Science.gov

Sample records for exposure alters follicle-stimulating

  1. Pesticide Exposure Alters Follicle-Stimulating Hormone Levels in Mexican Agricultural Workers

    PubMed Central

    Recio, Rogelio; Ocampo-Gómez, Guadalupe; Morán-Martínez, Javier; Borja-Aburto, Victor; López-Cervantes, Malaquías; Uribe, Marisela; Torres-Sánchez, Luisa; Cebrián, Mariano E.

    2005-01-01

    Organophosphorous pesticides (OPs) are suspected of altering reproductive function by reducing brain acetylcholinesterase activity and monoamine levels, thus impairing hypothalamic and/or pituitary endocrine functions and gonadal processes. Our objective was to evaluate in a longitudinal study the association between OP exposure and serum levels of pituitary and sex hormones. Urinary OP metabolite levels were measured by gas–liquid chromatography, and serum pituitary and sex hormone levels by enzymatic immunoassay and radioimmunoassay in 64 men. A total of 147 urine and blood samples were analyzed for each parameter. More than 80% of the participants had at least one OP metabolite in their urine samples. The most frequent metabolite found was diethylthiophosphate (DETP; 55%), followed by diethylphosphate (DEP; 46%), dimethylthiophosphate (DMTP; 32%), and dimethyldithiophosphate (DMDTP; 31%). However, the metabolites detected at higher concentrations were DMTP, DEP, DMDTP, and dimethylphosphate. There was a high proportion of individuals with follicle-stimulating hormone (FSH) concentrations outside the range of normality (48%). The average FSH serum levels were higher during the heavy pesticide spraying season. However, a multivariate analysis of data collected in all periods showed that serum FSH levels were negatively associated with urinary concentrations of both DMTP and DMDTP, whereas luteinizing hormone (LH) was negatively associated with DMTP. We observed no significant associations between estradiol or testosterone serum levels with OP metabolites. The hormonal disruption in agricultural workers presented here, together with results from experimental animal studies, suggests that OP exposure disrupts the hypothalamic–pituitary endocrine function and also indicates that FSH and LH are the hormones most affected. PMID:16140621

  2. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women.

  3. Disrupting the circadian photo-period alters the release of follicle-stimulating hormone, luteinizing hormone, progesterone, and estradiol in maternal and fetal sheep

    PubMed Central

    GAO, Qinqin; LV, Juanxiu; LI, Weisheng; ZHANG, Pengjie; TAO, Jianying; XU, Zhice

    2016-01-01

    Although a large number of studies show that photo-period disruption potentially affects hormone secretion in mammals, information about the effects of circadian photo-period disruption during pregnancy on fetal blood reproductive hormone levels is scarce. This study used ewes and their fetuses to determine the effects of circadian photo-period disruption (deprivation of darkness) on follicle-stimulating hormone, luteinizing hormone, estradiol, and progesterone in maternal and fetal circulation at late gestation. Pregnant ewes (gestational age: 135 ± 3 days) were randomly placed into control and dark deprivation groups. The control (N = 5) and dark deprivation (N = 5) groups were exposed to a fixed 12 h light/12 h dark cycle and a 24 h constant light cycle, respectively, for 2 days. Dark deprivation up-regulated follicle-stimulating hormone and estradiol levels and down-regulated progesterone levels in both maternal and fetal circulation, and up-regulated luteinizing hormone levels in fetal but not maternal circulation. These results provide new information about how circadian photo-period disruption during pregnancy could alter the release of certain reproductive hormones into fetal blood, which may influence the development of fetal organs in utero, as well as long-term health. PMID:27319751

  4. Spectroscopic characterization of recombinant follicle stimulating hormone

    NASA Astrophysics Data System (ADS)

    Groen, B. H.; Bloemendal, M.; Mulders, J. W. M.; Hadden, J. M.; Chapman, D.; Van Stokkum, I. H. M.; Van Grondelle, R.

    1996-09-01

    Recombinant follicle stimulating hormone (recFSH, Org. 32489) has been characterized by absorption (UV and IR), (polarized) fluorescence, linear-dichroism (LD) and circular-dichroism (CD) spectroscopy. Absorption and fluorescence spectra of the isolated subunits have also been measured. From the spectra the extinction coefficient, fluorescence quantum yield and anisotropy have been calculated. Global analysis is used to characterize the bands in the spectra. The adsorption, CD, LD and fluorescence excitation spectra all contain a band around 300 nm that appears to be a sensitive indicator for the intactness of the protein. Evidence is provided for the involvement of tyrosinate in the fluorescence, and for a close contact between the tryptophan (in the β subunit) with at least one tyrosine of the α subunit. The overall secondary structure of recFSH has been determined from its far-UV CD and its IR absorption spectrum. The secondary structure of recFSH is estimated to contain 15-25% α-helix, 15-25% β-turn and 30-40% β-sheet. The β-sheet in recFSH is almost exclusively antiparallel. The results confirm that recFSH contains significantly more α-helix than the closed related human glycoproteins, chorionic gonadotropin and lutropin; however, the α-helices may be short and distorted.

  5. Inhibin-non-steroidal regulation of follicle stimulating hormone secretion

    SciTech Connect

    Burger, H.G.; Findlay, J.K. ); de Kretser, D.M. ); Igarashi, M. )

    1987-01-01

    This book contains the proceedings of inhibin non-steroidal regulation of follicle stimulating hormone secretion. Topics covered include: FSH regulation, Molecular biology, Radioimmunoassay, Physiology - Testocular inhibin, Physiology - ovarian inhibin, and local actions.

  6. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  7. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Follicle stimulating hormone. 522.1002 Section 522.1002 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  8. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Follicle stimulating hormone. 522.1002 Section 522.1002 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  9. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Follicle stimulating hormone. 522.1002 Section 522.1002 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  10. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Follicle stimulating hormone. 522.1002 Section 522.1002 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  11. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Follicle stimulating hormone. 522.1002 Section 522.1002 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  12. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones.

    PubMed

    Tourkova, Irina L; Witt, Michelle R; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J; Blair, Harry C

    2015-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones.

  13. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones

    PubMed Central

    Tourkova, Irina L.; Witt, Michelle R.; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J.; Blair, Harry C.

    2014-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in FSH-R null mice. Here we describe a FSH-R knockout bone formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express follicle stimulating hormone receptor (FSH-R), to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1–3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones. PMID:25118101

  14. Purification and characterization of chicken follicle-stimulating hormone.

    PubMed

    Krishnan, K A; Proudman, J A; Bahr, J M

    1992-05-01

    1. Highly purified chicken follicle-stimulating hormone (cFSH) was isolated from chicken pituitaries by differential extraction, sequential chromatography on HPLC cation and anion exchange columns, and gel filtration chromatography. 2. Purified cFSH (USDA-cFSH-K-1) had a potency of 77.44 units/mg in a chicken testes radioreceptor assay, and was biologically active in stimulating the secretion of progesterone by chicken granulosa cells. 3. Purified cFSH contained negligible luteinizing hormone and thyroid stimulating hormone activity. 4. The apparent molecular weight of cFSH was 38,000 Da and a single band on isoelectric focusing had a pI of 4.65.

  15. Effects of external radiation therapy for cancer of the prostate on the serum concentrations of testosterone, follicle-stimulating hormone, luteinizing hormone and prolactin

    SciTech Connect

    Tomic, R.; Bergman, B.; Damber, J.E.; Littbrand, B.; Loefroth, P.O.

    1983-08-01

    Testosterone, luteinizing hormone, follicle-stimulating hormone and prolactin were analyzed in serum from 31 patients with carcinoma of the prostate treated primarily with megavoltage radiation therapy. The total tumor dose varied between 58 and 71 gray (mean 63.5 gray). Absorbed doses to the testes were measured at approximately 1 to more than 10 gray. We investigated retrospectively 17 patients 3 to 60 months (mean 20 months) after therapy and found significantly lower serum testosterone concentrations and significantly higher luteinizing and follicle-stimulating hormone concentrations than in age-matched controls. Of the patients, 14 were followed before and after radiation treatment. Testosterone concentrations were reduced significantly 1 week as well as 3 months after treatment but pre-treatment values were found on analysis 6 and 12 months after treatment. The values for luteinizing and follicle-stimulating hormones were significantly higher 3, 6 and 12 months after radiation treatment compared to pre-treatment values. The follicle-stimulating hormone value already increased after 1 week. The greatest observed testosterone alteration occurred 1 week after treatment in patients who received more than 10 gray over the gonads. The use of lead shields protecting the testes reduced the dose absorbed to the gonads by approximately 50 percent.

  16. Follicle-stimulating hormone accelerates mouse oocyte development in vivo.

    PubMed

    Demeestere, Isabelle; Streiff, Agathe K; Suzuki, João; Al-Khabouri, Shaima; Mahrous, Enas; Tan, Seang Lin; Clarke, Hugh J

    2012-07-01

    During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.

  17. Follicle-stimulating hormone increases bone mass in female mice.

    PubMed

    Allan, Charles M; Kalak, Robert; Dunstan, Colin R; McTavish, Kirsten J; Zhou, Hong; Handelsman, David J; Seibel, Markus J

    2010-12-28

    Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.

  18. Effects of cabergoline in a pituitary adenoma secreting follicle-stimulating hormone.

    PubMed Central

    Leese, G.; Jeffreys, R.; Vora, J.

    1997-01-01

    A patient with a pituitary adenoma secreting follicle-stimulating hormone with co-existent primary hyperaldosteronism is described. After his second transsphenoidal surgery, the patient developed a Staphylococcus aureus pituitary abscess. Symptoms improved after abscess drainage. Subsequent cabergoline therapy arrested the deterioration of symptoms. and decreased serum follicle-stimulating hormone concentrations. Cabergoline may be a useful treatment for aggressively growing non-prolactin-secreting pituitary adenomas. PMID:9307745

  19. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  1. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  2. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  3. 76 FR 2807 - New Animal Drugs; Change of Sponsor; Follicle Stimulating Hormone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Parts 510 and 522 New Animal Drugs; Change of Sponsor... Food and Drug Administration (FDA) is amending the animal drug regulations to reflect a change of sponsor for a new animal drug application (NADA) for follicle stimulating hormone from Ausa...

  4. Regulation of beta follicle stimulating hormone subunit RNA by 17-beta estradiol, progesterone, and inhibin in ovine pituitary cells in culture

    SciTech Connect

    Phillips, C.L.

    1987-01-01

    The molecular mechanism by which ovine follicle stimulating hormone (FSH) is negatively regulated by 17-beta estradiol, progesterone, and inhibin was investigated in vitro, using ovine pituitary cells in culture. The effects of these gonadal hormones on beta FSH RNA levels were assayed by dot blot hybridization to a specific radiolabeled cDNA probe for beta FSH RNA. This was compared to concomitant changes in FSH secretion, which were measured by radioimmunoassay, in order to determine if the alterations in beta FSH RNA could account for the changes in FSH secretion.

  5. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2012-09-01

    Award Number: 11 1 0623 TITLE: Co-expression of the Follicle Stimulating Hormone Receptor and Stem...Annual 3. DATES COVERED 1 Sep 2011 – 31 Aug 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Coexpression of the Follicle Stimulating Hormone ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to determine whether the Follicle-stimulating Hormone Receptor (FSHR) is co

  6. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Byambaragchaa, Munkhzaya; Kim, Shin-Kwon; Lee, Bae-Ik; Hwang, Hyung-Kyu; Myeong, Jeong-In; Hong, Sun-Mee; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-09-01

    Monoclonal antibodies were generated against recombinant follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica; rec-FSH was produced in Escherichia coli and purified using Ni-NTA Sepharose column chromatography. In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary.

  7. Discovery of substituted benzamides as follicle stimulating hormone receptor allosteric modulators.

    PubMed

    Yu, Henry N; Richardson, Thomas E; Nataraja, Selva; Fischer, David J; Sriraman, Venkataraman; Jiang, Xuliang; Bharathi, Pandi; Foglesong, Robert J; Haxell, Thomas F N; Heasley, Brian H; Jenks, Mathew; Li, Jane; Dugas, Melanie S; Collis, Regina; Tian, Hui; Palmer, Stephen; Goutopoulos, Andreas

    2014-05-01

    Follicle-stimulating hormone (FSH), acting on its receptor (FSHR), plays a pivotal role in the stimulation of follicular development and maturation. Multiple injections of protein formulations are used during clinical protocols for ovulation induction and for in vitro fertilization that are followed by a selection of assisted reproductive technologies. In order to increase patient convenience and compliance several research groups have searched for orally bioavailable FSH mimetics for innovative fertility medicines. We report here the discovery of a series of substituted benzamides as positive allosteric modulators (PAM) targeting FSHR. Optimization of this series has led to enhanced activity in primary rat granulosa cells, as well as remarkable selectivity against the closely related luteinizing hormone receptor (LHR) and thyroid stimulating hormone receptor (TSHR). Two modulators, 9j and 9k, showed promising in vitro and pharmacokinetic profiles.

  8. Current Concepts of Follicle-Stimulating Hormone Receptor Gene Regulation1

    PubMed Central

    George, Jitu W.; Dille, Elizabeth A.; Heckert, Leslie L.

    2010-01-01

    Follicle-stimulating hormone (FSH), a pituitary glycoprotein hormone, is an integral component of the endocrine axis that regulates gonadal function and fertility. To transmit its signal, FSH must bind to its receptor (FSHR) located on Sertoli cells of the testis and granulosa cells of the ovary. Thus, both the magnitude and the target of hormone response are controlled by mechanisms that determine FSHR levels and cell-specific expression, which are supported by transcription of its gene. The present review examines the status of FSHR/Fshr gene regulation, emphasizing the importance of distal sequences in FSHR/Fshr transcription, new insights gained from the influx of genomics data and bioinformatics, and emerging trends that offer direction in deciphering the FSHR/Fshr regulatory landscape. PMID:20739665

  9. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene

    SciTech Connect

    Gromoll, J; Pekel, E.; Nieschlag, E.

    1996-07-15

    The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene were determined by either screening a phage library of human genomic DNA or applying the long PCR technique to amplify different exon pairs with their corresponding introns. The FSHR gene spans a region of 54 kb and consists of 10 exons and 9 introns. Most of the extracellular domain is encoded by 9 exons, ranging in length between 69 and 251 bp; the C-terminal part of the extracellular domain, the transmembrane domain, and the intracellular domain are encoded by the large exon 10 (1234 bp). Overall the gene encodes 695 amino acids. The structure of the human FSHR displays a striking similarity to that of the previously characterized rat FSHR gene, with a high degree of conservation in exon sizes and exon/intron junctions. 20 refs., 2 tabs.

  10. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function

    PubMed Central

    Banerjee, Antara A.; Mahale, Smita D.

    2015-01-01

    Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone–receptor internalization, and recycling of hormone–receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function. PMID:26236283

  11. Effects of inorganic and organic manganese supplementation on gonadotropin-releasing hormone-I and follicle-stimulating hormone expression and reproductive performance of broiler breeder hens.

    PubMed

    Xie, Jingjing; Tian, Chuanhuan; Zhu, Yongwen; Zhang, Liyang; Lu, Lin; Luo, Xugang

    2014-04-01

    Manganese is an essential microelement. Manganese deficiency affects reproduction performance and reproductive hormones in layers. However, little is known about its effects and the possible mechanism in regulating reproduction in broiler breeder hens. In the current study, broiler breeder hens at peak production were fed with diets supplemented with 0, 120, or 240 mg of Mn/kg as MnSO4 or Mn proteinate for 13 wk. Manganese supplementation did not alter egg laying rate, egg weight, fertility, hatchability, or hatchling weight over a 13-wk trial period. However, 240 mg of Mn/kg supplementation significantly increased serum Mn (P < 0.05). Manganese supplements increased the eggshell breaking strength (P < 0.05) without affecting the eggshell thickness. There was no difference in serum cholesterol and estradiol. Expression of follicle-stimulating hormone) and gonadotropin-releasing hormone-I (GnRH-I) genes was significantly elevated by 240 mg of Mn/kg (P < 0.05). Furthermore, inorganic Mn supplementation doubled GnRH-I expression compared with supplementation with the organic form (P < 0.05), although serum Mn was comparable between these 2 supplements. No obvious difference was shown in gene expression of luteinizing hormone, prolactin, GnRH-I receptor, inducible NO synthase, and dopamine receptor D1 in the pituitary as well as tyrosine hydroxylase and inducible NO synthase in the hypothalamus. This suggests that dietary Mn supplementation could improve eggshell quality in the long term. The central mechanism of nontoxic high doses of Mn suggested the transcriptional activation of GnRH-I and follicle-stimulating hormone genes. The central effect of inorganic Mn activating GnRH-I genes compared with the reduced effect by organic Mn could possibly be due to a decreased capacity of the latter passing through the blood-brain barrier.

  12. A negative allosteric modulator demonstrates biased antagonism of the follicle stimulating hormone receptor

    PubMed Central

    Dias, James A.; Bonnet, Béatrice; Weaver, Barbara A.; Watts, Julie; Kluetzman, Kerri; Thomas, Richard M.; Poli, Sonia; Mutel, Vincent; Campo, Brice

    2015-01-01

    High quality gamete production in males and females requires the pituitary gonadotropin follicle stimulating hormone (FSH). In this report a novel chemical class of small molecule inhibitors of FSH receptor (FSHR) is described. ADX61623, a negative allosteric modulator (NAM), increased the affinity of interaction between 125I-hFSH and human FSHR (hFSHR) five fold. This form of FSHR occupied simultaneously by FSH and ADX61623 was inactive for cAMP and progesterone production in primary cultures of rat granulosa cells. In contrast, ADX61623 did not block estrogen production. This demonstrates for the first time, biased antagonism at the FSHR. To determine if ADX61623 blocked FSH induction of follicle development in vivo, a bioassay to measure follicular development and oocyte production in immature female rats was validated. ADX61623 was not completely effective in blocking FSH induced follicular development in vivo at doses up to 100 mg/kg as oocyte production and ovarian weight gain were only moderately reduced. These data illustrate that FSHR couples to multiple signaling pathways in vivo. Suppression of one pool of FSHR uncouples Gαs and cAMP production, and decreases progesterone production. Occupancy of another pool of FSHR sensitizes granulosa cells to FSH induced estradiol production. Therefore, ADX61623 is a useful tool to investigate further the mechanism of the FSHR signaling dichotomy. This may lead to a greater understanding of the signaling infrastructure which enables estrogen biosynthesis and may prove useful in treating estrogen dependent disease. PMID:21184806

  13. Follicle-stimulating hormone-dependent phosphorylation of vimentin in cultures of rat Sertoli cells.

    PubMed Central

    Spruill, W A; Steiner, A L; Tres, L L; Kierszenbaum, A L

    1983-01-01

    Endogenous protein phosphorylation was investigated in cultured rat Sertoli cells after treatment with follicle-stimulating hormone (FSH) and pharmacological agents that activate cAMP-dependent protein kinases. In intact Sertoli cells, both phosphorylation and dephosphorylation of proteins occurred in response to treatment with these agents. Studies using cell-free preparations suggest that four phosphoproteins phosphorylated by cAMP or the catalytic subunit of cAMP-dependent protein kinase were also phosphorylated in a FSH-dependent manner in intact cells. These data suggest that FSH-dependent phosphorylation in Sertoli cells occurs through activation of a cAMP-dependent protein kinase. A FSH-dependent phosphoprotein with a molecular weight of 58,000 was identified as the intermediate filament protein vimentin, based on its migration in two-dimensional gels and its peptide map. The cellular distribution of vimentin was monitored by immunofluorescence in Sertoli cells after treatment with FSH. Results of this study support a role for intermediate filaments in FSH-dependent events in Sertoli cells. Images PMID:6302679

  14. Regeneration of spermatogenesis in a mouse model of azoospermia by follicle-stimulating hormone and oestradiol.

    PubMed

    Jafarian, A; Sadeghi, M R; Pejhan, N; Salehkhou, S; Lakpour, N; Akhondi, M M

    2014-12-01

    Busulfan is a chemotherapeutic drug that induces sterility, azoospermia and testicular atrophy. To induce degeneration of spermatogenesis, we used different amounts of busulfan. Adult male C57Bl/6 mice were treated with 15, 30 and 45 mg kg(-1) of busulfan. After 5 weeks, animals had daily injections of 7.5 IU human follicle-stimulating hormone (hFSH) and 12.5 μg kg(-1) oestradiol benzoate (EB), separately or simultaneously. After this time, the animals were killed and blood samples were taken through cardiac puncture. Testes were used for histopathology experiments, DNA flow cytometry and RNA extraction for expression of c-kit and cyclin B1 genes. EB unlike FSH has induced stimulatory effects on spermatogenesis, increased the level of serum testosterone 2-fold and caused a 2-fold increase in the number of haploid cells. The result showed that hFSH with EB multiplied EB stimulatory effects on spermatogenesis up to four times. Expression of c-kit and cyclin B1 genes increased in EB and hFSH+EB groups. These findings suggest that EB regulates spermatogonial stem cells via hFSH. hFSH with EB had synergistic effect on regeneration of spermatogenesis.

  15. Follicle-stimulating hormone enhances alveolar bone resorption via upregulation of cyclooxygenase-2

    PubMed Central

    Zhu, Chunxia; Ji, Yaoting; Liu, Shengbo; Bian, Zhuan

    2016-01-01

    This study aimed to investigate whether follicle-stimulating hormone (FSH)-induced alveolar bone resorption was mediated by a cyclooxygenase 2 (COX-2) enzyme related mechanism. Experimental periodontitis was induced in bilateral ovariectomized (OVX) rats, some of which were injected with triptorelin, an FSH inhibitor. After mandibles were collected, we performed micro-computed tomography to evaluate alveolar bone loss and immunohistochemical staining to assess COX-2 expression. As well, human periodontal ligament cells (PDLCs) were treated with FSH (30 ng/ml), and the COX-2 mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively; prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay (ELISA). The results indicated that FSH significantly increased alveolar bone resorption and the expression of COX-2 in the bilateral OVX + Ligatured rats compared with the other treatment groups. FSH also increased the mRNA and protein expression of COX-2 and PGE2 (P < 0.01) in human PDLCs. Further, the analysis of signaling pathways revealed the activation of COX-2-mediated pathways including Erk, p38, and Akt. These data suggest that FSH aggravates alveolar bone loss via a COX-2-upregulation mechanism and that the Erk, p38, and Akt pathways are involved in this pathological process. PMID:27725865

  16. Interaction between melatonin and follicle-stimulating hormone promotes in vitro development of caprine preantral follicles.

    PubMed

    Rocha, R M P; Lima, L F; Alves, A M C V; Celestino, J J H; Matos, M H T; Lima-Verde, I B; Bernuci, M P; Lopes, C A P; Báo, S N; Campello, C C; Rodrigues, A P R; Figueiredo, J R

    2013-01-01

    The aim of this study was to investigate the effects of melatonin and follicle-stimulating hormone (FSH) on the in vitro culture of goat preantral follicles. Ovarian fragments were cultured for 7 d in α-minimum essential medium (α-MEM(+)) containing melatonin (100, 250, 500, or 1,000 pM), FSH (50 ng/mL), or a combination of the 2 hormones and further analyzed by histology and transmission electron and fluorescent microscopy. The results showed that after 7 d of culture, tissues cultured in α-MEM(+) alone or supplemented with FSH alone, melatonin (500 and 1,000 pM), or the combination of FSH and melatonin (1,000 pM) maintained percentages of normal preantral follicles similar to the fresh control. In contrast to the noncultured tissues, the percentage of developing follicles was increased under all culture conditions after 7 d (P < 0.05). The addition of 1,000 pM melatonin associated with FSH to the culture medium increased follicular and oocyte diameters compared with α-MEM(+) alone after 7 d of culture (P < 0.05). Ultrastructural and fluorescent analyses confirmed the integrity of follicles cultured with 1,000 pM of melatonin plus FSH for 7 d. In conclusion, this study demonstrated that the interaction between melatonin and FSH maintains ultrastructural integrity and stimulates further growth of cultured caprine preantral follicles.

  17. Secretion of follicle-stimulating hormone and production of inhibin are reciprocally related

    SciTech Connect

    Ying, S.Y.; Czvik, J.; Becker, A.; Ling, N.; Ueno, N.; Guillemin, R.

    1987-07-01

    The production of inhibin in cultured granulosa cells from immature hypophysectomized, estrogen-treated rats and Sertoli cells from normal animals was determined by a specific radioimmunoassay using an antiserum against a synthetic replicate of (Tyr/sup 30/) inhibin ..cap alpha..-chain-(1-30). The amount of immunoreactive inhibin detected in the spent media of these cells is in proportion to the density of cells plated and the concentration of exogenously added follicle-stimulating hormone (FHS). In the presence of the estrogen precursor androstenedione (10/sup -7/ M), FSH, but not luteinizing hormone, produced a dose-dependent increase in inhibin during 2-day culture of granulosa cells. In the absence of the estrogen precursor, similar but somewhat diminished inhibin production in responding to FSH was observed. Exogenously added estrogen potentiated the FSH-mediated release of inhibin in the absence of androstenedione. Neither androstenedione nor estradiol added to the cultured Sertoli cells had effect on inhibin production. A preparation of pure inhibin isolated on the basis of an in vitro bioassay and characterized chemically specifically suppressed serum FSH but not luteinizing hormone, when it was injected (24 ..mu..g per injection, two injections) into acutely ovariectomized rats. Thus, inhibin secreted by the granulosa and Sertoli cells specifically suppresses the secretion of pituitary FSH, and in turn FSH is primarily responsible for the inhibin production in these gonadal cells, as in a classical negative-feedback relationship.

  18. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone beta subunit gene expression.

    PubMed

    Aikawa, Satoko; Kato, Takako; Susa, Takao; Tomizawa, Kyoko; Ogawa, Satoshi; Kato, Yukio

    2004-11-12

    Molecular cloning of the transcription factor that modulates the expression of porcine follicle-stimulating hormone beta subunit (FSHbeta) gene was performed by the yeast one-hybrid cloning system using the -852/-746 upstream region (Fd2) as a bait sequence. We eventually cloned a pituitary transcription factor, Prop-1, which has been identified as an upstream transcription factor of Pit-1 gene. Binding ability of Prop-1 to the bait sequence was confirmed using recombinant Prop-1, and the binding property was investigated by DNase I footprinting, revealing that Prop-1 certainly bound to the large AT-rich region throughout the Fd2. Co-transfection of Prop-1 expression vector together with a reporter gene fused with Fd2 in CHO cells demonstrated an attractive stimulation of reporter gene expression. Immunohistochemistry of adult porcine pituitary confirmed the colocalization of the Prop-1 and FSHbeta subunit. This study is the first to report that Prop-1 participates in the regulation of FSHbeta gene. The present finding will provide new insights into the development of pituitary cell lineage and combined pituitary hormone deficiency (CPHD), since why the defect of Prop-1 causes CPHD including gonadotropins (FSH and LH) has yet to be clarified.

  19. Cadmium, follicle-stimulating hormone, and effects on bone in women age 42-60 years, NHANES III

    SciTech Connect

    Gallagher, Carolyn M.; Moonga, Baljit S.; Kovach, John S.

    2010-01-15

    Background: Increased body burden of environmental cadmium has been associated with greater risk of decreased bone mineral density (BMD) and osteoporosis in middle-aged and older women, and an inverse relationship has been reported between follicle-stimulating hormone (FSH) and BMD in middle-aged women; however, the relationships between cadmium and FSH are uncertain, and the associations of each with bone loss have not been analyzed in a single population. Objectives: The objective of this study was to evaluate the associations between creatinine-adjusted urinary cadmium (UCd) and FSH levels, and the associations between UCd and FSH with BMD and osteoporosis, in postmenopausal and perimenopausal women aged 42-60 years. Methods: Data were obtained from the Third National Health Examination and Nutrition Survey, 1988-1994 (NHANES III). Outcomes evaluated were serum FSH levels, femoral bone mineral density measured by dual energy X-ray absorptiometry, and osteoporosis indicated by femoral BMD cutoffs based on the international standard. Urinary cadmium levels were analyzed for association with these outcomes, and FSH levels analyzed for association with bone effects, using multiple regression. Subset analysis was conducted by a dichotomous measure of body mass index (BMI) to proxy higher and lower adipose-synthesized estrogen effects. Results: UCd was associated with increased serum FSH in perimenopausal women with high BMI (n=642; {beta}=0.45; p{<=}0.05; R{sup 2}=0.35) and low BMI (n=408; {beta}=0.61; p{<=}0.01; R{sup 2}=0.34). Among perimenopausal women with high BMI, BMD was inversely related to UCd ({beta}=-0.04; p{<=}0.05) and FSH ({beta}=-0.03; p{<=}0.05). In postmenopausal women with low BMI, an incremental increase in FSH was associated with 2.78 greater odds for osteoporosis (109 with and 706 without) (OR=2.78; 95% CI=1.43, 5.42; p{<=}0.01). Conclusion: Long-term cadmium exposure at environmental levels is associated with increased serum FSH, and both FSH

  20. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  1. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation

    PubMed Central

    Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin

    2015-01-01

    Objective The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. Methods We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). Results 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. Conclusions The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro. PMID:26241313

  2. Studies on the structure of the follicle-stimulating hormone receptor using photoaffinity labeling procedures

    SciTech Connect

    Smith, R.A.

    1985-01-01

    The general objective of this project was to study the structure of the follicle stimulating hormone (FSH) receptor using affinity labeling methods. A low density fraction derived from homogenates of bovine testis was found to contain high affinity and low capacity receptors specific for FSH. Electron microscopic examination of the fraction revealed structure resembling multilamellar membranous vesicles (MV). For photoaffinity labeling of the FSH receptors in MV, an azidobenzoyl-/sup 125/I-analog of human FSH was prepared (/sup 125/I-AB-hFSH) and binding of specific FSH receptors was studied. /sup 125/I-AB-hFSH binding of receptors was inhibited in a dose dependent manner by unlabeled hFSH, and binding was not prevented by structurally-related human chorionic gonadotropin (hCG). The formation of photocrosslinked protein of relative molecular mass (M/sub r/) 54,000, 64,000, 76,000, 84,000, 97,000 and 116,000 was found to be inhibited by unlabeled hFSH in a dose related manner, and to be dependent on photoactivation of the FSH derivative. The interpretation of the photoaffinity labeling experiments was that three proteins associated with the FSH receptor were photoaffinity labeled. Analysis by indirect means suggested that the three proteins were assembled to form oligomeric complexes, and based on the intensities and composition of the oligomeric species, spatial relationships of the polypeptides with respect to each other on the membrane surface were deduced. The results of photoaffinity labeling suggest the FSH receptor is composed of three subunits of M/sub r/ 38,000, 48,000, and 81,000 and exists in the membrane in part as a M/sub r/ 330,000 dimer.

  3. Rescue from dominant follicle atresia by follicle-stimulating hormone in mice.

    PubMed

    Zhou, X L; Teng, Y; Cao, R; Fu, H; Xiong, K; Sun, W X; Zhu, C C; Huang, X J; Xiao, P; Liu, H L

    2013-08-12

    We investigated the effects of follicle-stimulating hormone (FSH) on atresia of the dominant follicle and changes in relevant apoptosis genes in granulosa cells of dominant follicles regulated by FSH in vivo. Four-week-old mice were administered FSH by intraperitoneal injection to induce follicular maturation. Granulosa cells of dominant follicles were collected at 48, 72, and 96 h after the first FSH injection. Phosphate-buffered saline was injected as a control. The mRNA levels of relevant granulosa cell apoptosis genes were examined by real-time quantitative polymerase chain reaction, and apoptosis of granulosa cells in dominant ovarian follicles was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Apoptosis in granulosa cells of dominant follicles was almost TUNEL-negative at 48, 72-66, 72, and 96-90 h after the first FSH injection, but granulosa cell apoptosis in dominant follicles was clearly detected at 96, 102, and 102-96 h by TUNEL. The BIM, caspase-3, and caspase-9 mRNA expression levels were significantly lower after FSH treatment at 72-66 and 96-90 h, compared with that at 72 and 96 h (P < 0.05). Caspase-8 and FasL mRNA expressions did not respond to FSH. FSH rescued granulosa cells from apoptosis when the relevant apoptosis genes were upregulated in early atretic follicles. FSH did not rescue granulosa cells from apoptosis if the DNA was cut into fragments by endonucleases. Thus, the rescue by FSH of granulosa cells from apoptosis and dominant follicle atresia may be accomplished by inhibition of apoptosis in mitochondria.

  4. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  5. Cellular regulation of follicle-stimulating hormone (FSH) binding in rat seminiferous tubules

    SciTech Connect

    Kangasniemi, M.; Kaipia, A.; Toppari, J.; Perheentupa, A.; Huhtaniemi, I.; Parvinen, M. )

    1990-07-01

    Stage-specific binding of follicle-stimulating hormone (FSH) was measured in rat seminiferous tubules. The binding in single-point assays was over 3-fold higher (P less than 0.05) in stages XIII to I than in stages VI to VII of the epithelial cycle. No difference was found between the equilibrium association constants (Ka) of FSH binding in stages XIV to IV (10 +/- 1.9 X 10(9) 1/mol) and VII to VIII (9.2 +/- 0.6 X 10(9) 1/mol, mean +/- SEM, n = 5). In another experiment, the testes were dosed locally with 3 Gy of 4 MV x-irradiation to selectively lower the number of spermatogonia. After irradiation, FSH binding in staged seminiferous tubule segments was measured when the desired types of spermatogenic cells were reduced in number. Seven days after irradiation when differentiating spermatogonia and preleptotene spermatocytes were reduced in number, FSH binding was decreased in all stages of the cycle, but the cyclic variation remained. Seventeen days after irradiation when intermediate and type B spermatogonia and spermatocytes up to diplotene of stage XIII showed low numbers, FSH binding was decreased in all stages of the cycle and the stage-dependent variation disappeared. At 38 days when pachytene spermatocytes and early spermatids were reduced in number, similar results were found. But at 52 days postirradiation when all spermatids were low in number, FSH binding was slightly elevated compared with days 17 and 38. There were no significant differences in serum FSH or LH levels between irradiated and non-irradiated animals. These findings suggest that all spermatogenic cell types may stimulate FSH binding in the Sertoli cells.

  6. Assessment of ovarian reserve: Anti-Mullerian hormone versus follicle stimulating hormone

    PubMed Central

    Jamil, Zehra; Fatima, Syeda Sadia; Cheema, Zahra; Baig, Safia; Choudhary, Roha Ahmed

    2016-01-01

    Background: This study aimed to evaluate the strength of anti-Mullerian hormone (AMH) and follicle stimulating hormone (FSH) in reflecting the antral follicle count (AFC) in infertile females. Materials and Methods: This cross-sectional study was conducted on 160 females, visiting infertility clinic for assisted reproduction. Serum samples collected on the 3rd day of the cycle were assayed for FSH, luteinizing hormone, and AMH while AFC was assessed via transvaginal ultrasound. The study cohort was segregated into three groups based on AFC. Results: Chronological age and FSH was significantly high in females with very low AFC (P < 0.01 and 0.009, respectively), yet they failed to discriminate patients with normal and higher follicle count (P = 0.65 and 0.84). Conversely, AMH reported highly significant difference between very low AFC and with those having either normal AFC (P = 0.002) or higher AFC (P = 0.001). Moreover, a significant difference in AMH was observed between normal and higher AFC group (P = 0.04). Conclusion: Compared to female’s age and FSH, AMH is superior in clustering study cohort on the bases of antral follicular pool, especially in setups with nonavailability of technological expertise to assess AFC. Incorporation of AMH along with other biomarkers improves estimation of baseline ovarian reserve, required to standardize dose for optimum response; avoiding the risk of failure to retrieve oocyte or inappropriate stimulation leading to ovarian hyperstimulation syndrome. Further prospective studies are required to ascertain its role in predicting the outcomes of ART in such patients. PMID:28163746

  7. Piscine follicle-stimulating hormone triggers progestin production in gilthead seabream primary ovarian follicles.

    PubMed

    Zapater, Cinta; Chauvigné, François; Scott, Alexander P; Gómez, Ana; Katsiadaki, Ioanna; Cerdà, Joan

    2012-11-01

    Ovarian growth (vitellogenesis) in most lower vertebrates is mediated by estradiol-17beta (E2) secreted by the follicles in response to follicle-stimulating hormone (Fsh), whereas oocyte maturation and ovulation are mediated by progestins, such as 17alpha,20beta-dihydroxypregn-4-en-3-one (17,20beta-P), produced in response to luteinizing hormone (Lh). In teleosts, follicular synthesis of 17,20beta-P at the time of maturation is due primarily to up-regulation of the enzymes P450c17-II (Cyp17a2) and 20beta-hydroxysteroid dehydrogenase (Cbr1). Here, we show that follicular cells associated with primary growth (previtellogenic) oocytes of the gilthead seabream also express cyp17a2 and cbr1, in addition to P450c17-I (cyp17a1) and aromatase (cyp19a1), enzymes required for E2 synthesis. Ovaries containing only oogonia and early primary ovarian follicles had a 60-fold higher concentration of 17,20beta-P than ovaries in the succeeding stages and had a higher expression of cbr1 and Fsh receptor (fshra). Stimulation of explants of primary follicles in vitro with recombinant piscine Fsh (rFsh), which specifically activates the seabream Fshra, promoted a rapid accumulation of 17,20beta-P, and synthesis was sustained by an external supply of 17alpha-hydroxyprogesterone. In the presence of Cbr1 inhibitors, rFsh-mediated 17,20beta-P production was reduced, with a concomitant increase in testosterone and E2 synthesis. In primary explants, rFsh up-regulated cyp17a2 and cbr1 transcription and simultaneously down-regulated cyp17a1 and cyp19a1 steady-state mRNA levels within 24 h. In contrast, in explants containing vitellogenic follicles, rFsh had no effect on cyp17a2 and cbr1 expression, but increased that of cyp17a1 and cyp19a1. These data suggest a functional Fshra-activated Cyp17a2/Cbr1 steroidogenic pathway in gilthead seabream primary ovarian follicles triggering the production of 17,20beta-P.

  8. Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes

    PubMed Central

    1993-01-01

    Voltage-clamp techniques were used to study the membrane currents elicited by follicle stimulating hormone (FSH) and acetylcholine (ACh) in follicle-enclosed oocytes of Xenopus laevis (follicles). Both agonists caused complex responses that were more evident when the follicles were in hypotonic Ringer solution (HR; 190.4 mosM). In this medium, currents activated by FSH regularly showed three phases whereas currents activated by ACh displayed three to six phases. At a holding potential of -60 mV, FSH, and ACh responses involved combinations of inward and outward currents. Both FSH and ACh responses included a slow smooth inward component that was associated with an increase in membrane conductance, mainly to Cl- (S(in)). This current was strongly dependent on the osmolarity of the external solution: an increase in osmolarity of the HR solution of 18-20 mosM caused a 50% decrease in S(in). In contrast, a fast and transient Cl- current (F(in)) specifically elicited by ACh was not dependent on osmolarity. Both, F(in) and S(in) currents required the presence of follicular cells, since defolliculation using three different methods abolished all the response to FSH and at least four components of the ACh responses. The membrane channels carrying F(in) and oscillatory Cl- currents elicited by stimulation of ACh or serum receptors, were much more permeable to I- and Br- than Cl-, whereas S(in) channels were equally permeable to these anions. Unlike the oscillatory Cl- currents generated in the oocyte itself, S(in) and F(in) currents in follicle-enclosed oocytes were not abolished by chelation of intracellular Ca2+, either with EGTA or BAPTA, which suggests that intracellular Ca2+ does not play a critical role in the activation of these currents. Our experiments show that S(in) and F(in) currents are quite distinct from the previously characterized oscillatory Cl- responses of oocytes. Moreover, the results strongly suggest that the FSH and ACh receptors, the Cl- channels

  9. Localization and expression of follicle-stimulating hormone receptor gene in buffalo (Bubalus bubalis) pre-antral follicles.

    PubMed

    Sharma, G Taru; Dubey, P K; Kumar, G Sai

    2011-02-01

    Follicle-stimulating hormone (FSH) stimulates antral follicles to grow, but its role in earlier stages (pre-antral) of follicle development, if any, is obscure. Aim of this study was to study the expression of follicle-stimulating hormone receptor (FSHR) gene in different sizes of pre-antral follicles (PFs) (<150, 200, 250, 300, 350, 400 μm) and to find out an optimum dose of FSH for better growth, development and steroidogenesis of PFs in vitro. Buffalo ovaries were collected from a local abattoir, and PFs were isolated by mechanical method. A semi-quantitative RT-PCR amplification strategy was used for mRNA expression, while FSHR protein was localized by immunohistochemistry. Isolated pre-antral follicles (80-85 μm) were cultured in TCM-199 supplemented with 10% foetal bovine serum, 1% ITS and 30 ng/ml EGF served as control medium. Addition of three different doses of FSH (0.5, 1.0, 2.0 μg/ml) in control medium was considered as treatment groups. A single 2.184-kb receptor mRNA transcript was present in all sizes (<150-400 μm) of follicles. Follicle-stimulating hormone receptor was also localized immunohistochemically in granulosa cells of all sizes of follicles. Survival and growth rate of follicles significantly (p<0.05) increased following supplementation of FSH at a concentration of 1.0 μg/ml and the culture medium also showed a significantly (p<0.05) greater accumulation of oestradiol and progesterone. In conclusion, FSHR is expressed in all sizes of PFs and in vitro survival, growth and steroidogenesis of follicles are optimally stimulated by 1.0 μg/ml FSH. These findings demonstrate that FSH has an important role during the recruitment, growth and development of buffalo ovarian PFs.

  10. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance.

    PubMed

    Dierich, A; Sairam, M R; Monaco, L; Fimia, G M; Gansmuller, A; LeMeur, M; Sassone-Corsi, P

    1998-11-10

    Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R -/- mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R -/- mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.

  11. Metabolism of testosterone by human granulosa cells in culture: influence of follicle-stimulating hormone and luteinizing hormone

    SciTech Connect

    Moon, Y.S.; Duleba, A.; Leung, P.C.; Gomel, V.

    1982-03-15

    Human granulosa cells were isolated from follicles (8 to 15 mm) and cultivated for 24 hours in the presence or absence of follicle-stimulating hormone (NIH-FSH-HS-1, 1 microgram/ml) and luteinizing hormone (NIAMDD-hLH-1, 1 microgram/ml). Testosterone -4-14C was added subsequently to all cultures for 4-, 6-, and 24-hour periods. Of the seven metabolites of testosterone studied, 17 beta-estradiol (E2) and estrone (E1) were the major products. In all patients, levels of E2 were three to ten times higher than those of E1. Production of E2, but not E1, was stimulated by either follicle-stimulating hormone (FSH) or luteinizing hormone (LH). The cells of the largest follicle (15 mm) showed greater response to LH than to FSH. Production of the other C19 and C18 metabolites was very low or negligible. These results further suggest that FSH regulates the aromatization of testosterone in human granulosa cells, and that LH may have the same effect on the matured follicle during the preovulatory period.

  12. LAPS-FSH: a new and effective long-acting follicle-stimulating hormone analogue for the treatment of infertility.

    PubMed

    Jung, Sunyoung; Park, Youngjin; Kim, YoungHoon; Kim, Yu Yon; Choi, Hyun-Ji; Son, Woo-Chan; Kwon, SeChang

    2014-10-01

    Although several long-acting follicle-stimulating hormone (FSH) therapies have been developed to enhance the ovarian response, a disadvantage of FSH therapy is its relatively short half-life, which requires women to receive one to two injections per day for almost 2 weeks. In the present study, we developed a novel FSH analogue by conjugating recombinant human FSH (rhFSH) and the constant region of the human immunoglobulin G4 fragment via non-peptidyl linkers. The efficacy of the FSH analogue was evaluated in vitro by cAMP level assessments, pharmacokinetic studies and a determination of ovarian weight and by comparing these findings with the results from other FSH analogues. In addition, the total number of antral and Graafian follicles was determined after 7 days of treatment with control, 6µgkg(-1) follitropin β, 6, 12 or 42µgkg(-1) corifollitropin α or 3, 6 or 12µgkg(-1) long acting protein/peptide discovery-follicle-stimulating hormone (LAPS-FSH). As a result, the animals treated with 12µgkg(-1) LAPS-FSH produced additional and larger healthy follicles. These data demonstrate that LAPS-FSH promotes growth and inhibits atresia of the ovarian follicle compared with other available drugs, suggesting that our new drug enhances the efficacy and duration of treatment. It is expected that our new FSH analogue will result in a higher chance of pregnancy in patients who are unresponsive to other drugs.

  13. Neural alterations from lead exposure in zebrafish.

    PubMed

    Roy, Nicole M; DeWolf, Sarah; Schutt, Alexius; Wright, Ashia; Steele, Latina

    2014-01-01

    Lead was used extensively as a gas additive and pesticide, in paints, batteries, lead shot, pipes, canning and toy manufacturing. Although uses of lead have been restricted, lead persists in our environment especially in older homes, and generally in soil and water. Although extensive studies have determined that fetal and childhood exposures to lead have been associated with childhood and adolescent memory impairments and learning disabilities, there are limited studies investigating early neural and morphological effects that may lead to these behavioral and learning abnormalities. Here we utilize the zebrafish vertebrate model system to study early effects of lead exposure on the brain. We treat embryos with 0.2mM lead for 24, 48 and 72 h and analyze neural structures through live imagery and transgenic approaches. We find structural abnormalities in the hindbrain region as well as changes in branchiomotor neuron development and altered neural vasculature. Additionally, we find areas of increased apoptosis. We conclude that lead is developmentally neurotoxic to a specific region of the brain, the hindbrain and is toxic to branchiomotor neurons residing in rhombomeres 2 through 7 of the hindbrain and hindbrain central artery vasculature.

  14. Chronic effects of marihuana smoking on luteinizing hormone, follicle-stimulating hormone and prolactin levels in human males.

    PubMed

    Vescovi, P P; Pedrazzoni, M; Michelini, M; Maninetti, L; Bernardelli, F; Passeri, M

    1992-04-01

    The purpose of this investigation was to assess the chronic effects of marihuana smoking on the basal and stimulated secretion of the pituitary hormones luteinizing hormone (LH), follicle-stimulating (FSH) and prolactin (PRL). Ten male chronic marihuana users and 10 age- and sex-matched healthy volunteers were studied by measuring hormone levels before and after i.v. administration of thyrotropin releasing hormone (TRH) and gonadotropin releasing hormone (GnRH). The basal and stimulated levels of LH were reduced in marihuana users, whereas FSH and PRL levels and responses were not different from the control subjects. The chronic use of marihuana may selectively impair the hypothalamic control mechanisms regulating LH secretion.

  15. Development of an homologous radioimmunoassay for chicken follicle-stimulating hormone and measurement of plasma FSH during the ovulatory cycle.

    PubMed

    Krishnan, K A; Proudman, J A; Bolt, D J; Bahr, J M

    1993-08-01

    1. A highly specific and sensitive homologous radioimmunoassay was developed for measurement of chicken follicle stimulating hormone (cFSH). 2. Mammalian gonadotropin releasing hormone (GnRH) significantly stimulated secretion of chicken luteinising hormone (cLH) but not cFSH when administered to 22 week non-laying hens. 3. Chicken GnRH-I did not affect circulating cFSH concentrations but significantly stimulated cLH secretion when administered to 3 week cockerels. 4. The plasma concentration of cFSH was low throughout the ovulatory cycle, but a significant decline in cFSH occurred prior to the pre-ovulatory LH surge and a significant increase occurred during the 3 hr prior to oviposition as LH levels decline.

  16. Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells

    PubMed Central

    Stelmaszewska, Joanna; Chrusciel, Marcin; Doroszko, Milena; Akerfelt, Malin; Ponikwicka-Tyszko, Donata; Nees, Matthias; Frentsch, Marco; Li, Xiangdong; Kero, Jukka; Huhtaniemi, Ilpo; Wolczynski, Slawomir; Rahman, Nafis A.

    2016-01-01

    Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs. PMID:27848975

  17. Polymorphism of follicle stimulating hormone beta (FSHβ) subunit gene and its association with litter traits in giant panda.

    PubMed

    Huang, Xiaoyu; Li, Desheng; Wang, Jiwen; Huang, Yan; Han, Chunchun; Zhang, Guiquan; Huang, Zhi; Wu, Honglin; Wei, Ming; Wang, Guosong; Hu, Haiping; Deng, Tao; He, Tao; Zhou, Yingming; Song, Shixian; Luo, Bo; Zhang, Heming

    2013-11-01

    The different SSCP patterns of the follicle stimulating hormone beta (FSHβ) gene amplified by three pairs of primers were sequenced. Comparisons among the three nucleotide sequences of three genotypes indicated that three base substitutions (A213T, A91G, and A89C) were detected in FSHβ gene, which A213T substitution led to one amino acids mutation (Lys > Met), and the other two substitutions were synonymous mutations. The AA, AB and BB genotypes patterns obtained by FSHβ primer1 had evident relation with the litter traits, but the SSCP genotypes patterns obtained by FSHβ primer2 and primer3 had no evident relation with the litter traits in giant panda. The giant panda with AA and AB genotype had the largest litter size and multiparity rate compared with the BB genotypes (P < 0.05). We speculated that the giant pandas with the A allele have better litter traits than those with the B allele.

  18. Follicle-stimulating hormone receptor (FSHR) alternative skipping of exon 2 or 3 affects ovarian response to FSH.

    PubMed

    Karakaya, Cengiz; Guzeloglu-Kayisli, Ozlem; Hobbs, Rebecca J; Gerasimova, Tsilya; Uyar, Asli; Erdem, Mehmet; Oktem, Mesut; Erdem, Ahmet; Gumuslu, Seyhan; Ercan, Deniz; Sakkas, Denny; Comizzoli, Pierre; Seli, Emre; Lalioti, Maria D

    2014-07-01

    Genes critical for fertility are highly conserved in mammals. Interspecies DNA sequence variation, resulting in amino acid substitutions and post-transcriptional modifications, including alternative splicing, are a result of evolution and speciation. The mammalian follicle-stimulating hormone receptor (FSHR) gene encodes distinct species-specific forms by alternative splicing. Skipping of exon 2 of the human FSHR was reported in women of North American origin and correlated with low response to ovarian stimulation with exogenous follicle-stimulating hormone (FSH). To determine whether this variant correlated with low response in women of different genetic backgrounds, we performed a blinded retrospective observational study in a Turkish cohort. Ovarian response was determined as low, intermediate or high according to retrieved oocyte numbers after classifying patients in four age groups (<35, 35-37, 38-40, >40). Cumulus cells collected from 96 women undergoing IVF/ICSI following controlled ovarian hyperstimulation revealed four alternatively spliced FSHR products in seven patients (8%): exon 2 deletion in four patients; exon 3 and exons 2 + 3 deletion in one patient each, and a retention of an intron 1 fragment in one patient. In all others (92%) splicing was intact. Alternative skipping of exons 2, 3 or 2 + 3 were exclusive to low responders and was independent of the use of agonist or antagonist. Interestingly, skipping of exon 3 occurs naturally in the ovaries of domestic cats--a good comparative model for human fertility. We tested the signaling potential of human and cat variants after transfection in HEK293 cells and FSH stimulation. None of the splicing variants initiated cAMP signaling despite high FSH doses, unlike full-length proteins. These data substantiate the occurrence of FSHR exon skipping in a subgroup of low responders and suggest that species-specific regulation of FSHR splicing plays diverse roles in mammalian ovarian function.

  19. Plasma levels of follicle-stimulating and luteinizing hormones during the reproductive cycle of wild and cultured Senegalese sole (Solea senegalensis).

    PubMed

    Chauvigné, François; Fatsini, Elvira; Duncan, Neil; Ollé, Judith; Zanuy, Silvia; Gómez, Ana; Cerdà, Joan

    2016-01-01

    The intensive culture of the Senegalese sole (Solea senegalensis) is hampered by the low or null fertilization rates exhibited by the first generation (F1) of reared males. To investigate the regulation of the reproductive processes in this species by the pituitary gonadotropins follicle-stimulating and luteinizing hormones (Fsh and Lh, respectively), we developed a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for Lh measurements. Quantification of the Fsh and Lh plasma levels in cultured sole using the Lh ELISA developed here, and a previously developed ELISA for Fsh, indicated that in both males and females circulating Fsh steadily increased during autumn and winter and prior to the major spawning in spring, whereas an Lh surge occurred specifically during spawning. The increase in Fsh was associated with a rise of plasma levels of the steroid hormones testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β (E2), but that of Lh was concomitant with a strong decline of the levels of E2 in females and of 11-KT in males, possibly reflecting a rapid steroidogenic shift promoting the final maturation of gametes. Comparison of the plasma levels of gonadotropins and steroids between wild and F1 fish during autumn and spring revealed that F1 males showed significantly lower plasma Lh titres compared to wild males, whereas the levels of T and 11-KT were similar or more elevated in the F1 fish. These data suggest that an impaired Lh secretion during spawning, and perhaps altered Lh-mediated mechanisms in the testis, may be underlying causes for the low reproductive performance of Senegalese sole F1 males.

  20. Evaluation of an immunoenzymometric assay (IEMA) using automated system for determination of luteinizing hormone and follicle stimulating hormone.

    PubMed

    Fonseca, E; Mason, M; Galván, R E; Pascoe, D; Ochoa, R; Hernández, M; Zárate, A

    1997-01-01

    It has been proposed that automated systems for immunoenzymometric assay (IEMA) may substitute traditional radioimmunoassay (RIA) for measurement of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in blood due to the advantage of being more rapid, higher sensitivity, lower cost and not requiring radioactive reagents. The study was designed to evaluate both systems using serum samples to determine luteinizing hormone (LH) and follicle-stimulating hormone (FSH) concentrations. The automatic system (ES-300) for IEMA utilized two monoclonal antibodies, one of them on the solid phase was the specific extractant for the antigen, and the other was a peroxidase labeled antibody which recognizes a different epitope in the antigen molecule, specifically bound in linear proportion to the antigen concentration. Blood samples were obtained from patients who were treated at the hospital for various clinical problems ("problem group") as well as blood samples from patients in whom FSH and LH concentrations were already known ("high", "medium" and "low" levels) by previous RIA ("control group"). IEMA showed a higher sensitivity, 0.42 and 0.96 mIU/ml for FSH and LH, respectively, whereas RIA was 1.95 mIU/ml for both hormones. Intra- and interassay coefficient of variation were below 10% within the range of 15-150 mIU/ml for FSH and 5-100 mIU/ml for LH; however, the coefficient of variation was 15-25% at lower concentrations of FSH and LH. Accuracy of IEMA was evaluated by recovery percentage, thus when high and medium concentrations of FSH and LH were analyzed the recovery was between 99-104%. On the other hand, the recovery was 110% when low levels of FSH and LH were used. In conclusion, IEMA resulted reliable when FSH and LH concentrations are in the middle and high range; likewise, the detection limit of IEMA was lower than RIA, particularly for FSH. On the bases of these results, IEMA showed several advantages over RIA, but its reliability diminishes when serum

  1. Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis.

    PubMed

    El-Hayek, Stephany; Clarke, Hugh J

    2015-08-01

    Germ cells develop in intimate contact and communication with somatic cells of the gonad. In female mammals, oocyte development depends crucially on gap junctions that couple it to the surrounding somatic granulosa cells of the follicle, yet the mechanisms that regulate this essential intercellular communication remain incompletely understood. Follicle-stimulating hormone (FSH) drives the terminal stage of follicular development. We found that FSH increases the steady-state levels of mRNAs encoding the principal connexins that constitute gap junctions and cadherins that mediate cell attachment. This increase occurs both in granulosa cells, which express the FSH-receptor, and in oocytes, which do not. FSH also increased the number of transzonal projections that provide the sites of granulosa cell-oocyte contact. Consistent with increased connexin expression, FSH increased gap junctional communication between granulosa cells and between the oocyte and granulosa cells, and it accelerated oocyte development. These results demonstrate that FSH regulates communication between the female germ cell and its somatic microenvironment. We propose that FSH-regulated gap junctional communication ensures that differentiation processes occurring in distinct cellular compartments within the follicle are precisely coordinated to ensure production of a fertilizable egg.

  2. Reduced Seminal Concentration of CD45pos Cells after Follicle-Stimulating Hormone Treatment in Selected Patients with Idiopathic Oligoasthenoteratozoospermia

    PubMed Central

    Condorelli, Rosita A.; Calogero, Aldo E.; Vicari, Enzo; Mongioi', Laura; Cannarella, Rossella; Giacone, Filippo; Iacoviello, Linda; Favilla, Vincenzo; La Vignera, Sandro

    2014-01-01

    The present study evaluated the conventional sperm parameters and the seminal concentration of CD45pos cells (pan-leukocyte marker) of infertile patients with idiopathic oligoasthenoteratozoospermia (OAT). The patients were arbitrarily divided into three groups treated with recombinant follicle-stimulating hormone FSH: α (Group A = 20 patients), recombinant FSH-β (Group B = 20 patients), and highly purified human FSH (Group C = 14 patients). All treated groups achieved a similar improvement of the main sperm parameters (density, progressive motility, and morphology), but only the increase in the percentage of spermatozoa with normal morphology was significant compared to the baseline in all three examined groups. Moreover, all groups had a significant reduction of the seminal concentration of CD45pos cells and of the percentage of immature germ cells. Before and after the treatment, the concentration of CD45pos cells showed a positive linear correlation with the percentage of immature germ cells and a negative correlation with the percentage of spermatozoa with regular morphology. These results demonstrate that treatment with FSH is effective in patients with idiopathic OAT and that there are no significant differences between the different preparations. The novelty of this study is in the significant reduction of the concentration of CD45pos cells observed after the treatment. PMID:24550984

  3. Reduced Seminal Concentration of CD45pos Cells after Follicle-Stimulating Hormone Treatment in Selected Patients with Idiopathic Oligoasthenoteratozoospermia.

    PubMed

    Condorelli, Rosita A; Calogero, Aldo E; Vicari, Enzo; Mongioi', Laura; Burgio, Giovanni; Cannarella, Rossella; Giacone, Filippo; Iacoviello, Linda; Morgia, Giuseppe; Favilla, Vincenzo; Cimino, Sebastiano; La Vignera, Sandro

    2014-01-01

    The present study evaluated the conventional sperm parameters and the seminal concentration of CD45pos cells (pan-leukocyte marker) of infertile patients with idiopathic oligoasthenoteratozoospermia (OAT). The patients were arbitrarily divided into three groups treated with recombinant follicle-stimulating hormone FSH: α (Group A = 20 patients), recombinant FSH- β (Group B = 20 patients), and highly purified human FSH (Group C = 14 patients). All treated groups achieved a similar improvement of the main sperm parameters (density, progressive motility, and morphology), but only the increase in the percentage of spermatozoa with normal morphology was significant compared to the baseline in all three examined groups. Moreover, all groups had a significant reduction of the seminal concentration of CD45pos cells and of the percentage of immature germ cells. Before and after the treatment, the concentration of CD45pos cells showed a positive linear correlation with the percentage of immature germ cells and a negative correlation with the percentage of spermatozoa with regular morphology. These results demonstrate that treatment with FSH is effective in patients with idiopathic OAT and that there are no significant differences between the different preparations. The novelty of this study is in the significant reduction of the concentration of CD45pos cells observed after the treatment.

  4. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  5. Weight loss results in a small decrease in follicle stimulating hormone in overweight glucose-intolerant postmenopausal women

    PubMed Central

    Kim, Catherine; Randolph, John F.; Golden, Sherita H.; Labrie, Fernand; Kong, Shengchun; Nan, Bin; Barrett-Connor, Elizabeth

    2014-01-01

    Structured Abstract Objective To examine the impact of a weight loss intervention upon follicle stimulating hormone (FSH) levels in postmenopause. Design and Methods Participants were postmenopausal, overweight, glucose-intolerant women not using exogenous estrogen (n=382) in the Diabetes Prevention Program. Women were randomized to intensive lifestyle change (ILS) with the goals of weight reduction of at least 7% of initial weight and 150 minutes per week of moderate intensity exercise, metformin 850 mg, or placebo administered twice a day. Results Randomization to ILS led to small increases in FSH between baseline and 1-year follow-up vs. placebo (2.3 IU/l vs. -0.81 IU/l, p<0.01). Increases in FSH were correlated with decreases in weight (r=-0.165, p<0.01) and E2 (r=-0.464, p<0.0001) after adjustment for age, race/ethnicity, and randomization arm. Changes in FSH were still significantly associated with changes in weight even after adjustment for E2 levels. Metformin users had reductions in weight but non-significant changes in FSH and E2 levels vs. placebo. Conclusions Weight loss leads to small increases in FSH among overweight, postmenopausal women, potentially through pathways mediated by endogenous estrogen as well as other pathways. PMID:25294746

  6. Protection from radiation-induced damage of spermatogenesis in the rhesus monkey (Macaca mulatta) by follicle-stimulating hormone

    SciTech Connect

    van Alphen, M.M.; van de Kant, H.J.; de Rooij, D.G.

    1989-02-01

    In adult rhesus monkeys a two- to threefold increase in the number of spermatogonia was found at Day 75 after 1 Gy of X-irradiation when the animals were pretreated with two intramuscular injections of follicle-stimulating hormone (FSH) each day. Also the percentage of cross-sections of seminiferous tubules showing spermatogonia (repopulation index) was much higher when FSH was given before irradiation. At 75 days postirradiation the repopulation index was 39 +/- 10% after irradiation alone and 81 +/- 11% when FSH pretreatment was applied. The pretreatment with two injections of FSH each day during 16 days caused an increase in the number of proliferating A spermatogonia. In view of earlier results in the mouse, where proliferating spermatogonial stem cells appeared more radioresistant than quiescent ones, it is suggested that the protective effects of FSH treatment are caused by the increase in the proliferative activity of the A spermatogonia and consequently of the spermatogonial stem cells. The results indicate that in the rhesus monkey the maximal protective effect of FSH is reached after a period of treatment between 7 and 16 days.

  7. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression.

    PubMed

    Sen, Aritro; Prizant, Hen; Light, Allison; Biswas, Anindita; Hayes, Emily; Lee, Ho-Joon; Barad, David; Gleicher, Norbert; Hammes, Stephen R

    2014-02-25

    Although androgen excess is considered detrimental to women's health and fertility, global and ovarian granulosa cell-specific androgen-receptor (AR) knockout mouse models have been used to show that androgen actions through ARs are actually necessary for normal ovarian function and female fertility. Here we describe two AR-mediated pathways in granulosa cells that regulate ovarian follicular development and therefore female fertility. First, we show that androgens attenuate follicular atresia through nuclear and extranuclear signaling pathways by enhancing expression of the microRNA (miR) miR-125b, which in turn suppresses proapoptotic protein expression. Second, we demonstrate that, independent of transcription, androgens enhance follicle-stimulating hormone (FSH) receptor expression, which then augments FSH-mediated follicle growth and development. Interestingly, we find that the scaffold molecule paxillin regulates both processes, making it a critical regulator of AR actions in the ovary. Finally, we report that low doses of exogenous androgens enhance gonadotropin-induced ovulation in mice, further demonstrating the critical role that androgens play in follicular development and fertility. These data may explain reported positive effects of androgens on ovulation rates in women with diminished ovarian reserve. Furthermore, this study demonstrates mechanisms that might contribute to the unregulated follicle growth seen in diseases of excess androgens such as polycystic ovary syndrome.

  8. Homeodomain transcription factor Hesx1/Rpx occupies Prop-1 activation sites in porcine follicle stimulating hormone (FSH) beta subunit promoter.

    PubMed

    Susa, Takao; Nakayama, Michie; Kitahara, Kousuke; Kimoto, Fuyuko; Kato, Takako; Kato, Yukio

    2007-06-08

    Homeodomain repressor factor Hesx1/Rpx plays a crucial role in the formation of Rathke's pouch at the start of pituitary organogenesis and represses the Prop-1-dependent expression of Pit-1 gene, which promotes the differentiation of Pit-1-dependent hormone producing cells. Recently, we discovered a novel function of Prop-1 by which it activates the porcine follicle stimulating hormone beta subunit (FSHbeta) gene through Fd2 region (-852/-746). The present study aimed to determine whether Hesx1 exerts its role in the Prop-1-dependent activation of FSHbeta gene. Transient transfection assay for the porcine FSHbeta promoter -985/+10, electrophoretic mobility shift assay (EMSA) and DNase I footprinting analysis for Fd2 region were carried out. Transfection assay in GH3 cells demonstrated that expression of Hesx1 alone does not change the promoter activity but the coexpression with Prop-1 represses the Prop-1-dependent activation of FSHbeta promoter. Similar results were obtained for the mutant reporter vector deleting the region -745/-104 indicating that Fd2 region is a target site of Hesx1 as well as Prop-1. EMSA and DNase I footprinting analysis using recombinant Hesx1 and Prop-1 protein demonstrated that Hesx1 and Prop-1 certainly bind to the AT-rich regions in a different manner. These results suggest that Hesx1 blocks the advanced expression of FSHbeta gene in the early stage of pituitary development, and Prop-1 thereafter appears and activates this gene.

  9. Age-Specific Serum Anti-Mullerian Hormone and Follicle Stimulating Hormone Concentrations in Infertile Iranian Women

    PubMed Central

    Raeissi, Alireza; Torki, Alireza; Moradi, Ali; Mousavipoor, Seyed Mehdi; Pirani, Masoud Doosti

    2015-01-01

    Background Anti-Müllerian hormone (AMH) is secreted by the granulosa cells of growing follicles during the primary to large antral follicle stages. Abnormal levels of AMH and follicle stimulating hormone (FSH) may indicate a woman’s diminished ability or inability to conceive. Our aim is to investigate the changes in serum AMH and FSH concentrations at different age groups and its correlation with ovarian reserves in infertile women. Materials and Methods This cross-sectional study analyzed serum AMH and FSH levels from 197 infertile women and 176 healthy controls, whose mean ages were 19-47 years. Sample collection was performed by random sampling and analyzed with SPSS version 16 software. Results There were significantly lower mean serum AMH levels among infertile women compared to the control group. The mean AMH serum levels from different ages of infertile and control group (fertile women) decreased with increasing age. However, this reduction was greater in the infertile group. The mean FSH serum levels of infertile women were significantly higher than the control group. Mean serum FSH levels consistently increased with increasing age in infertile women; however mean luteinizing hormone (LH) levels were not consistent. Conclusion We have observed increased FSH levels and decreased AMH levels with increasing age in women from 19 to 47 years of age. Assessments of AMH and FSH levels in combination with female age can help in predicting ovarian reserve in infertile women. PMID:25918589

  10. Vasoactive intestinal peptide enhanced aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone

    SciTech Connect

    George, F.W.; Ojeda, S.R.

    1987-08-01

    The authors have investigated the factors that regulate aromatase activity in fetal-neonatal rat ovaries. Ovarian aromatase activity (assessed by measuring the amount of /sup 3/H/sub 2/O formed from (1..beta..-/sup 3/H)testosterone) is low prior to birth and increases to values greater than 30 pmol/hr per mg of protein between days 8 and 12 after birth. The appearance of ovarian aromatase coincides with the development of primordial follicles. Fetal-neonatal ovaries maintained in serum-free organ culture do not develop aromatase activity at the expected time. Ovine follicle-stimulating hormone, ovine luteinizing hormone, or their combination failed to induce the enzyme activity in cultured fetal ovaries, whereas follicle-stimulating hormone is effective in preventing the decline in aromatase activity when postnatal day 8 ovaries are placed in culture. In contrast to follicle-stimulating hormone, dibutyryl-cAMP markedly enhances ovarian aromatase in cultured fetal ovaries. Likewise, enhancement of endogenouse cAMP formation with forskolin or cholera toxin caused an increase in enzyme activity within 24 hr. Vasoactive intestinal peptide, a peptide known to occur in ovarian nerves, caused a dose-dependent increase in aromatase activity in fetal ovaries prior to folliculogenesis. Of related peptides tested, only the peptide having N-terminal histidine and C-terminal isoleucine amide was capable of inducing aromatase activity in fetal ovaries. The fact that VIP can induce aromatase activity in fetal rat ovaries prior to follicle formation and prior to responsiveness to follicle-stimulating hormone suggests that this neuropeptide may play a critical role in ovarian differentiation.

  11. Structural Alterations in the Cornea from Exposure to Infrared Radiation

    DTIC Science & Technology

    1985-07-01

    mylar disks that were preformed - 4- to match the corneal curvature. The disks were attached 0 at their edges to excised corneas using cyanoacrylate ...ICFIECOP JHU/APL TG 1364 JULY 1985 (0 FINAL Technical Memorandum STRUCTURAL ALTERATIONS IN THE CORNEA FROM EXPOSURE TO INFRARED RADIATION R. A...Structural Alterations in the Cornea from Exposure to Infrared Radiation 12. PERSONAL AUTHOR(S) R. A. Farrell, R. L. McCally, C. B. Bargeron, and W. R. Green

  12. Metabolic differences in bovine cumulus-oocyte complexes matured in vitro in the presence or absence of follicle-stimulating hormone and bone morphogenetic protein 15.

    PubMed

    Sutton-McDowall, Melanie L; Mottershead, David G; Gardner, David K; Gilchrist, Robert B; Thompson, Jeremy G

    2012-10-01

    Bidirectional communication between cumulus cells and the oocyte is necessary to achieve oocyte developmental competence. The aim of the present study was to examine the effects of recombinant human bone morphogenetic protein 15 (rhBMP15) and follicle-stimulating hormone (FSH) supplementation on bovine cumulus-oocyte complex (COC) metabolism during maturation. Bovine COCs were matured in the presence of absence of FSH, rhBMP15, or both for 23 h. The addition of FSH and rhBMP15 increased blastocyst development (without rhBMP15 and FSH, 28.4% ± 7.4%; with FSH and rhBMP15, 51.5% ± 5.4%; P < 0.05). Glucose uptake and lactate production was significantly increased by greater than 2-fold with FSH (P < 0.05), whereas rhBM15 supplementation did not increase these levels. rhBMP15 supplementation (regardless of FSH) significantly decreased ADP levels in COCs, leading to an increase in ATP:ADP ratios (P < 0.05). Indicators of mitochondrial activity and cellular REDOX, oxidized flavin adenine dinucleotide (FAD(++)) and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), levels within the oocyte of COCs were significantly higher with rhBMP15 alone, whereas the presence of FSH diminished the rhBMP15 effect. Regardless of treatment, no changes in REDOX state (FAD(++):NAD(P)H). The significant increase in FAD(++) and NAD(P)H in COCs with rhBMP15 was mediated via cumulus cells, because no differences were found in denuded oocytes cultured in the presence or absence of FSH, rhBMP15, or both. The present study demonstrates that a principal metabolic consequence of FSH supplementation of COCs is to alter the glycolytic rate of cumulus cells, whereas that of rhBMP15 is to regulate oxidative phosphorylation in the oocyte, even though it acts via cumulus cells. These effects are tempered when FSH and rhBMP15 are present together but, nonetheless, yield the best oocyte developmental competence.

  13. Phase 1 safety, tolerability, and pharmacokinetic study of single ascending doses of XM17 (recombinant human follicle-stimulating hormone) in downregulated healthy women

    PubMed Central

    Lammerich, Andreas; Bias, Peter; Gertz, Beate

    2015-01-01

    Background XM17 is a recombinant human follicle-stimulating hormone (follitropin alfa) for stimulation of multifollicular development in women undergoing controlled ovarian hyper-stimulation during assisted reproductive therapy and for treatment of anovulation. Manufactured using Chinese hamster ovary cells transfected with the human follicle-stimulating hormone gene, XM17 has an identical amino acid sequence to that of the human protein as well as to those of the other approved recombinant human follicle-stimulating hormone products. Glycosylation patterns may differ slightly between products. The objectives of this first-in-human study were to assess the safety, tolerability, pharmacokinetics, and dose-proportionality of single ascending subcutaneous doses of XM17 in healthy young female volunteers. Methods Endogenous follicle-stimulating hormone was downregulated by implanting a 1-month depot of goserelin acetate 3.6 mg on day 0 in eligible subjects. On day 14 of the experimental period, subjects received one of four ascending doses of XM17. Blood sampling to obtain the pharmacokinetic profile of XM17 was done at frequent intervals until 168 hours post-dose. Results Following downregulation of endogenous follicle-stimulating hormone to <4 IU/L, 40 subjects (of mean age 29±5.4 years) received single subcutaneous doses of 37.5 (n=4, pilot group), 75, 150, or 300 IU (n=12 each) of XM17. The mean serum concentration-time profiles of XM17 revealed dose-related increases in maximum concentration (Cmax) within 24 hours followed by monoexponential decay for the three higher dose levels. Slopes estimated by linear regression for Cmax and AUC0–168h were ~1.0 (0.9052 IU/L and 1.0964 IU·h/L, respectively). For each IU of XM17 administered, Cmax and AUC0–168h rose by 0.032 IU/L and 2.60 IU·h/L, respectively. Geometric mean elimination half-life ranged from 54 to 90 hours. No antibodies to XM17 were detected. The most common treatment-emergent adverse events were

  14. Recombinant human follicle-stimulating hormone and transforming growth factor-alpha enhance in vitro maturation of porcine oocytes.

    PubMed

    Mito, Tomomi; Yoshioka, Koji; Noguchi, Michiko; Yamashita, Shoko; Hoshi, Hiroyoshi

    2013-07-01

    The biological functions of recombinant human follicle-stimulating hormone (FSH) and transforming growth factor-α (TGF-α) on in vitro maturation of porcine oocytes were investigated. Cumulus-oocyte complexes were matured in defined porcine oocyte medium containing 0-0.1 IU/ml FSH in the presence or absence of 10 ng/ml TGF-α. The percentage of oocytes reaching metaphase II was significantly higher with the addition of 0.01-0.1 IU/ml FSH compared with no addition, and was further enhanced in the presence of TGF-α. The rates of sperm penetration and blastocyst formation were significantly higher with the addition of 0.05-0.1 IU/ml FSH compared with no addition after in vitro fertilization and embryo culture. There was no beneficial effect of FSH and TGF-α on nuclear maturation of denuded oocytes. The specific EGF receptor inhibitor, AG1478, completely inhibited TGF-α-induced meiotic resumption, but did not completely prevent the stimulatory effect of FSH. Addition of both FSH and TGF-α significantly enhanced cumulus expansion compared with no addition. When cumulus expansion-related genes (HAS2, HAPLN1, and VCAN) mRNA expression in COCs was measured during in vitro maturaiton, addition of both of FSH and TGF-α upregulated the expression of HAS2 mRNA after 20 hr culture and HAPLN1 mRNA after 44 hr culture compared with no addition. Expression of VCAN mRNA was significantly higher in the presence of FSH compared with addition of TGF-α alone. These results suggest that FSH and TGF-α synergistically enhance porcine oocyte maturation via cumulus cells, and act through different signaling pathways.

  15. Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: calcium inflow and electrophysiological changes.

    PubMed

    Loss, Eloísa S; Jacobus, Ana Paula; Wassermann, Guillermo F

    2011-10-10

    This minireview describes the rapid signaling actions of follicle stimulating hormone (FSH) and testosterone in immature Sertoli cells mainly related to Ca(2+) inflow and the electrophysiological changes produced by hormones. The rapid membrane actions of FSH occur in a time frame of seconds to minutes, which include membrane depolarization and the stimulation of (45)Ca(2+) uptake. These effects can be prevented by pertussis toxin (PTX), suggesting that they are likely mediated by Gi-protein coupled receptor activation. Furthermore, these effects were inhibited by verapamil, a blocker of the L-type voltage-dependent Ca(2+) channel (VDCC). Finally, FSH stimulation of (45)Ca(2+) uptake was inhibited by the (phosphoinositide 3-kinase) PI3K inhibitor wortmannin. These results suggest that the rapid action of FSH on L-type Ca(2+) channel activity in Sertoli cells from pre-pubertal rats is mediated by the Gi/Gβγ/PI3Kγ pathway, independent of its effects on insulin-like growth factor type I (IGF-I). Testosterone depolarizes the membrane potential and increases the resistance and the (45)Ca(2+) uptake in Sertoli cells of the seminiferous tubules of immature rats. These actions were nullified by diazoxide (K(+)(ATP) channel opener). Testosterone actions were blocked by both PTX and the phospholipase C (PLC) inhibitor U73122, suggesting the involvement of PLC - phosphatidylinositol 4-5 bisphosphate (PIP2) hydrolysis via the Gq protein in the testosterone-mediated pathway. These results indicate that testosterone acts on the Sertoli cell membrane through the K(+)(ATP) channels and PLC-PIP2 hydrolysis, which closes the channel, depolarizes the membrane and stimulates (45)Ca(2+) uptake. These results demonstrate the existence of rapid non-classical pathways in immature Sertoli cells regulated by FSH and testosterone.

  16. Ascorbic acid treatment elevates follicle stimulating hormone and testosterone plasma levels and enhances sperm quality in albino Wistar rats

    PubMed Central

    Okon, Uduak Akpan; Utuk, Ikponoabasi Ibanga

    2016-01-01

    Background: Infertility issues have been linked to the effect of oxidative reaction in the reproductive system. This study evaluated the effect of ascorbic acid, on fertility parameters of male albino Wistar rats was studied. Materials and Methods: Eighteen albino Wistar rats weighed between 178 g and 241 g were used, randomly assigned into three groups. Group 1 was the control group; oral gavaged 5 ml of distilled water; Groups 2 and 3 were administered medium dose (250 mg/kg) and high dose of ascorbic acid (400 mg/kg), respectively; twice daily for 21 days. Blood samples were obtained by cardiac puncture, and blood serum was obtained for hormonal assay, and the testes were harvested for sperm analysis. Results: Follicle stimulating hormone levels significantly increased in the high-dose group as compared to both the control and medium dose groups. Luteinizing hormone levels in the medium dose group decreased significantly as compared to the control group. Testosterone significantly increased in both the medium- and high-dose groups as compared to the control group. Sperm motility increased significantly in the high-dose group as compared to both control and medium-dose groups. Percentage sperm concentration decreased significantly in the medium-dose group when compared to the control and increased significantly in the high-dose group as compared to the medium-dose group. For percentage normal morphology, there was a dose-dependent increase in the test groups when compared to control group. Conclusion: These results are indicative of a positive influence of ascorbic acid on male fertility modulators and may therefore, serve as a potential adjuvant treatment for male infertility cases. PMID:27185976

  17. Follicle-stimulating hormone-induced rescue of cumulus cell apoptosis and enhanced development ability of buffalo oocytes.

    PubMed

    Jain, A; Jain, T; Kumar, P; Kumar, M; De, S; Gohain, M; Kumar, R; Datta, T K

    2016-04-01

    The effect of follicle-stimulating hormone (FSH) on apoptotic status of cumulus cells, expression of proapoptotic and antiapoptotic genes, and development rate of in vitro fertilization-produced buffalo embryos were investigated. FSH supplementation in in vitro maturation-medium resulted in a dose-dependent reduction in the expression of proapoptotic genes namely, BCL2-associated X protein (BAX), cytochrome c, and caspase-3 and increase in the expression of antiapoptotic genes such as B-cell lymphoma 2 (BCL2) and X-linked inhibitor of apoptosis protein (XIAP) in cumulus cells of mature oocyte. Cumulus expansion, oocyte maturation, cleavage, and blastocyst development rates were significantly higher (P < 0.05) in 5 and 10-μg/mL FSH-supplemented groups as compared with control. Significant increase in the expression of FSH receptor messenger RNA was also found with 5 and 10-μg/mL FSH (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick end labeling assay confirmed that the population of apoptotic cumulus cells of matured oocytes was reduced in the FSH-treated groups as compared with control (P < 0.05). In conclusion, our data suggest that FSH may attenuate apoptosis in cumulus cells via mitochondria-dependent apoptotic pathway by increasing XIAP expression, resulting in a more favorable ratio of BCL2/BAX expression and decreasing the cytochrome c and caspase-3 expression, eventually contributing to developmental competence of oocytes. The information generated will help in improving the in vitro embryo production program in buffalo.

  18. Bioequivalence of subcutaneous injections of recombinant human follicle stimulating hormone (Puregon(R)) by Pen-injector and syringe.

    PubMed

    Voortman, G; van de Post, J; Schoemaker, R C; van Gerven, J M

    1999-07-01

    A randomized, single-centre, cross-over study was designed to compare the bioavailability of two pharmaceutical formulations of recombinant human follicle stimulating hormone (recFSH; Puregon(R)): (i) a dissolved cake injected by a normal syringe; and (ii) a ready-for-use solution injected using a device referred to as Puregon(R)Pen. Twenty-two healthy female volunteers underwent one of two administration sequences: Puregon(R)Pen/syringe or syringe/Puregon(R)Pen, by which they received a single subcutaneous dose of recFSH (150 IU). Endogenous gonadotrophin production had been previously suppressed using an oral contraceptive (Lyndiol(R)). Pharmacokinetic parameters characterizing rate [peak concentration (Cmax) and time of peak concentration (tmax)] and extent [area under the curve (AUC) and clearance (CL)] of absorption were obtained from 20 subjects. After injection with both formulations, serum FSH concentrations reached a peak of 3.4 IU/l at 13 h after injection. The elimination half-life was approximately 34 h, irrespective of formulation. A difference of approximately 18% was found between serum FSH concentrations obtained using the two formulations, which was caused by differences between the anticipated and the actual volume injected with the normal syringe. After correction for injection losses by weighing the amount injected with a normal syringe, the two formulations were found to be bioequivalent with respect to Cmax, AUC and CL. For tmax, bioequivalence could not be proven due to high intra-subject variability and broad absorption peaks of FSH. Both methods were well tolerated, local reactions being generally mild and short-lived.

  19. Interaction between estradiol and follicle-stimulating hormone promotes in vitro survival and development of caprine preantral follicles.

    PubMed

    Lima-Verde, I B; Matos, M H T; Saraiva, M V A; Bruno, J B; Tenório, S B; Martins, F S; Rossetto, R; Cunha, L D; Name, K P O; Báo, S N; Campello, C C; Figueiredo, J R

    2010-01-01

    The aim of this study was to investigate the effects of estradiol and follicle-stimulating hormone (FSH) on survival and growth of caprine preantral follicles. Pieces of ovarian tissue were cultured for 1 or 7 days in minimum essential medium (MEM) containing estradiol (1, 5, 10, 20 or 40 pg/ml), FSH (50 ng/ml), or a combination of the two hormones. Cultured and noncultured control ovarian tissues were processed for histological and ultrastructural studies. The results showed that after 7 days of culture, the treatments that yielded the highest percentage of normal follicles relative to MEM alone were those that combined FSH with estradiol at 1, 5 or 20 pg/ml. The addition of FSH to 1-day cultures containing 1 pg/ml estradiol or to 7-day cultures with 1 or 5 pg/ml estradiol increased the percentage of normal follicles compared to estradiol alone at the same concentrations. After 7 days of culture, all treatments generated higher percentages of developing follicles as compared to control and MEM alone. The addition of either FSH or 10 pg/ml of estradiol to the culture media or estradiol (1, 5, 10 or 20 pg/ml) and FSH in combination significantly increased follicular diameter as compared with MEM alone following 7 days of culture. Ultrastructural studies confirmed follicular integrity after 7 days of culture in the presence of 1 pg/ml estradiol plus FSH. In conclusion, this study demonstrated that the interaction between estradiol and FSH maintains ultrastructural integrity and stimulates activation and further growth of cultured caprine preantral follicles.

  20. Effects of jacalin and follicle-stimulating hormone on in vitro goat primordial follicle activation, survival and gene expression.

    PubMed

    Ribeiro, Regislane P; Portela, Antonia M L R; Silva, Anderson W B; Costa, José J N; Passos, José R S; Cunha, Ellen V; Souza, Glaucinete B; Saraiva, Márcia V A; Donato, Mariana A M; Peixoto, Christina A; van den Hurk, Robert; Silva, José R V

    2015-08-01

    This study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml - Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.

  1. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles.

    PubMed

    Lin, Jin-xing; Jia, Yu-dong; Zhang, Cai-qiao

    2011-11-01

    The development of ovarian follicular cells is controlled by multiple circulating and local hormones and factors, including follicle-stimulating hormone (FSH) and epidermal growth factor (EGF). In this study, the stage-specific effect of EGF on FSH-induced proliferation of granulosa cells was evaluated in the ovarian follicles of egg-laying chickens. Results showed that EGF and its receptor (EGFR) mRNAs displayed a high expression in granulosa cells from the prehierarchical follicles, including the large white follicle (LWF) and small yellow follicle (SYF), and thereafter the expression decreased markedly to the stage of the largest preovulatory follicle. SYF represents a turning point of EGF/EGFR mRNA expression during follicle selection. Subsequently the granulosa cells from SYF were cultured to reveal the mediation of EGF in FSH action. Cell proliferation was remarkably increased by treatment with either EGF or FSH (0.1-100 ng/ml). This result was confirmed by elevated proliferating cell nuclear antigen (PCNA) expression and decreased cell apoptosis. Furthermore, EGF-induced cell proliferation was accompanied by increased mRNA expressions of EGFR, FSH receptor, and the cell cycle-regulating genes (cyclins D1 and E1, cyclin-dependent kinases 2 and 6) as well as decreased expression of luteinizing hormone receptor mRNA. However, the EGF or FSH-elicited effect was reversed by simultaneous treatment with an EGFR inhibitor AG1478. In conclusion, EGF and EGFR expressions manifested stage-specific changes during follicular development and EGF mediated FSH-induced cell proliferation and retarded cell differentiation in the prehierarchical follicles. These expressions thus stimulated follicular growth before selection in the egg-laying chicken.

  2. Effect of different culture systems and 3, 5, 3'-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice.

    PubMed

    Zhang, Cheng; Wang, Xiaoxia; Wang, Zhengpin; Niu, Wanbao; Zhu, Baochang; Xia, Guoliang

    2013-01-01

    The mechanical method to isolate preantral follicle has been reported for many years. However, the culture systems in vitro are still unstable. The aim of this study was to analyze the effect of the culture system of mice preantral follicles on the follicular development in vitro. The results showed that the 96-well plate system was the most effective method for mice follicle development in vitro (volume change: 51.71%; survival rate: 89%, at day 4). Follicle-stimulating hormone (FSH) and Thyroid hormone (TH) are important for normal follicular development and dysregulation of hormones are related with impaired follicular development. To determine the effect of hormone on preantral follicular development, we cultured follicle with hormones in the 96-well plate culture system and found that FSH significantly increased preantral follicular growth on day 4. The FSH-induced growth action was markedly enhanced by T₃ although T₃ was ineffective alone. We also demonstrated by QRT-PCR that T₃ significantly enhanced FSH-induced up-regulation of Xiap mRNA level. Meanwhile, Bad, cell death inducer, was markedly down-regulated by the combination of hormones. Moreover, QRT-PCR results were also consistent with protein regulation which detected by Western Blotting analysis. Taken together, the findings of the present study demonstrate that 96-well plate system is an effective method for preantral follicle development in vitro. Moreover, these results provide insights on the role of thyroid hormone in increasing FSH-induced preantral follicular development, which mediated by up-regulating Xiap and down-regulating Bad.

  3. Molecular cloning of Senegalese sole (Solea senegalensis) follicle-stimulating hormone and luteinizing hormone subunits and expression pattern during spermatogenesis.

    PubMed

    Cerdà, Joan; Chauvigne, François; Agulleiro, Maria J; Marin, Elena; Halm, Silke; Martínez-Rodríguez, Gonzalo; Prat, Francisco

    2008-05-01

    Pituitary gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of vertebrate reproduction. However, in teleosts with testis of semi-cystic type and asynchronous spermatogenesis, as the flatfish Senegalese sole (Solea senegalensis), the physiological roles of FSH and LH are still not well understood. To gain insight into this mechanism, full-length complementary DNAs (cDNAs) encoding Senegalese sole FSH beta and LH beta subunits, and the common glycoprotein alpha subunit (CG alpha), were cloned and sequenced. The three cDNAs consisted of 550, 582 and 744 nucleotides encoding peptides of 120, 148 and 132 amino acids, respectively. Comparison of the deduced amino acid sequences of sole FSH beta, LH beta and CG alpha with those from other teleosts indicated that cysteine residues and potential N-linked glycosylation sites were fully conserved with respect to other percomorphs and salmonids. However, the primary structure of FSH beta and LH beta in pleuronectiforms appeared to be highly divergent. In situ hybridization of mature male pituitaries showed that fshb, lhb and cga mRNAs were localized in the proximal pars distalis and in the periphery of pars intermedia. Real-time quantitative reverse transcription-polymerase chain reaction indicated that the levels of all three transcripts in the pituitary of males increased during winter and spring, at the time when plasma levels of androgens raised and testicular germ cell development and spermatozoa production were stimulated. These results suggest that FSH and LH may regulate spermatogenesis in Senegalese sole similarly to that described for other teleosts with testis of cystic type and synchronous germ cell development.

  4. Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Kim, Dong-Wan; Park, Hong-Kyu; Byambaragchaa, Munkhzaya; Lee, Nam-Sil; Hong, Sun-Mee; Seo, Mi-Young; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-07-01

    We prepared monoclonal antibodies (mAbs) against a recombinant tethered follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica that was produced in Escherichia coli. Positive hybridomas (clones eFA-C5, eFA-C10, eFA-C11, eFA-C12, eFA-C13, and eFB-C14) were selected by using the eel FSH antigen in ELISA, and anti-eel FSH mAbs were purified from culture supernatants by performing affinity chromatography. Three of the 6mAbs were characterized and their isotypes were identified as IgG2b (eFA-C5 and eFA-C11) and IgG1 (eFB-C14). In western blotting assays, the mAbs recognized the antigen as a 24.3-kDa band, and further detected bands of 34 and 32kDa in the supernatants of CHO cells transfected with cDNA encoding tethered eel FSHβ/α and LHβ/α, respectively. PNase F-mediated deglycosylation of the recombinant proteins resulted in a drastic reduction in their molecular weight, to 7-9kDa. The mAbs eFA-C5 and eFA-C11 recognized the eel FSHα-subunit that is commonly encoded among glycoprotein hormones, whereas eFB-C14 recognized the eel FSHβ-subunit, and immunohistochemical analysis revealed that the staining by these mAbs was specifically localized in the eel pituitary. We also established an ELISA system for detecting rec-tethered FSHβ/α and LHβ/α produced from CHO cell lines. Measurement of biological activities in vitro revealed that only weak activity of rec-FSHβ/α was detected. The activity of rec-LHβ/α was found to be increased in a dose-dependent manner for eel oocyte maturation.

  5. Decreased Degradation of Internalized Follicle-Stimulating Hormone Caused by Mutation of Aspartic Acid 6.30550 in a Protein Kinase-CK2 Consensus Sequence in the Third Intracellular Loop of Human Follicle-Stimulating Hormone Receptor1

    PubMed Central

    Kluetzman, Kerri S.; Thomas, Richard M.; Nechamen, Cheryl A.; Dias, James A.

    2011-01-01

    A naturally occurring mutation in follicle-stimulating hormone receptor (FSHR) gene has been reported: an amino acid change to glycine occurs at a conserved aspartic acid 550 (D550, D567, D6.30567). This residue is contained in a protein kinase-CK2 consensus site present in human FSHR (hFSHR) intracellular loop 3 (iL3). Because CK2 has been reported to play a role in trafficking of some receptors, the potential roles for CK2 and D550 in FSHR function were evaluated by generating a D550A mutation in the hFSHR. The hFSHR-D550A binds hormone similarly to WT-hFSHR when expressed in HEK293T cells. Western blot analyses showed lower levels of mature hFSHR-D550A. Maximal cAMP production of both hFSHR-D550A as well as the naturally occurring mutation hFSHR-D550G was diminished, but constitutive activity was not observed. Unexpectedly, when 125I-hFSH bound to hFSHR-D550A or hFSHR-D550G, intracellular accumulation of radiolabeled FSH was observed. Both sucrose and dominant-negative dynamin blocked internalization of radiolabeled FSH and its commensurate intracellular accumulation. Accumulation of radiolabeled FSH in cells transfected with hFSHR-D550A is due to a defect in degradation of hFSH as measured in pulse chase studies, and confocal microscopy imaging revealed that FSH accumulated in large intracellular structures. CK2 kinase activity is not required for proper degradation of internalized FSH because inhibition of CK2 kinase activity in cells expressing hFSHR did not uncouple degradation of internalized radiolabeled FSH. Additionally, the CK2 consensus site in FSHR iL3 is not required for binding because CK2alpha coimmunoprecipitated with hFSHR-D550A. Thus, mutation of D550 uncouples the link between internalization and degradation of hFSH. PMID:21270425

  6. Ovarian stimulation with follicle-stimulating hormone under increasing or minimal concentration of progesterone in dairy cows.

    PubMed

    El-Sherry, T M; Matsui, M; Kida, K; Miyamoto, A; Megahed, G A; Shehata, S H; Miyake, Y-I

    2010-03-01

    The objective of this study was to investigate the effect of the presence or absence of Corpus luteum (CL) on the follicular population during superstimulation in dairy cows (Holstein-Friesian cattle). Animals were divided into two groups as follows: (1) Growing CL group (G1): Cows (n=7) received a total dose of 28 Armour units (AU) follicle-stimulating hormone (FSH) through the first 4 d (twice daily) after spontaneous ovulation (Day 0). (2) CL Absence group (G2): Cows (n=10) received prostaglandin F(2alpha) (PGF(2alpha)) at 9 or 10 d after ovulation. After 36h, all the follicles (larger than 5mm) were aspirated (Day 0). The FSH treatment started 24h after aspiration and continued for 4 d. The number of small (3 to <5mm), medium (5 to <8mm), and large (> or = 8mm) follicles was examined on Days 1, 3, and 5 in all groups. Blood samples were collected daily for 5 d, and progesterone (P(4)), estradiol (E(2)), insulin-like growth factor-1 (IGF-1), and growth hormone (GH) in plasma were measured by enzyme immunoassays. The results showed that in G1, the P(4) level increased gradually from 0.5 ng/mL at Day 1 to 2 ng/mL at Day 5, whereas in G2, the P(4) level was completely below 0.5 ng/mL. All cows of the G2 group showed an increase of E(2) at Day 3 or Day 4 followed by an increase of IGF-1 within 24h, while GH increased concomitantly with the E(2) increase in 8 of 10 trials. On the other hand, cows of the G1 group showed neither E(2) nor IGF-1 increase. Moreover, at the end of the treatment, the number of follicles in the G2 group was significantly increased compared with that of the G1 group (22.8+/-2.0 vs. 11.6+/-2.0). In conclusion, low P(4) level during FSH treatment enhanced multiple follicular growth and E(2) secretion, which was followed by increase of IGF-1 and GH. Therefore, the absence of the CL may play a critical role in the superovulation response by controlling the number of growing follicles.

  7. Lack of effects of a lyposterolic extract of Serenoa repens on plasma levels of testosterone, follicle-stimulating hormone, and luteinizing hormone.

    PubMed

    Casarosa, C; Cosci di Coscio, M; Fratta, M

    1988-01-01

    Twenty men, aged 50 to 75 years (mean, 67 years), suffering from benign prostatic hypertrophy received 160 mg of a lyposterolic extract of Serenoa repens, twice daily for 30 days. Before and at the end of treatment, plasma levels of testosterone, follicle-stimulating hormone, and luteinizing hormone were determined. No changes in plasma hormone levels occurred as a result of treatment. It is concluded that Serenoa extract, which is useful in the treatment of benign prostatic hypertrophy, does not act via systemic changes of hormone levels.

  8. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain.

  9. A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure: a fertility application of whole exome sequencing

    PubMed Central

    Bramble, Matthew S.; Goldstein, Ellen H.; Lipson, Allen; Ngun, Tuck; Eskin, Ascia; Gosschalk, Jason E.; Roach, Lara; Vashist, Neerja; Barseghyan, Hayk; Lee, Eric; Arboleda, Valerie A.; Vaiman, Daniel; Yuksel, Zafer; Fellous, Marc; Vilain, Eric

    2016-01-01

    STUDY QUESTION Can whole exome sequencing (WES) and in vitro validation studies be used to find the causative genetic etiology in a patient with primary ovarian failure and infertility? SUMMARY ANSWER A novel follicle-stimulating hormone receptor (FSHR) mutation was found by WES and shown, via in vitro flow cytometry studies, to affect membrane trafficking. WHAT IS KNOWN ALREADY WES may diagnose up to 25–35% of patients with suspected disorders of sex development (DSD). FSHR mutations are an extremely rare cause of 46, XX gonadal dysgenesis with primary amenorrhea due to hypergonadotropic ovarian failure. STUDY DESIGN, SIZE, DURATION A WES study was followed by flow cytometry studies of mutant protein function. PARTICIPANTS/MATERIALS, SETTING, METHODS The study subjects were two Turkish sisters with hypergonadotropic primary amenorrhea, their parents and two unaffected sisters. The affected siblings and both parents were sequenced (trio-WES). Transient transfection of HEK 293T cells was performed with a vector containing wild-type FSHR as well as the novel FSHR variant that was discovered by WES. Cellular localization of FSHR protein as well as FSH-stimulated cyclic AMP (cAMP) production was evaluated using flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE Both affected sisters were homozygous for a previously unreported missense mutation (c.1222G>T, p.Asp408Tyr) in the second transmembrane domain of FSHR. Modeling predicted disrupted secondary structure. Flow cytometry demonstrated an average of 48% reduction in cell-surface signal detection (P < 0.01). The mean fluorescent signal for cAMP (second messenger of FSHR), stimulated by FSH, was reduced by 50% in the mutant-transfected cells (P < 0.01). LIMITATIONS, REASONS FOR CAUTION This is an in vitro validation. All novel purported genetic variants can be clinically reported only as ‘variants of uncertain significance’ until more patients with a similar phenotype are discovered with the same variant. WIDER

  10. Alterations in cognitive and psychological functioning after organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  11. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    PubMed

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.

  12. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  13. Produced water exposure alters bacterial response to biocides.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2014-11-04

    Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity.

  14. Perinatal exposure to polychlorinated biphenyls alters social behaviors in rats

    PubMed Central

    Jolous-Jamshidi, Banafsheh; Cromwell, Howard C.; McFarland, Ashley M.; Meserve, Lee A.

    2014-01-01

    Perinatal exposure to polychlorinated biphenyls (PCBs) leads to significant alterations of neural and hormonal systems. These alterations have been shown to impair motor and sensory development. Less is known about the influence of PCB exposure on developing emotional and motivational systems involved in social interactions and social learning. The present study examined the impact of perinatal PCB exposure (mixture of congeners 47 and 77) on social recognition in juvenile animals, conspecific-directed investigation in adults and on neural and hormonal systems involved in social functions. We used a standard habituation–dishabituation paradigm to evaluate juvenile recognition and a social port paradigm to monitor adult social investigation. Areal measures of the periventricular nucleus (PVN) of the hypothalamus were obtained to provide correlations with related hormone and brain systems. PCB exposed rats were significantly impaired in social recognition as indicated by persistent conspecific-directed exploration by juvenile animals regardless of social experience. As adults, PCB exposure led to a dampening of the isolation-induced enhancement of social investigation. There was not a concomitant alteration of social investigation in pair-housed PCB exposed animals at this stage of development. Interestingly, PVN area was significantly decreased in juvenile animals exposed to PCB during the perinatal period. Shifts in hypothalamic regulation of hormones involved in social behavior and stress could be involved in the behavioral changes observed. Overall, the results suggest that PCB exposure impairs context or experience-dependent modulation of social approach and investigation. These types of social-context deficits are similar to behavioral deficits observed in social disorders such as autism and other pervasive developmental disorders. PMID:20813172

  15. Effects of low-dose follicle-stimulating hormone administration on follicular dynamics and preovulatory follicle characteristics in dairy cows during the summer.

    PubMed

    Friedman, E; Glick, G; Lavon, Y; Roth, Z

    2010-08-01

    The well-documented phenomenon of reduced conception rate in dairy cows during the hot season involves impaired functioning of the ovarian follicles and their enclosed oocytes. Three experiments were performed to examine the administration of low doses of follicle-stimulating hormone (FSH) to induce turnover of follicles that are damaged upon summer thermal stress and to examine whether this FSH administration has beneficial effects on preovulatory follicles. In experiment 1, synchronized heifers were treated with 100 mg of Folltropin-V (n = 7) or 4.4 mg of Ovagen (n = 6) on day 3 of the estrous cycle. Treatment with both FSH sources resulted in greater (P < 0.05) numbers of follicles than in control animals (n = 12) on day 6 of the estrous cycle, indicating that low doses of FSH can increase the number of emerging follicles in a follicular wave. In experiment 2, milking cows were assigned to a control group (n = 4) or treated with 2.2 mg (FSH-2.2; n = 6) or 4.4 mg (FSH-4.4; n = 5) Ovagen. Follicle-stimulating hormone was administrated on day 3 or 4 and day 10 or 11 of the estrous cycle, coinciding with emergence of the first and second follicular waves, respectively. The number of follicles emerging during the first wave tended to be higher (P < 0.1) in FSH-4.4-treated cows than in controls. The second-wave dominant follicles emerged 2 d later in the treated cows and were smaller in diameter (P < 0.05) than controls, 2 d before aspiration. Despite being younger, the preovulatory follicles of FSH-4.4 cows expressed a steroidogenic capacity that was similar to controls with a tendency toward greater insulin concentrations (P < 0.09). In experiment 3, milking cows were assigned to a control group (n = 6) or treated with 4.4 mg Ovagen (FSH-4.4; n = 6). Follicle-stimulating hormone was administrated on day 3 and day 12 or 13 of the estrous cycle. The number of emerging follicles was higher (P < 0.05) in the treated vs control cows. However, the features of the

  16. Sperm counts and serum follicle-stimulating hormone levels before and after radiotherapy and chemotherapy in men with testicular germ cell cancer

    SciTech Connect

    Berthelsen, J.G.

    1984-02-01

    Sperm counts were low (median, 15 X 10(6) per ejaculate) and serum follicle-stimulating hormone (FSH) levels were moderately elevated (median, 31 IU/l) after unilateral orchiectomy and immediately before radiotherapy and chemotherapy in 34 patients with seminomas and 20 patients with nonseminomatous germ cell tumors. The scattered radiation (0.2 to 1.3 Gray (Gy)) reaching the remaining testicle during radiotherapy caused azoospermia in more than two thirds of the patients. A median of 540 days elapsed after the end of treatment before spermatozoa were again found in semen samples, while a median of 1250 days passed before the pretreatment sperm count was reached. One to 5 years after treatment, sperm counts were still low (median, 6 X 10(6) per ejaculate) and serum FSH was elevated (median, 61 IU/l). The adjuvant chemotherapy given to the 20 patients with nonseminomatous tumors did not appear to affect restitution appreciably.

  17. Plasma concentrations of luteinising hormone, follicle stimulating hormone, androgen, growth hormone, prolactin, thyroxine and triiodothyronine during growth and sexual development in the cockerel.

    PubMed

    Sterling, R J; Sharp, P J; Klandorf, H; Harvey, S; Lea, R W

    1984-07-01

    Changes in concentrations of plasma luteinising hormone (LH), follicle stimulating hormone (FSH), androgen, growth hormone (GH), prolactin (Prl), thyroxine (T4) and triiodothyronine (T3) were measured during growth and sexual maturation in broiler cockerels reared in continuous light to 7 weeks and 14 h light/d thereafter. Concentrations of LH and FSH began to increase between 13 and 15 weeks, while those of androgens increased between 16 and 17 weeks. FSH concentration increased faster than that of LH. Concentrations of GH and Prl were high at 3 weeks; that of GH decreasing progressively between 3 and 14 weeks of age and thereafter remaining low, while that of Prl was low between 5 and 9 weeks, relatively high between 10 and 13 weeks, and then temporarily decreasing before increasing progressively during sexual maturation. Concentrations of T3 and T4 were higher in juvenile than in adult birds.

  18. Prenatal exposure to MDMA alters noradrenergic neurodevelopment in the rat

    PubMed Central

    Thompson, V.B.; Koprich, J.B.; Chen, E.Y.; Kordower, J.H.; Terpstra, B.; Lipton, J.W.

    2011-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) binds with high affinity to the norepinephrine transporter (NET), making the noradrenergic system a potential target during fetal exposure. Recent data indicates that adult rats that had been prenatally exposed to MDMA display persistent deficits in working memory and attention; behaviors consistent with abnormal noradrenergic signaling in the forebrain. The present study was designed to investigate whether prenatal exposure to MDMA from embryonic days 14–20 affects the structure and/or function of the noradrenergic system of the rat on postnatal day 21. Offspring that were prenatally exposed to MDMA exhibited an increase in noradrenergic fiber density in the prelimbic region of the prefrontal cortex and the CA1 region of the hippocampus that was not accompanied by an increase in the number of noradrenergic neurons in the locus coeruleus. Direct tissue autoradiography using tritiated nisoxetine demonstrated that while NET binding was not altered in the prelimbic cortex, the dentate gyrus, or the locus coeruleus, it was increased in the CA1, CA2, and CA3 regions of the hippocampus. Basal levels of norepinephrine were increased in the prefrontal cortex and the nucleus accumbens of MDMA-exposed rats, as compared to saline-treated controls. These findings indicate that prenatal exposure to MDMA results in structural changes in the noradrenergic system as well as functional alterations in NE neurotransmission in structures that are critical in attentional processing. PMID:21978916

  19. Tributyltin exposure alters cytokine levels in mouse serum.

    PubMed

    Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M

    2016-11-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.

  20. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  1. Vanadium exposure-induced neurobehavioral alterations among Chinese workers.

    PubMed

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2013-05-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the simple reaction time, digit span, benton visual retention and pursuit aiming were also poorer among exposed workers as compared to unexposed control workers (p<0.05). Some of these poor performances in tests were also significantly related to workers' exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium.

  2. The chromosomal localization of the human follicle-stimulating hormone receptor gene (FSHR) on 2p21-p16 ls similar to that of the luteinizing hormone receptor gene

    SciTech Connect

    Rousseau-Merck, M.F.; Berger, R.; Atger, M.; Loosfelt, H.; Milgrom, E. )

    1993-01-01

    Two cDNA probes (5[prime]and 3[prime]region) corresponding to the human follicle-stimulating hormone receptor gene (FSHR) were used for chromosomal localization by in situ hybridization. The localization obtained on chromosome 2p21-p16 is similar to that of the luteinizing hormone/choriogonadotropin (LH/CG) receptor gene. 24 refs. 1 fig., 1 tab.

  3. Altering user' acceptance of automation through prior automation exposure.

    PubMed

    Bekier, Marek; Molesworth, Brett R C

    2016-08-22

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  4. Embryonic ethanol exposure alters synaptic properties at zebrafish neuromuscular junctions.

    PubMed

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2011-01-01

    Pre-natal alcohol exposure induces delays in fine and gross motor skills, and deficiencies in reflex development via mechanisms that remain to be elucidated. The purpose of the present study was to investigate the effect of embryonic ethanol exposure (16-hour exposure window with 1.5%, 2% or 2.5% EtOH) on synaptic properties at the neuromuscular junction (NMJ) in 3 day post fertilization (dpf) zebrafish larvae. Immunohistochemical studies show that exposure of embryos to 2.5% ethanol for 16 h results in motor neuron axons that display abnormal branching patterns. Co-labelling embryos with pre-synaptic markers such as SV-2 or 3A10, and the post-synaptic marker, α-bungarotoxin, which irreversibly binds to nicotinic acetylcholine receptors (nAChRs), indicates that pre- and post-synaptic sites are properly aligned even when motor neuron axons display abnormal morphology. Miniature endplate currents (mEPCs) recorded from muscle fibers revealed the presence of two types of mEPCs that we dubbed fast and slow. Ethanol treated fish experienced significant changes in the frequencies of fast and slow mEPCs, and an increase in the rise time of slow mEPCs recorded from red muscle fibers. Additionally, embryonic exposure to ethanol resulted in a significant increase in the decay time of fast mEPCs recorded from white fibers. Mean mEPC amplitude was unaffected by ethanol treatment. Together, these results indicate that zebrafish embryos exposed to ethanol may experience altered synaptic properties at the NMJ.

  5. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    NASA Astrophysics Data System (ADS)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  6. Arsenic exposure to killifish during embryogenesis alters muscle development.

    PubMed

    Gaworecki, Kristen M; Chapman, Robert W; Neely, Marion G; D'Amico, Angela R; Bain, Lisa J

    2012-02-01

    Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D-binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation.

  7. Seizures and antiepileptic drugs: does exposure alter normal brain development?

    PubMed

    Marsh, Eric D; Brooks-Kayal, Amy R; Porter, Brenda E

    2006-12-01

    Seizures and antiepileptic drugs (AEDs) affect brain development and have long-term neurological consequences. The specific molecular and cellular changes, the precise timing of their influence during brain development, and the full extent of the long-term consequences of seizures and AEDs exposure have not been established. This review critically assesses both the basic and clinical science literature on the effects of seizures and AEDs on the developing brain and finds that evidence exists to support the hypothesis that both seizures and antiepileptic drugs influence a variety of biological process, at specific times during development, which alter long-term cognition and epilepsy susceptibility. More research, both clinical and experimental, is needed before changes in current clinical practice, based on the scientific data, can be recommended.

  8. Prenatal alcohol exposure alters the patterns of facial asymmetry.

    PubMed

    Klingenberg, C P; Wetherill, L; Rogers, J; Moore, E; Ward, R; Autti-Rämö, I; Fagerlund, A; Jacobson, S W; Robinson, L K; Hoyme, H E; Mattson, S N; Li, T K; Riley, E P; Foroud, T

    2010-01-01

    Directional asymmetry, the systematic differences between the left and right body sides, is widespread in human populations. Changes in directional asymmetry are associated with various disorders that affect craniofacial development. Because facial dysmorphology is a key criterion for diagnosing fetal alcohol syndrome (FAS), the question arises whether in utero alcohol exposure alters directional asymmetry in the face. Data on the relative position of 17 morphologic landmarks were obtained from facial scans of children who were classified as either FAS or control. Shape data obtained from the landmarks were analyzed with the methods of geometric morphometrics. Our analyses showed significant directional asymmetry of facial shape, consisting primarily of a shift of midline landmarks to the right and a displacement of the landmarks around the eyes to the left. The asymmetry of FAS and control groups differed significantly and average directional asymmetry was increased in those individuals exposed to alcohol in utero. These results suggest that the developmental consequences of fetal alcohol exposure affect a wide range of craniofacial features in addition to those generally recognized and used for diagnosis of FAS.

  9. Seasonal expressions of follicle-stimulating hormone receptor and luteinizing hormone receptor in the scented gland of the male muskrat (Ondatra zibethicus).

    PubMed

    Zhang, Haolin; Zhang, Fengwei; Zhu, Manyu; Wang, Junjie; Sheng, Xia; Yuan, Zhengrong; Han, Yingying; Watanabe, Gen; Taya, Kazuyoshi; Weng, Qiang

    2017-04-01

    Accumulating evidence has shown that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) may influence the functions of nongonadal tissues in addition to their classic target gonads. Our previous studies revealed that the scented glands of male muskrats expressed prolactin receptor, steroidogenic enzymes, and inhibin/activin subunits. To further seek the evidence of the activities of pituitary gonadotropins in scented glands, we investigated the seasonal expression patterns of FSH receptor (FSHR) and LH/choriogonadotropin receptor (LHCGR). The weight and size of scented glands during the breeding season were significantly higher than those during the nonbreeding season. Immunohistochemical studies showed that FSHR was present in the serous cells of scented glands, whereas LHCGR was present in the interstitial cells. The protein and mRNA expression levels of FSHR and LHCGR were significantly higher in the scented glands during the breeding season than those during the nonbreeding season. Importantly, the levels of circulating FSH and LH were remarkably higher during the breeding season. Taken together, these results suggested that gonadotropins may affect the function of muskrat scented gland via the locally expressed receptors in a season-dependent manner.

  10. Haplotype Structure of FSHB, the Beta-Subunit Gene for Fertility-Associated Follicle-Stimulating Hormone: Possible Influence of Balancing Selection

    PubMed Central

    Grigorova, M; Rull, K; Laan, M

    2007-01-01

    Follicle-stimulating hormone (FSH) is essential for human reproduction. The unique functions of this hormone are provided by the FSH receptor-binding beta-subunit encoded by the FSHB gene. Resequencing and genotyping of FSHB in three European, two Asian and one African population, as well as in the great apes (chimpanzee, gorilla, orangutan), revealed low diversity and significant excess of polymorphisms with intermediate frequency alleles. Statistical tests for FSHB showed deviations from neutrality in all populations suggesting a possible effect of balancing selection. Two core haplotypes were identified (carried by 76-96.6% of each population's sample), the sequences of which are clearly separated from each other. As fertility most directly affects an organism's fitness, the carriers of these haplotypes have apparently had more success in human history to contribute to the next generation. There is a preliminary observation suggesting that the second most frequent FSHB haplotype may be associated with rapid conception success in females. Interestingly, the same haplotype is related to an ancestral FSHB variant shared with the ancestor of the great apes. The determination of the functional consequence of the two core FSHB variants may have implications for understanding and regulating human fertility, as well as in assisting infertility treatments. PMID:17227474

  11. Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey.

    PubMed

    Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L

    2008-02-01

    The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.

  12. Follicle-stimulating hormone promotes age-related endometrial atrophy through cross-talk with transforming growth factor beta signal transduction pathway.

    PubMed

    Zhang, Dan; Li, Jingyi; Xu, Gufeng; Zhang, Runjv; Zhou, Chengliang; Qian, Yeqing; Liu, Yifeng; Chen, Luting; Zhu, Bo; Ye, Xiaoqun; Qu, Fan; Liu, Xinmei; Shi, Shuai; Yang, Weijun; Sheng, Jianzhong; Huang, Hefeng

    2015-04-01

    It is widely believed that endometrial atrophy in postmenopausal women is due to an age-related reduction in estrogen level. But the role of high circulating follicle-stimulating hormone (FSH) in postmenopausal syndrome is not clear. Here, we explored the role of high circulating FSH in physiological endometrial atrophy. We found that FSH exacerbated post-OVX endometrial atrophy in mice, and this effect was ameliorated by lowering FSH with Gonadotrophin-releasing hormone agonist (GnRHa). In vitro, FSH inhibited endometrial proliferation and promoted the apoptosis of primary cultured endometrial cells in a dose-dependent manner. In addition, upregulation of caspase3, caspase8, caspase9, autophagy-related proteins (ATG3, ATG5, ATG7, ATG12 and LC3) and downregulation of c-Jun were also observed in endometrial adenocytes. Furthermore, smad2 and smad3 showed a time-dependent activation in endometrial cells which can be partly inhibited by blocking the transforming growth factor beta receptor II (TβRII). In conclusion, FSH regulated endometrial atrophy by affecting the proliferation, autophagy and apoptosis of endometrial cells partly through activation of the transforming growth factor beta (TGFβ) pathway.

  13. Age-specific nomograms for follicle stimulating hormone and anti-Mullerian hormone: A pilot study in Ile-Ife, Nigeria

    PubMed Central

    Okunola, Omoladun Temitope; Ajenifuja, Olusegun Kayode; Loto, Morebise Olabisi; Salawu, Afolabi; Omitinde, Oluseyi Stephen; Akande, Joel; Oke, Elizabeth

    2016-01-01

    Background: Assessment of ovarian reserve is one of the steps in the management of infertile couples. Follicle Stimulating hormone (FSH) and anti-Müllerian hormone (AMH) are commonly used ovarian reserve markers in Africa. However, there is paucity of age-specific reference values for FSH and AMH among the African population. Objective: This study aimed at conducting a pilot study for generation of age-specific nomograms for FSH and AMH among fertile women in Ile-Ife, Nigeria. Materials and Methods: A pilot cross-sectional study that involved 65 fertile women within the age range of 18-45 yr were prospectively and consecutively recruited from November 2014 to January 2015. Peripheral blood samples were taken for basal serum FSH and random serum AMH. The samples were processed using enzyme linked immunosorbent (ELISA) assays. Results: Age-specific FSH nomogram showed a gradual increase which became steeper at age 35 yr with an average yearly increase of 0.2 IU/L in basal serum FSH, while age-specific AMH nomogram showed a peak at 25 yr and then; an average yearly decrease of 0.11 ng/ml in random serum AMH from 25 yr. Conclusion: The age-specific nomograms generated by this pilot study suggest that AMH may be an earlier marker of reduced ovarian reserve; which if validated by future multicenter population based studies may facilitate counseling of women on their reproductive potentials. PMID:28066837

  14. Cytoskeletal and mitochondrial properties of bovine oocytes obtained by Ovum Pick-Up: the effects of follicle stimulation and in vitro maturation.

    PubMed

    Somfai, Tamás; Matoba, Satoko; Inaba, Yasushi; Nakai, Michiko; Imai, Kei; Nagai, Takashi; Geshi, Masaya

    2015-12-01

    Follicle stimulation by follicular stimulating hormone (FSH) is known to improve developmental competence of bovine oocytes obtained by Ovum Pick-Up (OPU); however, the exact factors in oocytes affected by this treatment have remained unclear. We compared in vitro matured (IVM) oocytes obtained at the immature stage from cows by OPU either without or with stimulation with FSH (non-stimulated and stimulated OPU, respectively) to those obtained by superstimulation and in vivo maturation in terms of cytoskeleton morphology, mitochondrial distribution, intracellular adenosine triphosphate (ATP) content and H2 O2 levels at the metaphase-II stage and intracellular Ca(2+) levels after in vitro fertilization (IVF). Confocal microscopy after immunostaining revealed reduced size of the meiotic spindle, associated with increased tendencies of microfilament degradation and insufficient mitochondrial re-distribution in non-stimulated OPU-derived IVM oocytes compared with those collected by stimulated OPU, which in turn resembled in vivo matured oocytes. However, there was no difference in mitochondrial functions between oocytes obtained by stimulated or non-stimulated OPU in terms of ATP content, cytoplasmic H2 O2 levels, base Ca(2+) levels and the frequencies and amplitudes of Ca(2+) oscillations after IVF. Larger size of metaphase spindles in oocytes obtained by stimulated OPU may reflect and potentially contribute to their high developmental competence.

  15. Effect of daily administration of 0.5 mg. of chlormadinone acetate on plasma levels of follicle-stimulating hormone, luteinizing hormone, and progesterone during the menstrual cycle.

    PubMed

    Saunders, D M; Marcus, S L; Saxena, B B; Beling, C G; Connell, E B

    1971-05-01

    Investigators at Cornell University Medical College and New York Medical College in New York City studied the effects of chlormadinone acetate administration on hormone levels in an effort to better understand the contraceptive mode of action of this drug. 9 healthy women had 2 consecutive cycles studied. While the first cycle was a control cycle, the second one involved chlormadinone acetate administration, .5 mg/day from Day 1 to Day 28 or until the occurrence of spontaneous menstruation if this delayed until after Day 28. Basal body temperature was recorded each morning. Chlormadinone tended to suppress the mean luteinizing hormone and follicle stimulating hormone peaks and the plasma progesterone levels. 3 patients are believed to have ovulated during the experimental cycle, but probably in 2 of them the luteal phase was less pronounced than a normal luteal phase. However, 1 of the remaining 6 patients had failed to ovulate in the control cycle. Though limitations exist in the study of the parameters investigated here, such study is necessary since direct evidence of ovulation (e.g., pregnancy, observation of corpus luteum) is usually unobtainable.

  16. Interleukin 1. alpha. inhibits prostaglandin E sub 2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    SciTech Connect

    Rettori, V.; McCann, S.M. ); Gimeno, M.F. ); Karara, A. ); Gonzalez, M.C. )

    1991-04-01

    Interleukin 1{alpha} (IL-1{alpha}), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1{alpha} into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1{alpha} caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1{alpha} (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E{sub 2} into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1{alpha} reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1{alpha} suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E{sub 2}-mediated release of LHRH.

  17. Effect of synchronization of follicle-wave emergence with estradiol and progesterone and superstimulation with follicle-stimulating hormone on milk estrogen concentrations in dairy cattle.

    PubMed

    de Souza, Lucilene B; Dupras, Raynald; Mills, Louis; Chorfi, Younès; Price, Christopher A

    2013-01-01

    Very little is known about the effects of hormonal synchronization of follicle waves and superovulation on the estrogen content of a cow's milk. The objective of this study was to determine the effect in dairy cows of synchronization with estradiol-17β (E2) and progesterone (P4) on milk E2 concentrations and to compare these levels with those achieved during superstimulation for 4 d with porcine follicle-stimulating hormone (FSH). The milk E2 concentrations were raised significantly above pretreatment levels (P < 0.05) for 2 d after synchronization, the mean peak being 40.2 ± 18.5 (standard error) pg/mL and the pretreatment mean 1.5 ± 0.5 pg/mL. The mean peak E2 concentration during ovarian stimulation was 4.4 ± 0.7 pg/mL. The mean E2 concentration was significantly higher (P < 0.05) after synchronization than during superstimulation for the 1st milking after synchronization but not subsequent milkings. The milk estrone concentrations were above pretreatment levels for 1 d after synchronization and were not different from those observed during superstimulation.

  18. Manufacturing of Recombinant Human Follicle-Stimulating Hormone Ovaleap(®) (XM17), Comparability with Gonal-f(®), and Performance/Consistency.

    PubMed

    Winstel, Rainer; Wieland, Juergen; Gertz, Beate; Mueller, Arnd; Allgaier, Hermann

    2017-04-06

    Ovaleap(®) (XM17) is a recombinant human follicle-stimulating hormone to treat infertility by inducing ovulation or controlled ovarian stimulation for assisted reproductive technology (ART) procedures. Ovaleap(®) (follitropin-α) was approved by the European Medicines Agency in 2013 as a biosimilar medicinal product to the reference medicine, Gonal-f(®). Information is often not easily accessible and/or publicly available regarding the rigorous manufacturing procedures for biosimilars. Objectives of the current analysis were to report on validation procedures for the Ovaleap(®) manufacturing process, to compare the characteristics of Ovaleap(®) versus Gonal-f(®), and to describe the performance and consistency of Ovaleap(®). Formal validation of the Ovaleap(®) manufacturing process was performed at full commercial scale, consisting of several consecutive fermentation and purification runs. Comparison with Gonal-f(®) involved numerous techniques to determine molecular structure, isoform distribution, biological activity, and product-related impurities. The stability of the multidose application system, targeted for long-term stability at ambient temperature, was assessed and demonstrated. All analyses showed the manufacturing process of Ovaleap(®) to be robust and consistent. Ovaleap(®) was found to have similar characteristics when compared with Gonal-f(®). This analysis supports the role of Ovaleap(®) as a biosimilar to Gonal-f(®), thus providing patients and clinicians with another therapeutic option during ART procedures.

  19. Hyperoxia exposure alters hepatic eicosanoid metabolism in newborn mice.

    PubMed

    Rogers, Lynette K; Tipple, Trent E; Britt, Rodney D; Welty, Stephen E

    2010-02-01

    Prematurely born infants are often treated with supraphysiologic amounts of oxygen, which is associated with lung injury and the development of diseases such as bronchopulmonary dysplasia. Complimentary responses between the lung and liver during the course of hyperoxic lung injury have been studied in adult animals, but little is known about this relationship in neonates. These studies tested the hypothesis that oxidant stress occurs in the livers of newborn mice in response to continuous hyperoxia exposure. Greater levels of glutathione disulfide and nitrotyrosine were detected in lung tissues but not liver tissues from newborn mice exposed to hyperoxia than in room air-exposed controls. However, early increases in 5-lipoxygenase and cyclooxygenases-2 protein levels and increases in total hydroxyeicosatetraenoic acid and prostaglandin levels were observed in the liver tissues of hyperoxia-exposed pups. These studies indicate that free radical oxidation occurs in the lungs of newborn pups exposed to hyperoxia, and alterations in lipid metabolism could be a primary response in the liver tissues. The findings of this study identify possible new mechanisms associated with hyperoxic lung injury in a newborn model of bronchopulmonary dysplasia and thus open opportunities for research.

  20. Suppression of male reproduction in rats after exposure to sodium fluoride during early stages of development

    NASA Astrophysics Data System (ADS)

    Reddy, P. Sreedhar; Pushpalatha, T.; Reddy, P. Sreenivasula

    2007-07-01

    Sodium fluoride (NaF), a widespread natural pollutant was given to sperm-positive female rats throughout gestation and lactation at a dose of 4.5 and 9.0 ppm via drinking water. The neonates were allowed to grow up to 90 days on tap water, and then sperm parameters, testicular steroidogenic marker enzyme activity levels, and circulatory hormone levels were studied. The sperm count, sperm motility, sperm coiling (hypoosmotic swelling test), and sperm viability were decreased in experimental rats when compared with controls. The activity levels of testicular steroidogenic marker enzymes (3β hydroxysteroid dehydrogenase and 17β hydroxysteroid dehydrogenase) were significantly decreased in experimental animals indicating decreased steroidogenesis. The serum testosterone, follicle stimulating hormone and luteinizing hormone levels were also significantly altered in experimental animals. Our data indicate that exposure to NaF during gestation and lactation affects male reproduction in adult rats by decreasing spermatogenesis and steroidogenesis.

  1. Desmocollin 3 mediates follicle stimulating hormone-induced ovarian epithelial cancer cell proliferation by activating the EGFR/Akt signaling pathway.

    PubMed

    Yang, Xiao; Wang, Jing; Li, Wen-Ping; Jin, Zhi-Jun; Liu, Xiao-Jun

    2015-01-01

    Follicle-stimulating hormone (FSH) is associated with the pathogenesis of ovarian cancer. We sought to explore whether desmocollin 3 (Dsc3) mediates FSH-induced ovarian epithelial cancer cell proliferation and whether the EGFR/Akt signaling pathway may be involved in this process. Dsc3 positivity in ovarian tissue specimens from 72 patients was assessed by immunohistochemistry. The positive expression rates of Dsc3 were similar in ovarian cancer tissues (24/31:77.4%) and borderline ovarian tumor tissues (18/22:81.8%) (P>0.05), but were significantly higher in these cancerous tissues than in benign ovarian cyst tissues (3/19:15.8%) (P<0.05). Consistently, the expression of Dsc3 in four out of five ovarian cancer cells (HO8910, Skov3ip, Skov and Hey cells, but not ES-2 and in borderline ovarian MCV152 tumor cells was higher than in the immortalized ovarian epithelial cell line, Moody. FSH up-regulated the expression of Dsc3 and EGFR in a dose- and time-dependent manner. Furthermore, a converse relationship between the expression of Dsc3, EFGR and PI3K/Akt signaling was elucidated using RNA interference and PI3K/Akt inhibitor in the absence and presence of FSH. A role for these proteins in FSH-induced cell proliferation was verified, highlighting their interdependence in mediating ovarian cancer cell function. These results suggest that Dsc3 can mediate FSH-induced ovarian cancer cell proliferation by activating the EGFR/Akt signaling pathway.

  2. Gonadotropin-releasing hormone overcomes follicle-stimulating hormone's inhibition of insulin-like growth factor-5 synthesis and promotion of its degradation in rat granulosa cells.

    PubMed

    Onoda, N; Li, D; Mickey, G; Erickson, G; Shimasaki, S

    1995-04-28

    The effect of a gonadotropin-releasing hormone-agonist (GnRH-a) on the synthesis of insulin-like growth factor-binding protein-5 (IGFBP-5), a physiological marker for atresia, was investigated. Granulosa cells obtained from diethylstilbestrol (DES)-treated immature female rats were cultured in serum-free medium for 72 h with GnRH-a and the conditioned media were subjected to immunoblot analysis using rat IGFBP-5 specific antibody. GnRH-a caused a dose-dependent (ED50 = 8.6 x 10(-11) M) accumulation of IGFBP-5, which migrated as 35 (non-glycosylated) and 36 kDa (glycosylated) bands under reducing conditions. A maximally effective dose of GnRH-a (10(-9) M) caused a 4-fold increase in IGFBP-5 accumulation. In contrast, increasing doses of porcine follicle-stimulating hormone (pFSH) caused a biphasic effect on IGFBP-5 accumulation. A low dose of pFSH (0.25 ng/ml) increased and higher doses of pFSH (22.5 ng/ml) decreased the 35 and 36 kDa IGFBP-5 bands. In the presence of high doses of pFSH (20.75 ng/ml), a 22 kDa band corresponding to a cleaved IGFBP-5 fragment appeared in the media. When the granulosa cells were cultured with a saturating dose of pFSH, co-addition of GnRH-a dose dependently inhibited the FSH effects (ED50 = (2.3-3.7) x 10(-10) M). The GnRH-a effects were completely blocked by co-incubation with GnRH-antagonist. IGFBP-5 mRNA accumulation levels were increased by GnRH-a in a dose dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Histological evaluation of endometrium on the day of oocyte retrieval after gonadotrophin-releasing hormone agonist-follicle stimulating hormone ovulation induction for in-vitro fertilization.

    PubMed

    Lass, A; Peat, D; Avery, S; Brinsden, P

    1998-11-01

    The objective of this study was to evaluate the histopathological characteristics of endometrial biopsies taken on the day of oocyte recovery in in-vitro fertilization (IVF) cycles with a satisfactory response to ovulation induction. A group of 33 patients who went through ovulation induction for IVF, and in whom an endometrial polyp was suspected on transvaginal ultrasonography during the monitoring phase, were studied. Following oocyte recovery, hysteroscopy, polypectomy and endometrial curettage were performed. Dating of endometrial glands and stroma was carried out in the tissue not containing the polyps. The total dose of follicle stimulating hormone (FSH), duration of ovulation induction, peak oestradiol and luteinizing hormone (LH) concentrations, thickness of endometrium and number of oocytes were recorded and compared to the endometrial dating of the specimens. In 15 cycles (45.5%), the endometrium was classified as 'in phase' (group I), 'advanced' by 2-4 days in a further 15 (45.5%, group II), and in the remaining three cycles (9%) it was delayed in maturation (group III). Younger age was correlated with advanced staging of the endometrium (r = -0.42; P = 0.015). Women with 'in phase' and 'advanced' maturation were similar in their response to ovulation induction; however, there was a strong correlation between advanced dating of endometrium and number of oocytes retrieved (r = 0.49; P = 0.04). Endometrial staging on the day of oocyte retrieval varied widely in patients treated by the same gonadotrophin-releasing hormone agonist (GnRHa)/FSH protocol for ovulation induction. This difference was not predictable by parameters monitored through the cycles.

  4. Relationships of serum thyroid hormones and follicle-stimulating hormone concentrations to Sertoli cell differentiation during the first wave of spermatogenesis in euthyroid ram lambs.

    PubMed

    Oluwole, Olutobi A; Bartlewski, Pawel M; Hahnel, Ann

    2013-06-01

    The main purpose of this study was to determine if temporal relationships exist between serum concentrations of free fractions of thyroxin (fT4) and triiodothyronine (fT3), follicle-stimulating hormone (FSH) levels, and Sertoli cell differentiation in euthyroid ram lamb testes. Additionally, testicular thyroid hormone (TH) receptors (TRs) were identified using immunohistochemistry and Western blot analysis. Weekly testicular biopsies and jugular blood samples were collected from 12 ram lambs over the 9 weeks of study. Hormone concentrations and the numbers of dividing Sertoli cells per seminiferous tubule (ST) area were analyzed relative to chronological age of animals and the two distinctive stages of Sertoli cell differentiation: (a) tight junction/ST lumen formation and (b) the onset of support mechanisms for the development of multiple germ cell types (presence of primary spermatocytes in >95% STs). Circulating FSH concentrations increased (p<0.05) immediately after first detection of ST lumen and reached a nadir (p<0.05) just prior to the end of the first wave of spermatogenesis. A decline in both fT4 and fT3 levels (p<0.05) occurred after Sertoli cells had formed the ST lumen and began supporting germ cell differentiation. There was a positive correlation between the numbers of proliferating Sertoli cells and serum fT4 (r=0.51, p<0.001) and fT3 (r=0.52, p<0.001) concentrations. TRs were expressed throughout the study period; however, prior to the formation of ST lumen, two isoforms were detected while only one TR isoform was present by the end of the first wave of spermatogenesis. Overall, the exit of Sertoli cells from the cell cycle that presages their final differentiation begins when THs and FSH levels are high, suggesting a permissive role of these hormones in the maturation of STs in prepubertal ram lambs.

  5. Effect of sequential medium with fibroblast growth factor-10 and follicle stimulating hormone on in vitro development of goat preantral follicles.

    PubMed

    Almeida, A P; Magalhães-Padilha, D M; Araújo, V R; Costa, S L; Chaves, R N; Lopes, C A P; Donato, M A M; Peixoto, C A; Campello, C C; Junior, J Buratini; Figueiredo, J R

    2015-01-01

    A sequential medium with fibroblast growth factor-10 (FGF-10) and follicle stimulating hormone (FSH) was evaluated on the survival, ultrastructure, activation and growth rate of caprine preantral follicles submitted to long-term culture, aiming to establish an ideal in vitro culture system. Ovarian fragments were cultured for 16 days in α-MEM(+) alone or supplemented with FGF-10 and/or FSH added sequentially on different days of culture. Ovarian fragments were cultured during the first (days 0-8) and second (days 8-16) halves of the culture period, generating 10 treatments: α-MEM(+)/α-MEM(+) (cultured control), FSH/FSH, FSH/FGF-10, FSH/FSH+FGF-10, FGF-10/FGF-10, FGF-10/FSH, FGF-10/FSH+FGF-10, FSH+FGF-10/FSH+FGF-10, FSH+FGF-10/FSH and FSH+FGF-10/FGF-10. Follicle morphology, viability and ultrastructure were analyzed. The FSH/FGF-10 treatment showed a higher (P<0.05) percentage of normal follicles compared to all other treatments. In addition, follicles from the FSH/FGF-10 treatment maintained ultrastructural integrity after the culture period. After 16 days of culture, the FSH/FGF-10 and FSH/FSH treatments showed a higher percentage of activation compared to the cultured control (α-MEM(+)/α-MEM(+)). Moreover, the FSH/FGF-10 treatment promoted greater follicular and oocyte diameters compared to the fresh control. In conclusion, this study showed that a sequential medium with FSH followed by FGF-10 (FSH/FGF-10 and FSH/FSH) maintains follicular viability and ultrastructure and promotes transition from the primordial to primary stage (activation) and growth in goat preantral follicles cultured in vitro.

  6. Molecular characterization of the Chinese alligator follicle-stimulating hormone β subunit (FSHβ) and its expression during the female reproductive cycle.

    PubMed

    Zhang, Rui; Zhang, Shengzhou; Zhu, Xue; Zhou, Yongkang; Wu, Xiaobing

    2015-05-01

    The Chinese alligator Alligator sinensis is an endangered species endemic to China, it has a highly specialized reproductive pattern with low fecundity. Up to date, little is known about the regulation of its female reproductive cycle. Follicle-stimulating hormone (FSH), a glycoprotein hormone, plays a key role in stimulating and regulating ovarian follicular development and egg production. In this study, the complete FSHβ cDNA from the ovary of the Chinese alligator was obtained for the first time, it consists of 843-bp nucleotides, including 120-bp nucleotides of the 5'-untranslated region (UTR), 396-bp of the open reading frame, and 3'-UTR of 327-bp nucleotides. It encodes a 131-amino acid precursor molecule of FSHβ with a signal peptide of 18 amino acids followed by a mature protein of 113 amino acids. Its deduced amino acid sequence shares high identities with the American alligator (100%) and birds (89-92%). Phylogenetic tree analysis of the FSHβ amino acid sequence indicated that alligators cluster into the bird branch. Tissue distribution analyses indicated that FSHβ mRNA is expressed in ovary, intestine and liver with the highest level in the ovary, while not in stomach, pancreas, heart, thymus and thyroid. Expression of FSHβ in ovary increases in May (breeding prophase) and peaks in July (breeding period), it is maintained at high levels through September, then decreases significantly in November (post-reproductive period) and remains relatively low from January to March (hibernating period). These temporal changes of FSHβ expression implicated that it might play an important role in promoting ovarian development during the female reproductive cycle.

  7. Follicle-stimulating hormone receptor (FSHR) in Chinese alligator, Alligator sinensis: molecular characterization, tissue distribution and mRNA expression changes during the female reproductive cycle.

    PubMed

    Zhang, Rui; Zhang, Shengzhou; Zhu, Xue; Zhou, Yongkang; Wu, Xiaobing

    2015-05-01

    The follicle-stimulating hormone (FSH) plays a central role in vertebrate reproduction, with the actions of FSH mediated by FSH receptors (FSHRs) on the granulosa cells of the ovary. The present study reports the cloning and characterization of FSHR in Chinese alligator, Alligator sinensis (caFSHR), and its tissue distribution and mRNA expression changes during the reproductive cycle. The mature protein of caFSHR displays typical features of the glycoprotein hormone receptor family, but also contains some remarkable differences when compared with other vertebrate FSHRs. The deduced amino acid sequence of the caFSHR shares identity of 85% with Chinese softshell turtle, 84-87% with birds, 77-78% with mammals, 67-73% with amphibians and 51-58% with fishes. Phylogenetic tree analysis of the FSHR amino acid sequence indicated that alligators cluster into the bird branch. Tissue expression analysis showed that caFSHR was not only expressed in the ovary, but also in the stomach, intestine, pancreas liver and oviduct at similar levels, while it was not detectable in heart, thymus or thyroid. Expression of caFSHR in the ovary is high in May (breeding prophase) and peaks in July during the breeding period, where it is maintained at high levels through September (breeding anaphase). Expression decreases significantly in November (hibernating period) and then remains relatively low from January to March (hibernating period). These temporal changes in FSHR expression suggest that it plays an important role in promoting ovarian development during the female reproductive cycle of Chinese alligator.

  8. Modulation of in vitro DNA synthesis in the chicken ovarian granulosa cell follicular hierarchy by follicle-stimulating hormone and luteinizing hormone.

    PubMed

    McElroy, A P; Caldwell, D J; Proudman, J A; Hargis, B M

    2004-03-01

    Folliculogenesis in domestic hens appears to be controlled by numerous factors, particularly the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The involvement of LH in follicular steroidogenesis has been described in some detail; however, the specific role of FSH has remained elusive. In 3 experiments, the effects of ovine (o)- or chicken (c)-derived FSH (oFSH, cFSH) or LH (oLH, cLH) were evaluated on in vitro DNA synthesis [3H-thymidine (3H-TdR) incorporation], indicative of cellular proliferation, of granulosa cells from F1, F3, or F5-6 preovulatory follicles. In experiment 1, oFSH or cFSH stimulated (P < 0.05) and oLH or cLH decreased DNA synthesis by F1 granulosa cells. In experiment 2, oFSH resulted in concentration-related changes in DNA synthesis by F5-6 granulosa cells; however, no significant changes were observed in F1 or F3 granulosa cells. No effect of oLH was observed on granulosa cell proliferation from any of the follicles. Similar to oFSH, cFSH resulted in concentration-related increases in DNA synthesis in granulosa cells from F5-6 follicles with smaller magnitude changes in proliferation of F1 or F3 granulosa cells. Granulosa cells from F5-6 or F3 follicles had small increases in DNA synthesis in response to cLH. These data support the proposed role for FSH in granulosa cell proliferation, possibly contributing to follicle growth, and suggest that in vitro 3H-TdR incorporation by granulosa cells may provide a sensitive and selective bioassay for chicken gonadotropin preparations. Furthermore, data suggest that proliferative responsiveness of granulosa cells to FSH or LH may differ depending on position of follicles in the preovulatory hierarchy.

  9. Dynamic medium containing kit ligand and follicle-stimulating hormone promotes follicular survival, activation, and growth during long-term in vitro culture of caprine preantral follicles.

    PubMed

    Lima, I M T; Celestino, J J H; Faustino, L R; Magalhães-Padilha, D M; Rossetto, R; Brito, I R; Donato, M A M; Lopes, C A P; Campello, C C; Peixoto, C A; Figueiredo, J R; Rodrigues, A P R

    2012-01-01

    The aim of this study was to evaluate the effects of a dynamic medium containing kit ligand (KL) and follicle-stimulating hormone (FSH) on the in vitro culture of caprine preantral follicles for 16 days. Ovarian fragments were cultured in α-MEM(+) containing or not containing KL (50 ng/ml) and/or FSH (50 ng/ml) added during the first (days 0-8) and/or second half (days 8-16) of the culture period. Noncultured (control) and cultured fragments were processed for histological and ultrastructural evaluation. After 1 day of culture, only the treatments performed with KL or FSH maintained a percentage of normal follicles similar to that of the control. After 16 days, all treatments using KL until day 8 (KL/KL, KL/FSH, and KL/FSH+KL) and only FSH during the entire culture period (FSH/FSH) showed higher rates of follicular survival compared to α-MEM(+) alone. After 1 and 8 days, the treatments initially cultured with KL increased the percentage of follicular activation in comparison to α-MEM(+) alone and other treatments. The highest follicular diameter after 16 days was observed in follicles cultured with KL until day 8 followed by FSH (KL/FSH). Furthermore, this treatment promoted, as early as after 1 day of culture, an increase in oocyte growth compared to α-MEM(+) alone. Ultrastructural analysis confirmed the integrity of follicles cultured in KL/FSH after 16 days. In conclusion, a dynamic medium containing KL and FSH maintained follicular integrity and promoted follicular activation and growth during the long-term in vitro culture of caprine preantral follicles.

  10. Kinetic study of internalization and degradation of sup 131 I-labeled follicle-stimulating hormone in mouse Sertoli cells and its relevance to other systems

    SciTech Connect

    Shimizu, A.; Kawashima, S. )

    1989-08-15

    The behavior of 131I-labeled follicle-stimulating hormone (FSH) after binding to cell-surface receptors in cultured Sertoli cells of C57BL/6NCrj mice was investigated. Sertoli cells cultured in F12/DME were pulse-labeled with 131I-FSH for 10 min at 4 degrees C, followed by cold chase for various periods of time. After the cold chase Sertoli cells were treated with 0.2 M acetate (pH 2.5) to dissociate membrane-bound 131I-FSH (surface radioactivity). The medium containing radioactivity after cold chase was mixed with 20% trichloroacetic acid, centrifuged, and the radioactivity of the supernatant was measured (degraded hormone). The radiolabeled materials associated with each process (surface binding, internalization, and degradation) were concentrated with ultrafiltration and characterized with gel filtration and/or thin layer chromatography. The effects of lysosomotropic agents, NH4Cl and chloroquine, were studied. The cold chase study at 32 degrees C showed that the surface radioactivity was the largest among the three kinds of radioactivities associated with each process immediately after pulse labeling, but the surface radioactivity rapidly decreased, while the internalized radioactivity increased. The cold chase study at 4 degrees C did not show such time-related changes in radioactivities, and a high level of surface radioactivity constantly persisted. The surface and internalized radioactivities were due to 131I-FSH, and the degraded radioactivity was mainly due to (131I)monoiodotyrosine. When Sertoli cells were cultured with lysosomotropic agents, the internalized radioactivity increased, while the degraded radioactivity decreased. Based on these observations, a kinetic model was proposed and the relationships among the surface, internalized, and degraded radioactivities and cold chase time were calculated algebraically.

  11. Effect of transglutaminase substrates and polyamines on the cellular sequestration and processing of follicle-stimulating hormone by rat Sertoli cells

    SciTech Connect

    Dias, J.A.

    1986-08-01

    Transglutaminase (TGase) substrates monodansyl cadaverine (MDC, monodansyl-1,5 diaminopentane) and methylamine (MA) and polyamines (PA) were tested for their effects on the cellular processing of radioiodinated human follicle-stimulating hormone (/sup 125/I-hFSH). Specifically bound /sup 125/I-hFSH that could be released from cells during 10-min incubation period with acidified (pH 3.9) Hanks balanced-salt solution was considered membrane-bound unsequestered hormone. The rate at which cells sequestered /sup 125/I-hFSH into cellular compartments resistant to acid dissociation depended on the length of time in which cells were incubated with hormone. Cells incubated with /sup 125/I-hFSH for 15, 60, and 120 min had half-lives of sequestration of 26, 55 and 67 min respectively. One hundred-micromolar MDC inhibited degradation of /sup 125/I-hFSH as measured by the presence of radioactivity in the medium that was soluble in trichloroacetic acid. The rate of sequestration was never slower than that of controls, indicating that MDC did not decrease the ability of Sertoli cells to sequester /sup 125/I-hFSH. Despite these two observations, radioactivity associated with cells (acid-resistant radioactivity) was lower in cells treated with MDC than in controls. No effect of MDC on specific binding of 125I-hFSH was observed. Similar results were observed with MA, albeit at higher levels (0.0025-0.0425 M), consistent with their relative potency to inhibit TGase activity. Polyamines, spermine, and putrescine also decreased cell-associated radioactivity despite decreasing degradation of hFSH. TGase substrates (MDC, MA, PA) prevented entry of sequestered 125I-hFSH into the degradative pathways of Sertoli cells. These data suggest that transglutamination may influence the fate of sequestered FSH in Sertoli cells but not the rate at which sequestration occurs.

  12. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene.

    PubMed

    Kato, Takako; Ishikawa, Akio; Yoshida, Saishu; Sano, Yoshiya; Kitahara, Kousuke; Nakayama, Michie; Susa, Takao; Kato, Yukio

    2012-01-01

    We cloned the LIM-homeodomain protein LHX2 as a transcription factor for the porcine follicle-stimulating hormone β subunit gene (Fshβ) by the Yeast One-Hybrid Cloning System using the upstream region of -852/-746 bases (b) from the transcription start site, called Fd2, as a bait sequence. The reporter assay in LβT2 and CHO cells revealed the presence of an LHX2-responsive region other than Fd2. A potential LHX2 binding sequence was confirmed as AATTAAT containing a consensus homeodomain binding core sequence AATT by Systematic Evolution of Ligands by Exponential Enrichment analysis. DNase I footprinting demonstrated three AATTAAT sequences located at regions -835/-829, -818/-812 and -806/-800 b in the Fd2 region and 12 binding sites in the distal and proximal regions mostly containing an AATT-core sequence. RT-PCR analysis of Lhx2 expression during porcine fetal and postnatal pituitary development showed a gradual increase from fetal day (f) 40 to postnatal day (p) 8 followed by a slight decrease to p230, suggesting that LHX2 may play its role largely in the late fetal and postnatal periods. The analyses of Lhx2 expression in pituitary tumor-derived cell lines showed their expressions in cell lines including αT31, LβT2 and others. Since LHX2 was previously identified as a transcription factor for Cga and the in vitro experiments in the present study suggested that LHX2 regulated the expression of Fshβ, it is possible that LHX2 controls the synthesis of FSH at the transcription level.

  13. Analysis of pituitary gonadotropin concentration in blood serum and immunolocalization and immunoexpression of follicle stimulating hormone and luteinising hormone receptors in ovaries of postmenopausal women.

    PubMed

    Brodowska, A; Laszczyńska, M; Brodowski, J; Masiuk, M; Starczewski, A

    2012-02-01

    The participation of gonadotropins in ovarian carcinogenesis is well known and is supported by studies with inhibition of pituitary gonadotropin secretion, which results in a diminished risk of cancer. However, there are few data on localization and expression of Follicle Stimulating Hormone and Luteinising Hormone Receptors (FSHR and LHR) in ovaries of healthy postmenopausal women, and their correlation with FSH and LH concentration in blood serum is unknown. The aim of our study was to analyze gonadotropin concentration in blood serum and the expression of FSHR and LHR in ovaries of 207 postmenopausal women. Patients included in the study were divided into three groups depending on the number of years since menopause. We analyzed the concentration of FSH and LH in blood serum and the expression of FSHR and LHR in ovaries. Ovaries of postmenopausal women showed numerous morphological changes in the cortex and medulla when compared to the structure of ovaries of women at reproductive age. In all groups of patients clefts in the surface epithelium and epithelial inclusion cysts were found. The concentration of FSH and LH in the blood serum of women studied increased significantly with time from menopause. Significant differences between analyzed menopausal groups were found. The highest FSH and LH concentration in blood serum were found in women with the longest period of time from menopause. Quantitatively similar expression of FSHR and LHR was found in ovarian surface epithelial cells, in epithelial inclusion cysts and in the connective tissue cells of ovarian stroma. The intensity of the immunohistochemical reaction decreased with time from menopause and with age.

  14. Follicle Stimulating Hormone and Anti-Müllerian Hormone among Fertile and Infertile Women in Ile-Ife, Nigeria: Is there A Difference?

    PubMed Central

    Okunola, Temitope; Olusegun Ajenifuja, Kayode; Morebise Loto, Olabisi; Salawu, Afolabi; Omitinde, Stephen Oluseyi

    2017-01-01

    Background Reduced ovarian reserve predicts poor ovarian response and poor suc- cess rates in infertile women who undergo assisted reproductive technology (ART). Ovarian reserve also decreases with age but the rate of decline varies from one woman to another. This study aims to detect differences in ovarian reserve as measured by basal serum follicle stimulating hormone (FSH) and anti-Müllerian hormone (AMH) between a matched cohort of fertile and infertile regularly menstruating women, 18-45 years of age. Materials and Methods This case-control study involved 64 fertile and 64 subfertile women matched by age at recruitment. Peripheral blood samples were taken from the women recruited from the Gynecological and Outpatient Clinics of Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria. Serum FSH and AMH were quantified using ELISA at the Metabolic Research Laboratory of LAUTECH Teaching Hospital, Ogbomoso, Nigeria. Results A significant difference existed in the mean FSH of fertile (6.97 ± 3.34) and infertile (13.34 ± 5.24, P=0.013) women. We observed a significant difference in AMH between fertile (2.71 ± 1.91) and infertile (1.60 ± 2.51, P=0.029) women. There was a negative correlation between FSH and AMH in both fertile (r=-0.311, P=0.01) and infertile (r=-0.374, P=0.002) women. Conclusion The difference in ovarian reserve observed in this study suggests that reduced ovarian reserve in regularly menstruating women may be associated with early ovarian ageing or subfertility. PMID:28367303

  15. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring.

    PubMed

    Pallarés, María Eugenia; Adrover, Ezequiela; Baier, Carlos Javier; Bourguignon, Nadia S; Monteleone, Melisa C; Brocco, Marcela A; González-Calvar, Silvia I; Antonelli, Marta C

    2013-07-01

    Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.

  16. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER BRAINSTEM AUDITORY EVOKED RESPONSE (BAERS) IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...

  17. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  18. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    EPA Science Inventory

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  19. Effectiveness of a recombinant human follicle stimulating hormone on the ovarian follicles, peripheral progesterone, estradiol-17β, and pregnancy rate of dairy cows

    PubMed Central

    Ali, Mohamed; Moustafa M., Zeitoun

    2016-01-01

    Aims: This study aimed at elucidating the effects of recombinant human follicle stimulating hormone (r-hFSH) on the ovarian follicular dynamics, progesterone, estradiol-17β profiles, and pregnancy of dairy cows. Materials and Methods: Three groups (G, n=5 cows) of multiparous dairy cows were used. G1 (C) control cows were given controlled internal drug release (CIDR) and prostaglandin F2α; G2 (L) cows were given low dose (525 IU and G3 (H) cows were given high dose (1800 IU) of r-hFSH on twice daily basis at the last 3 days before CIDR removal. All cows were ultrasonically scanned for follicular growth and dynamics, and blood samples were collected every other day for two consecutive estrus cycles for the determination of estradiol-17β and progesterone. Results: Estrus was observed in all C and L but not in H cows. Dominant follicle was bigger in L compared to C and H cows. Dominant follicle in C (16.00±2.5 mm) and L cows (17.40±2.3 mm) disappeared at 72 h after CIDR removal. However, in H cows, no ovulation has occurred during 7 days post-CIDR removal. Progesterone was not different (p>0.10) among groups, whereas estradiol-17β revealed significant (p<0.01) reduction in H (15.96±2.5 pg/ml) cows compared to C (112.26±26.1 pg/ml) and L (97.49±15.9 pg/ml) cows. Pregnancy rate was higher in L cows (60%) compared with C cows (20%). However, H cows were not artificially inseminated due to non-ovulation. Only a cow of C group has calved one calf, however, 2 of the L cows gave birth of twins and a cow gave single calf. Conclusion: Administration of a low dose (525 IU) of r-hFSH resulted in an optimal size of dominant follicle, normal values of progesterone and estradiol-17β, and 40% twinning rate, howeverusing 1800 IU of r-hFSH, have adverse effects on ovarian follicular dynamics and hormonal profiles with non-pregnancy of dairy cows raised under hot climate. PMID:27536029

  20. Association of Levels of Serum Inhibin B and Follicle-stimulating Hormone with Testicular Vascularity, Volume, and Echotexture in Children with Undescended Testes

    PubMed Central

    Chinya, Abhishek; Ratan, Simmi K.; Aggarwal, Satish K.; Garg, Anju; Mishra, T. K.

    2017-01-01

    Aims: The aim of our study was to assess the association between reproductive hormones (inhibin B [inh B], follicle-stimulating hormone [FSH]) with testicular volume, echogenicity, and blood flow (resistive index [RI]) in children with undescended testis (UDT). Settings and Design: This was a prospective study of 1-year study duration. Materials and Methods: A total of 33 patients (16 unilateral and 17 bilateral) UDTs aged 5–12 years with palpable UDT were included in the study. Morning fasting blood samples were taken for estimation of serum inh B and FSH as well as inh B/FSH ratio. Testicular ultrasound was done to compute testicular volume, testicular echogenicity, and testicular vascularity in terms of RI. Results: The mean age of patients enrolled in the study was 8.29 years for unilateral UDT and 7.97 years in bilateral UDT and it was comparable. The study groups were further subdivided into two age-wise subgroups school goers (5–8 years) and prepubertal (9–12 years). The values of inh B, FSH, and inh B/FSH ratios as well as mean testicular volume were comparable between both groups and subgroups. Overall mean testicular volume had a positive correlation with FSH, inh B, and inh B/FSH, but statistical significance was reached only for inh B (P < 0.001) in children with both unilateral and bilateral UDT. Apart from five patients with hypoechogenicity within the testis, all remaining testes were of homogenous echotexture with no instances of irregular echogenicity or tumor. Children with RI >0.6 were separately studied. The incidence of high RI (>0.6) was also comparable in unilateral or bilateral disease. These subjects had unfavorable biochemical parameters in terms of low inh B levels and high FSH levels. Conclusions: Our findings hint to the fact that palpable UDT forms a homogenous group, whether unilateral or bilateral, whereas impalpable testes may form a separate category and need further studies to substantiate this hypothesis. PMID:28082768

  1. Development of a porcine follicle-stimulating hormone and porcine luteinizing hormone induced ovulation protocol in the seasonally anoestrus brushtail possum (Trichosurus vulpecula).

    PubMed

    Glazier, A M; Molinia, F C

    2002-01-01

    Monovulatory brushtail possums (Trichosurus vulpecula) were stimulated with exogenous hormones during seasonal anoestrus to overcome ovarian insensitivity and induce ovulation. Seasonal ovarian insensitivity to pregnant mare serum gonadotrophin (PMSG) was overcome by a new porcine follicle-stimulating hormone/porcine luteinizing hormone (pFSH/pLH) protocol. This protocol was refined because the original treatment produced oocytes with abnormal morphology. Possums (n = 12 per group) received eight injections of pFSH of 1.5, 3.0 or 6.0 mg per injection (at 12-h intervals for 4 consecutive days). Ovulation was induced 12 h after the final pFSH injection with a 4-mg injection of pLH. Control animals were treated with the established protocol of a single injection of 15 IU of PMSG, followed 48 h later with an injection of 4 mg of pLH. All females responded to pFSH/pLH treatment, although optimal stimulation occurred in those receiving 8 x 3 mg pFSH, with 13-14 ovulations and recovery of 11-12 oocytes per female (8 x 1.5 mg pFSH: 13 ovulations, 8-9 oocytes; 8 x 6 mg pFSH: 7-8 ovulations, 4-5 oocytes). In contrast, only seven of 12 females responded to PMSG/pLH and, of those responding, only 2-3 ovulations occurred and only 1-2 oocytes per female were recovered. However, around 80% of oocytes recovered after PMSG/pLH treatment had undergone nuclear maturation (metaphase II/1st polar body) compared with around 60% of oocytes from pFSH/pLH-treated animals. In possums killed from 27 to 39 h after pLH treatment, ovulation onset was first observed from 30 h and by 31.5 h, all animals had completed ovulation. Laparoscopic artificial insemination (LAI) was performed on pFSH/pLH-treated animals to determine whether the oocytes produced were capable of fertilization. Uterine LAI performed 27.5-28.5 h after pLH treatment yielded 11/26 fertilized oocytes (up to 4-cell stage), whereas vaginal LAI performed 13-14 h after pLH treatment yielded 21/53 fertilized oocytes. A proportion of

  2. Phase IV, open-label, randomized study of low-dose recombinant human follicle-stimulating hormone protocols for ovulation induction

    PubMed Central

    2014-01-01

    Background This Phase IV, open-label, multicentre, randomized study (MEnTOR) compared two low-dose recombinant human follicle-stimulating hormone (r-hFSH) protocols for ovulation induction. Methods This study was conducted in six Middle Eastern countries between March 2009 and March 2011. Eligible women (18–37 years), with World Health Organization Group II anovulatory infertility, were randomized to receive r-hFSH (starting daily dose: 75 IU) as a chronic low-dose (CLD) (37.5 IU dose increase on Day 14) or low-dose (LD) (37.5 IU dose increase on Day 7) protocol if no follicles were ≥10 mm. The maximum r-hFSH daily dose permitted was 225 IU/day. The total length of ovarian stimulation could not exceed 35 days, unless ultrasound assessment suggested imminent follicular growth and maturation. Patients underwent only one treatment cycle. Primary endpoint: incidence of mono-follicular development. Secondary endpoints included: stimulation duration and rates of bi-follicular development; human chorionic gonadotrophin administration rate; clinical pregnancy; and cycle cancellation (owing to inadequate response). Adverse events (AEs) were recorded. The primary efficacy analysis was performed using data from all patients who received at least one dose of correct study medication, had at least one efficacy assessment, and no protocol violations at treatment start (CLD group, n = 122; LD group, n = 125). Results Mono-follicular development rates (primary endpoint) were similar in both groups (CLD: 56.6% [69/122] versus LD: 55.2% [69/125], p = 0.93; primary efficacy analysis population). Similarly, there were no significant differences between groups in bi-follicular development, clinical pregnancy or cycle cancellation (inadequate response) rates. In patients who received human chorionic gonadotrophin injections, the mean duration of stimulation was 13.7 days in the CLD group and 12.9 days in the LD group. Clinical pregnancy rates for those

  3. Gonadotropin-releasing hormone, estradiol, and inhibin regulation of follicle-stimulating hormone and luteinizing hormone surges: implications for follicle emergence and selection in heifers.

    PubMed

    Haughian, James M; Ginther, O J; Diaz, Francisco J; Wiltbank, Milo C

    2013-06-01

    Mechanisms regulating gonadotropin surges and gonadotropin requirements for follicle emergence and selection were studied in heifers. Experiment 1 evaluated whether follicular inhibins regulate the preovulatory luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surges elicited by gonadotropin-releasing hormone (GnRH) injection (Hour = 0) and the subsequent periovulatory FSH surge. Treatments included control (n = 6), steroid-depleted bovine follicular fluid (bFF) at Hour -4 (n = 6), and bFF at Hour 6 (n = 6). Gonadotropins in blood were assessed hourly from Hours -6 to 36, and follicle growth tracked by ultrasound. Consistent with inhibin independence, bFF at Hour -4 did not impact the GnRH-induced preovulatory FSH surge, whereas treatment at Hour 6 delayed onset of the periovulatory FSH surge and impeded growth of a new follicular wave. Experiment 2 examined GnRH and estradiol (E2) regulation of the periovulatory FSH surge. Treatment groups were control (n = 8), GnRH-receptor antagonist (GnRHr-ant, n = 8), and E2 + GnRHr-ant (n = 4). GnRHr-ant (acyline) did not reduce the concentrations of FSH during the periovulatory surge and early follicle development (<7.0 mm) was unaffected, although subsequent growth of a dominant follicle (>8.0 mm) was prevented by GnRHr-ant. Addition of E2 delayed both the onset of the periovulatory FSH surge and emergence of a follicular wave. Failure to select a dominant follicle in the GnRHr-ant group was associated with reduced concentrations of LH but not FSH. Maximum diameter of F1 in controls (13.3 ± 0.5 mm) was greater than in both GnRHr-ant (7.7 ± 0.3 mm) and E2 + GnRHr-ant (6.7 ± 0.8 mm) groups. Results indicated that the periovulatory FSH surge stems from removal of negative stimuli (follicular E2 and inhibin), but is independent of GnRH stimulation. Emergence and early growth of follicles (until about 8 mm) requires the periovulatory FSH surge but not LH pulses. However, follicular deviation and late-stage growth of

  4. The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells

    PubMed Central

    2014-01-01

    Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and

  5. Seminal anti-Müllerian hormone levels during recombinant human follicle-stimulating hormone treatment in men with idiopathic infertility undergoing assisted reproduction cycles.

    PubMed

    Caprio, F; De Franciscis, P; Trotta, C; Ianniello, R; Mele, D; Colacurci, N

    2015-09-01

    A prospective study was designed to investigate the effects of recombinant human follicle-stimulating hormone (rhFSH) on seminal anti-Müllerian hormone (AMH) levels in men with idiopathic oligoasthenoteratozoospermia (iOAT), researching possible relationships between the seminal AMH behavior and the response to the treatment. Thirty-nine men who were candidates for intracytoplasmic sperm injection (ICSI) because of iOAT were enrolled. Patients were treated on alternately days with 150 IU of rhFSH for at least 3 months before assisted reproduction cycles. Main outcome measures were seminal AMH concentrations before and after rhFSH therapy. After treatment, 16 subjects (responders) showed an improvement in their sperm count compared to baseline (7.6 ± 2.9 vs. 19.3 ± 7.7, p < 0.01) whereas 23 men (non-responders) experienced no sperm modifications. Baseline seminal AMH concentrations were significantly higher in responders than in non-responders (53.0 ± 30.6 vs. 34.6 ± 18.5, p < 0.025). Following therapy, a greater increase in AMH levels was observed in responders compared to non-responders (Δ = 24.8 ± 36.4 vs. Δ = 6.4 ± 11.2, p < 0.028). Seminal AMH levels significantly and positively correlated with sperm count (after rhFSH treatment rho = 0.647, p < 0.001). Our study suggests that rhFSH improves sperm count in a quota of iOAT men, and the subjects who respond to the treatment have higher baseline seminal AMH concentrations than the patients who are not responsive. Seminal AMH could be helpful to select those infertile men who may benefit from rhFSH treatment.

  6. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    SciTech Connect

    Lantz, R. Clark Chau, Binh; Sarihan, Priyanka; Witten, Mark L.; Pivniouk, Vadim I.; Chen, Guan Jie

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

  7. The roles of THY1 and integrin beta3 in cell adhesion during theca cell layer formation and the effect of follicle-stimulating hormone on THY1 and integrin beta3 localization in mouse ovarian follicles.

    PubMed

    Itami, Saori; Tamotsu, Satoshi; Sakai, Atsushi; Yasuda, Keiko

    2011-05-01

    The mechanism of theca cell layer formation in mammalian ovaries has not been elucidated. In the present study, we examined the roles of THY1 and integrin beta3 in theca cell layer formation during mouse folliculogenesis. The localization pattern of THY1 and integrin beta3 in adult mouse ovary was investigated immunohistochemically. The strongest THY1 signal was observed in theca cell layers from secondary to preantral follicles, at which time theca cells have begun to participate in follicle formation. Integrin beta3 also localized to the theca cell layer of secondary to preantral follicles and showed a localization pattern similar to that of THY1. Moreover, the role of THY1 in theca cell layer formation was examined using a follicle culture system. When anti-THY1 antibody was added to this culture, no theca cell layers were formed, and the granulosa cells were distanced from each other. Because a THY1 signal was not observed in ovaries at stages earlier than prepuberty, THY1 localization also appeared to be affected by mouse development. This possibility was examined by determining the effect of administering follicle-stimulating hormone, luteinizing hormone, and 17beta-estradiol to 7-day-old mice on THY1 localization in the ovary 3 days later. Only follicle-stimulating hormone induced a THY1 signal in 10-day-old mouse ovaries. No THY1 signal was observed in untreated 10-day-old ovaries. In conclusion, THY1 might play a role in cell adhesion via binding to integrin beta3 in mouse ovaries. The present results suggest that THY1 localization may be affected by follicle-stimulating hormone in mouse ovaries.

  8. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring

    PubMed Central

    Vallaster, Markus P; Kukreja, Shweta; Bing, Xin Y; Ngolab, Jennifer; Zhao-Shea, Rubing; Gardner, Paul D; Tapper, Andrew R; Rando, Oliver J

    2017-01-01

    Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics. DOI: http://dx.doi.org/10.7554/eLife.24771.001 PMID:28196335

  9. Developmental timing of perchlorate exposure alters threespine stickleback dermal bone

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Adequate levels of thyroid hormone are critical during development and metamorphosis, and for maintaining metabolic homeostasis. Perchlorate, a common contaminant of water sources, inhibits thyroid function in vertebrates. We utilized threespine stickleback (Gasterosteus aculeatus) to determine if timing of perchlorate exposure during development impacts adult dermal skeletal phenotypes. Fish were exposed to water contaminated with perchlorate (30 mg/L or 100 mg/L) beginning at 0, 3, 7, 14, 21, 42, 154 or 305 days post fertilization until sexual maturity at one year of age. A reciprocal treatment moved stickleback from contaminated to clean water on the same schedule providing for different stages of initial exposure and different treatment durations. Perchlorate exposure caused concentration-dependent significant differences in growth for some bony traits. Continuous exposure initiated within the first 21 days post fertilization had the greatest effects on skeletal traits. Exposure to perchlorate at this early stage can result in small traits or abnormal skeletal morphology of adult fish which could affect predator avoidance and survival. PMID:25753171

  10. Acute Exposure to Particulate Matter (PM) Alters Physiologic ...

    EPA Pesticide Factsheets

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). We previously examined the effects of PM on HF by exposing Spontaneously Hypertensive Heart Failure (SHHF) rats to residual oil fly ash (ROFA) after accelerating HF onset via isoproterenol (ISO) infusion. In that study, rats were exposed to PM 2 wks after ISO treatment ceased, which was more than 1 wk after ISO-cessation had induced a 9-d period of hypotension. Epidemiological evidence suggests that effects would be more pronounced if exposure coincided with the HF-like hypotensive period. We hypothesized that PM exposure shortly after cessation of ISO treatment would cause greater cardiopulmonary injury. SHHF rats were infused with ISO (n=24; 1.0 mg/kg/d sc) or saline (n=23) via osmotic pump for 5 wks and then 5 d later exposed by nose-only inhalation for 4 h to either air or 580 µg/m3 of the PM2.5 fraction of a synthetic PM (dried salt solution, MSO4) similar in composition to a well-studied ROFA and consisting of Fe, Ni and V sulfates. In ISO-pretreated rats only, MSO4 decreased pulse pressure (an indirect indicator of cardiac output), decreased systolic and diastolic blood pressures, and increased QA interval (inversely related to myocardial contractility) during inhalation exposure and caused post-inhalation pulmonary inflammation significantl

  11. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  12. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  13. EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.

    EPA Science Inventory

    Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication

    Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.

    Exposure to ambient air pollution particulate matter (...

  14. ACUTE EXPOSURE TO MOLINATE ALTERS NEUROENDOCRINE CONTROL OF OVULATION IN THE RAT

    EPA Science Inventory

    Molinate, a thiocarbamate herbicide, has been shown previously to impair reproductive capability in the male rat. In a two-generation study, molinate exposure to female rats resulted in altered pregnancy outcome. However, published data is lacking on the effects of acute exposure...

  15. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  16. Ovarian follicular development and oocyte quality in anestrous ewes treated with melatonin, a controlled internal drug release (CIDR) device and follicle stimulating hormone.

    PubMed

    Luther, Justin S; Redmer, Dale A; Reynolds, Lawrence P; Choi, Jong Tae; Pant, Disha; Navanukraw, Chainarong; Arnold, Daniel R; Scheaffer, Abraham N; Borowicz, Pawel; Kirsch, James D; Weigl, Robert M; Kraft, Kim C; Grazul-Bilska, Anna T

    2005-05-01

    The objective of the current study was to determine the effects of hormonal treatments on ovarian follicular development and oocyte quality in anestrous ewes. Multiparous crossbred (RambouilletxTarghee) ewes were given melatonin implants (MEL) and/or controlled internal drug release (CIDR) devices in conjunction with follicle stimulating hormone (FSH) during anestrus (March-May). In Experiment 1, ewes (n=25) were assigned randomly to four groups (n=4-7/group) in a 2x2 factorial arrangement [+/-MEL and +/-CIDR], resulting in Control (no treatment), CIDR, MEL, and MEL/CIDR groups, respectively. Ewes received an implant containing 18 mg of melatonin (Melovine) on Day 42 and/or a CIDR from Days 7 to 2 (Day 0: oocyte collection). In Experiment 2, ewes (n=12) were assigned randomly to two groups (n=6/group; 1CIDR or 2CIDR) and received the same type of melatonin implant on Day 60. All ewes received a CIDR device from Days -22 to -17 and 2CIDR ewes received an additional CIDR device from Days -10 to -2. In both experiments, ewes were given FSH im twice daily (morning and evening) on Days -2 and -1 (Day -2: 5 units/injection; Day -1: 4 units/injection). On the morning of Day 0, ovaries were removed, follicles>or=1 mm were counted, and oocytes were collected. Thereafter oocytes were matured and fertilized in vitro. In Experiment 1, the number of visible follicles and the rates of oocyte recovery and in vitro maturation were similar (P>0.10) for Control, CIDR, MEL and MEL/CIDR (overall 29.7+/-2.9%, 89.9+/-7.1% and 95.0+/-2.0%, respectively). The rates of in vitro fertilization (IVF) were lower (P<0.01) for CIDR and MEL/CIDR than for Control and MEL groups (10.3% and 10.1% versus 20.0% and 18.5%, respectively). In Experiment 2, the number of visible follicles, and the rates of oocyte recovery and in vitro maturation were similar (P>0.10) for 1CIDR and 2CIDR groups (overall 27.3+/-3.2%, 92.1+/-2.7% and 90.2+/-1.9%, respectively). However, the rates of IVF were lower (P<0

  17. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability.

  18. Alteration of catecholamine concentrations in rat testis after methamphetamine exposure.

    PubMed

    Janphet, S; Nudmamud-Thanoi, S; Thanoi, S

    2017-03-01

    Methamphetamine (METH) is an illicit drug that can lead to changes in catecholamines in the brain. It also has substantial effects on reproductive function. We investigated whether rat models of METH abuse could induce changes in the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its metabolite, 3,4-dihydroxyphenylglycol (DHPG), in testis. Four groups of rats received vehicle, acute dose (AB), escalating dose (ED) or ED with an acute high dose (ED-binge) METH. DOPAC, NE and DHPG were determined using HPLC. DOPAC was significantly increased in the AB while NE was significantly decreased in the ED-binge. DHPG was also significantly decreased in the ED and ED-binge. METH induces alterations of DOPAC, NE and DHPG testicular concentrations that may result in male reproductive dysfunction.

  19. Effect of prenatal haloperidol exposure on behavioral alterations in rats.

    PubMed

    Singh, K P; Singh, Mandavi

    2002-01-01

    Pregnant Charles-Foster rats were exposed to haloperidol (HAL), a neuroleptic drug that binds to and blocks dopamine (DA) receptor subtypes at a dose of 2.5 mg/kg body weight (intraperitoneally) from Gestation Day (GD) 12 to 20. The animals from both treated as well as vehicle control groups were allowed to deliver on GD 21. The offspring culled at birth on the basis of sex and weight were subjected to behavioral tests at the age of 8 weeks. The HAL-treated rat offspring showed a significant increase in anxiogenic behavior on the open field, elevated plus-maze and elevated zero-maze tests when compared with the vehicle-treated (control) rat offspring of the same age group. These findings suggest that prenatal exposure to HAL during a critical period of brain development leaves a lasting imprint on the brain, resulting in abnormal anxiety states, possibly through dopaminergic neurotransmission mechanisms.

  20. Developmental exposure to paracetamol causes biochemical alterations in medulla oblongata.

    PubMed

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2015-09-01

    The effect and safety of prenatal and early life administration of paracetamol - routinely used over-the-counter antipyretic and analgesic medication on monoamines content and balance of amino acids in the medulla oblongata is still unknown. In this study we have determined the level of neurotransmitters in this structure in two-month old Wistar male rats exposed to paracetamol in the dose of 5 (P5, n=10) or 15mg/kg b.w. (P15, n=10) during prenatal period, lactation and till the end of the second month of life. Control group received drinking water (Con, n=10). Monoamines, their metabolites and amino acids concentration in medulla oblongata of rats were determined using high performance liquid chromatography (HPLC) in 60 postnatal day (PND60). This experiment shows that prenatal and early life paracetamol exposure modulates neurotransmission associated with serotonergic, noradrenergic and dopaminergic system in medulla oblongata. Reduction of alanine and taurine levels has also been established.

  1. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    PubMed

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2016-12-15

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (Mage  = 9.19) before and 9 months after (Mage  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information.

  2. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations.

    PubMed

    Levin, Edward D; Addy, Nii; Baruah, Avanti; Elias, Alana; Christopher, N Channelle; Seidler, Frederic J; Slotkin, Theodore A

    2002-01-01

    Use of chlorpyrifos (CPF) has been curtailed due to its developmental neurotoxicity. In rats, postnatal CPF administration produces lasting changes in cognitive performance, but less information is available about the effects of prenatal exposure. We administered CPF to pregnant rats on gestational days (GD) 17-20, a peak period of neurogenesis, using doses (1 or 5 mg/kg/day) below the threshold for fetal growth impairment. We then evaluated performance in the T-maze, Figure-8 apparatus and 16-arm radial maze, beginning in adolescence and continuing into adulthood. CPF elicited initial locomotor hyperactivity in the T-maze. Females showed slower habituation in the Fig. 8 maze; no effects were seen in males. In the radial-arm maze, females showed impaired choice accuracy for both working and reference memory and again, males were unaffected. Despite the deficits, all animals eventually learned the maze with continued training. At that point, we challenged them with the muscarinic antagonist, scopolamine, to determine the dependence of behavioral performance on cholinergic function. Whereas control females showed impairment with scopolamine, CPF-exposed females did not, implying that the delayed acquisition of the task had been accomplished through alternative mechanisms. The differences were specific to muscarinic circuits, as control and CPF groups responded similarly to the nicotinic antagonist, mecamylamine. Surprisingly, adverse effects of CPF were greater in the group receiving 1 mg/kg as compared to 5 mg/kg. Promotional effects of acetylcholine (ACh) on cell differentiation may thus help to offset CPF-induced developmental damage that occurs through other noncholinergic mechanisms. Our results indicate that late prenatal exposure to CPF induces long-term changes in cognitive performance that are distinctly gender-selective. Additional defects may be revealed by similar strategies that subject the animals to acute challenges, thus, uncovering the adaptive

  3. Exposure to mercury alters early activation events in fish leukocytes.

    PubMed Central

    MacDougal, K C; Johnson, M D; Burnett, K G

    1996-01-01

    Although fish in natural populations may carry high body burdens of both organic and inorganic mercury, the effects of this divalent metal on such lower vertebrates is poorly understood. In this report, inorganic mercury in the form of mercuric chloride (HgCl2) is shown to produce both high-dose inhibition and low-dose activation of leukocytes in a marine teleost fish, Sciaenops ocellatus. Concentrations of inorganic mercury > or = 10 microM suppressed DNA synthesis and induced rapid influx of radiolabeled calcium, as well as tyrosine phosphorylation of numerous cellular proteins. Lower concentrations (0.1-1 microM) of HgCl2 that activated cell growth also induced a slow sustained rise in intracellular calcium in cells loaded with the calcium indicator dye fura-2, but did not produce detectable tyrosine phosphorylation of leukocyte proteins. These studies support the possibility that subtoxic doses of HgCl2 may inappropriately activate teleost leukocytes, potentially altering the processes that regulate the magnitude and specificity of the fish immune response to environmental pathogens. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. PMID:8930553

  4. Exposure to high ambient temperatures alters embryology in rabbits

    NASA Astrophysics Data System (ADS)

    García, M. L.; Argente, M. J.

    2017-03-01

    High ambient temperatures are a determining factor in the deterioration of embryo quality and survival in mammals. The aim of this study was to evaluate the effect of heat stress on embryo development, embryonic size and size of the embryonic coats in rabbits. A total of 310 embryos from 33 females in thermal comfort zone and 264 embryos of 28 females in heat stress conditions were used in the experiment. The traits studied were ovulation rate, percentage of total embryos, percentage of normal embryos, embryo area, zona pellucida thickness and mucin coat thickness. Traits were measured at 24 and 48 h post-coitum (hpc); mucin coat thickness was only measured at 48 hpc. The embryos were classified as zygotes or two-cell embryos at 24 hpc, and 16-cells or early morulae at 48 hpc. The ovulation rate was one oocyte lower in heat stress conditions than in thermal comfort. Percentage of normal embryos was lower in heat stress conditions at 24 hpc (17.2%) and 48 hpc (13.2%). No differences in percentage of zygotes or two-cell embryos were found at 24 hpc. The embryo development and area was affected by heat stress at 48 hpc (10% higher percentage of 16-cells and 883 μm2 smaller, respectively). Zona pellucida was thicker under thermal stress at 24 hpc (1.2 μm) and 48 hpc (1.5 μm). No differences in mucin coat thickness were found. In conclusion, heat stress appears to alter embryology in rabbits.

  5. Alteration of Rat Fetal Cerebral Cortex Development after Prenatal Exposure to Polychlorinated Biphenyls

    PubMed Central

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R. Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain. PMID:24642964

  6. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    PubMed

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  7. PRENATAL EXPOSURE TO ENVIRONMENTAL TOBACCO SMOKE ALTERS GENE EXPRESSION IN THE DEVELOPING MURINE HIPPOCAMPUS

    PubMed Central

    Mukhopadhyay, Partha; Horn, Kristin H.; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Little is known about the effects of passive smoke exposures on the developing brain. Objective The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. Methods A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for six hours/day from gestational days 6–17 (gd 6–17) [for microarray] or gd 6–18.5 [for fetal phenotyping]. Results There were no significant effects of ETS exposure on fetal phenotype. However, 61 “expressed” genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5 fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were downregulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. Conclusions Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the “early” period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function. PMID:19969065

  8. Alterations in lung clearance mechanisms due to single and repeated nitrogen dioxide exposures in the rabbit

    SciTech Connect

    Vollmuth, T.A.

    1986-01-01

    Tracheobronchial mucociliary clearance was assessed following single, two-hour exposures to either 0.3, 1.0, 3.0, or 10.0 ppm NO/sub 2/, or 14 daily two hour exposures to 0.3, 1.0, 3.0 ppm NO/sub 2/. No significant changes in the mean residence time of tracer particles in the tracheobronchial region were produced under any exposure condition, indicating no effect upon mucociliary clearance. Macrophage functional properties were examined in vitro at select times following single, two hour in vivo exposures to 1.0 and 10.0 ppm NO/sub 2/. Macrophage number and viability were not affected; however, significant dose-related differences in phagocytosis and mobility were observed. These changes were associated with altered in vivo alveolar clearance patterns. Additional studies examined the effects of in vitro exposure to nitrite and hydrogen ion, two known NO/sub 2/ reaction products in the lung, on macrophage phagocytosis. While hydrogen ion had no effect at the levels used, nitrate was shown to enhance phagocytosis. These results demonstrate that alveolar clearance and macrophage function are altered by short-term NO/sub 2/ exposure at realistic, environmental levels. These data also provide insight into the mechanisms of NO/sub 2/-induced alteration in lung clearance pathways.

  9. FINE AMBIENT AIR PARTICULAR MATTER EXPOSURE INDUCES MOLECULAR ALTERATIONS INDICATIVE OF CARDIOVASCULAR DISEASE PROGRESSION IN ATHEROSCLEROTIC SUSCEPTIBLE MICE

    EPA Science Inventory

    Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...

  10. Low-dose, Chronic Exposure to Silver Nanoparticles Causes Mild Mitochondrial Alterations in the Liver of Sprague-Dawley Rat

    DTIC Science & Technology

    2014-05-10

    AFRL-AFOSR-UK-TR-2014-0032 Low-dose, chronic exposure to silver nanoparticles causes mild mitochondrial alterations in the liver ...TITLE AND SUBTITLE Low-dose, chronic exposure to silver nanoparticles causes mild mitochondrial alterations in the liver of Sprague-Dawley rat 5a...alterations were found in heart and kidney levels, and despite the fact that the alterations found in liver mitochondria did not appear to compromise ATP

  11. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    EPA Science Inventory

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  12. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    EPA Science Inventory

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  13. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  14. PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS

    EPA Science Inventory

    PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS. R A Matulka1, AA Rooney3, W Williams2, CB Copeland2, and R J Smialowicz2. 1Curriculum in Toxicology, UNC, Chapel Hill, NC, USA; 2US EPA, ITB, ETD, NHEERL, RT...

  15. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    EPA Science Inventory

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  16. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    EPA Science Inventory

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  17. Caspofungin exposure alters the core septin AspB interactome of Aspergillus fumigatus.

    PubMed

    Vargas-Muñiz, José M; Renshaw, Hilary; Waitt, Greg; Soderblom, Erik J; Moseley, M Arthur; Palmer, Jonathan M; Juvvadi, Praveen R; Keller, Nancy P; Steinbach, William J

    2017-04-01

    Aspergillus fumigatus, the main etiological agent of invasive aspergillosis, is a leading cause of death in immunocompromised patients. Septins, a conserved family of GTP-binding proteins, serve as scaffolding proteins to recruit enzymes and key regulators to different cellular compartments. Deletion of the A. fumigatus septin aspB increases susceptibility to the echinocandin antifungal caspofungin. However, how AspB mediates this response to caspofungin is unknown. Here, we characterized the AspB interactome under basal conditions and after exposure to a clinically relevant concentration of caspofungin. While A. fumigatus AspB interacted with 334 proteins, including kinases, cell cycle regulators, and cell wall synthesis-related proteins under basal growth conditions, caspofungin exposure altered AspB interactions. A total of 69 of the basal interactants did not interact with AspB after exposure to caspofungin, and 54 new interactants were identified following caspofungin exposure. We generated A. fumigatus deletion strains for 3 proteins (ArpB, Cyp4, and PpoA) that only interacted with AspB following exposure to caspofungin that were previously annotated as induced after exposure to antifungal agents, yet only PpoA was implicated in the response to caspofungin. Taken together, we defined how the septin AspB interactome is altered in the presence of a clinically relevant antifungal.

  18. Effects of perinatal bisphenol A exposure during early development on radial arm maze behavior in adult male and female rats

    PubMed Central

    Sadowski, Renee N.; Park, Pul; Neese, Steven L.; Ferguson, Duncan C.; Schantz, Susan L.; Juraska, Janice M.

    2014-01-01

    Previous work has shown that exposure to bisphenol A (BPA) can affect anxiety behavior. However, no studies have examined whether administration of this endocrine disruptor during the perinatal period has the potential to induce alterations in cognitive behavior in both adult males and females as assessed in an appetitive task. The goal of the current study was to determine whether exposure to different doses of BPA during early development alters performance on the 17-arm radial maze in adulthood in Long-Evans rats. Oral administration of corn oil (vehicle), 4 μg/kg, 40 μg/kg, or 400 μg/kg BPA to the dams occurred daily throughout pregnancy, and the pups received direct oral administration of BPA between postnatal days 1-9. Blood was collected from offspring at weaning age to determine levels of several hormones (thyroxine, thyroid stimulating hormone, follicle stimulating hormone, luteinizing hormone). One male and one female from each litter were evaluated on the 17-arm radial maze, a working/reference memory task, in adulthood. Results indicated that after exposure to BPA at both 4 and 400 μg/kg/day, rats of both sexes had decreased levels of FSH at weaning. There were no significant effects of BPA on performance on the radial arm maze in males or females. In conclusion, exposure to BPA during early development had modest effects on circulating hormones but did not affect a spatial learning and memory task. PMID:24440629

  19. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  20. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    PubMed

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  1. Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development: Folate prevention

    PubMed Central

    Han, Mingda

    2016-01-01

    Background Embryonic acute exposure to ethanol (EtOH), lithium, and homocysteine (HCy) induces cardiac defects at the time of exposure; folic acid (FA) supplementation protects normal cardiogenesis (Han et al., 2009, 2012; Serrano et al., 2010). Our hypothesis is that EtOH exposure and FA protection relate to lipid and FA metabolism during mouse cardiogenesis and placentation. Methods On the morning of conception, pregnant C57BL/6J mice were placed on either of two FA‐containing diets: a 3.3 mg health maintenance diet or a high FA diet of 10.5 mg/kg. Mice were injected a binge level of EtOH, HCy, or saline on embryonic day (E) 6.75, targeting gastrulation. On E15.5, cardiac and umbilical blood flow were examined by ultrasound. Embryonic cardiac tissues were processed for gene expression of lipid and FA metabolism; the placenta and heart tissues for neutral lipid droplets, or for medium chain acyl‐dehydrogenase (MCAD) protein. Results EtOH exposure altered lipid‐related gene expression on E7.5 in comparison to control or FA‐supplemented groups and remained altered on E15.5 similarly to changes with HCy, signifying FA deficiency. In comparison to control tissues, the lipid‐related acyl CoA dehydrogenase medium length chain gene and its protein MCAD were altered with EtOH exposure, as were neutral lipid droplet localization in the heart and placenta. Conclusion EtOH altered gene expression associated with lipid and folate metabolism, as well as neutral lipids, in the E15.5 abnormally functioning heart and placenta. In comparison to controls, the high FA diet protected the embryo and placenta from these effects allowing normal development. Birth Defects Research (Part A) 106:749–760, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc. PMID:27296863

  2. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  3. Effect of prenatal and neonatal exposure to lead on gonadotropin receptors and steroidogenesis in rat ovaries

    SciTech Connect

    Wiebe, J.P.; Barr, K.J.; Buckingham, K.D.

    1988-01-01

    Sprague-Dawley rats were treated with lead chloride (20 or 200 ppm) or sodium chloride (controls) in their drinking water, either prior to pregnancy or during pregnancy and lactation, and female offspring were examined at weaning (21 d) or at 150 d. Other female rats were treated from d 21 to 35. Tissue (blood, kidney, bone) lead levels, body, ovary, and uterus weights, ovarian steroidogenesis, and gonadotropin (luteinizing hormone and follicle-stimulating hormone) levels, and gonadotropin-receptor binding were determined. Prenatal and/or postnatal exposure to lead at these levels (20 and 200 ppm) did not affect tissue weights but did cause a significant decrease in gonadotropin-receptor binding in the prepubertal, pubertal and adult females. Conversion of progesterone to androstenedione and dihydrotestosterone was significantly decreased in 21-d-old rats; in 150-d-old females, the prenatal and/or postnatal exposure to lead resulted in significantly increased conversion to the 5-alpha-reduced steroid, normally high during puberty. The results demonstrate that lead exposure prior to mating may affect gonadotropin-receptor binding in the offspring and that lead exposure (in utero, via mother's milk, or post weaning) may significantly alter steroid production and gonadotropin binding in ovaries of the prepubertal, pubertal, and adult female.

  4. Associations between Bisphenol A Exposure and Reproductive Hormones among Female Workers.

    PubMed

    Miao, Maohua; Yuan, Wei; Yang, Fen; Liang, Hong; Zhou, Zhijun; Li, Runsheng; Gao, Ersheng; Li, De-Kun

    2015-10-22

    The associations between Bisphenol-A (BPA) exposure and reproductive hormone levels among women are unclear. A cross-sectional study was conducted among female workers from BPA-exposed and unexposed factories in China. Women's blood samples were collected for assay of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-Estradiol (E2), prolactin (PRL), and progesterone (PROG). Their urine samples were collected for BPA measurement. In the exposed group, time weighted average exposure to BPA for an 8-h shift (TWA8), a measure incorporating historic exposure level, was generated based on personal air sampling. Multiple linear regression analyses were used to examine linear associations between urine BPA concentration and reproductive hormones after controlling for potential confounders. A total of 106 exposed and 250 unexposed female workers were included in this study. A significant positive association between increased urine BPA concentration and higher PRL and PROG levels were observed. Similar associations were observed after the analysis was carried out separately among the exposed and unexposed workers. In addition, a positive association between urine BPA and E2 was observed among exposed workers with borderline significance, while a statistically significant inverse association between urine BPA and FSH was observed among unexposed group. The results suggest that BPA exposure may lead to alterations in female reproductive hormone levels.

  5. Acrolein Inhalation Alters Myocardial Synchrony and Performance at and Below Exposure Concentrations that Cause Ventilatory Responses.

    PubMed

    Thompson, Leslie C; Ledbetter, Allen D; Haykal-Coates, Najwa; Cascio, Wayne E; Hazari, Mehdi S; Farraj, Aimen K

    2017-04-01

    Acrolein is an irritating aldehyde generated during combustion of organic compounds. Altered autonomic activity has been documented following acrolein inhalation, possibly impacting myocardial synchrony and function. Given the ubiquitous nature of acrolein in the environment, we sought to better define the immediate and delayed functional cardiac effects of acrolein inhalation in vivo. We hypothesized that acrolein inhalation would increase markers of cardiac mechanical dysfunction, i.e., myocardial dyssynchrony and performance index in mice. Male C57Bl/6J mice were exposed to filtered air (FA) or acrolein (0.3 or 3.0 ppm) for 3 h in whole-body plethysmography chambers (n = 6). Echocardiographic analyses were performed 1 day before exposure and at 1 and 24 h post-exposure. Speckle tracking echocardiography revealed that circumferential strain delay (i.e., dyssynchrony) was increased at 1 and 24 h following exposure to 3.0 ppm, but not 0.3 ppm, when compared to pre-exposure and/or FA exposure. Pulsed wave Doppler of transmitral blood flow revealed that acrolein exposure at 0.3 ppm, but not 3.0 ppm, increased the Tei index of myocardial performance (i.e., decreased global heart performance) at 1 and 24 h post-exposure compared to pre-exposure and/or FA exposure. We conclude that short-term inhalation of acrolein can acutely modify cardiac function in vivo and that echocardiographic evaluation of myocardial synchrony and performance following exposure to other inhaled pollutants could provide broader insight into the health effects of air pollution.

  6. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    SciTech Connect

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  7. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FALLS TO ALTER SOMATOSENSORY EVOKED POTENTIALS, COMPOUND NERVE ACTION POTENTIALS, OR NERVE CONDUCTION VELOCITY IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in sensory modulation in the cortex and cerebellum, and therefore may be altered following chlorpyrifos (CPF) exposure...

  8. Waterborne manganese exposure alters plasma, brain, and liver metabolites accompanied by changes in stereotypic behaviors

    PubMed Central

    Fordahl, Steve; Cooney, Paula; Qiu, Yunping; Xie, Guoxiang; Jia, Wei; Erikson, Keith M.

    2011-01-01

    Overexposure to waterborne manganese (Mn) is linked with cognitive impairment in children and neurochemical abnormalities in other experimental models. In order to characterize the threshold between Mn-exposure and altered neurochemistry, it is important to identify biomarkers that positively correspond with brain Mn-accumulation. The objective of this study was to identify Mn-induced alterations in plasma, liver, and brain metabolites using liquid/gas chromatography-time of flight-mass spectrometry metabolomic analyses; and to monitor corresponding Mn-induced behavior changes. Weanling Sprague-Dawley rats had access to deionized drinking water either Mn-free or containing 1g Mn/L for six weeks. Behaviors were monitored during the sixth week for a continuous 24h period while in a home cage environment using video surveillance. Mn-exposure significantly increased liver, plasma, and brain Mn concentrations compared to control, specifically targeting the globus pallidus (GP). Mn significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic acid, 14.51 FC; decreased hydroxybutyric acid, −14.29 FC). Additionally, Mn-altered plasma metabolites homogentisic acid, chenodeoxycholic acid, and aspartic acid correlated significantly with GP and striatal Mn. Total distance traveled was significantly increased and positively correlated with Mn-exposure, while nocturnal stereotypic and exploratory behaviors were reduced with Mn-exposure and performed largely during the light cycle compared to unexposed rats. These data provide putative biomarkers for Mn-neurotoxicity and suggest that Mn disrupts the circadian cycle in rats. PMID:22056924

  9. Waterborne manganese exposure alters plasma, brain, and liver metabolites accompanied by changes in stereotypic behaviors.

    PubMed

    Fordahl, Steve; Cooney, Paula; Qiu, Yunping; Xie, Guoxiang; Jia, Wei; Erikson, Keith M

    2012-01-01

    Overexposure to waterborne manganese (Mn) is linked with cognitive impairment in children and neurochemical abnormalities in other experimental models. In order to characterize the threshold between Mn-exposure and altered neurochemistry, it is important to identify biomarkers that positively correspond with brain Mn-accumulation. The objective of this study was to identify Mn-induced alterations in plasma, liver, and brain metabolites using liquid/gas chromatography-time of flight-mass spectrometry metabolomic analyses; and to monitor corresponding Mn-induced behavior changes. Weanling Sprague-Dawley rats had access to deionized drinking water either Mn-free or containing 1g Mn/L for 6 weeks. Behaviors were monitored during the sixth week for a continuous 24h period while in a home cage environment using video surveillance. Mn-exposure significantly increased liver, plasma, and brain Mn concentrations compared to control, specifically targeting the globus pallidus (GP). Mn significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic acid, 14.51 FC; decreased hydroxybutyric acid, -14.29 FC). Additionally, Mn-altered plasma metabolites homogentisic acid, chenodeoxycholic acid, and aspartic acid correlated significantly with GP and striatal Mn. Total distance traveled was significantly increased and positively correlated with Mn-exposure, while nocturnal stereotypic and exploratory behaviors were reduced with Mn-exposure and performed largely during the light cycle compared to unexposed rats. These data provide putative biomarkers for Mn-neurotoxicity and suggest that Mn disrupts the circadian cycle in rats.

  10. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  11. Progression of micronutrient alteration and hepatotoxicity following acute PCB126 exposure.

    PubMed

    Klaren, W D; Gadupudi, G S; Wels, B; Simmons, D L; Olivier, A K; Robertson, L W

    2015-12-02

    Polychlorinated Biphenyls (PCBs) are industrial chemicals that have become a persistent threat to human health due to ongoing exposure. A subset of PCBs, known as dioxin-like PCBs, pose a special threat given their potent hepatic effects. Micronutrients, especially Cu, Zn and Se, homeostatic dysfunction is commonly seen after exposure to dioxin-like PCBs. This study investigates whether micronutrient alteration is the byproduct of the ongoing hepatotoxicity, marked by lipid accumulation, or a concurrent, yet independent event of hepatic damage. A time course study was carried out using male Sprague-Dawley rats with treatments of PCB126, the prototypical dioxin-like PCB, resulting in 6 different time points. Animals were fed a purified diet, based on AIN-93G, for three weeks to ensure micronutrient equilibration. A single IP injection of either tocopherol-stripped soy oil vehicle (5 mL/kg) or 5 μmol/kg PCB126 dose in vehicle was given at various time points resulting in exposures of 9h, 18 h, 36 h, 3 days, 6 days, and 12 days. Mild hepatic vacuolar change was seen as early as 36 h with drastic changes at the later time points, 6 and 12 days. Micronutrient alterations, specifically Cu, Zn, and Se, were not seen until after day 3 and only observed in the liver. No alterations were seen in the duodenum, suggesting that absorption and excretion may not be involved. Micronutrient alterations occur with ROS formation, lipid accumulation, and hepatomegaly. To probe the mechanistic underpinnings, alteration of gene expression of several copper chaperones was investigated; only metallothionein appeared elevated. These data suggest that the disruption in micronutrient status is a result of the hepatic injury elicited by PCB126 and is mediated in part by metallothionein.

  12. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs.

    PubMed

    Herring, M J; Putney, L F; St George, J A; Avdalovic, M V; Schelegle, E S; Miller, L A; Hyde, D M

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O3) or HDMA/ozone (HDMA+O3) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA+O3 alters the development process in the lung alveoli.

  13. Fetal alcohol exposure alters neurosteroid levels in the developing rat brain.

    PubMed

    Caldeira, Jerri C; Wu, Yan; Mameli, Manuel; Purdy, Robert H; Li, Pui-Kai; Akwa, Yvette; Savage, Daniel D; Engen, John R; Valenzuela, C Fernando

    2004-09-01

    Neurosteroids are modulators of neuronal function that may play important roles in brain maturation. We determined whether chronic prenatal ethanol exposure altered neurosteroid levels in the developing brain. Rat dams were exposed to: (i) a 5% ethanol-containing liquid diet that produces peak maternal blood alcohol levels near the legal intoxication limit (approximately 0.08 g/dL); (ii) an isocaloric liquid diet containing maltose-dextrin instead of ethanol with pair-feeding; (iii) rat chow ad libitum. Neurosteroid levels were assessed in offspring brains using radioimmunoassay or gas chromatography-mass spectrometry techniques. A prenatal ethanol exposure-induced increase in pregnenolone sulfate levels, but not dehydroepiandrosterone sulfate levels, was evident at the earliest time point studied (embryonic day 14). This effect lasted until post-natal day 5. Levels of other neurosteroids were assessed at embryonic day 20; pregnenolone levels, but not allopregnanolone levels, were elevated. Pregnenolone sulfate levels were not altered in the maternal brain. Neither pregnenolone nor pregnenolone sulfate levels were significantly altered in the fetal liver, placenta and maternal blood, indicating that the effect of ethanol is not secondary to accumulation of peripherally-produced steroids. Fetal ethanol exposure has been shown to decrease both cellular and behavioral responsiveness to neurosteroids, and our findings provide a plausible explanation for this effect.

  14. Altered myelination and axonal integrity in adults with childhood lead exposure: a diffusion tensor imaging study.

    PubMed

    Brubaker, Christopher J; Schmithorst, Vincent J; Haynes, Erin N; Dietrich, Kim N; Egelhoff, John C; Lindquist, Diana M; Lanphear, Bruce P; Cecil, Kim M

    2009-11-01

    Childhood lead exposure is associated with adverse cognitive, neurobehavioral and motor outcomes, suggesting altered brain structure and function. The purpose of this work was to assess the long-term impact of childhood lead exposure on white matter integrity in young adults. We hypothesized that childhood lead exposure would alter adult white matter architecture via deficits in axonal integrity and myelin organization. Adults (22.9+/-1.5 years, range 20.0-26.1 years) from the Cincinnati Lead Study were recruited to undergo a study employing diffusion tensor imaging (DTI). The anatomic regions of association between water diffusion characteristics in white matter and mean childhood blood lead level were determined for 91 participants (52 female). Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured on an exploratory voxel-wise basis. In adjusted analyses, mean childhood blood lead levels were associated with decreased FA throughout white matter. Regions of the corona radiata demonstrated highly significant lead-associated decreases in FA and AD and increases in MD and RD. The genu, body, and splenium of the corpus callosum demonstrated highly significant lead-associated decreases in RD, smaller and less significant decreases in MD, and small areas with increases in AD. The results of this analysis suggest multiple insults appear as distinct patterns of white matter diffusion abnormalities in the adult brain. Neurotoxic insults from the significant lead burden the participants experienced throughout childhood affect neural elements differently and may be related to the developmental stage of myelination at periods of exposure. This study indicates that childhood lead exposure is associated with a significant and persistent impact on white matter microstructure as quantified with diffusivity changes suggestive of altered myelination and axonal integrity.

  15. The Volitional Nature of Nicotine Exposure Alters Anandamide and Oleoylethanolamide Levels in the Ventral Tegmental Area

    PubMed Central

    Buczynski, Matthew W; Polis, Ilham Y; Parsons, Loren H

    2013-01-01

    Cannabinoid-1 receptors (CB1) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compared the effects of volitional nicotine self-administration (SA) and forced nicotine exposure (yoked administration (YA)) on levels of eCBs and related neuroactive lipids in the ventral tegmental area (VTA) and other brain regions. Brain lipid levels were indexed both by in vivo microdialysis in the VTA and lipid extractions from brain tissues. Nicotine SA, but not YA, reduced baseline VTA dialysate oleoylethanolamide (OEA) levels relative to nicotine-naïve controls, and increased anandamide (AEA) release during nicotine intake. In contrast, all nicotine exposure paradigms increased VTA dialysate 2-arachidonoyl glycerol (2-AG) levels. Thus, nicotine differentially modulates brain lipid (2-AG, AEA, and OEA) signaling, and these modulations are influenced by the volitional nature of the drug exposure. Corresponding bulk tissue analysis failed to identify these lipid changes. Nicotine exposure had no effect on fatty acid amide hydrolase activity in the VTA, suggesting that changes in AEA and OEA signaling result from alterations in their nicotine-induced biosynthesis. Both CB1 (by AEA and 2-AG) and non-CB1 (by OEA) targets can alter the excitability and activity of the dopaminergic neurons in the VTA. Collectively, these findings implicate disrupted lipid signaling in the motivational effects of nicotine. PMID:23169348

  16. The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area.

    PubMed

    Buczynski, Matthew W; Polis, Ilham Y; Parsons, Loren H

    2013-03-01

    Cannabinoid-1 receptors (CB(1)) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compared the effects of volitional nicotine self-administration (SA) and forced nicotine exposure (yoked administration (YA)) on levels of eCBs and related neuroactive lipids in the ventral tegmental area (VTA) and other brain regions. Brain lipid levels were indexed both by in vivo microdialysis in the VTA and lipid extractions from brain tissues. Nicotine SA, but not YA, reduced baseline VTA dialysate oleoylethanolamide (OEA) levels relative to nicotine-naïve controls, and increased anandamide (AEA) release during nicotine intake. In contrast, all nicotine exposure paradigms increased VTA dialysate 2-arachidonoyl glycerol (2-AG) levels. Thus, nicotine differentially modulates brain lipid (2-AG, AEA, and OEA) signaling, and these modulations are influenced by the volitional nature of the drug exposure. Corresponding bulk tissue analysis failed to identify these lipid changes. Nicotine exposure had no effect on fatty acid amide hydrolase activity in the VTA, suggesting that changes in AEA and OEA signaling result from alterations in their nicotine-induced biosynthesis. Both CB(1) (by AEA and 2-AG) and non-CB(1) (by OEA) targets can alter the excitability and activity of the dopaminergic neurons in the VTA. Collectively, these findings implicate disrupted lipid signaling in the motivational effects of nicotine.

  17. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration.

    PubMed

    Zhang, Chong; Xu, Dan; Luo, Hanwen; Lu, Juan; Liu, Lian; Ping, Jie; Wang, Hui

    2014-11-05

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis.

  18. Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies

    PubMed Central

    Shenoy, Kausalya

    2012-01-01

    Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species. PMID:22312428

  19. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    PubMed

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  20. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  1. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    PubMed

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure.

  2. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    PubMed

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects.

  3. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats

    PubMed Central

    Smith, Catherine A.; Farmer, Kyle; Lee, Hyunmin; Holahan, Matthew R.; Smith, Jeffrey C.

    2015-01-01

    Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females. PMID:26516880

  4. Arsenic Exposure and Epigenetic Alterations: Recent Findings Based on the Illumina 450K DNA Methylation Array.

    PubMed

    Argos, Maria

    2015-06-01

    Arsenic is a major public health concern worldwide. While it is an established carcinogen and associated with a number of other adverse health outcomes, the molecular mechanisms underlying arsenic toxicity are not completely clarified. There is mounting evidence from human studies suggesting that arsenic exposure is associated with epigenetic alterations, including DNA methylation. In this review, we summarize several recent human studies that have evaluated arsenic exposure using the Illumina HumanMethylation 450K BeadChip, which interrogates more than 485,000 methylation sites across the genome. Many of these studies have observed novel regions of the genome associated with arsenic exposure. However, few studies have evaluated the biological and functional relevance of these DNA methylation changes, which are still needed. We emphasize the need for future studies to replicate the identified DNA methylation signals as well as assess whether these markers are associated with risk of arsenic-related diseases.

  5. Proteolytic activity is altered in brain tissue of rats upon chronic exposure to ozone

    SciTech Connect

    Benuck, M.; Banay-Schwartz, M.; Lajtha, A. )

    1993-01-01

    Tissue from pons medulla of rats exposed in vivo to various levels of ozone was assayed for calpain and cathepsin D activity. Chronic exposure to ozone increased calpain activity, which was 35% to 46% higher in the homogenates of animals exposed to 1.0 ppm ozone than in those of animals exposed to 0.5 ppm ozone or of controls. An increase in activity of 26% was also observed in the soluble supernatant. The increase in activity did not seem to be caused by ozone effects on calpastatin. Addition of 32 mM carnitine to the incubation mixture increased total activity 3-4 fold, making the differences in activity proportionately smaller. Cathepsin D activity was little altered. Changes in calpain activity and in the generation of free oxygen radicals have been implicated in the aging process, long-term exposure to ozone may magnify changes. Ozone exposure may cause changes in brain protein metabolism. 15 refs., 2 tabs.

  6. Cigarette smoke exposure-associated alterations to non-coding RNA.

    PubMed

    Maccani, Matthew A; Knopik, Valerie S

    2012-01-01

    Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of non-coding RNA (ncRNA), important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA), Piwi-interacting RNA (piRNA), and long non-coding RNA (long ncRNA). The best-characterized species of ncRNA are miRNA, the mature forms of which are ∼22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of ncRNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of research.

  7. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development.

    PubMed

    Caldwell, Katharine E; Labrecque, Matthew T; Solomon, Benjamin R; Ali, Abdulmehdi; Allan, Andrea M

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  8. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  9. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    PubMed Central

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  10. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    PubMed

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.

  11. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  12. Genistein Exposure Inhibits Growth and Alters Steroidogenesis in Adult Mouse Antral Follicles

    PubMed Central

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G.; Flaws, Jodi A.

    2016-01-01

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18 – 96 hours (h). Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  13. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    SciTech Connect

    Herring, M.J.; Putney, L.F.; St George, J.A.; Avdalovic, M.V.; Schelegle, E.S.; Miller, L.A.; Hyde, D.M.

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  14. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-12-01

    We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.

  15. Prenatal Exposure to Lipopolysaccharide Alters Renal DNA Methyltransferase Expression in Rat Offspring

    PubMed Central

    Chen, Rui; Deng, Youcai; Liao, Xi; Wei, Yanling; Li, Xiaohui; Su, Min; Yu, Jianhua; Yi, Ping

    2017-01-01

    Prenatal exposure to inflammation results in hypertension during adulthood but the mechanisms are not well understood. Maternal exposure to lipopolysaccharide (LPS) alters interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in the fetal environment. As reported in many recent studies, IL-6 regulates DNA methyltransferases (DNMTs) through the transcription factor friend leukemia virus integration 1 (Fli-1). The present study explores the role of intrarenal DNMTs during development of hypertension induced by prenatal exposure to LPS. Pregnant rats were randomly divided into four treatment groups: control, LPS, pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor), and the combination of LPS and PDTC. Expression of IL-6, Fli-1, TNF-α, DNMT1 and DNMT3B was significantly increased in the offspring of LPS-treated rats. Global DNA methylation level of renal cortex also increased dramatically in rat offspring of the LPS group. Prenatal PDTC administration reversed the increases in gene expression and global DNA methylation level. These findings suggest that prenatal exposure to LPS may result in changes of intrarenal DNMTs through the IL-6/Fli-1 pathway and TNF-α, which probably involves hypertension in offspring due to maternal exposure to inflammation. PMID:28103274

  16. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice.

    PubMed

    Siegel, Jessica A; Park, Byung S; Raber, Jacob

    2011-10-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.

  17. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  18. Acute exposure to 2,4-dinitrophenol alters zebrafish swimming performance and whole body triglyceride levels.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2011-06-01

    While swimming endurance (critical swimming speed or U(crit)) and lipid stores have both been reported to acutely decrease after exposure to a variety of toxicants, the relationship between these endpoints has not been clearly established. In order to examine these relationships, adult zebrafish (Danio rerio) were aqueously exposed to solvent control (ethanol) or two nominal concentrations of 2,4-dinitrophenol (DNP), a mitochondrial electron transport chain uncoupler, for a 24-h period. Following exposure, fish were placed in a swim tunnel in clean water for swimming testing or euthanized immediately without testing, followed by analysis of whole body triglyceride levels. U(crit) decreased in both the 6 mg/L and 12 mg/L DNP groups, with 12 mg/L approaching the LC₅₀. A decrease in tail beat frequency was observed without a significant change in tail beat amplitude. In contrast, triglyceride levels were elevated in a concentration-dependent manner in the DNP exposure groups, but only in fish subjected to swimming tests. This increase in triglyceride stores may be due to a direct interference of DNP on lipid catabolism as well as increased triglyceride production when zebrafish were subjected to the co-stressors of swimming and toxicant exposure. Future studies should be directed at determining how acute DNP exposure combines with swimming to cause alterations in triglyceride accumulation.

  19. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    PubMed Central

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  20. In Vitro Exposure of Harbor Seal Immune Cells to Aroclor 1260 Alters Phocine Distemper Virus Replication.

    PubMed

    Bogomolni, Andrea; Frasca, Salvatore; Levin, Milton; Matassa, Keith; Nielsen, Ole; Waring, Gordon; De Guise, Sylvain

    2016-01-01

    In the last 30 years, several large-scale marine mammal mortality events have occurred, often in close association with highly polluted regions, leading to suspicions that contaminant-induced immunosuppression contributed to these epizootics. Some of these recent events also identified morbillivirus as a cause of or contributor to death. The role of contaminant exposures regarding morbillivirus mortality is still unclear. The results of this study aimed to address the potential for a mixture of polychlorinated biphenyls (PCBs), specifically Aroclor 1260, to alter harbor seal T-lymphocyte proliferation and to assess if exposure resulted in increased likelihood of phocine distemper virus (PDV USA 2006) to infect susceptible seals in an in vitro system. Exposure of peripheral blood mononuclear cells to Aroclor 1260 did not significantly alter lymphocyte proliferation (1, 5, 10, and 20 ppm). However, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), lymphocytes exposed to 20 ppm Aroclor 1260 exhibited a significant decrease in PDV replication at day 7 and a significant increase at day 11 compared with unexposed control cells. Similar and significant differences were apparent on exposure to Aroclor 1260 in monocytes and supernatant. The results here indicate that in harbor seals, Aroclor 1260 exposure results in a decrease in virus early during infection and an increase during late infection. The consequences of this contaminant-induced infection pattern in a highly susceptible host could result in a greater potential for systemic infection with greater viral load, which could explain the correlative findings seen in wild populations exposed to a range of persistent contaminants that suffer from morbillivirus epizootics.

  1. Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception

    PubMed Central

    Weikum, Whitney M.; Oberlander, Tim F.; Hensch, Takao K.; Werker, Janet F.

    2012-01-01

    Language acquisition reflects a complex interplay between biology and early experience. Psychotropic medication exposure has been shown to alter neural plasticity and shift sensitive periods in perceptual development. Notably, serotonin reuptake inhibitors (SRIs) are antidepressant agents increasingly prescribed to manage antenatal mood disorders, and depressed maternal mood per se during pregnancy impacts infant behavior, also raising concerns about long-term consequences following such developmental exposure. We studied whether infants’ language development is altered by prenatal exposure to SRIs and whether such effects differ from exposure to maternal mood disturbances. Infants from non–SRI-treated mothers with little or no depression (control), depressed but non–SRI-treated (depressed-only), and depressed and treated with an SRI (SRI-exposed) were studied at 36 wk gestation (while still in utero) on a consonant and vowel discrimination task and at 6 and 10 mo of age on a nonnative speech and visual language discrimination task. Whereas the control infants responded as expected (success at 6 mo and failure at 10 mo) the SRI-exposed infants failed to discriminate the language differences at either age and the depressed-only infants succeeded at 10 mo instead of 6 mo. Fetuses at 36 wk gestation in the control condition performed as expected, with a response on vowel but not consonant discrimination, whereas the SRI-exposed fetuses showed accelerated perceptual development by discriminating both vowels and consonants. Thus, prenatal depressed maternal mood and SRI exposure were found to shift developmental milestones bidirectionally on infant speech perception tasks. PMID:23045665

  2. Alterations in the striatal dopamine system during intravenous methamphetamine exposure: effects of contingent and noncontingent administration.

    PubMed

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P

    2013-08-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long-term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a "humanized" plasma METH half life or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7 and 1.5 µM. Animals were sacrificed during their last METH administration for autoradiography assessment using [³H]ligands and D2 agonist-induced [³⁵S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15-20%) and [³⁵S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal's total intake was similar within and across three 24-h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans.

  3. Alterations in the Striatal Dopamine System During Intravenous Methamphetamine Exposure: Effects of Contingent and Noncontingent Administration

    PubMed Central

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P.

    2014-01-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a ‘humanized’ plasma METH half life, or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7–1.5 μM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist-induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal’s total intake was similar within and across three 24 h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. PMID:23417852

  4. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.

  5. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish.

    PubMed

    Yu, Li-Qin; Zhao, Gao-Feng; Feng, Min; Wen, Wu; Li, Kun; Zhang, Pan-Wei; Peng, Xi; Huo, Wei-Jie; Zhou, Huai-Dong

    2014-01-01

    Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development.

  6. Alterations in the Rat Serum Proteome Induced by Prepubertal Exposure to Bisphenol A and Genistein

    PubMed Central

    2015-01-01

    Humans are exposed to an array of chemicals via the food, drink and air, including a significant number that can mimic endogenous hormones. One such chemical is Bisphenol A (BPA), a synthetic chemical that has been shown to cause developmental alterations and to predispose for mammary cancer in rodent models. In contrast, the phytochemical genistein has been reported to suppress chemically induced mammary cancer in rodents, and Asians ingesting a diet high in soy containing genistein have lower incidence of breast and prostate cancers. In this study, we sought to: (1) identify protein biomarkers of susceptibility from blood sera of rats exposed prepubertally to BPA or genistein using Isobaric Tandem Mass Tags quantitative mass spectrometry (TMT-MS) combined with MudPIT technology and, (2) explore the relevance of these proteins to carcinogenesis. Prepubertal exposures to BPA and genistein resulted in altered expression of 63 and 28 proteins in rat sera at postnatal day (PND) 21, and of 9 and 18 proteins in sera at PND35, respectively. This study demonstrates the value of using quantitative proteomic techniques to explore the effect of chemical exposure on the rat serum proteome and its potential for unraveling cellular targets altered by BPA and genistein involved in carcinogenesis. PMID:24552547

  7. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  8. Prenatal exposure to low levels of carbon monoxide alters sciatic nerve myelination in rat offspring.

    PubMed

    Carratù, M R; Cagiano, R; Desantis, S; Labate, M; Tattoli, M; Trabace, L; Cuomo, V

    2000-08-25

    Prenatal exposure to low concentrations of carbon monoxide (CO, 75 and 150 ppm from day 0 to day 20 of gestation), resulting in maternal blood HbCO concentrations equivalent to those maintained by human cigarette smokers, leads to subtle myelin alterations in the sciatic nerve of male rat offspring. The rapid growth spurt in pup body weight was related to the period of maximal increase in myelin sheath thickness in both control and CO-exposed animals. A significant reduction in myelin sheath thickness of sciatic nerve fibers, paralleled by changes in the frequency distribution, occurred in both 40- and 90-day-old rats exposed in utero to CO (75 and 150 ppm). Myelin deficit observed in 75 and 150 ppm CO-exposed animals showed up only after the major spurt in myelination but not early during development. The subtle myelin alterations observed in CO-exposed offspring were not accompanied by changes in developmental pattern of axon diameters and did not result in a gross impairment of motor activity. These results suggest that the myelination process is selectively targeted by a prenatal exposure model simulating the CO exposure observed in human cigarette smokers.

  9. Molecular characterization and identification of a novel polymorphism of 200 bp indel associated with age at first egg of the promoter region in chicken follicle-stimulating hormone receptor (FSHR) gene.

    PubMed

    Kang, Li; Zhang, Ningbo; Zhang, Yujie; Yan, Huaxiang; Tang, Hui; Yang, Changsuo; Wang, Hui; Jiang, Yunliang

    2012-03-01

    Follicle-stimulating hormone receptor (FSHR) plays an important role in animal follicular development. Polymorphisms in FSHR promoter region likely impact transcription and follicle growth and maturation. In this study, a fragment of ~1.9 kb of cFSHR promoter for Zang, Xianju, Lohmann Brown, Jining Bairi and Wenchang breeds (line) was obtained. Totally 49 variations were revealed, of which 39 are single nucleotide substitutions, one is nucleotide substitution of (TTG) to (CAC) and nine are indels. Polymorphism at -874 site (a 200 bp indel mutation) was identified, and their effects on egg production traits as well as gene expression were analyzed. At this site, allele I(+) was dominant in Lohmann Brown and Xinyang Brown (a synthetic egg-laying line) lines, but very rare in three Chinese indigenous chicken breeds, namely Jining Bairi, Wenchang, Zang and one synthetic boiler line (Luqin). In Xinyang Brown population, the polymorphism was associated with age at first egg (AFE) (P < 0.05) and its effect on egg number at 37 weeks of age (E37) and egg number at 57 weeks of age (E57) was not significantly different (P > 0.05). The cFSHR mRNA level was not significantly different between three genotypes in small white and small yellow follicles of Xinyang Brown hens, however, allele I(+) tends to increase cFSHR transcription.

  10. Toward Fully Synthetic Homogeneous β-Human Follicle-Stimulating Hormone (β-hFSH) with a Biantennary N-linked Dodecasaccharide. Synthesis of β-hFSH with Chitobiose Units at the Natural Linkage Sites

    PubMed Central

    Nagorny, Pavel; Fasching, Bernhard; Li, Xuechen; Chen, Gong; Aussedat, Baptiste; Danishefsky, Samuel J.

    2009-01-01

    A highly convergent synthesis of the sialic acid rich biantennary N-linked glycan found in human glycoprotein hormones, and its use in the synthesis of a fragment derived from the β-domain of human Follicle-Stimulating Hormone (hFSH) are described. The synthesis highlights the use of the Sinaÿ radical glycosidation protocol for the simultaneous installation of both biantennary side-chains of the dodecasaccharide as well as the use of glycal chemistry to construct the tetrasaccharide core in an efficient manner. The synthetic glycan was used to prepare the glycosylated 20–27aa domain of β-subunit of hFSH under a Lansbury aspartylation protocol. The proposed strategy for incorporating the prepared N-linked dodecasaccharide-containing 20–27aa domain into β-hFSH subunit was validated in the context of a model system providing, protected β-hFSH subunit functionalized with chitobiose at positions 7 and 24. PMID:19341309

  11. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    SciTech Connect

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal by

  12. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin.

    PubMed

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2015-05-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h, and 6 day exposures to TBT (200 - 2.5 nM) and DBT (5 - 0.05 µM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from immune cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure.

  13. Epigenetic Alterations May Regulate Temporary Reversal of CD4+ T Cell Activation Caused by Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Nelson, Ashley R.; Cooney, Craig A.; Reisfeld, Brad; Blossom, Sarah J.

    2012-01-01

    Previous studies have shown that short-term (4 weeks) or chronic (32 weeks) exposure to trichloroethylene (TCE) in drinking water of female MRL+/+ mice generated CD4+ T cells that secreted increased levels of interferon (IFN)-γ and expressed an activated (CD44hiCD62Llo) phenotype. In contrast, the current study of subchronic TCE exposure showed that midway in the disease process both of these parameters of CD4+ T cell activation were reversed. This phase of the disease process may represent an attempt by the body to counteract the inflammatory effects of TCE. The decrease in CD4+ T cell production of IFN-γ following subchronic TCE exposure could not be attributed to skewing toward a Th2 or Th17 phenotype or to an increase in Treg cells. Instead, the suppression corresponded to alterations in markers used to assess DNA methylation, namely increased expression of retrotransposons Iap (intracisternal A particle) and Muerv (murine endogenous retrovirus). Also observed was an increase in the expression of Dnmt1 (DNA methyltransferase-1) and decreased expression of several genes known to be downregulated by DNA methylation, namely Ifng, Il2, and Cdkn1a. CD4+ T cells from a second study in which MRL+/+ mice were treated for 17 weeks with TCE showed a similar increase in Iap and decrease in Cdkn1a. In addition, DNA collected from the CD4+ T cells in the second study showed TCE-decreased global DNA methylation. Thus, these results described the biphasic nature of TCE-induced alterations in CD4+ T cell function and suggested that these changes represented potentially reversible alterations in epigenetic processes. PMID:22407948

  14. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.

  15. Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure.

    PubMed

    Richetti, S K; Rosemberg, D B; Ventura-Lima, J; Monserrat, J M; Bogo, M R; Bonan, C D

    2011-01-01

    Pollution is a world problem with immeasurable consequences. Heavy metal compounds are frequently found as components of anthropogenic pollution. Here we evaluated the effects of the treatment with cadmium acetate, lead acetate, mercury chloride, and zinc chloride in acetylcholinesterase activity and gene expression pattern, as well as the effects of these treatments in antioxidant competence in the brain of an aquatic and well-established organism for toxicological analysis, zebrafish (Danio rerio, Cyprinidae). Mercury chloride and lead acetate promoted a significant decrease in acetylcholinesterase activity whereas they did not alter the gene expression pattern. In addition, the antioxidant competence was decreased after exposure to mercury chloride. The data presented here allowed us to hypothesize a signal transmission impairment, through alterations in cholinergic transmission, and also in the antioxidant competence of zebrafish brain tissue as some of the several effects elicited by these pollutants.

  16. Adolescent Alcohol Exposure Alters GABAA Receptor Subunit Expression in Adult Hippocampus

    PubMed Central

    Centanni, Samuel W.; Teppen, Tara; Risher, Mary-Louise; Fleming, Rebekah L.; Moss, Julia L.; Acheson, Shawn K.; Mulholland, Patrick J.; Pandey, Subhash C.; Chandler, L. Judson; Swartzwelder, H. Scott

    2014-01-01

    Background The long-term consequences of adolescent alcohol abuse that persist into adulthood are poorly understood and have not been widely investigated. We have shown that intermittent exposure to alcohol during adolescence decreased the amplitude of GABAA receptor-mediated tonic currents in hippocampal dentate granule cells in adulthood. The aim of the present study was to investigate the enduring effects of chronic intermittent alcohol exposure during adolescence or adulthood on the expression of hippocampal GABAA receptors (GABAARs). Methods We used a previously characterized tissue fractionation method to isolate detergent resistant membranes and soluble fractions, followed by western blots to measure GABAAR protein expression. We also measured mRNA levels of GABAAR subunits using quantitative real-time PCR. Results Although the protein levels of α1-, α4- and δ-GABAAR subunits remained stable between postnatal day (PD) 30 (early adolescence) and PD71 (adulthood), the α5-GABAAR subunit was reduced across that period. In rats that were subjected to adolescent intermittent ethanol (AIE) exposure between PD30–46, there was a significant reduction in the protein levels of the δ-GABAAR, in the absence of any changes in mRNA levels, at 48 hours and 26 days after the last ethanol exposure. Protein levels of the α4-GABAAR subunit were significantly reduced, but mRNA levels were increased, 26 days (but not 48 hours) after the last AIE exposure. Protein levels of α5-GABAAR were not changed by AIE, but mRNA levels were reduced at 48hrs but normalized 26 days after AIE. In contrast to the effects of AIE, chronic intermittent exposure to ethanol during adulthood (CIE) had no effect on expression of any of the GABAAR subunits examined. Conclusions AIE produced both short- and long-term alterations of GABAAR subunits mRNA and protein expression in the hippocampus, whereas CIE produced no long lasting effects on those measures. The observed reduction of protein

  17. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs.

    PubMed

    Schuster, Andrew; Skinner, Michael K; Yan, Wei

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.

  18. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs

    PubMed Central

    Schuster, Andrew; Skinner, Michael K.; Yan, Wei

    2016-01-01

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5′ halves of mature tRNAs (5′ halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5′ halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon. PMID:27390623

  19. Early postnatal diazepam exposure alters sex differences in the rat brain.

    PubMed

    Segovia, S; Pérez-Laso, C; Rodríguez-Zafra, M; Calés, J M; Del Abril, A; De Blas, M R; Collado, P; Valencia, A; Guillamón, A

    1991-06-01

    The volume and neuron number of the sexually dimorphic accessory olfactory bulb and locus coeruleus are altered by early postnatal exposure (from the day of birth to postnatal day 16) to diazepam. After diazepam treatment, both volume and neuron number were decreased in the male accessory olfactory bulb and in the female locus coeruleus. These results indicate that early postnatal diazepam administration can bear gender-dependent teratogenic effects upon sexually dimorphic nuclei and suggest that endogenous benzodiazepines may be involved in the sexual differentiation of the brain.

  20. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  1. Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model.

    PubMed

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Rezaei-Tavirani, Mostafa; Najafi Abedi, Akram

    2016-01-01

    Naturally, the presence of electromagnetic waves in our living environment affects all components of organisms, particularly humans and animals, as the large part of their body consists of water. In the present study, we tried to investigate the relation between exposure to the extremely low-frequency electromagnetic field (ELF-EMF) and common behaviors such as body weight, food and water intake, anorexia (poor appetite), plasma glucose concentration, movement, rearing and sniffing in rats. For this purpose, rats were exposed to 40  Hz ELF-EMF once a day for 21 days, then at days 1, 3, 7, 14 and 21 after exposure, any changes in the above-mentioned items were assessed in the exposed rats and compared to the non-exposed group as control. Body weight of irradiated rats significantly increased only a week after exposure and decreased after that. No significant change was observed in food and water intake of irradiated rats compared to the control, and the anorexia parameter in the group exposed to ELF-EMF was significantly decreased at one and two weeks after irradiation. A week after exposure, the level of glucose was significantly increased but at other days these changes were not significant. Movements, rearing and sniffing of rats at day 1 after exposure were significantly decreased and other days these changes did not follow any particular pattern. However, the result of this study demonstrated that exposure to ELF-EMF can alter the normal condition of animals and may represent a harmful impact on behavior.

  2. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos

    SciTech Connect

    Meyer, Armando; Seidler, Frederic J.; Aldridge, Justin E.; Slotkin, Theodore A. . E-mail: t.slotkin@duke.edu

    2005-03-01

    Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a {beta}-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides.

  3. MicroRNA expression profiling altered by variant dosage of radiation exposure.

    PubMed

    Lee, Kuei-Fang; Chen, Yi-Cheng; Hsu, Paul Wei-Che; Liu, Ingrid Y; Wu, Lawrence Shih-Hsin

    2014-01-01

    Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  4. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    PubMed Central

    Lee, Kuei-Fang; Hsu, Paul Wei-Che; Liu, Ingrid Y.; Wu, Lawrence Shih-Hsin

    2014-01-01

    Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury. PMID:25313363

  5. Biochemical alterations induced by oral subchronic exposure to fipronil, fluoride and their combination in buffalo calves.

    PubMed

    Gill, Kamalpreet Kaur; Dumka, Vinod Kumar

    2013-11-01

    The effects of various pesticides and minerals on biochemical parameters have been explored in different species, but hardly any data exist regarding the combined toxicological effect of pesticides and minerals on these parameters in animals. The present study investigated the effects of fipronil and fluoride co-exposure on biochemical parameters in buffalo calves. Twenty-four healthy male buffalo calves divided into four groups were treated for 98 consecutive days. Group I, receiving no treatment served as the control. Animals of groups II and III were orally administered with fipronil @ 0.5mg/kg/day and sodium fluoride (NaF) @ 6.67 mg/kg/day, respectively, for 98 days. An additional group IV was co-administered fipronil and NaF at the same dosages as groups II and III. Administration of fipronil alone produced mild toxic signs, significant elevation in plasma proteins, blood glucose, blood urea nitrogen (BUN) and significant decline in the plasma cholesterol levels. NaF exposure produced toxic signs specifically of muscle weakness and brown and black discoloration of teeth. Significant elevation was seen in whole blood cholinesterase, BUN and creatinine levels. However, it produced significant decline in blood glucose, cholesterol and plasma protein levels. Combined exposure to fipronil and sodium fluoride produced toxic signs with greater intensity while biochemical alterations produced were similar to those that were produced by their individual exposures.

  6. Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour

    PubMed Central

    Hines, Melissa; Pasterski, Vickie; Spencer, Debra; Neufeld, Sharon; Patalay, Praveetha; Hindmarsh, Peter C.; Hughes, Ieuan A.; Acerini, Carlo L.

    2016-01-01

    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development. PMID:26833843

  7. Nicotine exposure in adolescence alters the response of serotonin systems to nicotine administered subsequently in adulthood.

    PubMed

    Slotkin, Theodore A; Seidler, Frederic J

    2009-01-01

    Developmental nicotine exposure produces lasting changes in serotonin (5-HT) function. We gave nicotine to adolescent rats (postnatal days, PD, 30-47), simulating plasma levels in smokers, and then examined the subsequent effects of nicotine given again in young adulthood (PD 90-107), focusing on 5-HT(1A) and 5-HT(2) receptors and the 5-HT transporter during nicotine treatment (PD 105) and withdrawal (PD 110, 120, 130), and long-term changes (PD 180). Adolescent nicotine exposure by itself evoked long-term elevations in cerebrocortical binding parameters in males that emerged in young adulthood. Nicotine given in adulthood produced transient elevations in 5-HT receptor expression in both males and females during withdrawal, and persistent upregulation in the male cerebral cortex. In contrast, females showed decrements in cerebrocortical 5-HT receptors by PD 180. Adolescent nicotine exposure altered the responses to nicotine given in adulthood, sensitizing the initial effects and changing both the withdrawal response and long-term actions. Our results thus provide mechanistic evidence that nicotine exposure, during the period in which nearly all smokers begin to use tobacco, reprograms the future response of 5-HT systems to nicotine.

  8. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells.

    PubMed

    Agarwal, Amit R; Yin, Fei; Cadenas, Enrique

    2014-08-01

    Cigarette smoke (CS)-induced alveolar destruction and energy metabolism changes are known contributors to the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examines the effect of CS exposure on metabolism in alveolar type II cells. Male A/J mice (8 wk old) were exposed to CS generated from a smoking machine for 4 or 8 weeks, and a recovery group was exposed to CS for 8 weeks and allowed to recover for 2 weeks. Alveolar type II cells were isolated from air- or CS- exposed mice. Acute CS exposure led to a reversible airspace enlargement in A/J mice as measured by the increase in mean linear intercept, indicative of alveolar destruction. The effect of CS exposure on cellular respiration was studied using the XF Extracellular Flux Analyzer. A decrease in respiration while metabolizing glucose was observed in the CS-exposed group, indicating altered glycolysis that was compensated by an increase in palmitate utilization; palmitate utilization was accompanied by an increase in the expression of CD36 and carnitine-palmitoyl transferase 1 in type II alveolar cells for the transport of palmitate into the cells and into mitochondria, respectively. The increase in palmitate use for energy production likely affects the surfactant biosynthesis pathway, as evidenced by the decrease in phosphatidylcholine levels and the increase in phospholipase A2 activity after CS exposure. These findings help our understanding of the mechanism underlying the surfactant deficiency observed in smokers and provide a target to delay the onset of COPD.

  9. Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour.

    PubMed

    Hines, Melissa; Pasterski, Vickie; Spencer, Debra; Neufeld, Sharon; Patalay, Praveetha; Hindmarsh, Peter C; Hughes, Ieuan A; Acerini, Carlo L

    2016-02-19

    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development.

  10. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  11. Bisphenol A Exposure Alters Developmental Gene Expression in the Fetal Rhesus Macaque Uterus

    PubMed Central

    Calhoun, Kathryn C.; Padilla-Banks, Elizabeth; Jefferson, Wendy N.; Liu, Liwen; Gerrish, Kevin E.; Young, Steven L.; Wood, Charles E.; Hunt, Patricia A.; VandeVoort, Catherine A.; Williams, Carmen J.

    2014-01-01

    Bisphenol A (BPA) exposure results in numerous developmental and functional abnormalities in reproductive organs in rodent models, but limited data are available regarding BPA effects in the primate uterus. To determine if maternal oral BPA exposure affects fetal uterine development in a non-human primate model, pregnant rhesus macaques carrying female fetuses were exposed orally to 400 µg/kg BPA or vehicle control daily from gestation day (GD) 50–100 or GD100–165. Fetal uteri were collected at the completion of treatment (GD100 or GD165); tissue histology, cell proliferation, and expression of estrogen receptor alpha (ERα) and progesterone receptor (PR) were compared to that of controls. Gene expression analysis was conducted using rhesus macaque microarrays. There were no significant differences in histology or in the percentage of cells expressing the proliferation marker Ki-67, ERα, or PR in BPA-exposed uteri compared to controls at GD100 or GD165. Minimal differences in gene expression were observed between BPA-exposed and control GD100 uteri. However, at GD165, BPA-exposed uteri had significant differences in gene expression compared to controls. Several of the altered genes, including HOXA13, WNT4, and WNT5A, are critical for reproductive organ development and/or adult function. We conclude that second or third trimester BPA exposure does not significantly affect fetal uterus development based on morphological, proliferation, and steroid hormone receptor assessments. However, differences in expression of key developmental genes after third trimester exposure suggest that BPA could alter transcriptional signals influencing uterine function later in life. PMID:24465770

  12. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol.

    PubMed

    Rinker, Jennifer A; Hutchison, Mary Anne; Chen, Scott A; Thorsell, Annika; Heilig, Markus; Riley, Anthony L

    2011-07-01

    The majority of smokers begin their habit during adolescence, which often precedes experimentation with alcohol. Interestingly, very little preclinical work has been done examining how exposure to nicotine during periadolescence impacts the affective properties of alcohol in adulthood. Understanding how periadolescent nicotine exposure influences the aversive effects of alcohol might help to explain why it becomes more acceptable to this preexposed population. Thus, Experiment 1 exposed male Sprague Dawley rats to either saline or nicotine (0.4mg/kg, IP) from postnatal days 34 to 43 (periadolescence) and then examined changes in the aversive effects of alcohol (0, 0.56, 1.0 and 1.8g/kg, IP) in adulthood using the conditioned taste aversion (CTA) design. Changes in blood alcohol concentration (BAC) as well as alcohol-induced hypothermia and locomotor suppression were also assessed. To determine if changes seen were specific to nicotine exposure during periadolescence, the procedures were replicated in adults (Experiment 2). Preexposure to nicotine during periadolescence attenuated the acquisition of the alcohol-induced CTAs (at 1.0g/kg) and the hypothermic effects of alcohol (1.0g/kg). Adult nicotine preexposure produced similar attenuation in alcohol's aversive (at 1.8g/kg) and hypothermic (1.8g/kg) effects. Neither adolescent nor adult nicotine preexposure altered BACs or alcohol-induced locomotor suppression. These results suggest that nicotine may alter the aversive and physiological effects of alcohol, regardless of the age at which exposure occurs, possibly increasing its overall reinforcing value and making it more likely to be consumed.

  13. Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats.

    PubMed

    Brolese, Giovana; Lunardi, Paula; Broetto, Núbia; Engelke, Douglas S; Lírio, Franciane; Batassini, Cristiane; Tramontina, Ana Carolina; Gonçalves, Carlos-Alberto

    2014-08-01

    Alcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring. Female rats were exposed to an experimental protocol throughout gestation up to weaning. After mating, the dams were divided into three groups and treated with only water (control), non-alcoholic beer (vehicle) or 10% (vv) beer solution (moderate prenatal alcohol exposure - MPAE). Adolescent male offspring were subjected to the plus-maze discriminative avoidance task to evaluate learning/memory and anxiety-like behavior. Hippocampi were dissected and slices were obtained for immunoquantification of GFAP, NeuN, S100B and the NMDA receptor. The MPAE group clearly presented anxiolytic-like behavior, even though they had learned how to avoid the aversive arm. S100B protein was increased in the cerebrospinal fluid (CSF) in the group treated with alcohol, and alterations in GFAP expression were also shown. This study indicates that moderate ethanol doses administered during pregnancy could induce anxiolytic-like effects, suggesting an increase in risk-taking behavior in adolescent male offspring. Furthermore, the data show the possibility that glial cells are involved in the altered behavior present after prenatal ethanol treatment.

  14. Toxicokinetic, toxicodynamic, and toxicoproteomic aspects of short-term exposure to trenbolone in female fish.

    PubMed

    Schultz, Irvin R; Nagler, James J; Swanson, Penny; Wunschel, Dave; Skillman, Ann D; Burnett, Vicki; Smith, Derek; Barry, Richard

    2013-12-01

    The toxicokinetics of trenbolone was characterized during 500 ng/l water exposures in female rainbow trout (Oncorhynchus mykiss) and fathead minnows (Pimephales promelas). Related experiments measured various toxicodynamic effects of exposure. In both species, trenbolone was rapidly absorbed from the water and reached peak plasma levels within 8h of exposure. Afterwards, trenbolone concentrations in trout (66-95 ng/ml) were 2-6 times higher compared with minnows (15-29 ng/ml), which was attributable to greater plasma binding in trout. During water exposures, circulating levels of estradiol (E2) rapidly decreased in both species to a concentration that was 25%-40% of control values by 8-24h of exposure and then remained relatively unchanged for the subsequent 6 days of exposure. In trout, changes in circulating levels of follicle-stimulating hormone were also significantly greater after trenbolone exposure, relative to controls. In both species, the pharmacokinetics of injected E2-d3 was altered by trenbolone exposure with an increase in total body clearance and a corresponding decrease in elimination half-life. The unbound percentage of E2 in trout plasma was 0.25%, which was similar in pre- or postvitellogenic female trout. Subsequent incubation with trenbolone caused the unbound percentage to significantly increase to 2.4% in the previtellogenic trout plasma. iTRAQ-based toxicoproteomic studies in minnows exposed to 5, 50, and 500 ng/l trenbolone identified a total of 148 proteins with 19 downregulated including vitellogenin and 18 upregulated. Other downregulated proteins were fibrinogens, α-2-macroglobulin, and transferrin. Upregulated proteins included amine oxidase, apolipoproteins, parvalbumin, complement system proteins, and several uncharacterized proteins. The results indicate trenbolone exposure is a highly dynamic process in female fish with uptake and tissue equilibrium quickly established, leading to both rapid and delayed toxicodynamic effects.

  15. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies.

    PubMed

    Meduri, G; Touraine, P; Beau, I; Lahuna, O; Desroches, A; Vacher-Lavenu, M C; Kuttenn, F; Misrahi, M

    2003-08-01

    Inactivating mutations of the FSH receptor have been described in rare cases of premature ovarian failure. Only one mutation was associated with a complete phenotype, including delayed puberty, primary amenorrhea, and small ovaries. We describe here a new patient presenting a similar complete phenotype of premature ovarian failure, with high plasma FSH levels associated with very low estrogen and inhibin B levels. No biological response to high doses of recombinant FSH was detected. A novel homozygous Pro(519)Thr mutation was found in this patient. This mutation is located in the second extracellular loop of the FSH receptor, within a motif highly conserved in gonadotropin and TSH receptors. The mutation totally impairs adenylate cyclase stimulation in vitro. FSH binding experiments and confocal microscopy showed that this mutation alters the cell surface targeting of the mutated receptor, which remains trapped intracellularly. Histological studies of the ovaries of the patient showed an increase in the density of small follicles compared with age-matched normal women. A complete block in follicular maturation after the primary stage was also observed. Immunocytochemical studies allowed detection of the expression of c-Kit and proliferation cellular nuclear antigen, whereas no apoptosis was shown by the 3'-end-labeling method. This observation supports the concept that in humans FSH seems mandatory for the initiation of follicular growth only after the primary stage. In our patient complete FSH resistance yields infertility, which is remarkably associated with the persistence of a high number of small follicles.

  16. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure

    EPA Science Inventory

    Abstract: We tested the hypothesis that relative to submerged cells, airway epithelial cells grown at an air-liquid interface would have an altered response to particle exposure. RNA for IL-8, IL-6, heme oxygenase 1 and cyclooxygenase 2 increased following exposure of submer...

  17. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets

    PubMed Central

    Prusinski, Lauren; Al-Hendy, Ayman; Yang, Qiwei

    2016-01-01

    Endocrine disruptions induced by environmental toxicants have placed an immense burden on society to properly diagnose, treat and attempt to alleviate symptoms and disease. Environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life - a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical and cellular events. Humans may encounter endocrine disrupting chemicals (EDCs) daily and during all stages of life, from conception and fetal development through adulthood and senescence. Though puberty and perimenopausal periods may be affected by endocrine disruption due to hormonal effects, prenatal and early postnatal windows are most critical for proper development due to rapid changes in system growth. Developmental reprogramming is shown to be caused by alterations in the epigenome. Development is the time when epigenetic programs are ‘installed’ on the genome by ‘writers’, such as histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs), which add methyl groups to lysine and arginine residues on histone tails and to CpG sites in DNA, respectively. A number of environmental compounds, referred to as estrogenic endocrine disruptors (EEDs), are able to bind to estrogen receptors (ERs) and interfere with the normal cellular development in target tissues including the prostate and uterus. These EEDs, including diethylstilbestrol (DES), bisphenol A (BPA), and genistein (a phytoestrogen derived from soybeans), have been implicated in the malformation of reproductive organs and later development of disease. Due to the lack of fully understanding the underlying mechanisms of how environmental toxicants and their level of exposure affect the human genome, it can be challenging to create clear

  18. Ameliorative potentials of quercetin against lead-induced hematological and testicular alterations in Albino rats.

    PubMed

    Al-Omair, Mohammed A.; Sedky, Azza; Ali, Awatef; Elsawy, Hany

    2017-02-28

    Lead is one of the oldest environmental and occupational toxins. Health hazards from increased lead exposure as a result of industrial and environmental pollution are recognized. The aim of the present study was to investigate the protective effects of quercetin as a model of an antioxidant drug against the toxic effects of lead acetate on the blood and the testis of rats. The lead concentrations were determined in blood and the testis. Testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) were assessed in serum. Hemoglobin (Hb) content, packed cell volume (PCV), white blood cell (WBC) and red blood cell (RBC) counts were evaluated in the whole blood. Our results showed that administration of lead acetate was associated with an increased lead levels in blood as well as in the testis. Lead acetate administration also caused a decrease in testicular function, Hb content, PCV and RBC count in comparison to the respective mean values of the control. In addition, lead acetate increased WBC count and induced alterations in sperm count, sperm motility and sperm abnormality and histopathology. In the contrary, administration of lead acetate along with quercetin partially restored the studied parameters to normal values. In conclusion, the treatment with quercetin may provide a partial protection against the toxic effects induced by lead acetate in blood and the testis of rats.

  19. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.

  20. Prenatal exposure to pesticides disrupts testicular histoarchitecture and alters testosterone levels in male Caiman latirostris.

    PubMed

    Rey, Florencia; González, Marianela; Zayas, Marcelo A; Stoker, Cora; Durando, Milena; Luque, Enrique H; Muñoz-de-Toro, Mónica

    2009-07-01

    The increased use of agrochemical pesticides, such as atrazine (ATZ) and endosulfan (END), may have a significant impact on ecosystem health and biodiversity. The aim of this study was to investigate the consequences of in ovum exposure to ATZ and END on Caiman latirostris gonadal histo-functional features. Caiman eggs were collected from environmentally pristine areas and incubated in controlled conditions at male producing temperature (33 degrees C). At stage 20 of embryonic development, the sensitive stage for gonadal sex determination, eggs were exposed to one dose of either END or ATZ. Gonadal histo-morphology was examined in caiman hatchlings and serum levels of testosterone were measured. Regardless of treatment condition, all eggs incubated at 33 degrees C resulted in male hatchlings. Tortuous seminiferous tubules with increased perimeter, disrupted distribution of peritubular myoid cells (desmin positive), and emptied tubular lumens characterized the testes of pesticide-exposed caiman. An imbalance between proliferative activity and cell death was observed in the testes of caiman exposed to the higher doses of END, mainly due to a high frequency of apoptosis in intratubular cells. This altered cell turnover was associated with decreased testosterone levels. Prenatal exposure to only one dose of END and ATZ disrupted neonatal male gonadal histo-functional features. Alterations described here could have detrimental effects on the sexual maturation of the caiman and, ultimately, on the success of male caiman reproduction.

  1. Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations.

    PubMed

    Larguinho, Miguel; Costa, Pedro M; Sousa, Gonçalo; Costa, Maria H; Diniz, Mário S; Baptista, Pedro V

    2014-12-01

    Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.

  2. Acute high-intensity sound exposure alters responses of place cells in hippocampus.

    PubMed

    Goble, T J; Møller, A R; Thompson, L T

    2009-07-01

    Overstimulation is known to activate neural plasticity in the auditory nervous system causing changes in function and re-organization. It has been shown earlier that overstimulation using high-intensity noise or tones can induce signs of tinnitus. Here we show in studies in rats that overstimulation causes changes in the way place cells of the hippocampus respond as rats search for rewards in a spatial maze. In familiar environments, a subset of hippocampal pyramidal neurons, known as place cells, respond when the animal moves through specific locations but are relatively silent in others. This place-field activity (i.e. location-specific firing) is stable in a fixed environment. The present study shows that activation of neural plasticity through overstimulation by sound can alter the response of these place cells. Rats implanted with chronic drivable dorsal hippocampal tetrodes (four microelectrodes) were assessed for stable single-unit place-field responses that were extracted from multiunit responses using NeuroExplorer computer spike-sorting software. Rats then underwent either 30 min exposure to a 4 kHz tone at 104 dB SPL or a control period in the same sound chamber. The place-field activity was significantly altered after sound exposure showing that plastic changes induced by overstimulation are not limited to the auditory nervous system but extend to other parts of the CNS, in this case to the hippocampus, a brain region often studied in the context of plasticity.

  3. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico.

    PubMed

    Hernández-Ochoa, Isabel; García-Vargas, Gonzalo; López-Carrillo, Lizbeth; Rubio-Andrade, Marisela; Morán-Martínez, Javier; Cebrián, Mariano E; Quintanilla-Vega, Betzabet

    2005-01-01

    We evaluated environmental-lead (Pb) effects on semen quality and sperm chromatin, considering Pb in seminal fluid (PbSF), spermatozoa (PbSpz), and blood (PbB) as exposure biomarkers in urban men (9.3 microg/dL PbB). Several individuals (44%) showed decreases in sperm quality; sperm concentration, motility, morphology and viability associated negatively with PbSpz, whereas semen volume associated negatively with PbSF. Multiple linear regression estimated PbSF and PbSpz thresholds for alterations in semen quality. Forty-eight percent of samples showed high values of nuclear chromatin condensation (NCD) positively associated with PbSF and zinc in spermatozoa (ZnSpz). ZnSpz values were higher than in fertile men. These results suggest that Pb may affect sperm chromatin by altering sperm Zn availability. PbB was not associated with semen quality or NCD, suggesting that Pb in semen compartments assesses better the amount of Pb in the reproductive tract; therefore, these are better biomarkers to evaluate toxicity at low Pb-exposure levels.

  4. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics.

    PubMed

    McClain, Justin A; Hayes, Dayna M; Morris, Stephanie A; Nixon, Kimberly

    2011-09-01

    Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.

  5. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure.

    PubMed

    Hintsala, Heidi E; Kiviniemi, Antti M; Tulppo, Mikko P; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J K; Ikäheimo, Tiina M

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55-65 years) who underwent a whole-body cold exposure (-10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg(2), compared with hypertensive group [0 (-13, 20) mmHg(2)]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension.

  6. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  7. Perinatal Exposure to Bisphenol-A Alters Peripubertal Mammary Gland Development in Mice

    PubMed Central

    Muñoz-de-Toro, Monica; Markey, Caroline M.; Wadia, Perinaaz R.; Luque, Enrique H.; Rubin, Beverly S.; Sonnenschein, Carlos; Soto, Ana M.

    2010-01-01

    Developmental exposure to estrogenic chemicals induces morphological, functional, and behavioral anomalies associated with reproduction. Humans are exposed to bisphenol-A (BPA), an estrogenic compound that leaches from dental materials and plastic food and beverage containers. The aim of the present study was to determine the effects of perinatal exposure to low, environmentally relevant doses of BPA [25 and 250 ng BPA/kg body weight (bw)·d] on the peripubertal development of the mammary gland. BPA exposure enhanced the mammary glands' sensitivity to estradiol in ovariectomized CD-1 mice. In their intact 30-d-old littermates, the area and numbers of terminal end buds relative to the gland ductal area increased whereas their apoptotic activity decreased. There was a positive correlation between ductal length and the age at first proestrus; that was reduced as the BPA dose increased, suggesting that BPA exposure slows down ductal invasion of the stroma. There was also a significant increase of progesterone receptor-positive ductal epithelial cells that were localized in clusters, suggesting future branching points. Indeed, lateral branching was significantly enhanced at 4 months of age in mice exposed to 25 ng BPA /kg bw·d. In conclusion, perinatal exposure to environmentally relevant BPA doses results in persistent alterations in mammary gland morphogenesis. Of special concern is the increased terminal end bud density at puberty as well as the increased number of terminal ends reported previously in adult animals, as these two structures are the sites at which cancer arises in humans and rodents. PMID:15919749

  8. Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity.

    PubMed

    Maskey, Dhiraj; Pradhan, Jonu; Aryal, Bijay; Lee, Chang-Min; Choi, In-Young; Park, Ki-Sup; Kim, Seok Bae; Kim, Hyung Gun; Kim, Myeung Ju

    2010-07-30

    Exponential interindividual handling in wireless communication system has raised possible doubts in the biological aspects of radiofrequency (RF) exposure on human brain owing to its close proximity to the mobile phone. In the nervous system, calcium (Ca(2+)) plays a critical role in releasing neurotransmitters, generating action potential and membrane integrity. Alterations in intracellular Ca(2+) concentration trigger aberrant synaptic action or cause neuronal apoptosis, which may exert an influence on the cellular pathology for learning and memory in the hippocampus. Calcium binding proteins like calbindin D28-K (CB) is responsible for the maintaining and controlling Ca(2+) homeostasis. Therefore, in the present study, we investigated the effect of RF exposure on rat hippocampus at 835 MHz with low energy (specific absorption rate: SAR=1.6 W/kg) for 3 months by using both CB and glial fibrillary acidic protein (GFAP) specific antibodies by immunohistochemical method. Decrease in CB immunoreactivity (IR) was noted in exposed (E1.6) group with loss of interneurons and pyramidal cells in CA1 area and loss of granule cells. Also, an overall increase in GFAP IR was observed in the hippocampus of E1.6. By TUNEL assay, apoptotic cells were detected in the CA1, CA3 areas and dentate gyrus of hippocampus, which reflects that chronic RF exposure may affect the cell viability. In addition, the increase of GFAP IR due to RF exposure could be well suited with the feature of reactive astrocytosis, which is an abnormal increase in the number of astrocytes due to the loss of nearby neurons. Chronic RF exposure to the rat brain suggested that the decrease of CB IR accompanying apoptosis and increase of GFAP IR might be morphological parameters in the hippocampus damages.

  9. Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice.

    PubMed

    Han, Haijun; Sun, Zilong; Luo, Guangying; Wang, Chong; Wei, Ruifen; Wang, Jundong

    2015-09-01

    Numerous studies have shown that fluoride exposure adversely affected the male reproductive function, while the molecular mechanism is not clear. The present study was to investigate the effects of fluoride exposure (60 days) on the expressions of reproductive related genes, serum sex hormone levels and structures of the hypothalamus-pituitary-testicular axis (HPTA), which plays a vital role in regulating the spermatogenesis in male mice. In this study, 48 male mice were administrated with 0, 25, 50, and 100 mg/L NaF through drinking water. Results showed that the malformation ratio of sperm was significantly increased (P<0.05). At transcriptional level, the expression levels of follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), inhibin alpha (INHα), inhibin beta-B (INHβB), and sex hormone binding globulin (SHBG) mRNA in testis were significantly decreased (P<0.05). Moreover, histological lesions in testis and ultrastructural alterations in hypothalamus, pituitary and testis were obvious. However, the same fluoride exposure did not lead to significant changes of related mRNA expressions in hypothalamus and pituitary (P>0.05). Also, there were no marked changes in serum hormones. Taken together, we conclude that the mechanism of HPTA dysfunction is mainly elucidated through affecting testes, and its effect on hypothalamus and pituitary was secondary at exposure for 60 days.

  10. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    PubMed

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.

  11. Neonatal exposure to amphetamine alters social affiliation and central dopamine activity in adult male prairie voles.

    PubMed

    Fukushiro, D F; Olivera, A; Liu, Y; Wang, Z

    2015-10-29

    The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating. Recent data have shown that amphetamine (AMPH) is rewarding to prairie voles as it induces conditioned place preferences. Further, repeated treatment with AMPH impairs social bonding in adult prairie voles through a central dopamine (DA)-dependent mechanism. The present study examined the effects of neonatal exposure to AMPH on behavior and central DA activity in adult male prairie voles. Our data show that neonatal exposure to AMPH makes voles less social in an affiliation test during adulthood, but does not affect animals' locomotor activity and anxiety-like behavior. Neonatal exposure to AMPH also increases the levels of tyrosine hydroxylase (TH) and DA transporter (DAT) mRNA expression in the ventral tegmental area (VTA) in the brain, indicating an increase in central DA activity. As DA has been implicated in AMPH effects on behavioral and cognitive functions, altered DA activity in the vole brain may contribute to the observed changes in social behavior.

  12. Alteration of the behavioral effects of nicotine by chronic caffeine exposure.

    PubMed

    Tanda, G; Goldberg, S R

    2000-05-01

    The prevalence of tobacco smoking and coffee drinking place nicotine and caffeine among the most used licit drugs in many societies and their consumption is often characterised by concurrent use. The pharmacological basis for any putative interaction between these drugs remains unclear. Some epidemiological reports support anecdotal evidence, which suggests that smokers consume caffeine to enhance the effects of nicotine. This paper reviews various aspects of the pharmacology of caffeine and nicotine, in humans and experimental animals, important for the understanding of the interactions between these drugs. In particular, recent experiments are reviewed in which chronic exposure to caffeine in the drinking water of rats facilitated acquisition of self-adminstration behavior, enhanced nicotine-induced increases in dopamine levels in the shell of the nucleus accumbens and altered the dopaminergic component of a nicotine discrimination. These studies provide evidence that the rewarding and subjective properties of nicotine can be changed by chronic caffeine exposure and indicate that caffeine exposure may be an important environmental factor in shaping and maintaining tobacco smoking.

  13. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.

  14. Dietary selenomethionine exposure alters swimming performance, metabolic capacity and energy homeostasis in juvenile fathead minnow.

    PubMed

    McPhee, D Landon; Janz, David M

    2014-10-01

    Selenium (Se) is known to cause chronic toxicity in aquatic species. In particular, dietary exposure of fish to selenomethionine (SeMet), the primary form of Se in the diet, is of concern. Recent studies suggest that chronic exposure to elevated dietary SeMet alters energy and endocrine homeostasis in adult fish. However, little is known about the direct effects of dietary SeMet exposure in juvenile fish. The objective of the present study was to investigate sublethal physiological effects of dietary SeMet exposure in juvenile fathead minnow (Pimephales promelas). Twenty days-post-hatch fathead minnow were exposed for 60 days to different measured concentrations (2.8, 5.4, 9.9, 26.5 μg Se/g dry mass [dm]) of Se in food in the form of SeMet. After exposure, samples were collected for Se analysis and fish were subjected to a swimming performance challenge to assess critical swim speed (Ucrit), tail beat frequency and tail beat amplitude, oxygen consumption (MO2), cost of transport (COT), standard metabolic rate (SMR), active metabolic rate (AMR), and factorial aerobic scope (F-AS). Ucrit was decreased in the 26.5 μg Se/g dm exposure group compared to the control group. Tail beat frequency and tail beat amplitude were significantly reduced in fish fed 9.9 and 26.5 μg Se/g. An increase in MO2 and COT was observed in the 9.9 and 26.5 μg Se/g exposure groups compared to the control group. While the AMR of the high dose group was increased relative to control, there were no significant differences in SMR and F-AS. Energy storage capacity was measured via whole body triglyceride and glycogen concentrations. Triglyceride concentrations in non-swam fish were elevated in the 5.4 μg Se/g group relative to controls. Fatigued (swam) fish had significantly lower whole body triglycerides than non-swam fish. All non-swam SeMet exposure groups had significantly decreased whole body glycogen concentrations compared to controls, while the 5.4 and 26.5 μg Se/g exposure groups had

  15. Dynamics of circulating concentrations of gonadotropins and ovarian hormones throughout the menstrual cycle in the bonnet monkey: role of inhibin A in the regulation of follicle-stimulating hormone secretion.

    PubMed

    Suresh, P S; Medhamurthy, R

    2009-10-01

    In higher primates, increased circulating follicle-stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P(4)) secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern of P(4) secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3+/-2 vs. 27.3+/-3 pg/mL), and a 2- to 3-fold rise in circulating FSH levels by 24 hr (0.20+/-0.02 vs. 0.53+/-0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 microg/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P(4) concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase.

  16. c-JUN Dimerization Protein 2 (JDP2) Is a Transcriptional Repressor of Follicle-stimulating Hormone β (FSHβ) and Is Required for Preventing Premature Reproductive Senescence in Female Mice.

    PubMed

    Jonak, Carrie R; Lainez, Nancy M; Roybal, Lacey L; Williamson, Alexa D; Coss, Djurdjica

    2017-02-17

    Follicle-stimulating hormone (FSH) regulates follicular growth and stimulates estrogen synthesis in the ovaries. FSH is a heterodimer consisting of an α subunit, also present in luteinizing hormone, and a unique β subunit, which is transcriptionally regulated by gonadotropin-releasing hormone 1 (GNRH). Because most FSH is constitutively secreted, tight transcriptional regulation is critical for maintaining FSH levels within a narrow physiological range. Previously, we reported that GNRH induces FSHβ (Fshb) transcription via induction of the AP-1 transcription factor, a heterodimer of c-FOS and c-JUN. Herein, we identify c-JUN-dimerization protein 2 (JDP2) as a novel repressor of GNRH-mediated Fshb induction. JDP2 exhibited high basal expression and bound the Fshb promoter at an AP-1-binding site in a complex with c-JUN. GNRH treatment induced c-FOS to replace JDP2 as a c-JUN binding partner, forming transcriptionally active AP-1. Subsequently, rapid c-FOS degradation enabled reformation of the JDP2 complex. In vivo studies revealed that JDP2 null male mice have normal reproductive function, as expected from a negative regulator of the FSH hormone. Female JDP2 null mice, however, exhibited early puberty, observed as early vaginal opening, larger litters, and early reproductive senescence. JDP2 null females had increased levels of circulating FSH and higher expression of the Fshb subunit in the pituitary, resulting in elevated serum estrogen and higher numbers of large ovarian follicles. Disruption of JDP2 function therefore appears to cause early cessation of reproductive function, a condition that has been associated with elevated FSH in women.

  17. Multiple binding sites for nuclear proteins of the anterior pituitary are located in the 5'-flanking region of the porcine follicle-stimulating hormone (FSH) beta-subunit gene.

    PubMed

    Kato, Y; Tomizawa, K; Kato, T

    1999-12-20

    Gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), are synthesized specifically in the gonadotropes of the anterior pituitary. The aim of this study was to investigate nuclear factors that bind specifically to the porcine FSH beta-subunit gene. We examined nuclear protein binding to 2.75 kilobase pairs (kbp) of DNA adjacent to the porcine FSH beta-subunit gene: about 2.32 kbp of upstream DNA and 0.43 kbp of downstream DNA. The upstream region contains only TATA box, CACCC element, and some imperfect sequences of cAMP-responsive element, activator protein-1 binding site, and activator protein-2 binding site. Gel mobility shift assay using nuclear proteins extracted from the porcine anterior pituitary revealed that the proteins bound to a limited region of DNA, 107 bp long (designated as Fd2), located about -800 bp upstream from the transcription initiation site. Competitive binding assays demonstrated that the protein binding was sequence specific; the addition of excess amounts of several putative regulatory sequences and plasmid (non-homologous) DNA fragments did not reduce the binding. Furthermore, all five subfragments of Fd2 were also bound by the pituitary nuclear proteins, showing that the entire region of Fd2 is involved in this interaction. Southwestern blotting demonstrated that at least seven protein species of 110, 98, 78, 63, 52, 42, and 35 kDa recognize Fd2. Nuclear proteins from several other porcine tissues were also able to bind to the Fd2 fragment but the gel shift patterns were different and the bindings were weak, although only the cerebellum showed a pattern of binding that was similar to that of the anterior pituitary. These data suggest that multiple proteins of the anterior pituitary recognize a specific region of the porcine FSH beta-subunit gene.

  18. The effect of the intracervical application of follicle-stimulating hormone or luteinizing hormone on the pattern of expression of gonadotrophin receptors in the cervix of non-pregnant ewes.

    PubMed

    Leethongdee, S; Khalid, M; Scaramuzzi, R J

    2014-08-01

    During the periovulatory period, the cervix relaxes in response to changes in circulating concentrations of reproductive hormones. The present study investigated the role of gonadotrophins in cervical function by examining the expression of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) and their mRNAs following intracervical treatment with either FSH or LH. Eighteen ewes were assigned to four groups, and they were then treated with progestagen sponges and PMSG to synchronize their oestrous cycles. Intracervical treatments were given 24 h after sponge removal as follows: Group 1: FSH 2 mg; Group 2: LH 2 mg; Group 3: Vehicle and Group 4: Control. Cervices were collected 54 h after sponge removal and then divided into three regions. The expression of FSHR and LHR was determined by immunohistochemistry and FSHR mRNA and LH mRNA by in situ hybridization. The expression of LHR, FSHR and their respective mRNAs was compared in six tissue layers (luminal epithelium, subepithelial stroma, circular, longitudinal and transverse muscle and serosa) and in three cervical regions (vaginal, mid and uterine). The results showed that FSH increased transcription of the FSHR gene and the levels of its receptor, but only in subepithelial stroma of the cervix. FSH also increased the levels of LHR in the cervix, but only in the muscle layers. LH had no effect on the levels of FSHR despite the fact that it did increase the level of transcription of the FSHR gene and LH also increased the levels of its own receptor in the cervix, but only in the muscle layers, and this action was independent of increased levels of transcription of the LHR gene. These findings suggest multiple levels of regulation of cervical LH and FSH receptors and that the gonadotrophins may have a role in relaxation of the cervix during oestrus by regulating their own receptors.

  19. Exposure to mixtures of solvents among paint workers and biochemical alterations of liver function.

    PubMed Central

    Chen, J D; Wang, J D; Jang, J P; Chen, Y Y

    1991-01-01

    The objective of this study was to determine biochemical alterations of liver function among paint manufacturers and sprayers associated with exposure to organic solvents. Two paint manufacturing factories and 22 various kinds of spray painting factories (16 car painting, two aircraft painting, three video terminal painting; and one trailer painting) were included. Air concentrations of organic solvents were collected by personal samplers and analysed by gas chromatography. A total of 180 workers were given a comprehensive physical examination, a questionnaire, a liver function test, and a test for hepatitis B surface antigen. The questionnaire contained questions regarding detailed personal medical history, intake of alcohol, and use of medicine. Mixtures of solvents were used throughout the factories, and xylene and toluene were the major components found in almost all air samples with average contents of 46% and 29% on a weight basis of 67 air samples. No strong hepatotoxic solvents were detected. Workers were classified according to the different exposure patterns and different air concentrations of breathing zones as: high (eight hour time weighted average (8 h TWA) hygienic effects of solvents 0.25-9.83, median 1.66), short term high (8 h TWA hygienic effects of solvents 0-3.38, median 0.12), and low (8 h TWA hygienic effects of solvents all below 0.38). After applying a multivariate model to control the non-occupational factors (alcohol, medication, age, and hepatitis B viral infection), increase in gamma-glutamyl transferase (GGT) activity was found to be associated with severity of exposure to the mixture of solvents. Because the possible effects on GGT activity of non-occupational factors were controlled for, it is concluded that increased GGT activity among exposed workers may be due to a higher exposure to the mixture of solvents. PMID:1931729

  20. Does Switching to Reduced Ignition Propensity Cigarettes Alter Smoking Behavior or Exposure to Tobacco Smoke Constituents?

    PubMed Central

    Rees, Vaughan W.; Norton, Kaila J.; Cummings, K. Michael; Connolly, Gregory N.; Alpert, Hillel R.; Sjödin, Andreas; Romanoff, Lovisa; Li, Zheng; June, Kristie M.; Giovino, Gary A.

    2010-01-01

    Introduction: Since 2004, several jurisdictions have mandated that cigarettes show reduced ignition propensity (RIP) in laboratory testing. RIP cigarettes may limit fires caused by smoldering cigarettes, reducing fire-related deaths and injury. However, some evidence suggests that RIP cigarettes emit more carbon monoxide and polycyclic aromatic hydrocarbons, and smokers may alter their smoking patterns in response to RIP cigarettes. Both of these could increase smokers’ exposures to harmful constituents in cigarettes. Methods: An 18-day switching study with a comparison group was conducted in Boston, MA (N = 77), and Buffalo, NY (N = 83), in 2006–2007. Current daily smokers completed 4 laboratory visits and two 48-hr field data collections. After a 4-day baseline, Boston participants switched to RIP cigarettes for 14 days, whereas Buffalo participants smoked RIP cigarettes throughout. Outcome measures included cigarettes smoked per day; smoking topography; salivary cotinine; breath CO; and hydroxylated metabolites of pyrene, naphthalene, phenanthrene, and fluorene. Because the groups differed demographically, analyses adjusted for race, age, and sex. Results: We observed no significant changes in smoking topography or CO exposure among participants who switched to RIP cigarettes. Cigarette use decreased significantly in the switched group (37.7 cigarettes/48 hr vs. 32.6 cigarettes/48 hr, p = .031), while hydroxyphenanthrenes increased significantly (555 ng/g creatinine vs. 669 ng/g creatinine, p = .007). No other biomarkers were significantly affected. Discussion: Small increases in exposure to phenanthrene among smokers who switched to RIP versions were observed, while other exposures and smoking topography were not significantly affected. Toxicological implications of these findings are unclear. These findings should be weighed against the potential public health benefits of adopting RIP design standards for cigarette products. PMID:20805292

  1. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  2. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  3. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus.

    PubMed

    Guerrero Schimpf, Marlise; Milesi, María M; Ingaramo, Paola I; Luque, Enrique H; Varayoud, Jorgelina

    2017-02-01

    Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2mg/kg) by sc injection every 48h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic differentiation. PR and Hoxa10 were deregulated both immediately and two weeks after the exposure. ERα was induced in the stromal compartment on PND8, and was downregulated in the luminal epithelial cells of gyphosate-exposed animals on PND21. GBH treatment also increased

  4. Subchronic Arsenic Exposure Through Drinking Water Alters Lipid Profile and Electrolyte Status in Rats.

    PubMed

    Waghe, Prashantkumar; Sarkar, Souvendra Nath; Sarath, Thengumpallil Sasindran; Kandasamy, Kannan; Choudhury, Soumen; Gupta, Priyanka; Harikumar, Sankarankutty; Mishra, Santosh Kumar

    2017-04-01

    Arsenic is a groundwater pollutant and can cause various cardiovascular disorders in the exposed population. The aim of the present study was to assess whether subchronic arsenic exposure through drinking water can induce vascular dysfunction associated with alteration in plasma electrolytes and lipid profile. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. On the 91st day, rats were sacrificed and blood was collected. Lipid profile and the levels of electrolytes (sodium, potassium, and chloride) were assessed in plasma. Arsenic reduced high-density lipoprotein cholesterol (HDL-C) and HDL-C/LDL-C ratio, but increased the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), and electrolytes. The results suggest that the arsenic-mediated dyslipidemia and electrolyte retention could be important mechanisms in the arsenic-induced vascular disorder.

  5. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    PubMed

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  6. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Shen, Jianliang; Reimer, David; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  7. Steroid levels in crinoid echinoderms are altered by exposure to model endocrine disruptors.

    PubMed

    Lavado, Ramón; Barbaglio, Alice; Carnevali, M Daniela Candia; Porte, Cinta

    2006-06-01

    Sexual steroids (testosterone and estradiol) were measured in the whole body of wild specimens of the crinoid Antedon mediterranea collected from the Tyrrhenian Sea (Italy). Testosterone levels (274-1,488 pg/g wet weight (w.w.)) were higher than those of estradiol (60-442 pg/g w.w.) and no significant differences between males and females were observed. No clear seasonal trend was either detected - individuals from February, June and October 2004 analyzed - apart from a peak of estradiol in males in autumn. Nonetheless, dramatic changes on tissue steroid levels were observed when individuals were exposed to model androgenic and anti-androgenic compounds for 2 and 4 weeks. The selected compounds were 17 alpha-methyltestosterone (17 alpha-MT), triphenyltin (TPT), fenarimol (FEN), cyproterone acetate (CPA), and p,p'-DDE. Endogenous testosterone levels were significantly increased after exposure to 17 alpha-MT, TPT and FEN, while different responses were observed for estradiol; 17 alpha-MT and FEN increased endogenous estradiol (up to seven-fold), and TPT lead to a significant decrease. Concerning the anti-androgenic compounds, CPA significantly reduced testosterone in a dose-dependent manner without altering estradiol levels, whereas specimens exposed to p,p'-DDE at a low dose (24 ng/L) for 4 weeks showed a four-fold increase in T levels. Overall, the data show the ability of the selected compounds to alter endogenous steroid concentrations in A. mediterranea, and suggest the existence in this echinoderm species of vertebrate-like mechanisms that can be affected by exposure to androgenic and anti-androgenic chemicals.

  8. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    PubMed

    Davis, David A; Bortolato, Marco; Godar, Sean C; Sander, Thomas K; Iwata, Nahoko; Pakbin, Payam; Shih, Jean C; Berhane, Kiros; McConnell, Rob; Sioutas, Constantinos; Finch, Caleb E; Morgan, Todd E

    2013-01-01

    Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3)) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  9. In utero exposure to chloroquine alters sexual development in the male fetal rat

    SciTech Connect

    Clewell, Rebecca A. Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-06-15

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  10. Adolescent exposure to nicotine alters the aversive effects of cocaine in adult rats.

    PubMed

    Hutchison, Mary Anne; Riley, Anthony L

    2008-01-01

    Nicotine is one of the most commonly used drugs in adolescence and has been shown to alter the rewarding effects of cocaine when administered in adulthood. Although the abuse potential of a drug has been suggested to be a balance between its rewarding and aversive effects, the long-term effects of nicotine on the aversive properties of other drugs had not been studied. To that end, in the present study rats exposed to nicotine (0.4 mg/kg) during adolescence (postnatal days 35-44) were tested for the acquisition and extinction of a cocaine-induced conditioned taste aversion (10, 18 or 32 mg/kg) in adulthood. Conditioning consisted of four saccharin-drug pairings followed by six extinction trials. Although cocaine-induced aversions at all doses, no effect of nicotine preexposure was seen during acquisition. During extinction, the nicotine-preexposed groups conditioned with 10 and 18 mg/kg cocaine displayed a decreased rate of extinction compared to their respective controls. These results suggest that while adolescent nicotine exposure does not appear to directly alter the aversive properties of cocaine it may affect other processes related to the response to drugs given in adulthood.

  11. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    PubMed

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development.

  12. Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese.

    PubMed

    Erikson, Keith M; Dorman, David C; Fitsanakis, Vanessa; Lash, Lawrence H; Aschner, Michael

    2006-01-01

    Neonatal rats were exposed to airborne manganese sulfate (MnSO4) (0, 0.05, 0.5, or 1.0 mg Mn/m3) during gestation (d 0-19) and postnatal days (PNDs) 1-18. On PND 19, rats were killed, and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) and tyrosine hydroxylase (TH) protein levels, metallothionein (MT), TH and GS mRNA levels, and reduced and oxidized glutathione (GSH and GSSG, respectively) levels were determined for all five regions. Mn exposure (all three doses) significantly (p = 0.0021) decreased GS protein levels in the cerebellum, and GS mRNA levels were significantly (p = 0.0008) decreased in the striatum. Both the median and high dose of Mn significantly (p = 0.0114) decreased MT mRNA in the striatum. Mn exposure had no effect on TH protein levels, but it significantly lowered TH mRNA levels in the olfactory bulb (p = 0.0402) and in the striatum (p = 0.0493). Mn exposure significantly lowered GSH levels at the median dose in the olfactory bulb (p = 0.0032) and at the median and high dose in the striatum (p = 0.0346). Significantly elevated (p = 0.0247) GSSG, which can be indicative of oxidative stress, was observed in the cerebellum of pups exposed to the high dose of Mn. These data reveal that alterations of oxidative stress biomarkers resulting from in utero and neonatal exposures of airborne Mn exist. Coupled with our previous study in which similarly exposed rats were allowed to recover from Mn exposure for 3 wk, it appears that many of these changes are reversible. It is important to note that the doses of Mn utilized represent levels that are a hundred- to a thousand-fold higher than the inhalation reference concentration set by the United States Environmental Protection Agency.

  13. Exposure to sorbitol during lactation causes metabolic alterations and genotoxic effects in rat offspring.

    PubMed

    Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel

    2016-10-17

    Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring.

  14. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Pinheiro, Cintia R; Santos-Silva, Ana Paula; de Oliveira, Elaine; Lisboa, Patricia C

    2013-08-01

    Maternal exposure to nicotine during lactation causes hyperleptinemia in the pups and, at adulthood, these animals are overweight and hyperleptinemic, while, in their hypothalamus, the leptin signaling pathway is reduced, evidencing a central leptin resistance. Then, we evaluated the expression of pro-opiomelanocortin (POMC), alpha-melanocyte stimulating hormone (α-MSH), cocaine and amphetamine-regulated transcript (CART), neuropeptide Y (NPY), agouti-related peptide (AgRP) and others in different hypothalamic nuclei in order to better understand the mechanisms underlying the obese phenotype observed in these animals at adulthood. On the 2nd postnatal day (P2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6 mg/kg/day) or saline for 14 days. Offspring were killed in P180 and immunohistochemistry and Western blot analysis were carried out. Significance data had p<0.05. Adult NIC offspring showed more intense NPY staining in the paraventricular nucleus (PVN) (+21%) and increased number of POMC-positive cells in the: arcuate nucleus (+33%), as an increase in fiber density of α-MSH in PVN (+85%). However, the number of CART-positive cells was reduced in the PVN (-25%). CRH staining was more intense in NIC offspring (+136%). Orexins and AgRP were not altered. Thus, maternal nicotine exposure changes hypothalamic neuropeptides in the adult progeny that is partially compatible with leptin resistance.

  15. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    PubMed

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders.

  16. Prenatal cocaine exposure alters emotional arousal regulation and its effects on working memory.

    PubMed

    Li, Zhihao; Coles, Claire D; Lynch, Mary Ellen; Hamann, Stephan; Peltier, Scott; LaConte, Stephen; Hu, Xiaoping

    2009-01-01

    While prenatal cocaine exposure (PCE) has been associated with arousal dysregulation and attentional impairments in both human and animal studies, the neurobiological bases of these teratogenic effects have not been well characterized. In the current study, we report functional neuroimaging observations of these effects in exposed youth. Using functional magnetic resonance imaging (fMRI), we embedded task-irrelevant emotional distracters in a working memory task to examine the interaction of emotional arousal and memory in 33 PCE and 23 non-exposed adolescents. Though with similar behavioral performance, the two groups exhibited different activation patterns associated with emotion-memory interactions. On the one hand, higher memory load attenuated emotion-related amygdala activation in controls but not in the exposed adolescents; on the other hand, prefrontal activation associated with memory load decreased in the presence of emotional distraction in the controls but increased in the exposed group. These group interaction differences suggest neurobiological substrates for arousal-associated neuronal alterations related to prenatal cocaine exposure. Consistent with previous findings in behavioral and physiological studies, the present neuroimaging data provided more in-depth evidence supporting the view that PCE has significant long-term teratogenic effect on arousal regulation system.

  17. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice.

    PubMed

    Onishchenko, Natalia; Tamm, Christoffer; Vahter, Marie; Hökfelt, Tomas; Johnson, Jeffrey A; Johnson, Delinda A; Ceccatelli, Sandra

    2007-06-01

    To investigate the long-term effects of developmental exposure to methylmercury (MeHg), pregnant mice were exposed to at 0.5 mg MeHg/kg/day via drinking water from gestational day 7 until day 7 after delivery. The behavior of offspring was monitored at 5-15 and 26-36 weeks of age using an automated system (IntelliCage) designed for continuous long-term recording of the home cage behavior in social groups and complex analysis of basic activities and learning. In addition, spontaneous locomotion, motor coordination on the accelerating rotarod, spatial learning in Morris water maze, and depression-like behavior in forced swimming test were also studied. The analysis of behavior performed in the IntelliCage without social deprivation occurred to be more sensitive in detecting alterations in activity and learning paradigms. We found normal motor function but decreased exploratory activity in MeHg-exposed male mice, especially at young age. Learning disturbances observed in MeHg-exposed male animals suggest reference memory impairment. Interestingly, the forced swimming test revealed a predisposition to depressive-like behavior in the MeHg-exposed male offspring. This study provides novel evidence that the developmental exposure to MeHg can affect not only cognitive functions but also motivation-driven behaviors.

  18. Ethanol exposure during gastrulation alters neuronal morphology and behavior in zebrafish.

    PubMed

    Shan, Shubham D; Boutin, Savanna; Ferdous, Jannatul; Ali, Declan W

    2015-01-01

    Ethanol (EtOH) exposure during development has been shown to lead to deficits in fine and gross motor control. In this study we used zebrafish embryos to determine the effects of EtOH treatment during gastrulation. We treated embryos in the gastrulation stage (5.25 hours post fertilization (hpf) to 10.75 hpf) with 10 mM, 50 mM or 100 mM EtOH and examined the effects on general animal morphology, the c-start reflex behavior, Mauthner cell (M-cell) morphology and motor neuron morphology. EtOH treated fish exhibited a minor but significant increase in gross morphological deformities compared with untreated fish. Behavioral studies showed that EtOH treatment resulted in an increase in the peak speed of the tail during the escape response. Furthermore, there was a marked increase in abnormally directed c-starts, with treated fish showing greater incidences of c-starts in inappropriate directions. Immunolabeling of the M-cells, which are born during gastrulation, revealed that they were significantly smaller in fish treated with 100 mM EtOH compared with controls. Immunolabeling of primary motor neurons using anti-znp1, showed no significant effect on axonal branching, whereas secondary motor axons had a greater number of branches in ethanol treated fish compared with controls. Together these findings indicate that ethanol exposure during gastrulation can lead to alterations in behavior, neuronal morphology and possibly function.

  19. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    PubMed Central

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  20. Prenatal cocaine exposure alters emotional arousal regulation and its effects on working memory

    PubMed Central

    Li, Zhihao; Coles, Claire D.; Lynch, Mary Ellen; Hamann, Stephan; Peltier, Scott; LaConte, Stephen; Hu, Xiaoping

    2009-01-01

    While prenatal cocaine exposure (PCE) has been associated with arousal dysregulation and attentional impairments in both human and animal studies, the neurobiological bases of these teratogenic effects have not been well characterized. In the current study, we report functional neuroimaging observations of these effects in exposed youth. Using functional magnetic resonance imaging (fMRI), we embedded task-irrelevant emotional distracters in a working memory task to examine the interaction of emotional arousal and memory in 33 PCE and 23 non-exposed adolescents. Though with similar behavioral performance, the two groups exhibited different activation patterns associated with emotion-memory interactions. On the one hand, higher memory load attenuated emotion-related amygdala activation in controls but not in the exposed adolescents; on the other hand, prefrontal activation associated with memory load decreased in the presence of emotional distraction in the controls but increased in the exposed group. These group interaction differences suggest neurobiological substrates for arousal-associated neuronal alterations related to prenatal cocaine exposure. Consistent with previous findings in behavioral and physiological studies, the present neuroimaging data provided more in-depth evidence supporting the view that PCE has significant long-term teratogenic effect on arousal regulation system. PMID:19699795

  1. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    PubMed

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  2. Histological and morphological alterations induced by copper exposure in Laeonereis acuta (Polychaeta, Nereididae).

    PubMed

    Geracitano, L A; Luquet, C; Monserrat, J M; Bianchini, A

    2004-01-01

    Laeonereis acuta (Polychaeta, Nereididae) was collected in an unpolluted (UP) and an polluted (P) site at the Patos Lagoon estuary (Southern Brazil) and maintained under control conditions (UPC and PC, respectively) or exposed to waterborne copper (UPCu and PCu; 500 microg Cu/l), for 48 h. Four groups (aaUPC, aaPC, aaUPCu, and aaPCu) were also pre-exposed for 48 h to ascorbic acid (aa; 0.1 mM) before copper exposure. Histological and morphological alterations, as well as oxygen consumption changes were evaluated. Independently of the sampling site and the pre-exposure to the ascorbic acid, morphological abnormalities were evident in more than 80% of worms exposed to copper. Conspicuous histological changes (coeloma obliteration, cuticle separation from the epidermis, and absence of dorsal vessel) were also observed. In addition, PCu worms showed loss of the digestive epithelium and coiling behavior. Similar oxygen consumption values were observed in control and copper exposed worms.

  3. Prenatal neuroleptic exposure alters postnatal striatal cholinergic activity in the rat.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Previous studies in our laboratory have shown that prenatal exposure to a neuroleptic during a critical period of gestation in the rat results in a marked deficit in the number of striatal dopamine-binding sites and in a diminution of dopamine agonist-induced stereotyped behavior. In the present studies, we examined the effect of prenatal neuroleptic exposure on biochemical parameters of cholinergic activity to determine whether the balance between striatal dopaminergic and cholinergic activity might be altered. The number of muscarinic cholinergic-binding sites and the specific activity of choline acetyltransferase were found to be significantly increased by prenatal treatment with the neuroleptics haloperidol or (+)-butaclamol. From the present studies and previous observations made in our laboratory, it is concluded that the ability of a neuroleptic to affect the number of muscarinic cholinergic receptors in postnatal life may be a result of the phenotypically undifferentiated state of the developing dopamine-binding site. Our findings of increased striatal cholinergic activity accompanied by a marked decrease in dopaminergic activity may have implications for an increased vulnerability to extrapyramidal motor disturbances during postnatal development.

  4. FSH (Follicle-Stimulating Hormone) Test

    MedlinePlus

    ... FSH and LH may be ordered when a boy or girl does not appear to be entering puberty at ... hair Growth of the testicles and penis in boys Beginning of menstruation in girls ^ Back to top What does the test result ...

  5. Follicle-stimulating hormone (FSH) blood test

    MedlinePlus

    ... 25.8 to 134.8 mIU/ml Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your doctor about the meaning of your specific test result.

  6. Cellular alterations upon IR-laser (890 nm) exposures, in vivo.

    PubMed

    Kolesnikova, A I; Kubasova, T; Konoplyannikov, A G; Köteles, G J

    1998-01-01

    Exposure of cultured cells and small animals to ionizing radiation as well as irradiation of cultured cells with He-Ne laser can cause changes in the functional condition of plasma membranes. The ionizing radiation-induced cell membrane alterations have been determined after either partial or local exposures. The aim of the present study was to reveal whether the local laser treatments cause a general, distant, so called abscopal" effect measured at cellular level, when the laser treatment is intended as a stimulatory procedure. The biological effect of infrared laser (mean power of 5 Watts, 150 Hz frequency, 890 nm wavelength) was demonstrated through 3H-concanavalin A binding by blood cells of daily irradiated (altogether 10 exposures) oncological and non-oncological patients as well as by changes in the proliferation of bone marrow cells of whole body gamma-irradiated (4 Gy) rats, partially laser-treated. The lectin binding of lymphocytes of oncological, as well as ischaemic heart disease patients was increased immediately after the first laser treatment. However, it was decreased after completion of the full course. In cases of inflammatory diseases the test parameters were either unchanged or decreased as compared to their self-control values. The platelets and erythrocytes did not react in any group. Gamma irradiation caused a deep inhibition of proliferation of rat bone marrow cells. The number of fibroblast colony-forming units (CFU-F) could be increased again if the animals were partially exposed to laser. Laser irradiation of one of the femurs led to some recovery of CFU-F values in the exposed as well as unexposed femur. Thus, local infrared laser treatment induces abscopal effects on the cell membrane and cell proliferation characteristics.

  7. Fetal hematopoietic alterations after maternal exposure to benzo[a]pyrene: A cytometric evaluation

    SciTech Connect

    Holladay, S.D.; Smith, B.J.

    1994-12-31

    In utero exposure to the environmental contaminant benzo[a]pyrene (BaP) was found to alter expression of murine thymocyte and liver fetal cell-surface markers. Pregnant mice were treated (via gavage) with 0, 50, 100, or 150 mg BaP/kg/d on gestational days (gd) 13-17, and offspring were examined on gd 18. Severe thymic atrophy and cellular depletion were found in BaP-exposed fetal mice. Flow cytometric analysis indicated that the BaP treatment resulted in a significant decrease in the percentage of CD4{sup +}8{sup +} fetal thymocytes, as well as significantly increased CD4{sup {minus}}8{sup {minus}} and CD4{sup {minus}}8{sup +} thymocytes. Staining of thymocytes with anti-mouse heat-stable antigen (HSA) and CD8 monoclonal antibodies produced similar results. These data suggest that BaP, in addition to producing thymic hypocellularity, inhibits normal thymocyte maturation processes. The BaP treatment was also found to decrease total fetal liver cellularity including numbers of cells within resident hematopoietic subpopulations. In particular, prolymphocytic cells, identified by CD44 and CD45R antigen expression and by presence of nuclear terminal deoxynucleotidyl transferase (TdT), were significantly decreased in animals gestationally exposed to BaP. These data, taken together, indicate that postnatal suppression of cell and humoral-mediated immune function following in utero exposure to BaP may result from multiple targeting of immune function following in utero exposure to BaP may result from multiple targeting of immune cells at different hematopoietic levels. Furthermore, results of the present study identify both qualitative and quantitative changes in fetal immune cell antigen expression that correlate well with the postnatal immunosuppression that occurs in experimental animals exposed to this carcinogenic polycyclic aromatic hydrocarbon. 41 refs., 4 figs., 3 tabs.

  8. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  9. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.

    PubMed

    Ellgren, Maria; Spano, Sabrina M; Hurd, Yasmin L

    2007-03-01

    Cannabis use is a hypothesized gateway to subsequent abuse of other drugs such as heroin. We currently assessed whether Delta-9-tetrahydrocannabinol (THC) exposure during adolescence modulates opiate reinforcement and opioid neural systems in adulthood. Long-Evan male rats received THC (1.5 mg/kg intraperitoneally (i.p.)) or vehicle every third day during postnatal days (PNDs) 28-49. Heroin self-administration behavior (fixed ratio-1; 3-h sessions) was studied from young adulthood (PND 57) into full adults (PND 102). THC-pretreated rats showed an upward shift throughout the heroin self-administration acquisition (30 microg/kg/infusion) phase, whereas control animals maintained the same pattern once stable intake was obtained. Heightened opiate sensitivity in THC animals was also evidenced by higher heroin consumption during the maintenance phase (30 and 60 microg/kg/infusion) and greater responding for moderate-low heroin doses (dose-response curve: 7.5, 15, 30, 60, and 100 microg/kg/injection). Specific disturbance of the endogenous opioid system was also apparent in the brain of adults with adolescent THC exposure. Striatal preproenkephalin mRNA expression was exclusively increased in the nucleus accumbens (NAc) shell; the relative elevation of preproenkephalin mRNA in the THC rats was maintained even after heroin self-administration. Moreover, mu opioid receptor (muOR) GTP-coupling was potentiated in mesolimbic and nigrostriatal brainstem regions in THC-pretreated animals. muOR function in the NAc shell was specifically correlated to heroin intake. The current findings support the gateway hypothesis demonstrating that adolescence cannabis exposure has an enduring impact on hedonic processing resulting in enhanced opiate intake, possibly as a consequence of alterations in limbic opioid neuronal populations.

  10. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    PubMed Central

    2009-01-01

    Background Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD) 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants. PMID:19331648

  11. Association between lead exposure from electronic waste recycling and child temperament alterations.

    PubMed

    Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia

    2011-08-01

    We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (P<0.01). Significant differences of mean scores in activity level (4.53±0.83 vs. 4.18±0.81), approach-withdrawal (4.62±0.85 vs. 4.31±0.89), and adaptability (4.96±0.73 vs. 4.67±0.83) were found between Guiyu and Chendian children (all P<0.01). High BLL (BLL≥10μg/dL) child had higher mean scores of approach-withdrawal when compared with those children with low BLL (BLL<10 μg/dL) (4.61±0.87 vs. 4.30±0.88, P<0.01). Location of child residence in Guiyu, and parents engagement in work related to e-waste were the risk factors related to child BLL, activity level, approach-withdrawal, adaptability, and mood. Child hand washing prior to food consumption was a protected factor for BLL and several dimensions. There are close relationships between BLL elevation, temperament alteration and the e-waste recycling activities in Guiyu. Primitive e-waste recycling may threaten the health of children by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies.

  12. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in

  13. Chronic lead exposure alters presynaptic calcium regulation and synaptic facilitation in Drosophila larvae.

    PubMed

    He, T; Hirsch, H V B; Ruden, D M; Lnenicka, G A

    2009-09-01

    Prolonged exposure to inorganic lead (Pb(2+)) during development has been shown to influence activity-dependent synaptic plasticity in the mammalian brain, possibly by altering the regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)). To explore this possibility, we studied the effect of Pb(2+) exposure on [Ca(2+)](i) regulation and synaptic facilitation at the neuromuscular junction of larval Drosophila. Wild-type Drosophila (CS) were raised from egg stages through the third larval instar in media containing either 0 microM, 100 microM or 250 microM Pb(2+) and identified motor terminals were examined in late third-instar larvae. To compare resting [Ca(2+)](i) and the changes in [Ca(2+)](i) produced by impulse activity, the motor terminals were loaded with a Ca(2+) indicator, either Oregon Green 488 BAPTA-1 (OGB-1) or fura-2 conjugated to a dextran. We found that rearing in Pb(2+) did not significantly change the resting [Ca(2+)](i) nor the Ca(2+) transient produced in synaptic boutons by single action potentials (APs); however, the Ca(2+) transients produced by 10 Hz and 20 Hz AP trains were larger in Pb(2+)-exposed boutons and decayed more slowly. For larvae raised in 250 microM Pb(2+), the increase in [Ca(2+)](i) during an AP train (20 Hz) was 29% greater than in control larvae and the [Ca(2+)](i) decay tau was 69% greater. These differences appear to result from reduced activity of the plasma membrane Ca(2+) ATPase (PMCA), which extrudes Ca(2+) from these synaptic terminals. These findings are consistent with studies in mammals showing a Pb(2+)-dependent reduction in PMCA activity. We also observed a Pb(2+)-dependent enhancement of synaptic facilitation at these larval neuromuscular synapses. Facilitation of EPSP amplitude during AP trains (20 Hz) was 55% greater in Pb(2+)-reared larvae than in controls. These results showed that Pb(2+) exposure produced changes in the regulation of [Ca(2+)](i) during impulse activity, which could affect various

  14. Chronic lead exposure alters presynaptic calcium regulation and synaptic facilitation in Drosophila larvae

    PubMed Central

    He, T.; Hirsch, H.V.B.; Ruden, D. M.; Lnenicka, G. A.

    2009-01-01

    Prolonged exposure to inorganic lead (Pb2+) during development has been shown to influence activity-dependent synaptic plasticity in the mammalian brain, possibly by altering the regulation of intracellular Ca2+ concentration ([Ca2+]i). To explore this possibility, we studied the effect of Pb2+ exposure on [Ca2+]i regulation and synaptic facilitation at the neuromuscular junction of larval Drosophila. Wild-type Drosophila (CS) were raised from egg stages through the third larval instar in media containing either 0, 100 μM or 250 μM Pb2+ and identified motor terminals were examined in late third-instar larvae. To compare resting [Ca2+]i and the changes in [Ca2+]i produced by impulse activity, the motor terminals were loaded with a Ca2+ indicator, either Oregon Green 488 BAPTA-1 (OGB-1) or fura-2 conjugated to a dextran. We found that rearing in Pb2+ did not significantly change the resting [Ca2+]i nor the Ca2+ transient produced in synaptic boutons by single action potentials (APs); however, the Ca2+ transients produced by 10 and 20 Hz AP trains were larger in Pb2+-exposed boutons and decayed more slowly. For larvae raised in 250 μM Pb2+, the increase in [Ca2+]i during an AP train (20 Hz) was 29% greater than in control larvae and the [Ca2+]i decay τ was 69% greater. These differences appear to result from reduced activity of the plasma membrane Ca2+ ATPase (PMCA), which extrudes Ca2+ from these synaptic terminals. These findings are consistent with studies in mammals showing a Pb2+-dependent reduction in PMCA activity. We also observed a Pb2+-dependent enhancement of synaptic facilitation at these larval neuromuscular synapses. Facilitation of EPSP amplitude during AP trains (20 Hz) was 55% greater in Pb2+-reared larvae than in controls. These results showed that Pb2+ exposure produced changes in the regulation of [Ca2+]i during impulse activity, which could affect various aspects of nervous system development. At the mature synapse, this altered [Ca2+]i

  15. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background The potential benefit of adding recombinant human luteinizing hormone (r-hLH) to recombinant human follicle-stimulating hormone (r-hFSH) during ovarian stimulation is a subject of debate, although there is evidence that it may benefit certain subpopulations, e.g. poor responders. Methods A systematic review and a meta-analysis were performed. Three databases (MEDLINE, Embase and CENTRAL) were searched (from 1990 to 2011). Prospective, parallel-, comparative-group randomized controlled trials (RCTs) in women aged 18–45 years undergoing in vitro fertilization, intracytoplasmic sperm injection or both, treated with gonadotrophin-releasing hormone analogues and r-hFSH plus r-hLH or r-hFSH alone were included. The co-primary endpoints were number of oocytes retrieved and clinical pregnancy rate. Analyses were conducted for the overall population and for prospectively identified patient subgroups, including patients with poor ovarian response (POR). Results In total, 40 RCTs (6443 patients) were included in the analysis. Data on the number of oocytes retrieved were reported in 41 studies and imputed in two studies. Therefore, data were available from 43 studies (r-hFSH plus r-hLH, n = 3113; r-hFSH, n = 3228) in the intention-to-treat (ITT) population (all randomly allocated patients, including imputed data). Overall, no significant difference in the number of oocytes retrieved was found between the r-hFSH plus r-hLH and r-hFSH groups (weighted mean difference −0.03; 95% confidence interval [CI] −0.41 to 0.34). However, in poor responders, significantly more oocytes were retrieved with r-hFSH plus r-hLH versus r-hFSH alone (n = 1077; weighted mean difference +0.75 oocytes; 95% CI 0.14–1.36). Significantly higher clinical pregnancy rates were observed with r-hFSH plus r-hLH versus r-hFSH alone in the overall population analysed in this review (risk ratio [RR] 1.09; 95% CI 1.01–1.18) and in poor responders (n = 1179; RR 1.30; 95% CI 1

  16. Effect of a gonadotropin-releasing factor vaccine on follicle-stimulating hormone and luteinizing hormone concentrations and on the development of testicles and the expression of boar taint in male pigs.

    PubMed

    Fuchs, T; Thun, R; Parvizi, N; Nathues, H; Koehrmann, A; Andrews, S; Brock, F; Klein, G; Sudhaus, N; Grosse Beilage, E

    2009-09-15

    The objective of this study was to determine the effect of using a gonadotropin-releasing factor (GnRF) vaccine on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in plasma, the size of testicles, and the expression of boar taint in male pigs. Vaccinated pigs were compared with surgically castrated pigs and entire males. Pigs were randomly assigned to three treatment groups: surgically castrated during the first week of life (T01, n=274), immunized twice during the fattening period with a GnRF vaccine, the first when 13 to 14 wk of age and the second when 20 to 21 wk of age (T02, n=280), and entire males (T03, n=56). From a subgroup of both T01 and T02 and from all pigs of group T03, blood samples were collected immediately before second vaccination (T02) and again before slaughter at either 24 to 25 or 26 to 27 wk of life to determine the plasma concentrations of LH and FSH. Testicles were removed after slaughter and their size was determined. Meat and fat samples from all pigs of T02 and T03 as well as 25% of the pigs of T01 were examined with the cold cooking and fat melting test. Immediately before the second vaccination (T02 only), LH and FSH concentrations were not significantly different between T02 and T03. However, LH and FSH concentrations were significantly higher in T01 compared with T02 and T03. Before the first slaughter date, LH and FSH concentrations were significantly lower in T02 than in T03. Testicle size was significantly lower in T02 compared with that in T03. In T02, 98% (235 of 239) of the samples were rated negative for boar taint by the cooking test, whereas in T03, 94% (48 of 51) were rated positive. In the fat melting test, 97% of T02 were rated negative and 3% (7 pigs) were rated positive, including the pigs tested positive in the cold cooking test. In T03, 94% were rated positive. All pigs (7 of 239) in T02 that were positive for boar taint in the cooking or melting test and that were tested had

  17. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells.

    PubMed

    Ezzat, A Ahmed; Saito, H; Sawada, T; Yaegashi, T; Goto, Y; Nakajima, Y; Jin, J; Yamashita, T; Sawai, K; Hashizume, T

    2010-09-01

    The aims of the present study were to clarify the effect of Kisspeptin-10 (Kp10) on the secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) from bovine anterior pituitary (AP) cells and evaluate the ability of sex steroids to enhance the sensitivity of gonadotropic and lactotropic cells to Kp10. AP cells prepared from 7-week-old male calves were incubated for 12h with estradiol (E(2); 10(-8)M), progesterone (P(4); 10(-8)M), testosterone (T; 10(-8)M), or vehicle only (control), and then for 2h with Kp10 (10(-6)M). The amounts of LH, FSH and PRL released into the culture medium after the 2-h incubation period were examined. Kp10 significantly stimulated the secretion of LH from the AP cells treated with E(2) and T (P<0.05), but not from the P(4)-treated cells. In contrast, Kp10 had no effect on the secretion of FSH regardless of the steroid treatment. Kp10 significantly stimulated the secretion of PRL (P<0.05), the sexual steroid hormones having no effect. The LH- or FSH-releasing response to gonadotropin-releasing hormone (GnRH; 10(-8)M) and PRL-releasing response to thyrotropin-releasing hormone (TRH; 10(-8)M) were significantly greater than those to Kp10 (P<0.05). The present results suggest that E(2) and T, but not P(4), enhance the sensitivity of gonadotropic cells to the secretion of LH in response to Kp10. However, Kp10 had no stimulatory effect on the secretion of FSH regardless of the effect of sex steroids. Kp10 directly stimulates the secretion of PRL from the pituitary cells, and sex steroids do not enhance the sensitivity of lactotropic cells to Kp10. Furthermore, the LH- and FSH-releasing effect and the PRL-releasing effect of Kp10 are less potent than that of GnRH and TRH, respectively.

  18. On the nature of the follicle-stimulating signal delivered to the ovary during exogenously controlled follicular maturation. A search into the immunological and biological attributes and the molecular composition of two preparations of urofollitropin.

    PubMed

    Ulloa-Aguirre, A; Zambrano, E; Timossi, C; Olivares, A; Quintanar, A; Aguinaga, M; Díaz-Cueto, L; Méndez, J P

    1995-01-01

    In the present study, we analyzed the immunological and biological potencies as well as the molecular composition of urinary follicle-stimulating hormone (FSH) present in determined lots of regular and highly purified (HP) commercial preparations of urofollitropin in order to obtain additional insights on the particular type of gonadotropin signal received by the ovary during exogenously regulated ovarian stimulation. In both preparations, a high degree of FSH charge heterogeneity was detected as disclosed by chromatofocusing analysis (pH range 7.5 to < 4.0). Urinary FSH present in the HP compound was consistently more acidic and exhibited a longer survival in rat circulation than the regular formulation. Inter-batch variability for FSH heterogeneity and in vitro bioactivity was higher in the partially purified preparation than in the HP analog. In the regular preparation, the amount of immunoreactive and bioactive FSH per ampule was two times higher than that present in the HP preparation; the resultant in vitro B/I ratios were similar. Although both urinary FSH preparations showed detectable amounts of immunoreactive and bioactive luteinizing hormone and choriogonadotropin hormone material, the degree of activity present in the less purified formulation was considerably higher than that shown by the HP analog. When the capability of each urinary FSH preparation to induce ovarian tissue-type plasminogen activator enzyme activity in hypophysectomized rats was determined, both formulations exhibited similar potencies despite the existing differences in plasma clearance rate and charge distribution profile. The present study indicates that the isoform composition of urinary FSH in the two commercial preparations analyzed differs according to the degree of purity of the formulation. More FSH material is needed in the partially purified FSH preparation to induce biological effects similar in magnitude to those exhibited by the highly purified analog. The possible

  19. Functional changes after prenatal opiate exposure related to opiate receptors' regulated alterations in cholinergic innervation.

    PubMed

    Yanai, Joseph; Huleihel, Rabab; Izrael, Michal; Metsuyanim, Sally; Shahak, Halit; Vatury, Ori; Yaniv, Shiri P

    2003-09-01

    Opioid drugs act primarily on the opiate receptors; they also exert their effect on other innervations resulting in non-opioidergic behavioural deficits. Similarly, opioid neurobehavioural teratogenicity is attested in numerous behaviours and neural processes which hinder the research on the mechanisms involved. Therefore, in order to be able to ascertain the mechanism we have established an animal (mouse) model for the teratogenicity induced by opioid abuse, which focused on behaviours related to specific brain area and innervation. Diacetylmorphine (heroin) and not morphine was applied because heroin exerts a unique action, distinguished from that of morphine. Pregnant mice were exposed to heroin (10 mg/kg per day) and the offspring were tested for behavioural deficits and biochemical alterations related to the septohippocampal cholinergic innervation. Some studies employing the chick embryo were concomitantly added as a control for the confounding indirect variables. Prenatal exposure to heroin in mice induced global hyperactivation both pre- and post-synaptic along the septohippocampal cholinergic innervation, including basal protein kinase C (PKC) activity accompanied by a desensitization of PKC activity in response to cholinergic agonist. Functionally, the heroin-exposed offspring displayed deficits in hippocampus-related behaviours, suggesting deficits in the net output of the septohippocampal cholinergic innervation. Grafting of cholinergic cells to the impaired hippocampus reversed both pre- and post-synaptic hyperactivity, resensitized PKC activity, and restored the associated behaviours to normality. Consistently, correlation studies point to the relative importance of PKC to the behavioural deficits. The chick model, which dealt with imprinting related to a different brain region, confirmed that the effect of heroin is direct. Taken together with studies by others on the effect of prenatal exposure to opioids on the opioidergic innervation and with what

  20. Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations.

    PubMed

    Miandare, Hamed Kolangi; Niknejad, Mahtab; Shabani, Ali; Safari, Roghieh

    2016-01-01

    Sturgeon is one of the endangered families of fish in the Caspian Sea region, where there is up to 80% of their global caching. Unfortunately, in recent years, increase of pollutants has been resulted in their total population reduction. Due to their benthic nature, sturgeons are at great risk of exposing to contaminants such as cadmium. Despite their endangered status in the Caspian Sea, there are only a few studies on characterizing the relative sensitivity of sturgeons to cadmium. Adverse effects associated with pollution on angiogenesis are mediated by hypoxia inducing factor-1 (HIF-1) and vascular endothelial growth factor (VEGF). In this investigation, gene expression of two distinct HIFs-1, HIF-1α and HIF-2α, and VEGF was investigated at the mRNA transcript levels after exposure of Persian sturgeon (Acipenser persicus) to cadmium. VEGF, HIF-1α and HIF-2α expressions in treated Persian sturgeon were greater than controls. Significant increases (P<0.05) were also observed in cortisol and glucose levels compared to the control group especially in the fish exposed to higher cadmium concentration (800 μg/L). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactic acid dehydrogenase (LDH) levels were increased in the cadmium-exposed fish, although the observed increases were not significant between the control and 200 μg/L cadmium treatment at some sampling time points. Gill tissues also showed histopathological changes in the cadmium treatments. Overall, results indicated that cadmium resulted in some alterations in biochemical parameters, mRNA transcript level expression of two important angiogenesis related genes as well as histological alterations in Persian sturgeon.

  1. Neoplastic alterations induced in mammalian skin following mancozeb exposure using in vivo and in vitro models.

    PubMed

    Tyagi, Shilpa; George, Jasmine; Singh, Richa; Bhui, Kulpreet; Shukla, Yogeshwer

    2011-03-01

    Mancozeb, ethylene(bis)dithiocarbamate fungicides, has been well documented in the literature as a multipotent carcinogen, but the underlying mechanism remains unrevealed. Thus, mancozeb has been selected in this study with the objective to decipher the molecular mechanism that culminates in carcinogenesis. We employed two-dimensional gel electrophoresis and mass spectrometry to generate a comparative proteome profile of control and mancozeb (200 mg/kg body weight) exposed mouse skin. Although many differentially expressed proteins were found, among them, two significantly upregulated proteins, namely, S100A6 (Calcyclin) and S100A9 (Calgranulin-B), are known markers of keratinocyte differentiation and proliferation, which suggested their role in mancozeb-induced neoplastic alterations. Therefore, we verified these alterations in the human system by using HaCaT cells as an in vitro model for human skin keratinocyte carcinogenesis. Upregulation of these two proteins upon mancozeb (0.5 μg/mL) exposure in HaCaT cells indicated its neoplastic potential in human skin also. This potential was confirmed by increase in number of colonies in colony formation and anchorage-independent growth assays. Modulation of S100A6/S100A9 targets, elevated phosphorylation of extracellular signal regulated kinase (ERK1/2), Elk1, nuclear factor- kappa B and cell division cycle 25 C phosphatase, and cyclin D1 and cyclooxygenase-2 upregulation was seen. In addition, PD98059 (ERK1/2 inhibitor) reduced cell proliferation induced by mancozeb, confirming the involvement of ERK1/2 signaling. Conclusively, we herein present the first report asserting that the mechanism involving S100A6 and S100A9 regulated ERK1/2 signaling underlies the mancozeb-induced neoplastic potential in human skin.

  2. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain.

    PubMed

    Ngai, Ying Fai; Sulistyoningrum, Dian C; O'Neill, Ryan; Innis, Sheila M; Weinberg, Joanne; Devlin, Angela M

    2015-09-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE.

  3. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    PubMed Central

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  4. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation

    PubMed Central

    Rodgers, Ali B.; Morgan, Christopher P.; Bronson, Stefanie L.; Revello, Sonia; Bale, Tracy L.

    2013-01-01

    Neuropsychiatric disease frequently presents with an underlying hypo- or hyper- reactivity of the HPA stress axis, suggesting an exceptional vulnerability of this circuitry to external perturbations. Parental lifetime exposures to environmental challenges are associated with increased offspring neuropsychiatric disease risk, and likely contribute to stress dysregulation. While maternal influences have been extensively examined, much less is known regarding the specific role of paternal factors. To investigate the potential mechanisms by which paternal stress may contribute to offspring hypothalamic-pituitary-adrenal (HPA) axis dysregulation, we exposed mice to six weeks of chronic stress prior to breeding. As epidemiological studies support variation in paternal germ cell susceptibility to reprogramming across the lifespan, male stress exposure occurred either throughout puberty or in adulthood. Remarkably, offspring of sires from both paternal stress groups displayed significantly reduced HPA axis stress responsivity. Gene set enrichment analyses in offspring stress regulating brain regions, the paraventricular nucleus (PVN) and the bed nucleus of stria terminalis (BNST), revealed global pattern changes in transcription suggestive of epigenetic reprogramming and consistent with altered offspring stress responsivity, including increased expression of glucocorticoid-responsive genes in the PVN. In examining potential epigenetic mechanisms of germ cell transmission, we found robust changes in sperm miRNA (miR) content, where nine specific miRs were significantly increased in both paternal stress groups. Overall, these results demonstrate that paternal experience across the lifespan can induce germ cell epigenetic reprogramming and impact offspring HPA stress axis regulation, and may therefore offer novel insight into factors influencing neuropsychiatric disease risk. PMID:23699511

  5. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure

    PubMed Central

    Rizvi, Fariha Z.; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J.; Krumholz, Lee R.

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  6. Co-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    PubMed Central

    Horton, Megan K.; Blount, Benjamin C.; Valentin-Blasini, Liza; Wapner, Ronald; Whyatt, Robin; Gennings, Chris; Factor-Litvak, Pam

    2015-01-01

    Background Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy. Objectives We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New York City using weighted quantile sum (WQS) regression. Methods We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (± 2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results Individual analyte concentrations in urine were significantly correlated (Spearman’s r 0.4–0.5, p < 0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. PMID:26408806

  7. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants.

    PubMed

    Stanley, Dara A; Raine, Nigel E

    2016-07-01

    Insect pollinators are essential for both the production of a large proportion of world crops and the health of natural ecosystems. As important pollinators, bumblebees must learn to forage on flowers to feed both themselves and provision their colonies.Increased use of pesticides has caused concern over sublethal effects on bees, such as impacts on reproduction or learning ability. However, little is known about how sublethal exposure to field-realistic levels of pesticide might affect the ability of bees to visit and manipulate flowers.We observed the behaviour of individual bumblebees from colonies chronically exposed to a neonicotinoid pesticide (10 ppb thiamethoxam) or control solutions foraging for the first time on an array of morphologically complex wildflowers (Lotus corniculatus and Trifolium repens) in an outdoor flight arena.We found that more bees released from pesticide-treated colonies became foragers, and that they visited more L. corniculatus flowers than controls. Interestingly, bees exposed to pesticide collected pollen more often than controls, but control bees learnt to handle flowers efficiently after fewer learning visits than bees exposed to pesticide. There were also different initial floral preferences of our treatment groups; control bees visited a higher proportion of T. repens flowers, and bees exposed to pesticide were more likely to choose L. corniculatus on their first visit.Our results suggest that the foraging behaviour of bumblebees on real flowers can be altered by sublethal exposure to field-realistic levels of pesticide. This has implications for the foraging success and persistence of bumblebee colonies, but perhaps more importantly for the interactions between wild plants and flower-visiting insects and ability of bees to deliver the crucial pollination services to plants necessary for ecosystem functioning.

  8. Functional alterations in immature cultured rat hippocampal neurons after sustained exposure to static magnetic fields.

    PubMed

    Hirai, Takao; Yoneda, Yukio

    2004-01-15

    In cultured rat hippocampal neurons, gradual increases were seen in the expression of microtubule-associated protein-2 (MAP-2), neuronal nuclei (NeuN) and growth-associated protein-43 (GAP-43), in proportion to increased duration, up to 9 days in vitro (DIV). Sustained exposure to static magnetic fields at 100 mT for up to 9 DIV significantly decreased expression of MAP-2 and NeuN in cultured rat hippocampal neurons without markedly affecting GAP-43 expression. Although a significant increase was seen in the expression of glial fibrillary acidic protein (GFAP) in hippocampal neuronal preparations cultured for 6-9 DIV under sustained magnetism, GFAP and proliferating cell nuclear antigen expression were not affected markedly in cultured astrocytes prepared from rat hippocampus and neocortex, irrespective of cellular maturity. No significant alteration was seen in cell survivability of hippocampal neurons or astrocytes cultured under sustained magnetism. In hippocampal neurons cultured for 3 DIV under sustained magnetism, marked mRNA expression was seen for N-methyl-D-aspartate (NMDA) receptor subunits, NR1, NR2A-2C, NR2D, and NR3A. In addition, significant potentiation of the ability of NMDA to increase intracellular free Ca(2+) ions was observed. Differential display analysis revealed a significant decrease in mRNA expression for the transcription factor ALF1 in response to sustained magnetism for 3 DIV. These results suggest that sustained exposure to static magnetic fields may affect cellular functionality and maturity in immature cultured rat hippocampal neurons through modulation of expression of particular NMDA receptor subunits.

  9. Exposure to Synthetic Gray Water Inhibits Amoeba Encystation and Alters Expression of Legionella pneumophila Virulence Genes

    PubMed Central

    Lu, Jingrang; Ashbolt, Nicholas J.

    2014-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems. PMID:25381242

  10. Prenatal Oxycodone Exposure Alters CNS Endothelin Receptor Expression in Neonatal Rats.

    PubMed

    Devarapalli, M; Leonard, M; Briyal, S; Stefanov, G; Puppala, B L; Schweig, L; Gulati, A

    2016-05-01

    Prenatal opioid exposure such as oxycodone is linked to significant adverse effects on the developing brain. Endothelin (ET) and its receptors are involved in normal development of the central nervous system. Opioid tolerance and withdrawal are mediated through ET receptors. It is possible that adverse effect of oxycodone on the developing brain is mediated through ET receptors. We evaluated brain ETA and ETB receptor expression during postnatal development in rats with prenatal oxycodone exposure. Timed pregnant Sprague-Dawley rats received either oxycodone or placebo throughout gestation. After birth, male rat pups were sacrificed on postnatal day (PND) 1, 7, 14 or 28. Brain ETA and ETB receptor expression was determined by Western blot analysis. Oxycodone pups compared to placebo demonstrated congenital malformations of the face, mouth, and vertebrae at the time of birth [4/69 (5.7%) vs. 0/60 (0%); respectively] and intrauterine growth retardation [10/69 (15%) vs. 2/60 (3.3%); respectively]. On PND 28, oxycodone pups compared to placebo had lower body and kidney weight. ETA receptor expression in the oxycodone group was significantly higher compared to placebo on PND 1 (p=0.035), but was similar on PND 7, 14, or 28. ETB receptor expression decreased in oxycodone compared to placebo on PND 1 and 7 (p=0.001); and increased on PND 28 (p=0.002), but was similar on PND 14. Oxycodone-exposed rat pups had lower birth weight and postnatal weight gain and greater congenital malformations. ETB receptor expression is altered in the brain of oxycodone-treated rat pups indicating a possible delay in CNS development.

  11. Exposure to synthetic gray water inhibits amoeba encystation and alters expression of Legionella pneumophila virulence genes.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Ashbolt, Nicholas J

    2015-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.

  12. Sucrose Exposure in Early Life Alters Adult Motivation and Weight Gain

    PubMed Central

    Frazier, Cristianne R. M.; Mason, Peggy; Zhuang, Xiaoxi; Beeler, Jeff A.

    2008-01-01

    The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a ‘thrifty genotype,’ an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this ‘obesogenic’ environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a ‘thrifty genotype’ and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity. PMID:18797507

  13. Chromatin Modifications during Repair of Environmental Exposure-Induced DNA Damage: A Potential Mechanism for Stable Epigenetic Alterations

    PubMed Central

    O’Hagan, Heather M.

    2014-01-01

    Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure. PMID:24259318

  14. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring.

    PubMed

    Gąssowska, Magdalena; Baranowska-Bosiacka, Irena; Moczydłowska, Joanna; Frontczak-Baniewicz, Małgorzata; Gewartowska, Magdalena; Strużyńska, Lidia; Gutowska, Izabela; Chlubek, Dariusz; Adamczyk, Agata

    2016-10-29

    noticed in the cerebellum, while the expression of postsynaptic PSD-95 was significantly decreased in forebrain cortex and cerebellum, and raised in hippocampus. Additionally, we observed the lower level of BDNF in all brain structures in comparison to control animals. In conclusion, perinatal exposure to low doses of Pb caused pathological changes in nerve endings associated with the alterations in the level of key synaptic proteins. All these changes can lead to synaptic dysfunction, expressed by the impairment of the secretory mechanism and thereby to the abnormalities in neurotransmission as well as to the neuronal dysfunction.

  15. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring.

    PubMed

    Gąssowska, Magdalena; Baranowska-Bosiacka, Irena; Moczydłowska, Joanna; Frontczak-Baniewicz, Małgorzata; Gewartowska, Magdalena; Strużyńska, Lidia; Gutowska, Izabela; Chlubek, Dariusz; Adamczyk, Agata

    2016-12-12

    noticed in the cerebellum, while the expression of postsynaptic PSD-95 was significantly decreased in forebrain cortex and cerebellum, and raised in hippocampus. Additionally, we observed the lower level of BDNF in all brain structures in comparison to control animals. In conclusion, perinatal exposure to low doses of Pb caused pathological changes in nerve endings associated with the alterations in the level of key synaptic proteins. All these changes can lead to synaptic dysfunction, expressed by the impairment of the secretory mechanism and thereby to the abnormalities in neurotransmission as well as to the neuronal dysfunction.

  16. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  17. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    EPA Science Inventory

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  18. Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex

    PubMed Central

    Blaze, Jennifer; Roth, Tania L

    2013-01-01

    Quality of maternal care experienced during infancy is a key factor that can confer vulnerability or resilience to psychiatric disorders later in life. Research continues to indicate that early-life experiences can affect developmental trajectories through epigenetic alterations capable of affecting gene regulation and neural plasticity. Previously, our lab has shown that experiences within an adverse caregiving environment (i.e. maltreatment) produce aberrant DNA methylation patterns at various gene loci in the medial prefrontal cortex (mPFC) of developing and adult rats. This study aimed to determine whether caregiver maltreatment likewise affects expression levels of several genes important in regulating DNA methylation patterns (Dnmt1, Dnmt3a, MeCP2, Gadd45b, and Hdac1). While we observed minimal changes in gene expression within the mPFC of developing rats, we observed expression changes for all genes in adult animals. Specifically, exposure to maltreatment produced a significant decrease in mRNA levels of all epigenetic regulators in adult males and a significant decrease in Gadd45b in adult females. Our results here provide further empirical support for the long-term and sex-specific epigenetic consequences of caregiver maltreatment on the mPFC. PMID:24120634

  19. Brood patches of American kestrels altered by experimental exposure to PCBs.

    PubMed

    Fisher, Sheri A; Bortolotti, Gary R; Fernie, Kim J; Bird, David M; Smits, Judit E

    2006-09-01

    Captive breeding (n = 25 pairs) and nonbreeding (n = 25) American kestrels were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1248:1254:1260) through their diet of day-old cockerels. Kestrels ingested approximately 7 mg/kg body weight each day of PCBs, and this dosage resulted in environmentally relevant total PCB residues in eggs (geometric mean of 34.1 microg/g). An equal number of unexposed birds served as controls. Bare areas of skin known as brood patches function during incubation to warm eggs; therefore, brood patch size could potentially influence hatching success, or patches may be a confounding factor in the relationship between poor incubation behavior and hatching failure observed in birds in toxicological studies. Exposure to PCBs altered the size of brood patches in American kestrels. PCB-exposed male and female nonbreeders had two of three brood patches that were larger than those of control nonbreeders. Breeding males exposed to PCBs had smaller patches than controls, whereas PCB-exposed female kestrels had one larger and one smaller patch than controls. Patch sizes were not related to total PCB residue levels in eggs of exposed birds. Brood patches were not related to various incubation behaviors or hatching success in either control or PCB-exposed kestrels.

  20. Prenatal nicotine exposure alters respiratory long term facilitation in neonatal rats

    PubMed Central

    Fuller, DD; Dougherty, BJ; Sandhu, MS; Doperalski, NJ; Reynolds, CR; Hayward, LF

    2009-01-01

    Intermittent hypoxia can evoke persistent increases in ventilation (ν̇ E) in neonates (i.e. long-term facilitation, LTF) (Julien et al. Am J Physiol Regul Integr Comp Physiol 294: R1356–R1366, 2008). Since prenatal nicotine (PN) exposure alters neonatal respiratory control (Fregosi & Pilarski. Respir. Physiol. Neurobiol. 164: 80–86, 2008), we hypothesized that PN would influence LTF of ventilation (ν̇ E) in neonatal rats. An osmotic minipump delivered nicotine (6 mg/kg/day) or saline to pregnant dams. ν̇ E was assessed in unanesthetized pups via whole body plethysmography at post-natal (P) days 9–11 or 15–17 during baseline (BL, 21% O2), hypoxia (10 × 5 min, 5% O2) and 30 min post-hypoxia. PN pups had reduced BL ν̇ E (p<0.05) but greater increases in ν̇ E during hypoxia (p<0.05). Post-hypoxia ν̇ E (i.e. LTF) showed an age × treatment interaction (p<0.01) with similar values at P9-11 but enhanced LTF in saline (30±8 %BL) vs. PN pups (6±5 %BL; p=0.01) at P15-17. We conclude that the post-natal developmental time course of hypoxia-induced LTF is influenced by PN. PMID:19818419

  1. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    SciTech Connect

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. )

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  2. Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis.

    PubMed

    Simon, D; Daubos, A; Pain, C; Fitoussi, R; Vié, K; Taieb, A; de Benetti, L; Cario-André, M

    2013-02-01

    Exposure to electromagnetic radiations (EMR) produced by mobile phone concerns half the world's population and raises the problem of their impact on human health. In this study, we looked at the effects of mobile phone exposure (GSM basic, 900 MHz, SAR 2 mW g(-1) , 6 h) on a model of pigmented skin. We have analysed the expression and localization of various markers of keratinocyte and melanocyte differentiation 2, 6, 18 and 24 h after EMR exposure of reconstructed epidermis containing either only keratinocytes or a combination of keratinocytes and melanocytes grown on dead de-epidermized dermis, using histology, immunohistochemistry and Western blot. No changes were found in epidermal architecture, localization of epidermal markers, presence of apoptotic cells and the induction of p53 in both types of epidermis (with or without melanocytes) after exposure to EMR. In pigmented reconstructs, no change in the location and dendricity of melanocytes and in melanin transfer to neighbouring keratinocytes was detected after EMR exposure. Loricrin, cytokeratin 14 were significantly decreased at 6 h. The level of all markers increased at 24 h as compared to 6 h post-EMR exposure, associated with a significant decrease of the 20S proteasome activity. Our data indicate that exposure to 900 MHz frequency induces a transient alteration of epidermal homoeostasis, which may alter the protective capacity of the skin against external factors. Presence or absence of melanocytes did not modify the behaviour of reconstructs after EMR exposure.

  3. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  4. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  5. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease.

    PubMed

    Richardson, Jason R; Caudle, W Michael; Wang, Minzheng; Dean, E Danielle; Pennell, Kurt D; Miller, Gary W

    2006-08-01

    Exposure to pesticides has been suggested to increase the risk of Parkinson's disease (PD), but the mechanisms responsible for this association are not clear. Here, we report that perinatal exposure of mice during gestation and lactation to low levels of dieldrin (0.3, 1, or 3 mg/kg every 3 days) alters dopaminergic neurochemistry in their offspring and exacerbates MPTP toxicity. At 12 wk of age, protein and mRNA levels of the dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) were increased by perinatal dieldrin exposure in a dose-related manner. We then administered MPTP (2 x 10 mg/kg s.c) at 12 wk of age and observed a greater reduction of striatal dopamine in dieldrin-exposed offspring, which was associated with a greater DAT:VMAT2 ratio. Additionally, dieldrin exposure during development potentiated the increase in GFAP and alpha-synuclein levels induced by MPTP, indicating increased neurotoxicity. In all cases there were greater effects observed in the male offspring than the female, similar to that observed in human cases of PD. These data suggest that developmental exposure to dieldrin leads to persistent alterations of the developing dopaminergic system and that these alterations induce a "silent" state of dopamine dysfunction, thereby rendering dopamine neurons more vulnerable later in life.

  6. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential

  7. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    PubMed

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure.

  8. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    PubMed Central

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  9. Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ(9)-THC exposure.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Tomasini, Maria Cristina; Morgano, Lucia; Antonelli, Tiziana; Tanganelli, Sergio; Cuomo, Vincenzo; Ferraro, Luca

    2017-03-01

    The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored. To this purpose, pregnant rats were treated daily with Delta(9)-tetrahydrocannabinol (Δ(9)-THC; 5mg/kg) or its vehicle. Perinatal exposure to Δ(9)-THC induced a significant reduction (p<0.05) in basal and K(+)-evoked [(3)H]-GABA outflow of 90-day-old rat hippocampal slices. These effects were associated with a reduction of hippocampal [(3)H]-GABA uptake compared to vehicle exposed group. Perinatal exposure to Δ(9)-THC induced a significant reduction of CB1 receptor binding (Bmax) in the hippocampus of 90-day-old rats. However, a pharmacological challenge with either Δ(9)-THC (0.1μM) or WIN55,212-2 (2μM), similarly reduced K(+)-evoked [(3)H]-GABA outflow in both experimental groups. These reductions were significantly blocked by adding the selective CB1 receptor antagonist SR141716A. These findings suggest that maternal exposure to cannabinoids induces long-term alterations of hippocampal GABAergic system. Interestingly, previous behavioral studies demonstrated that, under the same experimental conditions as in the present study, perinatal cannabinoids exposure induced cognitive impairments in adult rats, thus resembling some effects observed in humans. Although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of hippocampus aminoacidergic transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring of

  10. Alteration of Bacterial Antibiotic Sensitivity After Short-Term Exposure to Diagnostic Ultrasound

    PubMed Central

    Mortazavi, Seyed Mohammad Javad; Darvish, Leili; Abounajmi, Mohammad; Zarei, Samira; Zare, Tahereh; Taheri, Mohammad; Nematollahi, Samaneh

    2015-01-01

    inhibition zones in exposed and non-exposed samples of Klebsiella pneumonia and Streptococcus. Conclusions This study clearly shows that short-term exposure of microorganisms to diagnostic ultrasonic waves can significantly alter their sensitivity to antibiotics. We believe that this physical method of making the antibiotic-resistant population susceptible can open new horizons in antibiotic therapy of a broad range of diseases, including tuberculosis. PMID:26732124

  11. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters.

    PubMed

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms.

  12. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  13. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    PubMed

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  14. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    PubMed Central

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  15. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    PubMed

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

  16. Salmonid sexual development is not consistently altered by embryonic exposure to endocrine-active chemicals.

    PubMed Central

    Carlson, D B; Curtis, L R; Williams, D E

    2000-01-01

    Fish sexual development is sensitive to exogenous hormone manipulation, and salmonids have been used extensively as environmental sentinels and models for biomedical research. We simulated maternal transfer of contaminants by microinjecting rainbow trout (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) embryos. Fish were reared for 6 months and sexed, and gonads were removed for histology and measurement of in vitro steroid production. Analysis of fat samples showed that dichlorodiphenylethylene (DDE) levels, o, p'M-DDE and p,o, p'-DDE isomers, were elevated 6 months after treatment. A preliminary study showed an increased ratio of males to females after treatment with 80 mg/kg and 160 mg/kg of the xenoestrogen o,o, p'-DDE. One fish treated with 160 mg/kg o,o, p'-DDE had gonads with cells typical of both males and females. A follow-up study, using more fish and excluding the highly toxic 160 mg/kg o,o, p'-DDE dose, showed no effect on sex ratio or gonadal histology. Embryonic exposure of monosex male trout, monosex female trout, and mixed sex salmon to o, o, p'-DDE, p,o, p'-DDE, mixtures of DDE isomers, and octylphenol failed to alter sexual development. We observed no treatment-dependent changes in in vitro gonadal steroid production in any experiments. Trout exposed in ovo and reared to maturity spawned successfully. These results suggest that mortality attributable to the xenoestrogens o,o, p'-DDE, chlordecone, and octylphenol, and the antiandrogen p,o, p'-DDE, is likely to occur before the appearance of subtle changes in sexual development. Because trout appeared to be sensitive to endocrine disruption, we cannot dismiss the threat of heavily contaminated sites or complex mixtures to normal sexual development of salmonids or other aquatic organisms. Images Figure 1 Figure 2 Figure 3 PMID:10706532

  17. Lead (Pb) exposure reduces global DNA methylation level by non-competitive inhibition and alteration of dnmt expression.

    PubMed

    Sanchez, Oscar F; Lee, Jinyoung; Yu King Hing, Nathaphon; Kim, Seong-Eun; Freeman, Jennifer L; Yuan, Chongli

    2017-02-22

    Low-dose exposure to lead (Pb) is connected to developmental neurological alterations by inducing molecular changes, such as aberrant gene expression patterns. The attributing molecular mechanism, however, is not well-elucidated. In this study, we revealed epigenetic features and mechanisms that can alter gene expression patterns by identifying changes in DNA methyltransferase (DNMT) activity, expression pattern and DNA methylation level using moelcular studies and a zebrafish animal model. We characterized the effects of Pb on the activities of various DNMTs in vitro and determined the molecular role of Pb in modulating DNMT activity via kinetic experiments. An exposure of 100 or 500 ppb of Pb was found to significantly lower the activity of maintenance DNMTs. The inhibition mechanism can be described using non-competitive Michaelis-Menten kinetics. A zebrafish animal model was then used to assess the biological significance of our findings. An embryonic exposure to 100 or 500 ppb Pb resulted in a significant change in global methylation levels consistent with previous studies using human and rodent model. Our study also suggests that Pb exposure in zebrafish alters the expression patterns of dnmt3 and dnmt4 which are human DNMT3b orthologs. The knowledge from this study suggests that Pb exposure can affect the activity of maintenance DNMTs via non-competitive inhibition, which has not been reported previously. Meanwhile, the expression pattern of de novo methyltransferases can also be altered. Collectively, they result in a reduction in global DNA methylation level in Pb-exposed zebrafish model, which can be compared to findings in human and rodent studies.

  18. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  19. Lactational hexavalent chromium exposure-induced oxidative stress in rat uterus is associated with delayed puberty and impaired gonadotropin levels.

    PubMed

    Samuel, Jawahar B; Stanley, Jone A; Roopha, Dailiah P; Vengatesh, Ganapathy; Anbalagan, Jaganathan; Banu, Sakhila K; Aruldhas, Michael M

    2011-02-01

    Hexavalent chromium (CrVI) is a transition element utilized in many fields of modern industries. CrVI is a reproductive metal toxicant that can traverse the placental barrier and cause a wide range of fetal effects. Therefore, the present study was carried out to determine the CrVI-induced utero-toxicity. In the present study, lactating rats received drinking water containing CrVI (50 mg/L and 200 mg/L) from postnatal days (PND) 1-21. During PND 1-21, the pups received CrVI via the mother's milk. Pups from both control and treatment groups were continued on regular diet and water from PND-21 onwards and euthanized on PND-45 and -65. Specific activities antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) were estimated. Hydrogen peroxide (H₂O₂), lipid peroxidation (LPO) and serum gonadotropins viz. Luteinizing hormone (LH) and follicle stimulating hormone (FSH) were also assayed. Specific activities of SOD, CAT, GPX, GR and GST and serum testosterone and progesterone were significantly decreased, while H₂O₂, LPO and serum FSH was increased in 50-parts per million (ppm) and 200 ppm-treated rats in an age-dependent manner. These results suggest that lactational CrVI exposure induces oxidative stress in rat uterus by decreasing antioxidant enzymes, which were associated with delayed puberty and altered steroids and gonadotrophin levels.

  20. Follicle stimulating hormone secretion and dominant follicle growth during treatment of Bos indicus heifers with intra-vaginal progesterone releasing devices, oestradiol benzoate, equine chorionic gonadotrophin and prostaglandin F(2α).

    PubMed

    Edwards, S A A; Phillips, N J; Boe-Hansen, G B; Bo, G A; Burns, B M; Dawson, K; McGowan, M R

    2013-03-01

    The aim of this study was to investigate the effects on follicle stimulating hormone (FSH) secretion and dominant follicle (DF) growth, of treatment of Bos indicus heifers with different combinations of intra-vaginal progesterone releasing devices (IPRD), oestradiol benzoate (ODB), PGF2α and eCG. Two-year-old Brahman (BN; n=30) and Brahman-cross (BNX; n=34) heifers were randomly allocated to three IPRD-treatments: (i) standard-dose IPRD [CM 1.56g; 1.56g progesterone (P4); n=17]; (ii) half-dose IPRD (CM 0.78g; 0.78g P4; n=15); (iii) half-dose IPRD+300IU eCG at IPRD removal (CM 0.78g+G; n=14); and, (iv) non-IPRD control (2×PGF2α; n=18) 500μg cloprostenol on Days -16 and -2. IPRD-treated heifers received 250μg PGF2α at IPRD insertion (Day -10) and IPRD removal (Day -2) and 1mg ODB on Day -10 and Day -1. Follicular dynamics were monitored daily by trans-rectal ultrasonography from Day -10 to Day 1. Blood samples for determination of P4 were collected daily and samples for FSH determination were collected at 12h intervals from Day -9 to Day -2. A significant surge in concentrations of FSH was observed in the 2×PGF2α treatment 12h prior and 48h after follicular wave emergence, but not in the IPRD-treated heifers. Estimated mean concentrations of total plasma P4 during the 8 days of IPRD insertion was greater (P<0.001) in the CM 1.56g P4 treated heifers compared to the CM 0.78g P4 treated heifers (18.38ng/ml compared with 11.09ng/ml, respectively). A treatment by genotype interaction (P=0.036) was observed in the mean plasma P4 concentration in heifers with no CL during IPRD insertion, whereby BN heifers in the CM 1.56g treatment had greater plasma P4 than the BNX heifers on Days-9, -7, -6, -5, and -4. However, there was no genotype effect in the CM 0.78g±G or the 2×PGF2α treatment. Treatment had no effect on the DF growth from either day of wave emergence (P=0.378) or day of IPRD removal (P=0.780) to ovulation. This study demonstrates that FSH secretion in B

  1. A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice.

    PubMed

    Viberg, Henrik; Lee, Iwa

    2012-10-01

    Bisphenol A (BPA) is widely used in polymer products in food and beverage containers, baby bottles, dental sealants and fillings, adhesives, protective coatings, flame retardants, water supply pipes, and compact discs, and is found in the environment and in placental tissue, fetuses and breast milk. We have recently reported that a single neonatal exposure to bisphenol A can induce persistent aberrations in spontaneous behavior, in a dose-dependent manner, and affect the adult response to the cholinergic agent nicotine. Furthermore, other recent reports indicate that pre- and perinatal exposure to bisphenol A can induce neurotoxic effects. The present study indicates that a single neonatal exposure to bisphenol A, on postnatal day 10, during the peak of the brain growth spurt, can alter the adult levels of proteins important for normal brain development (CaMKII and synaptophysin). These alterations are induced in both male and female mice and effects are seen in both hippocampus and cerebral cortex. These results further support our recent study showing that neonatal exposure to bisphenol A can act as a developmental neurotoxicant and the effects are similar to effects seen after a single postnatal exposure to other POPs, such as PBDEs, PCBs and PFCs.

  2. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    EPA Science Inventory

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  3. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  4. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  5. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons

    PubMed Central

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-01-01

    The CB1 cannabinoid receptor, the main target of Δ9-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling. PMID:26460022

  6. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    PubMed

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  7. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  8. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  9. Functional Alteration of Natural Killer Cells and Cytotoxic T Lymphocytes upon Asbestos Exposure and in Malignant Mesothelioma Patients.

    PubMed

    Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kishimoto, Takumi; Fukuoka, Kazuya; Nakano, Takashi; Otsuki, Takemi

    2015-01-01

    Malignant mesothelioma is caused by exposure to asbestos, which is known to have carcinogenic effects. However, the development of mesothelioma takes a long period and results from a low or intermediate dose of exposure. These findings have motivated us to investigate the immunological effects of asbestos exposure and analyze immune functions of patients with mesothelioma and pleural plaque, a sign of exposure to asbestos. Here, we review our knowledge concerning natural killer (NK) cells and cytotoxic T lymphocytes (CTL). NK cells showed impaired cytotoxicity with altered expression of activating receptors upon exposure to asbestos, while induction of granzyme(+) cells in CD8(+) lymphocytes was suppressed by asbestos exposure. It is interesting that a decrease in NKp46, a representative activating receptor, is common between NK cells in PBMC culture with asbestos and those of mesothelioma patients. Moreover, it was observed that CD8(+) lymphocytes may be stimulated by some kind of "nonself" cells in plaque-positive individuals and in mesothelioma patients, whereas CTL in mesothelioma is impaired by poststimulation maintenance of cytotoxicity. These findings suggest that analysis of immunological parameters might contribute to the evaluation of health conditions of asbestos-exposed individuals and to a greater understanding of the pathology of malignant mesothelioma.

  10. Functional Alteration of Natural Killer Cells and Cytotoxic T Lymphocytes upon Asbestos Exposure and in Malignant Mesothelioma Patients

    PubMed Central

    Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kishimoto, Takumi; Fukuoka, Kazuya; Nakano, Takashi; Otsuki, Takemi

    2015-01-01

    Malignant mesothelioma is caused by exposure to asbestos, which is known to have carcinogenic effects. However, the development of mesothelioma takes a long period and results from a low or intermediate dose of exposure. These findings have motivated us to investigate the immunological effects of asbestos exposure and analyze immune functions of patients with mesothelioma and pleural plaque, a sign of exposure to asbestos. Here, we review our knowledge concerning natural killer (NK) cells and cytotoxic T lymphocytes (CTL). NK cells showed impaired cytotoxicity with altered expression of activating receptors upon exposure to asbestos, while induction of granzyme+ cells in CD8+ lymphocytes was suppressed by asbestos exposure. It is interesting that a decrease in NKp46, a representative activating receptor, is common between NK cells in PBMC culture with asbestos and those of mesothelioma patients. Moreover, it was observed that CD8+ lymphocytes may be stimulated by some kind of “nonself” cells in plaque-positive individuals and in mesothelioma patients, whereas CTL in mesothelioma is impaired by poststimulation maintenance of cytotoxicity. These findings suggest that analysis of immunological parameters might contribute to the evaluation of health conditions of asbestos-exposed individuals and to a greater understanding of the pathology of malignant mesothelioma. PMID:26161391

  11. Exposure to crude oil micro-droplets causes reduced food uptake in copepods associated with alteration in their metabolic profiles.

    PubMed

    Hansen, Bjørn Henrik; Altin, Dag; Nordtug, Trond; Øverjordet, Ida Beathe; Olsen, Anders J; Krause, Dan; Størdal, Ingvild; Størseth, Trond R

    2017-03-01

    Acute oil spills and produced water discharges may cause exposure of filter-feeding pelagic organisms to micron-sized dispersed oil droplets. The dissolved oil components are expected to be the main driver for oil dispersion toxicity; however, very few studies have investigated the specific contribution of oil droplets to toxicity. In the present work, the contribution of oil micro-droplet toxicity in dispersions was isolated by comparing exposures to oil dispersions (water soluble fraction with droplets) to concurrent exposure to filtered dispersions (water-soluble fractions without droplets). Physical (coloration) and behavioral (feeding activity) as well as molecular (metabolite profiling) responses to oil exposures in the copepod Calanus finmarchicus were studied. At high dispersion concentrations (4.1-5.6mg oil/L), copepods displayed carapace discoloration and reduced swimming activity. Reduced feeding activity, measured as algae uptake, gut filling and fecal pellet production, was evident also for lower concentrations (0.08mg oil/L). Alterations in metabolic profiles were also observed following exposure to oil dispersions. The pattern of responses were similar between two comparable experiments with different oil types, suggesting responses to be non-oil type specific. Furthermore, oil micro-droplets appear to contribute to some of the observed effects triggering a starvation-type response, manifested as a reduction in metabolite (homarine, acetylcholine, creatine and lactate) concentrations in copepods. Our work clearly displays a relationship between crude oil micro-droplet exposure and reduced uptake of algae in copepods.

  12. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    SciTech Connect

    Peters, J.L.; Castillo, F.J.; Heath, R.L. )

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  13. Chemical alteration of poly(tetrafluoroethylene) TFE teflon induced by exposure to electrons and inert-gas ions.

    PubMed

    Everett, Michael L; Hoflund, Gar B

    2005-09-08

    In this study the chemical alterations of poly(tetrafluoroethylene) (TFE Teflon) by approximately 1.0-keV electrons and 1.0-keV He and Ar ions have been examined using X-ray photoelectron spectroscopy (XPS). The initial F/C atom ratio of 1.99 decreases to a steady-state value of 1.48 after 48 h of electron exposure. Exposure to either He+ or Ar+ decreases the initial F/C atom ratio from approximately 2 to a steady-state value of 1.12. The high-resolution XPS C 1s data indicate that new chemical states of carbon form as the F is removed and that the relative amounts of these states depend on the F content of the near-surface region. These states are most likely due to C bonded only to one F atom, C bonded only to other C atoms and C that have lost a pair of electrons through emission of F-. Exposures of the electron-damaged and He+- or Ar+-damaged surfaces to research-grade O2 result in chemisorption of very small amounts of O indicating that large quantities of reactive sites are not formed during the chemical erosion. Further exposure to the electron or ion fluxes quickly removes this chemisorbed oxygen. Exposure of the He+-damaged surface to air at room temperature results in the chemisorption of a larger amount of O than the O2 exposure but no N is adsorbed. The chemical alterations due to electrons and ions are compared with those caused by hyperthermal (approximately 5 eV) atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. The largest amount of damage is caused by AO followed by VUV, inert-gas ions, and then electrons.

  14. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure.

  15. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  16. Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome.

    PubMed

    Bilotta, Joseph; Barnett, Jalynn A; Hancock, Laura; Saszik, Shannon

    2004-01-01

    Prenatal exposure to alcohol has been shown to produce the overt physical and behavioral symptoms known as fetal alcohol syndrome (FAS) in humans. Also, it is believed that low concentrations and/or short durations of alcohol exposure can produce more subtle effects. The purpose of this study was to investigate the effects of embryonic ethanol exposure on the zebrafish (Danio rerio) in order to determine whether this species is a viable animal model for studying FAS. Fertilized embryos were reared in varying concentrations of ethanol (1.5% and 2.9%) and exposure times (e.g., 0-8, 6-24, 12-24, and 48-72 h postfertilization; hpf); anatomical measures including eye diameter and heart rate were compared across groups. Results found that at the highest concentration of ethanol (2.9%), there were more abnormal physical distortions and significantly higher mortality rates than any other group. Embryos exposed to ethanol for a shorter duration period (0-8 hpf) at a concentration of 1.5% exhibited more subtle effects such as significantly smaller eye diameter and lower heart rate than controls. These results indicate that embryonic alcohol exposure affects external and internal physical development and that the severity of these effects is a function of both the amount of ethanol and the timing of ethanol exposure. Thus, the zebrafish represents a useful model for examining basic questions about the effects of embryonic exposure to ethanol on development.

  17. Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala

    PubMed Central

    Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6–21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure. PMID:23457122

  18. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    PubMed Central

    Albores-Garcia, Damaris; Hernandez, Alberto J.; Loera, Miriam J.

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined. PMID:26885512

  19. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats.

    PubMed

    Albores-Garcia, Damaris; Acosta-Saavedra, Leonor C; Hernandez, Alberto J; Loera, Miriam J; Calderón-Aranda, Emma S

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined.

  20. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis

    PubMed Central

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis-jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis. This makes the two compounds potential candidates to be integrated in pest management strategies. PMID:26726263

  1. VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES

    EPA Science Inventory

    Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...

  2. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    EPA Science Inventory

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  3. Chronic exposure to alcohol alters network activity and morphology of cultured hippocampal neurons.

    PubMed

    Korkotian, Eduard; Botalova, Alena; Odegova, Tatiana; Segal, Menahem

    2015-03-01

    The effects of chronic exposure to moderate concentrations of ethanol were studied in cultured hippocampal neurons. Network activity, assessed by imaging of [Ca(2+)]i variations, was markedly suppressed following 5 days of exposure to 0.25-1% ethanol. The reduced activity was sustained following extensive washout of ethanol, but the activity recovered by blockade of inhibition with bicuculline. This reduction of network activity was associated with a reduction in rates of mEPSCs, but not in a change in inhibitory synaptic activity. Chronic exposure to ethanol caused a significant reduction in the density of mature dendritic spines, without an effect on dendritic length or arborization. These results indicate that chronic exposure to ethanol causes a reduction in excitatory network drive in hippocampal neurons adding another dimension to the chronic effects of alcohol abuse.

  4. IDENTIFICATION OF NEURAL BIOMARKERS OF ALTERED SEXUAL DIFFERENTIATION FOLLOWING GESTATIONAL EXPOSURE***

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  5. Identification of neural biomarkers of altered sexual differentiation following gestational exposure###

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  6. Identification of neural biomarkers of altered sexual differentiation following gestational exposure

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during...

  7. Developmental Exposure to PCBs Differentially Alters Sensitivity to Audiogenic and Kindling-Induced Seizures in Rats

    EPA Science Inventory

    Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...

  8. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-04

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission.

  9. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    PubMed

    Dhimolea, Eugen; Wadia, Perinaaz R; Murray, Tessa J; Settles, Matthew L; Treitman, Jo D; Sonnenschein, Carlos; Shioda, Toshi; Soto, Ana M

    2014-01-01

    Exposure to environmental estrogens (xenoestrogens) may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA) leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND) 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA) was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments), with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50). BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene expression patterns

  10. Alterations in autonomic function in the guinea pig eye following exposure to dichlorvos vapor.

    PubMed

    Taylor, James T; Davis, Emily; Dabisch, Paul; Horsmon, Mike; Li, Ming; Mioduszewski, Robert

    2008-10-01

    The present study investigated the effect of the organophosphate, dichlorvos (DDVP), on ocular function and cholinesterase activity in guinea pigs, using a single-animal-head-only vapor exposure system. All animals exhibited signs of mild organophosphate poisoning (e.g., salivation, chewing, lacrimation, urination, defecation, and rhinorrhea) after the 20-min exposure, regardless of the DDVP exposure concentration (e.g., 35 mg/m(3), 55 mg/m(3), and 75 mg/m(3)). Pupil constriction or miosis was the most pronounced effect seen after vapor exposure. The postexposure pupil size for the 35 mg/m(3) group was 45.8 +/- 3.68% of the preexposure baseline measurement. Postexposure pupil size in the 55- (38 +/- 1.36%) and 75 mg/m(3) (38.1 +/- 1.72%) groups was significantly less than both the preexposure baseline level and the 35 mg/m(3) group. All groups exhibited enhanced an pupillary response to light after DDVP exposure. The enhanced light response remained even after recovery from miosis (approximately 1 h after exposure). Measurement of cholinesterase activity revealed that even though pupil size had recovered, acetyl- and butyrylcholinesterase remained significantly inhibited in the blood.

  11. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons.

    PubMed

    Solaimani, Parrisa; Saffari, Arian; Sioutas, Constantinos; Bondy, Stephen C; Campbell, Arezoo

    2017-01-01

    Exposure to ambient particulate matter (PM) has been associated with the onset of neurodevelopmental and neurodegenerative disorders, but the mechanism of toxicity remains unclear. To gain insight into this neurotoxicity, this study sought to examine global gene expression changes caused by exposure to ambient ultrafine PM. Microarray analysis was performed on primary human neurons derived from fetal brain tissue after a 24h exposure to 20μg/mL of ambient ultrafine particles. We found a majority of the changes in noncoding RNAs, which are involved in epigenetic regulation of gene expression, and thereby could impact the expression of several other protein coding gene targets. Although neurons from biologically different lot numbers were used, we found a significant increase in the expression of metallothionein 1A and 1F in all samples after exposure to particulate matter as confirmed by quantitative PCR. These metallothionein 1 proteins are responsible for neuroprotection after exposure to environmental insult but prolonged induction can be toxic. Epidemiological studies have reported that in utero exposure to ultrafine PM not only leads to neurodevelopmental and behavioral abnormalities, but may also predispose the progeny to neurodegenerative disease later in life by genetic imprinting. Our results pinpoint some of the PM-induced genetic changes that may underlie these findings.

  12. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.

  13. Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos

    PubMed Central

    Mohammod Mostakim, Golam; Zahangir, Md. Mahiuddin; Monir Mishu, Mahbuba; Rahman, Md. Khalilur; Islam, M. Sadiqul

    2015-01-01

    Quinalphos (QP) is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. This study was conducted to evaluate the chronic toxicity of this pesticide on blood parameters and some organs of silver barb, Barbonymus gonionotus. Fish were exposed to two sublethal concentrations, 0.47 ppm and 0.94 ppm, of QP for a period of 28 days. All the blood parameters (red blood cell, hematocrit, and hemoglobin) and blood glucose except for white blood cells decreased with increasing concentration of toxicant and become significantly lower (p < 0.05) at higher concentration when compared with control. The derived hematological indices of mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were equally altered compared to control. Histoarchitectural changes of liver and kidney were observed after exposure to the QP. Hypertrophy of hepatocytes, mild to severe necrosis, ruptured central vein, and vacuolation were observed in the liver of treated groups. Highly degenerated kidney tubules and hematopoietic tissue, degeneration of renal corpuscle, vacuolization, and necrosis were evident in the kidney of treated groups. In conclusion, chronic exposure to QP at sublethal concentrations induced hematological and histological alterations in silver barb and offers a simple tool to evaluate toxicity derived alterations. PMID:26635877

  14. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring

    PubMed Central

    Li, Na; Li, Yongmei; Gao, Qinqin; Li, Dawei; Tang, Jiaqi; Sun, Miao; Zhang, Pengjie; Liu, Bailin; Mao, Caiping; Xu, Zhice

    2015-01-01

    Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2+-activated K+ (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca2+ sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca2+]i fluorescence and vasoconstriction testing showed reduced Ca2+, leading to diminished BKCa activation via ryanodine receptor Ca2+ release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins. PMID:26277840

  15. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish.

    PubMed

    Liao, Pei-Han; Hwang, Chiu-Chu; Chen, Te-Hao; Chen, Pei-Jen

    2015-08-01

    Environmental pollution by neuroactive pharmaceuticals from wastewater discharge is a major threat to aquatic ecosystems. However, the ecotoxicologic effect of waterborne abused drugs remains unclear. Embryos of medaka fish (Oryzias latipes) were exposed to aqueous solutions of 2 hallucinogenic drugs, ketamine (KET) and methamphetamine (MET) (0.004-40μM) to assess developmental toxicity, oxidative stress and behavioral alteration in early life stages. The environmentally relevant concentration (0.004μM) of both KET and MET significantly delayed blood circulation and hatching time in embryos and altered larval swimming behavior (e.g., maximum velocity and relative turn angle). KET and MET induced similar oxidative stress responses in embryos, which were unrecoverable in hatchlings in drug-free solutions. Early life exposure to the 2 drugs conferred distinct patterns in larval locomotion: KET induced hyperactivity and a less tortuous swimming path, but MET-treated larvae showed hypoactivity and a clockwise swimming direction at high doses. The alteration in locomotor responses were generally similar in mammals and zebrafish. We report sensitive biomarkers (e.g., heartbeat, hatching and swimming behavior) by developmental stage of medaka that reflect environmentally relevant exposures of abused drugs. They could be useful for ecological risk assessment of waterborne neuroactive drugs. The toxicity results implicate a potential ecotoxicological impact of controlled or abused drugs on fish development and populations in aquatic environments.

  16. Alteration of the kidney membrane proteome of Mizuhopecten yessoensis induced by low-level methyl parathion exposure.

    PubMed

    Huang, Xiang; Huang, He-Qing

    2012-06-15

    Methyl parathion (MP) is a widely used organophosphorus pesticide that causes severe health and environmental effects. We investigated the alteration of the proteomic profile in the membrane enriched fraction of the kidneys of the scallop Mizuhopecten yessoensis exposed to low-level MP. Gas chromatography analysis showed that MP residues were significantly accumulated in the kidneys and the digestive glands of the scallops. According to two-dimensional electrophoresis, 17 proteins were differentially modulated under MP exposure. The mRNA expressions of 12 differential proteins were analyzed using quantitative PCR, and 10 showed consistent alteration of mRNA level with that of protein expression level. Altered expressions of two proteins (mitochondrial processing peptidase and α-tubulin) were also examined using Western blotting, showing that the mitochondrial processing peptidase was down-regulated but α-tubulin remained unchanged in response to MP exposure. Subcellular locations of all the identified proteins that were predicted using bioinformatics tools indicate that few of them are permanently located in the membrane. The differentially expressed proteins are involved in several critical biological processes, and their relevance to human health has been illuminated. These data taken together have provided some novel insights into the chronic toxicity mechanism of MP and have suggested mitochondrial processing peptidase as a potential biomarker for human health and environmental monitoring.

  17. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure1

    PubMed Central

    du Plessis, Kari; Jacobson, Dan A.

    2016-01-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. PMID:26628747

  18. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  19. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment.

    PubMed

    Vigezzi, Lucía; Bosquiazzo, Verónica L; Kass, Laura; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2015-04-01

    We assessed the long-term effect of perinatal exposure to bisphenol A (BPA) on the rat uterus and the uterine response to estrogen (E2) replacement therapy. BPA (0.5 or 50μg/kg/day) was administered in the drinking water from gestational day 9 until weaning. We studied the uterus of female offspring on postnatal day (PND) 90 and 360, and the uterine E2 response on PND460 (PND460-E2). On PND90, BPA-exposed rats showed altered glandular proliferation and α-actin expression. On PND360, BPA exposure increased the incidence of abnormalities in the luminal and glandular epithelium. On PND460-E2, the multiplicity of glands with squamous metaplasia increased in BPA50 while the incidence of glands with daughter glands increased in BPA0.5. The expression of steroid receptors, p63 and IGF-I was modified in BPA-exposed rats on PND460-E2. The long-lasting effects of perinatal exposure to BPA included induction of abnormalities in uterine tissue and altered response to E2 replacement therapy.

  20. Auditory Brainstem Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function

    PubMed Central

    Bramhall, Naomi F.; Konrad-Martin, Dawn; McMillan, Garnett P.; Griest, Susan E.

    2017-01-01

    Objectives Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes. Design Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function. Results After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure. Conclusions Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted

  1. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons.

    PubMed

    Luo, Fen-Lan; Yang, Nian; He, Chao; Li, Hong-Li; Li, Chao; Chen, Fang; Xiong, Jia-Xiang; Hu, Zhi-An; Zhang, Jun

    2014-11-01

    Previous studies have revealed that extremely low frequency electromagnetic field (ELF-EMF) exposure affects neuronal dendritic spine density and NMDAR and AMPAR subunit expressions in the entorhinal cortex (EC). Although calcium signaling has a critical role in control of EC neuronal functions, however, it is still unclear whether the ELF-EMF exposure affects the EC neuronal calcium homeostasis. In the present study, using whole-cell recording and calcium imaging, we record the whole-cell inward currents that contain the voltage-gated calcium currents and show that ELF-EMF (50Hz, 1mT or 3mT, lasting 24h) exposure does not influence these currents. Next, we specifically isolate the high-voltage activated (HVA) and low-voltage activated (LVA) calcium channels-induced currents. Similarly, the activation and inactivation characteristics of these membrane calcium channels are also not influenced by ELF-EMF. Importantly, ELF-EMF exposure reduces the maximum amplitude of the high-K(+)-evoked calcium elevation in EC neurons, which is abolished by thapsigargin, a Ca(2+) ATPase inhibitor, to empty the intracellular calcium stores of EC neurons. Together, these findings indicate that ELF-EMF exposure specifically influences the intracellular calcium dynamics of cultural EC neurons via a calcium channel-independent mechanism.

  2. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John H.; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100 mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios towards males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  3. Alteration in Pimephales promelas mucus production after exposure to nanosilver or silver nitrate.

    PubMed

    Hawkins, Adam D; Thornton, Cammi; Steevens, Jeffery A; Willett, Kristine L

    2014-12-01

    The fish gill's ability to produce mucus effectively is a critical part of the stress response and protection against xenobiotic toxicity. Adult fathead minnows were exposed to silver nitrate (0.82 µg/L or 13.2 µg/L), polyvinylpyrrolidone-coated silver nanoparticles (11.1 µg/L or 208 µg/L), and citrate-coated silver nanoparticles (10.1 µg/L or 175 µg/L) for 96 h. Mucus concentrations based on glucose as a surrogate were determined at 0 h, 1 h, 2 h, 3 h, 4 h and 24 h after re-dosing each day. Higher mucus production rates following silver treatment were observed at the beginning as compared to controls and compared to after 3 d of exposure. Control fish produced consistent mucus concentrations throughout the exposure (0.62 mg/L and 0.40 mg/L at 24 h and 96 h, respectively). Following 24 h of exposure, all silver treatment groups produced significantly more mucus than controls. Following 96 h of exposure, mucus concentrations in treatment groups were significantly reduced compared with each respective treatment at 24 h. Reduced mucus production following long-term silver exposure could prevent the gills from removing silver, and thus increase toxicity.

  4. Chronic Dietary Exposure to a Low-Dose Mixture of Genistein and Vinclozolin Modifies the Reproductive Axis, Testis Transcriptome, and Fertility

    PubMed Central

    Eustache, Florence; Mondon, Françoise; Canivenc-Lavier, Marie Chantal; Lesaffre, Corinne; Fulla, Yvonne; Berges, Raymond; Cravedi, Jean Pierre; Vaiman, Daniel; Auger, Jacques

    2009-01-01

    Background The reproductive consequences and mechanisms of action of chronic exposure to low-dose endocrine disruptors are poorly understood. Objective We assessed the effects of a continuous, low-dose exposure to a phytoestrogen (genistein) and/or an antiandrogenic food contaminant (vinclozolin) on the male reproductive tract and fertility. Methods Male rats were exposed by gavage to genistein and vinclozolin from conception to adulthood, alone or in combination, at low doses (1 mg/kg/day) or higher doses (10 and 30 mg/kg/day). We studied a number of standard reproductive toxicology end points and also assessed testicular mRNA expression profiles using long-oligonucleotide microarrays. Results The low-dose mixture and high-dose vinclozolin produced the most significant alterations in adults: decreased sperm counts, reduced sperm motion parameters, decreased litter sizes, and increased post implantation loss. Testicular mRNA expression profiles for these exposure conditions were strongly correlated. Functional clustering indicated that many of the genes induced belong to the “neuroactive ligand-receptor interactions” family encompassing several hormonally related actors (e.g., follicle-stimulating hormone and its receptor). All exposure conditions decreased the levels of mRNAs involved in ribosome function, indicating probable decreased protein production. Conclusions Our study shows that chronic exposure to a mixture of a dose of a phytoestrogen equivalent to that in the human diet and a low dose—albeit not environmental—of a common anti-androgenic food contaminant may seriously affect the male reproductive tract and fertility. PMID:19672408

  5. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    PubMed Central

    Rafati, A.; Rahimi, S.; Talebi, A.; Soleimani, A.; Haghani, M.; Mortazavi, S. M. J.

    2015-01-01

    Introduction The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Materials and Methods Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. Results The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396969

  6. Exposure to an urban environment alters the local bias of a remote culture.

    PubMed

    Caparos, Serge; Ahmed, Lubna; Bremner, Andrew J; de Fockert, Jan W; Linnell, Karina J; Davidoff, Jules

    2012-01-01

    There is substantial evidence that populations in the Western world exhibit a local bias compared to East Asian populations that is widely ascribed to a difference between individualistic and collectivist societies. However, we report that traditional Himba - a remote interdependent society - exhibit a strong local bias compared to both Japanese and British participants in the Ebbinghaus illusion and in a similarity-matching task with hierarchical figures. Critically, we measured the effect of exposure to an urban environment on local bias in the Himba. Even a brief exposure to an urban environment caused a shift in processing style: the local bias was reduced in traditional Himba who had visited a local town and even more reduced in urbanised Himba who had moved to that town on a permanent basis. We therefore propose that exposure to an urban environment contributes to the global bias found in Western and Japanese populations.

  7. Kolaviron protects against benzo[a]pyrene-induced functional alterations along the brain-pituitary-gonadal axis in male rats.

    PubMed

    Adedara, Isaac A; Owoeye, Olatunde; Aiyegbusi, Motunrayo A; Dagunduro, Joshua O; Daramola, Yetunde M; Farombi, Ebenezer O

    2015-09-01

    Exposure to benzo[a]pyrene (B[a]P) is well reported to be associated with neurological and reproductive dysfunctions. The present study investigated the influence of kolaviron, an isolated biflavonoid from the seed of Garcinia kola, on functional alterations along the brain-pituitary-gonadal axis in male rats exposed to B[a]P. Benzo[a]pyrene was orally administered at a dose of 10mg/kg alone or orally co-administered with kolaviron at 100 and 200mg/kg for 15 consecutive days. Administration of B[a]P significantly (p<0.05) decreased plasma levels of pituitary hormones namely follicle-stimulating hormone (FSH) and prolactin but increased luteinizing hormone (LH) by 47%, 55% and 20.9%, respectively, when compared with the control. The significant decrease in gonadosomatic index (GSI) was accompanied by significant decrease in testosterone production and sperm functional parameters in the B[a]P-treated rats. Moreover, B[a]P-treated rats showed significant elevation in the circulatory concentrations of pro-inflammatory cytokines and oxidative stress indices in the brain, testes and sperm of B[a]P-treated rats. Light microscopy revealed severe necrosis of the Purkinje cells in the cerebellum, neuronal degeneration of the cerebral cortex, neuronal necrosis of the hippocampus and testicular atrophy in B[a]P-treated rats. Kolaviron co-treatment significantly ameliorated B[a]P mediated damages by suppressing pro-inflammatory mediators and enhancing the antioxidant status, neuroendocrine function, sperm characteristics and improving the architecture of the brain and testes in B[a]P-treated rats. The findings in the present investigation highlight that kolaviron may be developed to novel therapeutic agent against toxicity resulting from B[a]P exposure.

  8. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  9. Prenatal Alcohol Exposure and Chronic Mild Stress Differentially Alter Depressive- and Anxiety-Like Behaviors in Male and Female Offspring

    PubMed Central

    Hellemans, Kim G. C.; Verma, Pamela; Yoon, Esther; Yu, Wayne K.; Young, Allan H.; Weinberg, Joanne

    2016-01-01

    Background Fetal Alcohol Spectrum Disorder (FASD) is associated with numerous neuro behavioral alterations, as well as disabilities in a number of domains, including a high incidence of depression and anxiety disorders. Prenatal alcohol exposure (PAE) also alters hypothalamic-pituitary-adrenal (HPA) function, resulting in increased responsiveness to stressors and HPA dysregulation in adulthood. Interestingly, data suggest that pre-existing HPA abnormalities may be a major contributory factor to some forms of depression, particularly when an individual is exposed to stressors later in life. We tested the hypothesis that exposure to stressors in adulthood may unmask an increased vulnerability to depressive- and anxiety-like behaviors in PAE animals. Methods Male and female offspring from prenatal alcohol (PAE), pair-fed (PF), and ad libitumfed control (C) treatment groups were tested in adulthood. Animals were exposed to 10 consecutive days of chronic mild stress (CMS), and assessed in a battery of well-validated tasks sensitive to differences in depressive- and / or anxiety-like behaviors. Results We report here that the combination of PAE and CMS in adulthood increases depressive- and anxiety-like behaviors in a sexually dimorphic manner. PAE males showed impaired hedonic responsivity (sucrose contrast test), locomotor hyperactivity (open field), and alterations in affiliative and nonaffiliative social behaviors (social interaction test) compared to control males. By contrast, PAE and, to a lesser extent, PF, females showed greater levels of “behavioral despair” in the forced swim test, and PAE females showed altered behavior in the final 5 minutes of the social interaction test compared to control females. Conclusions These data support the possibility that stress may be a mediating or contributing factor in the psychopathologies reported in FASD populations. PMID:20102562

  10. Acute Chlorine Gas Exposure Produces Transient Inflammation and a Progressive Alteration in Surfactant Composition with Accompanying Mechanical Dysfunction

    PubMed Central

    Massa, Christopher B; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L; Gow, Andrew J

    2014-01-01

    Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl2 dose, and were sacrificed 3, 24 and 48 hours later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 hours, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 hours. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3− or NO2−. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 hours, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation. PMID:24582687

  11. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    SciTech Connect

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  12. POTENTIAL ALTERATIONS IN GENE EXPRESSION ASSOCIATED WITH CARCINOGEN EXPOSURE IN MYA ARENARIA

    EPA Science Inventory

    Gonadal cancers in soft-shell clams (Mya arenaria) have been found at high prevalences (20-40%) in populations in eastern Maine. The aetiology of these tumours is unknown. We hypothesized that gene expression would be altered in gonadal tumours and that examination of gene expres...

  13. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES IN DETROIT ALTERS HEART RATE VARIABILITY IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    Elevations in airborne particulate matter (PM) are linked to increased mortality and morbidity in humans with cardiopulmonary disease. Clinical studies show that PM is associated with altered heart rate variability (HRV) and suggests that loss of autonomic control may underlie ca...

  14. Chronic alcohol exposure alters transcription broadly in a key integrative brain nucleus for homeostasis: the nucleus tractus solitarius.

    PubMed

    Covarrubias, Maria Yolanda; Khan, Rishi L; Vadigepalli, Rajanikanth; Hoek, Jan B; Schwaber, James S

    2005-12-14

    Chronic exposure to alcohol modifies physiological processes in the brain, and the severe symptoms resulting from sudden removal of alcohol from the diet indicate that these modifications are functionally important. We investigated the gene expression patterns in response to chronic alcohol exposure (21-28 wk) in the rat nucleus tractus solitarius (NTS), a brain nucleus with a key integrative role in homeostasis and cardiorespiratory function. Using methods and an experimental design optimized for detecting transcriptional changes less than twofold, we found 575 differentially expressed genes. We tested these genes for significant associations with physiological functions and signaling pathways using Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, respectively. Chronic alcohol exposure resulted in significant NTS gene regulation related to the general processes of synaptic transmission, intracellular signaling, and cation transport as well as specific neuronal functions including plasticity and seizure behavior that could be related to alcohol withdrawal symptoms. The differentially expressed genes were also significantly enriched for enzymes of lipid metabolism, glucose metabolism, oxidative phosphorylation, MAP kinase signaling, and calcium signaling pathways from KEGG. Intriguingly, many of the genes we found to be differentially expressed in the NTS are known to be involved in alcohol-induced oxidative stress and/or cell death. The study provides evidence of very extensive alterations of physiological gene expression in the NTS in the adapted state to chronic alcohol exposure.

  15. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    PubMed Central

    Maskey, Dhiraj

    2013-01-01

    Calcium binding proteins (CaBPs) such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF) exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR) in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus. PMID:24069603

  16. Estrogenic Exposure Alters the Spermatogonial Stem Cells in the Developing Testis, Permanently Reducing Crossover Levels in the Adult

    PubMed Central

    Vrooman, Lisa A.; Oatley, Jon M.; Griswold, Jodi E.; Hassold, Terry J.; Hunt, Patricia A.

    2015-01-01

    Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male. PMID:25615633

  17. Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure

    PubMed Central

    Bañuelos, Cristina; Gilbert, Ryan J.; Montgomery, Karienn S.; Fincher, Annette S.; Wang, Haiying; Frye, Gerald D.; Setlow, Barry; Bizon, Jennifer L.

    2012-01-01

    Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague–Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4–9. At adolescence (between postnatal days 35–38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function. PMID:22129556

  18. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  19. Trichloroethylene alters central and peripheral immune function in autoimmune-prone MRL(+/+) mice following continuous developmental and early life exposure.

    PubMed

    Blossom, Sarah J; Doss, Jason C

    2007-04-01

    Trichloroethylene (TCE) is a widespread environmental toxicant known to promote CD4(+) T-lymphocyte activation, IFNgamma production, and autoimmunity in adult MRL(+/+) mice. Because developing tissues may be more sensitive to toxicant exposure, it was hypothesized that continuous TCE exposure beginning at conception might induce even more pronounced CD4(+) T-lymphocyte effects and exacerbate the development of autoimmunity in MRL(+/+) mice. In the current study, MRL(+/+) mice were exposed to occupationally-relevant doses of TCE from conception until adulthood (i.e., 7-8 wk-of-age). The CD4(+) T-lymphocyte effects in the thymus and periphery were evaluated, as well as serum antibody levels. TCE exposure altered the number of thymocyte subsets, and reduced the capacity of the most immature CD4-/CD8- thymocytes to undergo apoptosis in vitro. In the periphery, T-lymphocyte IFN(gamma) production was monitored in the blood prior to sacrifice by intracellular cytokine staining and flow cytometry. TCE induced a dose-dependent increase in T-lymphocyte IFN(gamma) as early as 4-5-week-of-age. However, these effects were transient, and not observed in splenic T-lymphocytes in 7-8-week-old mice. In contrast, the serum levels of anti-histone autoantibodies and total IgG(2a) were significantly elevated in the TCE-exposed offspring. The data illustrated that occupationally-relevant doses of TCE administered throughout development until adulthood affected central and peripheral immune function in association with early signs of autoimmunity. Future studies will address the possibility that early-life exposure to TCE may alter some aspect of self tolerance in the thymus, leading to autoimmune disease later in life.

  20. Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice.

    PubMed Central

    Palanza, Paola L; Howdeshell, Kembra L; Parmigiani, Stefano; vom Saal, Frederick S

    2002-01-01

    Maternal behavior in mammals is the result of a complex interaction between the lactating dam and her developing offspring. Slight perturbations of any of the components of the mother-infant interaction may result in alterations of the behavior of the mother and/or of the offspring. We studied the effects of exposure of female CD-1 mice to the estrogenic chemical bisphenol A (BPA) during fetal life and/or in adulthood during the last part of pregnancy on subsequent maternal behavior. Pregnant females were fed daily doses of corn oil (controls) or 10 microg/kg body weight BPA during gestation days 14-18. As adults, the prenatally treated female offspring were time-mated and again fed either corn oil (controls) or the same doses of BPA on gestation days 14-18, resulting in four treatment groups: controls, prenatal BPA exposure, adult BPA exposure, and both prenatal and adult BPA exposure. Maternal behavior was then observed on postnatal days 2-15 and reflex responses were examined in the offspring. Dams exposed to BPA either as fetuses or in adulthood spent less time nursing their pups and more time out of the nest compared with the control group. Females exposed to BPA both as fetuses and in adulthood did not significantly differ from controls. No alterations in postnatal reflex development were observed in the offspring of the females exposed to BPA. The changes seen in maternal behavior may be the result of a direct effect of BPA on the neuroendocrine substrates underlying the initiation of maternal behavior. PMID:12060838

  1. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal axis-associated proteins

    PubMed Central

    Zuloaga, Damian G.; Siegel, Jessica A.; Acevedo, Summer F.; Agam, Maayan; Raber, Jacob

    2013-01-01

    Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or Saline from postnatal day (P) 11–20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR-immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and area occupied by vasopressin-immunoreactiviy in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin-immunoreactivity in the PVN, or GR-immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, area occupied by GR-immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin-immunoreactivity no longer differed from Saline controls. No effects of MA were found on oxytocin or GR-immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin-immunoreactivity and short-term effects on GR-immunoreactivity. PMID:23860125

  2. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal-axis-associated proteins.

    PubMed

    Zuloaga, Damian G; Siegel, Jessica A; Acevedo, Summer F; Agam, Maayan; Raber, Jacob

    2013-01-01

    Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or saline from postnatal day (P) 11 to P20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and the area occupied by vasopressin immunoreactivity in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin immunoreactivity in the PVN, or GR immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, the area occupied by GR immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin immunoreactivity no longer differed from saline controls. No effects of MA were found on oxytocin or GR immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin immunoreactivity and short-term effects on GR immunoreactivity.

  3. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  4. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain.

    PubMed

    Anderson, Joel G; Fordahl, Steve C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2008-11-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased (3)H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35mg Fe/kg diet), iron-deficient (ID; 6mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1g Mn/l) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABA(A), and GABA(B) differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and

  5. Exposure to anthrax toxin alters human leucocyte expression of anthrax toxin receptor 1.

    PubMed

    Ingram, R J; Harris, A; Ascough, S; Metan, G; Doganay, M; Ballie, L; Williamson, E D; Dyson, H; Robinson, J H; Sriskandan, S; Altmann, D M

    2013-07-01

    Anthrax is a toxin-mediated disease, the lethal effects of which are initiated by the binding of protective antigen (PA) with one of three reported cell surface toxin receptors (ANTXR). Receptor binding has been shown to influence host susceptibility to the toxins. Despite this crucial role for ANTXR in the outcome of disease, and the reported immunomodulatory consequence of the anthrax toxins during infection, little is known about ANTXR expression on human leucocytes. We characterized the expression levels of ANTXR1 (TEM8) on human leucocytes using flow cytometry. In order to assess the effect of prior toxin exposure on ANTXR1 expression levels, leucocytes from individuals with no known exposure, those exposed to toxin through vaccination and convalescent individuals were analysed. Donors could be defined as either 'low' or 'high' expressers based on the percentage of ANTXR1-positive monocytes detected. Previous exposure to toxins appears to modulate ANTXR1 expression, exposure through active infection being associated with lower receptor expression. A significant correlation between low receptor expression and high anthrax toxin-specific interferon (IFN)-γ responses was observed in previously infected individuals. We propose that there is an attenuation of ANTXR1 expression post-infection which may be a protective mechanism that has evolved to prevent reinfection.

  6. Exposure to Lipopolysaccharide in Utero Alters the Postnatal Metabolic Response in Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant crossbred cows (n = 50) were assigned to a prenatal immune stimulation (PIS; n = 25; administered 0.1 micrograms/kg BW LPS s...

  7. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  8. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    EPA Science Inventory

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  9. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  10. Exposure to hyperoxia in the neonatal period alters bone marrow function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...

  11. Acute exposure to 17α-ethinylestradiol alters boldness behavioral syndrome in female Siamese fighting fish.

    PubMed

    Dzieweczynski, Teresa L; Campbell, Brennah A; Marks, Jodi M; Logan, Brittney

    2014-09-01

    The role of anthropogenic sources in generating, maintaining, and influencing behavioral syndromes has recently been identified as an important area of future research. Endocrine disrupting chemicals are prevalent and persistent in aquatic ecosystems worldwide. These chemicals are known to have marked effects on the morphology and behavior of exposed individuals and, as such, may serve as a potential influence on behavioral syndromes. However, both the effects of exposure on behaviors beyond courtship and aggression and how exposure might affect behavioral variation at the individual level are understudied. To address this question, we examined boldness behavior in female Siamese fighting fish in three different assays (Novel Environment, Empty Tank, Shoaling) both before and after they were exposed to the estrogen mimic, 17α-ethinylestradiol (EE2). EE2 influences courtship, aggression, and boldness in males of this species but its effects have not been examined in females, to our knowledge. Females were tested multiple times in each assay before and after exposure so that behavioral consistency could be examined. A behavioral syndrome for boldness and activity level occurred across the three assays. The reductions in boldness and loss of the behavioral syndrome that resulted from EE2 exposure were surprising and suggest that the effects of EE2 exposure on female behavior and physiology should be examined more frequently. This study is one of the first to examine the effects of EE2 in females as well as on correlated behaviors and emphasizes the importance of examining the effects of endocrine disrupting chemicals on individual behavioral variation and consistency.

  12. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    USGS Publications Warehouse

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  13. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    SciTech Connect

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J.

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  14. Effects of perinatal combined exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) and tributyltin (TBT) on rat female reproductive system.

    PubMed

    Makita, Yuji

    2008-05-01

    1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) is the most prevalent metabolite of DDT used as a pesticide before and tributyltin (TBT) compounds are used primarily as antifouling agents on vessels, ships, and aqua culture facilities, as they exert biocidal actions. Currently, p,p'-DDE and TBT are ubiquitously distributed in the environment and bio-accumulated in marine products, especially fish or shellfish. Thus, oral p,p'-DDE and TBT intake through marine products is demonstrated to be rather high in Japan. Consequently, the fetus and neonate will be exposed to p,p'-DDE and TBT via mother. Therefore, effects of perinatal combined exposure to p,p'-DDE and TBT on the female reproductive system after maturation have been investigated in rat female offspring of dams ingesting 125ppm p,p'-DDE (approximately 10mg/kg) and 25ppm TBT (approximately 2mg/kg) during the perinatal period from gestation to lactation. In the present study, no deleterious reproductive outcomes were recognized in p,p'-DDE and/or TBT-treated dams. In contrast, growth retardation had developed in rat female offspring following perinatal exposure to TBT and sustained even after cessation of exposures. Further, reduced ovarian weights with elevated serum follicle-stimulating hormone (FSH) concentrations were observed in the reproductive system of matured female offspring following perinatal exposure to TBT. At present, biological relevance of these alterations remains unknown, but there is a possibility that these alterations lead to reproductive malfunctions in matured female offspring.

  15. Exposure to Green Tea Extract Alters the Incidence of Specific Cyclophosphamide-Induced Malformations

    PubMed Central

    Logsdon, Amanda L.; Herring, Betty J.; Lockard, Jarrett E.; Miller, Brittany M.; Kim, Hanna; Hood, Ronald D.; Bailey, Melissa M.

    2012-01-01

    BACKGROUND Green tea extract (GTE) has been shown to have antioxidative properties due to its high content of polyphenols and catechin gallates. Previous studies indicated that catechin gallates scavenge free radicals and attenuate the effects of reactive oxidative species (ROS). Cyclophosphamide (CP) produces ROS, which can have adverse effects on development, causing limb, digit, and cranial abnormalities. The current study was performed to determine if exposure to GTE can decrease teratogenic effects induced by CP in CD-1 mice. METHODS From gestation days (GD) 6–13, mated CD-1 mice were dosed with 400 or 800 mg/kg/d GTE; 100, 200, 400, or 800 mg/kg/d GTE + CP; CP alone, or the vehicle. GTE was given by gavage. CP (20 mg/kg) was given by intraperitoneal injection on GD 10. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS The highest GTE dose did not effectively attenuate, and in some cases exacerbated the negative effect of CP. GTE alone was also associated with an increased incidence of microblepharia. Conversely, moderate GTE doses (200 &/or 400 mg/kg/d) attenuated the effect of CP on fetal weight and (GTE 200 mg/kg/d) decreased the incidences of certain defects resulting from CP exposure. CONCLUSIONS Exposure of a developing mammal to moderate doses of GTE can modulate the effects of exposure to CP during development, possibly by affecting biotransformation, while a higher GTE dose tended to exacerbate the developmental toxicity of CP. GTE alone appeared to cause an adverse effect on eyelid development. PMID:22447743

  16. Prenatal and lactational lead exposure enhanced oxidative stress and altered apoptosis status in offspring rats' hippocampus.

    PubMed

    Lu, Xiaobo; Jin, Cuihong; Yang, Jinghua; Liu, Qiufang; Wu, Shengwen; Li, Dandan; Guan, Yangyang; Cai, Yuan

    2013-01-01

    Oxidative stress and apoptosis facilitation in the developing central nervous system (CNS) have been inferred as two mechanisms related to lead's neurotoxicity, and excessive reactive oxygen species (ROS) can promote oxidative stress and apoptosis facilitation. Few studies systematically investigated the potential relationship among oxidative stress, ROS generation, and apoptosis facilitation after lead exposure in earlier life as a whole. To better understand the adverse effect on the developing central nervous system (CNS) after lead exposure during pregnancy and lactation, the indexes of oxidative stress, apoptosis status, and Bax and Bcl-2 expression of offspring rats' hippocampus were determined. Pregnant rats were randomly divided into four groups and given free access to drinking water which contained 0 %, 0.05 %, 0.1 %, and 0.2 % Pb(AC)(2) respectively from gestation day 0 to postnatal day 21 (PND21). Results showed that ROS and malondialdehyde level of either PND7 or PND21 pups' hippocampus were significantly raised; reduced glutathione level and superoxide dismutase activity were obviously decreased following the increase of blood and brain lead level. Similar to apoptotic indexes, Bax/Bcl-2 ratio increased after 0.1 % and 0.2 % Pb(AC)(2) exposure, especially for the pups on PND7. Comparing with cortex, the hippocampus seemed much more sensitive to damage induced by lead. We concluded that the disruption of pro-ox