusters with ring-shaped convective structures. Depending on the anisotropy of turbulent exchange, the scale of vortices changes from the tornado scale to the scale of tropical cyclones. The solutions with descending motions on the axis can correspond to the formation of a tornado funnel or a hurricane eye in tropical cyclones.

  12. Global dynamics of oscillator populations under common noise

    NASA Astrophysics Data System (ADS)

    Braun, W.; Pikovsky, A.; Matias, M. A.; Colet, P.

    2012-07-01

    Common noise acting on a population of identical oscillators can synchronize them. We develop a description of this process which is not limited to the states close to synchrony, but provides a global picture of the evolution of the ensembles. The theory is based on the Watanabe-Strogatz transformation, allowing us to obtain closed stochastic equations for the global variables. We show that at the initial stage, the order parameter grows linearly in time, while at the later stages the convergence to synchrony is exponentially fast. Furthermore, we extend the theory to nonidentical ensembles with the Lorentzian distribution of natural frequencies and determine the stationary values of the order parameter in dependence on driving noise and mismatch.

  13. Is there a real-estate bubble in the US?

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing; Sornette, Didier

    2006-02-01

    Using a methodology developed in previous papers, we analyze the quarterly average sale prices of new houses sold in the USA as a whole, in the Northeast, Midwest, South, and West of the USA, in each of the 50 states and the District of Columbia of the USA, to determine whether they have grown at a faster-than-exponential rate which we take as the diagnostic of a bubble. We find that 22 states (mostly Northeast and West) exhibit clear-cut signatures of a fast-growing bubble. From the analysis of the S&P 500 Home Index, we conclude that the turning point of the bubble will probably occur around mid-2006.

  14. Formation of microbeads during vapor explosions of Field's metal in water

    NASA Astrophysics Data System (ADS)

    Kouraytem, N.; Li, E. Q.; Thoroddsen, S. T.

    2016-06-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  15. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  16. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The two-loop symbol of all multi-Regge regions

    DOE PAGES

    Bargheer, Till; Papathanasiou, Georgios; Schomerus, Volker

    2016-05-02

    Here, we study the symbol of the two-loop n-gluon MHV amplitude for all Mandelstam regions in multi-Regge kinematics in N=4 super Yang-Mills theory. While the number of distinct Mandelstam regions grows exponentially with n, the increase of independent symbols turns out to be merely quadratic. We uncover how to construct the symbols for any number of external gluons from just two building blocks which are naturally associated with the six- and seven-gluon amplitude, respectively. The second building block is entirely new, and in addition to its symbol, we also construct a prototype function that correctly reproduces all terms of maximalmore » functional transcendentality.« less

  18. Determining Mutation Rates in Bacterial Populations

    PubMed Central

    Rosche, William A.; Foster, Patricia L.

    2010-01-01

    When properly determined, spontaneous mutation rates are a more accurate and biologically meaningful reflection of the underlying mutagenic mechanism than are mutation frequencies. Because bacteria grow exponentially and mutations arise stochastically, methods to estimate mutation rates depend on theoretical models that describe the distribution of mutant numbers among parallel cultures, as in the original Luria-Delbrück fluctuation analysis. An accurate determination of mutation rate depends on understanding the strengths and limitations of these methods, and how to design fluctuation assays to optimize a given method. In this paper we describe a number of methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they behave under various experimental conditions. PMID:10610800

  19. VII. The history of physical activity and academic performance research: informing the future.

    PubMed

    Castelli, Darla M; Centeio, Erin E; Hwang, Jungyun; Barcelona, Jeanne M; Glowacki, Elizabeth M; Calvert, Hannah G; Nicksic, Hildi M

    2014-12-01

    The study of physical activity, physical fitness, and academic performance research are reviewed from a historical perspective, by providing an overview of existing publications focused on children and adolescents. Using rigorous inclusion criteria, the studies were quantified and qualified using both meta-analytic and descriptive evaluations analyses, first by time-period and then as an overall summary, particularly focusing on secular trends and future directions. This review is timely because the body of literature is growing exponentially, resulting in the emergence of new terminology, methodologies, and identification of mediating and moderating factors. Implications and recommendations for future research are summarized. © 2014 The Society for Research in Child Development, Inc.

  20. Nucleation time of nanoscale water bridges.

    PubMed

    Szoszkiewicz, Robert; Riedo, Elisa

    2005-09-23

    Water capillaries bind together grains of sand. They also can bind an atomic force microscope tip to a substrate. The kinetics of capillary condensation at the nanoscale is studied here using friction force microscopy. At 40% relative humidity we find that the meniscus nucleation times increase from 0.7 to 4.2 ms when the temperature decreases from 332 to 299 K. The nucleation times grow exponentially with the inverse temperature 1/T obeying an Arrhenius law. We obtain a nucleation energy barrier of 7.8 x 10(-20) J and an attempt frequency ranging between 4 and 250 GHz, in excellent agreement with theoretical predictions. These results provide direct experimental evidence that capillary condensation is a thermally activated phenomenon.

  1. In vitro meat production system: why and how?

    PubMed

    Sharma, Shruti; Thind, Sukhcharanjit Singh; Kaur, Amarjeet

    2015-12-01

    Due to the nutritional importance and the sustained popularity of meat as a foodstuff, the livestock production sector has been expanding incessantly. This exponential growth of livestock meat sector poses a gigantic challenge to the sustainability of food production system. A new technological breakthrough is being contemplated to develop a substitute for livestock meat. The idea is to grow meat in a culture in the lab and manipulate its composition selectively. This paper aims to discuss the concept of In Vitro Meat production system, articulate the underlying technology and analyse the context of its implications, as proposed by several scientists and stakeholders. The challenges facing this emerging technology have also been discussed.

  2. Induction of a menopausal state alters the growth and histology of ovarian tumors in a mouse model of ovarian cancer.

    PubMed

    Laviolette, Laura A; Ethier, Jean-François; Senterman, Mary K; Devine, Patrick J; Vanderhyden, Barbara C

    2011-05-01

    Ovarian cancer is often diagnosed in women after menopause when the levels of the serum gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are increased because of the depletion of growing follicles within the ovary. The ability of FSH and LH to modulate the disease has not been well studied owing to a lack of physiologically relevant models of ovarian cancer. In this study, 4-vinylcyclohexene diepoxide (VCD) was used to deplete ovarian follicles and increase the levels of circulating FSH and LH in the tgCAG-LS-TAg mouse model of ovarian cancer. VCD-induced follicle depletion was performed either before or after induction of the oncogene SV40 large and small T-antigens in the ovarian surface epithelial cells of tgCAG-LS-TAg mice, which was mediated by the intrabursal delivery of an adenovirus expressing Cre recombinase (AdCre). tgCAG-LS-TAg mice injected with AdCre developed undifferentiated ovarian tumors with mixed epithelial and stromal components and some features of sex cord stromal tumors. Treatment with VCD before or after AdCre injection yielded tumors of similar histology, but with the unique appearance of Sertoli cell nests. In mice treated with VCD before the induction of tumorigenesis, the ovarian tumors tended to grow more slowly. The human ovarian cancer cell lines SKOV3 and OVCAR3 responded similarly to increased levels of gonadotropins in a second model of menopause, growing more slowly in ovariectomized mice compared with cycling controls. These results suggest that follicle depletion and increased gonadotropin levels can alter the histology and the rate of growth of ovarian tumors.

  3. Introduction to Nanotechnology for Defense Environment, Health & Safety (EHS) and Research Professionals in Support of the Acquisition Process

    DTIC Science & Technology

    2011-03-28

    www.denix.osd.mil/MERIT Ultra fine particles ~50 1713- Ramazzini described black 197 4- First GMO lung disease mouse created by Jaenisch Diesel...exhaust Engineered NP _____ _,.? • GMO Technology 1985- Oberdorster described inhalation toxicity of Ti02 2003-lssue recognized by EPA, NIOSH...other agencies 2004- California pass broad ban on GMO products Growing Body of EHS Research Far-reaching implications or singular exceptions

  4. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores

    PubMed Central

    Doyle, Sean P.; Nguyen, Kristine; Ribeiro, Carla M. P.; Vasquez, Paula A.; Forest, M. Gregory; Lethem, Michael I.; Dickey, Burton F.; Davis, C. William

    2015-01-01

    Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion. PMID:26024524

  5. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors

    PubMed Central

    Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.

    2016-01-01

    Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078

  6. Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype.

    PubMed

    Almog, Nava; Ma, Lili; Raychowdhury, Raktima; Schwager, Christian; Erber, Ralf; Short, Sarah; Hlatky, Lynn; Vajkoczy, Peter; Huber, Peter E; Folkman, Judah; Abdollahi, Amir

    2009-02-01

    Tumor dormancy has important implications for early detection and treatment of cancer. Lack of experimental models and limited clinical accessibility constitute major obstacles to the molecular characterization of dormant tumors. We have developed models in which human tumors remain dormant for a prolonged period of time (>120 days) until they switch to rapid growth and become strongly angiogenic. These angiogenic tumors retain their ability to grow fast once injected in new mice. We hypothesized that dormant tumors undergo a stable genetic reprogramming during their switch to the fast-growing phenotype. Genome-wide transcriptional analysis was done to dissect the molecular mechanisms underlying the switch of dormant breast carcinoma, glioblastoma, osteosarcoma, and liposarcoma tumors. A consensus expression signature distinguishing all four dormant versus switched fast-growing tumors was generated. In alignment with our phenotypic observation, the angiogenesis process was the most significantly affected functional gene category. The switch of dormant tumors was associated with down-regulation of angiogenesis inhibitor thrombospondin and decreased sensitivity of angiogenic tumors to angiostatin. The conversion of dormant tumors to exponentially growing tumors was also correlated with regulation and activation of pathways not hitherto linked to tumor dormancy process, such as endothelial cell-specific molecule-1, 5'-ecto-nucleotidase, tissue inhibitor of metalloproteinase-3, epidermal growth factor receptor, insulin-like growth factor receptor, and phosphatidylinositol 3-kinase signaling. Further, novel dormancy-specific biomarkers such as H2BK and Eph receptor A5 (EphA5) were discovered. EphA5 plasma levels in mice and mRNA levels in tumor specimens of glioma patients correlated with diseases stage. These data will be instrumental in identifying novel early cancer biomarkers and could provide a rationale for development of dormancy-promoting tumor therapy strategies.

  7. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea

    PubMed Central

    Duszenko, Nikolas

    2017-01-01

    ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale. PMID:28710268

  8. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.

    PubMed

    Duszenko, Nikolas; Buan, Nicole R

    2017-09-15

    Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri The concentration of MPh suggests the cell membrane of M. acetivorans , but not of M. barkeri , is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans , but not Methanosarcina barkeri , has electrically quantized membranes. Escherichia coli , a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale. Copyright © 2017 American Society for Microbiology.

  9. Genetic mouse embryo assay: improving performance and quality testing for assisted reproductive technology (ART) with a functional bioassay.

    PubMed

    Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu

    2016-03-24

    Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.

  10. High-LET radiation-induced aberrations in prematurely condensed G2 chromosomes of human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Gotoh, E.; Durante, M.; Wu, H.; George, K.; Furusawa, Y.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290MeV/u), silicon (490MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. RESULTS: The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. CONCLUSIONS: Compared with gamma-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.

  11. Finding Hidden Location Patterns of Two Competitive Supermarkets in Thailand

    NASA Astrophysics Data System (ADS)

    Khumsri, Jinattaporn; Fujihara, Akihiro

    There are two famous supermarkets in Thailand: Big C and Lotus. They are the highest competitive supermarkets whose hold the most market share by lots of promotions and also gather all convenience services including banking, restaurant, and others. In recent years, they gradually expand their stores and they take a similar strategy to determine where to locate a store. It is important for them to consider store allocation to obtain new customers efficiently. To consider this, we gather geographical locations of these supermarkets from Twitter using Twitter API. We gathered tweets having these supermarket names and geotags for seven months. To extract hidden location patterns from gathered data, we introduce location motif which is a directed subgraph whose edges are linked to every pair of the shortest-distance opponent node. We investigate every possible configuration of location motif when they have a small number of nodes and find that the configuration increases exponentially. We also visualize location motifs generated from gathered data on the map of Thailand and count the frequency of observed location motifs. As a result, we find that even if the possible location motifs exponentially increase as the number of nodes grows, limited location motifs can be observed. Using location motif, we successfully find an evidence of biased store allocation in reality.

  12. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    PubMed Central

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  13. On the Number of Non-equivalent Ancestral Configurations for Matching Gene Trees and Species Trees.

    PubMed

    Disanto, Filippo; Rosenberg, Noah A

    2017-09-14

    An ancestral configuration is one of the combinatorially distinct sets of gene lineages that, for a given gene tree, can reach a given node of a specified species tree. Ancestral configurations have appeared in recursive algebraic computations of the conditional probability that a gene tree topology is produced under the multispecies coalescent model for a given species tree. For matching gene trees and species trees, we study the number of ancestral configurations, considered up to an equivalence relation introduced by Wu (Evolution 66:763-775, 2012) to reduce the complexity of the recursive probability computation. We examine the largest number of non-equivalent ancestral configurations possible for a given tree size n. Whereas the smallest number of non-equivalent ancestral configurations increases polynomially with n, we show that the largest number increases with [Formula: see text], where k is a constant that satisfies [Formula: see text]. Under a uniform distribution on the set of binary labeled trees with a given size n, the mean number of non-equivalent ancestral configurations grows exponentially with n. The results refine an earlier analysis of the number of ancestral configurations considered without applying the equivalence relation, showing that use of the equivalence relation does not alter the exponential nature of the increase with tree size.

  14. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI

    PubMed Central

    Marr, Allen G.; Ingraham, John L.

    1962-01-01

    Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982

  15. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  16. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  17. In situ observations of snow particle size distributions over a cold frontal rainband within an extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Yang, Jiefan; Lei, Hengchi

    2016-02-01

    Cloud microphysical properties of a mixed phase cloud generated by a typical extratropical cyclone in the Tongliao area, Inner Mongolia on 3 May 2014, are analyzed primarily using in situ flight observation data. This study is mainly focused on ice crystal concentration, supercooled cloud water content, and vertical distributions of fit parameters of snow particle size distributions (PSDs). The results showed several discrepancies of microphysical properties obtained during two penetrations. During penetration within precipitating cloud, the maximum ice particle concentration, liquid water content, and ice water content were increased by a factor of 2-3 compared with their counterpart obtained during penetration of a nonprecipitating cloud. The heavy rimed and irregular ice crystals obtained by 2D imagery probe as well as vertical distributions of fitting parameters within precipitating cloud show that the ice particles grow during falling via riming and aggregation process, whereas the lightly rimed and pristine ice particles as well as fitting parameters within non-precipitating cloud indicate the domination of sublimation process. During the two cloud penetrations, the PSDs were generally better represented by gamma distributions than the exponential form in terms of the determining coefficient ( R 2). The correlations between parameters of exponential /gamma form within two penetrations showed no obvious differences compared with previous studies.

  18. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data.

    PubMed

    Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S

    2015-02-01

    With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.

  19. The fate of mitochondrial loci in rho minus mutants induced by ultraviolet irradiation of Saccharomyces cerevisiae: effects of different post-irradiation treatments.

    PubMed

    Heude, M; Moustacchi, E

    1979-09-01

    Three main features regarding the loss of mitochondrial genetic markers among rho- mutants induced by ultraviolet irradiation are reported: (a) the frequency of loss of six loci examined increases with UV dose; (b) preferential loss of one region of the mitochondrial genome observed in spontaneous rho- mutants is enhanced by UV; and (c) the loss of each marker results from large deletions. Marker loss in rho- mutants was also investigated under conditions that modulate rho- induction. Liquid holding of irradiated exponential or stationary phase cells, as well as a split-dose regime applied to stationary phase cells, results in rho- mutants in which the loss of markers is correlated with rho- induction: the more sensitive the cells are to rho- induction, the more frequent are the marker losses among rho- clones derived from these cells. This correlation is not found in exponential-phase cells submitted to a split-dose treatment, suggesting that a different mechanism is involved in the latter case. It is known that UV-induced pyrimidine dimers are not excised in a controlled manner in mitochondrial DNA. However, our studies indicate that an accurate repair mechanism (of the recombinational type ?) can lead to the restoration of mitochondrial genetic information in growing cells.

  20. The exponential behavior and stabilizability of the stochastic magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Wang, Huaqiao

    2018-06-01

    This paper studies the two-dimensional stochastic magnetohydrodynamic equations which are used to describe the turbulent flows in magnetohydrodynamics. The exponential behavior and the exponential mean square stability of the weak solutions are proved by the application of energy method. Furthermore, we establish the pathwise exponential stability by using the exponential mean square stability. When the stochastic perturbations satisfy certain additional hypotheses, we can also obtain pathwise exponential stability results without using the mean square stability.

  1. US Vulnerability to Natural Disasters

    NASA Astrophysics Data System (ADS)

    van der Vink, G.; Apgar, S.; Batchelor, A.; Carter, C.; Gail, D.; Jarrett, A.; Levine, N.; Morgan, W.; Orlikowski, M.; Pray, T.; Raymar, M.; Siebert, A.; Shawa, T. W.; Wallace, C.

    2002-05-01

    Natural disasters result from the coincidence of natural events with the built environment. Our nation's infrastructure is growing at an exponential rate in many areas of high risk, and the Federal government's liability is increasing proportionally. By superimposing population density with predicted ground motion from earthquakes, historical hurricane tracks, historical tornado locations, and areas within the flood plain, we are able to identify locations of high vulnerability within the United States. We present a comprehensive map of disaster risk for the United States that is being produced for the Senate Natural Hazards Caucus. The map allows for the geographic comparison of natural disaster risk with past disaster declarations, the expenditure of Federal dollars for disaster relief, population increase, and variations of GDP. Every state is vulnerable to natural disasters. Although their frequency varies considerably, the annualized losses for disaster relief from hurricanes, earthquakes, and floods are approximately equivalent. While fast-growing states such as California and Florida remain highly vulnerable, changes in the occurrence of natural events combined with population increases are making areas such as Texas, North Carolina, and the East Coast increasingly vulnerable.

  2. Functional Topology of Evolving Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs (<2 km2), length-area scales linearly (h ˜ 1), but power law scaling (h ˜ 0.6) emerges as the UDNs grow. While P>(A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  3. Post-traumatic stress disorder in disaster survivors.

    PubMed

    North, C S; Smith, E M

    1990-12-01

    In spite of the difficulties inherent in the study of traumatic stress in disaster victims, the benefit of obtaining more knowledge on the subject is potentially great, especially considering the numbers of individuals affected. Recent estimates of the frequency of world-wide traumatic events have determined that almost two million households annually experience damages and/or injuries from fire, floods, hurricanes, tornadoes, and earthquakes alone. The population that is at risk is expected to grow exponentially with our expanding technology, making it even more vital to acquire knowledge to help the growing number of future disaster victims. Additionally, disaster research can contribute to a better understanding of PTSD and human coping processes that can be generalized to more ordinary stress situations. In the meantime, survivors of major catastrophes who experience acute symptoms of PTSD such as insomnia, nightmares, and jumpiness should be observed for nonresolution of symptoms over time, especially if there is a premorbid history of psychopathology or character problems. Otherwise, survivors may benefit from reassurance that PTSD symptoms are common in the short-term postdisaster period and that they can usually be expected to dissipate with time.

  4. An instability of hyperbolic space under the Yang-Mills flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gegenberg, Jack; Day, Andrew C.; Liu, Haitao

    2014-04-15

    We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence ofmore » the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.« less

  5. The Use of Mobile Learning in Science: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-04-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from the year 2000 onward. Major findings include that most of the studies focused on designing systems for mobile learning, followed by a combination of evaluating the effects of mobile learning and investigating the affective domain during mobile learning. The majority of the studies were conducted in the area of life sciences in informal, elementary (5-11 years) settings. Mobile devices were used in this strand of science easily within informal environments with real-world connections. A variety of research methods were employed, providing a rich research perspective. As the use of mobile learning continues to grow, further research regarding the use of mobile technologies in all areas and levels of science learning will help science educators to expand their ability to embrace these technologies.

  6. Output characteristics of SASE-driven short wavelength FEL`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponentialmore » gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.« less

  7. The response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric resonance

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.

    1983-09-01

    An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.

  8. Differential Mechanism of Escherichia coli Inactivation by (+)-Limonene as a Function of Cell Physiological State and Drug's Concentration

    PubMed Central

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2′-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics. PMID:24705541

  9. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics.

  10. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin.

    PubMed

    Manova, Vasilissa; Singh, Satyendra K; Iliakis, George

    2012-08-22

    Mammalian cells employ at least two subpathways of non-homologous end-joining for the repair of ionizing radiation induced DNA double strand breaks: The canonical DNA-PK-dependent form of non-homologous end-joining (D-NHEJ) and an alternative, slowly operating, error-prone backup pathway (B-NHEJ). In contrast to D-NHEJ, which operates with similar efficiency throughout the cell cycle, B-NHEJ operates more efficiently in G2-phase. Notably, B-NHEJ also shows strong and as of yet unexplained dependency on growth activity and is markedly compromised in serum-deprived cells, or in cells that enter the plateau-phase of growth. The molecular mechanisms underpinning this response remain unknown. Since chromatin structure or changes in chromatin structure are prime candidate-B-NHEJ-modulators, we study here the role of chromatin hyperacetylation, either by HDAC2 knockdown or treatment with the HDAC inhibitor TSA, on the repair by B-NHEJ of IR-induced DSBs. siRNA-mediated knockdown of HDAC2 fails to provoke histone hyperacetylation in Lig4-/- MEFs and has no detectable effect on B-NHEJ function. Treatment with TSA that inhibits multiple HDACs causes efficient, reversible chromatin hyperacetylation in Lig4-/- MEFs, as well as in human HCT116 Lig4-/- cells and the human glioma cell line M059K. The IR yield of DSBs in TSA-treated cells remains similar to that of untreated cells despite the expected chromatin relaxation. In addition, chromatin hyperacetylation leaves unchanged repair of DSBs by B-NHEJ in irradiated exponentially growing, or plateau-phase cells. Notably, under the experimental conditions employed here, chromatin hyperacetylation fails to detectably modulate B-NHEJ in M059K cells as well. In summary, the results show that chromatin acetylation or deacetylation does not affect the kinetics of alternative NHEJ in all types of cells examined both in exponentially growing and serum deprived cultures. We conclude that parameters beyond chromatin acetylation determine B-NHEJ efficiency in the plateau-phase of growth.

  11. Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models

    PubMed Central

    Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja

    2014-01-01

    Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100

  12. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants.

    PubMed

    Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I Barry; Séror, Simone J; Hamze, Kassem; Putzer, Harald

    2017-02-07

    Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. Swarming motility enables rapid coordinated surface translocation of a microbial community, preceding the formation of a biofilm. This movement occurs in thin films and involves specialized swarmer cells localized to a narrow zone at the extreme swarm edge. In the B. subtilis system, using a synthetic medium, the swarm front remains as a cellular monolayer for up to 1.5 cm. Swarmers display high-velocity whirls and vortexing and are often assumed to drive community expansion at the expense of cell growth. Surprisingly, little attention has been paid to which cells in a swarm are actually growing and contributing to the overall biomass. Here, we show that swarmers not only lead the population forward but continue to multiply as a source of all cells in the community. We present a model that explains how exponential growth of only a few cells is compatible with the linear expansion rate of the swarm. Copyright © 2017 Hamouche et al.

  13. A global perspective of the limits of prediction skill based on the ECMWF ensemble

    NASA Astrophysics Data System (ADS)

    Zagar, Nedjeljka

    2016-04-01

    In this talk presents a new model of the global forecast error growth applied to the forecast errors simulated by the ensemble prediction system (ENS) of the ECMWF. The proxy for forecast errors is the total spread of the ECMWF operational ensemble forecasts obtained by the decomposition of the wind and geopotential fields in the normal-mode functions. In this way, the ensemble spread can be quantified separately for the balanced and inertio-gravity (IG) modes for every forecast range. Ensemble reliability is defined for the balanced and IG modes comparing the ensemble spread with the control analysis in each scale. The results show that initial uncertainties in the ECMWF ENS are largest in the tropical large-scale modes and their spatial distribution is similar to the distribution of the short-range forecast errors. Initially the ensemble spread grows most in the smallest scales and in the synoptic range of the IG modes but the overall growth is dominated by the increase of spread in balanced modes in synoptic and planetary scales in the midlatitudes. During the forecasts, the distribution of spread in the balanced and IG modes grows towards the climatological spread distribution characteristic of the analyses. The ENS system is found to be somewhat under-dispersive which is associated with the lack of tropical variability, primarily the Kelvin waves. The new model of the forecast error growth has three fitting parameters to parameterize the initial fast growth and a more slow exponential error growth later on. The asymptotic values of forecast errors are independent of the exponential growth rate. It is found that the asymptotic values of the errors due to unbalanced dynamics are around 10 days while the balanced and total errors saturate in 3 to 4 weeks. Reference: Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444.

  14. Determining the Infectious Dose of Influenza Aerosols in a Mouse Model

    DTIC Science & Technology

    2012-06-20

    the growth of F. tularensis to be relatively slow; incubated at 37 °C it reportedly takes up to 14 days to grow on chocolate agar or cysteine heart...TSB) (BD BBL, Becton Dickinson and Company, Franklin Lakes, NJ), then plated in triplicate on BBL chocolate II agar plates (Lot# S100077/2112/20080806...Laboratories, Philadelphia, PA) and recorded at 580, 600 and 625 nm, and differences before and after aerosolization were noted. Chocolate agar plates

  15. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2009-05-01

    contaminating rat UGSE cells ; and regions of host mouse glands were either from circulating pluripotent stem cells or local epithelial cells which were...CONTRACT NUMBER Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors 5b. GRANT NUMBER 81WXH...NOTES 14. ABSTRACT The objective of this proposal was to isolate, grow, and characterize normal prostate stem cells and establish new prostate

  16. HIF2α reduces growth rate but promotes angiogenesis in a mouse model of neuroblastoma

    PubMed Central

    Favier, Judith; Lapointe, Stéphanie; Maliba, Ricardo; Sirois, Martin G

    2007-01-01

    Background HIF2α/EPAS1 is a hypoxia-inducible transcription factor involved in catecholamine homeostasis, vascular remodelling, physiological angiogenesis and adipogenesis. It is overexpressed in many cancerous tissues, but its exact role in tumour progression remains to be clarified. Methods In order to better establish its function in tumourigenesis and tumour angiogenesis, we have stably transfected mouse neuroblastoma N1E-115 cells with the native form of HIF2α or with its dominant negative mutant, HIF2α (1–485) and studied their phenotype in vitro and in vivo. Results In vitro studies reveal that HIF2α induces neuroblastoma cells hypertrophy and decreases their proliferation rate, while its inactivation by the HIF2α (1–485) mutant leads to a reduced cell size, associated with an accelerated proliferation. However, our in vivo experiments show that subcutaneous injection of cells overexpressing HIF2α into syngenic mice, leads to the formation of tumour nodules that grow slower than controls, but that are well structured and highly vascularized. In contrast, HIF2α (1–485)-expressing neuroblastomas grow fast, but are poorly vascularized and quickly tend to extended necrosis. Conclusion Together, our data reveal an unexpected combination between an antiproliferative and a pro-angiogenic function of HIF2α that actually seems to be favourable to the establishment of neuroblastomas in vivo. PMID:17655754

  17. Nucleolin is a nuclear target of heparan sulfate derived from glypican-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fang; Belting, Mattias; Fransson, Lars-Åke

    The recycling, S-nitrosylated heparan sulfate (HS) proteoglycan glypican-1 releases anhydromannose (anMan)-containing HS chains by a nitrosothiol-catalyzed cleavage in endosomes that can be constitutive or induced by ascorbate. The HS-anMan chains are then transported to the nucleus. A specific nuclear target for HS-anMan has not been identified. We have monitored endosome-to-nucleus trafficking of HS-anMan by deconvolution and confocal immunofluorescence microscopy using an anMan-specific monoclonal antibody in non-growing, ascorbate-treated, and growing, untreated, wild-type mouse embryonic fibroblasts and hypoxia-exposed Alzheimer mouse Tg2576 fibroblasts and human U87 glioblastoma cells. In all cells, nuclear HS-anMan targeted a limited number of sites of variable size wheremore » it colocalized with DNA and nucleolin, an established marker for nucleoli. HS-anMan also colocalized with ethynyl uridine-tagged nascent RNA and two acetylated forms of histone H3. Acute hypoxia increased the formation of HS-anMan in both Tg2576 and U87 cells. A portion of HS-anMan colocalized with nucleolin at small discrete sites, while most of the nucleolin and nascent RNA was dispersed. In U87 cells, HS-anMan, nucleolin and nascent RNA reassembled after prolonged hypoxia. Nucleolar HS may modulate synthesis and/or release of rRNA.« less

  18. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    PubMed

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  19. Division of Labor, Bet Hedging, and the Evolution of Mixed Biofilm Investment Strategies.

    PubMed

    Lowery, Nick Vallespir; McNally, Luke; Ratcliff, William C; Brown, Sam P

    2017-08-08

    Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. IMPORTANCE Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations. Copyright © 2017 Lowery et al.

  20. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  1. Integrating multi-scale data to create a virtual physiological mouse heart

    PubMed Central

    Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.

    2013-01-01

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525

  2. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.

    2012-01-01

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695

  3. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

    PubMed

    Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F

    2012-04-15

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

  4. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    PubMed

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  5. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    PubMed Central

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  6. Comparative analysis of Fe ion-induced mutations in murine tissue and cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Kwoh, E.; Dan, C.; Connolly, L.; Turker, M.

    Space flight exposes astronauts to densely ionizing heavy ions including Fe ions This study is designed to assess the impact of the tissue microenvironment on the cytotoxic and mutagenic effects of 1 GeV amu Fe ions in kidney epithelial cells from one mouse strain irradiated either in vitro or in vivo Three to five month old Aprt heterozygous mice are used from a C57BL6 DBA2 cross B6D2F1 or kidney cells are used that were established from these mice Cells and animals were exposed in the plateau portion of the Bragg peak 159 keV mu m at the NASA Space Radiation Laboratories NSRL at Brookhaven National Laboratory Approximately equal numbers of male and female animals were used for the in vivo studies In vitro experiments demonstrated exponential cell killing with a D 0 of 92 cGy Three Aprt mutation experiments have been performed in kidney cells exposed to graded doses of Fe ions in vitro 0-2 Gy Studies to date indicate that Fe ions are mutagenic to kidney epithelial cells irradiated in vitro with a linear induction of mutants as a function of dose In vivo experiments have been completed on two thirds of the animals planned for the study Kidney cells were retrieved from the animals at two time points 2-3 months post-irradiation or 8-9 months post-irradiation Fe ion exposure in vivo led to exponential killing of kidney epithelial cells that was still evident 8-9 months post-exposure In vivo irradiation also results

  7. Mortality Trajectories at Exceptionally High Ages: A Study of Supercentenarians

    PubMed Central

    Gavrilova, Natalia S.; Gavrilov, Leonid A.; Krut'ko, Vyacheslav N.

    2017-01-01

    The growing number of persons surviving to age 100 years and beyond raises questions about the shape of mortality trajectories at exceptionally high ages, and this problem may become significant for actuaries in the near future. However, such studies are scarce because of the difficulties in obtaining reliable age estimates at exceptionally high ages. The current view about mortality beyond age 110 years suggests that death rates do not grow with age and are virtually flat. The same assumption is made in the new actuarial VBT tables. In this paper, we test the hypothesis that the mortality of supercentenarians (persons living 110+ years) is constant and does not grow with age, and we analyze mortality trajectories at these exceptionally high ages. Death records of supercentenarians were taken from the International Database on Longevity (IDL). All ages of supercentenarians in the database were subjected to careful validation. We used IDL records for persons belonging to extinct birth cohorts (born before 1895) since the last deaths in IDL were observed in 2007. We also compared our results based on IDL data with a more contemporary database maintained by the Gerontology Research Group (GRG). First we attempted to replicate findings by Gampe (2010), who analyzed IDL data and came to the conclusion that “human mortality after age 110 is flat.” We split IDL data into two groups: cohorts born before 1885 and cohorts born in 1885 and later. Hazard rate estimates were conducted using the standard procedure available in Stata software. We found that mortality in both groups grows with age, although in older cohorts, growth was slower compared with more recent cohorts and not statistically significant. Mortality analysis of more numerous 1884–1894 birth cohort with the Akaike goodness-of-fit criterion showed better fit for the Gompertz model than for the exponential model (flat mortality). Mortality analyses with GRG data produced similar results. The remaining life expectancy for the 1884–1894 birth cohort demonstrates rapid decline with age. This decline is similar to the computer-simulated trajectory expected for the Gompertz model, rather than the extremely slow decline in the case of the exponential model. These results demonstrate that hazard rates after age 110 years do not stay constant and suggest that mortality deceleration at older ages is not a universal phenomenon. These findings may represent a challenge to the existing theories of aging and longevity, which predict constant mortality in the late stages of life. One possibility for reconciliation of the observed phenomenon and the existing theoretical consideration is a possibility of mortality deceleration and mortality plateau at very high yet unobservable ages. PMID:29170764

  8. Mortality Trajectories at Exceptionally High Ages: A Study of Supercentenarians.

    PubMed

    Gavrilova, Natalia S; Gavrilov, Leonid A; Krut'ko, Vyacheslav N

    2017-01-01

    The growing number of persons surviving to age 100 years and beyond raises questions about the shape of mortality trajectories at exceptionally high ages, and this problem may become significant for actuaries in the near future. However, such studies are scarce because of the difficulties in obtaining reliable age estimates at exceptionally high ages. The current view about mortality beyond age 110 years suggests that death rates do not grow with age and are virtually flat. The same assumption is made in the new actuarial VBT tables. In this paper, we test the hypothesis that the mortality of supercentenarians (persons living 110+ years) is constant and does not grow with age, and we analyze mortality trajectories at these exceptionally high ages. Death records of supercentenarians were taken from the International Database on Longevity (IDL). All ages of supercentenarians in the database were subjected to careful validation. We used IDL records for persons belonging to extinct birth cohorts (born before 1895) since the last deaths in IDL were observed in 2007. We also compared our results based on IDL data with a more contemporary database maintained by the Gerontology Research Group (GRG). First we attempted to replicate findings by Gampe (2010), who analyzed IDL data and came to the conclusion that "human mortality after age 110 is flat." We split IDL data into two groups: cohorts born before 1885 and cohorts born in 1885 and later. Hazard rate estimates were conducted using the standard procedure available in Stata software. We found that mortality in both groups grows with age, although in older cohorts, growth was slower compared with more recent cohorts and not statistically significant. Mortality analysis of more numerous 1884-1894 birth cohort with the Akaike goodness-of-fit criterion showed better fit for the Gompertz model than for the exponential model (flat mortality). Mortality analyses with GRG data produced similar results. The remaining life expectancy for the 1884-1894 birth cohort demonstrates rapid decline with age. This decline is similar to the computer-simulated trajectory expected for the Gompertz model, rather than the extremely slow decline in the case of the exponential model. These results demonstrate that hazard rates after age 110 years do not stay constant and suggest that mortality deceleration at older ages is not a universal phenomenon. These findings may represent a challenge to the existing theories of aging and longevity, which predict constant mortality in the late stages of life. One possibility for reconciliation of the observed phenomenon and the existing theoretical consideration is a possibility of mortality deceleration and mortality plateau at very high yet unobservable ages.

  9. Information slows down hierarchy growth

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A.

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  10. Information slows down hierarchy growth.

    PubMed

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  11. Challenges in Personalizing and Decentralizing the Web: An Overview of GOSSPLE

    NASA Astrophysics Data System (ADS)

    Kermarrec, Anne-Marie

    Social networks and collaborative tagging systems have taken off at an unexpected scale and speed (Facebook, YouTube, Flickr, Last.fm, Delicious, etc). Web content is now generated by you, me, our friends and millions of others. This represents a revolution in usage and a great opportunity to leverage collaborative knowledge to enhance the user's Internet experience. The GOSSPLE project aims at precisely achieving this: automatically capturing affinities between users that are potentially unknown yet share similar interests, or exhibiting similar behaviors on the Web. This fully personalizes the search process, increasing the ability of a user to find relevant content. This personalization calls for decentralization. (1) Centralized servers might dissuade users from generating new content for they expose their privacy and represent a single point of attack. (2) The amount of information to store grows exponentially with the size of the system and centralized systems cannot sustain storing a growing amount of data at a user granularity. We believe that the salvation can only come from a fully decentralized user centric approach where every participant is entrusted to harvest the Web with information relevant to her own activity. This poses a number of scientific challenges: How to discover similar users, how to define the relevant metrics for such personalization, how to preserve privacy when needed, how to deal with free-riders and misheavior and how to manage efficiently a growing amount of data.

  12. A multi-populations multi-strategies differential evolution algorithm for structural optimization of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua

    2016-11-01

    Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.

  13. Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene.

    PubMed

    Dejaloud, Azita; Vahabzadeh, Farzaneh; Habibi, Alireza

    2017-07-01

    The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol g cell -1  h -1 ) were almost constant. By defining desulfurizing capacity (D DBT ) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% g cell L -1  h -1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  14. Assessment of bone dysplasia by micro-CT and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I, IIIA, IVA, and VII

    PubMed Central

    Rowan, Daniel J.; Tomatsu, Shunji; Grubb, Jeffrey H.; Montaño, Adriana M.; Sly, William S.

    2012-01-01

    Summary Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by mutations in lysosomal enzymes involved in degradation of glycosaminoglycans (GAGs). Patients with MPS grow poorly and become physically disabled due to systemic bone disease. While many of the major skeletal effects in mouse models for MPS have been described, no detailed analysis that compares GAGs levels and characteristics of bone by micro-CT has been done. The aims of this study were to assess severity of bone dysplasia among four MPS mouse models (MPS I, IIIA, IVA and VII), to determine the relationship between severity of bone dysplasia and serum keratan sulfate (KS) and heparan sulfate (HS) levels in those models, and to explore the mechanism of KS elevation in MPS I, IIIA, and VII mouse models. Clinically, MPS VII mice had the most severe bone pathology; however, MPS I and IVA mice also showed skeletal pathology. MPS I and VII mice showed severe bone dysplasia, higher bone mineral density, narrowed spinal canal, and shorter sclerotic bones by micro-CT and radiographs. Serum KS and HS levels were elevated in MPS I, IIIA, and VII mice. Severity of skeletal disease displayed by micro-CT, radiographs and histopathology correlated with the level of KS elevation. We showed that elevated HS levels in MPS mouse models could inhibit N-acetylgalactosamine-6-sulfate sulfatase enzyme. These studies suggest that KS could be released from chondrocytes affected by accumulation of other GAGs and that KS could be useful as a biomarker for severity of bone dysplasia in MPS disorders. PMID:22971960

  15. Dosimetry in small-animal CT using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.

    2016-01-01

    Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.

  16. Wikidata as a semantic framework for the Gene Wiki initiative.

    PubMed

    Burgstaller-Muehlbacher, Sebastian; Waagmeester, Andra; Mitraka, Elvira; Turner, Julia; Putman, Tim; Leong, Justin; Naik, Chinmay; Pavlidis, Paul; Schriml, Lynn; Good, Benjamin M; Su, Andrew I

    2016-01-01

    Open biological data are distributed over many resources making them challenging to integrate, to update and to disseminate quickly. Wikidata is a growing, open community database which can serve this purpose and also provides tight integration with Wikipedia. In order to improve the state of biological data, facilitate data management and dissemination, we imported all human and mouse genes, and all human and mouse proteins into Wikidata. In total, 59,721 human genes and 73,355 mouse genes have been imported from NCBI and 27,306 human proteins and 16,728 mouse proteins have been imported from the Swissprot subset of UniProt. As Wikidata is open and can be edited by anybody, our corpus of imported data serves as the starting point for integration of further data by scientists, the Wikidata community and citizen scientists alike. The first use case for these data is to populate Wikipedia Gene Wiki infoboxes directly from Wikidata with the data integrated above. This enables immediate updates of the Gene Wiki infoboxes as soon as the data in Wikidata are modified. Although Gene Wiki pages are currently only on the English language version of Wikipedia, the multilingual nature of Wikidata allows for usage of the data we imported in all 280 different language Wikipedias. Apart from the Gene Wiki infobox use case, a SPARQL endpoint and exporting functionality to several standard formats (e.g. JSON, XML) enable use of the data by scientists. In summary, we created a fully open and extensible data resource for human and mouse molecular biology and biochemistry data. This resource enriches all the Wikipedias with structured information and serves as a new linking hub for the biological semantic web. Database URL: https://www.wikidata.org/. © The Author(s) 2016. Published by Oxford University Press.

  17. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy

    PubMed Central

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M.

    2017-01-01

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2−/-IL2Rg-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair. PMID:27657746

  18. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  19. International dissemination of evidence-based practice, open access and the IACAPAP textbook of child and adolescent mental health.

    PubMed

    Rey, Joseph M; Omigbodun, Olayinka Olusola

    2015-01-01

    Dramatic changes have occurred in both publishing and teaching in the last 20 years stemming from the digital and Internet revolutions. Such changes are likely to grow exponentially in the near future aided by the trend to open access publishing. This revolution has challenged traditional publishing and teaching methods that-largely but not exclusively due to cost-are particularly relevant to professionals in low and middle income countries. The digital medium and the Internet offer boundless opportunities for teaching and training to people in disadvantaged regions. This article describes the development of the IACAPAP eTextbook of child and adolescent mental health, its use, accessibility, and potential impact on the international dissemination of evidence-based practice.

  20. Methods for studying the zebrafish brain: past, present and future.

    PubMed

    Wyatt, Cameron; Bartoszek, Ewelina M; Yaksi, Emre

    2015-07-01

    The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. A modelling approach to vaccination and contraception programmes for rabies control in fox populations.

    PubMed Central

    Suppo, C; Naulin, J M; Langlais, M; Artois, M

    2000-01-01

    In a previous study, three of the authors designed a one-dimensional model to simulate the propagation of rabies within a growing fox population; the influence of various parameters on the epidemic model was studied, including oral-vaccination programmes. In this work, a two-dimensional model of a fox population having either an exponential or a logistic growth pattern was considered. Using numerical simulations, the efficiencies of two prophylactic methods (fox contraception and vaccination against rabies) were assessed, used either separately or jointly. It was concluded that far lower rates of administration are necessary to eradicate rabies, and that the undesirable side-effects of each programme disappear, when both are used together. PMID:11007334

  2. Document Clustering Approach for Meta Search Engine

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh, Dr.

    2017-08-01

    The size of WWW is growing exponentially with ever change in technology. This results in huge amount of information with long list of URLs. Manually it is not possible to visit each page individually. So, if the page ranking algorithms are used properly then user search space can be restricted up to some pages of searched results. But available literatures show that no single search system can provide qualitative results from all the domains. This paper provides solution to this problem by introducing a new meta search engine that determine the relevancy of query corresponding to web page and cluster the results accordingly. The proposed approach reduces the user efforts, improves the quality of results and performance of the meta search engine.

  3. Cultural diversity and mental health.

    PubMed

    Gopalkrishnan, Narayan; Babacan, Hurriyet

    2015-12-01

    Cultural diversity and its impact on mental health has become an increasingly important issue in a globalised world where the interactions between cultures continue to grow exponentially. This paper presents critical areas in which culture impacts on mental health, such as how health and illness are perceived, coping styles, treatment-seeking patterns, impacts of history, racism, bias and stereotyping, gender, family, stigma and discrimination. While cultural differences provide a number of challenges to mental health policy and practice they also provide a number of opportunities to work in unique and effective ways towards positive mental health. Ethno-specific approaches to mental health that incorporate traditional and community-based systems can provide new avenues for working with culturally diverse populations. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  4. On the use of star-shaped genealogies in inference of coalescence times.

    PubMed Central

    Rosenberg, Noah A; Hirsh, Aaron E

    2003-01-01

    Genealogies from rapidly growing populations have approximate "star" shapes. We study the degree to which this approximation holds in the context of estimating the time to the most recent common ancestor (T(MRCA)) of a set of lineages. In an exponential growth scenario, we find that unless the product of population size (N) and growth rate (r) is at least approximately 10(5), the "pairwise comparison estimator" of T(MRCA) that derives from the star genealogy assumption has bias of 10-50%. Thus, the estimator is appropriate only for large populations that have grown very rapidly. The "tree-length estimator" of T(MRCA) is more biased than the pairwise comparison estimator, having low bias only for extremely large values of Nr. PMID:12930771

  5. Implications of Biospheric Energization

    NASA Astrophysics Data System (ADS)

    Budding, Edd; Demircan, Osman; Gündüz, Güngör; Emin Özel, Mehmet

    2016-07-01

    Our physical model relating to the origin and development of lifelike processes from very simple beginnings is reviewed. This molecular ('ABC') process is compared with the chemoton model, noting the role of the autocatalytic tuning to the time-dependent source of energy. This substantiates a Darwinian character to evolution. The system evolves from very simple beginnings to a progressively more highly tuned, energized and complex responding biosphere, that grows exponentially; albeit with a very low net growth factor. Rates of growth and complexity in the evolution raise disturbing issues of inherent stability. Autocatalytic processes can include a fractal character to their development allowing recapitulative effects to be observed. This property, in allowing similarities of pattern to be recognized, can be useful in interpreting complex (lifelike) systems.

  6. Plasma development in the accelerator of a 2-kJ focus discharge.

    PubMed

    Fischer, H; Haering, K H

    1979-07-01

    Optical image structures from early breakdown ( approximately 200 nsec) to focus formation (~1300 nsec) in 3 Torr hydrogen were studied by means of 2 image converter shutters having 50-nsec and 10-nsec exposure. Space charge limited cathode spots at the outer electrode (OE)-spoke-shaped positive columns across the gap-and an extended electron cloud along the center electrode (CE) determine the current flow during early breakdown. Ionization increases exponentially within the center gap plasma. This is separated from the CE by a pattern of anode drop filaments. Filament structures grow into the z-axis accelerated current sheath, which in addition carries the early spoke pattern. The sheath appears homogeneous after leaving the accelerator exit.

  7. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  8. Role of genomics in cardiovascular medicine

    PubMed Central

    Novelli, Giuseppe; Predazzi, Irene M; Mango, Ruggiero; Romeo, Francesco; Mehta, Jawahar L

    2010-01-01

    As all branches of science grow and new experimental techniques become readily accessible, our knowledge of medicine is likely to increase exponentially in the coming years. Recently developed technologies have revolutionized our analytical capacities, leading to vast knowledge of many genes or genomic regions involved in the pathogenesis of congenital heart diseases, which are often associated with other genetic syndromes, coronary artery disease and non-ischemic cardiomyopathies and channelopathies. The knowledge-base of the genesis of cardiovascular diseases is likely going to be further revolutionized in this new era of genomic medicine. Here, we review the advances that have been made over the last several years in this field and discuss different genetic mechanisms that have been shown to underlie a variety of cardiovascular diseases. PMID:21191544

  9. A global view of Escherichia coli Rsd protein and its interactions.

    PubMed

    Piper, Sarah E; Mitchell, Jennie E; Lee, David J; Busby, Stephen J W

    2009-12-01

    The Escherichia coli Rsd protein forms 1 : 1 complexes with sigma(70) protein, which is the major factor in determining promoter recognition by RNA polymerase. Here we describe measurements of the levels of Rsd, RNA polymerase, sigma(70) and the alternative sigma(38) factor. Rsd levels are sufficient to sequester a significant proportion of sigma(70) and immunoaffinity pull-down experiments show that this occurs in stationary phase but not in exponentially growing cells. Rsd expression is controlled by two promoters, P1 and P2. Experiments with lac fusions show that the P2 promoter is stronger than P1, that P2 is active in all phases of growth, and that this accounts for the high levels of Rsd.

  10. A Formal Algorithm for Routing Traces on a Printed Circuit Board

    NASA Technical Reports Server (NTRS)

    Hedgley, David R., Jr.

    1996-01-01

    This paper addresses the classical problem of printed circuit board routing: that is, the problem of automatic routing by a computer other than by brute force that causes the execution time to grow exponentially as a function of the complexity. Most of the present solutions are either inexpensive but not efficient and fast, or efficient and fast but very costly. Many solutions are proprietary, so not much is written or known about the actual algorithms upon which these solutions are based. This paper presents a formal algorithm for routing traces on a print- ed circuit board. The solution presented is very fast and efficient and for the first time speaks to the question eloquently by way of symbolic statements.

  11. Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature

    NASA Astrophysics Data System (ADS)

    Wysocki, Adam; Elgeti, Jens; Gompper, Gerhard

    2015-05-01

    The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.

  12. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  13. A study of murine bone marrow cells cultured in bioreactors which create an environment which simulated microgravity

    NASA Technical Reports Server (NTRS)

    Lawless, Brother Desales

    1990-01-01

    Previous research indicated that mouse bone marrow cells could be grown in conditions of simulated microgravity. This environment was created in rotating bioreactor vessels. On three attempts mouse cells were grown successfully in the vessels. The cells reached a stage where the concentrations were doubling daily. Phenotypic analysis using a panel of monoclonal antibodies indicated that the cell were hematopoietic pluripotent stem cells. One unsuccessful attempt was made to reestablish the immune system in immunocompromised mice using these cells. Since last summer, several unsuccessful attempts were made to duplicate these results. It was determined by electron microscopy that the cells successfully grown in 1989 contained virus particles. It was suggested that these virally parasitized cells had been immortalized. The work of this summer is a continuation of efforts to grow mouse bone marrow in these vessels. A number of variations of the protocol were introduced. Certified pathogen free mice were used in the repeat experiments. In some attempts the medium of last summer was used; in others Dexture Culture Medium containing Iscove's Medium supplemented with 20 percent horse serum and 10-6 M hydrocortisone. Efforts this summer were directed solely to repeating the work of last summer. Plans were made for investigations if stem cells were isolated. Immortalization of the undifferentiated stem cell would be attempted by transfection with an oncogenic vector. Selective differentiation would be induced in the stem cell line by growing it with known growth factors and immune response modulators. Interest is in identifying any surface antigens unique to stem cells that would help in their characterization. Another goal was to search for markers on stem cells that would distinguish them from stem cells committed to a particular lineage. If the undifferentiated hematopoietic stem cell was obtained, the pathways that would terminally convert it to myeloid, lyphoid, erythroid, or other cell lines would be studied. Transfection with a known gene would be attempted and then conversion to a terminally identifiable cell.

  14. Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac transposase gene delivery system.

    PubMed

    Cunningham, Sharon C; Siew, Susan M; Hallwirth, Claus V; Bolitho, Christine; Sasaki, Natsuki; Garg, Gagan; Michael, Iacovos P; Hetherington, Nicola A; Carpenter, Kevin; de Alencastro, Gustavo; Nagy, Andras; Alexander, Ian E

    2015-08-01

    Liver-targeted gene therapy based on recombinant adeno-associated viral vectors (rAAV) shows promising therapeutic efficacy in animal models and adult-focused clinical trials. This promise, however, is not directly translatable to the growing liver, where high rates of hepatocellular proliferation are accompanied by loss of episomal rAAV genomes and subsequently a loss in therapeutic efficacy. We have developed a hybrid rAAV/piggyBac transposon vector system combining the highly efficient liver-targeting properties of rAAV with stable piggyBac-mediated transposition of the transgene into the hepatocyte genome. Transposition efficiency was first tested using an enhanced green fluorescent protein expression cassette following delivery to newborn wild-type mice, with a 20-fold increase in stably gene-modified hepatocytes observed 4 weeks posttreatment compared to traditional rAAV gene delivery. We next modeled the therapeutic potential of the system in the context of severe urea cycle defects. A single treatment in the perinatal period was sufficient to confer robust and stable phenotype correction in the ornithine transcarbamylase-deficient Spf(ash) mouse and the neonatal lethal argininosuccinate synthetase knockout mouse. Finally, transposon integration patterns were analyzed, revealing 127,386 unique integration sites which conformed to previously published piggyBac data. Using a hybrid rAAV/piggyBac transposon vector system, we achieved stable therapeutic protection in two urea cycle defect mouse models; a clinically conceivable early application of this technology in the management of severe urea cycle defects could be as a bridging therapy while awaiting liver transplantation; further improvement of the system will result from the development of highly human liver-tropic capsids, the use of alternative strategies to achieve transient transposase expression, and engineered refinements in the safety profile of piggyBac transposase-mediated integration. © 2015 by the American Association for the Study of Liver Diseases.

  15. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting.

    PubMed

    Ackermann, Amanda M; Zhang, Jia; Heller, Aryel; Briker, Anna; Kaestner, Klaus H

    2017-03-01

    α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER "knock-in" mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreER T2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. We utilized CRISPR-Cas9 technology to insert an IRES-CreER T2 sequence into the 3' UTR of the Glucagon ( Gcg ) locus in mouse embryonic stem cells (ESCs). Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreER T2 mice. Recombination efficiency in GCG + pancreatic α-cells and glucagon-like peptide 1 positive (GLP1 + ) enteroendocrine L-cells was measured in Gcg-CreER T2 ; Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Tamoxifen injection of Gcg-CreER T2 ; Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively), as well as in first-wave fetal α-cells (36%) and adult enteroendocrine L-cells (33%). Mice homozygous for the Gcg-CreER T2 allele were phenotypically normal. We successfully derived a Gcg-CreER T2 mouse line that expresses CreER T2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice will be a useful tool for performing temporally controlled genetic manipulation specifically in these cell types.

  16. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach

    PubMed Central

    Tannock, Gerald W; Wilson, Charlotte M; Loach, Diane; Cook, Gregory M; Eason, Jocelyn; O'Toole, Paul W; Holtrop, Grietje; Lawley, Blair

    2012-01-01

    Phylogenetic analysis of gut communities of vertebrates is advanced, but the relationships, especially at the trophic level, between commensals that share gut habitats of monogastric animals have not been investigated to any extent. Lactobacillus reuteri strain 100–23 and Lactobacillus johnsonii strain 100–33 cohabit in the forestomach of mice. According to the niche exclusion principle, this should not be possible because both strains can utilise the two main fermentable carbohydrates present in the stomach digesta: glucose and maltose. We show, based on gene transcription analysis, in vitro physiological assays, and in vivo experiments that the two strains can co-exist in the forestomach habitat because 100–23 grows more rapidly using maltose, whereas 100–33 preferentially utilises glucose. Mutation of the maltose phosphorylase gene (malA) of strain 100–23 prevented its growth on maltose-containing culture medium, and resulted in the numerical dominance of 100–33 in the forestomach. The fundamental niche of L. reuteri 100–23 in the mouse forestomach can be defined in terms of ‘glucose and maltose trophism'. However, its realised niche when L. johnsonii 100–33 is present is ‘maltose trophism'. Hence, nutritional adaptations provide niche differentiation that assists cohabitation by the two strains through resource partitioning in the mouse forestomach. This real life, trophic phenomenon conforms to a mathematical model based on in vitro bacterial doubling times, in vitro transport rates, and concentrations of maltose and glucose in mouse stomach digesta. PMID:22094343

  17. A Method for the Immortalization of Newborn Mouse Skin Keratinocytes

    PubMed Central

    Hammiller, Brianna O.; El-Abaseri, Taghrid Bahig; Dlugosz, Andrzej A.; Hansen, Laura A.

    2015-01-01

    Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation. PMID:26284198

  18. Obesity genetics in mouse and human: back and forth, and back again

    PubMed Central

    Yazdi, Fereshteh T.; Clee, Susanne M.

    2015-01-01

    Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide. PMID:25825681

  19. THE INTERACTION OF SOLUBLE HORSERADISH PEROXIDASE WITH MOUSE PERITONEAL MACROPHAGES IN VITRO

    PubMed Central

    Steinman, Ralph M.; Cohn, Zanvil A.

    1972-01-01

    The in vitro interaction of soluble horseradish peroxidase (HRP) with homogeneous mono layers of mouse macrophages has been studied using sensitive biochemical and cytochemical techniques. The compartmentalization of HRP in extracellular and intracellular sites has been quantitatively evaluated. A significant fraction is bound to a serum-derived layer, which coats the surface of culture vessels and may be removed by appropriate washes. Macrophages interiorize HRP as a solute in pinocytic vesicles without appreciable binding of the glycoprotein to the plasma membrane. Uptake is directly proportional to the concentration of HRP in the culture medium. 1 x 106 cells ingest 0.0025% of the administered load per hr over a wide range of concentrations. Cytochemically, all demonstrable HRP is sequestered within the endocytic vesicles and secondary lysosomes of the vacuolar apparatus. After uptake, the enzymatic activity of HRP is inactivated exponentially with a half-life of 7–9 hr, until enzyme is no longer detectable. When macrophages have pinocytosed trace-labeled HRP-125I, cell-associated isotope disappears with a t ½ of 20–30 hr and they release monoiodotyrosine-125I into the culture medium. We were unable to obtain evidence that significant amounts of HRP (>2%) can be exocytosed after uptake, can exist intact on the cell surface, or can be digested extracellularly. It is difficult to reconcile these observations with several of the postulated mechanisms whereby macrophages are thought to play a prominent role in the induction of an immune response. PMID:4347251

  20. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

    PubMed

    Gil-Bona, Ana; Reales-Calderon, Jose A; Parra-Giraldo, Claudia M; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  1. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    PubMed Central

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  2. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    PubMed Central

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes. PMID:18351724

  3. Quantification, distribution, and possible source of bacterial biofilm in mouse automated watering systems.

    PubMed

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly M S; Deininger, Rolf A; Dysko, Robert C

    2008-03-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes.

  4. An optimized small animal tumour model for experimentation with low energy protons.

    PubMed

    Beyreuther, Elke; Brüchner, Kerstin; Krause, Mechthild; Schmidt, Margret; Szabo, Rita; Pawelke, Jörg

    2017-01-01

    The long-term aim of developing laser based particle acceleration towards clinical application requires not only substantial technological progress, but also the radiobiological characterization of the resulting ultra-short and ultra-intensive particle beam pulses. After comprehensive cell studies a mouse ear tumour model was established allowing for the penetration of low energy protons (~20 MeV) currently available at laser driven accelerators. The model was successfully applied for a first tumour growth delay study with laser driven electrons, whereby the need of improvements crop out. To optimise the mouse ear tumour model with respect to a stable, high take rate and a lower number of secondary tumours, Matrigel was introduced for tumour cell injection. Different concentrations of two human tumour cell lines (FaDu, LN229) and Matrigel were evaluated for stable tumour growth and fulfilling the allocation criteria for irradiation experiments. The originally applied cell injection with PBS was performed for comparison and to assess the long-term stability of the model. Finally, the optimum suspension of cells and Matrigel was applied to determine applicable dose ranges for tumour growth delay studies by 200 kV X-ray irradiation. Both human tumour models showed a high take rate and exponential tumour growth starting at a volume of ~10 mm3. As disclosed by immunofluorescence analysis these small tumours already interact with the surrounding tissue and activate endothelial cells to form vessels. The formation of delimited, solid tumours at irradiation size was shown by standard H&E staining and a realistic dose range for inducing tumour growth delay without permanent tumour control was obtained for both tumour entities. The already established mouse ear tumour model was successfully upgraded now providing stable tumour growth with high take rate for two tumour entities (HNSCC, glioblastoma) that are of interest for future irradiation experiments at experimental accelerators.

  5. Transmission of trisomy decreases with maternal age in mouse models of Down syndrome, mirroring a phenomenon in human Down syndrome mothers.

    PubMed

    Stern, Shani; Biron, David; Moses, Elisha

    2016-07-11

    Down syndrome incidence in humans increases dramatically with maternal age. This is mainly the result of increased meiotic errors, but factors such as differences in abortion rate may play a role as well. Since the meiotic error rate increases almost exponentially after a certain age, its contribution to the overall incidence aneuploidy may mask the contribution of other processes. To focus on such selection mechanisms we investigated transmission in trisomic females, using data from mouse models and from Down syndrome humans. In trisomic females the a-priori probability for trisomy is independent of meiotic errors and thus approximately constant in the early embryo. Despite this, the rate of transmission of the extra chromosome decreases with age in females of the Ts65Dn and, as we show, for the Tc1 mouse models for Down syndrome. Evaluating progeny of 73 Tc1 births and 112 Ts65Dn births from females aged 130 days to 250 days old showed that both models exhibit a 3-fold reduction of the probability to transmit the trisomy with increased maternal ageing. This is concurrent with a 2-fold reduction of litter size with maternal ageing. Furthermore, analysis of previously reported 30 births in Down syndrome women shows a similar tendency with an almost three fold reduction in the probability to have a Down syndrome child between a 20 and 30 years old Down syndrome woman. In the two types of mice models for Down syndrome that were used for this study, and in human Down syndrome, older females have significantly lower probability to transmit the trisomy to the offspring. Our findings, taken together with previous reports of decreased supportive environment of the older uterus, add support to the notion that an older uterus negatively selects the less fit trisomic embryos.

  6. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation

    PubMed Central

    Li, Xiaoping; Schilkey, Faye; Smith, Geoffrey B.

    2018-01-01

    Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth. PMID:29768440

  7. A multilevel approach to examining cephalopod growth using Octopus pallidus as a model.

    PubMed

    Semmens, Jayson; Doubleday, Zoë; Hoyle, Kate; Pecl, Gretta

    2011-08-15

    Many aspects of octopus growth dynamics are poorly understood, particularly in relation to sub-adult or adult growth, muscle fibre dynamics and repro-somatic investment. The growth of 5 month old Octopus pallidus cultured in the laboratory was investigated under three temperature regimes over a 12 week period: seasonally increasing temperatures (14-18°C); seasonally decreasing temperatures (18-14°C); and a constant temperature mid-way between seasonal peaks (16°C). Differences in somatic growth at the whole-animal level, muscle tissue structure and rate of gonad development were investigated. Continuous exponential growth was observed, both at a group and at an individual level, and there was no detectable effect of temperature on whole-animal growth rate. Juvenile growth rate (from 1 to 156 days) was also monitored prior to the controlled experiment; exponential growth was observed, but at a significantly faster rate than in the older experimental animals, suggesting that O. pallidus exhibit a double-exponential two-phase growth pattern. There was considerable variability in size-at-age even between individuals growing under identical thermal regimes. Animals exposed to seasonally decreasing temperatures exhibited a higher rate of gonad development compared with animals exposed to increasing temperatures; however, this did not coincide with a detectable decline in somatic growth rate or mantle condition. The ongoing production of new mitochondria-poor and mitochondria-rich muscle fibres (hyperplasia) was observed, indicated by a decreased or stable mean muscle fibre diameter concurrent with an increase in whole-body size. Animals from both seasonal temperature regimes demonstrated higher rates of new mitochondria-rich fibre generation relative to those from the constant temperature regime, but this difference was not reflected in a difference in growth rate at the whole-body level. This is the first study to record ongoing hyperplasia in the muscle tissue of an octopus species, and provides further insight into the complex growth dynamics of octopus.

  8. Development and growth of fruit bodies and crops of the button mushroom, Agaricus bisporus.

    PubMed

    Straatsma, Gerben; Sonnenberg, Anton S M; van Griensven, Leo J L D

    2013-10-01

    We studied the appearance of fruit body primordia, the growth of individual fruit bodies and the development of the consecutive flushes of the crop. Relative growth, measured as cap expansion, was not constant. It started extremely rapidly, and slowed down to an exponential rate with diameter doubling of 1.7 d until fruit bodies showed maturation by veil breaking. Initially many outgrowing primordia were arrested, indicating nutritional competition. After reaching 10 mm diameter, no growth arrest occurred; all growing individuals, whether relatively large or small, showed an exponential increase of both cap diameter and biomass, until veil breaking. Biomass doubled in 0.8 d. Exponential growth indicates the absence of competition. Apparently there exist differential nutritional requirements for early growth and for later, continuing growth. Flushing was studied applying different picking sizes. An ordinary flushing pattern occurred at an immature picking size of 8 mm diameter (picking mushrooms once a day with a diameter above 8 mm). The smallest picking size yielded the highest number of mushrooms picked, confirming the competition and arrested growth of outgrowing primordia: competition seems less if outgrowing primordia are removed early. The flush duration (i.e. between the first and last picking moments) was not affected by picking size. At small picking size, the subsequent flushes were not fully separated in time but overlapped. Within 2 d after picking the first individuals of the first flush, primordia for the second flush started outgrowth. Our work supports the view that the acquisition of nutrients by the mycelium is demand rather than supply driven. For formation and early outgrowth of primordia, indications were found for an alternation of local and global control, at least in the casing layer. All these data combined, we postulate that flushing is the consequence of the depletion of some unknown specific nutrition required by outgrowing primordia. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    PubMed

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (<1 mm) respiration in a sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  10. Nature of the wiggle instability of galactic spiral shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less

  11. Physical, chemical and kinetic factors affecting prion infectivity

    PubMed Central

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Jackson, Graham S.; Collinge, John

    2016-01-01

    ABSTRACT The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  12. Physical, chemical and kinetic factors affecting prion infectivity.

    PubMed

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C; Wadsworth, Jonathan D F; Clarke, Anthony R; Jackson, Graham S; Collinge, John

    2016-05-03

    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.

  13. Habituation of self-motion perception following unidirectional angular velocity steps.

    PubMed

    Clément, Gilles; Terlevic, Robert

    2016-09-07

    We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.

  14. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age

    PubMed Central

    Ruby, J Graham; Smith, Megan

    2018-01-01

    The longest-lived rodent, the naked mole-rat (Heterocephalus glaber), has a reported maximum lifespan of >30 years and exhibits delayed and/or attenuated age-associated physiological declines. We questioned whether these mouse-sized, eusocial rodents conform to Gompertzian mortality laws by experiencing an exponentially increasing risk of death as they get older. We compiled and analyzed a large compendium of historical naked mole-rat lifespan data with >3000 data points. Kaplan-Meier analyses revealed a substantial portion of the population to have survived at 30 years of age. Moreover, unlike all other mammals studied to date, and regardless of sex or breeding-status, the age-specific hazard of mortality did not increase with age, even at ages 25-fold past their time to reproductive maturity. This absence of hazard increase with age, in defiance of Gompertz’s law, uniquely identifies the naked mole-rat as a non-aging mammal, confirming its status as an exceptional model for biogerontology. PMID:29364116

  15. Toward a Mechanistic Understanding of Environmentally Forced Zoonotic Disease Emergence: Sin Nombre Hantavirus

    PubMed Central

    Carver, Scott; Mills, James N.; Parmenter, Cheryl A.; Parmenter, Robert R.; Richardson, Kyle S.; Harris, Rachel L.; Douglass, Richard J.; Kuenzi, Amy J.; Luis, Angela D.

    2015-01-01

    Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human–reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease's incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure. We found that disease cases were greatest in arid states and declined exponentially with increasing precipitation. Within arid environments, relatively rare climatic conditions (e.g., El Niño) are associated with increased rainfall and reservoir abundance, producing more frequent virus transmission and host dispersal. We suggest that deer mice increase their occupancy of peridomestic structures during spring–summer, amplifying intraspecific transmission and human infection risk. Disease incidence in arid states may increase with predicted climatic changes. Mechanistic approaches incorporating reservoir behavior, reservoir–human interactions, and pathogen spillover could enhance our understanding of global hantavirus ecology, with applications to other directly transmitted zoonoses. PMID:26955081

  16. Theory, computation, and application of exponential splines

    NASA Technical Reports Server (NTRS)

    Mccartin, B. J.

    1981-01-01

    A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.

  17. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  18. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    PubMed

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  19. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    PubMed

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  20. SU-E-T-259: Particle Swarm Optimization in Radial Dose Function Fitting for a Novel Iodine-125 Seed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, X; Duan, J; Popple, R

    2014-06-01

    Purpose: To determine the coefficients of bi- and tri-exponential functions for the best fit of radial dose functions of the new iodine brachytherapy source: Iodine-125 Seed AgX-100. Methods: The particle swarm optimization (PSO) method was used to search for the coefficients of the biand tri-exponential functions that yield the best fit to data published for a few selected radial distances from the source. The coefficients were encoded into particles, and these particles move through the search space by following their local and global best-known positions. In each generation, particles were evaluated through their fitness function and their positions were changedmore » through their velocities. This procedure was repeated until the convergence criterion was met or the maximum generation was reached. All best particles were found in less than 1,500 generations. Results: For the I-125 seed AgX-100 considered as a point source, the maximum deviation from the published data is less than 2.9% for bi-exponential fitting function and 0.2% for tri-exponential fitting function. For its line source, the maximum deviation is less than 1.1% for bi-exponential fitting function and 0.08% for tri-exponential fitting function. Conclusion: PSO is a powerful method in searching coefficients for bi-exponential and tri-exponential fitting functions. The bi- and tri-exponential models of Iodine-125 seed AgX-100 point and line sources obtained with PSO optimization provide accurate analytical forms of the radial dose function. The tri-exponential fitting function is more accurate than the bi-exponential function.« less

  1. Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser

    USGS Publications Warehouse

    Osborne, Thomas H.; Jamieson, Heather E.; Hudson-Edwards, Karen A.; Nordstrom, D. Kirk; Walker, Stephen R.; Ward, Seamus A.; Santini, Joanne M.

    2010-01-01

    Background: Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold environments (i.e. < 10°C).Results: Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples (which differed in arsenite concentration) collected from one biofilm. 'Species' (sequence) richness did not differ between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth phase and to grow at a broad range of temperatures (4-25°C). Its arsenite oxidase was constitutively expressed and functioned over a broad temperature range.Conclusions: The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the ability to grow below 10°C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation in moderate to cold climates.

  2. Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy

    PubMed Central

    Afzal, Muhammad Z.; Reiter, Melanie; Gastonguay, Courtney; McGivern, Jered V.; Guan, Xuan; Ge, Zhi-Dong; Mack, David L.; Childers, Martin K.; Ebert, Allison D.; Strande, Jennifer L.

    2016-01-01

    Background Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy. PMID:26940570

  3. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development

    PubMed Central

    Ataca, Dalya; Caikovski, Marian; Piersigilli, Alessandra; Moulin, Alexandre; Benarafa, Charaf; Earp, Sarah E.; Guri, Yakir; Kostic, Corinne; Arsenivic, Yvan; Soininen, Raija; Apte, Suneel S.

    2016-01-01

    ABSTRACT The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain ‘orphan’ proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis. PMID:27638769

  4. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells.

    PubMed

    Parvari, Soraya; Yazdekhasti, Hossein; Rajabi, Zahra; Gerayeli Malek, Valliollah; Rastegar, Tayebeh; Abbasi, Mehdi

    2016-11-01

    An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.

  5. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  6. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites

    PubMed Central

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  7. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression.

    PubMed

    Di Lorenzo, Arianna; Nabavi, Seyed Fazel; Sureda, Antoni; Moghaddam, Akbar Hajizadeh; Khanjani, Sedigheh; Arcidiaco, Patrizia; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-03-01

    Growing evidence suggests that oxidative stress plays a role in the development of chronic diseases such as cardiovascular disease and some psychiatric disorders. Tea consumption exerts beneficial effects against damage induced by cerebral ischemia-reperfusion in ischemic stroke and depressive symptoms in depression. The aim of this study was to evaluate, in vivo, the protective activity of green tea (GT) and GABA green tea (GGT) against post-stroke depression (PSD), a common consequence of stroke. The antidepressive-like effects of GT and GGT were determined by behavioral tests in a mouse model of post-stroke depression. The antioxidant activity was evaluated by GSH, SOD, and TBARS measurements on mouse brain. The chemical composition of tea extracts was characterized through chromatographic methods. GGT and GT resulted active in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior, and at least in part, antioxidant endogenous defenses. The higher polyphenol, theanine, glutamine, and caffeine content may justify the higher activity found in GGT. This work represents the first attempt to demonstrate the positive effect of tea, and especially GGT, on post-stroke depression and to correlate this effect with the antioxidant activity and phytochemical composition of tea. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Challenges for dynamic energy budget theory. Comment on ;Physics of metabolic organization; by Marko Jusup et al.

    NASA Astrophysics Data System (ADS)

    Nisbet, Roger M.

    2017-03-01

    Jusup et al. [1] provide a comprehensive review of Dynamic Energy Budget (DEB) theory - a theory of metabolic organization that has its roots in a model by S.A.L.M Kooijman [2] and has evolved over three decades into a remarkable general theory whose use appears to be growing exponentially. The definitive text on DEB theory [3] is a challenging (though exceptionally rewarding) read, and previous reviews (e.g. [4,5]) have provided focused summaries of some of its main themes, targeted at specific groups of readers. The strong case for a further review is well captured in the abstract: ;Hitherto, the foundations were more accessible to physicists or mathematicians, and the applications to biologists, causing a dichotomy in what always should have been a single body of work.; In response to this need, Jusup et al. provide a review that combines a lucid, rigorous exposition of the core components of DEB theory with a diverse collection of DEB applications. They also highlight some recent advances, notably the rapidly growing on-line database of DEB model parameters (451 species on 15 August 2016 according to [1], now, just a few months later, over 500 species).

  9. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  10. It's not just about climate change - What about soils?

    USGS Publications Warehouse

    Goldhaber, Martin B.

    2010-01-01

    Vladimir Vernadsky was one of the giants of geochemistry. Considered the founder of the fi eld of biogeochemistry and a true pioneer in “whole Earth” studies, he realized by 1945 that “Man under our very eyes is becoming a mighty and ever-growing geological force.” In the intervening 65 years, his “ever-growing force” has become a tidal wave. The global population has been increasing exponentially since the beginning of the industrial revolution, and as a result has increased by nearly a factor of three between 1945, when his observation was published, and today (see fi gure). Current projections anticipate a population exceeding 9 billion by 2050. This explosive human population growth has been fueled by ancient hydrocarbons and has come with high costs. Most Earth scientists are concerned with the implications of the rapid accumulation of greenhouse gases in the atmosphere. The consequences include a climate state without polar ice, acidifying oceans, and increasingly variable water fl uxes. The rate and extent of these and many other negative climate-related impacts, and how to mitigate them, have caused a vigorous discussion on climate change that is in the news on a nearly daily basis.

  11. The Twilight Zone between Protein Order and Disorder

    PubMed Central

    Szilágyi, A.; Györffy, D.; Závodszky, P.

    2008-01-01

    The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the “twilight zone”) is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the “twilight zone”, size can determine order, as illustrated by the example of two-state homodimers. PMID:18441033

  12. The twilight zone between protein order and disorder.

    PubMed

    Szilágyi, A; Györffy, D; Závodszky, P

    2008-08-01

    The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the "twilight zone") is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the "twilight zone", size can determine order, as illustrated by the example of two-state homodimers.

  13. Optimal energy growth in a stably stratified shear flow

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  14. A study of perturbations in scalar-tensor theory using 1 + 3 covariant approach

    NASA Astrophysics Data System (ADS)

    Ntahompagaze, Joseph; Abebe, Amare; Mbonye, Manasse

    This work discusses scalar-tensor theories of gravity, with a focus on the Brans-Dicke sub-class, and one that also takes note of the latter’s equivalence with f(R) gravitation theories. A 1 + 3 covariant formalism is used in this case to discuss covariant perturbations on a background Friedmann-Laimaître-Robertson-Walker (FLRW) spacetime. Linear perturbation equations are developed based on gauge-invariant gradient variables. Both scalar and harmonic decompositions are applied to obtain second-order equations. These equations can then be used for further analysis of the behavior of the perturbation quantities in such a scalar-tensor theory of gravitation. Energy density perturbations are studied for two systems, namely for a scalar fluid-radiation system and for a scalar fluid-dust system, for Rn models. For the matter-dominated era, it is shown that the dust energy density perturbations grow exponentially, a result which agrees with those already existing in the literatures. In the radiation-dominated era, it is found that the behavior of the radiation energy-density perturbations is oscillatory, with growing amplitudes for n > 1, and with decaying amplitudes for 0 < n < 1. This is a new result.

  15. Is nitrogen the next carbon?

    NASA Astrophysics Data System (ADS)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  16. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  17. Using Swarming Agents for Scalable Security in Large Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, Michael; White, Jacob L.; Fulp, Errin W.

    2011-09-23

    The difficulty of securing computer infrastructures increases as they grow in size and complexity. Network-based security solutions such as IDS and firewalls cannot scale because of exponentially increasing computational costs inherent in detecting the rapidly growing number of threat signatures. Hostbased solutions like virus scanners and IDS suffer similar issues, and these are compounded when enterprises try to monitor these in a centralized manner. Swarm-based autonomous agent systems like digital ants and artificial immune systems can provide a scalable security solution for large network environments. The digital ants approach offers a biologically inspired design where each ant in the virtualmore » colony can detect atoms of evidence that may help identify a possible threat. By assembling the atomic evidences from different ant types the colony may detect the threat. This decentralized approach can require, on average, fewer computational resources than traditional centralized solutions; however there are limits to its scalability. This paper describes how dividing a large infrastructure into smaller managed enclaves allows the digital ant framework to effectively operate in larger environments. Experimental results will show that using smaller enclaves allows for more consistent distribution of agents and results in faster response times.« less

  18. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  19. Software Design Improvements. Part 1; Software Benefits and Limitations

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?

  20. Webcam classification using simple features

    NASA Astrophysics Data System (ADS)

    Pramoun, Thitiporn; Choe, Jeehyun; Li, He; Chen, Qingshuang; Amornraksa, Thumrongrat; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Thousands of sensors are connected to the Internet and many of these sensors are cameras. The "Internet of Things" will contain many "things" that are image sensors. This vast network of distributed cameras (i.e. web cams) will continue to exponentially grow. In this paper we examine simple methods to classify an image from a web cam as "indoor/outdoor" and having "people/no people" based on simple features. We use four types of image features to classify an image as indoor/outdoor: color, edge, line, and text. To classify an image as having people/no people we use HOG and texture features. The features are weighted based on their significance and combined. A support vector machine is used for classification. Our system with feature weighting and feature combination yields 95.5% accuracy.

Top