Emissions & Generation Resource Integrated Database (eGRID), eGRID2010
The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes.eGRID2010 contains the complete release of year 2007 data, as well as years 2005 and 2004 data. Excel spreadsheets, full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are included in this data set. The Archived data in eGRID2002 contain years 1996 through 2000 data.For year 2007 data, the first Microsoft Excel workbook, Plant, contains boiler, generator, and plant spreadsheets. The second Microsoft Excel workbook, Aggregation, contains aggregated data by state, electric generating company, parent company, power control area, eGRID subregion, NERC region, and U.S. total levels. The third Microsoft Excel workbook, ImportExport, contains state import-export data, as well as U.S. generation and consumption data for years 2007, 2005, and 2004. For eGRID data for years 2005 and 2004, a user friendly web application, eGRIDweb, is available to select, view, print, and export specified data.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... 2020 and by 80% of 1990 levels by 2050. Power generation is a major source of carbon emissions, with 74% of power generated in the United Kingdom coming from fossil fuels. As the government seeks to reduce... power. Highly developed, sophisticated, and diversified, the UK market is the single largest export...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jialin Frank; Martínez, Maria Gabriela; Anderson, C Lindsay
This work presents a preliminary analysis considering impact of a grid-connected microgrid on network transmission of the power system. The locational marginal prices of the power system are used to strategically place the microgrid to avoid congestion problems. In addition, a Monte Carlo simulation approach is implemented to confirm that network congestion can be attenuated if appropriate price-based signals are set to define the import and export dynamic between the two systems.
Manonmani, N.; Subbiah, V.; Sivakumar, L.
2015-01-01
The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation. PMID:26516636
Manonmani, N; Subbiah, V; Sivakumar, L
2015-01-01
The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.
76 FR 80338 - Secretarial India Infrastructure Business Development Mission, March 25-30, 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
.../ from consumers on a near real-time basis and improve system reliability Moving to a smart grid to... technologies in India. The real challenge in the power sector in India lies in managing the upgrading of the....export.gov/newsletter/march2008/initiatives.html for additional information). Expenses for travel...
Tucker RNG: Little machine, big impact
Maureen Essen; Caroline Morris; Nathaniel Anderson
2014-01-01
When the Tucker RNG thermal conversion unit connected to the power grid for the first time April 23 in Charlotte, N.C., Richard Tucker, president of Tucker Engineering Associates, could feel the weight of the world coming off his shoulders. After more than a decade of developing his high-temperature, fast pyrolysis system, he was finally seeing it export electricity...
Border Collision of Three-Phase Voltage-Source Inverter System with Interacting Loads
NASA Astrophysics Data System (ADS)
Li, Zhen; Liu, Bin; Li, Yining; Wong, Siu-Chung; Liu, Xiangdong; Huang, Yuehui
As a commercial interface, three-phase voltage-source inverters (VSI) are commonly equipped for energy conversion to export DC power from most distributed generation (DG) to the AC utility. Not only do voltage-source converters take charge of converting the power to the loads but support the grid voltage at the point of common connection (PCC) as well, which is dependent on the condition of the grid-connected loads. This paper explores the border collision and its interacting mechanism among the VSI, resistive interacting loads and grids, which manifests as the alternating emergence of the inverting and rectifying operations, where the normal operation is terminated and a new one is assumed. Their mutual effect on the power quality under investigation will cause the circuital stability issue and further deteriorate the voltage regulation capability of VSI by dramatically raising the grid voltage harmonics. It is found in a design-oriented view that the border collision operation will be induced within the unsuitable parameter space with respect to transmission lines of AC grid, resistive loads and internal resistance of VSI. The physical phenomenon is also identified by the theoretical analysis. With numerical simulations for various circuit conditions, the corresponding bifurcation boundaries are collected, where the stability of the system is lost via border collision.
California | Midmarket Solar Policies in the United States | Solar Research
interconnection fee ($75-$150), pay all "non-bypassable" charges for all electricity consumed from the distribution grid, non-export facilities connecting to an IOU's transmission grid and all net-metered systems Interconnection All non-exporting systems or net metering facility Fast track Exporting facility â¤3MW on a 12 kV
Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; Eurek, K.; Mai, T.
2013-02-01
The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact ofmore » variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.« less
Modeling the value of integrated U.S. and Canadian power sector expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less
Modeling the value of integrated U.S. and Canadian power sector expansion
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
2017-03-15
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouidui, Thierry; Wetter, Michael
SimulatorToFMU is a software package written in Python which allows users to export a memoryless Python-driven simulation program or script as a Functional Mock-up Unit (FMU) for model exchange or co-simulation.In CyDER (Cyber Physical Co-simulation Platform for Distributed Energy Resources in Smart Grids), SimulatorToFMU will allow exporting OPAL-RT as an FMU. This will enable OPAL-RT to be linked to CYMDIST and GridDyn FMUs through a standardized open source interface.
NASA Astrophysics Data System (ADS)
Almansour, Faris Abdullah
The advantages of Renewable Energy Sources (RES) are much more than the disadvantages, RES such as solar, wind energy, biomass, and geothermal, which can be used for generating distributed power but cannot directly replace the existing electric energy grid technologies. The latter are far too well established to abandon, while the new RES technologies are not sufficiently developed to meet the total energy demand. Therefore, it is sensible to gradually infuse RES into existing grids and transform the system over time Saudi Arabia (SA) is a semi-developed nation with a population of over twenty nine million people. It is the largest country in western Asia with an area of 2.225MKm2. SA's largest export is oil, owning 1/5 of the world's supply, and producing twelve million barrels a day. However, SA is far behind in developing a smart grid and RES. A lot of this is to do with lack of participation by both the government and the private business sector. Currently SA spends over $13B a year on generating electricity from oil. SA is the largest consumer of petroleum in the Middle East, due to the high demand for transportation and electricity generation. According to the Saudi electrical company, the total amount of generated power in 2011 was 190.280GW. In addition, SA's electricity consumption is currently growing 8% a year. SA aims to generate 55GW of renewable energy by 2020, in order to free up fossil fuels for export. 41GW of the 55GW will be generated from solar energy. Smart grid technologies are also under consideration in SA; this will allow an efficient and reliable way to control the energy in the future. In addition, the potential for wind and geothermal energy is very high. In this thesis, there is a full exploration of RES components which are critical to manage carbon emission and the limitations of the current grid to the new RES technologies, which face barriers to full-scale deployment. A study in Dhahran, SA has been simulated on a installing a Dual-Tariff PV system using HOMER. The result of the simulation has been discussed, analyzed, and plotted. We also give evidence in the thesis how useful the small PV systems can be as oppose to the larger scale system that must deal with location issues.
NASA Astrophysics Data System (ADS)
Relhan, Nemika
India's electricity generation is primarily from coal. As a result of interconnection of grid and establishment of pithead power plants, there has been increased electricity transfer from one region to the other. This results in imbalance of pollution loads between the communities located in generation vis-a-vis consumption region. There may be some states, which are major power generation centres and hence are facing excessive environmental degradation. On the other hand, electricity importing regions are reaping the benefits without paying proper charges for it because present tariff structure does not include the full externalities in it. The present study investigates the distributional implications in terms of air pollution loads between the electricity generation and consumption regions at the state level. It identifies the major electricity importing and exporting states in India. Next, as a case study, it estimates the health damage as a result of air pollution from thermal power plants (TPPs) located in a critically polluted region that is one of the major generator and exporter of electricity. The methodology used to estimate the health damage is based on impact pathway approach. In this method, air pollution modelling has been performed in order to estimate the gridded Particulate Matter (PM) concentration at various receptor locations in the study domain. The air quality modeling exercise helps to quantify the air pollution concentration in each grid and also apportion the contribution of power plants to the total concentration. The health impacts as a result of PM have been estimated in terms of number of mortality and morbidity cases using Concentration Response Function (CRF's) available in the literature. Mortality has been converted into Years of Life Lost (YOLL) using life expectancy table and age wise death distribution. Morbidity has been estimated in terms of number of cases with respect to various health end points. To convert this health damage into economic loss, the YOLL has been multiplied with Value of Life Year Lost (VOLY). VOLY has been derived from two approaches namely, the Gross Domestic Product (GDP) per capita i.e. using human capital approach and Value of Statistical Life (VOSL) i.e. using Willingness to Pay (WTP) approach derived from Indian revealed preference study. The morbidity damage has been estimated using cost of illness values available in the literature. A range of result has been presented depending on the CRF's used to estimates YOLL and morbidity and the values used to convert these health damages into monetary estimates. The study further suggests a broad framework of compensatory mechanism that includes 1) amount of compensation to be paid 2) mechanism to collect the compensation fund and 3) mechanism to compensate the affected communities. Both, curative and mitigative measures to protect the communities from the pollution generated in the power exporting region have been suggested.
GRIDGEN Version 1.0: a computer program for generating unstructured finite-volume grids
Lien, Jyh-Ming; Liu, Gaisheng; Langevin, Christian D.
2015-01-01
GRIDGEN is a computer program for creating layered quadtree grids for use with numerical models, such as the MODFLOW–USG program for simulation of groundwater flow. The program begins by reading a three-dimensional base grid, which can have variable row and column widths and spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously divide into four any cell intersecting user-provided refinement features (points, lines, and polygons) until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using hydrologic features to control where refinement is added.
Decompositions of injection patterns for nodal flow allocation in renewable electricity networks
NASA Astrophysics Data System (ADS)
Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin
2017-08-01
The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.
NASA Astrophysics Data System (ADS)
Elliott, David
2017-07-01
As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.
PLOT3D Export Tool for Tecplot
NASA Technical Reports Server (NTRS)
Alter, Stephen
2010-01-01
The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.
The Himalayan hydro machine and space transmission power systems - An Asian dream of 21st century
NASA Astrophysics Data System (ADS)
Admoddie, M.
The advantages and disadvantages for the development of hydroelectric power are assessed for the Himalayan Rectangle, an area rising 1500 km north of a baseline between Karachi and Mandalay. This area has the potential for possessing one of the world's greatest power production capabilities. Among the disadvantages cited are the political instability and religious fundamentalism of the area, the bankrupt governments, environmental degradation, and inefficient power and irrigation systems. The advantages include the millions of talented and enterprising people in the region awaiting higher opportunities who are eager to improve their families' living standards and the large untapped hydropower resources. The concepts for hydropower development are discussed and go beyond the technologies of power and water. They include catchment ecodevelopment strategies with massive afforestation plans, setting up plans to strengthen village-level institutions to manage local natural biomass and water assets, the conversion of this regional hydropower potential into a subcontinental power system, and the exporting of power and the development of an interregional and international power grid by 2030, when both oil and local ecosystems would be dangerously depleted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieman, Autumn
2016-02-26
The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280more » Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.« less
Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model
NASA Astrophysics Data System (ADS)
Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi
2018-06-01
In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... integrated U.S. natural gas pipeline system. GLLC notes that due to the Gulf LNG Terminal's direct access to multiple major interstate pipelines and indirect access to the national gas pipeline grid, the Project's... possible impacts that the Export Project might have on natural gas supply and pricing. Navigant's analysis...
Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids
NASA Astrophysics Data System (ADS)
Forbes, Kevin F.; St. Cyr, O. C.
2008-10-01
This study uses local (ground-based) magnetometer data as a proxy for geomagnetically induced currents (GICs) to address whether there is a space weather/electricity market relationship in 12 geographically disparate power grids: Eirgrid, the power grid that serves the Republic of Ireland; Scottish and Southern Electricity, the power grid that served northern Scotland until April 2005; Scottish Power, the power grid that served southern Scotland until April 2005; the power grid that serves the Czech Republic; E.ON Netz, the transmission system operator in central Germany; the power grid in England and Wales; the power grid in New Zealand; the power grid that serves the vast proportion of the population in Australia; ISO New England, the power grid that serves New England; PJM, a power grid that over the sample period served all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia; NYISO, the power grid that serves New York State; and the power grid in the Netherlands. This study tests the hypothesis that GIC levels (proxied by the time variation of local magnetic field measurements (dH/dt)) and electricity grid conditions are related using Pearson's chi-squared statistic. The metrics of power grid conditions include measures of electricity market imbalances, energy losses, congestion costs, and actions by system operators to restore grid stability. The results of the analysis indicate that real-time market conditions in these power grids are statistically related with the GIC proxy.
Construction and application research of Three-dimensional digital power grid in Southwest China
NASA Astrophysics Data System (ADS)
Zhou, Yang; Zhou, Hong; You, Chuan; Jiang, Li; Xin, Weidong
2018-01-01
With the rapid development of Three-dimensional (3D) digital design technology in the field of power grid construction, the data foundation and technical means of 3D digital power grid construction approaches perfection. 3D digital power grid has gradually developed into an important part of power grid construction and management. In view of the complicated geological conditions in Southwest China and the difficulty in power grid construction and management, this paper is based on the data assets of Southwest power grid, and it aims at establishing a 3D digital power grid in Southwest China to provide effective support for power grid construction and operation management. This paper discusses the data architecture, technical architecture and system design and implementation process of the 3D digital power grid construction through teasing the key technology of 3D digital power grid. The application of power grid data assets management, transmission line corridor planning, geological hazards risk assessment, environmental impact assessment in 3D digital power grid are also discussed and analysed.
Aspects on HTS applications in confined power grids
NASA Astrophysics Data System (ADS)
Arndt, T.; Grundmann, J.; Kuhnert, A.; Kummeth, P.; Nick, W.; Oomen, M.; Schacherer, C.; Schmidt, W.
2014-12-01
In an increasing number of electric power grids the share of distributed energy generation is also increasing. The grids have to cope with a considerable change of power flow, which has an impact on the optimum topology of the grids and sub-grids (high-voltage, medium-voltage and low-voltage sub-grids) and the size of quasi-autonomous grid sections. Furthermore the stability of grids is influenced by its size. Thus special benefits of HTS applications in the power grid might become most visible in confined power grids.
NASA Astrophysics Data System (ADS)
Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian
2018-02-01
The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.
Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid
NASA Astrophysics Data System (ADS)
Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei
2018-02-01
As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.
NASA Astrophysics Data System (ADS)
Tian, Zhang; Yanfeng, Gong
2017-05-01
In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.
NASA Astrophysics Data System (ADS)
Feng, Peilei; Xu, Tianqi; Liu, Xiaoxin; Jan, Lisheng; Dai, Xiaozhong; Cai, Pengcheng
2018-01-01
Nujiang power grid is at the end of the Yunnan power grid, which is the side of power supply. Due to the regional restrictions and the lag of economic development and other factors, the structure of the power grid in Nujiang is relatively weak, and the voltage of the regional power grid is more prominent. Based on analysis on voltage exceeding limits of Nujiang different power grid, combined with the operating characteristics of regional power grid and reactive power compensation measures, this paper proposes measures for adjustment of Nujiang grid voltage, and analyses the result of adjustment of voltage exceeding limits, which can effectively improve the voltage and power quality.
77 FR 11515 - Application to Export Electric Energy; NRG Power Marketing LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... DEPARTMENT OF ENERGY [OE Docket No. EA-384] Application to Export Electric Energy; NRG Power... electric energy from the United States to Mexico pursuant to section 202(e) of the Federal Power Act (FPA... requested. The electric energy that NRGPML proposes to export to Mexico would be surplus energy purchased...
Sustainable Data Evolution Technology for Power Grid Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
The SDET Tool is used to create open-access power grid data sets and facilitate updates of these data sets by the community. Pacific Northwest National Laboratory (PNNL) and its power industry and software vendor partners are developing an innovative sustainable data evolution technology (SDET) to create open-access power grid datasets and facilitate updates to these datasets by the power grid community. The objective is to make this a sustained effort within and beyond the ARPA-E GRID DATA program so that the datasets can evolve over time and meet the current and future needs for power grid optimization and potentially othermore » applications in power grid operation and planning.« less
Development and bottlenecks of renewable electricity generation in China: a critical review.
Hu, Yuanan; Cheng, Hefa
2013-04-02
This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.
75 FR 39919 - Information Systems, Technical Advisory Committee; Notice of Partially Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... export controls applicable to information systems equipment and technology. Wednesday, July 28 Public Session 1. Welcome and Introductions. 2. Working Group Reports. 3. Smart Grid. 4. Civil Satellite...
The impact of the topology on cascading failures in a power grid model
NASA Astrophysics Data System (ADS)
Koç, Yakup; Warnier, Martijn; Mieghem, Piet Van; Kooij, Robert E.; Brazier, Frances M. T.
2014-05-01
Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly assessed by purely topological approaches, that fail to capture the essence of electric power flow. This paper proposes a metric, the effective graph resistance, to relate the topology of a power grid to its robustness against cascading failures by deliberate attacks, while also taking the fundamental characteristics of the electric power grid into account such as power flow allocation according to Kirchhoff laws. Experimental verification on synthetic power systems shows that the proposed metric reflects the grid robustness accurately. The proposed metric is used to optimize a grid topology for a higher level of robustness. To demonstrate its applicability, the metric is applied on the IEEE 118 bus power system to improve its robustness against cascading failures.
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhang, Bu-han; Zhang, Zhe; Yin, Xiang-gen; Wang, Bo
2011-11-01
Most existing research on the vulnerability of power grids based on complex networks ignores the electrical characteristics and the capacity of generators and load. In this paper, the electrical betweenness is defined by considering the maximal demand of load and the capacity of generators in power grids. The loss of load, which reflects the ability of power grids to provide sufficient power to customers, is introduced to measure the vulnerability together with the size of the largest cluster. The simulation results of the IEEE-118 bus system and the Central China Power Grid show that the cumulative distributions of node electrical betweenness follow a power-law and that the nodes with high electrical betweenness play critical roles in both topological structure and power transmission of power grids. The results prove that the model proposed in this paper is effective for analyzing the vulnerability of power grids.
NASA Astrophysics Data System (ADS)
Feng, Jun-shu; Jin, Yan-ming; Hao, Wei-hua
2017-01-01
Based on modelling the environmental influence index of power transmission and transformation project and energy-saving and emission-reducing index of source-grid-load of power system, this paper establishes an objective decision model of power grid environmental protection, with constraints of power grid environmental protection objectives being legal and economical, and considering both positive and negative influences of grid on the environmental in all-life grid cycle. This model can be used to guide the programming work of power grid environmental protection. A numerical simulation of Jiangsu province’s power grid environmental protection objective decision model has been operated, and the results shows that the maximum goal of energy-saving and emission-reducing benefits would be reached firstly as investment increasing, and then the minimum goal of environmental influence.
Souza, W.R.
1999-01-01
This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1
Occurrence and countermeasures of urban power grid accident
NASA Astrophysics Data System (ADS)
Wei, Wang; Tao, Zhang
2018-03-01
With the advance of technology, the development of network communication and the extensive use of power grids, people can get to know power grid accidents around the world through the network timely. Power grid accidents occur frequently. Large-scale power system blackout and casualty accidents caused by electric shock are also fairly commonplace. All of those accidents have seriously endangered the property and personal safety of the country and people, and the development of society and economy is severely affected by power grid accidents. Through the researches on several typical cases of power grid accidents at home and abroad in recent years and taking these accident cases as the research object, this paper will analyze the three major factors that cause power grid accidents at present. At the same time, combining with various factors and impacts caused by power grid accidents, the paper will put forward corresponding solutions and suggestions to prevent the occurrence of the accident and lower the impact of the accident.
Business Pattern of Distributed Energy in Electric Power System Reformation
NASA Astrophysics Data System (ADS)
Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI
2017-05-01
Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.
Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenzhong; Tian, Tian; Muljadi, Eduard
2015-10-06
The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance themore » understanding of grid codes in the two largest markets of wind power.« less
NASA Astrophysics Data System (ADS)
Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen
2018-02-01
There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Yuqing; Liu, Yiqun; Qi, Yongwei
2017-03-01
Investment management is an important part of Power Grid Corp. The new electricity reform put forward the general idea of "three release, three strengthening, one independence", which brings new risks to the investment management of the Power Grid Corp. First, the paper analyzes the new risks faced by the Power Grid Corp investment under the background of the electricity reform. Second, the AHP-Fuzzy evaluation model of investment risk of Power Grid Corp is established, and taking Shenzhen Power Supply Bureau as an example, the paper evaluated its risk level of investment plan in 2017. Finally, in the context of the electricity reform, the strategy of the Power Grid Corp's investment risk is proposed.
Defending the Power Grid from Hackers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eber, Kevin
A new initiative underway at the National Renewable Energy Laboratory is intended to prevent hackers from gaining control of parts of the nation's power grid, potentially damaging electrical equipment and causing localized power outages. Our nation's power grid is evolving to be more responsive to changing power needs, more able to integrate renewable energy, more efficient, and more reliable. One key element of this evolution is adding communication and control devices to the power grid, closer to the end user, so that utilities have greater situational awareness of the grid and can respond quickly to disturbances. But these new devicesmore » and their communications requirements can also open up the power grid to potential cyber attacks.« less
Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM) Program, which is the integration of diverse power devices in an optimal configuration for space and terrestrial applications.
Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki
2017-03-01
In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.
75 FR 6369 - Application To Export Electric Energy; Aquilon Power Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF ENERGY [OE Docket No. EA-361] Application To Export Electric Energy; Aquilon Power.... SUMMARY: Aquilon Power Ltd. (Aquilon Power) has applied for authority to transmit electric energy from the... received an application from Aquilon Power for authority to transmit electric energy from the United States...
77 FR 39689 - Application To Export Electric Energy; Dynasty Power, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... DEPARTMENT OF ENERGY [OE Docket No. EA-385] Application To Export Electric Energy; Dynasty Power.... SUMMARY: Dynasty Power, Inc. (Dynasty Power) has applied for authority to transmit electric energy from... an application from Dynasty Power for authority to transmit electric energy from the United States to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhancemore » the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.« less
Research of the application of the Low Power Wide Area Network in power grid
NASA Astrophysics Data System (ADS)
Wang, Hao; Sui, Hong; Li, Jia; Yao, Jian
2018-03-01
Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but these technologies have not make large-scale applications in different application scenarios of power grid. LoRa is a mainstream LPWAN technology. This paper makes a comparison test of the signal coverage of LoRa and other traditional wireless communication technologies in typical signal environment of power grid. Based on the test results, this paper gives an application suggestion of LoRa in power grid services, which can guide the planning and construction of the LPWAN in power grid.
Application Note: Power Grid Modeling With Xyce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sholander, Peter E.
This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.
NASA Astrophysics Data System (ADS)
Barnawi, Abdulwasa Bakr
Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of uncertainty and perform energy trading between the hybrid grid utility and main grid utility in addition to the designed uncertainty factor. After the generation unit planning was carried out and component sizing was determined, adequacy evaluation was conducted by calculating the loss of load expectation adequacy index for different contingency criteria considering probability of equipment failure. Finally, a microgrid planning was conducted by finding the proper size and location to install distributed generation units in a radial distribution network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model
NASA Astrophysics Data System (ADS)
Zhao, Erdong; Li, Shangqi
2017-08-01
As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M
This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less
Research and application of thermal power unit’s load dynamic adjustment based on extraction steam
NASA Astrophysics Data System (ADS)
Li, Jun; Li, Huicong; Li, Weiwei
2018-02-01
The rapid development of heat and power generation in large power plant has caused tremendous constraints on the load adjustment of power grids and power plants. By introducing the thermodynamic system of thermal power unit, the relationship between thermal power extraction steam and unit’s load has analyzed and calculated. The practical application results show that power capability of the unit affected by extraction and it is not conducive to adjust the grid frequency. By monitoring the load adjustment capacity of thermal power units, especially the combined heat and power generating units, the upper and lower limits of the unit load can be dynamically adjusted by the operator on the grid side. The grid regulation and control departments can effectively control the load adjustable intervals of the operating units and provide reliable for the cooperative action of the power grid and power plants, to ensure the safety and stability of the power grid.
77 FR 11515 - Application To Export Electric Energy; Pilot Power Group, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... DEPARTMENT OF ENERGY [OE Docket No. EA-383] Application To Export Electric Energy; Pilot Power... application. SUMMARY: Pilot Power Group, Inc. (Pilot Power) has applied for authority to transmit electric...
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-02-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-01-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654
A Distribution Level Wide Area Monitoring System for the Electric Power Grid–FNET/GridEye
Liu, Yong; You, Shutang; Yao, Wenxuan; ...
2017-02-09
The wide area monitoring system (WAMS) is considered a pivotal component of future electric power grids. As a pilot WAMS that has been operated for more than a decade, the frequency monitoring network FNET/GridEye makes use of hundreds of global positioning system-synchronized phasor measurement sensors to capture the increasingly complicated grid behaviors across the interconnected power systems. In this paper, the FNET/GridEye system is overviewed and its operation experiences in electric power grid wide area monitoring are presented. Particularly, the implementation of a number of data analytics applications will be discussed in details. FNET/GridEye lays a firm foundation for themore » later WAMS operation in the electric power industry.« less
76 FR 20651 - Application To Export Electric Energy; Cargill Power Markets, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
.... electric power supply system. Copies of this application will be made available, upon request, for public... DEPARTMENT OF ENERGY [OE Docket No. EA-378] Application To Export Electric Energy; Cargill Power... application. SUMMARY: Cargill Power Markets, LLC (CPM) has applied for authority to transmit electric energy...
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
Security and Stability Analysis of Wind Farms Integration into Distribution Network
NASA Astrophysics Data System (ADS)
Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun
2017-05-01
With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
The footprint of atmospheric turbulence in power grid frequency measurements
NASA Astrophysics Data System (ADS)
Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.
2018-02-01
Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (< 1 \\text{s}) that are below the activation time of frequency control. Our results are in accordance with previous numerical studies of self-organized synchronization in power grids under intermittent perturbation and give rise to new challenges for a stable operation of future power grids fed by a high share of renewable generation.
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc
2018-02-01
Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.
NASA Astrophysics Data System (ADS)
Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.
2016-09-01
A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.
NASA Astrophysics Data System (ADS)
Maaß, Heiko; Cakmak, Hüseyin Kemal; Bach, Felix; Mikut, Ralf; Harrabi, Aymen; Süß, Wolfgang; Jakob, Wilfried; Stucky, Karl-Uwe; Kühnapfel, Uwe G.; Hagenmeyer, Veit
2015-12-01
Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-14
The electric power grid has been rightly celebrated as the single most important engineering feat of the 20th century. The grid powers our homes, offices, hospitals, and schools; and, increasingly, it powers our favorite devices from smartphones to HDTVs. With those and other modern innovations and challenges, our grid will need to evolve. Grid modernization efforts will help the grid make full use of today’s advanced technologies and serve our needs in the 21st century. While the vast majority of upgrades are implemented by private sector energy companies that own and operate the grid, DOE has been investing in technologiesmore » that are revolutionizing the way we generate, store and transmit power.« less
NASA Astrophysics Data System (ADS)
Liu, Xiaoxin; Feng, Peilei; Jan, Lisheng; Dai, Xiaozhong; Cai, Pengcheng
2018-01-01
In recent years, Nujiang Prefecture vigorously develop hydropower, the grid structure in the northwest of Yunnan Province is not perfect, which leads to the research and construction of the power grid lags behind the development of the hydropower. In 2015, the company in view of the nu river hydropower dilemma decided to change outside the nu river to send out a passage with series compensation device in order to improve the transmission capacity, the company to the main problems related to the system plan, but not too much in the region distribution network and detailed study. Nujiang power grid has unique structure and properties of the nujiang power grid after respectively, a whole rack respectively into two parts, namely power delivery channels, load power supply, the whole grid occurred fundamental changes, the original strategy of power network is not applicable, especially noteworthy is the main failure after network of independent operation problem, how to avoid the local series, emergency problem is more urgent, very tolerance test area power grid, this paper aims at the analysis of existing data, simulation, provide a reference for respectively after the operation for the stable operation of the power grid.
A Survey on Next-generation Power Grid Data Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Shutang; Zhu, Dr. Lin; Liu, Yong
2015-01-01
The operation and control of power grids will increasingly rely on data. A high-speed, reliable, flexible and secure data architecture is the prerequisite of the next-generation power grid. This paper summarizes the challenges in collecting and utilizing power grid data, and then provides reference data architecture for future power grids. Based on the data architecture deployment, related research on data architecture is reviewed and summarized in several categories including data measurement/actuation, data transmission, data service layer, data utilization, as well as two cross-cutting issues, interoperability and cyber security. Research gaps and future work are also presented.
Preventing Blackouts by Building a Better Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Henry
America’s power grid is undergoing significant change. New mixes of electricity generation, as well as evolving consumer demand, make it even more challenging to manage. Moment-to-moment changes in electricity supply and demand can vary drastically, challenging power grid operators who must maintain a balance—in real time—to avoid disruptions and blackouts. Enter Senior Power Engineer Zhenyu (Henry) Huang. Henry leads PNNL’s initiative to develop technologies that will shape the future of the power grid, and he’s part of a team that is determined to make our nation’s grid more reliable and secure.
Emission & Generation Resource Integrated Database (eGRID)
The Emissions & Generation Resource Integrated Database (eGRID) is an integrated source of data on environmental characteristics of electric power generation. Twelve federal databases are represented by eGRID, which provides air emission and resource mix information for thousands of power plants and generating companies. eGRID allows direct comparison of the environmental attributes of electricity from different plants, companies, States, or regions of the power grid.
Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system
NASA Astrophysics Data System (ADS)
Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian
2017-08-01
The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.
Power grid operation risk management: V2G deployment for sustainable development
NASA Astrophysics Data System (ADS)
Haddadian, Ghazale J.
The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems, it considers a two-stage model using the Benders Decomposition (BD). The numerical simulation demonstrate that the utilization of smart EV fleets in power grid systems would ensure a sustainable grid operation with lower carbon footprints, smoother integration of renewable sources, higher security, and lower power grid operation costs. The results, additionally, illustrate the effectiveness of the proposed MILP approach and its potentials as an optimization tool for sustainable operation of large scale electric power systems.
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia
Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for amore » renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.« less
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2013-07-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.
2017-09-05
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2014-04-15
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL -
Video Text Version | Energy Systems Integration Facility | NREL Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version This is the text version for the Smarter Grid Solutions
NASA Astrophysics Data System (ADS)
Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.
2016-08-01
With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.
Integrated Devices and Systems | Grid Modernization | NREL
storage models Microgrids Microgrids Grid Simulation and Power Hardware-in-the-Loop Grid simulation and power hardware-in-the-loop Grid Standards and Codes Standards and codes Contact Barry Mather, Ph.D
Smart grid technologies in local electric grids
NASA Astrophysics Data System (ADS)
Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.
2017-08-01
The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.
Designing for Wide-Area Situation Awareness in Future Power Grid Operations
NASA Astrophysics Data System (ADS)
Tran, Fiona F.
Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.
Pricing behavior of USA exporter in wheat international market
NASA Astrophysics Data System (ADS)
Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri
2018-02-01
The number of wheat producing countries is changing over time. It is expected the change in wheat supply will lead world wheat market become more competitive and reduce market power of major exporter country. This paper tries to identify and examined the degree of market power on wheat international market for USA by using the Pricing to Market (PTM) method. USA is the biggest producer and exporter in wheat market. The PTM method found that USA impose noncompetitive strategy by applying price discrimination and apply market power to their importer country.
NASA Astrophysics Data System (ADS)
Carr, Bob; Knowles, John; Warren, Jeremy
2008-10-01
We describe the continuing development of a laser-based, light scattering detector system capable of detecting and analysing liquid-borne nanoparticles. Using a finely focussed and specially configured laser beam to illuminate a suspension of nanoparticles in a small (250ul) sample and videoing the Brownian motion of each and every particle in the detection zone should allow individual but simultaneous detection and measurement of particle size, scattered light intensity, electrophoretic mobility and, where applicable, shape asymmetry. This real-time, multi-parameter analysis capability offers the prospect of reagentlessly differentiating between different particle types within a complex sample of potentially high and variable background. Employing relatively low powered (50-100mW) laser diode modules and low resolution CCD arrays, each component could be run off battery power, allowing distributed/remote or personal deployment. Voltages needed for electrophoresis measurement s would be similarly low (e.g. 20V, low current) and 30second videos (exported at mobile/cell phone download speeds) analysed remotely. The potential of such low-cost technology as a field-deployable grid of remote, battery powered and reagentless, multi-parameter sensors for use as trigger devices is discussed.
Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin.
Fearnside, Phillip M
2006-07-01
Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil's proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country's national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.
Grid Integration Studies: Advancing Clean Energy Planning and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Chernyakhovskiy, Ilya
2016-07-01
Integrating significant variable renewable energy (VRE) into the grid requires an evolution in power system planning and operation. To plan for this evolution, power system stakeholders can undertake grid integration studies. This Greening the Grid document reviews grid integration studies, common elements, questions, and guidance for system planners.
NASA Astrophysics Data System (ADS)
Srikantha, Pirathayini
Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these serve to improve the resiliency of the future smart grid. It is demonstrated both theoretically and practically that the techniques proposed in this thesis are highly scalable and robust with superior convergence characteristics. These distributed and decentralized algorithms allow individual actuating nodes to execute self-healing and adaptive actions when exposed to changes in the grid so that the optimal operating state in the grid is maintained consistently.
Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features
NASA Astrophysics Data System (ADS)
Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar
2017-09-01
In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.
Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system
NASA Astrophysics Data System (ADS)
Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang
2018-02-01
The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.
Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jiahui; Zhang, Ye; Liu, Yilu
2014-01-01
Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection methodmore » is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.« less
Low-cost wireless voltage & current grid monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Jacqueline
This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less
The power grid monitoring promotion of Liaoning December 14th accident
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Gao, Ziji; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Wang, Mingkai; Qu, Zhi; Sun, Chenguang
2018-02-01
This paper introduces the main responsibilities of power grid monitoring and the accident of Liaoning Power Grid 500kV Xujia transformer substation at December 14th, 2016. This paper analyzes the problems exposed in this accident from the aspects of abnormal information judgment, fault information collection, auxiliary video monitoring, online monitoring of substation equipment, puts forward the corresponding improvement methods and summarizes the methods of improving the professional level of power grid equipment monitoring.
Development and Testing of a Prototype Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2009-01-01
The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.
78 FR 58286 - Export Trade Certificate of Review
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... DEPARTMENT OF COMMERCE International Trade Administration [Application No. 89-4A018] Export Trade... Commerce issued an amended Export Trade Certificate of Review to Outdoor Power Equipment Institute, Inc. on... (15 U.S.C. 4001-21) (``the Act'') authorizes the Secretary of Commerce to issue Export Trade...
PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)
None
2018-01-16
The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data canât be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.
Integration of HTS Cables in the Future Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.
77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... energy from the United States to Canada as a power marketer for a five-year term. The current export... DC Energy. The application also indicates that DC Energy is a power marketer authorized by the...
The construction of power grid operation index system considering the risk of maintenance
NASA Astrophysics Data System (ADS)
Tang, Jihong; Wang, Canlin; Jiang, Xinfan; Ye, Jianhui; Pan, Feilai
2018-02-01
In recent years, large-scale blackout occurred at home and abroad caused widespread concern about the operation of the grid in the world, and the maintenance risk is an important indicator of grid safety. The barrier operation of the circuit breaker exists in the process of overhaul of the power grid. The operation of the different barrier is of great significance to the change of the power flow, thus affecting the safe operation of the system. Most of the grid operating status evaluation index system did not consider the risk of maintenance, to this end, this paper from the security, economy, quality and cleanliness of the four angles, build the power grid operation index system considering the risk of maintenance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL ismore » tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.« less
Increasing the resilience and security of the United States' power infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
2015-08-01
The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less
Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb
2017-02-16
Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less
77 FR 34340 - Order Denying Export Privileges
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... DEPARTMENT OF COMMERCE Bureau of Industry and Security Order Denying Export Privileges In the... Nanyang Plaza, No. 57 Hung To Road, Kwum Tong, Kowloon, Hong Kong, Related Persons. A. Denial of Export... Economic Powers Act (50 U.S.C. 1701 et seq. (2000)) (``IEEPA'') and Section 38 of the Arms Export Control...
77 FR 34342 - Order Denying Export Privileges
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... DEPARTMENT OF COMMERCE Bureau of Industry and Security Order Denying Export Privileges In the... Economic Powers Act (50 U.S.C. 1701 et seq. (2000)) (``IEEPA'') and violating Section 38 of the Arms Export Control Act (22 U.S.C. 2778 (2000)) (``AECA''). Specifically, Wu was convicted of illegally exporting...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu Henry; Tate, Zeb; Abhyankar, Shrirang
The power grid has been evolving over the last 120 years, but it is seeing more changes in this decade and next than it has seen over the past century. In particular, the widespread deployment of intermittent renewable generation, smart loads and devices, hierarchical and distributed control technologies, phasor measurement units, energy storage, and widespread usage of electric vehicles will require fundamental changes in methods and tools for the operation and planning of the power grid. The resulting new dynamic and stochastic behaviors will demand the inclusion of more complexity in modeling the power grid. Solving such complex models inmore » the traditional computing environment will be a major challenge. Along with the increasing complexity of power system models, the increasing complexity of smart grid data further adds to the prevailing challenges. In this environment, the myriad of smart sensors and meters in the power grid increase by multiple orders of magnitude, so do the volume and speed of the data. The information infrastructure will need to drastically change to support the exchange of enormous amounts of data as smart grid applications will need the capability to collect, assimilate, analyze and process the data, to meet real-time grid functions. High performance computing (HPC) holds the promise to enhance these functions, but it is a great resource that has not been fully explored and adopted for the power grid domain.« less
Control and prediction for blackouts caused by frequency collapse in smart grids.
Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S
2016-09-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.
Control and prediction for blackouts caused by frequency collapse in smart grids
NASA Astrophysics Data System (ADS)
Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.
2016-09-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.
Towards Effective Clustering Techniques for the Analysis of Electric Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh
2013-11-30
Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei
2017-03-01
The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.
Voltage droop Coordinating Control applied in UPFC and STATCOM system
NASA Astrophysics Data System (ADS)
Junhui, Huang; Zhuyi, Peng; Chengjie, Ni; Yiqing, Xu; Jiliang, Xue
2018-04-01
When UPFC, unified power flow controller is applied with other FACTS into power grid, it is possible that the voltage controlled vibrates constantly to response to a sudden reactive power turbulent in grid if the parameters of these FACTS are not coordinating reasonably. Moreover, the reactive power generated by these equipment will intertwine unexpectedly. The article proposes a method named voltage-reactive power droop control to allow the reference voltage fluctuating around the rating voltage so that the vibration is reduced and the power distribution is improved. Finally, the article cite a electric-magnetic simulation by EMTDC models of east-China power grid to prove it effective when applied to improve the response characteristics to sudden turbulence in power grid.
Waste-to-Energy Cogeneration Project, Centennial Park
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Clay; Mandon, Jim; DeGiulio, Thomas
The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utilitymore » bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.« less
NASA Astrophysics Data System (ADS)
Yanchun, Wan; Qiucen, Chen
2017-11-01
Purchasing is an important part of export e-commerce of B2C, which plays an important role on risk and cost control in supply management. From the perspective of risk control, the paper construct a CVaR model for portfolio purchase. We select a heavy sales mobile power equipment from a typical B2C e-commerce export retailer as study sample. This study optimizes the purchasing strategy of this type of mobile power equipment. The research has some reference for similar enterprises in purchasing portfolio decision.
Smart electric vehicle (EV) charging and grid integration apparatus and methods
Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu
2015-05-05
An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.
77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... wholesale market in interstate commerce or have a power supply system of its own on which its exports of... U.S. electric power supply system. Copies of this application will be made available, upon request... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA...
75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
.... Twin Rivers has requested an export authorization in order to be able to supply emergency power as... proposed action will not adversely impact on the reliability of the U.S. electric power supply system... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES...
78 FR 26765 - Application to Export Electric Energy; ALLETE, Inc., d/b/a Minnesota Power
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... DEPARTMENT OF ENERGY [OE Docket No. EA-196-D] Application to Export Electric Energy; ALLETE, Inc... renew its authority to transmit electric energy from the United States to Canada pursuant to section 202... Power to transmit electric energy from the United States to Canada as a power marketer for a five-year...
Stability of synchrony against local intermittent fluctuations in tree-like power grids
NASA Astrophysics Data System (ADS)
Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen
2017-12-01
90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.
Legislation Seeks to Protect Power Grid From Space Weather
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2010-05-01
Proposed legislation would help protect the U.S. power grid against space weather and other threats. The Grid Reliability and Infrastructure Defense Act (GRID Act) would give the Federal Energy Regulatory Commission (FERC) authority to develop and enforce standards for power companies to protect the electric grid from geomagnetic storms and threats such as a terrorist attack using electromagnetic pulse (EMP) weapons. The act unanimously passed the U.S. House Committee on Energy and Commerce in April and will proceed to a vote in the full House of Representatives.
Reactive Power Compensation Using an Energy Management System
2014-09-01
bulk power grid or independent of the grid in islanded mode using various DG sources ( photovoltaic panels, fuel cells, gas generators, batteries...developed in order to forecast the system’s response to both capacitive and inductive power demands on the grid. The process was then confirmed in a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited REACTIVE POWER
NASA Astrophysics Data System (ADS)
Nhu Y, Do
2018-03-01
Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.
Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Agarwal, Vaibhav; Aman, Saim
2012-05-16
Smart Power Grids exemplify an emerging class of Cyber Physical Applications that exhibit dynamic, distributed and data intensive (D3) characteristics along with an always-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor Measurement Units and Smart Power Meters, that is being deployed across the transmission and distribution network of electric grids. These sensors provide utilities with improved situation awareness on near-realtime electricity usage by individual consumers, and the power quality and stability of the transmission network.
A study on economic power dispatch grid connected PV power plant in educational institutes
NASA Astrophysics Data System (ADS)
Singh, Kuldip; Kumar, M. Narendra; Mishra, Satyasis
2018-04-01
India has main concerns on environment and escalation of fuel prices with respect to diminution of fossil fuel reserves and the major focus on renewable Energy sources for power generation to fulfill the present and future energy demand. Installation of PV power plants in the Educational Institutions has grown up drastically throughout India. More PV power plant are integrated with load and grid through net metering. Therefore, this paper is an analysis of the 75kWp PV plant at chosen buses, considering the need of minimum demand from the grid. The case study is carried out for different generation level throughout the day and year w.r.t load and climate changes, load sharing on grid. The economic dispatch model developed for PV plant integrated with Grid.
NASA Astrophysics Data System (ADS)
Liang, Weibin; Ouyang, Sen; Huang, Xiang; Su, Weijian
2017-05-01
The existing modeling process of power quality about electrified railways connected to power grid is complicated and the simulation scene is incomplete, so this paper puts forward a novel evaluation method of power quality based on PSCAD/ETMDC. Firstly, a model of power quality about electrified railways connected to power grid is established, which is based on testing report or measured data. The equivalent model of electrified locomotive contains power characteristic and harmonic characteristic, which are substituted by load and harmonic source. Secondly, in order to make evaluation more complete, an analysis scheme has been put forward. The scheme uses a combination of three-dimensions of electrified locomotive, which contains types, working conditions and quantity. At last, Shenmao Railway is taken as example to evaluate the power quality at different scenes, and the result shows electrified railways connected to power grid have significant effect on power quality.
Feature combination analysis in smart grid based using SOM for Sudan national grid
NASA Astrophysics Data System (ADS)
Bohari, Z. H.; Yusof, M. A. M.; Jali, M. H.; Sulaima, M. F.; Nasir, M. N. M.
2015-12-01
In the investigation of power grid security, the cascading failure in multicontingency situations has been a test because of its topological unpredictability and computational expense. Both system investigations and burden positioning routines have their limits. In this project, in view of sorting toward Self Organizing Maps (SOM), incorporated methodology consolidating spatial feature (distance)-based grouping with electrical attributes (load) to evaluate the vulnerability and cascading impact of various part sets in the force lattice. Utilizing the grouping result from SOM, sets of overwhelming stacked beginning victimized people to perform assault conspires and asses the consequent falling impact of their failures, and this SOM-based approach viably distinguishes the more powerless sets of substations than those from the conventional burden positioning and other bunching strategies. The robustness of power grids is a central topic in the design of the so called "smart grid". In this paper, to analyze the measures of importance of the nodes in a power grid under cascading failure. With these efforts, we can distinguish the most vulnerable nodes and protect them, improving the safety of the power grid. Also we can measure if a structure is proper for power grids.
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peles, Slaven
2016-11-06
GridKit is a software development kit for interfacing power systems and power grid application software with high performance computing (HPC) libraries developed at National Labs and academia. It is also intended as interoperability layer between different numerical libraries. GridKit is not a standalone application, but comes with a suite of test examples illustrating possible usage.
Voltage collapse in complex power grids
Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco
2016-01-01
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284
NASA Astrophysics Data System (ADS)
Wang, Hao; Sui, Hong; Liao, Xing; Li, Junhao
2018-03-01
Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but the application principle of different LPWAN technologies in power grid is still not clear. This paper gives a comparative analysis of two mainstream LPWAN technologies including NB-IoT and LoRa, and gives an application suggestion of these two LPWAN technologies, which can guide the planning and construction of LPWAN in power grid.
78 FR 79401 - Export Trade Certificate of Review
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... Power Equipment Institute, Inc. (Application no. 89- 5A018). SUMMARY: The U.S. Department of Commerce issued an amended Export Trade Certificate of Review to Outdoor Power Equipment Institute, Inc. (OPEI) on... Price Turf Equipment, Ingersoll Equipment Company, Kut-Kwick Corporation, Maxim Manufacturing...
Analysis of turbine-grid interaction of grid-connected wind turbine using HHT
NASA Astrophysics Data System (ADS)
Chen, A.; Wu, W.; Miao, J.; Xie, D.
2018-05-01
This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.
NASA Astrophysics Data System (ADS)
Dubarry, Matthieu; Devie, Arnaud; McKenzie, Katherine
2017-08-01
Vehicle-to-grid and Grid-to-vehicle strategies are often cited as promising to mitigate the intermittency of renewable energy on electric power grids. However, their impact on the vehicle battery degradation has not been investigated in detail. The aim of this work is to understand the impact of bidirectional charging on commercial Li-ion cells used in electric vehicles today. Results show that additional cycling to discharge vehicle batteries to the power grid, even at constant power, is detrimental to cell performance. This additional use of the battery packs could shorten the lifetime for vehicle use to less than five years. By contrast, the impact of delaying the charge in order to reduce the impact on the power grid is found to be negligible at room temperature, but could be significant in warmer climates.
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greacen, Chris; Engel, Richard; Quetchenbach, Thomas
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less
Designing Wind and Solar Power Purchase Agreements to Support Grid Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Barbara; Chernyakhovskiy, Ilya
Power purchase agreements (PPAs) represent one of many institutional tools that power systems can use to improve grid services from variable renewable energy (VRE) generators. This fact sheet introduces the concept of PPAs for VRE generators and provides a brief summary of key PPA components that can facilitate VRE generators to enhance grid stability and serve as a source of power system flexibility.
Energy Systems Integration News | Energy Systems Integration Facility |
power grid modeling scenarios Study Shows Eastern U.S. Power Grid Can Support Upwards of 30% Wind and newly released Eastern Renewable Energy Integration Study (ERGIS) shows that the power grid of the -based study of four potential wind and PV futures and associated operational impacts in the Eastern
Research on the effects of wind power grid to the distribution network of Henan province
NASA Astrophysics Data System (ADS)
Liu, Yunfeng; Zhang, Jian
2018-04-01
With the draining of traditional energy, all parts of nation implement policies to develop new energy to generate electricity under the favorable national policy. The wind has no pollution, Renewable and other advantages. It has become the most popular energy among the new energy power generation. The development of wind power in Henan province started relatively late, but the speed of the development is fast. The wind power of Henan province has broad development prospects. Wind power has the characteristics of volatility and randomness. The wind power access to power grids will cause much influence on the power stability and the power quality of distribution network, and some areas have appeared abandon the wind phenomenon. So the study of wind power access to power grids and find out improvement measures is very urgent. Energy storage has the properties of the space transfer energy can stabilize the operation of power grid and improve the power quality.
Analysis of the World Experience of Smart Grid Deployment: Economic Effectiveness Issues
NASA Astrophysics Data System (ADS)
Ratner, S. V.; Nizhegorodtsev, R. M.
2018-06-01
Despite the positive dynamics in the growth of RES-based power production in electric power systems of many countries, the further development of commercially mature technologies of wind and solar generation is often constrained by the existing grid infrastructure and conventional energy supply practices. The integration of large wind and solar power plants into a single power grid and the development of microgeneration require the widespread introduction of a new smart grid technology cluster (smart power grids), whose technical advantages over the conventional ones have been fairly well studied, while issues of their economic effectiveness remain open. Estimation and forecasting potential economic effects from the introduction of innovative technologies in the power sector during the stage preceding commercial development is a methodologically difficult task that requires the use of knowledge from different sciences. This paper contains the analysis of smart grid project implementation in Europe and the United States. Interval estimates are obtained for their basic economic parameters. It was revealed that the majority of smart grid implemented projects are not yet commercially effective, since their positive externalities are usually not recognized on the revenue side due to the lack of universal methods for public benefits monetization. The results of the research can be used in modernization and development planning for the existing grid infrastructure both at the federal level and at the level of certain regions and territories.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.
2013-03-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2011-11-15
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Real-time performance monitoring and management system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2007-06-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015,more » testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.« less
Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule
2014-08-19
Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in determining net emissions effects resulting from energy export projects and related policy decisions.
The State of NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.
Optimal Scheduling of Time-Shiftable Electric Loads in Expeditionary Power Grids
2015-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDITIONARY POWER GRIDS by John G...to 09-25-2015 4. TITLE AND SUBTITLE OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDI- TIONARY POWER GRIDS 5. FUNDING NUMBERS 6. AUTHOR(S...eliminate unmanaged peak demand, reduce generator peak-to-average power ratios, and facilitate a persistent shift to higher fuel efficiency. Using
U.S. Forest Greenhouse Gas Impacts of a continued Expansion of E.U. Wood Pellet Demand
NASA Astrophysics Data System (ADS)
Latta, G.; Baker, J.; Ohrel, S. B.
2016-12-01
The United States has ambitious goals of greenhouse gas (GHG) reductions. A portion of these reductions are based on expected contributions from land use, land use change, and forestry (LULUCF). The European Union has similar goals which have resulted in a doubling of wood pellets exported from US ports destined for EU power plants over the last few years. There are potential conflicts between the GHG consequences of this pellet supply and the LULUCF contribution to US GHG goals. This study seeks to inform the discussion by modeling US forest GHG accounts using data measured on a grid of over 150,000 USDA Forest Service, Forest Inventory and Analysis (FIA) forestland plots across the conterminous United States. Empirical yield functions are estimate from plot log volume, biomass and carbon and provide the basis for changes in forest characteristics over time. Demand data based on a spatial database of over 2,000 forest product manufacturing facilities representing 11 intermediate and 13 final solid and pulpwood products. Manufacturing and logging costs are specific to slope, log size, and volume removed along with transportation costs based on fuel prices, FIA plot, and milling locations. The resulting partial spatial equilibrium model of the US forest sector is solved annually for the period 2010 - 2030 with demand shifted by energy prices and macroeconomic indicators from the US EIA's Annual Energy Outlook for a series of potential wood pellet export targets. For each wood pellet export level simulated, figures showing historic and scenario-specific forest products production are generated. Maps of the spatial allocation of both forest harvesting and carbon fluxes are presented at the National level and detail is given in both the US North and Southeast.
75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... the proposed action will not adversely impact on the reliability of the U.S. electric power supply... from electric utilities, Federal power marketing agencies and other entities within the United States... DEPARTMENT OF ENERGY [OE Docket No. EA-373] Application to Export Electric Energy; EDF Trading...
Connection technology of HPTO type WECs and DC nano grid in island
NASA Astrophysics Data System (ADS)
Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin
2016-07-01
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
Using fleets of electric-drive vehicles for grid support
NASA Astrophysics Data System (ADS)
Tomić, Jasna; Kempton, Willett
Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th!nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th!nk City fleet is from US 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid.
Comparative analysis of existing models for power-grid synchronization
NASA Astrophysics Data System (ADS)
Nishikawa, Takashi; Motter, Adilson E.
2015-01-01
The dynamics of power-grid networks is becoming an increasingly active area of research within the physics and network science communities. The results from such studies are typically insightful and illustrative, but are often based on simplifying assumptions that can be either difficult to assess or not fully justified for realistic applications. Here we perform a comprehensive comparative analysis of three leading models recently used to study synchronization dynamics in power-grid networks—a fundamental problem of practical significance given that frequency synchronization of all power generators in the same interconnection is a necessary condition for a power grid to operate. We show that each of these models can be derived from first principles within a common framework based on the classical model of a generator, thereby clarifying all assumptions involved. This framework allows us to view power grids as complex networks of coupled second-order phase oscillators with both forcing and damping terms. Using simple illustrative examples, test systems, and real power-grid datasets, we study the inherent frequencies of the oscillators as well as their coupling structure, comparing across the different models. We demonstrate, in particular, that if the network structure is not homogeneous, generators with identical parameters need to be modeled as non-identical oscillators in general. We also discuss an approach to estimate the required (dynamical) system parameters that are unavailable in typical power-grid datasets, their use for computing the constants of each of the three models, and an open-source MATLAB toolbox that we provide for these computations.
Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors: Denholm, Paul; Cochran, Jaquelin; Brancucci Martinez-Anido, Carlo
This is the Spanish version of the 'Greening the Grid - Wind and Solar on the Power Grid: Myths and Misperceptions'. Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants,more » and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.« less
ARPA-E: Advancing the Electric Grid
Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael
2018-06-07
The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.
Smart grid as a service: a discussion on design issues.
Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.
An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Zhou, Ning
With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less
Smart Grid as a Service: A Discussion on Design Issues
Tsai, Chen-Chou; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214
A Review of Distributed Control Techniques for Power Quality Improvement in Micro-grids
NASA Astrophysics Data System (ADS)
Zeeshan, Hafiz Muhammad Ali; Nisar, Fatima; Hassan, Ahmad
2017-05-01
Micro-grid is typically visualized as a small scale local power supply network dependent on distributed energy resources (DERs) that can operate simultaneously with grid as well as in standalone manner. The distributed generator of a micro-grid system is usually a converter-inverter type topology acting as a non-linear load, and injecting harmonics into the distribution feeder. Hence, the negative effects on power quality by the usage of distributed generation sources and components are clearly witnessed. In this paper, a review of distributed control approaches for power quality improvement is presented which encompasses harmonic compensation, loss mitigation and optimum power sharing in multi-source-load distributed power network. The decentralized subsystems for harmonic compensation and active-reactive power sharing accuracy have been analysed in detail. Results have been validated to be consistent with IEEE standards.
NASA Astrophysics Data System (ADS)
Ozkaya, Sait I.
2018-03-01
Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2009-01-01
The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.
Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.
Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints.more » We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.« less
Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid
NASA Astrophysics Data System (ADS)
Kuwayama, Akira
The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.
Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul
The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme
NASA Astrophysics Data System (ADS)
Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi
2015-10-01
This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.
Ion Engine Grid Gap Measurements
NASA Technical Reports Server (NTRS)
Soulas, Gerge C.; Frandina, Michael M.
2004-01-01
A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.
Optimal Coordination of Building Loads and Energy Storage for Power Grid and End User Services
Hao, He; Wu, Di; Lian, Jianming; ...
2017-01-18
Demand response and energy storage play a profound role in the smart grid. The focus of this study is to evaluate benefits of coordinating flexible loads and energy storage to provide power grid and end user services. We present a Generalized Battery Model (GBM) to describe the flexibility of building loads and energy storage. An optimization-based approach is proposed to characterize the parameters (power and energy limits) of the GBM for flexible building loads. We then develop optimal coordination algorithms to provide power grid and end user services such as energy arbitrage, frequency regulation, spinning reserve, as well as energymore » cost and demand charge reduction. Several case studies have been performed to demonstrate the efficacy of the GBM and coordination algorithms, and evaluate the benefits of using their flexibility for power grid and end user services. We show that optimal coordination yields significant cost savings and revenue. Moreover, the best option for power grid services is to provide energy arbitrage and frequency regulation. Finally and furthermore, when coordinating flexible loads with energy storage to provide end user services, it is recommended to consider demand charge in addition to time-of-use price in order to flatten the aggregate power profile.« less
76 FR 11436 - Application to Export Electric Energy; Ontario Power Generation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... facilities. DOE renewed the OPG export authorization on June 21, 2006 in Order No. EA-290-A. Order No. EA-290..., Federal power marketing agencies, and other entities within the United States. The existing international transmission facilities to be utilized by OPG have previously been authorized by Presidential permits issued...
Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004
ERIC Educational Resources Information Center
AEL, 2004
2004-01-01
Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…
Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2009-01-01
The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable, maintenance free, long life power system that is of significant value to NASA and the community.
Proposal for grid computing for nuclear applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.
2014-02-12
The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.
2015-09-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 AGENDA 1. Non-Tactical Vehicle-to-Grid (V2G) Projects • Smart Power...Vehicle Technology Expo and the Battery Show Conference Novi, MI, 15-17 Sep 2015 2 For the Nation • Help stabilize smart grid and can generate revenue...demonstration of a smart , aggregated, ad-hoc capable, vehicle to grid (V2G) and Vehicle to Vehicle (V2V) capable fleet power system to support
Analyzing Potential Grid Impacts from Future In-Motion Roadway Wireless Power Transfer Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie
This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie
This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.
A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.
Pakdel, Majid; Jalilzadeh, Saeid
2017-09-29
In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.
Cascading failures in ac electricity grids.
Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan
2016-09-01
Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q≈1.6. Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.
Global Multi-Resolution Topography (GMRT) Synthesis - Recent Updates and Developments
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Morton, J. J.; Celnick, M.; McLain, K.; Nitsche, F. O.; Carbotte, S. M.; O'hara, S. H.
2017-12-01
The Global Multi-Resolution Topography (GMRT, http://gmrt.marine-geo.org) synthesis is a multi-resolution compilation of elevation data that is maintained in Mercator, South Polar, and North Polar Projections. GMRT consists of four independently curated elevation components: (1) quality controlled multibeam data ( 100m res.), (2) contributed high-resolution gridded bathymetric data (0.5-200 m res.), (3) ocean basemap data ( 500 m res.), and (4) variable resolution land elevation data (to 10-30 m res. in places). Each component is managed and updated as new content becomes available, with two scheduled releases each year. The ocean basemap content for GMRT includes the International Bathymetric Chart of the Arctic Ocean (IBCAO), the International Bathymetric Chart of the Southern Ocean (IBCSO), and the GEBCO 2014. Most curatorial effort for GMRT is focused on the swath bathymetry component, with an emphasis on data from the US Academic Research Fleet. As of July 2017, GMRT includes data processed and curated by the GMRT Team from 974 research cruises, covering over 29 million square kilometers ( 8%) of the seafloor at 100m resolution. The curated swath bathymetry data from GMRT is routinely contributed to international data synthesis efforts including GEBCO and IBCSO. Additional curatorial effort is associated with gridded data contributions from the international community and ensures that these data are well blended in the synthesis. Significant new additions to the gridded data component this year include the recently released data from the search for MH370 (Geoscience Australia) as well as a large high-resolution grid from the Gulf of Mexico derived from 3D seismic data (US Bureau of Ocean Energy Management). Recent developments in functionality include the deployment of a new Polar GMRT MapTool which enables users to export custom grids and map images in polar projection for their selected area of interest at the resolution of their choosing. Available for both the south and north polar regions, grids can be exported from GMRT in a variety of formats including ASCII, GeoTIFF and NetCDF to support use in common mapping software applications such as ArcGIS, GMT, Matlab, and Python. New web services have also been developed to enable programmatic access to grids and images in north and south polar projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb
The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less
NASA Astrophysics Data System (ADS)
Khoshkbar Sadigh, Arash
Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified by simulation and experimental tests under various conditions considering all possible cases such as different amounts of voltage sag depth (VSD), different amounts of point-on-wave (POW) at which voltage sag occurs, harmonic distortion, line frequency variation, and phase jump (PJ). Furthermore, the ripple amount of fundamental voltage amplitude calculated by the proposed method and its error is analyzed considering the line frequency variation together with harmonic distortion. The best and worst detection time of proposed method were measured 1ms and 8.8ms, respectively. Finally, the proposed method has been compared with other voltage sag detection methods available in literature. Part 2: Power System Modeling for Renewable Energy Integration: As power distribution systems are evolving into more complex networks, electrical engineers have to rely on software tools to perform circuit analysis. There are dozens of powerful software tools available in the market to perform the power system studies. Although their main functions are similar, there are differences in features and formatting structures to suit specific applications. This creates challenges for transferring power system circuit models data (PSCMD) between different software and rebuilding the same circuit in the second software environment. The objective of this part of thesis is to develop a Unified Platform (UP) to facilitate transferring PSCMD among different software packages and relieve the challenges of the circuit model conversion process. UP uses a commonly available spreadsheet file with a defined format, for any home software to write data to and for any destination software to read data from, via a script-based application called PSCMD transfer application. The main considerations in developing the UP are to minimize manual intervention and import a one-line diagram into the destination software or export it from the source software, with all details to allow load flow, short circuit and other analyses. In this study, ETAP, OpenDSS, and GridLab-D are considered, and PSCMD transfer applications written in MATLAB have been developed for each of these to read the circuit model data provided in the UP spreadsheet. In order to test the developed PSCMD transfer applications, circuit model data of a test circuit and a power distribution circuit from Southern California Edison (SCE) - a utility company - both built in CYME, were exported into the spreadsheet file according to the UP format. Thereafter, circuit model data were imported successfully from the spreadsheet files into above mentioned software using the PSCMD transfer applications developed for each software. After the SCE studied circuit is transferred into OpenDSS software using the proposed UP scheme and developed application, it has been studied to investigate the impacts of large-scale solar energy penetration. The main challenge of solar energy integration into power grid is its intermittency (i.e., discontinuity of output power) nature due to cloud shading of photovoltaic panels which depends on weather conditions. In order to conduct this study, OpenDSS time-series simulation feature, which is required due to intermittency of solar energy, is utilized. In this study, the impacts of intermittency of solar energy penetration, especially high-variability points, on voltage fluctuation and operation of capacitor bank and voltage regulator is provided. In addition, the necessity to interpolate and resample unequally spaced time-series measurement data and convert them to equally spaced time-series data as well as the effect of resampling time-interval on the amount of error is discussed. Two applications are developed in Matlab to do interpolation and resampling as well as to calculate the amount of error for different resampling time-intervals to figure out the suitable resampling time-interval. Furthermore, an approach based on cumulative distribution, regarding the length for lines/cables types and the power rating for loads, is presented to prioritize which loads, lines and cables the meters should be installed at to have the most effect on model validation.
Saptio-temporal complementarity of wind and solar power in India
NASA Astrophysics Data System (ADS)
Lolla, Savita; Baidya Roy, Somnath; Chowdhury, Sourangshu
2015-04-01
Wind and solar power are likely to be a part of the solution to the climate change problem. That is why they feature prominently in the energy policies of all industrial economies including India. One of the major hindrances that is preventing an explosive growth of wind and solar energy is the issue of intermittency. This is a major problem because in a rapidly moving economy, energy production must match the patterns of energy demand. Moreover, sudden increase and decrease in energy supply may destabilize the power grids leading to disruptions in power supply. In this work we explore if the patterns of variability in wind and solar energy availability can offset each other so that a constant supply can be guaranteed. As a first step, this work focuses on seasonal-scale variability for each of the 5 regional power transmission grids in India. Communication within each grid is better than communication between grids. Hence, it is assumed that the grids can switch sources relatively easily. Wind and solar resources are estimated using the MERRA Reanalysis data for the 1979-2013 period. Solar resources are calculated with a 20% conversion efficiency. Wind resources are estimated using a 2 MW turbine power curve. Total resources are obtained by optimizing location and number of wind/solar energy farms. Preliminary results show that the southern and western grids are more appropriate for cogeneration than the other grids. Many studies on wind-solar cogeneration have focused on temporal complementarity at local scale. However, this is one of the first studies to explore spatial complementarity over regional scales. This project may help accelerate renewable energy penetration in India by identifying regional grid(s) where the renewable energy intermittency problem can be minimized.
NASA Astrophysics Data System (ADS)
Guo, Lijuan; Yan, Haijun; Gao, Wensheng; Chen, Yun; Hao, Yongqi
2018-01-01
With the development of power big data, considering the wider power system data, the appropriate large data analysis method can be used to mine the potential law and value of power big data. On the basis of considering all kinds of monitoring data and defects and fault records of main transformer, the paper integrates the power grid, equipment as well as environment data and uses SVM as the main algorithm to evaluate the risk of the main transformer. It gets and compares the evaluation results under different modes, and proves that the risk assessment algorithms and schemes have certain effectiveness. This paper provides a new idea for data fusion of smart grid, and provides a reference for further big data evaluation of power grid equipment.
NASA Astrophysics Data System (ADS)
Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin
2017-06-01
Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.
The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability
NASA Astrophysics Data System (ADS)
Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing
2018-01-01
Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.
Intelligent and robust optimization frameworks for smart grids
NASA Astrophysics Data System (ADS)
Dhansri, Naren Reddy
A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.
2017-12-01
The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.
Ion accelerator systems for high power 30 cm thruster operation
NASA Technical Reports Server (NTRS)
Aston, G.
1982-01-01
Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.
Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter
2016-09-01
ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then
Controllable Grid Interface | Grid Modernization | NREL
groundbreaking apparatus for testing and demonstrating advanced controls for wind and solar power generation at requirements. These requirements involve various aspects of renewable power plant operation, including fault respond directly to grid conditions measured on plant terminals, including: "Nasty" and "
Evaluating the Information Power Grid using the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
VanderWijngaartm Rob F.; Frumkin, Michael A.
2004-01-01
The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.
A Data Miner for the Information Power Grid
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.; Parks, John W. (Technical Monitor)
2002-01-01
Grid Miner (GM) is one of the early data mining applications developed by NASA to help users obtain information from the Information Power Grid (IPG). Topics cover include: benefits of data mining, potential use of grids in data mining activities, an overview of the GM application, and a brief review of GM architecture and implementation issues. The current status of the GM system is also discussed.
NASA Astrophysics Data System (ADS)
Ghenai, C.; Bettayeb, M.
2017-11-01
Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
NASA Astrophysics Data System (ADS)
Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari
2017-08-01
This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.
Methods and apparatus of analyzing electrical power grid data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.
Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McParland, Charles
The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, themore » vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the Internet are expected to be informative and pertinent.« less
76 FR 19069 - Application to Export Electric Energy; Cargill Power Markets, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... application. SUMMARY: Cargill Power Markets, LLC (CPM) has applied to renew its authority to transmit electric... Order No. EA-209, which authorized CPM to transmit electric energy from the United States to Canada as a... CPM export authorization two additional times: On July 3, 2001 in Order No. EA-209-A and on May 31...
77 FR 72322 - Order Denying Export Privileges
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
..., license, or order issued under the International Emergency Economic Powers Act (50 U.S.C. 1701-1706); 18 U... effect under the International Emergency Economic Powers Act (50 U.S.C. 1701, et seq. (2000)). I have... Regulations with knowledge or reason to know that the item will be, or is intended to be, exported from the...
75 FR 33610 - Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... DEPARTMENT OF ENERGY [OE Docket No. EA-182-C] Application To Export Electric Energy; H.Q. Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... transmit electric energy from the United States to Canada as a power marketer using existing international...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Exportation of powers of attorney or instructions relating to certain types of transactions. 515.530 Section 515.530 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Exportation of powers of attorney or instructions relating to certain types of transactions. 515.530 Section 515.530 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Exportation of powers of attorney or instructions relating to certain types of transactions. 515.530 Section 515.530 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Exportation of powers of attorney or instructions relating to certain types of transactions. 515.530 Section 515.530 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE...
76 FR 11437 - Application To Export Electric Energy; SESCO Enterprises Canada, LTD
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... DEPARTMENT OF ENERGY [OE Docket No. EA-297-B] Application To Export Electric Energy; SESCO... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... electric energy from the United States to Canada as a power marketer for a two-year term using existing...
77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... DEPARTMENT OF ENERGY [OE Docket No. EA-211-C] Application To Export Electric Energy; DTE Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... transmit electric energy from the United States to Canada as a power marketer for a two-year term using...
Synchronization of distributed power grids with the external loading system
NASA Astrophysics Data System (ADS)
Wei, Duqu; Mei, Chuncao
2018-06-01
In this paper, the synchronization between spatially distributed power plants and their supported consumers is studied, where the case of Kuramoto-like model power grids connected to an external permanent magnet synchronous motor (PMSM) is taken as an example. We focus on the dependence of the synchronization on the coupling coefficient. To quantitatively study the synchronization degree, we introduce the order parameter and the frequency deviation to measure the synchronization of the coupled system. It is found that as the external coupling coefficient is increased, the distributed power grids and the loading system become more and more synchronized in space, and the complete synchronization appears at a particular value of external coupling coefficient. Our results may provide a useful tip for analyzing the synchronous ability of distributed power grids.
An approach to the parametric design of ion thrusters
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.
1988-01-01
A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.
Where is the ideal location for a US East Coast offshore grid?
NASA Astrophysics Data System (ADS)
Dvorak, Michael J.; Stoutenburg, Eric D.; Archer, Cristina L.; Kempton, Willett; Jacobson, Mark Z.
2012-03-01
This paper identifies the location of an “ideal” offshore wind energy (OWE) grid on the U.S. East Coast that would (1) provide the highest overall and peak-time summer capacity factor, (2) use bottom-mounted turbine foundations (depth ≤50 m), (3) connect regional transmissions grids from New England to the Mid-Atlantic, and (4) have a smoothed power output, reduced hourly ramp rates and hours of zero power. Hourly, high-resolution mesoscale weather model data from 2006-2010 were used to approximate wind farm output. The offshore grid was located in the waters from Long Island, New York to the Georges Bank, ≈450 km east. Twelve candidate 500 MW wind farms were located randomly throughout that region. Four wind farms (2000 MW total capacity) were selected for their synergistic meteorological characteristics that reduced offshore grid variability. Sites likely to have sea breezes helped increase the grid capacity factor during peak time in the spring and summer months. Sites far offshore, dominated by powerful synoptic-scale storms, were included for their generally higher but more variable power output. By interconnecting all 4 farms via an offshore grid versus 4 individual interconnections, power was smoothed, the no-power events were reduced from 9% to 4%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms ≈450 km apart, in regions with offshore wind energy resources driven by both synoptic-scale storms and mesoscale sea breezes, substantial reductions in low/no-power hours and hourly ramp rates can be made.
Energy-Water-Land-Climate Nexus: Modeling Impacts from the Asset to Regional Scale
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Bennett, K. E.; Middleton, R. S.; Behery, S.; Macknick, J.; Corning-Padilla, A.; Brinkman, G.; Meng, M.
2016-12-01
A critical challenge for the energy-water-land nexus is understanding and modeling the connection between the natural system—including changes in climate, land use/cover, and streamflow—and the engineered system including water for energy, agriculture, and society. Equally important is understanding the linkage across scales; that is, how impacts at the asset level aggregate to influence behavior at the local to regional scale. Toward this need, a case study was conducted featuring multi-sector and multi-scale modeling centered on the San Juan River basin (a watershed that accounts for one-tenth of the Colorado River drainage area). Simulations were driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. The Variable Infiltration Capacity (VIC) hydrologic model was fitted with a custom vegetation mortality sub-model and used to estimate tributary inflows to the San Juan River and estimate reservoir evaporation. San Juan River operations, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries out to the year 2100. Major water demands included two large coal-fired power plants, a local electric utility, river-side irrigation, the Navajo Indian Irrigation Project and instream flows managed for endangered aquatic species. Also tracked were basin exports, including water (downstream flows to the Colorado River and interbasin transfers to the Rio Grande) and interstate electric power transmission. Implications for the larger western electric grid were assessed using PLEXOS, a sub-hourly dispatch, electric production-cost model. Results highlight asset-level interactions at the energy-water-land nexus driven by climate and population dynamics; specifically, growing vulnerabilities to shorted water deliveries. Analyses also explored linkages across geographic scales from the San Juan to the larger Colorado River and Rio Grande basins as well as the western power grid.
Power Systems Operations and Controls | Grid Modernization | NREL
controlled electric grid-with one-way delivery of power from central-station power plants-into one that Manager, Energy Systems Optimization and Control Group murali.baggu@nrel.gov | 303-275-4337
Grid Integration Science, NREL Power Systems Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin
This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.
NASA Astrophysics Data System (ADS)
Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Ling, Yunpeng
2017-03-01
On March 15, 2015, the Central Office issued the "Opinions on Further Deepening the Reform of Electric Power System" (Zhong Fa No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid projects' investment benefits under the reform of transmission and distribution price to improve the investment efficiency of power grid projects after the power reform in China.
Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM
NASA Astrophysics Data System (ADS)
Liang, Zijun; Lin, Shunjiang; Liu, Mingbo
2017-05-01
Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid
NASA Astrophysics Data System (ADS)
Yao, Tong
In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.
Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System
NASA Astrophysics Data System (ADS)
Bhende, C. N.; Kalam, A.; Malla, S. G.
2016-04-01
Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.
Review of the development of multi-terminal HVDC and DC power grid
NASA Astrophysics Data System (ADS)
Chen, Y. X.
2017-11-01
Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.
Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System
NASA Astrophysics Data System (ADS)
Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.
2016-12-01
The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.
Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu
2014-09-11
The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks,more » between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.« less
The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,
import and export electricity from the electric grid (as defined by state net metering policy) as well as policy attention to-date because energy storage has, until recently, seen limited deployment (see Figure 1). While this policy question may seem obscure, it is starting to pop up in other states as pairing
Power Market Design | Grid Modernization | NREL
Power Market Design Power Market Design NREL researchers are developing a modeling platform to test (a commercial electricity production simulation model) and FESTIV (the NREL-developed Flexible Energy consisting of researchers in power systems and economics Projects Grid Market Design Project The objective of
78 FR 58519 - Denial of Export Privileges; Sixing Liu
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... International Emergency Economic Powers Act (50 U.S.C. 1701-1706); 18 U.S.C. 793, 794 or 798; section 4(b) of... Powers Act (50 U.S.C. 1701, et seq. (2006 & Supp. IV 2010)). I have received notice of Liu's conviction... the Regulations with knowledge or reason to know that the item will be, or is intended to be, exported...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... relations, Nuclear materials, Nuclear power plants and reactors, Reporting and recordkeeping requirements... Reorganization Act sec. 201 (42 U.S.C. 5841; Solar, Wind, Waste, and Geothermal Power Act of 1990 sec. 5 (42 U.S... security of the United States. Because this rule involves a foreign affairs function of the United States...
NASA Astrophysics Data System (ADS)
Hoffrichter, André; Barrios, Hans; Massmann, Janek; Venkataramanachar, Bhavasagar; Schnettler, Armin
2018-02-01
The structural changes in the European energy system lead to an increase of renewable energy sources that are primarily connected to the distribution grid. Hence the stationary analysis of the transmission grid and the regionalization of generation capacities are strongly influenced by subordinate grid structures. To quantify the impact on the congestion management in the German transmission grid, a 110 kV grid model is derived using publicly available data delivered by Open Street Map and integrated into an existing model of the European transmission grid. Power flow and redispatch simulations are performed for three different regionalization methods and grid configurations. The results show a significant impact of the 110 kV system and prove an overestimation of power flows in the transmission grid when neglecting subordinate grids. Thus, the redispatch volume in Germany to dissolve bottlenecks in case of N-1 contingencies decreases by 38 % when considering the 110 kV grid.
Resilience Metrics for the Electric Power System: A Performance-Based Approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Castillo, Andrea R; Silva-Monroy, Cesar Augusto
Grid resilience is a concept related to a power system's ability to continue operating and delivering power even in the event that low probability, high-consequence disruptions such as hurricanes, earthquakes, and cyber-attacks occur. Grid resilience objectives focus on managing and, ideally, minimizing potential consequences that occur as a result of these disruptions. Currently, no formal grid resilience definitions, metrics, or analysis methods have been universally accepted. This document describes an effort to develop and describe grid resilience metrics and analysis methods. The metrics and methods described herein extend upon the Resilience Analysis Process (RAP) developed by Watson et al. formore » the 2015 Quadrennial Energy Review. The extension allows for both outputs from system models and for historical data to serve as the basis for creating grid resilience metrics and informing grid resilience planning and response decision-making. This document describes the grid resilience metrics and analysis methods. Demonstration of the metrics and methods is shown through a set of illustrative use cases.« less
Methods and apparatus for rotor load control in wind turbines
Moroz, Emilian Mieczyslaw
2006-08-22
A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.
Research on the impacts of large-scale electric vehicles integration into power grid
NASA Astrophysics Data System (ADS)
Su, Chuankun; Zhang, Jian
2018-06-01
Because of its special energy driving mode, electric vehicles can improve the efficiency of energy utilization and reduce the pollution to the environment, which is being paid more and more attention. But the charging behavior of electric vehicles is random and intermittent. If the electric vehicle is disordered charging in a large scale, it causes great pressure on the structure and operation of the power grid and affects the safety and economic operation of the power grid. With the development of V2G technology in electric vehicle, the study of the charging and discharging characteristics of electric vehicles is of great significance for improving the safe operation of the power grid and the efficiency of energy utilization.
Research on Resilience of Power Systems Under Natural Disasters—A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yezhou; Chen, Chen; Wang, Jianhui
2016-03-01
Natural disasters can cause large blackouts. Research into natural disaster impacts on electric power systems is emerging to understand the causes of the blackouts, explore ways to prepare and harden the grid, and increase the resilience of the power grid under such events. At the same time, new technologies such as smart grid, micro grid, and wide area monitoring applications could increase situational awareness as well as enable faster restoration of the system. This paper aims to consolidate and review the progress of the research field towards methods and tools of forecasting natural disaster related power system disturbances, hardening andmore » pre-storm operations, and restoration models. Challenges and future research opportunities are also presented in the paper.« less
A Systematic Multi-Time Scale Solution for Regional Power Grid Operation
NASA Astrophysics Data System (ADS)
Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.
2017-10-01
Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.
NASA Astrophysics Data System (ADS)
Heitzig, J.; Fujiwara, N.; Aihara, K.; Kurths, J.
2014-10-01
This topical issue collects contributions to the interdisciplinary study of power grid stability in face of increasing volatility of energy production and consumption due to increasing renewable energy infeed and changing climatic conditions. The individual papers focus on different aspects of this field and bring together modern achievements from various disciplines, in particular complex systems science, nonlinear data analysis, control theory, electrical engineering, and climatology. Main topics considered here are prediction and volatility of renewable infeed, modelling and theoretical analysis of power grid topology, dynamics and stability, relationships between stability and complex network topology, and improvements via topological changes or control. Impacts for the design of smart power grids are discussed in detail.
The capacity credit of grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Alsema, E. A.; van Wijk, A. J. M.; Turkenburg, W. C.
The capacity credit due photovoltaic (PV) power plants if integrated into the Netherlands grid was investigated, together with an estimate of the total allowable penetration. An hourly simulation was performed based on meteorological data from five stations and considering tilted surfaces, the current grid load pattern, and the load pattern after PV-power augmentation. The reliability of the grid was assessed in terms of a loss of load probability analysis, assuming power drops were limited to 1 GW. A projected tolerance for 2.5 GW of PV power was calculated. Peak demands were determined to be highest in winter, contrary to highest insolation levels; however, daily insolation levels coincided with daily peak demands. Combining the PV input with an equal amount of wind turbine power production was found to augment the capacity credit for both at aggregate outputs of 2-4 GW.
Optimal Padding for the Two-Dimensional Fast Fourier Transform
NASA Technical Reports Server (NTRS)
Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.
2011-01-01
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that can benefit from this algorithm, including optics, image-processing, signal-processing, and engineering applications.
Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...
2015-06-23
Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less
Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation
NASA Astrophysics Data System (ADS)
Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi
In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
NASA Astrophysics Data System (ADS)
Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri
2018-02-01
This paper try to identify and examined the degree of market power on wheat international market by 2 major exporting countries comprising Canada and Australia by using the Pricing to Market (PTM) method and Residual Demand Elasticity (RDE) method. The PTM method found that Canada impose noncompetitive strategy by applying price discrimination and apply market power to their importing. Different results come from Australian exporter as they are not using their market power to the importing. Conflicting result arise from estimation using RDE and PTM method suggest that the need to extend the theoretical model of both model by expand its economic and econometric model to have consistent expected result theoretically and empirically.
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, Ian; Burman, Kari; Singh, Mohit
Providing clean and affordable energy services to the more than 1 billion people globally who lack access to electricity is a critical driver for poverty reduction, economic development, improved health, and social outcomes. More than 84% of populations without electricity are located in rural areas where traditional grid extension may not be cost-effective; therefore, distributed energy solutions such as mini-grids are critical. To address some of the root challenges of providing safe, quality, and financially viable mini-grid power systems to remote customers, the U.S. Department of Energy (DOE) teamed with the National Renewable Energy Laboratory (NREL) to develop a Qualitymore » Assurance Framework (QAF) for isolated mini-grids. The QAF for mini-grids aims to address some root challenges of providing safe, quality, and affordable power to remote customers via financially viable mini-grids through two key components: (1) Levels of service: Defines a standard set of tiers of end-user service and links them to technical parameters of power quality, power availability, and power reliability. These levels of service span the entire energy ladder, from basic energy service to high-quality, high-reliability, and high-availability service (often considered 'grid parity'); (2) Accountability and performance reporting framework: Provides a clear process of validating power delivery by providing trusted information to customers, funders, and/or regulators. The performance reporting protocol can also serve as a robust monitoring and evaluation tool for mini-grid operators and funding organizations. The QAF will provide a flexible alternative to rigid top-down standards for mini-grids in energy access contexts, outlining tiers of end-user service and linking them to relevant technical parameters. In addition, data generated through implementation of the QAF will provide the foundation for comparisons across projects, assessment of impacts, and greater confidence that will drive investment and scale-up in this sector. The QAF implementation process also defines a set of implementation guidelines that help the deployment of mini-grids on a regional or national scale, helping to insure successful rapid deployment of these relatively new remote energy options. Note that the QAF is technology agnostic, addressing both alternating current (AC) and direct current (DC) mini-grids, and is also applicable to renewable, fossil-fuel, and hybrid systems.« less
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
Emissions & Generation Resource Integrated Database (eGRID), eGRID2002 (with years 1996 - 2000 data)
The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, nitrous oxide, and mercury; emissions rates; net generation; resource mix; and many other attributes. eGRID2002 (years 1996 through 2000 data) contains 16 Excel spreadsheets and the Technical Support Document, as well as the eGRID Data Browser, User's Manual, and Readme file. Archived eGRID data can be viewed as spreadsheets or by using the eGRID Data Browser. The eGRID spreadsheets can be manipulated by data users and enables users to view all the data underlying eGRID. The eGRID Data Browser enables users to view key data using powerful search features. Note that the eGRID Data Browser will not run on a Mac-based machine without Windows emulation.
Sandia and NJ TRANSIT Authority Developing Resilient Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, Charles J.; Ellis, Abraham
2014-11-01
Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.
Grid Research | Grid Modernization | NREL
Grid Research Grid Research NREL addresses the challenges of today's electric grid through high researcher in a lab Integrated Devices and Systems Developing and evaluating grid technologies and integrated Controls Developing methods for real-time operations and controls of power systems at any scale Photo of
Does topological information matter for power grid vulnerability?
Ouyang, Min; Yang, Kun
2014-12-01
Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.
Does topological information matter for power grid vulnerability?
NASA Astrophysics Data System (ADS)
Ouyang, Min; Yang, Kun
2014-12-01
Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.
DOE-INES New Planet Bioenergy Technical Report Final Public Version 7-22-16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niederschulte, Mark; Russell, Kelly; Connors, Keith
INEOS Bio and New Planet Energy Florida formed a joint venture company called INEOS New Planet BioEnergy (“INPB”) in 2009. This venture’s intent was to demonstrate at commercial scale INEOS Bio’s third-generation technology (the “Bio Process”) that converts a variety of lignocellulosic feedstocks into bioethanol and renewable electricity. INPB applied for and was awarded a $50,000,000 Department of Energy (“DOE”) grant in 2009 to support the construction of the commercial demonstration plant. The grant was a cost-sharing arrangement requiring at least 50% equity participation by the grantee. INPB completed construction of the Indian River BioEnergy Center in Vero Beach, Floridamore » in June, 2012. The facility is designed to produce 8 million gallons per year of fuel-grade bioethanol and 6MW of electrical power, with upwards of 2MW exported to the electrical grid. Construction of the Indian River BioEnergy Center was completed on-time and within its capital budget of $121 million.« less
Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications
NASA Astrophysics Data System (ADS)
Shamsi, Pourya
Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
NASA Astrophysics Data System (ADS)
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring
Gharavi, Hamid; Hu, Bin
2018-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.
Gharavi, Hamid; Hu, Bin
2017-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Qi, Junjian; Kang, Wei
2016-08-01
Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less
Regulation control and energy management scheme for wireless power transfer
Miller, John M.
2015-12-29
Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.
NASA Astrophysics Data System (ADS)
Pourmousavi Kani, Seyyed Ali
Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation environment to evaluate the effectiveness of the proposed methodologies. Simulation results revealed the effectiveness of the proposed methods in providing balancing reserves and microgrids' economic and stable operation. The proposed tools and approaches can significantly enhance the application of microgrids and demand response in the smart grid era. They will also help to increase the penetration level of variable distributed generation resources in the smart grid.
FNCS: A Framework for Power System and Communication Networks Co-Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.
2014-04-13
This paper describes the Fenix framework that uses a federated approach for integrating power grid and communication network simulators. Compared existing approaches, Fenix al- lows co-simulation of both transmission and distribution level power grid simulators with the communication network sim- ulator. To reduce the performance overhead of time synchro- nization, Fenix utilizes optimistic synchronization strategies that make speculative decisions about when the simulators are going to exchange messages. GridLAB-D (a distribution simulator), PowerFlow (a transmission simulator), and ns-3 (a telecommunication simulator) are integrated with the frame- work and are used to illustrate the enhanced performance pro- vided by speculative multi-threadingmore » on a smart grid applica- tion. Our speculative multi-threading approach achieved on average 20% improvement over the existing synchronization methods« less
NASA Astrophysics Data System (ADS)
Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.
2013-03-01
An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrao, J.; Kwok, W-K; Bozovic, I.
As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations thatmore » crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety codes. Unlike traditional grid technology, superconducting fault current limiters are smart. They increase their resistance abruptly in response to overcurrents from faults in the system, thus limiting the overcurrents and protecting the grid from damage. They react fast in both triggering and automatically resetting after the overload is cleared, providing a new, self-healing feature that enhances grid reliability. Superconducting reactive power regulators further enhance reliability by instantaneously adjusting reactive power for maximum efficiency and stability in a compact and economic package that is easily sited in urban grids. Not only do superconducting motors and generators cut losses, weight, and volume by a factor of two, but they are also much more tolerant of voltage sag, frequency instabilities, and reactive power fluctuations than their conventional counterparts. The challenge facing the electricity grid to provide abundant, reliable power will soon grow to crisis proportions. Continuing urbanization remains the dominant historic demographic trend in the United States and in the world. By 2030, nearly 90% of the U.S. population will reside in cities and suburbs, where increasingly strict permitting requirements preclude bringing in additional overhead access lines, underground cables are saturated, and growth in power demand is highest. The power grid has never faced a challenge so great or so critical to our future productivity, economic growth, and quality of life. Incremental advances in existing grid technology are not capable of solving the urban power bottleneck. Revolutionary new solutions are needed ? the kind that come only from superconductivity.« less
Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids
NASA Astrophysics Data System (ADS)
Babqi, Abdulrahman Jamal
This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.
NASA Astrophysics Data System (ADS)
Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi
2018-02-01
The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.
NASA Astrophysics Data System (ADS)
Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke
This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
NASA Astrophysics Data System (ADS)
Lucas, G.; Love, J. J.; Kelbert, A.; Bedrosian, P.; Rigler, E. J.
2017-12-01
Space weather induces significant geoelectric fields within Earth's subsurface that can adversely affect electric power grids. The complex interaction between space weather and the solid Earth has traditionally been approached with the use of simple 1-D impedance functions relating the inducing magnetic field to the induced geoelectric field. Ongoing data collection through the NSF EarthScope program has produced measured impedance data across much of the continental US. In this work, impedance data are convolved with magnetic field variations, obtained from USGS magnetic observatories, during a geomagnetic storm. This convolution produces geoelectric fields within the earth. These geoelectric fields are then integrated across power transmission lines to determine the voltage generated within each power line as a function of time during a geomagnetic storm. The voltages generated within the electric power grid will be shown for several historic geomagnetic storms. The estimated voltages calculated from 1-D and 3-D impedances differ by more than 100 V across some transmission lines. In combination with grounding resistance data and network topology, these voltage estimates can be utilized by power companies to estimate geomagnetically-induced currents throughout the network. These voltage estimates can provide information on which power lines are most vulnerable to geomagnetic storms, and assist power grid companies investigating where to install additional protections within their grid.
Vehicle-to-Grid Automatic Load Sharing with Driver Preference in Micro-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yubo; Nazaripouya, Hamidreza; Chu, Chi-Cheng
Integration of Electrical Vehicles (EVs) with power grid not only brings new challenges for load management, but also opportunities for distributed storage and generation. This paper comprehensively models and analyzes distributed Vehicle-to-Grid (V2G) for automatic load sharing with driver preference. In a micro-grid with limited communications, V2G EVs need to decide load sharing based on their own power and voltage profile. A droop based controller taking into account driver preference is proposed in this paper to address the distributed control of EVs. Simulations are designed for three fundamental V2G automatic load sharing scenarios that include all system dynamics of suchmore » applications. Simulation results demonstrate that active power sharing is achieved proportionally among V2G EVs with consideration of driver preference. In additional, the results also verify the system stability and reactive power sharing analysis in system modelling, which sheds light on large scale V2G automatic load sharing in more complicated cases.« less
Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697
Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.
Taming instabilities in power grid networks by decentralized control
NASA Astrophysics Data System (ADS)
Schäfer, B.; Grabow, C.; Auer, S.; Kurths, J.; Witthaut, D.; Timme, M.
2016-05-01
Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.
2016-10-28
assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, Sean; Baring-Gould, Ian; Booth, Samuel
To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.
NASA Astrophysics Data System (ADS)
Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori
2018-05-01
Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.
Dynamic Wireless Power Transfer - Grid Impacts Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Tony; Meintz, Andrew; Gonder, Jeff
2015-12-04
This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk
2015-01-01
Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph; Divan, Deepak; Brumsickle, William
2004-02-01
Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less
Integrated assessment of water-power grid systems under changing climate
NASA Astrophysics Data System (ADS)
Yan, E.; Zhou, Z.; Betrie, G.
2017-12-01
Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenchard, S.E.
1981-10-01
Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less
Grid-Parity Solar Power for Department of Defense Installations
2014-02-01
MW DC. Installed capacity of panels. Capacity of 1 MW DC. Capacity = 998.4 kWp DC. Photovoltaic Peak Capacity ( Power Delivered). PVSyst... Photovoltaic Annual Output ( Power Delivered) The power delivered to Camp Roberts should match or exceed results simulated using the University of Geneva...FINAL REPORT Grid-Parity Solar Power for Department of Defense Installations ESTCP Project EW-201134 FEBRUARY 2014 John Bender
Biography of a technology: North America's power grid through the twentieth century
NASA Astrophysics Data System (ADS)
Cohn, Julie A.
North Americans are among the world's most intense consumers of electricity. The vast majority in the United States and Canada access power from a network of transmission lines that stretch from the East Coast to the West Coast and from Canada to the Mexican Baja. This network, known as the largest interconnected machine in the world, evolved during the first two thirds of the twentieth century. With the very first link-ups occurring at the end of the 1890s, a wide variety of public and private utilities extended power lines to reach markets, access and manage energy resources, balance loads, realize economies of scale, provide backup power, and achieve economic stability. In 1967, utility managers and the Bureau of Reclamation connected the expansive eastern and western power pools to create the North American grid. Unlike other power grids around the world, built by single, centrally controlled entities, this large technological system emerged as the result of multiple decisions across eighty-five years of development, and negotiations for control at the economic, political, and technological levels. This dissertation describes the process of building the North American grid and the paradoxes the resulting system represents. While the grid functions as a single machine moving electricity across the continent, it is owned by many independent entities. Smooth operations suggest that the grid is a unified system; however, it operates under shared management and divided authority. In addition, although a single power network seems the logical outcome of electrification, in fact it was assembled through aggregation, not planning. Interconnections intentionally increase the robustness of individual sub-networks, yet the system itself is fragile, as demonstrated by major cascading power outages. Finally, the transmission network facilitates increased use of energy resources and consumption of power, but at certain points in the past, it also served as a technology of conservation. While this project explores the history of how and why North America has a huge interconnected power system, it also offers insights into the challenges the grid poses for our energy future.
Grid Stability Awareness System (GSAS) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuerborn, Scott; Ma, Jian; Black, Clifton
The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less
Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations
NASA Astrophysics Data System (ADS)
Patki, Chetan; Agarwal, Vivek
2009-08-01
Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.
Domed, 40-cm-Diameter Ion Optics for an Ion Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.
2006-01-01
Improved accelerator and screen grids for an ion accelerator have been designed and tested in a continuing effort to increase the sustainable power and thrust at the high end of the accelerator throttling range. The accelerator and screen grids are undergoing development for intended use as NASA s Evolutionary Xenon Thruster (NEXT) a spacecraft thruster that would have an input-power throttling range of 1.2 to 6.9 kW. The improved accelerator and screen grids could also be incorporated into ion accelerators used in such industrial processes as ion implantation and ion milling. NEXT is a successor to the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) thruster - a state-of-the-art ion thruster characterized by, among other things, a beam-extraction diameter of 28 cm, a span-to-gap ratio (defined as this diameter divided by the distance between the grids) of about 430, and a rated peak input power of 2.3 kW. To enable the NEXT thruster to operate at the required higher peak power, the beam-extraction diameter was increased to 40 cm almost doubling the beam-extraction area over that of NSTAR (see figure). The span-to-gap ratio was increased to 600 to enable throttling to the low end of the required input-power range. The geometry of the apertures in the grids was selected on the basis of experience in the use of grids of similar geometry in the NSTAR thruster. Characteristics of the aperture geometry include a high open-area fraction in the screen grid to reduce discharge losses and a low open-area fraction in the accelerator grid to reduce losses of electrically neutral gas atoms or molecules. The NEXT accelerator grid was made thicker than that of the NSTAR to make more material available for erosion, thereby increasing the service life and, hence, the total impulse. The NEXT grids are made of molybdenum, which was chosen because its combination of high strength and low thermal expansion helps to minimize thermally and inertially induced deflections of the grids. A secondary reason for choosing molybdenum is the availability of a large database for this material. To keep development costs low, the NEXT grids have been fabricated by the same techniques used to fabricate the NSTAR grids. In tests, the NEXT ion optics have been found to outperform the NSTAR ion optics, as expected.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... Emergency Economic Powers Act (50 U.S.C. 1701, et seq. (2006 & Supp. IV 2010)) (``IEEPA''). Specifically, P... issued under the International Emergency Economic Powers Act (50 U.S.C. 1701-1706); 18 U.S.C. 793, 794 or... with knowledge or reason to know that the item will be, or is intended to be, exported from the United...
Microwave Power Combiners for Signals of Arbitrary Amplitude
NASA Technical Reports Server (NTRS)
Conroy, Bruce; Hoppe, Daniel
2009-01-01
Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.
Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System
NASA Astrophysics Data System (ADS)
Cen, Zhaohui
2017-09-01
Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.
Decentralized control of units in smart grids for the support of renewable energy supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenschein, Michael, E-mail: Michael.Sonnenschein@Uni-Oldenburg.DE; Lünsdorf, Ontje, E-mail: Ontje.Luensdorf@OFFIS.DE; Bremer, Jörg, E-mail: Joerg.Bremer@Uni-Oldenburg.DE
Due to the significant environmental impact of power production from fossil fuels and nuclear fission, future energy systems will increasingly rely on distributed and renewable energy sources (RES). The electrical feed-in from photovoltaic (PV) systems and wind energy converters (WEC) varies greatly both over short and long time periods (from minutes to seasons), and (not only) by this effect the supply of electrical power from RES and the demand for electrical power are not per se matching. In addition, with a growing share of generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually replaced bymore » a bottom-up power supply. This altogether leads to new problems regarding the safe and reliable operation of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. The inherent flexibilities, i.e. the set of feasible power schedules, of distributed power units have to be controlled in order to support demand–supply matching as well as stable grid operation. Controllable power units are e.g. combined heat and power plants, power storage systems such as batteries, and flexible power consumers such as heat pumps. By controlling the flexibilities of these units we are particularly able to optimize the local utilization of RES feed-in in a given power grid by integrating both supply and demand management measures with special respect to the electrical infrastructure. In this context, decentralized systems, autonomous agents and the concept of self-organizing systems will become key elements of the ICT based control of power units. In this contribution, we first show how a decentralized load management system for battery charging/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large sets of appliances, dynamic clustering of these appliances into uniformly controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.« less
Review of power sources for Alaska DOT & PF road weather information systems (RWIS) : phase I.
DOT National Transportation Integrated Search
2014-06-01
This report documents the findings related to a review of power sources for six off-grid Road Weather Information Systems (RWIS) in : Alaska. Various power sources were reviewed as a means of reliably operating the off-grid RWIS sites throughout the ...
Hybrid AC-High Voltage DC Grid Stability and Controls
NASA Astrophysics Data System (ADS)
Yu, Jicheng
The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features.
Non-isolated high gain DC-DC converter for smart grid- A review
NASA Astrophysics Data System (ADS)
Divya Navamani, J.; Vijayakumar, K.; Lavanya, A.; Mano Raj, A. Jason
2018-04-01
Smart grids are becoming the most interesting and promising alternative for an electric grid system. Power conditioning units and control over the distribution of power is the essential feature for the smart grid system. In this paper, we reviewed several non-isolated high gain topologies derived from boost converter for providing required voltage to the grid tie inverter from renewable energy sources. Steady state analysis of all the topologies is analyzed to compare the performance of the topologies. Simulation is carried out in nL5 simulator and the results are compared and validated with the theoretical results. This paper is a guide to the researchers to choose the best topology for the smart grid application.
NASA Technical Reports Server (NTRS)
Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.
1988-01-01
Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.
Harmonic analysis and suppression in hybrid wind & PV solar system
NASA Astrophysics Data System (ADS)
Gupta, Tripti; Namekar, Swapnil
2018-04-01
The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.
Commerce Spectrum Management Advisory Committee (CSMAC) Working Group (WG) 3 Phase 2 Study Summary
2013-05-29
threshold Kauai Niihau 52 HTS Power Contours 1 kW transmitter power with 20 dB attenuation, 1 km grid spacing LTE base station received power (dBW...137.4 dBW LTE threshold Kauai Niihau 53 HTS LTE System Threshold Exceedance, 1755-1780 MHz 1 kW transmitter power, 1 km grid spacing
Developing a Resilient Green Cellular Network
2013-12-01
to provide BS autonomy from grid power through alternative energy, such as: fuel cells and xiii renewable photovoltaic (PV), wind energy...stations with adequate backup power or utilizing alternative/renewable energy technology such as photovoltaic or wind power to allow them to...mitigating strategies with the consensus view on BSs migrating away from grid power , to renewable energy ( photovoltaic ), and alternative fuels. 40
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Visual Analytics for Power Grid Contingency Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Huang, Zhenyu; Chen, Yousu
2014-01-20
Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure tomore » do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.« less
Power Systems Integration Laboratory | Energy Systems Integration Facility
inverters. Key Infrastructure Grid simulator, load bank, Opal-RT, battery, inverter mounting racks, data , frequency-watt, and grid anomaly ride-through. Key Infrastructure House power, Opal-RT, PV simulator access
Past Seminars and Workshops | Energy Systems Integration Facility | NREL
Distributed Optimization and Control of Sustainable Power Systems Workshop Integrating PV in Distributed Grids Unintentional Islands in Power Systems with Distributed Resources Webinar Smart Grid Educational Series Energy
Wide-area situation awareness in electric power grid
NASA Astrophysics Data System (ADS)
Greitzer, Frank L.
2010-04-01
Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.
Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid
NASA Astrophysics Data System (ADS)
Malozemoff, A. P.
2012-08-01
Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.
Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid
NASA Astrophysics Data System (ADS)
Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco
2013-03-01
A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.
Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ning; Wang, Jianhui; Singh, Ravindra
2017-01-01
Distribution management systems (DMSs) are increasingly used by distribution system operators (DSOs) to manage the distribution grid and to monitor the status of both power imported from the transmission grid and power generated locally by a distributed energy resource (DER), to ensure that power flows and voltages along the feeders are maintained within designed limits and that appropriate measures are taken to guarantee service continuity and energy security. When microgrids are deployed and interconnected to the distribution grids, they will have an impact on the operation of the distribution grid. The challenge is to design this interconnection in such amore » way that it enhances the reliability and security of the distribution grid and the loads embedded in the microgrid, while providing economic benefits to all stakeholders, including the microgrid owner and operator and the distribution system operator.« less
NASA Astrophysics Data System (ADS)
Liu, Xuan
Power grid is one of the most critical infrastructures in a nation and could suffer a variety of cyber attacks. With the development of Smart Grid, false data injection attack has recently attracted wide research interest. This thesis proposes a false data attack model with incomplete network information and develops optimal attack strategies for attacking load measurements and the real-time topology of a power grid. The impacts of false data on the economic and reliable operations of power systems are quantitatively analyzed in this thesis. To mitigate the risk of cyber attacks, a distributed protection strategies are also developed. It has been shown that an attacker can design false data to avoid being detected by the control center if the network information of a power grid is known to the attacker. In practice, however, it is very hard or even impossible for an attacker to obtain all network information of a power grid. In this thesis, we propose a local load redistribution attacking model based on incomplete network information and show that an attacker only needs to obtain the network information of the local attacking region to inject false data into smart meters in the local region without being detected by the state estimator. A heuristic algorithm is developed to determine a feasible attacking region by obtaining reduced network information. This thesis investigates the impacts of false data on the operations of power systems. It has been shown that false data can be designed by an attacker to: 1) mask the real-time topology of a power grid; 2) overload a transmission line; 3) disturb the line outage detection based on PMU data. To mitigate the risk of cyber attacks, this thesis proposes a new protection strategy, which intends to mitigate the damage effects of false data injection attacks by protecting a small set of critical measurements. To further reduce the computation complexity, a mixed integer linear programming approach is also proposed to separate the power grid into several subnetworks, then distributed protection strategy is applied to each subnetwork.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia
Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.
Wireless Sensor Network for Electric Transmission Line Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alphenaar, Bruce
Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and costmore » effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8).« less
Sensor Transmission Power Schedule for Smart Grids
NASA Astrophysics Data System (ADS)
Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.
2017-11-01
Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.
The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less
Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.; ...
2017-08-25
The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less
A decision support system using combined-classifier for high-speed data stream in smart grid
NASA Astrophysics Data System (ADS)
Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun
2016-11-01
Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.
Aggregation server for grid-integrated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
2015-05-26
Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregatedmore » EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.« less
Propagation of Disturbances in AC Electricity Grids.
Tamrakar, Samyak; Conrath, Michael; Kettemann, Stefan
2018-04-24
The energy transition towards high shares of renewable energy will affect the stability of electricity grids in many ways. Here, we aim to study its impact on propagation of disturbances by solving nonlinear swing equations describing coupled rotating masses of synchronous generators and motors on different grid topologies. We consider a tree, a square grid and as a real grid topology, the german transmission grid. We identify ranges of parameters with different transient dynamics: the disturbance decays exponentially in time, superimposed by oscillations with the fast decay rate of a single node, or with a smaller decay rate without oscillations. Most remarkably, as the grid inertia is lowered, nodes may become correlated, slowing down the propagation from ballistic to diffusive motion, decaying with a power law in time. Applying linear response theory we show that tree grids have a spectral gap leading to exponential relaxation as protected by topology and independent on grid size. Meshed grids are found to have a spectral gap which decreases with increasing grid size, leading to slow power law relaxation and collective diffusive propagation of disturbances. We conclude by discussing consequences if no measures are undertaken to preserve the grid inertia in the energy transition.
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
Onboard power line conditioning system for an electric or hybrid vehicle
Kajouke, Lateef A.; Perisic, Milun
2016-06-14
A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.
A Probabilistic Risk Mitigation Model for Cyber-Attacks to PMU Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousavian, Seyedamirabbas; Valenzuela, Jorge; Wang, Jianhui
The power grid is becoming more dependent on information and communication technologies. Complex networks of advanced sensors such as phasor measurement units (PMUs) are used to collect real time data to improve the observability of the power system. Recent studies have shown that the power grid has significant cyber vulnerabilities which could increase when PMUs are used extensively. Therefore, recognizing and responding to vulnerabilities are critical to the security of the power grid. This paper proposes a risk mitigation model for optimal response to cyber-attacks to PMU networks. We model the optimal response action as a mixed integer linear programmingmore » (MILP) problem to prevent propagation of the cyber-attacks and maintain the observability of the power system.« less
Advanced Grid-Friendly Controls Demonstration for Utility-Scale
PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an
Emissions & Generation Resource Integrated Database (eGRID), eGRID2012
The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes. eGRID2012 Version 1.0 is the eighth edition of eGRID, which contains the complete release of year 2009 data, as well as year 2007, 2005, and 2004 data. For year 2009 data, all the data are contained in a single Microsoft Excel workbook, which contains boiler, generator, plant, state, power control area, eGRID subregion, NERC region, U.S. total and grid gross loss factor tabs. Full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are also released in this edition. The fourth edition of eGRID, eGRID2002 Version 2.01, containing year 1996 through 2000 data is located on the eGRID Archive page (http://www.epa.gov/cleanenergy/energy-resources/egrid/archive.html). The current edition of eGRID and the archived edition of eGRID contain the following years of data: 1996 - 2000, 2004, 2005, and 2007. eGRID has no other years of data.
Enhanced power quality based single phase photovoltaic distributed generation system
NASA Astrophysics Data System (ADS)
Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.
2016-08-01
This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.
A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG
NASA Astrophysics Data System (ADS)
Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting
2018-02-01
A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.
NASA Astrophysics Data System (ADS)
Guo, Lijuan; Yan, Haijun; Hao, Yongqi; Chen, Yun
2018-01-01
With the power supply level of urban power grid toward high reliability development, it is necessary to adopt appropriate methods for comprehensive evaluation of existing equipment. Considering the wide and multi-dimensional power system data, the method of large data mining is used to explore the potential law and value of power system equipment. Based on the monitoring data of main transformer and the records of defects and faults, this paper integrates the data of power grid equipment environment. Apriori is used as an association identification algorithm to extract the frequent correlation factors of the main transformer, and the potential dependence of the big data is analyzed by the support and confidence. Then, the integrated data is analyzed by PCA, and the integrated quantitative scoring model is constructed. It is proved to be effective by using the test set to validate the evaluation algorithm and scheme. This paper provides a new idea for data fusion of smart grid, and provides a reference for further evaluation of big data of power grid equipment.
NASA Astrophysics Data System (ADS)
Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.
2016-07-01
This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.
Islanding the power grid on the transmission level: less connections for more security
Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard
2016-01-01
Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids. PMID:27713509
Islanding the power grid on the transmission level: less connections for more security
NASA Astrophysics Data System (ADS)
Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard
2016-10-01
Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids.
Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems
NASA Astrophysics Data System (ADS)
Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki
Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.
Compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.
University of Delaware Demonstrated at NREL Vehicle-to-Grid Characteristics
University of Delaware Demonstrated at NREL Vehicle-to-Grid Characteristics of Electric Vehicles At the Energy Systems Integration Facility (ESIF), the University of Delaware demonstrated the vehicle-to-grid , featuring vehilce-to-grid integration capabilities enabling it to feed power back to the grid and
High Quality Data for Grid Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less
Solar Integration Data Sets | Grid Modernization | NREL
modeled solar data to study the operational impacts of solar on the electric power grid. Solar Power Data need to estimate power production from hypothetical solar power plants. Solar Integration National Dataset (SIND) Toolkit The next generation of modeled solar data with higher temporal and spatial
Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar
Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
Application of high performance asynchronous socket communication in power distribution automation
NASA Astrophysics Data System (ADS)
Wang, Ziyu
2017-05-01
With the development of information technology and Internet technology, and the growing demand for electricity, the stability and the reliable operation of power system have been the goal of power grid workers. With the advent of the era of big data, the power data will gradually become an important breakthrough to guarantee the safe and reliable operation of the power grid. So, in the electric power industry, how to efficiently and robustly receive the data transmitted by the data acquisition device, make the power distribution automation system be able to execute scientific decision quickly, which is the pursuit direction in power grid. In this paper, some existing problems in the power system communication are analysed, and with the help of the network technology, a set of solutions called Asynchronous Socket Technology to the problem in network communication which meets the high concurrency and the high throughput is proposed. Besides, the paper also looks forward to the development direction of power distribution automation in the era of big data and artificial intelligence.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.
Surfer: An Extensible Pull-Based Framework for Resource Selection and Ranking
NASA Technical Reports Server (NTRS)
Zolano, Paul Z.
2004-01-01
Grid computing aims to connect large numbers of geographically and organizationally distributed resources to increase computational power; resource utilization, and resource accessibility. In order to effectively utilize grids, users need to be connected to the best available resources at any given time. As grids are in constant flux, users cannot be expected to keep up with the configuration and status of the grid, thus they must be provided with automatic resource brokering for selecting and ranking resources meeting constraints and preferences they specify. This paper presents a new OGSI-compliant resource selection and ranking framework called Surfer that has been implemented as part of NASA's Information Power Grid (IPG) project. Surfer is highly extensible and may be integrated into any grid environment by adding information providers knowledgeable about that environment.
Power transformations improve interpolation of grids for molecular mechanics interaction energies.
Minh, David D L
2018-02-18
A common strategy for speeding up molecular docking calculations is to precompute nonbonded interaction energies between a receptor molecule and a set of three-dimensional grids. The grids are then interpolated to compute energies for ligand atoms in many different binding poses. Here, I evaluate a smoothing strategy of taking a power transformation of grid point energies and inverse transformation of the result from trilinear interpolation. For molecular docking poses from 85 protein-ligand complexes, this smoothing procedure leads to significant accuracy improvements, including an approximately twofold reduction in the root mean square error at a grid spacing of 0.4 Å and retaining the ability to rank docking poses even at a grid spacing of 0.7 Å. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Multi-agent coordination algorithms for control of distributed energy resources in smart grids
NASA Astrophysics Data System (ADS)
Cortes, Andres
Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.
Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191
Uncertainty Analysis of Power Grid Investment Capacity Based on Monte Carlo
NASA Astrophysics Data System (ADS)
Qin, Junsong; Liu, Bingyi; Niu, Dongxiao
By analyzing the influence factors of the investment capacity of power grid, to depreciation cost, sales price and sales quantity, net profit, financing and GDP of the second industry as the dependent variable to build the investment capacity analysis model. After carrying out Kolmogorov-Smirnov test, get the probability distribution of each influence factor. Finally, obtained the grid investment capacity uncertainty of analysis results by Monte Carlo simulation.
Introducing FNCS: Framework for Network Co-Simulation
None
2018-06-07
This video provides a basic overview of the PNNL Future Power Grid Initiative-developed Framework for Network Co-Simulation (FNCS). It discusses the increasing amounts of data coming from the power grid, and the need for a tool like FNCS that brings together data, transmission and distribution simulators. Included is a description of the FNCS architecture, and the advantages this new open source tool can bring to grid research and development efforts.
Introducing FNCS: Framework for Network Co-Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-10-23
This video provides a basic overview of the PNNL Future Power Grid Initiative-developed Framework for Network Co-Simulation (FNCS). It discusses the increasing amounts of data coming from the power grid, and the need for a tool like FNCS that brings together data, transmission and distribution simulators. Included is a description of the FNCS architecture, and the advantages this new open source tool can bring to grid research and development efforts.
Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability andmore » reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.« less
Issues regarding the usage of MPPT techniques in micro grid systems
NASA Astrophysics Data System (ADS)
Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.
2018-01-01
The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.
Decision making for best cogeneration power integration into a grid
NASA Astrophysics Data System (ADS)
Al Asmar, Joseph; Zakhia, Nadim; Kouta, Raed; Wack, Maxime
2016-07-01
Cogeneration systems are known to be efficient power systems for their ability to reduce pollution. Their integration into a grid requires simultaneous consideration of the economic and environmental challenges. Thus, an optimal cogeneration power are adopted to face such challenges. This work presents a novelty in selectinga suitable solution using heuristic optimization method. Its aim is to optimize the cogeneration capacity to be installed according to the economic and environmental concerns. This novelty is based on the sensitivity and data analysis method, namely, Multiple Linear Regression (MLR). This later establishes a compromise between power, economy, and pollution, which leads to find asuitable cogeneration power, and further, to be integrated into a grid. The data exploited were the results of the Genetic Algorithm (GA) multi-objective optimization. Moreover, the impact of the utility's subsidy on the selected power is shown.
Research on improvement of power quality of Micro - grid based on SVG pulse load
NASA Astrophysics Data System (ADS)
Lv, Chuang; Xie, Pu
2017-05-01
Pulse load will make the micro-grid public bus power to produce a high peak pulse due to its cyclical pulsation characteristics,, and make the micro-grid voltage fluctuations, frequency fluctuations, voltage and current distortion, power factor reduction and other adverse effects. In order to suppress the adverse effects of the pulse load on the microgrid and improve the power quality of the microgrid, this paper established the SVG simulation model in Matlab / Simulink environment, the superiority of SVG is verified by comparing the improvement of power quality before and after adding the SVG to microgrid system. The results show that the SVG model can suppress the adverse effects effectively of the pulse load on the microgrid, which is of great value and significance to the reactive power compensation and harmonic suppression of the microgrid.
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
2016-07-14
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
Smart Grid Development Issues for Terrestrial and Space Applications
NASA Technical Reports Server (NTRS)
Soeder, James F.
2011-01-01
The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.
Smart Grid Development Issues for Terrestrial and Space Applications
NASA Technical Reports Server (NTRS)
Soeder, James F.
2014-01-01
The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.
Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya
NASA Astrophysics Data System (ADS)
Tarigan, E.
2017-11-01
Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
development to improve the nation's electrical grid infrastructure, making it more flexible, reliable Standard, IEEE 1547 Blue cover page of report with hexagon shapes over electric grid Basic Research Needs Controls Power Systems Design and Studies Security and Resilience Institutional Support NREL grid research
Research and design of smart grid monitoring control via terminal based on iOS system
NASA Astrophysics Data System (ADS)
Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji
2017-06-01
Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.
High-quality weather data for grid integration studies
NASA Astrophysics Data System (ADS)
Draxl, C.
2016-12-01
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
Grid-Optimization Program for Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Daniel, R. E.; Lee, T. S.
1986-01-01
CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.
ERIC Educational Resources Information Center
Udoh, Emmanuel E.
2010-01-01
Advances in grid technology have enabled some organizations to harness enormous computational power on demand. However, the prediction of widespread adoption of the grid technology has not materialized despite the obvious grid advantages. This situation has encouraged intense efforts to close the research gap in the grid adoption process. In this…
NASA Astrophysics Data System (ADS)
Latief, Yusuf; Berawi, Mohammed Ali; Supriadi, Leni; Bintang Koesalamwardi, Ario; Petroceany, Jade; Herzanita, Ayu
2017-12-01
Indonesia is currently encouraging its physical, social and economy development. Physical development for economic development have to be supported by energy availability. For Indonesia, 90% of electrification ratio is still become an important task that has to be completed by the Government. However, the effort to increase electrification can become an environmental problem if it’s done with BAU scenario. The by-product of electric generation is the GHG, which increasing every year since 2006 from various sectors i.e. industry, housing, commercial, transportation, and energy. Net Zero Energy Building (NZEB) is an energy efficient building which can produce energy independently from clean and renewable sources. The energy that is generated by NZEB can be used for the building itself, and can be exported to the central grid. The integration of NZEB and Smart Grid can solve today’s issue on electrification ratio. Literature study will find benchmarks which can be applied in Indonesia along with possible obstacles in applying this technology.
Coordinated Research Program in Pulsed Power Physics.
1984-12-20
heated array of Inductive energy storage is attractive in pulsed power 375-/am-diameter thoriated tungsten filaments. At a flia- applications because of...control system electrostatical- ly. It is positioned 0.6 cm above the control grid. The grids and cathode are connected to external power supplies through...energy storage density becomes even larger (by a factor of - 10). One should note that these comparisons do not account for power supplies , cooling
Investigation of the Feasibility of a Superconducting Self-Healing DC Grid on a LNG Carrier
2015-06-21
art in High Temperature Superconductor technology is reviewed and an analytical approach of Superconducting DC Power Distribution on a power... Superconductors . I. INTRODUCTION During recent years, the usage of electrical power on- board vessels has grown exponentially. This fact, led...grid. When carrying DC current superconductors are perfectly lossless regardless of the cable length and the power rating of the line [1]. Also
Mumtaz, Sidra; Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.
Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System
NASA Astrophysics Data System (ADS)
Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup
2018-04-01
Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.
Electric vehicle equipment for grid-integrated vehicles
Kempton, Willett
2013-08-13
Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.
48. VIEW LOOKING NORTHEAST AT EXCITER RESISTANCE GRIDS LOCATED UNDER ...
48. VIEW LOOKING NORTHEAST AT EXCITER RESISTANCE GRIDS LOCATED UNDER THE CONTROL ROOM ON SOUTH SIDE OF TURBINE HALL. THE GRIDS WERE AN ESSENTIAL PART OF THE CONTROL SYSTEM THAT MAINTAINED CONSTANT VOLTAGE ON THE RAILROAD POWER LINES. TIRRILL VOLTAGE REGULATORS (SEE CT-142A-100) SENSED VOLTAGE VARIATIONS AND INITIATED SWITCHING SEQUENCES TO REGULATE THE VOLTAGE AND MAINTAIN A SYSTEM STANDARD VOLTAGE. THE RESISTANCE GRIDS WERE SEQUENTIALLY ADDED TO OR REMOVED FROM THE GENERATOR FIELD COIL CIRCUITS. THIS RESISTANCE LOAD DISSIPATED EXCITIR GENERATOR POWER AS HEAT. THIS IN TURN WOULD VARY THE STRENGTH OF THE FIELD MAGNET AND CONSEQUENTLY RAISE OR LOWER THE OUTPUT VOLTAGE FROM THE MAIN GENERATOR ARMATURE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Optimal configuration of power grid sources based on optimal particle swarm algorithm
NASA Astrophysics Data System (ADS)
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using standard power engineering methods, and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
Network topology and resilience analysis of South Korean power grid
NASA Astrophysics Data System (ADS)
Kim, Dong Hwan; Eisenberg, Daniel A.; Chun, Yeong Han; Park, Jeryang
2017-01-01
In this work, we present topological and resilience analyses of the South Korean power grid (KPG) with a broad voltage level. While topological analysis of KPG only with high-voltage infrastructure shows an exponential degree distribution, providing another empirical evidence of power grid topology, the inclusion of low voltage components generates a distribution with a larger variance and a smaller average degree. This result suggests that the topology of a power grid may converge to a highly skewed degree distribution if more low-voltage data is considered. Moreover, when compared to ER random and BA scale-free networks, the KPG has a lower efficiency and a higher clustering coefficient, implying that highly clustered structure does not necessarily guarantee a functional efficiency of a network. Error and attack tolerance analysis, evaluated with efficiency, indicate that the KPG is more vulnerable to random or degree-based attacks than betweenness-based intentional attack. Cascading failure analysis with recovery mechanism demonstrates that resilience of the network depends on both tolerance capacity and recovery initiation time. Also, when the two factors are fixed, the KPG is most vulnerable among the three networks. Based on our analysis, we propose that the topology of power grids should be designed so the loads are homogeneously distributed, or functional hubs and their neighbors have high tolerance capacity to enhance resilience.
The impact of model detail on power grid resilience measures
NASA Astrophysics Data System (ADS)
Auer, S.; Kleis, K.; Schultz, P.; Kurths, J.; Hellmann, F.
2016-05-01
Extreme events are a challenge to natural as well as man-made systems. For critical infrastructure like power grids, we need to understand their resilience against large disturbances. Recently, new measures of the resilience of dynamical systems have been developed in the complex system literature. Basin stability and survivability respectively assess the asymptotic and transient behavior of a system when subjected to arbitrary, localized but large perturbations in frequency and phase. To employ these methods that assess power grid resilience, we need to choose a certain model detail of the power grid. For the grid topology we considered the Scandinavian grid and an ensemble of power grids generated with a random growth model. So far the most popular model that has been studied is the classical swing equation model for the frequency response of generators and motors. In this paper we study a more sophisticated model of synchronous machines that also takes voltage dynamics into account, and compare it to the previously studied model. This model has been found to give an accurate picture of the long term evolution of synchronous machines in the engineering literature for post fault studies. We find evidence that some stable fix points of the swing equation become unstable when we add voltage dynamics. If this occurs the asymptotic behavior of the system can be dramatically altered, and basin stability estimates obtained with the swing equation can be dramatically wrong. We also find that the survivability does not change significantly when taking the voltage dynamics into account. Further, the limit cycle type asymptotic behaviour is strongly correlated with transient voltages that violate typical operational voltage bounds. Thus, transient voltage bounds are dominated by transient frequency bounds and play no large role for realistic parameters.
Sensing, Measurement, and Forecasting | Grid Modernization | NREL
into operational intelligence to support grid operations and planning. Photo of solar resource monitoring equipment Grid operations involve assessing the grid's health in real time, predicting its to hours and days-to support advances in power system operations and planning. Capabilities Solar
Rethinking Import and Export Controls for Defense-Related Goods
2013-05-01
restrictions were imposed on the basis of country (Trading with the Enemy Act) or product (Neutrality Act). However, in the post-war environment, a more mixed...described below. • Arms Export Control Act (AECA) of 1976—grants the President the power to control the export of defense products and services. The act...defense-related items and services. The products regulated include weapons systems (e.g., aircraft, tanks, etc.) but also include subsystems or
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, V.K.; Sandell, D.H.
The Government of Thailand is implementing a Southern Seaboard Development Project. The developing of the project will increase demand for all utility and infrastructure systems and services. The distribution of electric power in the new area falls within the responsibility of the Provincial Electricity Authority (PEA). The U.S. Trade and Development Program (TDP) funded a Definitional Mission to evaluate the prospects of TDP funding a feasibility study for an I-Shaped power interconnection study for supplying electricity to the 15 provinces in Southern Thailand. The mission concluded that TDP should provide a grant to PEA to select a U.S. firm tomore » carry out the proposed I-Shaped Interconnection study for power distribution in southern Thailand. The overall potential for exports resulting from the project is conservatively estimated at $120 million, not including any follow-on work and spare parts inventory, typical of such projects. TDP's program in Thailand has enjoyed enviable success in exports and TDP's support of the proposed feasibility study will clearly maintain and very likely add to that momentum.« less
Power inversion design for ocean wave energy harvesting
NASA Astrophysics Data System (ADS)
Talebani, Anwar N.
The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.
NASA Astrophysics Data System (ADS)
Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.
2017-12-01
The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.
Unlocking the potential of the smart grid
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Tillay
For three years, Sandia National Laboratories, Georgia Institute of Technology, and University of Illinois at Urbana-Champaign investigated a smart grid vision in which renewable-centric Virtual Power Plants (VPPs) provided ancillary services with interoperable distributed energy resources (DER). This team researched, designed, built, and evaluated real-time VPP designs incorporating DER forecasting, stochastic optimization, controls, and cyber security to construct a system capable of delivering reliable ancillary services, which have been traditionally provided by large power plants or other dedicated equipment. VPPs have become possible through an evolving landscape of state and national interconnection standards, which now require DER to include grid-supportmore » functionality and communications capabilities. This makes it possible for third party aggregators to provide a range of critical grid services such as voltage regulation, frequency regulation, and contingency reserves to grid operators. This paradigm (a) enables renewable energy, demand response, and energy storage to participate in grid operations and provide grid services, (b) improves grid reliability by providing additional operating reserves for utilities, independent system operators (ISOs), and regional transmission organization (RTOs), and (c) removes renewable energy high-penetration barriers by providing services with photovoltaics and wind resources that traditionally were the jobs of thermal generators. Therefore, it is believed VPP deployment will have far-reaching positive consequences for grid operations and may provide a robust pathway to high penetrations of renewables on US power systems. In this report, we design VPPs to provide a range of grid-support services and demonstrate one VPP which simultaneously provides bulk-system energy and ancillary reserves.« less
Compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1981-01-01
An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.
Impact of Converter Interfaced Generation and Load on Grid Performance
NASA Astrophysics Data System (ADS)
Ramasubramanian, Deepak
Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system. This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue of whether a requirement may arise to redefine operational reliability criteria based on the results obtained.
A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchfield, Adam; Schweitzer, Eran; Athari, Mir
Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less
A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids
Birchfield, Adam; Schweitzer, Eran; Athari, Mir; ...
2017-08-19
Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less
Optimal scheduling of micro grids based on single objective programming
NASA Astrophysics Data System (ADS)
Chen, Yue
2018-04-01
Faced with the growing demand for electricity and the shortage of fossil fuels, how to optimally optimize the micro-grid has become an important research topic to maximize the economic, technological and environmental benefits of the micro-grid. This paper considers the role of the battery and the micro-grid and power grid to allow the exchange of power not exceeding 150kW preconditions, the main study of the economy to load for the goal is to minimize the electricity cost (abandonment of wind), to establish an optimization model, and to solve the problem by genetic algorithm. The optimal scheduling scheme is obtained and the utilization of renewable energy and the impact of the battery involved in regulation are analyzed.
Microgrid Controllers : Expanding Their Role and Evaluating Their Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitra, Arindam; Pratt, Annabelle; Hubert, Tanguy
Microgrids have long been deployed to provide power to customers in remote areas as well as critical industrial and military loads. Today, they are also being proposed as grid-interactive solutions for energy-resilient communities. Such microgrids will spend most of the time operating while synchronized with the surrounding utility grid but will also be capable of separating during contingency periods due to storms or temporary disturbances such as local grid faults. Properly designed and grid-integrated microgrids can provide the flexibility, reliability, and resiliency needs of both the future grid and critical customers. These systems can be an integral part of futuremore » power system designs that optimize investments to achieve operational goals, improved reliability, and diversification of energy sources.« less
Contribution of concentrator photovoltaic installations to grid stability and power quality
NASA Astrophysics Data System (ADS)
del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier
2012-10-01
Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.
Cooperative Strategy for Optimal Management of Smart Grids by Wavelet RNNs and Cloud Computing.
Napoli, Christian; Pappalardo, Giuseppe; Tina, Giuseppe Marco; Tramontana, Emiliano
2016-08-01
Advanced smart grids have several power sources that contribute with their own irregular dynamic to the power production, while load nodes have another dynamic. Several factors have to be considered when using the owned power sources for satisfying the demand, i.e., production rate, battery charge and status, variable cost of externally bought energy, and so on. The objective of this paper is to develop appropriate neural network architectures that automatically and continuously govern power production and dispatch, in order to maximize the overall benefit over a long time. Such a control will improve the fundamental work of a smart grid. For this, status data of several components have to be gathered, and then an estimate of future power production and demand is needed. Hence, the neural network-driven forecasts are apt in this paper for renewable nonprogrammable energy sources. Then, the produced energy as well as the stored one can be supplied to consumers inside a smart grid, by means of digital technology. Among the sought benefits, reduced costs and increasing reliability and transparency are paramount.
Evaluation model of distribution network development based on ANP and grey correlation analysis
NASA Astrophysics Data System (ADS)
Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong
2018-06-01
The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.
Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-05-10
Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.
2011-08-21
poultry, pork , beef, fish, and other meat products also are typically automated operations, done on electrically driven processing lines. 53 Food ...Infrastructure ..................................................... 18 Power Outage Impact on Consumables ( Food , Water, Medication...transportation, consumables ( food , water, and medication), and emergency services, are so highly dependent on reliable power supply from the grid, a
Opportunity to Plug Your Car Into the Electric Grid is Arriving
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griego, G.
2010-06-01
Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save ownersmore » up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.« less
The Impact of Transformer Winding Connections of A Grid-Connected PV on Voltage Quality Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong
In this paper, the high-power PV plant is connected to the weak grid by means of a three-phase power transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power controller. In general, transformer winding connection can be arranged in star-star (with neutral earthed) or star-delta. The reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control strategy is based on utilizing the grid currents to make a three-phase reactive unbalanced current with a small gain. The gain is determined by the system impedance. Simulation results exhibitmore » that the control strategy works very well particularly under disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in terms of the voltage quality is improved.« less
The equal load-sharing model of cascade failures in power grids
NASA Astrophysics Data System (ADS)
Scala, Antonio; De Sanctis Lucentini, Pier Giorgio
2016-11-01
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing power demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ;super-grids;.
Performance of large area xenon ion thrusters for orbit transfer missions
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K.
1989-01-01
Studies have indicated that xenon ion propulsion systems can enable the use of smaller Earth-launch vehicles for satellite placement which results in significant cost savings. These analyses have assumed the availability of advanced, high power ion thrusters operating at about 10 kW or higher. A program was initiated to explore the viability of operating 50 cm diameter ion thrusters at this power level. Operation with several discharge chamber and ion extraction grid set combinations has been demonstrated and data were obtained at power levels to 16 kW. Fifty cm diameter thrusters using state of the art 30 cm diameter grids or advanced technology 50 cm diameter grids allow discharge power and beam current densities commensurate with long life at power levels up to 10 kW. In addition, 50 cm diameter thrusters are shown to have the potential for growth in thrust and power levels beyond 10 KW.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304
Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb
2014-03-01
In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.
Control system and method for a universal power conditioning system
Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang
2014-09-02
A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.
Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L
2014-04-01
Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
Competitive energy consumption under transmission constraints in a multi-supplier power grid system
NASA Astrophysics Data System (ADS)
Popov, Ivan; Krylatov, Alexander; Zakharov, Victor; Ivanov, Dmitry
2017-04-01
Power grid architectures need to be revised in order to manage the increasing number of producers and, more generally, the decentralisation of energy production and distribution. In this work, we describe a multi-supplier multi-consumer congestion model of a power grid, where the costs of consumers depend on the congestion in nodes and arcs of the power supply network. The consumer goal is both to meet their energy demand and to minimise the costs. We show that the methods of non-atomic routing can be applied in this model in order to describe current distribution in the network. We formulate a consumer cost minimisation game for this setting, and discuss the challenges arising in equilibrium search for this game.
techno-economic studies of model projects involving grid-tied and off-grid implementations of renewable economic power systems. Research Interests Power sector transformation in diverse socio-economic systems Tailoring energy access for remote communities to their economic aspirations Concepts of societal "
Performance optimization of a hybrid micro-grid based on double-loop MPPT and SVC-MERS
NASA Astrophysics Data System (ADS)
Wei, Yewen; Hou, Xilun; Zhang, Xiang; Xiong, Shengnan; Peng, Fei
2018-02-01
With ever-increasing concerns on environmental pollution and energy shortage, the development of renewable resource has attracted a lot of attention. This paper first reviews both the wind and photovoltaic (PV) generation techniques and approaches of micro-grid voltage control. Then, a novel islanded micro-grid, which consists of wind & PV generation and hybrid-energy storage device, is built for application to remote and isolated areas. For the PV power generation branch, a double- maximum power point tracking (MPPT) technique is developed to trace the sunlight and regulate the tilt angle of PV panels. For wind-power generation branch, squirrel cage induction generator (SCIG) is used as its simple structure, robustness and less cost. In order to stabilize the output voltage of SCIGs, a new Static Var Compensator named magnetic energy recovery switch (SVC-MERS) is applied. Finally, experimental results confirm that both of the proposed methods can improve the efficiency of PV power generation and voltage stability of the micro-grid, respectively.
Smart grid integration of small-scale trigeneration systems
NASA Astrophysics Data System (ADS)
Vacheva, Gergana; Kanchev, Hristiyan; Hinov, Nikolay
2017-12-01
This paper presents a study on the possibilities for implementation of local heating, air-conditioning and electricity generation (trigeneration) as distributed energy resource in the Smart Grid. By the means of microturbine-based generators and absorption chillers buildings are able to meet partially or entirely their electrical load curve or even supply power to the grid by following their heating and air-conditioning daily schedule. The principles of small-scale cooling, heating and power generation systems are presented at first, then the thermal calculations of an example building are performed: the heat losses due to thermal conductivity and the estimated daily heating and air-conditioning load curves. By considering daily power consumption curves and weather data for several winter and summer days, the heating/air-conditioning schedule is estimated and the available electrical energy from a microturbine-based cogeneration system is estimated. Simulation results confirm the potential of using cogeneration and trigeneration systems for local distributed electricity generation and grid support in the daily peaks of power consumption.
Hiding Critical Targets in Smart Grid Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Wei; Li, Qinghua
With the integration of advanced communication technologies, the power grid is expected to greatly enhance efficiency and reliability of future power systems. However, since most electrical devices in power grid substations are connected via communication networks, cyber security of these communication networks becomes a critical issue. Real-World incidents such as Stuxnet have shown the feasibility of compromising a device in the power grid network to further launch more sophisticated attacks. To deal with security attacks of this spirit, this paper aims to hide critical targets from compromised internal nodes and hence protect them from further attacks launched by those compromisedmore » nodes. In particular, we consider substation networks and propose to add carefully-controlled dummy traffic to a substation network to make critical target nodes indistinguishable from other nodes in network traffic patterns. This paper describes the design and evaluation of such a scheme. Evaluations show that the scheme can effectively protect critical nodes with acceptable communication cost.« less
NASA Astrophysics Data System (ADS)
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-05-31
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-12-27
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
75 FR 51025 - Application to Export Electric Energy; Vitol Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... adversely impact on the reliability of the U.S. electric power supply system. Copies of this application... DEPARTMENT OF ENERGY [OE Docket No. EA-370] Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application...
Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid
NASA Astrophysics Data System (ADS)
Mahabal, Divya
In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of power. As the main aim of this research is to use renewable sources like PV in the system, it is advantageous to use a combination of both PV and synchronous generator in the system.
NASA Astrophysics Data System (ADS)
Abdoulaye, D.; Koalaga, Z.; Zougmore, F.
2012-02-01
This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.
Large temporal scale and capacity subsurface bulk energy storage with CO2
NASA Astrophysics Data System (ADS)
Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.
2017-12-01
Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.
Communication Simulations for Power System Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.
2013-05-29
New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systemsmore » will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.« less
NASA Astrophysics Data System (ADS)
Abderrahim, Iheb
Wind power generation has grown strongly in the last decade. This results in the development of Wind Energy Conversion System WECS at the levels of modeling and electrical control. Modern WECS operate at varying wind speeds and are equipped with synchronous and asynchronous generators. Among these generators, the Doubly-Fed Induction Generator (DFIG) offers several advantages and capabilities of active and reactive power in four quadrants. WECS based DFIG also causes less conversion costs and minimum energy losses compared with a WECS based on a synchronous generator powered entirely by full scale of power converters. The connection of such a system to the electrical distribution network involves bidirectional operation of networks. This is clearly established in sub and super synchronous operating modes of DFIG. The grid provides the active power to the rotor of DFIG in sub synchronous operating mode and receives the active power of the rotor in super synchronous operating mode of DFIG. Energy quality is thus of major importance during the integration of wind power to the grid. Poor wave quality can affect network stability and could even cause major problems and consequences. This is even more critical where non-linear loads such as the switching power supplies and variable speed drives, are connected to the grid. The idea of this research work is how to mitigate the problems associated with the wave quality while ensuring better implementation of DFIG so that the whole of WECS remains insensitive to external disturbances and parametric variations. The Grid Side Converter (GSC) must be able to compensate harmonics, current unbalance and reactive power injected by a nonlinear three-phase unbalanced load connected to the grid. In addition to these innovative features to improve the conditions of operation of the grid, it provides also the power flow during different modes of operation of the DFIG. It is considered a simple, efficient and cost competitive solution by saving the use of other power equipment. At the same time, the energy efficiency of wind power conversion chain should be improved by extracting the MPPT. Searching allows us to select vector control and control in synchronous reference to achieve these objectives. WECS based DFIG is simulated in MATLAB SIMULINK in the presence of a non-linear balanced and unbalanced three-phase load.
Distribution System Reliability Analysis for Smart Grid Applications
NASA Astrophysics Data System (ADS)
Aljohani, Tawfiq Masad
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.
NASA Astrophysics Data System (ADS)
Burger, D. R.
1983-11-01
Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
Grid Modeling Tools | Grid Modernization | NREL
integrates primary frequency response (turbine governor control) with secondary frequency response (automatic generation control). It simulates the power system dynamic response in full time spectrum with variable time control model places special emphasis on electric power systems with high penetrations of renewable
Energy Systems Integration Facility Videos | Energy Systems Integration
Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid
Power Grid Data Analysis with R and Hadoop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Gibson, Tara D.; Kleese van Dam, Kerstin
This book chapter presents an approach to analysis of large-scale time-series sensor information based on our experience with power grid data. We use the R-Hadoop Integrated Programming Environment (RHIPE) to analyze a 2TB data set and present code and results for this analysis.
NASA Astrophysics Data System (ADS)
Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen
2018-03-01
A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation. PMID:22164047
NASA Astrophysics Data System (ADS)
Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.
2015-12-01
One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term forecasts (0-20 min ahead) to improve optimization and control of equipment on distribution feeders with high penetration of solar. Leveraging such tools that have seen extensive use in the atmospheric sciences supports the development of accurate physics-based solar forecast models. Directions for future research are also provided.
NASA Astrophysics Data System (ADS)
Baldwin, R.; Ansari, S.; Reid, G.; Lott, N.; Del Greco, S.
2007-12-01
The main goal in developing and deploying Geographic Information System (GIS) services at NOAA's National Climatic Data Center (NCDC) is to provide users with simple access to data archives while integrating new and informative climate products. Several systems at NCDC provide a variety of climatic data in GIS formats and/or map viewers. The Online GIS Map Services provide users with data discovery options which flow into detailed product selection maps, which may be queried using standard "region finder" tools or gazetteer (geographical dictionary search) functions. Each tabbed selection offers steps to help users progress through the systems. A series of additional base map layers or data types have been added to provide companion information. New map services include: Severe Weather Data Inventory, Local Climatological Data, Divisional Data, Global Summary of the Day, and Normals/Extremes products. THREDDS Data Server technology is utilized to provide access to gridded multidimensional datasets such as Model, Satellite and Radar. This access allows users to download data as a gridded NetCDF file, which is readable by ArcGIS. In addition, users may subset the data for a specific geographic region, time period, height range or variable prior to download. The NCDC Weather Radar Toolkit (WRT) is a client tool which accesses Weather Surveillance Radar 1988 Doppler (WSR-88D) data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. As more users become accustom to GIS, questions of better, cheaper, faster access soon follow. Expanding use and availability can best be accomplished through standards which promote interoperability. Our GIS related products provide Open Geospatial Consortium (OGC) compliant Web Map Services (WMS), Web Feature Services (WFS), Web Coverage Services (WCS) and Federal Geographic Data Committee (FGDC) metadata as a complement to the map viewers. KML/KMZ data files (soon to be compliant OGC specifications) also provide access.
Tang, Jing; Yurova, Alla Y; Schurgers, Guy; Miller, Paul A; Olin, Stefan; Smith, Benjamin; Siewert, Matthias B; Olefeldt, David; Pilesjö, Petter; Poska, Anneli
2018-05-01
Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales. Copyright © 2017 Elsevier B.V. All rights reserved.
Brazil, A Potential World Power?
1966-04-22
carnauba wax , the principal forest export products, account for about 10 percent of the value of Brazil’s exports. The mineral resources of Brazil are...among the world’s richest in oil bearing fruits, gums, resins, oils, and waxes . Much of the timber in the Amazon region is of the lightweight
76 FR 49757 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
.... SUMMARY: The EIA is soliciting comments on the proposed new Form EIA- 111, ``Quarterly Electricity Imports and Exports Report.'' This new form would supersede the existing Form OE-781R, ``Monthly Electricity... Power Monthly, and Monthly Energy Review. The existing survey of electricity imports and exports (OE...
Modal Analysis for Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less
Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics
NASA Technical Reports Server (NTRS)
Anderson, John R.; Sengupta, Anita; Brophy, John R.
2004-01-01
The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.
NASA Astrophysics Data System (ADS)
Claude, Jean-Michel
2017-04-01
The growth of renewable energies likes wind and solar requires pumped-storage plants to increase their performances to stabilize grid frequency and voltage. The introduction of a full-power converter constitutes the ultimate step forward to meet the requirement in a safe, reliable and sustainable manner. This article quickly introduces the converter topology and technology before describing the performances it aims to deliver to the grid. Finally, converter bypass is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Timothy M.; Kadavil, Rahul; Palmintier, Bryan
The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and Security Act of 2007, Title XIII sets the tenets for modernizing the electricity grid through what is known as the 'Smart Grid Initiative.' This initiative calls for increased design, deployment, and integration of distributed energy resources, smart technologies and appliances, and advanced storage devices. The deployment of these new technologies requires rethinking and re-engineering the traditional boundaries between different electric power system domains.
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
The Iranian petroleum crisis and United States national security.
Stern, Roger
2007-01-02
The U.S. case against Iran is based on Iran's deceptions regarding nuclear weapons development. This case is buttressed by assertions that a state so petroleum-rich cannot need nuclear power to preserve exports, as Iran claims. The U.S. infers, therefore, that Iran's entire nuclear technology program must pertain to weapons development. However, some industry analysts project an Irani oil export decline [e.g., Clark JR (2005) Oil Gas J 103(18):34-39]. If such a decline is occurring, Iran's claim to need nuclear power could be genuine. Because Iran's government relies on monopoly proceeds from oil exports for most revenue, it could become politically vulnerable if exports decline. Here, we survey the political economy of Irani petroleum for evidence of this decline. We define Iran's export decline rate (edr) as its summed rates of depletion and domestic demand growth, which we find equals 10-12%. We estimate marginal cost per barrel for additions to Irani production capacity, from which we derive the "standstill" investment required to offset edr. We then compare the standstill investment to actual investment, which has been inadequate to offset edr. Even if a relatively optimistic schedule of future capacity addition is met, the ratio of 2011 to 2006 exports will be only 0.40-0.52. A more probable scenario is that, absent some change in Irani policy, this ratio will be 0.33-0.46 with exports declining to zero by 2014-2015. Energy subsidies, hostility to foreign investment, and inefficiencies of its state-planned economy underlie Iran's problem, which has no relation to "peak oil."
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... emerging challenges facing the power grid? b. Do the CIP standards assure cyber security, including... Smart Grid applications have non-cyber reliability implications that need to be addressed? d. What steps... (NERC). Ronald L. Litzinger, President, Southern California Edison Company. Stephen J. Wright...
Energy Storage for the Power Grid
Imhoff, Carl; Vaishnav, Dave; Wang, Wei
2018-05-30
The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.
This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...
NASA Astrophysics Data System (ADS)
Liu, Ruihua; Wang, Rong; Liu, Qunying; Yang, Li; Xi, Chuan; Wang, Wei; Li, Lingzhou; Zhao, Zhoufang; Zhou, Ying
2018-02-01
With China’s new energy generation grid connected capacity being in the forefront of the world and the uncertainty of new energy sources, such as wind energy and solar energy, it is be of great significance to study scientific and comprehensive assessment of power quality. On the foundation of analysizing the current power quality index systematically and objectively, the new energy grid power quality analysis method and comprehensive evaluation method, this paper tentatively explored the trend of the new generation of energy system power quality comprehensive evaluation.
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 805
2007-03-01
and receiver (RX) coils. b. The Tensor Magnetic Gradiometer System ( TMGS ) has been reconfigured to improve its performance compared with the...ALL TEM. The TMGS raw data files consist of an ASCII header with system settings followed by the data in binary format. The GPS positions, EDA...exported in ASCII format. A new data acquisition system for the TMGS will be supplied by the demonstrator. It is controlled by LabVIEW, as is the ALL
NASA Astrophysics Data System (ADS)
Al-Taie, A.; Graber, L.; Pamidi, S. V.
2017-12-01
Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.
Power control and management of the grid containing largescale wind power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil Toufick
The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.
Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rick Meeker; L. Baldwin; Steinar Dale
2010-03-31
Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintainingmore » system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach mission to provide future energy workforce talent and support the electric system stakeholder community. Building upon and extending portions of that research effort, this project has been focused in the following areas: (1) Building high-fidelity integrated power and controls hardware-in-the-loop research and development testbed capabilities (Figure 1). (2) Distributed Energy Resources Integration - (a) Testing Requirements and Methods for Fault Current Limiters, (b) Contributions to the Development of IEEE 1547.7, (c) Analysis of a STATCOM Application for Wind Resource Integration, (d) Development of a Grid-Interactive Inverter with Energy Storage Elements, (e) Simulation-Assisted Advancement of Microgrid Understanding and Applications; (3) Availability of High-Fidelity Dynamic Simulation Tools for Grid Disturbance Investigations; (4) HTS Material Characterization - (a) AC Loss Studies on High Temperature Superconductors, (b) Local Identification of Current-Limiting Mechanisms in Coated Conductors; (5) Cryogenic Dielectric Research; and (6) Workshops, education, and outreach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.A.; Jeffries-Nakamura, B.; Williams, R.M.
1995-12-01
Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10--30% in electrodes with grids.
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Jeffries-Nakamura, B.; Williams, R. M.; Underwood, M. L.; OConnor, D.; Kikkert, S.
1995-01-01
Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition, and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10-30% in electrodes with grids.
NASA Astrophysics Data System (ADS)
Bower, Ward
2011-09-01
An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh
As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less
Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.
Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour
2015-09-01
The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.
A Sensemaking Perspective on Situation Awareness in Power Grid Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Schur, Anne; Paget, Mia L.
2008-07-21
With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid operations continues to grow. New paradigms are needed to guide research to improve operations by enhancing situation awareness of operators. Research on human factors/situation awareness is described within a taxonomy of tools and approaches that address different levels of cognitive processing. While user interface features and visualization approaches represent the predominant focus of human factors studies of situation awareness, this paper argues that a complementary level, sensemaking, deserves further consideration by designers of decision support systems for power grid operations. A sensemaking perspective onmore » situation aware-ness may reveal new insights that complement ongoing human factors research, where the focus of the investigation of errors is to understand why the decision makers experienced the situation the way they did, or why what they saw made sense to them at the time.« less
CO2 Mitigation Measures of Power Sector and Its Integrated Optimization in China
Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia
2012-01-01
Power sector is responsible for about 40% of the total CO2 emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO2 emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO2 mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO2 mitigation of power sector in China by reducing the CO2 emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020. PMID:23213305
Abruptness of Cascade Failures in Power Grids
NASA Astrophysics Data System (ADS)
Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio
2014-01-01
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ``super-grids''.
Abruptness of cascade failures in power grids.
Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio
2014-01-15
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Ian; Hiskens, Ian; Linderoth, Jeffrey
Building on models of electrical power systems, and on powerful mathematical techniques including optimization, model predictive control, and simluation, this project investigated important issues related to the stable operation of power grids. A topic of particular focus was cascading failures of the power grid: simulation, quantification, mitigation, and control. We also analyzed the vulnerability of networks to component failures, and the design of networks that are responsive to and robust to such failures. Numerous other related topics were investigated, including energy hubs and cascading stall of induction machines
NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | News
controllable grid interface (CGI) test facility, which simulates the real-time conditions of a utility-scale power grid. This began an ongoing, Energy Department-funded research effort to test how wind turbines test their equipment under any possible grid fault condition. Researchers such as Mark McDade, project
PNNL Data-Intensive Computing for a Smarter Energy Grid
Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria
2017-12-09
The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.
Cyber: A Flexible Deterrent Option
2013-02-14
to come on when they throw a switch and other electrical appliances throughout the house to work without any commercial power interruption. For...power plants this means maintaining the electrical grid and the supervisory control and data acquisition (SCADA) systems at a reliable rate of “99.99999...on the grid.”36 The researchers “simply instructed it to make rapid changes in the electricity cycles that powered the equipment: fast, slow, fast
NASA Astrophysics Data System (ADS)
Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Wei, Jiaxiang
2017-03-01
On March 15, 2015, the central office issued the "Opinions on Further Deepening the Reform of Electric Power System" (in the 2015 No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid enterprises' credit rating under the reform of transmission and distribution price to reduce the impact of the reform on the company's international rating results and the ability to raise funds.
Vehicle to grid: electric vehicles as an energy storage solution
NASA Astrophysics Data System (ADS)
McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.
2013-05-01
With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta
As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events,more » including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).« less
Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-05-01
Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.
Battery-powered, electrocuting trap for stable flies (Diptera: Muscidae).
Pickens, L G
1991-11-01
A solar-charged, battery-powered, electrocuting grid was combined with a white plywood base to make a portable, pulsed-current, pest-electrocuting device that attracted and killed stable flies, Stomoxys calcitrans (L.), outdoors. The grid was powered once every 1-2 s by a 0.016-s pulse of 60-Hz alternating current of 4 mA and 9,500 V. Power was turned off at night by a photoresistor. The trap functioned continuously for 14 d with an unrecharged 12-V, 18A/h lawn-tractor battery and killed as many as 4,000 flies per day. Solar cells were used to charge a single 12-V battery continuously that operated 12 grids for a period of 90 d. The grid did not short circuit for any length of time even during heavy rainstorms or when large insects were killed. The incorporation of moiré patterns and the utilization of the correct size, orientation, and placement of wires made the electrocuting grid itself attractive to stable flies. The traps were spaced at distances of up to 120 m from the battery and pulse circuit. The electrocuting traps were more effective than sticky traps and avoided the problems associated with chemicals. They are well suited for use around calf pens, dog kennels, or large animal shelters.
Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois
NASA Astrophysics Data System (ADS)
Stillwell, A. S.; Lubega, W. N.
2016-12-01
A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S
A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand,more » and Vietnam. The data sets within this database are provided in three file formats: ARC/INFOTM exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer-coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the center-point of each grid cell. The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10{sup 15} grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg. Fortran and SAS{trademark} access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.
A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand,more » and Vietnam. The data sets within this database are provided in three file formats: ARC/INFO{trademark} exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer- coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the centerpoint of each grid cell. The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10{sup 15} grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg. Fortran and SASTM access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).« less
NASA Astrophysics Data System (ADS)
Yeo, M. J.; Kim, Y. P.
2017-12-01
Recently, concerns about the atmospheric environmental problems in North Korea (NK) have been growing. According to the World Health Organization (WHO) (2017), NK was the first ranked country in mortality rate attributed to household and ambient air pollution in 2012. Reliable energy-related data in NK were needed to understand the characteristics of air quality in NK. However, data from the North Korean government were limited. Nevertheless, we could find specific energy-related data produced by NK in the Project Design Documents (PDDs) of the Clean Development Mechanism (CDM) submitted to the United Nations Framework Convention on Climate Change (UNFCCC). There were the 6 registered CDM projects hosted by North Korea, developed as small hydropower plants. Several data of each power plant, such as the electricity output, connected to the Eastern Power Grid (EPG) or the Western Power Grid (WPG) in North Korea were provided in the CDM PDDs. We (1) figured out the trends of the electricity output, the `power conversion efficiency' which we defined the amount of generated electricity to the supplied input primary energy for power generation, and fuel mix as grid emission factor in NK as using the data produced by NK between 2005 and 2009, (2) discussed the operating status of the thermal power plants in NK, and (3) discussed the energy/environmental-related policies and the priority issues in NK in this study.
NASA Astrophysics Data System (ADS)
Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.
2018-02-01
The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.
NASA Astrophysics Data System (ADS)
Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng
2018-02-01
A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...
2016-01-12
This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less
Optimal Sizing Tool for Battery Storage in Grid Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-24
The battery storage sizing tool developed at Pacific Northwest National Laboratory can be used to evaluate economic performance and determine the optimal size of battery storage in different use cases considering multiple power system applications. The considered use cases include i) utility owned battery storage, and ii) battery storage behind customer meter. The power system applications from energy storage include energy arbitrage, balancing services, T&D deferral, outage mitigation, demand charge reduction etc. Most of existing solutions consider only one or two grid services simultaneously, such as balancing service and energy arbitrage. ES-select developed by Sandia and KEMA is able tomore » consider multiple grid services but it stacks the grid services based on priorities instead of co-optimization. This tool is the first one that provides a co-optimization for systematic and local grid services.« less
Hardware-in-the-loop grid simulator system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos
A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises anmore » improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.« less
Emissions & Generation Resource Integrated Database (eGRID) Questions and Answers
eGRID is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. eGRID is based on available plant-specific data for all U.S. electricity generating plants that report data.
76 FR 69712 - Application To Export Electric Energy; BP Energy Company
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... DEPARTMENT OF ENERGY [OE Docket No. EA-315-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... BP Energy to transmit electric energy from the United States to Canada as a power marketer for a five...
76 FR 69713 - Application To Export Electric Energy; BP Energy Company
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... DEPARTMENT OF ENERGY [OE Docket No. EA-314-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... electric energy from the United States to Mexico as a power marketer for a five-year term using existing...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... DEPARTMENT OF ENERGY [OE Docket No. EA-345-A] Application To Export Electric Energy; New Brunswick Energy Marketing Corporation (f/k/a New Brunswick Power Generation Corp.) AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: New Brunswick Energy...
75 FR 75994 - Application To Export Electric Energy; Sempra Energy Trading LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... DEPARTMENT OF ENERGY [OE Docket No. EA-191-D] Application To Export Electric Energy; Sempra Energy... application. SUMMARY: Sempra Energy Trading LLC (SET) has applied to renew its authority to transmit electric... transmit electric energy from the United States to Canada for a two- year term as a power marketer using...
Security attack detection algorithm for electric power gis system based on mobile application
NASA Astrophysics Data System (ADS)
Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan
2017-05-01
Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Cochran, Jaquelin
2015-06-01
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.
Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems
NASA Astrophysics Data System (ADS)
Weber, Luke G.
There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive power. The scope of this work is to • develop a mathematical model for a salient pole, 2 damper winding synchronous generator with d axis saturation suitable for transient analysis, • develop a mathematical model for a voltage regulator and excitation system using the IEEE AC8B voltage regulator and excitation system template, • develop mathematical models for an energy storage primary control system, LC filter and transformer suitable for transient analysis, • combine the generator and energy storage models in a micro-grid context, • develop mathematical models for electric system components in the stationary abc frame and rotating dq reference frame, • develop a secondary control network for dispatch of micro-grid assets, • establish micro-grid limits of stable operation for step changes in load and power commands based on simulations of model data assuming net load on the micro-grid, and • use generator and electric system models to assess the generator current magnitude during phase-to-ground faults.
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
Power Systems Design and Studies | Grid Modernization | NREL
Design and Studies Power Systems Design and Studies NREL develops new tools, algorithms, and market design and performance evaluations; and planning, operations, and protection studies. Photo of two researchers looking at a screen showing a distribution grid map Current design and planning tools for the
Energy Systems Integration News | Energy Systems Integration Facility |
Power Grid Simulation at a Distance NREL and Idaho National Laboratory (INL) have successfully connected of Power System Modeling and Simulation: "Bus.py: A GridLAB-D Communication Interface for Smart Modeling and Simulation" session at the IEEE PES General Meeting in Denver, Colorado, from 15 p.m. on
Disruptive Ideas for Power Grid Security and Resilience With DER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Erfan
This presentation by Erfan Ibrahim was prepared for NREL's 2017 Cybersecurity and Reslience Workshop on distributed energy resource (DER) best practices. The presentation provides an overview of NREL's Cyber-Physical Systems Security and Resilience R&D Center, the Center's approach to cybersecurity, and disruptive ideas for power grid security and resilience with DER.
Power Hardware-in-the-Loop Testing of a Smart Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige
This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
NASA Astrophysics Data System (ADS)
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
15 MW HArdware-in-the-loop Grid Simulation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigas, Nikolaos; Fox, John Curtiss; Collins, Randy
2014-10-31
The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at themore » Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA hardware that allows for communication between the key real-time interfaces and reduces the latency between these interfaces to acceptable levels for HIL experiments.« less
NASA Astrophysics Data System (ADS)
Daniel, Michael T.
Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing scheme for connecting multiple wind turbines in series to allow for a higher MVDC grid voltage is also proposed and analyzed. The overall results show that the proposed per-pole approach yields key advantages in areas of common mode voltage stress, circulating current, and DC link capacitance, making it the more appropriate choice of the two proposed interfaces for this application.
Grid tied PV/battery system architecture and power management for fast electric vehicle charging
NASA Astrophysics Data System (ADS)
Badawy, Mohamed O.
The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C
2012-01-01
Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storagemore » device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.
Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M
2018-05-11
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations
Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.
2018-01-01
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianhui
2015-09-01
Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less
Grid Gap Measurement for an NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
Diaz, Esther M.; Soulas, George C.
2006-01-01
The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.
Indicator of reliability of power grids and networks for environmental monitoring
NASA Astrophysics Data System (ADS)
Shaptsev, V. A.
2017-10-01
The energy supply of the mining enterprises includes power networks in particular. Environmental monitoring relies on the data network between the observers and the facilitators. Weather and conditions of their work change over time randomly. Temperature, humidity, wind strength and other stochastic processes are interconnecting in different segments of the power grid. The article presents analytical expressions for the probability of failure of the power grid as a whole or its particular segment. These expressions can contain one or more parameters of the operating conditions, simulated by Monte Carlo. In some cases, one can get the ultimate mathematical formula for calculation on the computer. In conclusion, the expression, including the probability characteristic function of one random parameter, for example, wind, temperature or humidity, is given. The parameters of this characteristic function can be given by retrospective or special observations (measurements).
Computing an operating parameter of a unified power flow controller
Wilson, David G.; Robinett, III, Rush D.
2017-12-26
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
Computing an operating parameter of a unified power flow controller
Wilson, David G; Robinett, III, Rush D
2015-01-06
A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.
NASA Astrophysics Data System (ADS)
Pulusani, Praneeth R.
As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading transformers, lack of energy supply, and higher utility costs.
Integrating Renewable Generation into Grid Operations: Four International Experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weimar, Mark R.; Mylrea, Michael E.; Levin, Todd
International experiences with power sector restructuring and the resultant impacts on bulk power grid operations and planning may provide insight into policy questions for the evolving United States power grid as resource mixes are changing in response to fuel prices, an aging generation fleet and to meet climate goals. Australia, Germany, Japan and the UK were selected to represent a range in the level and attributes of electricity industry liberalization in order to draw comparisons across a variety of regions in the United States such as California, ERCOT, the Southwest Power Pool and the Southeast Reliability Region. The study drawsmore » conclusions through a literature review of the four case study countries with regards to the changing resource mix and the electricity industry sector structure and their impact on grid operations and planning. This paper derives lessons learned and synthesizes implications for the United States based on answers to the above questions and the challenges faced by the four selected countries. Each country was examined to determine the challenges to their bulk power sector based on their changing resource mix, market structure, policies driving the changing resource mix, and policies driving restructuring. Each countries’ approach to solving those changes was examined, as well as how each country’s market structure either exacerbated or mitigated the approaches to solving the challenges to their bulk power grid operations and planning. All countries’ policies encourage renewable energy generation. One significant finding included the low- to zero-marginal cost of intermittent renewables and its potential negative impact on long-term resource adequacy. No dominant solution has emerged although a capacity market was introduced in the UK and is being contemplated in Japan. Germany has proposed the Energy Market 2.0 to encourage flexible generation investment. The grid operator in Australia proposed several approaches to maintaining synchronous generation. Interconnections to other regions provides added opportunities for balancing that would not be available otherwise, and at this point, has allowed for integration of renewables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Feitau; Frank, Stephen; Scheib, Jennifer
A zero energy building (ZEB)—also known as a net zero energy or zero net energy building—is a building that exports as much renewable energy as the total energy it imports from other sources on an annual basis (DOE 2015). Large-scale and commercially viable ZEBs are now in the marketplace, and they are expected to become a larger share of the commercial building footprint as government and private sector policies continue to promote the development of buildings that produce more on-site energy than they use. However, the load profiles of ZEBs are currently perceived by electric utilities to be unfavorable andmore » unpredictable. As shown in Figure ES-1, ZEB load profiles can have abrupt changes in magnitude, at times switching rapidly between exporting and importing electricity. This is a challenge for utilities, which are responsible for constantly balancing electricity supply and demand across the grid. Addressing these concerns will require new strategies and tools.« less
Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty
NASA Astrophysics Data System (ADS)
Gharieh, Kaveh
Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.
NASA Astrophysics Data System (ADS)
Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji
We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.
NASA Astrophysics Data System (ADS)
Anishkumar, A. R.; Sreejaya, P.
2016-12-01
Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.
The development of a control system for a small high speed steam microturbine generator system
NASA Astrophysics Data System (ADS)
Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.
2015-08-01
Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.