Science.gov

Sample records for exposure alters follicle-stimulating

  1. Pesticide Exposure Alters Follicle-Stimulating Hormone Levels in Mexican Agricultural Workers

    PubMed Central

    Recio, Rogelio; Ocampo-Gómez, Guadalupe; Morán-Martínez, Javier; Borja-Aburto, Victor; López-Cervantes, Malaquías; Uribe, Marisela; Torres-Sánchez, Luisa; Cebrián, Mariano E.

    2005-01-01

    Organophosphorous pesticides (OPs) are suspected of altering reproductive function by reducing brain acetylcholinesterase activity and monoamine levels, thus impairing hypothalamic and/or pituitary endocrine functions and gonadal processes. Our objective was to evaluate in a longitudinal study the association between OP exposure and serum levels of pituitary and sex hormones. Urinary OP metabolite levels were measured by gas–liquid chromatography, and serum pituitary and sex hormone levels by enzymatic immunoassay and radioimmunoassay in 64 men. A total of 147 urine and blood samples were analyzed for each parameter. More than 80% of the participants had at least one OP metabolite in their urine samples. The most frequent metabolite found was diethylthiophosphate (DETP; 55%), followed by diethylphosphate (DEP; 46%), dimethylthiophosphate (DMTP; 32%), and dimethyldithiophosphate (DMDTP; 31%). However, the metabolites detected at higher concentrations were DMTP, DEP, DMDTP, and dimethylphosphate. There was a high proportion of individuals with follicle-stimulating hormone (FSH) concentrations outside the range of normality (48%). The average FSH serum levels were higher during the heavy pesticide spraying season. However, a multivariate analysis of data collected in all periods showed that serum FSH levels were negatively associated with urinary concentrations of both DMTP and DMDTP, whereas luteinizing hormone (LH) was negatively associated with DMTP. We observed no significant associations between estradiol or testosterone serum levels with OP metabolites. The hormonal disruption in agricultural workers presented here, together with results from experimental animal studies, suggests that OP exposure disrupts the hypothalamic–pituitary endocrine function and also indicates that FSH and LH are the hormones most affected. PMID:16140621

  2. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women.

  3. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women. PMID:26464260

  4. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Follicle stimulating hormone. 522.1002 Section 522....1002 Follicle stimulating hormone. (a)(1) Specifications. Each package contains 2 vials. One vial... hormone. The other vial contains 10 milliliters of aqueous diluent. (2) Sponsor. See No. 052923 in §...

  5. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Follicle stimulating hormone. 522.1002 Section 522....1002 Follicle stimulating hormone. (a)(1) Specifications. Each package contains 2 vials. One vial... hormone. The other vial contains 10 milliliters of aqueous diluent. (2) Sponsor. See No. 052923 in §...

  6. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Follicle stimulating hormone. 522.1002 Section 522....1002 Follicle stimulating hormone. (a)(1) Specifications. Each package contains 2 vials. One vial... hormone. The other vial contains 10 milliliters of aqueous diluent. (2) Sponsor. See 059521 in §...

  7. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Follicle stimulating hormone. 522.1002 Section 522....1002 Follicle stimulating hormone. (a)(1) Specifications. Each package contains 2 vials. One vial... hormone. The other vial contains 10 milliliters of aqueous diluent. (2) Sponsor. See No. 052923 in §...

  8. 21 CFR 522.1002 - Follicle stimulating hormone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Follicle stimulating hormone. 522.1002 Section 522....1002 Follicle stimulating hormone. (a)(1) Specifications. Each package contains 2 vials. One vial... hormone. The other vial contains 10 milliliters of aqueous diluent. (2) Sponsor. See No. 052923 in §...

  9. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  10. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  11. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  12. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  13. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  14. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones.

    PubMed

    Tourkova, Irina L; Witt, Michelle R; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J; Blair, Harry C

    2015-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones.

  15. Pulsatile administration of gonadotropin-releasing hormone does not alter the follicle-stimulating hormone (FSH) isoform distribution pattern of pituitary or circulating FSH in nutritionally growth-restricted ovariectomized lambs.

    PubMed

    Hassing, J M; Kletter, G B; I'Anson, H; Wood, R I; Beitins, I Z; Foster, D L; Padmanabhan, V

    1993-04-01

    .7 +/- 1.5 ng/ml). The pituitary content of I-FSH, B-FSH, and I-LH were unchanged. Neither serum nor pituitary FSH isoform distribution patterns were altered by pulsatile GnRH administration. However, compared to the pituitary FSH isoforms, a higher percentage of circulating FSH isoforms eluted in the salt peak of both groups of lambs. Similar to the in vivo studies, in vitro, GnRH increased the release of I-LH, as well as I-FSH, from pituitary explants, but did not significantly change the FSH isoform distribution in either the pituitary explant or media.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. PHYSICOCHEMICAL CHARACTERIZATION OF PITUITARY FOLLICLE-STIMULATING HORMONE

    PubMed Central

    Li, Choh Hao; Pedersen, Kai O.

    1952-01-01

    The physiochemical characteristics of the follicle-stimulating hormone (FSH) from whole sheep pituitary glands have been studied. The hormone behaves as a single protein in electrophoresis, diffusion, and ultracentrifugation. It has an isoelectric point at pH 4.5 and a molecular weight of 67,000 and contains 1.23 per cent hexose and 1.51 per cent hexosamine. The amino acid composition has also been determined in large part. The stability of the hormone to acid and heat has been investigated. PMID:14898040

  17. 76 FR 2807 - New Animal Drugs; Change of Sponsor; Follicle Stimulating Hormone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Parts 510 and 522 New Animal Drugs; Change of Sponsor... Food and Drug Administration (FDA) is amending the animal drug regulations to reflect a change of sponsor for a new animal drug application (NADA) for follicle stimulating hormone from Ausa...

  18. Proteomic and functional profiles of a follicle-stimulating hormone positive human nonfunctional pituitary adenoma.

    PubMed

    Wang, Xiaowei; Guo, Tianyao; Peng, Fang; Long, Ying; Mu, Yun; Yang, Haiyan; Ye, Ningrong; Li, Xuejun; Zhan, Xianquan

    2015-06-01

    Nonfunctional pituitary adenoma (NFPA) is highly heterogeneous with different hormone-expressed subtypes in NFPA tissues including follicle-stimulating hormone (FSH) positive, luteinizing hormone-positive, FSH/luteinizing hormone-positive, and negative types. To analyze in-depth the variations in the proteomes among different NFPA subtypes for our long-term goal to clarify molecular mechanisms of NFPA and to detect tumor biomarker for personalized medicine practice, a reference map of proteome of a human FSH-expressed NFPA tissue was described here. 2DE and PDQuest image analysis were used to array each protein. MALDI-TOF PMF and human Swiss-Prot databases with MASCOT search were used to identify each protein. A good 2DE pattern with high level of between-gel reproducibility was attained with an average positional deviation 1.98 ± 0.75 mm in the IEF direction and 1.62 ± 0.68 mm in the SDS-PAGE direction. Approximately 1200 protein spots were 2DE-detected and 192 redundant proteins that were contained in 141 protein spots were PMF-identified, representing 107 nonredundant proteins. Those proteins were located in cytoplasm, nucleus, plasma membrane, extracellular space, and so on, and those functioned in transmembrane receptor, ion channel, transcription/translation regulator, transporter, enzyme, phosphatase, kinase, and so on. Several important pathway networks were characterized from those identified proteins with DAVID and Ingenuity Pathway Analysis systems, including gluconeogenesis and glycolysis, mitochondrial dysfunction, oxidative stress, cell-cycle alteration, MAPKsignaling system, immune response, TP53-signaling, VEGF-signaling, and inflammation signaling pathways. Those resulting data contribute to a functional profile of the proteome of a human FSH-positive NFPA tissue, and will serve as a reference for the heterogeneity analysis of NFPA proteomes. PMID:25809007

  19. Properties of follicle-stimulating-hormone receptor in cell membranes of bovine testis.

    PubMed Central

    Cheng, K W

    1975-01-01

    A simple method for preparing plasma membranes from bovine testes is described. Bovine testicular receptor has a high affinity and specificity for 125I-labelled human FSH (follicle-stimulating hormone). The specific binding of 125I-labelled human FSH to the plasma membranes is a saturable process with respect to the amounts of receptor protein and FSH added. The association and dissociation of 125I-labelled human FSH are time- and temperature-dependent, and the binding of labelled human FSH to bovine testicular receptor is strong and not readily reversible. Scatchard [Ann. N.Y. Acad. Sci. (1949) 51, 660-672] analysis indicates a dissociation constant, Kd, of 9.8 X10(-11)M, and 5.9 X 10(-14)mol of binding sites/mg of membrane protein. The testicular membrane receptor is heat-labile. Preheating at 40 degrees C for 15 min destroyed 30% of the binding activity. Specific binding is pH-dependent, with an optimum between pH 7.0 and 7.5. Brief exposure to extremes of pH caused irreversible damage to the receptors. The ionic strength of the incubation medium markedly affects the association of 125I-labelled human FSH with its testicular receptor. Various cations at concentrations of 0.1M inhibit almost completely the binding of 125I-labelled human FSH. Nuclectides and steroid hormones at concentrations of 1mM and 5mu/ml respectively have no effect on the binding of FSH to its receptor. Incubation of membranes with and chymotrypsin resulted in an almost complete loss of binding activity, suggesting that protein moieties are essential for the binding of 125I-labelled human FSH. Binding of 125I-labelled human FSH to bovine testicular receptor does not result in destruction or degradation of the hormone. PMID:242318

  20. Follicle-stimulating hormone, interleukin-1, and bone density in adult women.

    PubMed

    Cannon, Joseph G; Cortez-Cooper, Miriam; Meaders, Eric; Stallings, Judith; Haddow, Sara; Kraj, Barbara; Sloan, Gloria; Mulloy, Anthony

    2010-03-01

    Recent studies have indicated that follicle-stimulating hormone (FSH) promotes bone loss. The present study tested the hypothesis that FSH enhances the activity of bone-resorbing cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6], either by inducing their secretion or by altering their receptor expression. Thirty-six women between the ages of 20 and 50 were assessed for bone mineral density (BMD), reproductive hormone, cytokine ligand and soluble receptor concentrations, and surface expression of cytokine receptors on monocytes. In addition, isolated mononuclear cells were incubated in vitro with exogenous FSH. Univariate regression analyses indicated that BMD was inversely related to serum FSH (r = -0.29 to -0.51, P = 0.03-0.001, depending upon the skeletal site). Physical activity and body composition were also identified as significant factors by multiple regressions. Exogenous FSH induced isolated cells to secrete IL-1beta, TNF-alpha, and IL-6 in proportion to the surface expression of FSH receptors on the monocytes. Endogenous (serum) FSH concentrations correlated with the circulating concentrations of these cytokines. None of these individual cytokines was related to BMD, but the IL-1beta to IL-1 receptor antagonist (IL-1Ra) ratio was inversely related to BMD (r = -0.53, P = 0.002) in all but the most physically active women, who had significantly lower expression of IL-1 type I receptors relative to type II (decoy receptors, P = 0.01). Physical activity also correlated positively with secretion of inhibitory soluble IL-1 receptors (r = 0.53, P = 0.003). Moreover, IL-1Ra correlated strongly with percent body fat (r = 0.66, P < 0.0001). These results indicate that BMD is related to FSH concentration, physical activity, and body composition. Although each of these factors likely has direct effects on bone, the present study suggests that each may also influence BMD by modulating the activity of the osteoresorptive cytokine IL-1beta.

  1. Cloning of the red kangaroo (Macropus rufus) follicle stimulating hormone beta subunit.

    PubMed

    Belov, K; Harrison, G A; Cooper, D W

    1998-01-01

    The cDNA encoding the follicle stimulating hormone beta subunit (FSH-beta) was isolated from a red kangaroo pituitary cDNA library by using a porcine probe and the nucleotide sequence for the coding region was determined. The highest degree of deduced amino acid sequence identity (91%) was observed between the red kangaroo and another marsupial, the brushtail possum (Trichosurus vulpecula), followed by eutherian species (76%, 75% and 74%, respectively, for pig, mouse and sheep). Based on the deduced red kangaroo FSH-beta amino acid sequence, putative antigenic sites have been identified that may prove useful for studying the hormonal control of reproduction in marsupials.

  2. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Byambaragchaa, Munkhzaya; Kim, Shin-Kwon; Lee, Bae-Ik; Hwang, Hyung-Kyu; Myeong, Jeong-In; Hong, Sun-Mee; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-09-01

    Monoclonal antibodies were generated against recombinant follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica; rec-FSH was produced in Escherichia coli and purified using Ni-NTA Sepharose column chromatography. In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary. PMID:27331121

  3. Prader-Willi syndrome with elevated follicle stimulating hormone levels and diabetes mellitus.

    PubMed

    Nagai, T; Mimura, N; Tomizawa, T; Monden, T; Mori, M

    1998-12-01

    A 21 -year-old man with Prader-Willi syndrome (PWS) was hospitalized due to hyperglycemia. After diet therapy and transient insulin administration, his blood glucose levels improved. Based on the fact that his urinary C-peptide levels increased, the diabetes mellitus may have been due to insulin resistance with obesity. In addition, his testes had become atrophied. Testosterone levels remained low even after human chorionic gonadotropin (HCG) administration. Luteinizing hormone (LH) levels were also low after LH releasing hormone (LHRH) administration. The LH response increased slightly after daily LHRH administration, indicating hypothalamic hypogonadism. Follicle stimulating hormone (FSH) levels were, however, high and increased after LHRH administration. The selective FSH elevation may have been due to the accompanying idiopathic oligospermia. PMID:9932637

  4. Comparison of two direct neutralizing assay formats using recombinant follicle-stimulating hormone as agonist.

    PubMed

    Ryding, J; Hjertberg, E; Rasmussen, B B

    2013-12-31

    Characterizing anti-drug antibodies for neutralizing activity is commonly part of the immunogenicity testing package for most therapeutic proteins. Cell-based neutralization assays can generally be categorized as direct- or indirect assays depending on whether they are associated with therapeutics with agonistic- or antagonistic properties. This paper's aim is a comparison of the two direct neutralization assay formats; the variable- and fixed concentration assay format, using recombinant follicle-stimulating hormone as drug agonist. Essential validation- and performance parameters, such as sample through-put, cut-point, precision, sensitivity and drug tolerance, were compared. The fixed concentration assay format offers superior sample through-put (40 versus 6 samples), precision (coefficient of variation of ≤14% versus 34%) and almost 6 times better sensitivity and is generally recommended as the better option particularly for quasi-quantitative assessments of neutralizing antibodies.

  5. Association of follicle stimulating hormone receptor promoter with ovarian response in IVF-ET patients

    PubMed Central

    Dan, Wang; Jing, Gao; Liangbin, Xia; Ting, Zhang; Ying, Zeng

    2015-01-01

    Background: Poor ovarian response phenomenon has been observed in some of the in vitro fertilization-embryo transfer patients. Some investigations found that follicle stimulating hormone receptor (FSHR) gene plays a role in the process, but no direct evidence shows the correlation between genotypes of FSHR and ovarian response. Objective: Exploring the molecular mechanism behind the mutation of FSHR promoter association with ovarian granulosa cells and poor ovarian response. Materials and Methods: This cross sectional study was performed using 158 women undergoing the controlled short program ovarian stimulation for IVF treatment. The 263 bp DNA fragments before the follicle stimulating hormone (FSH) receptor 5' initiation site were sequenced in the patients under IVF cycle, 70 of which had poor ovarian response and 88 showed normal ovarian responses. Results: With a mutation rate of 40%, 63 in 158 cases showed a 29th site G→A point mutation; among the mutated cases, the mutation rate of the poor ovarian responders was significantly higher than the normal group (60% versus 23.9%; χ2=21.450, p<0.001). Besides, the variability was also obvious in antral follicle count, and ovum pick-ups. The estradiol peak values and the number of mature eggs between the two groups had significant difference. However, there was no obvious variability (t=0.457, p=0.324) in the basic FSH values between the two groups (normal group, 7.2±2.3 U/L; mutation group, 7.1±2.0 U/L). Conclusion: The activity of FSHR promoter is significantly affected by the 29th site G→A mutation that will weaken promoter activity and result in poor response to FSH. PMID:26730247

  6. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function

    PubMed Central

    Banerjee, Antara A.; Mahale, Smita D.

    2015-01-01

    Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone–receptor internalization, and recycling of hormone–receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function. PMID:26236283

  7. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function.

    PubMed

    Banerjee, Antara A; Mahale, Smita D

    2015-01-01

    Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone-receptor internalization, and recycling of hormone-receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function. PMID:26236283

  8. Role of Serum Follicle Stimulating Hormone, Luteinizing Hormone, Testosterone and Prolactin Levels in Azoospermic Male Partner of Subfertile Couple.

    PubMed

    Begum, N; Anwary, S A; Alfazzaman, M; Mahzabin, Z; Nahar, K; Rahman, M M; Mostafa, M A

    2016-04-01

    This cross sectional study was carried out in the Infertility Unit, Department of Obstetrics and Gynaecology, Bangabandhu Sheikh Mujib Medical University (BSMMU) from January 2011 and June 2013. Eighty one (81) consecutive azoospermic male partner of married couple, aged 20-50 years with at least two years of subfertility and no known endocrinopathy and ejaculatory dysfunction were included in this study to find out their abnormal hormonal pattern. None of them had received any form of treatment within the last 3 months prior to hormonal evaluation. Men with hypertension, recent fever, chemo or radiation exposure were excluded from the study. Eight weeks interval two semen analyses were done in the Andrology Laboratory of above department following standard WHO guideline, 2004. Using standard ELISA technique, serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone and prolactin were measured/assayed/estimated. The results of this study demonstrated that 40 (49.4%) men had normal endocrine pattern against 51 (50.6%) with endocrinopathy. The former may be related to obstructive azoospermia, which needs further analyses. Both the increased FSH (>11.1mIU/ml) and LH (>7.6mIU/ml) were observed in 25 (30.9%) men, only elevated FSH (>11.1mIU/ml) in 9(11.1%), and only elevated LH (>7.6mIU/ml) in 7(8.6%). Low testosterone level (<270ng/dl) was observed in 11(13.6%), low TSH (<0.4μIU/ml) in 1(1.2%) and low prolactin (<2.5ng/dl) in 5(6.2%).

  9. Cloprostenol and pregnant mare serum gonadotropin promote estrus synchronization, uterine development, and follicle-stimulating hormone receptor expression in mice.

    PubMed

    Wei, S; Gong, Z; An, L; Zhang, T; Dai, H; Chen, S

    2015-06-29

    This study investigated the effects of pregnant mare se-rum gonadotropin (PMSG) and cloprostenol (CLO) on estrus induc-tion and synchronization, uterine development, and follicle-stimulating hormone receptor (FSHR) expression in mice. A total of 105 Kunming pre-puberty mice were divided into seven subgroups. Three PMSG sub-groups were injected intraperitoneally with 10, 20, and 40 IU PMSG twice (on days 0 and 4), and three CLO subgroups were injected intra-peritoneally with 10, 15, and 20 μg cloprostenol acetate twice (on days 0 and 4). The results showed that 93.33 and 66.67% of synchronized mice displayed estrus within 18.68-37.59 h following CLO and PMSG exposure, respectively. Estrus numbers, estrus onset time, and estrus rates in CLO and PMSG groups were greater than in control groups (CG) (P < 0.05). Uterine weights of the PMSG group were higher than that of CLO and CG groups, and the uterine horn longitudinal diameters in experimental mice were greater than CG. Expression levels of FSHR proteins in CLO and PMSG groups increased slightly when compared to CG. In conclusion, CLO and PMSG administration did not clearly af-fect the expression of uterine FSHR proteins in mice. Moreover, PMSG and CLO treatments synchronized estrus and enhanced the uterine de-velopment of mice. The efficacy of CLO on estrus synchronization was greater than PMSG, and the effects of PMSG on uterine development were stronger than CLO. These results have important significance re-garding the modulation of animal reproductive functions.

  10. Daily variations in urinary excretion of luteinizing hormone and follicle stimulating hormone in idiopathic isosexual precocity.

    PubMed

    Penny, R; Olambiwonnu, N O; Frasier, S D

    1977-01-01

    The 24-hour urinary excretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH) was determined for 30 days in an 8.3-year-old girl with isosexual precocity and for 25 days in a normal 11.9-year-old girl. The pattern of daily variation in urinary LH and FSH excretion observed in the girl with sexual precocity was similar to that of the normal menstrual cycle. The LH and FSH midcycle peaks were 132.5 IU/24 hours and 26.3 IU/24 hours, respectively. Excluding the midcycle peak, the daily excretion of LH was 28.4 +/- 9.3 (SD) IU/24 hours, and the excretion of FSH was 8.9 +/- 1.9 (SD) IU/24 hours, values comparable to those of normal adult females. In contrast, the daily excretion of LH in the normal 11.9-year-old girl was 6.9 +/- 1.1 (SD) IU/24 hours and FSH excretion was 3.9 +/- 0.9 (SD) IU/24 hours. No LH or FSH surge was observed. The data are consistent with early maturation of the hypothalamic-pituitary-gonadal axis in idiopathic isosexual precocity.

  11. Development of Follicle-Stimulating Hormone Receptor Binding Probes to Image Ovarian Xenografts

    PubMed Central

    Lee, Chung-Wein; Guo, Lili; Matei, Daniela; Stantz, Keith

    2015-01-01

    The Follicle-Stimulating Hormone Receptor (FSHR) is used as an imaging biomarker for the detection of ovarian cancer (OC). FSHR is highly expressed on ovarian tumors and involved with cancer development and metastatic signaling pathways. A decapeptide specific to the FSHR extracellular domain is synthesized and conjugated to fluorescent dyes to image OC cells in vitro and tumors xenograft model in vivo. The in vitro binding curve and the average number of FSHR per cell are obtained for OVCAR-3 cells by a high resolution flow cytometer. For the decapeptide, the measured EC50 was 160 μM and the average number of receptors per cell was 1.7 × 107. The decapeptide molecular imaging probe reached a maximum tumor to muscle ratio five hours after intravenous injection and a dose-dependent plateau after 24–48 hours. These results indicate the potential application of a small molecular weight imaging probe specific to ovarian cancer through binding to FSHR. Based on these results, multimeric constructs are being developed to optimize binding to ovarian cells and tumors. PMID:26779384

  12. Discordances between follicle stimulating hormone (FSH) and anti-Müllerian hormone (AMH) in female infertility

    PubMed Central

    2010-01-01

    Background Follicle stimulating hormone (FSH) and anti-Müllerian hormone (AMH) represent the two most frequently utilized laboratory tests in determining ovarian reserve (OR). This study determined the clinical significance of their concordance and discordance in female infertility patients. Methods We investigated 366 consecutive infertility patients (350 reached IVF), excluding women with polycystic ovarian syndrome (PCOS). They were considered to have normal FSH and AMH if values fell within age-specific (as-) 95% confidence intervals (CI), and to suffer from diminished ovarian reserve (DOR) if FSH exceeded and/or AMH fell below those. The two hormones, thus, could be concordant (Group I), both normal (IA) or abnormal (IB), show normal AMH/abnormal FSH (Group II) or normal FSH/abnormal AMH (Group III). Oocyte yields, stratified for age categories, were then studied in each group as reflection of OR. Results Oocyte yields significantly decreased from groups IA to II to III and IB. Predictive values of as-FSH/AMH patterns changed, however, at different ages. Except at very young and very old ages, normal as-AMH better predicted higher oocytes yields than normal as-FSH, though above age 42 years normal as-FSH predicts good oocyte yields even with abnormally low AMH. Under age 42 discrepancies between as- FSH and as-AMH remain similarly predictive of oocyte yields at all ages. Discussion Concordances and discordances between as-FSH and as-AMH improve OR assessments and predictability of oocyte yields in IVF. PMID:20565808

  13. Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer*

    PubMed Central

    Jiang, Xuliang; Fischer, David; Chen, Xiaoyan; McKenna, Sean D.; Liu, Heli; Sriraman, Venkataraman; Yu, Henry N.; Goutopoulos, Andreas; Arkinstall, Steve; He, Xiaolin

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor, is an important drug target in the development of novel therapeutics for reproductive indications. The FSHR extracellular domains were observed in the crystal structure as a trimer, which enabled us to propose a novel model for the receptor activation mechanism. The model predicts that FSHR binds Asnα52-deglycosylated FSH at a 3-fold higher capacity than fully glycosylated FSH. It also predicts that, upon dissociation of the FSHR trimer into monomers, the binding of glycosylated FSH, but not deglycosylated FSH, would increase 3-fold, and that the dissociated monomers would in turn enhance FSHR binding and signaling activities by 3-fold. This study presents evidence confirming these predictions and provides crystallographic and mutagenesis data supporting the proposed model. The model also provides a mechanistic explanation to the agonist and antagonist activities of thyroid-stimulating hormone receptor autoantibodies. We conclude that FSHR exists as a functional trimer. PMID:24692546

  14. Follicle-stimulating hormone enhances alveolar bone resorption via upregulation of cyclooxygenase-2

    PubMed Central

    Zhu, Chunxia; Ji, Yaoting; Liu, Shengbo; Bian, Zhuan

    2016-01-01

    This study aimed to investigate whether follicle-stimulating hormone (FSH)-induced alveolar bone resorption was mediated by a cyclooxygenase 2 (COX-2) enzyme related mechanism. Experimental periodontitis was induced in bilateral ovariectomized (OVX) rats, some of which were injected with triptorelin, an FSH inhibitor. After mandibles were collected, we performed micro-computed tomography to evaluate alveolar bone loss and immunohistochemical staining to assess COX-2 expression. As well, human periodontal ligament cells (PDLCs) were treated with FSH (30 ng/ml), and the COX-2 mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively; prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay (ELISA). The results indicated that FSH significantly increased alveolar bone resorption and the expression of COX-2 in the bilateral OVX + Ligatured rats compared with the other treatment groups. FSH also increased the mRNA and protein expression of COX-2 and PGE2 (P < 0.01) in human PDLCs. Further, the analysis of signaling pathways revealed the activation of COX-2-mediated pathways including Erk, p38, and Akt. These data suggest that FSH aggravates alveolar bone loss via a COX-2-upregulation mechanism and that the Erk, p38, and Akt pathways are involved in this pathological process. PMID:27725865

  15. Expression of Bioactive Callithrix jacchus Follicle-Stimulating Hormone in Pichia pastoris.

    PubMed

    Kutteyil, Susha S; Pathak, Bhakti R; Dighe, Rajan R; Mahale, Smita D

    2015-05-01

    Callithrix jacchus (common marmoset) is a New World primate monkey, used as an animal model in biomedical research. Marmoset-specific follicle-stimulating hormone (FSH) preparation is required to improve superovulation protocols and to develop homologous FSH monitoring assays in these monkeys. In this study, we document the large-scale expression of recombinant marmoset FSH in methylotropic yeast, Pichia pastoris. The recombinant preparation was found to be immunologically active in Western blotting and radioimmunoassay. The preparation displayed receptor binding ability in radioreceptor assay. Based on the receptor binding ability, the yield of fermentation was estimated to be 7.2 mg/L. FSH-induced cAMP assay and estradiol assay revealed that the recombinant hormone is able to induce signal transduction. Both immunological and in vitro biological activity of marmoset FSH was found to be comparable to purified human pituitary FSH, which served as reference hormone for these assays. Thus, the study suggests that a Pichia expression system can be used for large-scale expression of bioactive recombinant marmoset FSH. PMID:25805018

  16. A silent follicle-stimulating hormone-producing pituitary adenoma in a teenage male.

    PubMed

    Tamiya, Hiroyuki; Fukuhara, Noriaki; Yoshida, Naohiro; Suzuki, Hisanori; Takeshita, Akira; Inoshita, Naoko; Nishioka, Hiroshi; Takeuchi, Yasuhiro; Sano, Toshiaki; Yamada, Shozo

    2011-12-01

    An 18-year-old male was referred to Toranomon Hospital seeking reoperation for recurrent clinically nonfunctioning pituitary adenoma. A pituitary macroadenoma was first suspected at age 15 due to intractable headaches. Endocrine data were unremarkable except slightly elevated serum follicle-stimulating hormone (FSH). Transsphenoidal surgery done at another hospital achieved partial tumor removal but the remaining tumor regrew 2 years after surgery. The recurrent tumor was completely and selectively removed on repeat surgery at Toranomon Hospital. Pathological examination confirmed a silent FSH-producing pituitary adenoma. Forty-five patients less than 20 years old underwent transsphenoidal surgery for pituitary adenoma at Toranomon Hospital between 1993 and 2010. Of the 45 patients, 36 (80.0%) had clinically functioning adenomas and the other 9 (20.0%) had clinically non-functioning adenomas. No patients, other than the present case, had a silent gonadotroph adenoma. In contrast, among 579 patients over 20 years old undergoing surgery for nonfunctioning pituitary adenomas between 2006 and 2010 at Toranomon Hospital, 304 (52.3%) had silent gonadotroph adenomas. Gonadotroph adenomas are more common with aging: for example, 37 (61.7%) of 60 patients more than 70 years old at the time of operation had gonadotroph adenomas. In conclusion, gonadotroph adenomas, especially silent gonadotroph adenomas, are extremely rare in childhood and adolescence.

  17. Expression of Bioactive Callithrix jacchus Follicle-Stimulating Hormone in Pichia pastoris.

    PubMed

    Kutteyil, Susha S; Pathak, Bhakti R; Dighe, Rajan R; Mahale, Smita D

    2015-05-01

    Callithrix jacchus (common marmoset) is a New World primate monkey, used as an animal model in biomedical research. Marmoset-specific follicle-stimulating hormone (FSH) preparation is required to improve superovulation protocols and to develop homologous FSH monitoring assays in these monkeys. In this study, we document the large-scale expression of recombinant marmoset FSH in methylotropic yeast, Pichia pastoris. The recombinant preparation was found to be immunologically active in Western blotting and radioimmunoassay. The preparation displayed receptor binding ability in radioreceptor assay. Based on the receptor binding ability, the yield of fermentation was estimated to be 7.2 mg/L. FSH-induced cAMP assay and estradiol assay revealed that the recombinant hormone is able to induce signal transduction. Both immunological and in vitro biological activity of marmoset FSH was found to be comparable to purified human pituitary FSH, which served as reference hormone for these assays. Thus, the study suggests that a Pichia expression system can be used for large-scale expression of bioactive recombinant marmoset FSH.

  18. Cadmium, follicle-stimulating hormone, and effects on bone in women age 42-60 years, NHANES III

    SciTech Connect

    Gallagher, Carolyn M.; Moonga, Baljit S.; Kovach, John S.

    2010-01-15

    Background: Increased body burden of environmental cadmium has been associated with greater risk of decreased bone mineral density (BMD) and osteoporosis in middle-aged and older women, and an inverse relationship has been reported between follicle-stimulating hormone (FSH) and BMD in middle-aged women; however, the relationships between cadmium and FSH are uncertain, and the associations of each with bone loss have not been analyzed in a single population. Objectives: The objective of this study was to evaluate the associations between creatinine-adjusted urinary cadmium (UCd) and FSH levels, and the associations between UCd and FSH with BMD and osteoporosis, in postmenopausal and perimenopausal women aged 42-60 years. Methods: Data were obtained from the Third National Health Examination and Nutrition Survey, 1988-1994 (NHANES III). Outcomes evaluated were serum FSH levels, femoral bone mineral density measured by dual energy X-ray absorptiometry, and osteoporosis indicated by femoral BMD cutoffs based on the international standard. Urinary cadmium levels were analyzed for association with these outcomes, and FSH levels analyzed for association with bone effects, using multiple regression. Subset analysis was conducted by a dichotomous measure of body mass index (BMI) to proxy higher and lower adipose-synthesized estrogen effects. Results: UCd was associated with increased serum FSH in perimenopausal women with high BMI (n=642; {beta}=0.45; p{<=}0.05; R{sup 2}=0.35) and low BMI (n=408; {beta}=0.61; p{<=}0.01; R{sup 2}=0.34). Among perimenopausal women with high BMI, BMD was inversely related to UCd ({beta}=-0.04; p{<=}0.05) and FSH ({beta}=-0.03; p{<=}0.05). In postmenopausal women with low BMI, an incremental increase in FSH was associated with 2.78 greater odds for osteoporosis (109 with and 706 without) (OR=2.78; 95% CI=1.43, 5.42; p{<=}0.01). Conclusion: Long-term cadmium exposure at environmental levels is associated with increased serum FSH, and both FSH

  19. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  20. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation

    PubMed Central

    Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin

    2015-01-01

    Objective The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. Methods We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). Results 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. Conclusions The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro. PMID:26241313

  1. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  2. Follicle-stimulating hormone interacts with exoloop 3 of the receptor.

    PubMed

    Sohn, Johann; Ryu, KiSung; Sievert, Gail; Jeoung, MyoungKun; Ji, Inhae; Ji, Tae H

    2002-12-20

    The human follicle-stimulating hormone (FSH) receptor consists of two distinct domains of approximately 330 amino acids, the N-terminal extracellular exodomain and membrane-associated endodomain including three exoloops and seven transmembrane helices. The exodomain binds the hormone with high affinity, and the resulting hormone/exodomain complex modulates the endodomain where receptor activation occurs. It has been an enigma whether the hormone interacts with the endodomain. In a step to address the question, exoloop 3 of (580)KVPLITVSKAK(590) was examined by Ala scan, multiple substitution, assays for hormone binding, cAMP and inositol phosphate (IP) induction, and photoaffinity labeling. We present the evidence for the interaction of FSH and exoloop 3. A peptide mimic of exoloop 3 specifically and saturably photoaffinity-labels FSH alpha but not FSH beta. This is in contrast to photoaffinity labeling of FSH beta by the peptide mimic of the N-terminal region of the receptor. Leu(583) and Ile(584) are crucial for the interaction of FSH and exoloop 3. Substitutions of these two residues enhanced the hormone binding affinity. This is due to the loss of the original side chains but not the introduction of new side chains. The Leu(583) and Ile(584) side chains appear to project in opposite directions. Ile(584) appears to be so specific and to require flexibility and stereo specificity so that no other amino acids can fit into its place. Leu(583) is less specific. The improvement in hormone binding by substitutions was offset by the severe impairment of signal generation of cAMP and/or inositol phosphate. For example, the Phe or Tyr substitution of Leu(583) improved the hormone binding and cAMP induction but impaired IP induction. On the other hand, the substitutions for Ile(584) and Lys(590) abolished the cAMP and IP induction. Our results open a logical question whether Leu(583), Ile(584), and Lys(590) interact with the exodomain and/or the hormone. The answers will

  3. Effect of inter-cycle interval on oocyte production in humans in the presence of the weak androgen DHEA and follicle stimulating hormone: a case-control study

    PubMed Central

    2014-01-01

    Background In various animal models androgens have been demonstrated to enhance follicle stimulating hormone (FSH) activity on granulosa cells during small growing follicle stages. To assess whether similar synergism may also exist in humans we investigated women on androgen (dehydroepiandrosterone, DHEA) supplementation with varying concomitant FSH exposure. Methods In a case controlled cohort study we determine if time interval between IVF cycles of IVF treatment with FSH had an effect on ovarian response to ovulation induction in women supplemented with DHEA. Among 85 women with known low functional ovarian reserve (LFOR), supplemented with DHEA, and undergoing at least 3 consecutive IVF cycles, 68 demonstrated short (<120 days) intervals between repeated cycles (Group 1) and were, therefore, considered to have consistent FSH exposure. In contrast 17 women (Group 2) demonstrated long (> = 120 days) intervals between repeated cycles and, therefore, were considered to demonstrate inconsistent FSH exposure. Trends in oocyte yields were compared between these groups, utilizing mixed model repeated measures ANOVA, adjusted for initial age and FSH dose. Results Only women in Group I demonstrated a linear increase in oocyte yields across their three cycles of treatments (F = 7.92; df 1, 68.6; p = 0.017). Moreover, the analysis revealed a significant interaction between the two patient groups and cycle number for retrieved oocytes (F = 6.32, df = 2, 85.9, p = 0.003). Conclusions This study offers preliminary confirmatory evidence that repeated short interval exposure to androgens in combination with FSH improves human FOR. A higher level of evidence will require prospectively randomized studies. PMID:25048047

  4. Pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression and cell structure in normal and follicle-stimulating hormone β knockout, follicle-stimulating hormone receptor knockout, luteinising hormone receptor knockout, hypogonadal and ovariectomised female mice.

    PubMed

    Abel, M H; Widen, A; Wang, X; Huhtaniemi, I; Pakarinen, P; Kumar, T R; Christian, H C

    2014-11-01

    To investigate the relationship between gonadotroph function and ultrastructure, we have compared, in parallel in female mice, the effects of several different mutations that perturb the hypothalamic-pituitary-gonadal axis. Specifically, serum and pituitary gonadotrophin concentrations, gonadotrophin gene expression, gonadotroph structure and number were measured. Follicle-stimulating hormone β knockout (FSHβKO), follicle-stimulating hormone receptor knockout (FSHRKO), luteinising hormone receptor knockout (LuRKO), hypogonadal (hpg) and ovariectomised mice were compared with control wild-type or heterozygote female mice. Serum levels of LH were elevated in FSHβKO and FSHRKO compared to heterozygote females, reflecting the likely decreased oestrogen production in KO females, as demonstrated by the threadlike uteri and acyclicity. As expected, there was no detectable FSH in the serum or pituitary and an absence of expression of the FSHβ subunit gene in FSHβKO mice. However, there was a significant increase in expression of the FSHβ and LHβ subunit genes in FSHRKO female mice. The morphology of FSHβKO and FSHRKO gonadotrophs was not significantly different from the control, except that secretory granules in FSHRKO gonadotrophs were larger in diameter. In LuRKO and ovariectomised mice, stimulation of LHβ and FSHβ mRNA, as well as serum protein concentrations, were reflected in subcellular changes in gonadotroph morphology, including more dilated rough endoplasmic reticula and fewer, larger secretory granules. In the gonadotophin-releasing hormone deficient hpg mouse, gonadotrophin mRNA and protein levels were significantly lower than in control mice and gonadotrophs were correspondingly smaller with less abundant endoplasmic reticula and reduced numbers of secretory granules. In summary, major differences in pituitary content and serum concentrations of the gonadotrophins LH and FSH were found between control and mutant female mice. These changes were

  5. High-dose follicle-stimulating hormone (FSH) ovarian stimulation in low-responder patients for in vitro fertilization.

    PubMed

    Hofmann, G E; Toner, J P; Muasher, S J; Jones, G S

    1989-10-01

    Follicle-stimulating hormone (FSH) was used in high doses (6 ampoules/day:6FSH) for ovarian hyperstimulation for in vitro fertilization in women with a previous poor response to stimulation with the equivalent of "4FSH." Luteinizing hormone levels did not differ between stimulations, but both FSH and estradiol levels were higher in the 6FSH compared to the 4FSH cycle. There were fewer cancellations in the 6FSH cycle, but similar numbers of preovulatory oocytes were retrieved, fertilized, and transferred. The pregnancy rates per attempt and retrieval were higher in the 6FSH cycle. We conclude that raising and maintaining FSH levels during stimulation in low responders reduced cancellations and may improve in vitro fertilization outcome.

  6. Polymorphism of follicle stimulating hormone beta (FSHβ) subunit gene and its association with litter traits in giant panda.

    PubMed

    Huang, Xiaoyu; Li, Desheng; Wang, Jiwen; Huang, Yan; Han, Chunchun; Zhang, Guiquan; Huang, Zhi; Wu, Honglin; Wei, Ming; Wang, Guosong; Hu, Haiping; Deng, Tao; He, Tao; Zhou, Yingming; Song, Shixian; Luo, Bo; Zhang, Heming

    2013-11-01

    The different SSCP patterns of the follicle stimulating hormone beta (FSHβ) gene amplified by three pairs of primers were sequenced. Comparisons among the three nucleotide sequences of three genotypes indicated that three base substitutions (A213T, A91G, and A89C) were detected in FSHβ gene, which A213T substitution led to one amino acids mutation (Lys > Met), and the other two substitutions were synonymous mutations. The AA, AB and BB genotypes patterns obtained by FSHβ primer1 had evident relation with the litter traits, but the SSCP genotypes patterns obtained by FSHβ primer2 and primer3 had no evident relation with the litter traits in giant panda. The giant panda with AA and AB genotype had the largest litter size and multiparity rate compared with the BB genotypes (P < 0.05). We speculated that the giant pandas with the A allele have better litter traits than those with the B allele.

  7. Luteinizing hormone and follicle stimulating hormone-releasing hormone test in patients with hypothalamic-pituitary-gonadal dysfunction.

    PubMed

    Mortimer, C H; Besser, G M; McNeilly, A S; Marshall, J C; Harsoulis, P; Tunbridge, W M; Gomez-Pan, A; Hall, R

    1973-10-13

    A standard intravenous 100 mug luteinizing hormone/follicle stimulating hormone-releasing hormone (LH/FSH-RH) test was used to assess the pituitary gonadotrophin responses in 155 patients with a variety of diseases of the hypothalamic-pituitary-gonadal axis. In all but nine patients there was an increase in circulating levels of either LH or FSH in response to the releasing hormone though 137 (88%) were clinically hypogonadal. It was not possible with this test to distinguish between hypothalamic and pituitary causes of hypogonadotrophic hypogonadism, since a variety of LH and FSH responses emerged within the disease groups. However, primary gonadal failure characteristically resulted in exaggerated gonadotrophin response. The potential therapeutic use of the gonadotrophin releasing decapeptide is suggested in certain patients with hypogonadotrophic hypogonadism.

  8. Polymorphism of follicle stimulating hormone beta (FSHβ) subunit gene and its association with litter traits in giant panda.

    PubMed

    Huang, Xiaoyu; Li, Desheng; Wang, Jiwen; Huang, Yan; Han, Chunchun; Zhang, Guiquan; Huang, Zhi; Wu, Honglin; Wei, Ming; Wang, Guosong; Hu, Haiping; Deng, Tao; He, Tao; Zhou, Yingming; Song, Shixian; Luo, Bo; Zhang, Heming

    2013-11-01

    The different SSCP patterns of the follicle stimulating hormone beta (FSHβ) gene amplified by three pairs of primers were sequenced. Comparisons among the three nucleotide sequences of three genotypes indicated that three base substitutions (A213T, A91G, and A89C) were detected in FSHβ gene, which A213T substitution led to one amino acids mutation (Lys > Met), and the other two substitutions were synonymous mutations. The AA, AB and BB genotypes patterns obtained by FSHβ primer1 had evident relation with the litter traits, but the SSCP genotypes patterns obtained by FSHβ primer2 and primer3 had no evident relation with the litter traits in giant panda. The giant panda with AA and AB genotype had the largest litter size and multiparity rate compared with the BB genotypes (P < 0.05). We speculated that the giant pandas with the A allele have better litter traits than those with the B allele. PMID:24057246

  9. Luteinizing hormone and follicle stimulating hormone synergy: A review of role in controlled ovarian hyper-stimulation

    PubMed Central

    Raju, Gottumukkala Achyuta Rama; Chavan, Rahul; Deenadayal, Mamata; Gunasheela, Devika; Gutgutia, Rohit; Haripriya, Geetha; Govindarajan, Mirudhubashini; Patel, Nayana Hitesh; Patki, Ameet Shashikant

    2013-01-01

    Luteinizing hormone (LH) in synergy with follicle stimulating hormone (FSH) stimulates normal follicular growth and ovulation. FSH is frequently used in assisted reproductive technology (ART). Recent studies have facilitated better understanding on the complementary role of the LH to FSH in regulation of the follicle; however, role of LH in stimulation of follicle, optimal dosage of LH in stimulation and its importance in advanced aged patients has been a topic of discussion among medical fraternity. Though the administration of exogenous LH with FSH is obligatory for controlled ovarian stimulation in patients with hypogonadotropic hypogonadism, there is still a paucity of information of its usage in other patient population. In this review we looked in to the multiple roles that LH plays complementary to FSH to better understand the LH requirement in patients undergoing ART. PMID:24672160

  10. Plasma levels of follicle-stimulating and luteinizing hormones during the reproductive cycle of wild and cultured Senegalese sole (Solea senegalensis).

    PubMed

    Chauvigné, François; Fatsini, Elvira; Duncan, Neil; Ollé, Judith; Zanuy, Silvia; Gómez, Ana; Cerdà, Joan

    2016-01-01

    The intensive culture of the Senegalese sole (Solea senegalensis) is hampered by the low or null fertilization rates exhibited by the first generation (F1) of reared males. To investigate the regulation of the reproductive processes in this species by the pituitary gonadotropins follicle-stimulating and luteinizing hormones (Fsh and Lh, respectively), we developed a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for Lh measurements. Quantification of the Fsh and Lh plasma levels in cultured sole using the Lh ELISA developed here, and a previously developed ELISA for Fsh, indicated that in both males and females circulating Fsh steadily increased during autumn and winter and prior to the major spawning in spring, whereas an Lh surge occurred specifically during spawning. The increase in Fsh was associated with a rise of plasma levels of the steroid hormones testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β (E2), but that of Lh was concomitant with a strong decline of the levels of E2 in females and of 11-KT in males, possibly reflecting a rapid steroidogenic shift promoting the final maturation of gametes. Comparison of the plasma levels of gonadotropins and steroids between wild and F1 fish during autumn and spring revealed that F1 males showed significantly lower plasma Lh titres compared to wild males, whereas the levels of T and 11-KT were similar or more elevated in the F1 fish. These data suggest that an impaired Lh secretion during spawning, and perhaps altered Lh-mediated mechanisms in the testis, may be underlying causes for the low reproductive performance of Senegalese sole F1 males. PMID:26419696

  11. Growth differentiation factor 9 (GDF9) forms an incoherent feed-forward loop modulating follicle-stimulating hormone β-subunit (FSHβ) gene expression.

    PubMed

    Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Pincas, Hanna; Turgeon, Judith L; Sealfon, Stuart C

    2014-06-01

    Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses from the hypothalamus and regulates follicle-stimulating hormone β-subunit (FSHβ) gene expression in pituitary gonadotropes in a frequency-sensitive manner. The mechanisms underlying its preferential and paradoxical induction of FSHβ by low frequency GnRH pulses are incompletely understood. Here, we identify growth differentiation factor 9 (GDF9) as a GnRH-suppressed autocrine inducer of FSHβ gene expression. GDF9 gene transcription and expression were preferentially decreased by high frequency GnRH pulses. GnRH regulation of GDF9 was concentration-dependent and involved ERK and PKA. GDF9 knockdown or immunoneutralization reduced FSHβ mRNA expression. Conversely, exogenous GDF9 induced FSHβ expression in immortalized gonadotropes and in mouse primary pituitary cells. GDF9 exposure increased FSH secretion in rat primary pituitary cells. GDF9 induced Smad2/3 phosphorylation, which was impeded by ALK5 knockdown and by activin receptor-like kinase (ALK) receptor inhibitor SB-505124, which also suppressed FSHβ expression. Smad2/3 knockdown indicated that FSHβ induction by GDF9 involved Smad2 and Smad3. FSHβ mRNA induction by GDF9 and GnRH was synergistic. We hypothesized that GDF9 contributes to a regulatory loop that tunes the GnRH frequency-response characteristics of the FSHβ gene. To test this, we determined the effects of GDF9 knockdown on FSHβ induction at different GnRH pulse frequencies using a parallel perifusion system. Reduction of GDF9 shifted the characteristic pattern of GnRH pulse frequency sensitivity. These results identify GDF9 as contributing to an incoherent feed-forward loop, comprising both intracellular and secreted components, that regulates FSHβ expression in response to activation of cell surface GnRH receptors.

  12. Orchidectomy selectively increases follicle-stimulating hormone secretion in gonadotropin-releasing hormone antagonist-treated male rats.

    PubMed

    Tena-Sempere, M; Pinilla, L; Aguilar, E

    1995-03-01

    The pituitary component of the feedback mechanisms exerted by testicular factors on gonadotropin secretion was analyzed in adult male rats treated with a potent gonadotropin-releasing hormone (GnRH) antagonist. In order to discriminate between androgens and testicular peptides, groups of males were orchidectomized (to eliminate androgens and non-androgenic testicular factors) or injected with ethylene dimethane sulfonate (EDS), a selective toxin for Leydig cells (to eliminate selectively androgens) and treated for 15 days with vehicle or the GnRH antagonist Ac-D-pClPhe-D-pClPhe-D-Trp-Ser-Tyr-D-Arg-Leu-Arg-Pro-D-Ala-+ ++NH2CH3COOH (Org.30276, 5 mg/kg/72 hours). Serum concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured 7 and 14 days after the beginning of treatment. We found that: in males treated with GnRH antagonist, orchidectomy or EDS treatment did not induce any increase in LH secretion; and orchidectomy, but not EDS treatment, increased FSH secretion in GnRH-treated males. The present results show that negative feedback of testicular factors on LH secretion is mediated completely through changes in GnRH actions. In contrast, a part of the inhibitory action of the testis on FSH secretion is exerted directly at the pituitary level. It can be hypothesized that non-Leydig cell testicular factor(s) inputs at different levels of the hypothalamic-pituitary axis in controlling LH and FSH secretion.

  13. Metabolic responses of Sertoli cells in culture to various concentrations of follicle stimulating hormone and cholera toxin.

    PubMed

    Fritz, I B; Griswold, M D; Louis, B G; Dorrington, J H

    1978-09-01

    The concentration of cholera toxin required for half-maximal stimulation of cAMP production by Sertoli cell enriched cultures (4.48 X 10(2) microgram/ml) is greater than that required for half-maximal stimulation of 17beta-estradiol synthesis from testosterone (2.34 X 10(-4) microgram/ml), [3H]thymidine incorporation into DNA (1.48 X 10(-5) microgram/ml), or androgen binding protein production (2.43 X 10(-6) microgram/ml). The same relative dose response hierarchy was obtained with respect to stimulation of Sertoli cells with follicle stimulating hormone (FSH) preparations. Again, highest concentrations were required to elicit maximal cAMP production. The data are discussed in relation to an apparent paradox: If cAMP is the mediating 'second messenger' following stimulation by FSH or cholera toxin, why should highest concentrations of these agents be required to elicit 50% of maximal cAMP levels? PMID:215290

  14. Weight loss results in a small decrease in follicle stimulating hormone in overweight glucose-intolerant postmenopausal women

    PubMed Central

    Kim, Catherine; Randolph, John F.; Golden, Sherita H.; Labrie, Fernand; Kong, Shengchun; Nan, Bin; Barrett-Connor, Elizabeth

    2014-01-01

    Structured Abstract Objective To examine the impact of a weight loss intervention upon follicle stimulating hormone (FSH) levels in postmenopause. Design and Methods Participants were postmenopausal, overweight, glucose-intolerant women not using exogenous estrogen (n=382) in the Diabetes Prevention Program. Women were randomized to intensive lifestyle change (ILS) with the goals of weight reduction of at least 7% of initial weight and 150 minutes per week of moderate intensity exercise, metformin 850 mg, or placebo administered twice a day. Results Randomization to ILS led to small increases in FSH between baseline and 1-year follow-up vs. placebo (2.3 IU/l vs. -0.81 IU/l, p<0.01). Increases in FSH were correlated with decreases in weight (r=-0.165, p<0.01) and E2 (r=-0.464, p<0.0001) after adjustment for age, race/ethnicity, and randomization arm. Changes in FSH were still significantly associated with changes in weight even after adjustment for E2 levels. Metformin users had reductions in weight but non-significant changes in FSH and E2 levels vs. placebo. Conclusions Weight loss leads to small increases in FSH among overweight, postmenopausal women, potentially through pathways mediated by endogenous estrogen as well as other pathways. PMID:25294746

  15. Protection from radiation-induced damage of spermatogenesis in the rhesus monkey (Macaca mulatta) by follicle-stimulating hormone

    SciTech Connect

    van Alphen, M.M.; van de Kant, H.J.; de Rooij, D.G.

    1989-02-01

    In adult rhesus monkeys a two- to threefold increase in the number of spermatogonia was found at Day 75 after 1 Gy of X-irradiation when the animals were pretreated with two intramuscular injections of follicle-stimulating hormone (FSH) each day. Also the percentage of cross-sections of seminiferous tubules showing spermatogonia (repopulation index) was much higher when FSH was given before irradiation. At 75 days postirradiation the repopulation index was 39 +/- 10% after irradiation alone and 81 +/- 11% when FSH pretreatment was applied. The pretreatment with two injections of FSH each day during 16 days caused an increase in the number of proliferating A spermatogonia. In view of earlier results in the mouse, where proliferating spermatogonial stem cells appeared more radioresistant than quiescent ones, it is suggested that the protective effects of FSH treatment are caused by the increase in the proliferative activity of the A spermatogonia and consequently of the spermatogonial stem cells. The results indicate that in the rhesus monkey the maximal protective effect of FSH is reached after a period of treatment between 7 and 16 days.

  16. Age-Specific Serum Anti-Mullerian Hormone and Follicle Stimulating Hormone Concentrations in Infertile Iranian Women

    PubMed Central

    Raeissi, Alireza; Torki, Alireza; Moradi, Ali; Mousavipoor, Seyed Mehdi; Pirani, Masoud Doosti

    2015-01-01

    Background Anti-Müllerian hormone (AMH) is secreted by the granulosa cells of growing follicles during the primary to large antral follicle stages. Abnormal levels of AMH and follicle stimulating hormone (FSH) may indicate a woman’s diminished ability or inability to conceive. Our aim is to investigate the changes in serum AMH and FSH concentrations at different age groups and its correlation with ovarian reserves in infertile women. Materials and Methods This cross-sectional study analyzed serum AMH and FSH levels from 197 infertile women and 176 healthy controls, whose mean ages were 19-47 years. Sample collection was performed by random sampling and analyzed with SPSS version 16 software. Results There were significantly lower mean serum AMH levels among infertile women compared to the control group. The mean AMH serum levels from different ages of infertile and control group (fertile women) decreased with increasing age. However, this reduction was greater in the infertile group. The mean FSH serum levels of infertile women were significantly higher than the control group. Mean serum FSH levels consistently increased with increasing age in infertile women; however mean luteinizing hormone (LH) levels were not consistent. Conclusion We have observed increased FSH levels and decreased AMH levels with increasing age in women from 19 to 47 years of age. Assessments of AMH and FSH levels in combination with female age can help in predicting ovarian reserve in infertile women. PMID:25918589

  17. Vasoactive intestinal peptide enhanced aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone

    SciTech Connect

    George, F.W.; Ojeda, S.R.

    1987-08-01

    The authors have investigated the factors that regulate aromatase activity in fetal-neonatal rat ovaries. Ovarian aromatase activity (assessed by measuring the amount of /sup 3/H/sub 2/O formed from (1..beta..-/sup 3/H)testosterone) is low prior to birth and increases to values greater than 30 pmol/hr per mg of protein between days 8 and 12 after birth. The appearance of ovarian aromatase coincides with the development of primordial follicles. Fetal-neonatal ovaries maintained in serum-free organ culture do not develop aromatase activity at the expected time. Ovine follicle-stimulating hormone, ovine luteinizing hormone, or their combination failed to induce the enzyme activity in cultured fetal ovaries, whereas follicle-stimulating hormone is effective in preventing the decline in aromatase activity when postnatal day 8 ovaries are placed in culture. In contrast to follicle-stimulating hormone, dibutyryl-cAMP markedly enhances ovarian aromatase in cultured fetal ovaries. Likewise, enhancement of endogenouse cAMP formation with forskolin or cholera toxin caused an increase in enzyme activity within 24 hr. Vasoactive intestinal peptide, a peptide known to occur in ovarian nerves, caused a dose-dependent increase in aromatase activity in fetal ovaries prior to folliculogenesis. Of related peptides tested, only the peptide having N-terminal histidine and C-terminal isoleucine amide was capable of inducing aromatase activity in fetal ovaries. The fact that VIP can induce aromatase activity in fetal rat ovaries prior to follicle formation and prior to responsiveness to follicle-stimulating hormone suggests that this neuropeptide may play a critical role in ovarian differentiation.

  18. Metabolic differences in bovine cumulus-oocyte complexes matured in vitro in the presence or absence of follicle-stimulating hormone and bone morphogenetic protein 15.

    PubMed

    Sutton-McDowall, Melanie L; Mottershead, David G; Gardner, David K; Gilchrist, Robert B; Thompson, Jeremy G

    2012-10-01

    Bidirectional communication between cumulus cells and the oocyte is necessary to achieve oocyte developmental competence. The aim of the present study was to examine the effects of recombinant human bone morphogenetic protein 15 (rhBMP15) and follicle-stimulating hormone (FSH) supplementation on bovine cumulus-oocyte complex (COC) metabolism during maturation. Bovine COCs were matured in the presence of absence of FSH, rhBMP15, or both for 23 h. The addition of FSH and rhBMP15 increased blastocyst development (without rhBMP15 and FSH, 28.4% ± 7.4%; with FSH and rhBMP15, 51.5% ± 5.4%; P < 0.05). Glucose uptake and lactate production was significantly increased by greater than 2-fold with FSH (P < 0.05), whereas rhBM15 supplementation did not increase these levels. rhBMP15 supplementation (regardless of FSH) significantly decreased ADP levels in COCs, leading to an increase in ATP:ADP ratios (P < 0.05). Indicators of mitochondrial activity and cellular REDOX, oxidized flavin adenine dinucleotide (FAD(++)) and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), levels within the oocyte of COCs were significantly higher with rhBMP15 alone, whereas the presence of FSH diminished the rhBMP15 effect. Regardless of treatment, no changes in REDOX state (FAD(++):NAD(P)H). The significant increase in FAD(++) and NAD(P)H in COCs with rhBMP15 was mediated via cumulus cells, because no differences were found in denuded oocytes cultured in the presence or absence of FSH, rhBMP15, or both. The present study demonstrates that a principal metabolic consequence of FSH supplementation of COCs is to alter the glycolytic rate of cumulus cells, whereas that of rhBMP15 is to regulate oxidative phosphorylation in the oocyte, even though it acts via cumulus cells. These effects are tempered when FSH and rhBMP15 are present together but, nonetheless, yield the best oocyte developmental competence.

  19. Intra-pituitary relationship of follicle stimulating hormone and luteinizing hormone during pubertal development in Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Berkovich, Nadia; Corriero, Aldo; Santamaria, Nicoletta; Mylonas, Constantinos C; Vassallo-Aguis, Robert; de la Gándara, Fernando; Meiri-Ashkenazi, Iris; Zlatnikov, Vered; Gordin, Hillel; Bridges, Christopher R; Rosenfeld, Hanna

    2013-12-01

    As part of the endeavor aiming at the domestication of Atlantic bluefin tuna (BFT; Thunnus thynnus), first sexual maturity in captivity was studied by documenting its occurrence and by characterizing the key hormones of the reproductive axis: follicle stimulating hormone (FSH) and luteinizing hormone (LH). The full length sequence encoding for the related hormone β-subunits, bftFSHβ and bftLHβ, were determined, revealing two bftFSHβ mRNA variants, differing in their 5' untranslated region. A quantitative immuno-dot-blot assay to measure pituitary FSH content in BFT was developed and validated enabling, for the first time in this species, data sets for both LH and FSH to be compared. The expression and accumulation patterns of LH in the pituitary showed a steady increase of this hormone, concomitant with fish age, reaching higher levels in adult females compared to males of the same age class. Conversely, the pituitary FSH levels were elevated only in 2Y and adult fish. The pituitary FSH to LH ratio was consistently higher (>1) in immature than in maturing or pubertal fish, resembling the situation in mammals. Nevertheless, the results suggest that a rise in the LH storage level above a minimum threshold may be an indicator of the onset of puberty in BFT females. The higher pituitary LH levels in adult females over males may further support this notion. In contrast three year-old (3Y) males were pubertal while cognate females were still immature. However, it is not yet clear whether the advanced puberty in the 3Y males was a general feature typifying wild BFT populations or was induced by the culture conditions. Future studies testing the effects of captivity and hormonal treatments on precocious maturity may allow for improved handling of this species in a controlled environment which would lead to more cost-efficient farming.

  20. Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Kim, Dong-Wan; Park, Hong-Kyu; Byambaragchaa, Munkhzaya; Lee, Nam-Sil; Hong, Sun-Mee; Seo, Mi-Young; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-07-01

    We prepared monoclonal antibodies (mAbs) against a recombinant tethered follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica that was produced in Escherichia coli. Positive hybridomas (clones eFA-C5, eFA-C10, eFA-C11, eFA-C12, eFA-C13, and eFB-C14) were selected by using the eel FSH antigen in ELISA, and anti-eel FSH mAbs were purified from culture supernatants by performing affinity chromatography. Three of the 6mAbs were characterized and their isotypes were identified as IgG2b (eFA-C5 and eFA-C11) and IgG1 (eFB-C14). In western blotting assays, the mAbs recognized the antigen as a 24.3-kDa band, and further detected bands of 34 and 32kDa in the supernatants of CHO cells transfected with cDNA encoding tethered eel FSHβ/α and LHβ/α, respectively. PNase F-mediated deglycosylation of the recombinant proteins resulted in a drastic reduction in their molecular weight, to 7-9kDa. The mAbs eFA-C5 and eFA-C11 recognized the eel FSHα-subunit that is commonly encoded among glycoprotein hormones, whereas eFB-C14 recognized the eel FSHβ-subunit, and immunohistochemical analysis revealed that the staining by these mAbs was specifically localized in the eel pituitary. We also established an ELISA system for detecting rec-tethered FSHβ/α and LHβ/α produced from CHO cell lines. Measurement of biological activities in vitro revealed that only weak activity of rec-FSHβ/α was detected. The activity of rec-LHβ/α was found to be increased in a dose-dependent manner for eel oocyte maturation.

  1. Effects of diverse mammalian and nonmammalian gonadotropins in a rat granulosa cell bioassay for follicle-stimulating hormone.

    PubMed

    Dahl, K D; Papkoff, H; Hsueh, A J

    1989-03-01

    The biopotencies of pituitary gonadotropins purified from a marsupial (kangaroo), two avian (ostrich and turkey), a reptile (turtle), an amphibian (bullfrog), and two fish (sturgeon and teleost) species were examined using an in vitro rat granulosa cell bioassay for follicle-stimulating hormone (FSH). Treatment of cultured granulosa cells with increasing concentrations of gonadotropin preparations from these species resulted in dose-dependent increases in estrogen production from negligible amounts to maximal levels of approximately 2-29 ng/culture. The relative biopotencies of these FSH preparations from most potent to least potent were in the order of human greater than ostrich greater than turkey greater than kangaroo greater than turtle greater than sturgeon greater than bullfrog greater than teleost with ED50 values of human 8.7 ng/well; ostrich 10.5 ng/well; turkey 22.5 ng/well; kangaroo 58.2 ng/well; turtle 62.5 ng/well; sturgeon 260 ng/well; bullfrog 750 ng/well; teleost greater than 1000 ng/well. In contrast, luteinizing hormone (LH) preparations were considerably less effective for ostrich, turkey, kangaroo, turtle, and bullfrog, being six-, five-, three-, and twofold less potent than FSH preparations for the same species, demonstrating the specificity of this assay for FSH. An LH preparation from bullfrog was unable to significantly stimulate estrogen production below 500 ng/ml. Thus, the present in vitro bioassay (GAB) using rat granulosa cells provides a sensitive and specific assay for measuring FSH activities of gonadotropins from diverse mammalian and nonmammalian species.

  2. Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Kim, Dong-Wan; Park, Hong-Kyu; Byambaragchaa, Munkhzaya; Lee, Nam-Sil; Hong, Sun-Mee; Seo, Mi-Young; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-07-01

    We prepared monoclonal antibodies (mAbs) against a recombinant tethered follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica that was produced in Escherichia coli. Positive hybridomas (clones eFA-C5, eFA-C10, eFA-C11, eFA-C12, eFA-C13, and eFB-C14) were selected by using the eel FSH antigen in ELISA, and anti-eel FSH mAbs were purified from culture supernatants by performing affinity chromatography. Three of the 6mAbs were characterized and their isotypes were identified as IgG2b (eFA-C5 and eFA-C11) and IgG1 (eFB-C14). In western blotting assays, the mAbs recognized the antigen as a 24.3-kDa band, and further detected bands of 34 and 32kDa in the supernatants of CHO cells transfected with cDNA encoding tethered eel FSHβ/α and LHβ/α, respectively. PNase F-mediated deglycosylation of the recombinant proteins resulted in a drastic reduction in their molecular weight, to 7-9kDa. The mAbs eFA-C5 and eFA-C11 recognized the eel FSHα-subunit that is commonly encoded among glycoprotein hormones, whereas eFB-C14 recognized the eel FSHβ-subunit, and immunohistochemical analysis revealed that the staining by these mAbs was specifically localized in the eel pituitary. We also established an ELISA system for detecting rec-tethered FSHβ/α and LHβ/α produced from CHO cell lines. Measurement of biological activities in vitro revealed that only weak activity of rec-FSHβ/α was detected. The activity of rec-LHβ/α was found to be increased in a dose-dependent manner for eel oocyte maturation. PMID:27174750

  3. Effects of jacalin and follicle-stimulating hormone on in vitro goat primordial follicle activation, survival and gene expression.

    PubMed

    Ribeiro, Regislane P; Portela, Antonia M L R; Silva, Anderson W B; Costa, José J N; Passos, José R S; Cunha, Ellen V; Souza, Glaucinete B; Saraiva, Márcia V A; Donato, Mariana A M; Peixoto, Christina A; van den Hurk, Robert; Silva, José R V

    2015-08-01

    This study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml - Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression. PMID:24869637

  4. Impacts of incorporation of follicle stimulating hormone into an estrous synchronization protocol for timed artificial insemination of crossbred beef cattle.

    PubMed

    Gentry, G T; Walker, R S; Gentry, L R

    2016-05-01

    One-hundred-eighty crossbred beef cows and 66 crossbred beef heifers across three locations were stratified by body weight (BW), body condition score (BCS), and age (within location) to evaluate administration of follicle stimulating hormone (FSH) on Day 2 using a modified 7-day CO-Synch plus CIDR(®) protocol (Day 0=CIDR insertion) with timed-artificial insemination (TAI) at 72 h (cows) or 54 h (heifers) following CIDR removal. Estrous response following CIDR removal was determined using an Estrotect patch and TAI and final pregnancy rates were determined by transrectal ultrasonography 42-45 days following TAI and ≥ 45 days following removal of clean-up bulls. Estrous response rate, TAI and final pregnancy rates for cows were not affected (P ≥ 0.65) by treatment. Cows that exhibited estrus had greater (P<0.01) TAI pregnancy rate (66%) than cows not exhibiting estrus (38%). There was an estrous response by postpartum length interaction (P=0.02) where cows exhibiting estrus and ≥ 55 days postpartum had greater TAI pregnancy rates (75%) compared to cows not exhibiting estrus and < 55 days postpartum (39%) or ≥ 55 days postpartum (28%). For heifers, timed AI (P=0.46) and final pregnancy rates (P=0.45) were similar across treatments and estrous response had no effect (P=0.30) on TAI pregnancy rates. In conclusion, the addition of FSH to the CO-Synch plus CIDR estrous synchronization protocol did not increase TAI pregnancy rates in beef cows or heifers. However, a positive estrous response to the synchronization protocol was associated with increased TAI pregnancy rates in cows.

  5. Follicle-stimulating hormone increases the intramuscular fat content and expression of lipid biosynthesis genes in chicken breast muscle*

    PubMed Central

    Cui, Xiao-yan; Li, Ying-ying; Liu, Ran-ran; Zhao, Gui-ping; Zheng, Mai-qing; Li, Qing-he; Wen, Jie

    2016-01-01

    Intramuscular fat (IMF) is a crucial factor in the quality of chicken meat. The genetic basis underlying it is complex. Follicle-stimulating hormone (FSH), well-known as an effector in reproductive tissues, was recently discovered to stimulate abdominal fat accumulation in chicken. The effect of FSH on IMF accumulation and the underlying molecular regulatory mechanisms controlling both IMF and abdominal fat deposition in vivo are largely unknown. In this study, two groups of chickens were treated with chicken FSH or a placebo. The lipid content of breast muscle, abdominal fat volume, and serum concentrations of FSH were examined. Related genes implicated in breast muscle and abdominal fat accumulation were also investigated. Compared to the control group, the triglyceride (TG) content of breast muscle and the percentage of abdominal fat in FSH-treated chickens were significantly increased by 64.9% and 56.5% (P<0.01), respectively. The FSH content in the serum of FSH-treated chickens was 2.1 times than that of control chickens (P<0.01). Results from quantitative real-time polymerase chain reaction (qRT-PCR) assays showed that relative expression levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), diacylglycerol acyltransferase 2 (DGAT2), adipocyte fatty acid binding protein (A-FABP), and peroxisome proliferator-activated receptor γ (PPARγ) were significantly upregulated in breast muscle following FSH treatment (P<0.01). Treatment with FSH also significantly increased relative expression levels of FAS, LPL, DGAT2, A-FABP, and PPARγ in abdominal fat tissue (P<0.05). The results of principal component analysis (PCA) for gene expression (breast muscle and abdominal fat) showed that the control and FSH treatment groups were well separated, which indicated the reliability of the data. This study demonstrates that FSH plays an important role in IMF accumulation in female chickens, which likely involves the regulation of biosynthesis genes related to lipid

  6. Relative roles of follicle-stimulating hormone and luteinizing hormone in the control of inhibin secretion in normal men.

    PubMed Central

    McLachlan, R I; Matsumoto, A M; Burger, H G; de Kretser, D M; Bremner, W J

    1988-01-01

    The glycoprotein hormone inhibin is produced by the Sertoli cells of the testis under the influence of follicle-stimulating hormone (FSH) and is postulated in turn to inhibit FSH secretion. Luteinizing hormone (LH) is not recognized to have an important role in the control of inhibin secretion in any species. To determine the relative roles of FSH and LH in the control of inhibin secretion in man, we examined the effects of selective FSH and LH replacement on serum inhibin levels in normal men whose endogenous gonadotropins were suppressed by testosterone (T). After a 3-mo control period, nine men received 200 mg T enanthate i.m. weekly for 3-9 mo. During T treatment, serum LH and FSH levels were markedly suppressed and serum inhibin levels fell to 40% of control values. While continuing T, 3-5 mo of treatment with purified hFSH (n = 4) or hLH (n = 4) increased the respective serum gonadotropin level into the upper normal range and significantly increased inhibin levels back to 64 and 55% of control values, respectively. Supraphysiological LH replacement with high doses of human chorionic gonadotropin (n = 3) returned serum inhibin levels to 63% of control values. In no case did inhibin levels return fully to control levels. In conclusion, serum inhibin levels fell during gonadotropin suppression and were partially and approximately equally restored by either FSH or LH treatment. FSH presumably acts directly on the Sertoli cell to increase inhibin secretion whereas LH may act via increases in intratesticular T levels and/or other factor(s). Images PMID:3138288

  7. Endocrine profile following stimulation with recombinant follicle stimulating hormone and luteinizing hormone versus highly purified human menopausal gonadotropin

    PubMed Central

    2014-01-01

    Background Luteinizing hormone (LH) activity in human menopausal gonadotropin (hMG) preparations is derived from human chorionic gonadotropin (hCG) rather than LH. Therefore, we aimed to determine whether there are similarities in the endocrine and follicular profiles of serum and follicular fluid from controlled ovarian stimulation with the recombinant gonadotropins follicle-stimulating hormone plus luteinizing hormone (rFSH + rLH) or highly purified human menopausal gonadotropin (HP-hMG). Methods We performed a prospective observational study with 50 oocyte donors that received either a combination of recombinant gonadotropins (rFSH + rLH) or a mixture of urinary gonadotropins (HP-hMG) plus purified urinary FSH (uFSH). Results were analyzed using Student’s t-test to compare continuous variables and the chi-squared test to compare proportions. P-values < 0.05 were considered statistically significant. Results Although more oocytes were retrieved after treatment with recombinant than urinary gonadotropins (16.5 vs. 11.8; P = 0.049), a higher proportion of metaphase II ova (71.2% vs. 80.6%; P = 0.003) were obtained using urinary gonadotropins. On day 6 and on the day of triggering, serum steroid hormone levels were slightly but not significantly elevated in the recombinant group compared with the urinary group. In follicular fluid, no statistical differences were observed for intra-follicular levels of steroid hormones between the two protocols; ongoing pregnancy rates were similar (46.1% vs. 46.1%). Conclusions Our data suggest that endocrinological and follicular profiles do not differ between rFSH + rLH and HP-hMG stimulation. PMID:24476504

  8. Effect of different culture systems and 3, 5, 3'-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice.

    PubMed

    Zhang, Cheng; Wang, Xiaoxia; Wang, Zhengpin; Niu, Wanbao; Zhu, Baochang; Xia, Guoliang

    2013-01-01

    The mechanical method to isolate preantral follicle has been reported for many years. However, the culture systems in vitro are still unstable. The aim of this study was to analyze the effect of the culture system of mice preantral follicles on the follicular development in vitro. The results showed that the 96-well plate system was the most effective method for mice follicle development in vitro (volume change: 51.71%; survival rate: 89%, at day 4). Follicle-stimulating hormone (FSH) and Thyroid hormone (TH) are important for normal follicular development and dysregulation of hormones are related with impaired follicular development. To determine the effect of hormone on preantral follicular development, we cultured follicle with hormones in the 96-well plate culture system and found that FSH significantly increased preantral follicular growth on day 4. The FSH-induced growth action was markedly enhanced by T₃ although T₃ was ineffective alone. We also demonstrated by QRT-PCR that T₃ significantly enhanced FSH-induced up-regulation of Xiap mRNA level. Meanwhile, Bad, cell death inducer, was markedly down-regulated by the combination of hormones. Moreover, QRT-PCR results were also consistent with protein regulation which detected by Western Blotting analysis. Taken together, the findings of the present study demonstrate that 96-well plate system is an effective method for preantral follicle development in vitro. Moreover, these results provide insights on the role of thyroid hormone in increasing FSH-induced preantral follicular development, which mediated by up-regulating Xiap and down-regulating Bad.

  9. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles.

    PubMed

    Lin, Jin-xing; Jia, Yu-dong; Zhang, Cai-qiao

    2011-11-01

    The development of ovarian follicular cells is controlled by multiple circulating and local hormones and factors, including follicle-stimulating hormone (FSH) and epidermal growth factor (EGF). In this study, the stage-specific effect of EGF on FSH-induced proliferation of granulosa cells was evaluated in the ovarian follicles of egg-laying chickens. Results showed that EGF and its receptor (EGFR) mRNAs displayed a high expression in granulosa cells from the prehierarchical follicles, including the large white follicle (LWF) and small yellow follicle (SYF), and thereafter the expression decreased markedly to the stage of the largest preovulatory follicle. SYF represents a turning point of EGF/EGFR mRNA expression during follicle selection. Subsequently the granulosa cells from SYF were cultured to reveal the mediation of EGF in FSH action. Cell proliferation was remarkably increased by treatment with either EGF or FSH (0.1-100 ng/ml). This result was confirmed by elevated proliferating cell nuclear antigen (PCNA) expression and decreased cell apoptosis. Furthermore, EGF-induced cell proliferation was accompanied by increased mRNA expressions of EGFR, FSH receptor, and the cell cycle-regulating genes (cyclins D1 and E1, cyclin-dependent kinases 2 and 6) as well as decreased expression of luteinizing hormone receptor mRNA. However, the EGF or FSH-elicited effect was reversed by simultaneous treatment with an EGFR inhibitor AG1478. In conclusion, EGF and EGFR expressions manifested stage-specific changes during follicular development and EGF mediated FSH-induced cell proliferation and retarded cell differentiation in the prehierarchical follicles. These expressions thus stimulated follicular growth before selection in the egg-laying chicken.

  10. Suppression of urinary and plasma follicle-stimulating hormone by exogenous estrogens in prepubertal and pubertal children.

    PubMed

    Kelch, R P; Kaplan, S L; Ghumbach, M M

    1973-05-01

    Clomiphene citrate, an "anti-estrogen" with mild estrogenic properties, inhibits rather than stimulates gonadotropin excretion in prepubertal and early pubertal children. These and other data suggest that the sensitivity of the hypothalamic-pituitary "gonadostat" decreases at the onset of puberty. To test this hypothesis further, the daily excretion of urinary follicle-stimulating hormone (FSH) and luteinizing hormone (LH) was determined in 19 children (5 "short normals" and 14 with isolated human growth hormone (HGH) deficiency) who were given ethinyl estradiol (EE) 1.4-14.7 mug/m(2) per day (2-10 mug/day) for 4 to 7 days. In addition, plasma and urinary gonadotropins and plasma estrogens were serially determined in two prepubertal females(with isolated HGH deficiency) given two injections (24 h apart) of estradiol benzoate, 10 mug/kg. FSH and LH concentrations in plasma and kaolin-acetone urinary concentrates and plasma 17beta-estradiol (E(2)) and estrone (E(1)) were measured by radioimmunoassays. 2-3 mug/m(2) per day of EE significantly suppressed urinary FSH (and LH when detected in the control period) in two out of six prepubertal children, while all doses >5 mug/m(2) per day suppressed urinary gonadotropins to undetectable levels in eight prepubertal subjects. In early to midpubertal subjects. 2-10 mug/m(2) per day of EE produced a slight suppression of urinary FSH, but failed to suppress to undetectable levels. Two subjects in late puberty (stage 4) did not suppress their urinary FSH while on 7 and 8.3 mug/m(2) per day. In both subjects treated with estradiol benzoate, plasma FSH promptly decreased after the first injection. Urinary FSH was suppressed to <0.1 IU/day on day 2 and urinary and plasma gonadotropins remained suppressed for the duration of the study (3 days). Plasma E(2) and E(1) rose from prepubertal values to peak concentrations of 150 to 250 pg/ml (E(2)), and 50 and 100 pg/ml (E(1)) at approximately 36 h. We conclude that the hypothalamic

  11. Assays for follicle stimulating hormone and luteinising hormone: guidelines for the provision of a clinical biochemistry service.

    PubMed

    Beastall, G H; Ferguson, K M; O'Reilly, D S; Seth, J; Sheridan, B

    1987-05-01

    The measurement of serum follicle stimulating hormone (FSH) and luteinising hormone (LH), together with the appropriate sex steroid, is of great value in the investigation of delayed and precocious puberty, hypogonadism, subfertility, polycystic ovarian disease and hypothalamic-pituitary disorders. Dynamic function testing of the hypothalamic-pituitary-gonadal axis should be restricted to a few defined situations. Sequential LH measurements, either in serum or in urine, may be used to time ovulation during artificial insemination or in vitro fertilisation programmes. No special precautions are necessary when sampling for FSH and LH measurement; serum is preferred to plasma and should be stored frozen before assay. Aliquots of timed urine specimens of known volume should be stored frozen without preservative. Gonadotrophin results should be available within 2-3 weeks; laboratories unable to meet this schedule are advised to send their samples to a Regional Centre for assay. Reagents for the radioimmunoassay of FSH and LH are readily available, and standard techniques have been developed for their use. Laboratories using 'in-house' methods should pay particular attention to the matrix used for preparing standard solutions, the purification of radioligands and the optimisation of the separation system. Low cost matched reagents of proven performance are available in kit form from the Chelsea Hospital for Women; several commercial kits are also available, although few are widely used in the UK. The overall performance of laboratories in the UK External Quality Assessment Scheme (EQAS) for FSH and LH has remained steady for several years. Of the 130 participants, only about 15% in each scheme have 'good' performance (cumulative bias less than 10%, plus cumulative variability of bias less than 10%), whilst a similar proportion have 'unacceptable' performance (cumulative bias greater than 20% and/or cumulative variability of bias greater than 25%). The remaining 70% of

  12. [Effect of ascorbic acid, epidermal growth factor and follicle stimulating hormone on in vitro culture of sheep ovarian cortical tissue].

    PubMed

    Peng, Xiayu; Wang, Liqin; Yang, Mei; Chen, Tong; Guo, Zhiqin

    2010-06-01

    In this study, we evaluated the effects of ascorbic acid (VC), epidermal growth factor (EGF) and follicle stimulating hormone (FSH) on in vitro culture of sheep ovarian cortical tissue. Using 2 x 2 x 2 factor experimental design, we cultured sheep ovarian cortex fragments in 8 media with MEM (control), MEM+VC (50 microg/mL), MEM +EGF (100 ng/mL), MEM+FSH (50 ng/mL), MEM+VC+EGF, MEM+VC+FSH, MEM+EGF+FSH, MEM+VC+EGF+FSH. After 0 (non-cultured control), 2, 6, 12 days of culture, the pieces of ovarian cortex were proceed to histological and proliferating cell nuclear antigen (PCNA) examination, or observed by transmission electron microscopy (TEM). The percentages of developing follicles were increased (P < 0.05) and the percentages of healthy follicles were reduced (P < 0.05). When compared to the MEM group, the addition of FSH with VC or EGF promoted a significant increase of follicles diameter and follicles survival rate (P < 0.05), and stimulated the proliferation of granulosa cells. After 12 days of culture, medium supplemented with MEM+VC+EGF resulted the lowest proportion of developing follicles (49.3% +/- 3.2%), follicles diameter((32.3 +/- 2.3) microm), follicles survival rate (41.6% +/- 3.1%) and the proportion of PCNA stained follicles (26.4% +/- 1.2%, P < 0.05). In contrast, MEM+VC+EGF+FSH resulted the highest follicles diameter ((42.5 +/- 5.1) microm), follicles survival rate (59.7% +/- 6.1%) and proportion of PCNA stained follicles (43.5% +/- 4.1%, P < 0.05). Ultrastructural analysis confirmed the integrity of follicles cultured in VC+EGF+FSH group, while follicles cultured in MEM+VC+EGF groups showed more degeneration characters. In conclusion, the addition of VC and EGF to culture medium inhibited follicular development, VC+EGF+FSH was the most effective treatment to maintain follicular integrity and promote sheep primordial follicular activation and growth during in vitro culture.

  13. Responses of luteinizing hormone, follicle-stimulating hormone, and prolactin to prolonged administration of the dopamine antagonist in normal women and women with low-weight amenorrhea.

    PubMed

    Larsen, S

    1981-06-01

    The responses of luteinizing hormone, follicle-stimulating hormone, and prolactin to prolonged administration of the dopamine receptor antagonist metoclopramide (5 mg twice daily) were investigated in six normal women and six women with low-weight amenorrhea (LWA). In contrast to the normal group, the LWA group showed no significant changes in the mean basal prolactin level or the mean prolactin response to stimulation with thyrotropin-releasing hormone, but there was an significant elevation of the mean net increase in luteinizing hormone after stimulation with gonadotropin-releasing hormone. On the basis of these data, the possibility of increased central dopaminergic activity in women with LWA is discussed. PMID:6788608

  14. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain.

  15. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain. PMID:25200132

  16. Effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone and N-terminal telopeptide in the postmenopausal women

    PubMed Central

    Shin, Hyun-Jae; Lee, Ha-Yan; Cho, Hye-Young; Park, Yun-Jin; Moon, Hyung-Hoon; Lee, Sung-Hwan; Lee, Sung-Ki; Kim, Myung-Ki

    2014-01-01

    Menopause is characterized by rapid decreases in bone mineral density, aerobic fitness, muscle strength, and balance. In the present study, we investigated the effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone (FSH) and N-terminal telopeptide (NTX) in the postmenopausal women. Subjects were consisted of 20 postmenopausal women, who had not menstruated for at least 1 yr and had follicle-stimulating hormone levels > 35 mIU/L, estradiol levels< 40 pg/mL. The subjects were randomly divided into two groups: control group (n= 10), new sports tennis type exercise group (n= 10). New sports tennis type exercise was consisted of warm up (10 min), new sports tennis type exercise (40 min), cool down (10 min) 3 days a per week for 12 weeks. The aerobic capacities were increased by 12 weeks new sports tennis type exercise. New sports tennis type exercise significantly increased FSH and NTx levels, indicating biochemical markers of bone formation and resorption. These findings indicate that 12 weeks of new sports tennis type exercise can be effective in prevention of bone loss and enhancement of aerobic capacity in postmenopausal women. PMID:24877043

  17. Alterations in cognitive and psychological functioning after organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  18. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    PubMed

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.

  19. Produced water exposure alters bacterial response to biocides.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2014-11-01

    Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity. PMID:25279933

  20. Sperm counts and serum follicle-stimulating hormone levels before and after radiotherapy and chemotherapy in men with testicular germ cell cancer

    SciTech Connect

    Berthelsen, J.G.

    1984-02-01

    Sperm counts were low (median, 15 X 10(6) per ejaculate) and serum follicle-stimulating hormone (FSH) levels were moderately elevated (median, 31 IU/l) after unilateral orchiectomy and immediately before radiotherapy and chemotherapy in 34 patients with seminomas and 20 patients with nonseminomatous germ cell tumors. The scattered radiation (0.2 to 1.3 Gray (Gy)) reaching the remaining testicle during radiotherapy caused azoospermia in more than two thirds of the patients. A median of 540 days elapsed after the end of treatment before spermatozoa were again found in semen samples, while a median of 1250 days passed before the pretreatment sperm count was reached. One to 5 years after treatment, sperm counts were still low (median, 6 X 10(6) per ejaculate) and serum FSH was elevated (median, 61 IU/l). The adjuvant chemotherapy given to the 20 patients with nonseminomatous tumors did not appear to affect restitution appreciably.

  1. Assembly and structural characterization of an authentic complex between human follicle stimulating hormone and a hormone-binding ectodomain of its receptor

    PubMed Central

    Fan, Qing R.; Hendrickson, Wayne A.

    2007-01-01

    Follicle stimulating hormone (FSH) is secreted from the pituitary gland to regulate reproduction in vertebrates. FSH signals through a G-protein coupled receptor (FSHR) on the target cell surface. We describe here the strategy to produce a soluble FSH-FSHR complex that involves the co-secretion of a truncated FSHR ectodomain (FSHRHB) and a covalently-linked FSHαβ heterodimer from baculovirus-infected insect cells. FSH binds to FSHRHB with a high affinity comparable to that for the full-length receptor. The crystal structure of the FSH-FSHRHB complex provides explanations for the high affinity and specificity of FSH interaction with FSHR, and it shows an unexpected dimerization of these complexes. Here we also compare the crystal structure with theoretical models of the FSH-FSHR binding mode. We conclude that the FSH-FSHRHB structure gives an authentic representation of FSH binding to intact FSHR. PMID:17045735

  2. Chronic bisphenol A exposure alters behaviors of zebrafish (Danio rerio).

    PubMed

    Wang, Ju; Wang, Xia; Xiong, Can; Liu, Jian; Hu, Bing; Zheng, Lei

    2015-11-01

    The adult zebrafish (Danio rerio) were exposed to treated-effluent concentration of bisphenol A (BPA) or 17β-estradiol (E2) for 6 months to evaluate their effects on behavioral characteristics: motor behavior, aggression, group preference, novel tank test and light/dark preference. E2 exposure evidently dampened fish locomotor activity, while BPA exposure had no marked effect. Interestingly, BPA-exposed fish reduced their aggressive behavior compared with control or E2. Both BPA and E2 exposure induced a significant decrease in group preference, as well as a weaker adaptability to new environment, exhibiting lower latency to reach the top, more entries to the top, longer time spent in the top, fewer frequent freezing, and fewer erratic movements. Furthermore, the circadian rhythmicity of light/dark preference was altered by either BPA or E2 exposure. Our results suggest that chronic exposure of treated-effluent concentration BPA or E2 induced various behavioral anomalies in adult fish and enhanced ecological risk to wildlife. PMID:26204572

  3. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish

    PubMed Central

    Özel, Rıfat Emrah; Wallace, Kenneth N.

    2014-01-01

    The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine. PMID:24639893

  4. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish.

    PubMed

    Ozel, Rıfat Emrah; Wallace, Kenneth N; Andreescu, Silvana

    2014-02-01

    The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine. PMID:24639893

  5. Vanadium Exposure-Induced Neurobehavioral Alterations among Chinese Workers

    PubMed Central

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2014-01-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the Simple Reaction Time, Digit Span, Benton Visual Retention and Pursuit Aiming were also poorer among exposed workers as compared to unexposed control workers(p<0.05). Some of these poor performances in tests were also significantly related to workers’ exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium. PMID:23500660

  6. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  7. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    NASA Astrophysics Data System (ADS)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  8. Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development

    PubMed Central

    Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.

    2012-01-01

    Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191

  9. Neurobehavioral alteration in rodents following developmental exposure to aluminum.

    PubMed

    Alleva, E; Rankin, J; Santucci, D

    1998-01-01

    Aluminum (Al) is one of the most abundant metals in the earth's crust, and humans can be exposed to it from several sources. It is present in food, water, pharmaceutical compounds, and in the environment, e.g., as a result of acid rain leaching it from the soil. Exposure to Al has recently been implicated in a number of human pathologies, but it has not yet been definitely proved that it plays a major causal role in any of them. In this paper we review the effects of developmental exposure of laboratory animals to Al salts as a model for human pathological conditions. The data presented show behavioral and neurochemical changes in the offspring of AL-exposed mouse dams during gestation, which include alterations in the pattern of ultrasonic vocalizations and a marked reduction in central nervous system (CNS) choline acetyltransferase activity. Prenatal Al also affects CNS cholinergic functions under Nerve Growth Factor (NGF) control, as shown by increased central NGF levels and impaired performances in a maze learning task in young-adult mice. The need for more detailed studies to evaluate the risks for humans associated with developmental exposure to Al, as well as the importance of using more than one strain of laboratory animal in the experimental design, is emphasized.

  10. Alterations in surfactant protein A after acute exposure to ozone.

    PubMed

    Su, W Y; Gordon, T

    1996-05-01

    The surfactant layer covering the gas-exchange region of the lung serves as the initial site of interaction with inhaled oxidant gases. Among the endogenous compounds potentially vulnerable to oxidative injury are surfactant proteins. This study focused on the effect of ozone on surfactant protein A (SP-A) function, content, and gene expression. To determine the time course of response to ozone, guinea pigs were exposed to 0.2-0.8 parts/million (ppm) ozone for 6 h and were killed up to 120 h postexposure. To determine the effect of repeated exposure, animals were exposed to 0.8 ppm ozone for 6 h/day and were killed on days 3 and 5. A significant increase in surfactant's ability to modulate the respiratory burst induced by phorbol 12-myristate 13-acetate in naive macrophages was observed at 24 h after a single 0.8 ppm ozone exposure. Because neutralizing antibodies to SP-A blunted this stimulatory effect, we hypothesized that ozone enhanced the modulatory role of SP-A in macrophage function. This alteration in function was accompanied by an influx of inflammatory cells and only marginal changes in SP-A levels as determined by an enzyme-linked immunosorbent assay. No significant changes in steady-state levels of SP-A mRNA were observed after single or repeated exposure to ozone. Thus the inflammation that accompanies in vivo ozone exposure may result in a change in the structure and thus functional role of SP-A in modulating macrophage activity.

  11. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations.

    PubMed

    Hallene, K L; Oby, E; Lee, B J; Santaguida, S; Bassanini, S; Cipolla, M; Marchi, N; Hossain, M; Battaglia, G; Janigro, D

    2006-09-29

    Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.

  12. Predator exposure alters stress physiology in guppies across timescales.

    PubMed

    Fischer, Eva K; Harris, Rayna M; Hofmann, Hans A; Hoke, Kim L

    2014-02-01

    In vertebrates, glucocorticoids mediate a wide-range of responses to stressors. For this reason, they are implicated in adaptation to changes in predation pressure. Trinidadian guppies (Poecilia reticulata) from high-predation environments have repeatedly and independently colonized and adapted to low-predation environments, resulting in parallel changes in life history, morphology, and behavior. We validated methods for non-invasive waterborne hormone sample collection in this species, and used this technique to examine genetic and environmental effects of predation on basal glucocorticoid (cortisol) levels. To examine genetic differences, we compared waterborne cortisol levels in high- and low-predation fish from two distinct population pairs. We found that fish from high-predation localities had lower cortisol levels than their low-predation counterparts. To isolate environmental influences, we compared waterborne cortisol levels in genetically similar fish reared with and without exposure to predator chemical cues. We found that fish reared with predator chemical cues had lower waterborne cortisol levels than those reared without. Comparisons of waterborne and whole-body cortisol levels demonstrated that populations differed in overall cortisol levels in the body, whereas rearing conditions altered the release of cortisol from the body into the water. Thus, evolutionary history with predators and lifetime exposure to predator cues were both associated with lower cortisol release, but depended on distinct physiological mechanisms. PMID:24370688

  13. Ozone exposure alters tracheobronchial mucociliary function in humans

    SciTech Connect

    Foster, W.M.; Costa, D.L.; Langenback, E.G.

    1987-09-01

    Mucociliary function is a primary defense mechanism of the tracheobronchial airways, and yet the response of this system to an inhalational hazard, such as ozone, is undefined in humans. Utilizing noninvasive techniques to measure deposition and retention of insoluble radiolabeled particles on airway mucous membranes, we studied the effect on mucus transport of 0.2 and 0.4 ppm ozone compared with filtered air (FA) in seven healthy males. During 2-h chamber exposures, subjects alternated between periods of rest and light exercise with hourly spirometric measurement of lung function. Mechanical and mucociliary function responses to ozone by lung airways appeared concentration dependent. Reduction in particle retention was significant (P less than 0.005) (i.e., transport of lung mucus was increased during exposure to 0.4 ppm ozone and was coincident with impaired lung function; e.g., forced vital capacity and midmaximal flow rate fell by 12 and 16%, respectively, and forced expiratory volume at 1 s by 5%, of preexposure values). Regional analysis indicated that mucus flow from distal airways into central bronchi was significantly increased (P less than 0.025) by 0.2 ppm ozone. This peripheral effect, however, was buffered by only a marginal influence of 0.2 ppm ozone on larger bronchi, such that the resultant mucus transport for all airways of the lung in aggregate differed only slightly from FA exposures. These data may reflect differences in regional diffusion of ozone along the respiratory tract, rather than tissue sensitivity. In conclusion, mucociliary function of humans is acutely stimulated by ozone and may result from fluid additions to the mucus layer from mucosal and submucosal secretory cells and/or alteration of epithelial permeability.

  14. Ozone exposure alters tracheobronchial mucociliary function in humans.

    PubMed

    Foster, W M; Costa, D L; Langenback, E G

    1987-09-01

    Mucociliary function is a primary defense mechanism of the tracheobronchial airways, and yet the response of this system to an inhalational hazard, such as ozone, is undefined in humans. Utilizing noninvasive techniques to measure deposition and retention of insoluble radiolabeled particles on airway mucous membranes, we studied the effect on mucus transport of 0.2 and 0.4 ppm ozone compared with filtered air (FA) in seven healthy males. During 2-h chamber exposures, subjects alternated between periods of rest and light exercise with hourly spirometric measurement of lung function. Mechanical and mucociliary function responses to ozone by lung airways appeared concentration dependent. Reduction in particle retention was significant (P less than 0.005) (i.e., transport of lung mucus was increased during exposure to 0.4 ppm ozone and was coincident with impaired lung function; e.g., forced vital capacity and midmaximal flow rate fell by 12 and 16%, respectively, and forced expiratory volume at 1 s by 5%, of preexposure values). Regional analysis indicated that mucus flow from distal airways into central bronchi was significantly increased (P less than 0.025) by 0.2 ppm ozone. This peripheral effect, however, was buffered by only a marginal influence of 0.2 ppm ozone on larger bronchi, such that the resultant mucus transport for all airways of the lung in aggregate differed only slightly from FA exposures. These data may reflect differences in regional diffusion of ozone along the respiratory tract, rather than tissue sensitivity. In conclusion, mucociliary function of humans is acutely stimulated by ozone and may result from fluid additions to the mucus layer from mucosal and submucosal secretory cells and/or alteration of epithelial permeability.

  15. Analysis of the Relationship between Estradiol and Follicle-Stimulating Hormone Concentrations and Polymorphisms of Apolipoprotein E and LeptinGenes in Women Post-Menopause

    PubMed Central

    Rył, Aleksandra; Jasiewicz, Andrzej; Grzywacz, Anna; Adler, Grażyna; Skonieczna-Żydecka, Karolina; Rotter, Iwona; Sipak-Szmigiel, Olimpia; Rumianowski, Bogdan; Karakiewicz, Beata; Jurczak, Anna; Parczewski, Miłosz; Urbańska, Anna; Grabowska, Marta; Laszczyńska, Maria

    2016-01-01

    Background: Menopause is the permanent cessation of menstruation due to loss of ovarian follicular activity. A review of the available literature indicates that correlations between the changes that take place in a woman’s body after menopause and different genetic variants are still being sought. Methods: The study was conducted in 252 women who had completed physiological menopause. The women were divided into groups according to the time elapsed since menopause. The total concentrations of estradiol and follicle-stimulating hormone were determined by means of electrochemiluminescence. The apolipoprotein E (APOE) and lepitn (LEP) genotypes were determined by real-time PCR and polymerase chain reaction–restriction fragment length polymorphism, respectively. Results: We observed that people with the APOE3/E3 genotype entered menopause insignificantly later compared to other genotypes. Additionally, in the group of patients with the APOE3/E3 genotypes, differences in the E2 concentration were significantly related to the time since their last menstruation. There is no association found in the literature between these polymorphisms of the LEP gene and hormones. Conclusions: To date, attempts to formulate a model describing the association between E2 and FSH concentration with the polymorphisms of various genes of menopause in women have not been successful. This relationship is difficult to study because of the number of nongenetic factors. Environmental factors can explain variation in postmenopausal changes in hormone levels. PMID:27240396

  16. Cytoskeletal and mitochondrial properties of bovine oocytes obtained by Ovum Pick-Up: the effects of follicle stimulation and in vitro maturation.

    PubMed

    Somfai, Tamás; Matoba, Satoko; Inaba, Yasushi; Nakai, Michiko; Imai, Kei; Nagai, Takashi; Geshi, Masaya

    2015-12-01

    Follicle stimulation by follicular stimulating hormone (FSH) is known to improve developmental competence of bovine oocytes obtained by Ovum Pick-Up (OPU); however, the exact factors in oocytes affected by this treatment have remained unclear. We compared in vitro matured (IVM) oocytes obtained at the immature stage from cows by OPU either without or with stimulation with FSH (non-stimulated and stimulated OPU, respectively) to those obtained by superstimulation and in vivo maturation in terms of cytoskeleton morphology, mitochondrial distribution, intracellular adenosine triphosphate (ATP) content and H2 O2 levels at the metaphase-II stage and intracellular Ca(2+) levels after in vitro fertilization (IVF). Confocal microscopy after immunostaining revealed reduced size of the meiotic spindle, associated with increased tendencies of microfilament degradation and insufficient mitochondrial re-distribution in non-stimulated OPU-derived IVM oocytes compared with those collected by stimulated OPU, which in turn resembled in vivo matured oocytes. However, there was no difference in mitochondrial functions between oocytes obtained by stimulated or non-stimulated OPU in terms of ATP content, cytoplasmic H2 O2 levels, base Ca(2+) levels and the frequencies and amplitudes of Ca(2+) oscillations after IVF. Larger size of metaphase spindles in oocytes obtained by stimulated OPU may reflect and potentially contribute to their high developmental competence.

  17. Profile of follitropin alpha/lutropin alpha combination for the stimulation of follicular development in women with severe luteinizing hormone and follicle-stimulating hormone deficiency

    PubMed Central

    Rinaldi, Leonardo; Selman, Helmy

    2016-01-01

    A severe gonadotropin deficiency together with chronic estradiol deficiency leading to amenorrhea characterizes patients suffering from hypogonadotropic hypogonadism. Administration of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to these patients has been shown to be essential in achieving successful stimulation of follicular development, ovulation, and rescue of fertility. In recent years, the availability of both recombinant FSH (rFSH) and recombinant LH (rLH) has provided a new therapeutic option for the stimulation of follicular growth in hypopituitary–hypogonadotropic women (World Health Organization Group I). In this article, we review the data reported in the literature to highlight the role and the efficacy of using recombinant gonadotropins, rFSH and rLH, in the treatment of women with severe LH/FSH deficiency. Although the studies on this issue are limited and the experiences available in the literature are few due to the small number of such patients, it is clearly evident that the recombinant gonadotropins rFSH and rLH are efficient in treating patients affected by hypogonadotropic hypogonadism. The results observed in the studies reported in this review suggest that recombinant gonadotropins are able to induce proper follicular growth, oocyte maturation, and eventually pregnancy in this group of women. Moreover, the clinical use of recombinant gonadotropins in this type of patients has given more insight into some endocrinological aspects of ovarian function that have not yet been fully understood. PMID:27307766

  18. Haplotype Structure of FSHB, the Beta-Subunit Gene for Fertility-Associated Follicle-Stimulating Hormone: Possible Influence of Balancing Selection

    PubMed Central

    Grigorova, M; Rull, K; Laan, M

    2007-01-01

    Follicle-stimulating hormone (FSH) is essential for human reproduction. The unique functions of this hormone are provided by the FSH receptor-binding beta-subunit encoded by the FSHB gene. Resequencing and genotyping of FSHB in three European, two Asian and one African population, as well as in the great apes (chimpanzee, gorilla, orangutan), revealed low diversity and significant excess of polymorphisms with intermediate frequency alleles. Statistical tests for FSHB showed deviations from neutrality in all populations suggesting a possible effect of balancing selection. Two core haplotypes were identified (carried by 76-96.6% of each population's sample), the sequences of which are clearly separated from each other. As fertility most directly affects an organism's fitness, the carriers of these haplotypes have apparently had more success in human history to contribute to the next generation. There is a preliminary observation suggesting that the second most frequent FSHB haplotype may be associated with rapid conception success in females. Interestingly, the same haplotype is related to an ancestral FSHB variant shared with the ancestor of the great apes. The determination of the functional consequence of the two core FSHB variants may have implications for understanding and regulating human fertility, as well as in assisting infertility treatments. PMID:17227474

  19. Reduction of dehydroepiandrosterone sulfate synthesis in women with polycystic ovary syndrome by human menopausal gonadotropin but not purified urinary follicle stimulating hormone: a comparative pilot study.

    PubMed

    Turkmen, S; Backstrom, T; Idil, M

    2004-08-01

    We aimed to compare the effects of two different gonadotropins on steroid production in patients with polycystic ovary syndrome (PCOS). The study group comprised 20 infertile patients diagnosed with PCOS who were accepted into in vitro fertilization-embryo transfer and gamete intra-Fallopian transfer programs. Ten patients were consecutively allocated to a purified urinary follicle stimulating hormone (FSH) administration group while the other ten received human menopausal gonadotropin (hMG). All patients were pretreated with a gonadotropin releasing hormone-agonist. The patients were followed by daily vaginal ultrasonography until at least two follicles reached a diameter of 17 mm or an estradiol value of at least 100 pg/ml per follicle. To induce ovulation, human chorionic gonadotropin was given. On the 3rd day of menstruation, serum estradiol, luteinizing hormone (LH), FSH, total testosterone, androstenedione, dehydroepiandrosterone sulfate (DHEAS), insulin-like growth factor-I and insulin were measured. These same parameters were measured again on the day of follicle aspiration in both serum and follicular fluid. In both groups, the serum levels of estradiol and androstenedione were raised significantly, and on aspiration day the serum level of DHEAS was significantly raised in the FSH group but not in the hMG group. Our findings suggest that in PCOS patients exogenous hMG induces a different steroid synthesis pattern compared to pure FSH, hypothetically by reduction of the delta-5 steroid synthesis pathway in the adrenals and/or in the ovary. PMID:15624268

  20. Sexually dimorphic expression of gonadotropin subunits in the pituitary of protogynous honeycomb grouper (Epinephelus merra): evidence that follicle-stimulating hormone (FSH) induces gonadal sex change.

    PubMed

    Kobayashi, Yasuhisa; Alam, Mohammad Ashraful; Horiguchi, Ryo; Shimizu, Akio; Nakamura, Masaru

    2010-06-01

    Recent studies have suggested that the hypothalamic-pituitary-gonadal axis is involved in gonadal sex change in sex-changing teleosts. However, its underlying mechanism remains largely unknown. In this study, we focused on the distinct roles of two gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), in the protogynous hermaphrodite teleost, honeycomb grouper (Epinephelus merra). First, we investigated the expression pattern of mRNAs for GTH subunits (cga, fshb, and lhb) in the pituitaries from fish at the different sexual phases. Real-time RT-PCR analyses showed that fhsb mRNA levels in the female pituitary were low. However, fshb transcripts increased dramatically in association with testis development. In contrast, levels of cga and lhb mRNAs did not significantly vary during sex change. In addition, immunohistochemical observations of Fshb- and Lhb-producing cells in the pituitary, through the use of specific antibodies for detections of teleost GTH subunits, were consistent with sexually dimorphic expression of Fshb. In order to identify the role of GTH in gonad of honeycomb grouper, we treated females with bovine FSH (50 or 500 ng/fish) or LH (500 ng/fish) in vivo. After 3 wk, FSH treatments induced female-to-male sex change and up-regulated endogenous androgen levels and fshb transcripts, whereas LH treatment had no effect on sex change. These results suggest that FSH may trigger the female-to-male sex change in honeycomb grouper.

  1. Follicle-stimulating Hormone Activates Extracellular Signal-regulated Kinase but Not Extracellular Signal-regulated Kinase Kinase through a 100-kDa Phosphotyrosine Phosphatase*

    PubMed Central

    Cottom, Joshua; Salvador, Lisa M.; Maizels, Evelyn T.; Reierstad, Scott; Park, Youngkyu; Carr, Daniel W.; Davare, Monika A.; Hell, Johannes W.; Palmer, Stephen S.; Dent, Paul; Kawakatsu, Hisaaki; Ogata, Masato; Hunzicker-Dunn, Mary

    2006-01-01

    In this report we sought to elucidate the mechanism by which the follicle-stimulating hormone (FSH) receptor signals to promote activation of the p42/p44 extracellular signal-regulated protein kinases (ERKs) in granulosa cells. Results show that the ERK kinase MEK and upstream intermediates Raf-1, Ras, Src, and L-type Ca2+ channels are already partially activated in vehicle-treated cells and that FSH does not further activate them. This tonic stimulatory pathway appears to be restrained at the level of ERK by a 100-kDa phosphotyrosine phosphatase that associates with ERK in vehicle-treated cells and promotes dephosphorylation of its regulatory Tyr residue, resulting in ERK inactivation. FSH promotes the phosphorylation of this phosphotyrosine phosphatase and its dissociation from ERK, relieving ERK from inhibition and resulting in its activation by the tonic stimulatory pathway and consequent translocation to the nucleus. Consistent with this premise, FSH-stimulated ERK activation is inhibited by the cell-permeable protein kinase A-specific inhibitor peptide Myr-PKI as well as by inhibitors of MEK, Src, a Ca2+ channel blocker, and chelation of extracellular Ca2+. These results suggest that FSH stimulates ERK activity in immature granulosa cells by relieving an inhibition imposed by a 100-kDa phosphotyrosine phosphatase. PMID:12493768

  2. Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey.

    PubMed

    Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L

    2008-02-01

    The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.

  3. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy.

    PubMed

    Zbucka-Kretowska, Monika; Eljaszewicz, Andrzej; Lipinska, Danuta; Grubczak, Kamil; Rusak, Malgorzata; Mrugacz, Grzegorz; Dabrowska, Milena; Ratajczak, Mariusz Z; Moniuszko, Marcin

    2016-01-01

    Recently, murine hematopoietic progenitor stem cells (HSCs) and very small embryonic-like stem cells (VSELs) were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH). This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin(-)CD235a(-)CD45(-)CD133(+) cells), HSPCs (referred to as Lin(-)CD235a(-)CD45(+)CD133(+) cells), and endothelial progenitor cells (EPCs, identified as CD34(+)CD144(+), CD34(+)CD133(+), and CD34(+)CD309(+)CD133(+) cells) in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB) number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings. PMID:26635885

  4. Frequency-Dependent Regulation of Follicle-Stimulating Hormone β by Pulsatile Gonadotropin-Releasing Hormone Is Mediated by Functional Antagonism of bZIP Transcription Factors ▿

    PubMed Central

    Ciccone, Nick A.; Xu, Shuyun; Lacza, Charlemagne T.; Carroll, Rona S.; Kaiser, Ursula B.

    2010-01-01

    Oscillatory synthesis and secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), under the control of pulsatile hypothalamic gonadotropin-releasing hormone (GnRH), is essential for normal reproductive development and fertility. The molecular mechanisms by which various patterns of pulsatile GnRH regulate gonadotrope responsiveness remain poorly understood. In contrast to the α and LHβ subunit genes, FSHβ subunit transcription is preferentially stimulated at low rather than high frequencies of pulsatile GnRH. In this study, mutation of a cyclic AMP response element (CRE) within the FSHβ promoter resulted in the loss of preferential GnRH stimulation at low pulse frequencies. We hypothesized that high GnRH pulse frequencies might stimulate a transcriptional repressor(s) to attenuate the action of CRE binding protein (CREB) and show that inducible cAMP early repressor (ICER) fulfills such a role. ICER was not detected under basal conditions, but pulsatile GnRH stimulated ICER to a greater extent at high than at low pulse frequencies. ICER binds to the FSHβ CRE site to reduce CREB occupation and abrogates both maximal GnRH stimulation and GnRH pulse frequency-dependent effects on FSHβ transcription. These data suggest that ICER production antagonizes the stimulatory action of CREB to attenuate FSHβ transcription at high GnRH pulse frequencies, thereby playing a critical role in regulating cyclic reproductive function. PMID:20008557

  5. Reevaluation of the relative activities of the pituitary glycoprotein hormones (follicle-stimulating hormone, luteinizing hormone, and thyrotrophin) from the green sea turtle, Chelonia mydas.

    PubMed

    Licht, P; Papkoff, H

    1985-06-01

    The discovery that the follicle-stimulating hormone (FSH) previously prepared from the green sea turtle, Chelonia mydas, contained a major neurohypophysial contaminant prompted a repurification and characterization of the glycoprotein hormones in this turtle. Results reaffirmed the physicochemical distinctiveness of the three hormones. Minimal cross-contamination between hormones (less than 2%) was achieved by ion-exchange chromatography, subunit dissociation (of contaminating luteinizing hormone (LH], gel filtration, and immuno-affinity chromatography. New preparations of FSH and thyrotrophin (TSH) derived from adult pituitaries proved to be more potent than those described previously (the degree depending on the nature of the assay); FSH showed the expected increase in activity based on estimated contamination of previous preparations. LH was similar to original preparations except for enhanced activity in FSH radioreceptor assays. Binding assays (in heterologous and homologous systems) again demonstrated the general absence of an FSH-specific receptor in the reptilian (chelonian and squamate) testes. In an in vivo bioassay in the lizard Anolis, the turtle FSH was orders of magnitude more potent than LH in stimulating both testis growth and androgen secretion, but in vitro LH was considerably more potent than FSH in stimulating androgen secretion in squamate and chelonian testes. Thus, the possibility exists that androgen secretion in some chelonian systems may exhibit a high degree of LH specificity like that of mammals and birds.

  6. Interleukin 1. alpha. inhibits prostaglandin E sub 2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    SciTech Connect

    Rettori, V.; McCann, S.M. ); Gimeno, M.F. ); Karara, A. ); Gonzalez, M.C. )

    1991-04-01

    Interleukin 1{alpha} (IL-1{alpha}), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1{alpha} into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1{alpha} caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1{alpha} (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E{sub 2} into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1{alpha} reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1{alpha} suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E{sub 2}-mediated release of LHRH.

  7. CYP51A1 induced by growth differentiation factor 9 and follicle-stimulating hormone in granulosa cells is a possible predictor for unfertilization.

    PubMed

    Nakamura, Tomoko; Iwase, Akira; Bayasula, B; Nagatomo, Yoshinari; Kondo, Mika; Nakahara, Tatsuo; Takikawa, Sachiko; Goto, Maki; Kotani, Tomomi; Kiyono, Tohru; Kikkawa, Fumitaka

    2015-03-01

    Growth differentiation factor 9 (GDF9), an oocyte-secreted factor, whose receptors exist in granulosa cells, is involved in follicle progression. Therefore, GDF9 is considered to potentially mediate signals necessary for follicular growth. However, the effect of GDF9 on human granulosa cells is not fully understood. Human immortalized nonluteinized granulosa cell line (HGrC1) which we have previously reported was stimulated with GDF9 and/or follicle-stimulating hormone (FSH). Granulosa cells obtained from in vitro fertilization (IVF) patients were also evaluated with quantitative reverse transcription polymerase chain reaction (RT-PCR). Real-time RT-PCR showed that GDF9 increased messenger RNA (mRNA) levels of enzymes required for cholesterol biosynthesis, such as 3-hydroxy-3-methylglutanyl-CoA synthase 1 (HMGCS1), farnesyl-diphosphate farnesyltransferase 1, squalene epoxidase, lanosterol synthase, and cytochrome P450, family 51, subfamily A, polypeptide 1 (CYP51A1). A greater increase in mRNA levels of HMGCS1 and CYP51A1 was observed by combined treatment with GDF9 and FSH. Clinical samples showed a significant increase in CYP51A1 mRNA in the group of granulosa cells connected with unfertilized oocytes. Our results suggest that GDF9, possibly with FSH, may play significant roles in the regulation of cholesterol biosynthesis and the expression of CYP51A1 which might be a predictor for unfertilization.

  8. Predictors of In Vitro Fertilization Outcomes in Women with Highest Follicle-Stimulating Hormone Levels ≥12 IU/L: A Prospective Cohort Study

    PubMed Central

    Huang, Lina N.; Jun, Sunny H.; Drubach, Nathalie; Dahan, Michael H.

    2015-01-01

    Objective The purpose of this study is to evaluate factors predictive of outcomes in women with highest follicle-stimulating hormone (FSH) levels ≥12 IU/L on basal testing, undergoing in vitro fertilization (IVF). Methods A prospective cohort study was conducted at Stanford University Hospital in the Reproductive Endocrinology and Infertility Center for 12 months. Women age 21 to 43 undergoing IVF with highest FSH levels on baseline testing were included. Donor/Recipient and frozen embryo cycles were excluded from this study. Prognostic factors evaluated in association with clinical pregnancy rates were type of infertility diagnosis and IVF stimulation parameters. Results The current study found that factors associated with clinical pregnancy were: increased number of mature follicles on the day of triggering, number of oocytes retrieved, number of Metaphase II oocytes if intracytoplasmic sperm injection was done, and number of embryos developed 24 hours after retrieval. Conclusions Our findings suggest that it would be beneficial for women with increased FSH levels to attempt a cycle of IVF. Results of ovarian stimulation, especially embryo quantity appear to be the best predictors of IVF outcomes and those can only be obtained from a cycle of IVF. Therefore, increased basal FSH levels should not discourage women from attempting a cycle of IVF. PMID:25867175

  9. Suppression of male reproduction in rats after exposure to sodium fluoride during early stages of development

    NASA Astrophysics Data System (ADS)

    Reddy, P. Sreedhar; Pushpalatha, T.; Reddy, P. Sreenivasula

    2007-07-01

    Sodium fluoride (NaF), a widespread natural pollutant was given to sperm-positive female rats throughout gestation and lactation at a dose of 4.5 and 9.0 ppm via drinking water. The neonates were allowed to grow up to 90 days on tap water, and then sperm parameters, testicular steroidogenic marker enzyme activity levels, and circulatory hormone levels were studied. The sperm count, sperm motility, sperm coiling (hypoosmotic swelling test), and sperm viability were decreased in experimental rats when compared with controls. The activity levels of testicular steroidogenic marker enzymes (3β hydroxysteroid dehydrogenase and 17β hydroxysteroid dehydrogenase) were significantly decreased in experimental animals indicating decreased steroidogenesis. The serum testosterone, follicle stimulating hormone and luteinizing hormone levels were also significantly altered in experimental animals. Our data indicate that exposure to NaF during gestation and lactation affects male reproduction in adult rats by decreasing spermatogenesis and steroidogenesis.

  10. Efficacy of corifollitropin alfa followed by recombinant follicle-stimulating hormone in a gonadotropin-releasing hormone antagonist protocol for Korean women undergoing assisted reproduction

    PubMed Central

    Park, Hyo Young; Lee, Min Young; Jeong, Hyo Young; Rho, Yong Sook; Song, Sang Jin

    2015-01-01

    Objective To evaluate the effect of a gonadotropin-releasing hormone (GnRH) antagonist protocol using corifollitropin alfa in women undergoing assisted reproduction. Methods Six hundred and eighty-six in vitro fertilization-embryo transfer (IVF)/intracytoplasmic sperm injection (ICSI) cycles were analyzed. In 113 cycles, folliculogenesis was induced with corifollitropin alfa and recombinant follicle stimulating hormone (rFSH), and premature luteinizing hormone (LH) surges were prevented with a GnRH antagonist. In the control group (573 cycles), premature LH surges were prevented with GnRH agonist injection from the midluteal phase of the preceding cycle, and ovarian stimulation was started with rFSH. The treatment duration, quality of oocytes and embryos, number of embryo transfer (ET) cancelled cycles, risk of ovarian hyperstimulation syndrome (OHSS), and the chemical pregnancy rate were evaluated in the two ovarian stimulation protocols. Results There were no significant differences in age and infertility factors between treatment groups. The treatment duration was shorter in the corifollitropin alfa group than in the control group. Although not statistically significant, the mean numbers of matured (86.8% vs. 85.1%) and fertilized oocytes (84.2% vs. 83.1%), good embryos (62.4% vs. 60.3%), and chemical pregnancy rates (47.2% vs. 46.8%) were slightly higher in the corifollitropin alfa group than in the control group. In contrast, rates of ET cancelled cycles and the OHSS risk were slightly lower in the corifollitropin alfa group (6.2% and 2.7%) than in the control group (8.2% and 3.5%), although these differences were also not statistically significant. Conclusion Although no significant differences were observed, the use of corifollitropin alfa seems to offer some advantages to patients because of its short treatment duration, safety, lower ET cancellation rate and reduced risk of OHSS. PMID:26161335

  11. Inhibin B, follicle stimulating hormone, luteinizing hormone and testosterone during childhood and puberty in males: changes in serum concentrations in relation to age and stage of puberty.

    PubMed

    Chada, M; Průsa, R; Bronský, J; Kotaska, K; Sídlová, K; Pechová, M; Lisá, L

    2003-01-01

    Inhibin B is a gonadal dimeric polypeptide hormone that regulates synthesis and secretion of follicle stimulating hormone (FSH) in a negative feedback loop. The aim of the present study was to determine changes in serum inhibin B, gonadotropins and testosterone concentrations during childhood and puberty in males. We studied the relationship between circulating inhibin B, gonadotropins and testosterone in serum of healthy boys during the first two years of life and then in pubertal development. Using a recently developed two-side enzyme-linked immunosorbent assay (ELISA), inhibin B levels were measured in the serum of 78 healthy boys divided into eleven age groups from birth to the end of pubertal development. In addition, serum levels of gonadotropins and testosterone were measured. Serum inhibin B, gonadotropins and testosterone increased during the first months of postnatal life. A peak in serum inhibin B and gonadotropins concentrations was observed around 3-4 months of age. There was a significant positive correlation between serum inhibin B and gonadotropins and testosterone levels during the first 2 years of life. After this early increase, serum inhibin B, gonadotropins and testosterone levels decreased significantly and remained low until puberty followed by an increase beginning with the onset of puberty. Serum levels of inhibin B reached a peak at stage G3 of puberty. Around midpuberty, inhibin B lost its positive correlation with luteinizing hormone (LH) and testosterone from early puberty, and developed a strong negative correlation with FSH, which persisted into adulthood. We conclude that inhibin B plays a key role in the regulation of the hypothalamic-pituitary-gonadal hormonal axis during male childhood and pubertal development. Inhibin B is a direct marker of the presence and function of Sertoli cells and appears to reflect testicular function in boys.

  12. Relationships of serum thyroid hormones and follicle-stimulating hormone concentrations to Sertoli cell differentiation during the first wave of spermatogenesis in euthyroid ram lambs.

    PubMed

    Oluwole, Olutobi A; Bartlewski, Pawel M; Hahnel, Ann

    2013-06-01

    The main purpose of this study was to determine if temporal relationships exist between serum concentrations of free fractions of thyroxin (fT4) and triiodothyronine (fT3), follicle-stimulating hormone (FSH) levels, and Sertoli cell differentiation in euthyroid ram lamb testes. Additionally, testicular thyroid hormone (TH) receptors (TRs) were identified using immunohistochemistry and Western blot analysis. Weekly testicular biopsies and jugular blood samples were collected from 12 ram lambs over the 9 weeks of study. Hormone concentrations and the numbers of dividing Sertoli cells per seminiferous tubule (ST) area were analyzed relative to chronological age of animals and the two distinctive stages of Sertoli cell differentiation: (a) tight junction/ST lumen formation and (b) the onset of support mechanisms for the development of multiple germ cell types (presence of primary spermatocytes in >95% STs). Circulating FSH concentrations increased (p<0.05) immediately after first detection of ST lumen and reached a nadir (p<0.05) just prior to the end of the first wave of spermatogenesis. A decline in both fT4 and fT3 levels (p<0.05) occurred after Sertoli cells had formed the ST lumen and began supporting germ cell differentiation. There was a positive correlation between the numbers of proliferating Sertoli cells and serum fT4 (r=0.51, p<0.001) and fT3 (r=0.52, p<0.001) concentrations. TRs were expressed throughout the study period; however, prior to the formation of ST lumen, two isoforms were detected while only one TR isoform was present by the end of the first wave of spermatogenesis. Overall, the exit of Sertoli cells from the cell cycle that presages their final differentiation begins when THs and FSH levels are high, suggesting a permissive role of these hormones in the maturation of STs in prepubertal ram lambs.

  13. Identification of single nucleotide polymorphisms in the bovine follicle-stimulating hormone receptor and effects of genotypes on superovulatory response traits.

    PubMed

    Cory, Aron T; Price, Christopher A; Lefebvre, Rejean; Palin, Marie-France

    2013-04-01

    In dairy cows, there is evidence that failure to respond to superovulation protocols is a heritable trait. In women, genotyping for the p.N680S single nucleotide polymorphism (SNP) in the follicle-stimulating hormone receptor (FSHR) gene may help identify poor responders before ovarian stimulation is initiated. Our objectives were to identify SNPs in the coding region of the bovine FSHR gene and to investigate the effect of FSHR genotypes on superovulatory response in Holstein cattle. Sequencing of FSHR exons 1-10 revealed seven SNPs. Three were non-synonymous mutations (c.337C>G, c.871A>G and c.1973C>G). SNP c.337C>G encodes for a proline-to-alanine (p.Pro113Ala) amino acid replacement in the extracellular ligand-binding domain of the receptor. PCR-RFLP analyses showed that homozygous GG Holstein cows present a higher percentage of viable embryos, whereas GG and CG animals have less unfertilised oocytes. SNP c.871A>G results in an isoleucine-to-valine (p.Ile291Val) modification, and homozygous AA animals present lower embryo yield after superovulatory treatments. SNP c.1973C>G corresponds to a threonine-to-serine (p.The658Ser) modification in the intracellular carboxyl-terminal domain of the FSHR protein, and homozygous GG Holstein cows were associated with a lower embryo yield and a higher percentage of unfertilised oocytes. Our results suggest that specific alleles of the bovine FSHR gene are associated with variations in embryo yield and in the number of unfertilised oocytes.

  14. Follicle-stimulating hormone receptor (FSHR) in Chinese alligator, Alligator sinensis: molecular characterization, tissue distribution and mRNA expression changes during the female reproductive cycle.

    PubMed

    Zhang, Rui; Zhang, Shengzhou; Zhu, Xue; Zhou, Yongkang; Wu, Xiaobing

    2015-05-01

    The follicle-stimulating hormone (FSH) plays a central role in vertebrate reproduction, with the actions of FSH mediated by FSH receptors (FSHRs) on the granulosa cells of the ovary. The present study reports the cloning and characterization of FSHR in Chinese alligator, Alligator sinensis (caFSHR), and its tissue distribution and mRNA expression changes during the reproductive cycle. The mature protein of caFSHR displays typical features of the glycoprotein hormone receptor family, but also contains some remarkable differences when compared with other vertebrate FSHRs. The deduced amino acid sequence of the caFSHR shares identity of 85% with Chinese softshell turtle, 84-87% with birds, 77-78% with mammals, 67-73% with amphibians and 51-58% with fishes. Phylogenetic tree analysis of the FSHR amino acid sequence indicated that alligators cluster into the bird branch. Tissue expression analysis showed that caFSHR was not only expressed in the ovary, but also in the stomach, intestine, pancreas liver and oviduct at similar levels, while it was not detectable in heart, thymus or thyroid. Expression of caFSHR in the ovary is high in May (breeding prophase) and peaks in July during the breeding period, where it is maintained at high levels through September (breeding anaphase). Expression decreases significantly in November (hibernating period) and then remains relatively low from January to March (hibernating period). These temporal changes in FSHR expression suggest that it plays an important role in promoting ovarian development during the female reproductive cycle of Chinese alligator. PMID:25765682

  15. Multicenter, noninterventional, post-marketing surveillance study to evaluate dosing of recombinant human follicle-stimulating hormone using the redesigned follitropin alfa pen in women undergoing ovulation induction

    PubMed Central

    Nawroth, Frank; Tandler-Schneider, Andreas; Bilger, Wilma

    2015-01-01

    This prospective, noninterventional, post-marketing surveillance study evaluated doses of recombinant human follicle-stimulating hormone (r-hFSH) using the redesigned follitropin alfa pen in women who were anovulatory or oligomenorrheic and undergoing ovulation induction (OI) alone or OI with intrauterine insemination. The primary endpoint was the proportion of patients who achieved monofollicular or bifollicular development (defined as one or two follicles ≥15 mm). Secondary endpoints included characteristics of ovulation stimulation treatment, such as mean total and mean daily r-hFSH doses. Data were analyzed for 3,193 patients from 30 German fertility centers. The proportion of patients with monofollicular or bifollicular development was 71.1% (n=2,270 of a total of 3,193 patients; intent-to-treat population). The mean±standard deviation total and daily doses of r-hFSH were 696.9±542.5 IU and 61.7±29.4 IU, respectively. The three doses prescribed most frequently were: 37.5 IU (n=703 from N=3,189; 22.0%), 50.0 IU (n=1,056 from N=3,189; 33.1%), and 75.0 IU (n=738 from N=3,189; 23.1%) on the first day of stimulation; and 37.5 IU (n=465 from N=3,189; 14.6%), 50.0 IU (n=922 from N=3,189; 28.9%), and 75.0 IU (n=895 from N=3,189; 28.1%) on the last day of stimulation. This noninterventional, post-marketing surveillance study found that monofollicular or bifollicular development was achieved in 71% of patients studied and the small dose increment (12.5 IU) of the redesigned follitropin alfa pen allowed individualized treatment of women undergoing OI. PMID:25926755

  16. Desmocollin 3 mediates follicle stimulating hormone-induced ovarian epithelial cancer cell proliferation by activating the EGFR/Akt signaling pathway.

    PubMed

    Yang, Xiao; Wang, Jing; Li, Wen-Ping; Jin, Zhi-Jun; Liu, Xiao-Jun

    2015-01-01

    Follicle-stimulating hormone (FSH) is associated with the pathogenesis of ovarian cancer. We sought to explore whether desmocollin 3 (Dsc3) mediates FSH-induced ovarian epithelial cancer cell proliferation and whether the EGFR/Akt signaling pathway may be involved in this process. Dsc3 positivity in ovarian tissue specimens from 72 patients was assessed by immunohistochemistry. The positive expression rates of Dsc3 were similar in ovarian cancer tissues (24/31:77.4%) and borderline ovarian tumor tissues (18/22:81.8%) (P>0.05), but were significantly higher in these cancerous tissues than in benign ovarian cyst tissues (3/19:15.8%) (P<0.05). Consistently, the expression of Dsc3 in four out of five ovarian cancer cells (HO8910, Skov3ip, Skov and Hey cells, but not ES-2 and in borderline ovarian MCV152 tumor cells was higher than in the immortalized ovarian epithelial cell line, Moody. FSH up-regulated the expression of Dsc3 and EGFR in a dose- and time-dependent manner. Furthermore, a converse relationship between the expression of Dsc3, EFGR and PI3K/Akt signaling was elucidated using RNA interference and PI3K/Akt inhibitor in the absence and presence of FSH. A role for these proteins in FSH-induced cell proliferation was verified, highlighting their interdependence in mediating ovarian cancer cell function. These results suggest that Dsc3 can mediate FSH-induced ovarian cancer cell proliferation by activating the EGFR/Akt signaling pathway.

  17. Effect of sequential medium with fibroblast growth factor-10 and follicle stimulating hormone on in vitro development of goat preantral follicles.

    PubMed

    Almeida, A P; Magalhães-Padilha, D M; Araújo, V R; Costa, S L; Chaves, R N; Lopes, C A P; Donato, M A M; Peixoto, C A; Campello, C C; Junior, J Buratini; Figueiredo, J R

    2015-01-01

    A sequential medium with fibroblast growth factor-10 (FGF-10) and follicle stimulating hormone (FSH) was evaluated on the survival, ultrastructure, activation and growth rate of caprine preantral follicles submitted to long-term culture, aiming to establish an ideal in vitro culture system. Ovarian fragments were cultured for 16 days in α-MEM(+) alone or supplemented with FGF-10 and/or FSH added sequentially on different days of culture. Ovarian fragments were cultured during the first (days 0-8) and second (days 8-16) halves of the culture period, generating 10 treatments: α-MEM(+)/α-MEM(+) (cultured control), FSH/FSH, FSH/FGF-10, FSH/FSH+FGF-10, FGF-10/FGF-10, FGF-10/FSH, FGF-10/FSH+FGF-10, FSH+FGF-10/FSH+FGF-10, FSH+FGF-10/FSH and FSH+FGF-10/FGF-10. Follicle morphology, viability and ultrastructure were analyzed. The FSH/FGF-10 treatment showed a higher (P<0.05) percentage of normal follicles compared to all other treatments. In addition, follicles from the FSH/FGF-10 treatment maintained ultrastructural integrity after the culture period. After 16 days of culture, the FSH/FGF-10 and FSH/FSH treatments showed a higher percentage of activation compared to the cultured control (α-MEM(+)/α-MEM(+)). Moreover, the FSH/FGF-10 treatment promoted greater follicular and oocyte diameters compared to the fresh control. In conclusion, this study showed that a sequential medium with FSH followed by FGF-10 (FSH/FGF-10 and FSH/FSH) maintains follicular viability and ultrastructure and promotes transition from the primordial to primary stage (activation) and growth in goat preantral follicles cultured in vitro.

  18. Follicle-stimulating Hormone Regulates Pro-apoptotic Protein Bcl-2-interacting Mediator of Cell Death-Extra Long (BimEL)-induced Porcine Granulosa Cell Apoptosis*

    PubMed Central

    Wang, Xian-Long; Wu, Yi; Tan, Lu-Bin; Tian, Zhen; Liu, Jing-Hao; Zhu, De-Sheng; Zeng, Shen-Ming

    2012-01-01

    The pro-apoptotic protein Bim (B-cell lymphoma-2 (Bcl-2)-interacting modulator of cell death) has recently been identified and shown to promote cell death in response to several stimuli. In this report, we investigated the role of Bim in porcine follicular atresia. Initially, Bim cDNA was cloned and characterized from porcine ovarian tissue. Porcine Bim had three alternative splicing variants (Bim-extra long, Bim-long, and Bim-short), all containing the consensus Bcl-2 homology 3 domain. We then found the Bim-extra long (BimEL) protein, the most abundant isoform of Bim, was strongly expressed and co-localized with apoptotic (TUNEL-positive) granulosa cells from porcine atretic follicles. Furthermore, overexpression of BimEL triggered apoptosis in granulosa cells. In primary granulosa cell cultures under basal conditions, we observed that BimEL expression was dampened by treatment with follicle-stimulating hormone (FSH). The role of the PI3K/Akt pathway in the regulation of repression was clarified by the use of the PI3K inhibitor, LY294002, and by transfection with Akt siRNA. Forkhead Box Protein O3a (FoxO3a), a well defined transcriptional activator of Bim, was phosphorylated at Ser-253 and inactivated after FSH stimulation. Also, FSH abolished FoxO3a nuclear accumulation in response to LY294002. Finally, chromatin immunoprecipitation assays demonstrated that FoxO3a directly bound and activated the bim promoter. Taken together, we conclude that BimEL induces porcine granulosa cell apoptosis during follicular atresia, and its expression is regulated by FSH via the PI3K/Akt/FoxO3a pathway. PMID:22235114

  19. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine

    PubMed Central

    Xu, Cheng; Li, Ying-Chun; Yang, Hua; Long, Yan; Chen, Min-Jian; Qin, Yu-Feng; Xia, Yan-Kai; Song, Ling; Gu, Ai-Hua; Wang, Xin-Ru

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa) as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+)-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star™ (DE3) and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks) after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels. PMID:24713829

  20. Endocrine alterations and signaling changes associated with declining ovarian function and advanced biological aging in follicle-stimulating hormone receptor haploinsufficient mice.

    PubMed

    Danilovich, Natalia; Javeshghani, Danesh; Xing, Weirong; Sairam, M Ram

    2002-08-01

    Reproductive aging in female mammals is characterized by a progressive decline in fertility due to loss of follicles and reduced ovarian steroidogenesis. In this study we examined some of the endocrine and signaling parameters that might contribute to a decrease in ovulation and reproductive performance of mice with haploinsufficiency of the FSH receptor (FSH-R). For this purpose we compared ovarian changes and hormone levels in FSH-R heterozygous (+/-) and wild-type mice of different ages (3, 7, and 12 mo). Hormone-induced ovulations in immature and 3-mo-old +/- mice were consistently lower. The number of corpora lutea (CL) were lower at 3 and 7 mo, and none were present in 1-yr-old +/- females. The plasma steroid and gonadotropin levels exhibited changes associated with typical ovarian aging. Plasma FSH and LH levels were higher in 7-mo-old +/- mice, but FSH levels continued to rise in both genotypes by 1 yr. Serum estradiol and progesterone were lower in +/- mice at all ages, and testosterone was several-fold higher in 7-mo-old and 1-yr-old +/- mice. Inhibin alpha (Western blot) appeared to be lower in +/- ovaries at all ages. FSH-R (FSH* binding) declined steadily from 3 mo and reaching the lowest point at 1 yr. LH receptor (LH* binding) was high in the 1-yr-old ovary, and expression was localized in the stroma and interstitial cells. Our findings demonstrate that haploinsufficiency of the FSH-R gene could cause premature exhaustion of the gonadal reserves previously noted in these mice. This is accompanied by age-related changes in the hypothalamic-pituitary axis. As these features in our FSH-R +/- mice resemble reproductive failure occurring in middle-age women, further studies in this model might provide useful insights into the mechanisms underlying ovarian aging.

  1. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER BRAINSTEM AUDITORY EVOKED RESPONSE (BAERS) IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...

  2. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  3. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    EPA Science Inventory

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  4. Follicle Stimulating Hormone and Anti-Müllerian Hormone per Oocyte in Predicting in vitro Fertilization Pregnancy in High Responders: A Cohort Study

    PubMed Central

    Weghofer, Andrea; Kim, Ann; Barad, David H.; Gleicher, Norbert

    2012-01-01

    Background Follicle stimulating hormone (FSH) and Anti-Müllerian hormone (AMH) are utilized to differentiate between good and poor response to controlled ovarian hyperstimulation. Their respective roles in defining functional ovarian reserve remain, however, to be elucidated. To better understand those we investigated AMH and FSH per oocyte retrieved (AMHo and FSHo). Methodology/Principal Findings Three-hundred and ninety-six women, undergoing first in vitro fertilization cycles, were retrospectively evaluated. Women with oocyte yields >75th percentile for their age group were identified as high responders. In a series of logistic regression analyses, AMHo and FSHo levels were then evaluated as predictive factors for pregnancy potential in high responders. Patients presented with a mean age of 38.0±5.0 years, mean baseline FSH of 11.8±8.7 mIU/mL and mean AMH of 1.6±2.1 ng/mL. Those 88 women, who qualified as high responders, showed mean FSH of 9.7±6.5 mIU/mL, AMH of 3.1±3.1 ng/mL and oocyte yields of 15.8±7.1. Baseline FSH and AMH did not predict pregnancy in high responders. However, a statistically significant association between FSHo and pregnancy was observed in high responders, both after univariate regression (p = 0.02) and when adjusted for age, percentage of usable embryos, and number of embryos transferred (p = 0.03). Rate of useable embryos also significantly affected pregnancy outcome independently of FSHo (p = 0.01). AMHo was also associated with clinical pregnancy chances in high responders (p = 0.03) and remained significant when adjusted for usable embryos and number of embryos transferred (p = 0.04). Conclusions AMHo and FSHo are predictive of pregnancy potential in high responders, but likely reflect different responsibilities in recruitment and maturation of growing follicle cohorts. PMID:22545082

  5. Effectiveness of a recombinant human follicle stimulating hormone on the ovarian follicles, peripheral progesterone, estradiol-17β, and pregnancy rate of dairy cows

    PubMed Central

    Ali, Mohamed; Moustafa M., Zeitoun

    2016-01-01

    Aims: This study aimed at elucidating the effects of recombinant human follicle stimulating hormone (r-hFSH) on the ovarian follicular dynamics, progesterone, estradiol-17β profiles, and pregnancy of dairy cows. Materials and Methods: Three groups (G, n=5 cows) of multiparous dairy cows were used. G1 (C) control cows were given controlled internal drug release (CIDR) and prostaglandin F2α; G2 (L) cows were given low dose (525 IU and G3 (H) cows were given high dose (1800 IU) of r-hFSH on twice daily basis at the last 3 days before CIDR removal. All cows were ultrasonically scanned for follicular growth and dynamics, and blood samples were collected every other day for two consecutive estrus cycles for the determination of estradiol-17β and progesterone. Results: Estrus was observed in all C and L but not in H cows. Dominant follicle was bigger in L compared to C and H cows. Dominant follicle in C (16.00±2.5 mm) and L cows (17.40±2.3 mm) disappeared at 72 h after CIDR removal. However, in H cows, no ovulation has occurred during 7 days post-CIDR removal. Progesterone was not different (p>0.10) among groups, whereas estradiol-17β revealed significant (p<0.01) reduction in H (15.96±2.5 pg/ml) cows compared to C (112.26±26.1 pg/ml) and L (97.49±15.9 pg/ml) cows. Pregnancy rate was higher in L cows (60%) compared with C cows (20%). However, H cows were not artificially inseminated due to non-ovulation. Only a cow of C group has calved one calf, however, 2 of the L cows gave birth of twins and a cow gave single calf. Conclusion: Administration of a low dose (525 IU) of r-hFSH resulted in an optimal size of dominant follicle, normal values of progesterone and estradiol-17β, and 40% twinning rate, howeverusing 1800 IU of r-hFSH, have adverse effects on ovarian follicular dynamics and hormonal profiles with non-pregnancy of dairy cows raised under hot climate. PMID:27536029

  6. Inhibin B, follicle stimulating hormone, luteinizing hormone, and estradiol and their relationship to the regulation of follicle development in girls during childhood and puberty.

    PubMed

    Chada, M; Průsa, R; Bronský, J; Pechová, M; Kotaska, K; Lisá, L

    2003-01-01

    Inhibin B, produced by granulosa cells in the ovary, is a heterodimeric glycoprotein suppressing synthesis and secretion of the follicle stimulating hormone (FSH). The aim of the present study was to determine hormone profiles of inhibin B, FSH, luteinizing hormone (LH), and estradiol in girls during childhood and puberty and to evaluate whether inhibin B is a marker of follicle development. We examined the correlation between inhibin B and gonadotropins and estradiol during the first two years and across the pubertal development. Using a specific two-side enzyme-linked immunosorbent assay (ELISA), inhibin B levels were measured in the serum of 53 healthy girls divided into 8 groups according to age. In addition, serum FSH, LH, and estradiol were measured by chemiluminescent immunoassay in all serum samples. A rise in serum levels of inhibin B (55.2+/-7.3 ng/l, mean +/- S.E.M.) and FSH (1.78+/-0.26 UI/l), concomitant with a moderate increment of serum LH (0.36+/-0.09 UI/l) and estradiol (45.8+/-12.2 pmol/l) concentrations was observed during the first three months of life and declined to prepubertal concentrations thereafter. A strong positive correlation between inhibin B and FSH (r = 0.48, p<0.05), LH (r = 0.68, p<0.001) and estradiol (r = 0.59, p<0.01) was demonstrated during the first 2 years of life. A rise in serum levels of inhibin B, FSH, LH, and estradiol was found throughout puberty. Inhibin B had a strong positive correlation with FSH (stage I of puberty: r = 0.64, p<0.05; stage II of puberty: r = 0.86, p<0.01), LH (I: r = 0.61, p<0.05; II: r = 0.67, p<0.05), and estradiol (II: r = 0.62, p<0.05) in early puberty. From pubertal stage II, inhibin B lost this relationship to gonadotropins and estradiol. Serum inhibin B and FSH levels increased significantly during pubertal development, with the highest peak found in stage III of puberty (133.5+/-14.3 ng/l), and decreased thereafter. In conclusion, inhibin B is produced in a specific pattern in response to

  7. The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells

    PubMed Central

    2014-01-01

    Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and

  8. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    SciTech Connect

    Lantz, R. Clark Chau, Binh; Sarihan, Priyanka; Witten, Mark L.; Pivniouk, Vadim I.; Chen, Guan Jie

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

  9. Developmental timing of perchlorate exposure alters threespine stickleback dermal bone

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Adequate levels of thyroid hormone are critical during development and metamorphosis, and for maintaining metabolic homeostasis. Perchlorate, a common contaminant of water sources, inhibits thyroid function in vertebrates. We utilized threespine stickleback (Gasterosteus aculeatus) to determine if timing of perchlorate exposure during development impacts adult dermal skeletal phenotypes. Fish were exposed to water contaminated with perchlorate (30 mg/L or 100 mg/L) beginning at 0, 3, 7, 14, 21, 42, 154 or 305 days post fertilization until sexual maturity at one year of age. A reciprocal treatment moved stickleback from contaminated to clean water on the same schedule providing for different stages of initial exposure and different treatment durations. Perchlorate exposure caused concentration-dependent significant differences in growth for some bony traits. Continuous exposure initiated within the first 21 days post fertilization had the greatest effects on skeletal traits. Exposure to perchlorate at this early stage can result in small traits or abnormal skeletal morphology of adult fish which could affect predator avoidance and survival. PMID:25753171

  10. Cerebellar morphological alterations in rats induced by prenatal ozone exposure.

    PubMed

    Rivas-Manzano, P; Paz, C

    1999-11-26

    The present study analyzes the morphological aspects of the cerebellum of rats with prenatal exposure to ozone. A double blind histological and planimetric analysis was performed studying sagittal sections of the anterior cerebellar lobe at postnatal days 0, 12 and 60. Ozone exposed rats showed cerebellar necrotic signs at age 0, diminished area of the molecular layer with Purkinje cells with pale nucleoli and perinucleolar bodies at age 12, and Purkinje cells showing nuclei with unusual clumps of chromatin in the periphery at age 60. We conclude that exposure to high concentrations of ozone during gestation induces permanent cerebellar damage in rats.

  11. Alteration of mammary gland development and gene expression by in utero exposure to arsenic

    PubMed Central

    Parodi, Daniela A.; Greenfield, Morgan; Evans, Claire; Chichura, Anna; Alpaugh, Alexandra; Williams, James; Martin, Mary Beth

    2015-01-01

    Early life exposure to estrogens and estrogen like contaminants in the environment are thought to contribute to the early onset of puberty and consequently increase the risk of developing breast cancer in the exposed female. The results of this study show that in utero exposure to the metalloestrogen arsenite altered mammary gland development prior to its effect on puberty onset. In the prepubertal gland, in utero exposure resulted in an increase in the number of mammosphere-forming cells and an increase in branching, epithelial cells, and density. In the postpubertal gland, in utero exposure resulted in the overexpression of estrogen receptor-alpha (ERα) that was due to the increased and altered response of the ERα transcripts derived from exons O and OT to estradiol. These results suggest that, in addition to advancing puberty onset, in utero exposure to arsenite alters the pre- and postpubertal development of the mammary gland and possibly, the risk of developing breast cancer. PMID:25543096

  12. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  13. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  14. EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.

    EPA Science Inventory

    Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication

    Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.

    Exposure to ambient air pollution particulate matter (...

  15. ACUTE EXPOSURE TO MOLINATE ALTERS NEUROENDOCRINE CONTROL OF OVULATION IN THE RAT

    EPA Science Inventory

    Molinate, a thiocarbamate herbicide, has been shown previously to impair reproductive capability in the male rat. In a two-generation study, molinate exposure to female rats resulted in altered pregnancy outcome. However, published data is lacking on the effects of acute exposure...

  16. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  17. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability.

  18. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. PMID:26493930

  19. Dietary exposure to chlorpyrifos alters core temperature in the rat.

    PubMed

    Gordon, Christopher J; Padnos, Beth K

    2002-08-15

    Administration of the organophosphate pesticide chlorpyrifos (CHP) to the male rat at a dose of 25-80 mg/kg (p.o.) results in hypothermia followed by a delayed fever lasting for several days. These are high doses of CHP that cause marked cholinergic stimulation. It is important to understand if chronic exposure to CHP would evoke changes in thermoregulation that are comparable to the acute administration. Male rats of the Long-Evans strain were subjected to dietary treatment of 0, 1, or 5 mg/(kg day) CHP for 6 months. A limited amount of food was given per day to maintain body weight at 350 g. The constant body weight allowed for the regulation of a consistent dosage of CHP per kg body weight throughout the feeding period. Core temperature (T(a)) and motor activity (MA) were monitored by radio telemetric transmitters implanted in the abdominal cavity. After 5 months of treatment, T(c) and MA were monitored in undisturbed animals for 96 h. CHP at 5 mg/(kg day) led to a slight elevation in T(c) without affecting MA. The rats were then administered a challenge dose of CHP (30 mg/kg, p.o.) while T(c) and MA were monitored. Rats fed the 1 and 5 mg/kg CHP diets showed a significantly greater hypothermic response and reduction in MA following CHP challenge compared to controls. The restricted feeding schedule resulted in marked changes in the pattern of the circadian rhythm. Therefore, in another study, rats were treated ad libitum for 17 days with a CHP diet that resulted in a dosage of 7 mg CHP/(mg day). There was a significant increase in T(c) during the daytime but not during the night throughout most of the treatment period. Overall, chronic CHP was associated with a slight but significant elevation in T(c) and greater hypothermic response to a CHP challenge. This latter finding was unexpected and suggests that chronic exposure to CHP sensitizes the rat's thermoregulatory response to acute CHP exposure. PMID:12135625

  20. Exposure to mercury alters early activation events in fish leukocytes.

    PubMed Central

    MacDougal, K C; Johnson, M D; Burnett, K G

    1996-01-01

    Although fish in natural populations may carry high body burdens of both organic and inorganic mercury, the effects of this divalent metal on such lower vertebrates is poorly understood. In this report, inorganic mercury in the form of mercuric chloride (HgCl2) is shown to produce both high-dose inhibition and low-dose activation of leukocytes in a marine teleost fish, Sciaenops ocellatus. Concentrations of inorganic mercury > or = 10 microM suppressed DNA synthesis and induced rapid influx of radiolabeled calcium, as well as tyrosine phosphorylation of numerous cellular proteins. Lower concentrations (0.1-1 microM) of HgCl2 that activated cell growth also induced a slow sustained rise in intracellular calcium in cells loaded with the calcium indicator dye fura-2, but did not produce detectable tyrosine phosphorylation of leukocyte proteins. These studies support the possibility that subtoxic doses of HgCl2 may inappropriately activate teleost leukocytes, potentially altering the processes that regulate the magnitude and specificity of the fish immune response to environmental pathogens. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. PMID:8930553

  1. Cocaine exposure alters dopaminergic modulation of prefronto-accumbens transmission.

    PubMed

    Wang, Xiusong; Liu, Lei; Adams, Wendy; Li, Shouxin; Zhang, Qian; Li, Bingjin; Wang, Min; Cui, Ranji

    2015-06-01

    In the nucleus accumbens (NAc), dopamine transmission modulates glutamatergic input from the prefrontal cortex (PFC). This neuromodulatory action of dopamine can be disrupted by repeated exposure to psychostimulants such as cocaine. However, it is unclear whether this modulation depends on the precise timing of transmission at the same medium spiny neurons (MSNs) and if so, then whether this timing related modulation is also influenced by cocaine experience. Here, combining cocaine self-administration and in vivo extracellular recordings in anesthetized rats, we show that dopamine efflux in the NAc evoked by electrically stimulating the ventral tegmental area (VTA) exerted timing-dependent regulation of the excitatory accumbens response to stimulation of the medial prefrontal cortex (mPFC), and also that this modulation was blunted following prolonged abstinence from cocaine self-administration. These data indicate that dopaminergic timing-dependent dysregulation of mPFC-NAc glutamatergic transmission is implicated in cocaine addiction and might contribute to vulnerability to drug relapse after prolonged abstinence.

  2. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    PubMed

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  3. Alterations in adult behavioral responses to cocaine and dopamine transporters following juvenile exposure to methamphetamine.

    PubMed

    McFadden, Lisa; Yamamoto, Bryan K; Matuszewich, Leslie

    2011-01-20

    The present experiment assessed whether preadolescent exposure to methamphetamine would alter adult behavioral responses to cocaine and dopamine transporter immunoreactivity in the striatum of male and female rats. Juvenile rats were injected once daily with 0 or 2 mg/kg methamphetamine from postnatal days 21 to 35 and tested in adulthood. Male rats, but not female rats, exposed to methamphetamine showed an increase in responsiveness to cocaine in the open field and an increase in dopamine transporter immunoreactivity in the striatum. These findings suggest that early exposure to methamphetamine can lead to sex specific altered responses to psychostimulants in adulthood, which may contribute to later vulnerability to drug use.

  4. PRENATAL EXPOSURE TO ENVIRONMENTAL TOBACCO SMOKE ALTERS GENE EXPRESSION IN THE DEVELOPING MURINE HIPPOCAMPUS

    PubMed Central

    Mukhopadhyay, Partha; Horn, Kristin H.; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Little is known about the effects of passive smoke exposures on the developing brain. Objective The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. Methods A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for six hours/day from gestational days 6–17 (gd 6–17) [for microarray] or gd 6–18.5 [for fetal phenotyping]. Results There were no significant effects of ETS exposure on fetal phenotype. However, 61 “expressed” genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5 fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were downregulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. Conclusions Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the “early” period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function. PMID:19969065

  5. Alterations in lung clearance mechanisms due to single and repeated nitrogen dioxide exposures in the rabbit

    SciTech Connect

    Vollmuth, T.A.

    1986-01-01

    Tracheobronchial mucociliary clearance was assessed following single, two-hour exposures to either 0.3, 1.0, 3.0, or 10.0 ppm NO/sub 2/, or 14 daily two hour exposures to 0.3, 1.0, 3.0 ppm NO/sub 2/. No significant changes in the mean residence time of tracer particles in the tracheobronchial region were produced under any exposure condition, indicating no effect upon mucociliary clearance. Macrophage functional properties were examined in vitro at select times following single, two hour in vivo exposures to 1.0 and 10.0 ppm NO/sub 2/. Macrophage number and viability were not affected; however, significant dose-related differences in phagocytosis and mobility were observed. These changes were associated with altered in vivo alveolar clearance patterns. Additional studies examined the effects of in vitro exposure to nitrite and hydrogen ion, two known NO/sub 2/ reaction products in the lung, on macrophage phagocytosis. While hydrogen ion had no effect at the levels used, nitrate was shown to enhance phagocytosis. These results demonstrate that alveolar clearance and macrophage function are altered by short-term NO/sub 2/ exposure at realistic, environmental levels. These data also provide insight into the mechanisms of NO/sub 2/-induced alteration in lung clearance pathways.

  6. Alterations in Cochlear Function after Exposure to Short Term Broad Band Noise Assessed by Otoacoustic Emissions

    PubMed Central

    Reddy, Prasen; M M, Kavitha; Khavasi, Prabhu; Doddamani, S S

    2014-01-01

    Background: Sudden or chronic exposure to sound alters the functioning of cochlea. This results in temporary or permanent alteration of functioning of cochlear cells. Alteration of functioning of outer hair cells (OHC) of cochlea following exposure to noise can be assessed by measurement of transient otoacoustic emissions (TEOAE). Such a measurement is of great clinical importance in early detection of the damage to the OHC. Aim: In this study we aim to study effect of noise on outer hair cell function by studying the changes in TEOAE’s amplitude following exposure to short term broad band noise in healthy volunteers. Materials and Methods: Twenty volunteers’ ten males and ten females participated in the study. They underwent pure tone and impedance audiometry to rule out ear pathology. Then pre-exposure TEOAE’s were recorded. After that they were exposed to broad band noise for two minutes. After gap of five minutes again TEOAE’s were recorded. Pre and post exposure amplitude of TEOAE’s was analysed statistically.s Results: There was statistically significant difference between pre exposure and post-exposure amplitude of TEOAE’s. Pre and post exposure values for A & B amplitudes showed p-value of 0.0001 whereas values for A-B amplitude showed p-value of 0.0001. Conclusion: Measurement of TEOAE’s can detect early changes in the functioning of outer hair cells which cannot be picked by routine pure tone audiometry. Thus they can be used in assessing early changes in cochlear function following exposure to noise in individuals exposed to sudden noise or working in noisy environments. Thus preventive methods to reduce the noise induced hearing loss in such individuals can be implemented. PMID:25386468

  7. Regionally specific alterations in the low-affinity GABAA receptor following perinatal exposure to diazepam.

    PubMed

    Gruen, R J; Elsworth, J D; Roth, R H

    1990-04-23

    Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period.

  8. Regionally specific alterations in the low-affinity GABAA receptor following perinatal exposure to diazepam.

    PubMed

    Gruen, R J; Elsworth, J D; Roth, R H

    1990-04-23

    Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period. PMID:2162709

  9. FINE AMBIENT AIR PARTICULAR MATTER EXPOSURE INDUCES MOLECULAR ALTERATIONS INDICATIVE OF CARDIOVASCULAR DISEASE PROGRESSION IN ATHEROSCLEROTIC SUSCEPTIBLE MICE

    EPA Science Inventory

    Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...

  10. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  11. PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS

    EPA Science Inventory

    PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS. R A Matulka1, AA Rooney3, W Williams2, CB Copeland2, and R J Smialowicz2. 1Curriculum in Toxicology, UNC, Chapel Hill, NC, USA; 2US EPA, ITB, ETD, NHEERL, RT...

  12. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    EPA Science Inventory

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  13. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    EPA Science Inventory

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  14. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    EPA Science Inventory

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  15. Pulmonary biochemical and histological alterations after repeated low-level blast overpressure exposures.

    PubMed

    Elsayed, Nabil M; Gorbunov, Nikolai V

    2007-01-01

    Blast overpressure (BOP), also known as high energy impulse noise, is a damaging outcome of explosive detonations and firing of weapons. Exposure to BOP shock waves alone results in injury predominantly to the hollow organ systems such as auditory, respiratory, and gastrointestinal systems. In recent years, the hazards of BOP that once were confined to military and professional settings have become a global societal problem as terrorist bombings and armed conflicts involving both military and civilian populations increased significantly. We have previously investigated the effects of single BOP exposures at different peak pressures. In this study, we examined the effects of repeated exposure to a low-level BOP and whether the number of exposures or time after exposure would alter the injury outcome. We exposed deeply anesthetized rats to simulated BOP at 62 +/- 2 kPa peak pressure. The lungs were examined immediately after one exposure (1 + 0), or 1 h after one (1 + 1), two (2 + 1), or three (3 + 1) consecutive exposures at 3-min interval. In one group of animals, we examined the effects of repeated exposure on lung weight, methemoglobin, transferrin, antioxidants, and lipid peroxidation. In a second group, the lungs were fixed inflated at 25 cm water, sectioned, and examined histologically after one to three repeated exposures, or after one exposure at 1, 6, and 24 h. We found that single BOP exposure causes notable changes after 1 h, and that repeating BOP exposure did not add markedly to the effect of the first one. However, the effects increased significantly with time from 1 to 24 h. These observations have biological and occupational implications, and emphasize the need for protection from low-level BOP, and for prompt treatment within the first hour following BOP exposure. PMID:17060374

  16. Effects of perinatal bisphenol A exposure during early development on radial arm maze behavior in adult male and female rats

    PubMed Central

    Sadowski, Renee N.; Park, Pul; Neese, Steven L.; Ferguson, Duncan C.; Schantz, Susan L.; Juraska, Janice M.

    2014-01-01

    Previous work has shown that exposure to bisphenol A (BPA) can affect anxiety behavior. However, no studies have examined whether administration of this endocrine disruptor during the perinatal period has the potential to induce alterations in cognitive behavior in both adult males and females as assessed in an appetitive task. The goal of the current study was to determine whether exposure to different doses of BPA during early development alters performance on the 17-arm radial maze in adulthood in Long-Evans rats. Oral administration of corn oil (vehicle), 4 μg/kg, 40 μg/kg, or 400 μg/kg BPA to the dams occurred daily throughout pregnancy, and the pups received direct oral administration of BPA between postnatal days 1-9. Blood was collected from offspring at weaning age to determine levels of several hormones (thyroxine, thyroid stimulating hormone, follicle stimulating hormone, luteinizing hormone). One male and one female from each litter were evaluated on the 17-arm radial maze, a working/reference memory task, in adulthood. Results indicated that after exposure to BPA at both 4 and 400 μg/kg/day, rats of both sexes had decreased levels of FSH at weaning. There were no significant effects of BPA on performance on the radial arm maze in males or females. In conclusion, exposure to BPA during early development had modest effects on circulating hormones but did not affect a spatial learning and memory task. PMID:24440629

  17. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  18. Associations between Bisphenol A Exposure and Reproductive Hormones among Female Workers.

    PubMed

    Miao, Maohua; Yuan, Wei; Yang, Fen; Liang, Hong; Zhou, Zhijun; Li, Runsheng; Gao, Ersheng; Li, De-Kun

    2015-10-22

    The associations between Bisphenol-A (BPA) exposure and reproductive hormone levels among women are unclear. A cross-sectional study was conducted among female workers from BPA-exposed and unexposed factories in China. Women's blood samples were collected for assay of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-Estradiol (E2), prolactin (PRL), and progesterone (PROG). Their urine samples were collected for BPA measurement. In the exposed group, time weighted average exposure to BPA for an 8-h shift (TWA8), a measure incorporating historic exposure level, was generated based on personal air sampling. Multiple linear regression analyses were used to examine linear associations between urine BPA concentration and reproductive hormones after controlling for potential confounders. A total of 106 exposed and 250 unexposed female workers were included in this study. A significant positive association between increased urine BPA concentration and higher PRL and PROG levels were observed. Similar associations were observed after the analysis was carried out separately among the exposed and unexposed workers. In addition, a positive association between urine BPA and E2 was observed among exposed workers with borderline significance, while a statistically significant inverse association between urine BPA and FSH was observed among unexposed group. The results suggest that BPA exposure may lead to alterations in female reproductive hormone levels.

  19. Associations between Bisphenol A Exposure and Reproductive Hormones among Female Workers.

    PubMed

    Miao, Maohua; Yuan, Wei; Yang, Fen; Liang, Hong; Zhou, Zhijun; Li, Runsheng; Gao, Ersheng; Li, De-Kun

    2015-10-01

    The associations between Bisphenol-A (BPA) exposure and reproductive hormone levels among women are unclear. A cross-sectional study was conducted among female workers from BPA-exposed and unexposed factories in China. Women's blood samples were collected for assay of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-Estradiol (E2), prolactin (PRL), and progesterone (PROG). Their urine samples were collected for BPA measurement. In the exposed group, time weighted average exposure to BPA for an 8-h shift (TWA8), a measure incorporating historic exposure level, was generated based on personal air sampling. Multiple linear regression analyses were used to examine linear associations between urine BPA concentration and reproductive hormones after controlling for potential confounders. A total of 106 exposed and 250 unexposed female workers were included in this study. A significant positive association between increased urine BPA concentration and higher PRL and PROG levels were observed. Similar associations were observed after the analysis was carried out separately among the exposed and unexposed workers. In addition, a positive association between urine BPA and E2 was observed among exposed workers with borderline significance, while a statistically significant inverse association between urine BPA and FSH was observed among unexposed group. The results suggest that BPA exposure may lead to alterations in female reproductive hormone levels. PMID:26506366

  20. Associations between Bisphenol A Exposure and Reproductive Hormones among Female Workers

    PubMed Central

    Miao, Maohua; Yuan, Wei; Yang, Fen; Liang, Hong; Zhou, Zhijun; Li, Runsheng; Gao, Ersheng; Li, De-Kun

    2015-01-01

    The associations between Bisphenol-A (BPA) exposure and reproductive hormone levels among women are unclear. A cross-sectional study was conducted among female workers from BPA-exposed and unexposed factories in China. Women’s blood samples were collected for assay of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-Estradiol (E2), prolactin (PRL), and progesterone (PROG). Their urine samples were collected for BPA measurement. In the exposed group, time weighted average exposure to BPA for an 8-h shift (TWA8), a measure incorporating historic exposure level, was generated based on personal air sampling. Multiple linear regression analyses were used to examine linear associations between urine BPA concentration and reproductive hormones after controlling for potential confounders. A total of 106 exposed and 250 unexposed female workers were included in this study. A significant positive association between increased urine BPA concentration and higher PRL and PROG levels were observed. Similar associations were observed after the analysis was carried out separately among the exposed and unexposed workers. In addition, a positive association between urine BPA and E2 was observed among exposed workers with borderline significance, while a statistically significant inverse association between urine BPA and FSH was observed among unexposed group. The results suggest that BPA exposure may lead to alterations in female reproductive hormone levels. PMID:26506366

  1. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  2. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FALLS TO ALTER SOMATOSENSORY EVOKED POTENTIALS, COMPOUND NERVE ACTION POTENTIALS, OR NERVE CONDUCTION VELOCITY IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in sensory modulation in the cortex and cerebellum, and therefore may be altered following chlorpyrifos (CPF) exposure...

  3. Tight junction alterations of respiratory epithelium following long-term NO2 exposure and recovery.

    PubMed

    Gordon, R E; Solano, D; Kleinerman, J

    1986-01-01

    Acute exposure to NO2 is reported to disrupt tight junctions in lung epithelium. We have studied the effects of chronic NO2 exposure and recovery breathing clean air to tight junctions of distal airway and alveolar epithelium. Syrian Golden hamsters were exposed to NO2 (30 PPM) for 5 or 9 months and a group of those animals for 9 months were allowed to recover breathing clean air for 3 or 9 months. Animals were sacrificed after 5 and 9 months of NO2 exposure and after 3, and 9 mos. recovery breathing clean air. The lungs were carefully removed, inflation fixed with glutaraldehyde and then processed for freeze fracture and transmission electron microscopy of ultra-thin epon sections. Evaluation of tight junctions of bronchioles and alveoli were disrupted in ultrathin sections and freeze fracture replicas during the period of NO2 exposure. Fibril number, length, degree of fragmentation and orientation were different from age matched controls. The bronchiolar tight junctional fibrils were quantitatively reduced in number and fragmented into much smaller fibril lengths. Alveolar tight junctions were qualitatively disrupted in a similar fashion, however, the sites of damage were focal. During recovery tight junctions in bronchioles did not regain normal fibril number, orientation and continuity, based on quantitative assessment, observed in age matched controls. Alveolar tight junctions remained focally altered. This data indicated that chronic NO2 altered morphologic characteristics of epithelial tight junctions of the lung throughout the period of exposure. The repair process during recovery did not restore the normal tight junction ultrastructural organization observed in age controls. This persistent deviation from the normal is likely to alter and compromise airway epithelial barrier function in the lungs of these hamsters. PMID:3780600

  4. Exposure to arsenic via drinking water induces 5-hydroxymethylcytosine alteration in rat.

    PubMed

    Zhang, Jie; Mu, Xiaoli; Xu, Weipan; Martin, Francis L; Alamdar, Ambreen; Liu, Liangpo; Tian, Meiping; Huang, Qingyu; Shen, Heqing

    2014-11-01

    Arsenic exposure has been implicated to alter DNA methylation process in vitro and in vivo, but it remains obscure whether it disrupts DNA demethylation process, which is pivotal for epigenetic regulation. The objective of this descriptive study was to investigate the relationship between arsenic exposure and 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) alterations in various organs. In this study, we exposed male Sprague-Dawley rats to sodium arsenite (0.5, 2 or 10 ppm) via drinking water for 8 weeks. Spleen accumulated 2- to 3-fold higher arsenic levels than liver and heart. Lower arsenic levels were observed in the kidney, pancreas and lung. No significant arsenic-induced global 5mC alterations were observed in the majority of investigated organs. However, arsenic induced organ-specific alterations of 5hmC and/or 5hmC/5mC in some investigated organs, i.e. lung, heart, kidney, pancreas and spleen. Our observations suggest that 5hmC is a more sensitive biomarker of arsenic-induced impacts on epigenetic processes than 5mC. Moreover, demethylation via hydroxylation of 5mC appears to play a central role in the toxic mechanism of arsenic.

  5. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration.

    PubMed

    Zhang, Chong; Xu, Dan; Luo, Hanwen; Lu, Juan; Liu, Lian; Ping, Jie; Wang, Hui

    2014-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis.

  6. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  7. Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa

    PubMed Central

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu

    2015-01-01

    Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662

  8. Alterations in the Atlantic cod (Gadus morhua) hepatic thiol-proteome after methylmercury exposure.

    PubMed

    Karlsen, O A; Sheehan, D; Goksøyr, A

    2014-01-01

    Proteomic studies in general have demonstrated that the most effective and thorough analysis of biological samples requires subfractionation and/or enrichment prior to downstream processing. In the present study, Atlantic cod (Gadus morhua) liver samples were fractionated using activated thiol sepharose to isolate hepatic proteins containing free/reactive cysteines. This subset of proteins is of special interest when studying the physiological effects attributed to methylmercury (MeHg) exposure. Methylmercury is a persistent environmental contaminant that has a potent affinity toward thiol groups, and can directly bind proteins via available cysteine residues. Further, alterations in the cod thiol-proteome following MeHg exposure (2 mg/kg body weight) were explored with two-dimensional gel electrophoresis combined with downstream mass spectrometry analyses for protein identifications. Thirty-five protein spots were found to respond to MeHg exposure, and 13 of these were identified when searching cod-specific databases with acquired mass spectrometry data. Among the identified thiol-containing proteins, some are known to respond to MeHg treatment, including constituents of the cytoskeleton, and proteins involved in oxidative stress responses, protein synthesis, protein folding, and energy metabolism. Methylmercury also appeared to affect cod heme metabolism/turnover, producing significantly altered levels of hemoglobin and hemopexin in liver following metal exposure. The latter finding suggests that MeHg may also affect the hematological system in Atlantic cod.

  9. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  10. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    PubMed

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  11. Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies

    PubMed Central

    Shenoy, Kausalya

    2012-01-01

    Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species. PMID:22312428

  12. Glutamatergic receptor kinetics are not altered by perinatal exposure to aspartame.

    PubMed

    Reilly, M A; Lajtha, A

    1995-03-01

    Observation of reduced levels of glutamic acid and aspartic acid in brain of weanling rats exposed perinatally to aspartame prompted a study of the effect of this food additive on glutamatergic receptor kinetics. Aspartame 500 mg/kg/day in drinking water was administered to Sprague-Dawley rats throughout gestation and lactation. Brain was excised from weanlings 20-22 days old, and kinetics of the N-methyl-D-aspartate receptor and total glutamatergic binding in cerebral cortex and hippocampus were found to be unaffected by perinatal exposure to high levels of aspartame. Glutamic acid was decreased in both brain regions studied, and aspartic acid was decreased in hippocampus following perinatal aspartame exposure. These changes were reversible when aspartame administration was terminated. It is concluded that perinatal exposure to high doses of aspartame does not alter glutamatergic neurotransmission in cerebral cortex or hippocampus from weanling rats.

  13. Low-Level Environmental Phthalate Exposure Associates with Urine Metabolome Alteration in a Chinese Male Cohort.

    PubMed

    Zhang, Jie; Liu, Liangpo; Wang, Xiaofei; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2016-06-01

    The general population is exposed to phthalates through various sources and routes. Integration of omics data and epidemiological data is a key step toward directly linking phthalate biomonitoring data with biological response. Urine metabolomics is a powerful tool to identify exposure biomarkers and delineate the modes of action of environmental stressors. The objectives of this study are to investigate the association between low-level environmental phthalate exposure and urine metabolome alteration in male population, and to unveil the metabolic pathways involved in the mechanisms of phthalate toxicity. In this retrospective cross-sectional study, we studied the urine metabolomic profiles of 364 male subjects exposed to low-level environmental phthalates. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are the most widely used phthalates. ∑DEHP and MBP (the major metabolite of DBP) were associated with significant alteration of global urine metabolome in the male population. We observed significant increase in the levels of acetylneuraminic acid, carnitine C8:1, carnitine C18:0, cystine, phenylglycine, phenylpyruvic acid and glutamylphenylalanine; and meanwhile, decrease in the levels of carnitine C16:2, diacetylspermine, alanine, taurine, tryptophan, ornithine, methylglutaconic acid, hydroxyl-PEG2 and keto-PGE2 in high exposure group. The observations indicated that low-level environmental phthalate exposure associated with increased oxidative stress and fatty acid oxidation and decreased prostaglandin metabolism. Urea cycle, tryptophan and phenylalanine metabolism disruption was also observed. The urine metabolome disruption effects associated with ∑DEHP and MBP were similar, but not identical. The multibiomarker models presented AUC values of 0.845 and 0.834 for ∑DEHP and MBP, respectively. The predictive accuracy rates of established models were 81% for ΣDEHP and 73% for MBP. Our results suggest that low-level environmental phthalate

  14. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  15. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    PubMed Central

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  16. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    PubMed

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  17. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  18. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    PubMed

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  19. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    PubMed

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  20. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    PubMed

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  1. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    SciTech Connect

    Herring, M.J.; Putney, L.F.; St George, J.A.; Avdalovic, M.V.; Schelegle, E.S.; Miller, L.A.; Hyde, D.M.

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  2. Developmental cigarette smoke exposure: liver proteome profile alterations in low birth weight pups.

    PubMed

    Canales, Lorena; Chen, Jing; Kelty, Elizabeth; Musah, Sadiatu; Webb, Cindy; Pisano, M Michele; Neal, Rachel E

    2012-10-01

    Cigarette smoke is composed of over 4000 chemicals many of which are strong oxidizing agents and chemical carcinogens. Chronic cigarette smoke exposure (CSE) induces mild alterations in liver histology indicative of toxicity though the molecular pathways underlying these alterations remain to be explored. Utilizing a mouse model of 'active' developmental CSE (gestational day (GD) 1 through postnatal day (PD) 21; cotinine >50ng/mL) characterized by low birth weight offspring, the impact of developmental CSE on liver protein abundances was determined. On PD21, liver tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Protein spots of interest were identified by ESI-MS/MS with impacted molecular pathways identified by Ingenuity Pathway Analysis. Developmental CSE decreased the abundance of proteins associated with the small molecule biochemistry (includes glucose metabolism), lipid metabolism, amino acid metabolism, and inflammatory response pathways. Decreased gluconeogenic enzyme activity and lysophosphatidylcholine availability following developmental CSE were found and supports the impact of CSE on these pathways. Proteins with increased abundance belonged to the cell death and drug metabolism networks. Liver antioxidant enzyme abundances [glutathione-S-transferase (GST) and peroxiredoxins] were also altered by CSE, but GST enzymatic activity was unchanged. In summary, cigarette smoke exposure spanning pre- and post-natal development resulted in persistent decreased offspring weights, decreased abundances of liver metabolic proteins, decreased gluconeogenic activity, and altered lipid metabolism. The companion paper details the kidney proteome alterations in the same offspring.

  3. Acute exposure to 2,4-dinitrophenol alters zebrafish swimming performance and whole body triglyceride levels.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2011-06-01

    While swimming endurance (critical swimming speed or U(crit)) and lipid stores have both been reported to acutely decrease after exposure to a variety of toxicants, the relationship between these endpoints has not been clearly established. In order to examine these relationships, adult zebrafish (Danio rerio) were aqueously exposed to solvent control (ethanol) or two nominal concentrations of 2,4-dinitrophenol (DNP), a mitochondrial electron transport chain uncoupler, for a 24-h period. Following exposure, fish were placed in a swim tunnel in clean water for swimming testing or euthanized immediately without testing, followed by analysis of whole body triglyceride levels. U(crit) decreased in both the 6 mg/L and 12 mg/L DNP groups, with 12 mg/L approaching the LC₅₀. A decrease in tail beat frequency was observed without a significant change in tail beat amplitude. In contrast, triglyceride levels were elevated in a concentration-dependent manner in the DNP exposure groups, but only in fish subjected to swimming tests. This increase in triglyceride stores may be due to a direct interference of DNP on lipid catabolism as well as increased triglyceride production when zebrafish were subjected to the co-stressors of swimming and toxicant exposure. Future studies should be directed at determining how acute DNP exposure combines with swimming to cause alterations in triglyceride accumulation. PMID:21406246

  4. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  5. CHRONIC ZEBRAFISH PFOS EXPOSURE ALTERS SEX RATIO AND MATERNAL RELATED EFFECTS IN F1 OFFSPRING

    PubMed Central

    Wang, Mingyong; Chen, Jiangfei; Lin, Kuanfei; Chen, Yuanhong; Hu, Wei; Tanguay, Robert L.; Huang, Changjiang; Dong, Qiaoxiang

    2012-01-01

    Perfluorooctanesulfonic acid (PFOS) is an organic contaminant ubiquitous in the environment, wildlife, and humans. Few studies have assessed its chronic toxicity on aquatic organisms. The present study defined the effects of long-term exposure to PFOS on zebrafish development and reproduction. Specifically, zebrafish at 8 h postfertilization (hpf) were exposed to PFOS at 0, 5, 50, and 250 μg/L for five months. Growth suppression was observed in the 250 μg/L PFOS-treated group. The sex ratio was altered, with a significant female dominance in the high-dose PFOS group. Male gonad development was also impaired in a dose-dependent manner by PFOS exposure. Although female fecundity was not impacted, the F1 embryos derived from high-dose exposed females paired with males without PFOS exposure developed severe deformity at early development stages and resulted in 100% larval mortality at 7 d postfertilization (dpf). Perfluorooctanesulfonic acid quantification in embryos indicated that decreased larval survival in F1 offspring was directly correlated to the PFOS body burden, and larval lethality was attributable to maternal transfer of PFOS to the eggs. Lower-dose parental PFOS exposure did not result in decreased F1 survival; however, the offspring displayed hyperactivity of basal swimming speed in a light-to-dark behavior assessment test. These findings demonstrate that chronic exposure to PFOS adversely impacts embryonic growth, reproduction, and subsequent offspring development. Environ. PMID:21671259

  6. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    PubMed

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  7. Metabolic alterations induced by chronic heat exposure in the rat: the involvement of thyroid function.

    PubMed

    Rousset, B; Cure, M; Jordan, D; Kervran, A; Bornet, H; Mornex, R

    1984-05-01

    The effects of chronic exposure to high environmental temperature (34 degrees C) on T4 production rate, food-intake, growth-rate and resting metabolic rate were investigated in adult male rats. This study was designed to examine the extent of variations and possible relationships between these parameters. As compared to control rats of the same body weight kept at 25 degrees C, rats exposed to 34 degrees C for 3-4 weeks exhibited a retarded growth-rate: 2.3 vs 4.0 g/day, a reduced food-intake: 15.2 vs 23.2 g/day, a decreased T4 production-rate: 1.8 vs 2.7 micrograms/day and a decreased oxygen consumption: 4.0 vs 5.4 ml/min. Heat-exposure altered the 4 parameters to a similar extent. T4 supplementation (3 micrograms/day) which induced a decrease in plasma TSH concentration, did not restore a normal growth-rate in heat-exposed rats. The decreased food-intake of the heat-exposed rats was not associated with any significant changes in the daily pattern of variations of liver glycogen content, or in the mean daily levels of blood glucose or insulin. The ratio T3 to rT3 in plasma was not altered by chronic heat exposure. When rats which had been chronically exposed to heat (25 days at 34 degrees C) were exposed to 25 degrees C, growth-rate, food-intake and oxygen consumption rapidly increased to control values whereas the rate of T4 production remained low. It is concluded that (1) a decrease in thyroid hormone economy is not directly involved in the alterations of growth and energy expenditure in rats chronically exposed to heat, (2) heat exposure does not lead to the establishment of a fasted state resulting from a large reduction in voluntary food intake, (3) metabolic alterations induced by heat exposure are rapidly and completely reversible upon decreasing the environmental temperature.

  8. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.

  9. Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception.

    PubMed

    Weikum, Whitney M; Oberlander, Tim F; Hensch, Takao K; Werker, Janet F

    2012-10-16

    Language acquisition reflects a complex interplay between biology and early experience. Psychotropic medication exposure has been shown to alter neural plasticity and shift sensitive periods in perceptual development. Notably, serotonin reuptake inhibitors (SRIs) are antidepressant agents increasingly prescribed to manage antenatal mood disorders, and depressed maternal mood per se during pregnancy impacts infant behavior, also raising concerns about long-term consequences following such developmental exposure. We studied whether infants' language development is altered by prenatal exposure to SRIs and whether such effects differ from exposure to maternal mood disturbances. Infants from non-SRI-treated mothers with little or no depression (control), depressed but non-SRI-treated (depressed-only), and depressed and treated with an SRI (SRI-exposed) were studied at 36 wk gestation (while still in utero) on a consonant and vowel discrimination task and at 6 and 10 mo of age on a nonnative speech and visual language discrimination task. Whereas the control infants responded as expected (success at 6 mo and failure at 10 mo) the SRI-exposed infants failed to discriminate the language differences at either age and the depressed-only infants succeeded at 10 mo instead of 6 mo. Fetuses at 36 wk gestation in the control condition performed as expected, with a response on vowel but not consonant discrimination, whereas the SRI-exposed fetuses showed accelerated perceptual development by discriminating both vowels and consonants. Thus, prenatal depressed maternal mood and SRI exposure were found to shift developmental milestones bidirectionally on infant speech perception tasks.

  10. Alterations in the Striatal Dopamine System During Intravenous Methamphetamine Exposure: Effects of Contingent and Noncontingent Administration

    PubMed Central

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P.

    2014-01-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a ‘humanized’ plasma METH half life, or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7–1.5 μM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist-induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal’s total intake was similar within and across three 24 h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. PMID:23417852

  11. Alterations in the striatal dopamine system during intravenous methamphetamine exposure: effects of contingent and noncontingent administration.

    PubMed

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P

    2013-08-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long-term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a "humanized" plasma METH half life or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7 and 1.5 µM. Animals were sacrificed during their last METH administration for autoradiography assessment using [³H]ligands and D2 agonist-induced [³⁵S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15-20%) and [³⁵S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal's total intake was similar within and across three 24-h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans.

  12. Gestational exposure to yellow fever vaccine at different developmental stages induces behavioral alterations in the progeny.

    PubMed

    Marianno, P; Salles, M J S; Sonego, A B; Costa, G A; Galvão, T C; Lima, G Z; Moreira, E G

    2013-01-01

    The most effective method to prevent yellow fever and control the disease is a vaccine made with attenuated live virus. Due to the neurological tropism of the virus, preventive vaccination is not recommended for infants under 6 months and for pregnant women. However there is a paucity of data regarding the safety for pregnant women and there are no experimental studies investigating adverse effects to the offspring after maternal exposure to the vaccine. This study aimed to investigate, in mice, the effects of maternal exposure to the yellow fever vaccine at three different gestational ages on the physical and behavioral development of the offspring. Pregnant Swiss mice received a single subcutaneous injection of water for injection (control groups) or 2 log Plaque Forming Units (vaccine-treated groups) of the yellow fever vaccine on gestational days (GD) 5, 10 or 15. Neither maternal signs of toxicity nor alterations in physical development and reflex ontogeny of the offspring were observed in any of the groups. Data from behavioral evaluation indicated that yellow fever vaccine exposure induced motor hypoactivity in 22-day-old females independent of the day of exposure; and in 60-day-old male and female pups exposed at GD 10. Moreover, 22-day-old females also presented with a deficit in habituation memory. Altogether, these results indicate that in utero exposure to the yellow fever vaccine may induce behavioral alterations in the pups that may persist to adulthood in the absence of observed maternal toxicity or disruption of physical development milestones or reflex ontogeny.

  13. Toward Fully Synthetic Homogeneous β-Human Follicle-Stimulating Hormone (β-hFSH) with a Biantennary N-linked Dodecasaccharide. Synthesis of β-hFSH with Chitobiose Units at the Natural Linkage Sites

    PubMed Central

    Nagorny, Pavel; Fasching, Bernhard; Li, Xuechen; Chen, Gong; Aussedat, Baptiste; Danishefsky, Samuel J.

    2009-01-01

    A highly convergent synthesis of the sialic acid rich biantennary N-linked glycan found in human glycoprotein hormones, and its use in the synthesis of a fragment derived from the β-domain of human Follicle-Stimulating Hormone (hFSH) are described. The synthesis highlights the use of the Sinaÿ radical glycosidation protocol for the simultaneous installation of both biantennary side-chains of the dodecasaccharide as well as the use of glycal chemistry to construct the tetrasaccharide core in an efficient manner. The synthetic glycan was used to prepare the glycosylated 20–27aa domain of β-subunit of hFSH under a Lansbury aspartylation protocol. The proposed strategy for incorporating the prepared N-linked dodecasaccharide-containing 20–27aa domain into β-hFSH subunit was validated in the context of a model system providing, protected β-hFSH subunit functionalized with chitobiose at positions 7 and 24. PMID:19341309

  14. Testosterone selectively increases serum follicle-stimulating hormonal (FSH) but not luteinizing hormone (LH) in gonadotropin-releasing hormone antagonist-treated male rats: evidence for differential regulation of LH and FSH secretion.

    PubMed

    Bhasin, S; Fielder, T J; Swerdloff, R S

    1987-08-01

    Both testosterone (T) and gonadotropin-releasing hormone (GnRH)-antagonist (GnRH-A) when given alone lower serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact and castrated rats. However, when graded doses of testosterone enanthate (T.E.) were given to GnRH-A-treated intact male rats, a paradoxical dose-dependent increase in serum FSH occurred; whereas serum LH remained suppressed. This surprising finding led us to ask whether the paradoxical increase in serum FSH in GnRH-A-suppressed animals was a direct stimulatory effect of T on the hypothalamic-pituitary axis or the result of a T effect on a testicular regulator of FSH. To test these hypotheses, we treated adult male castrated rats with GnRH-A and graded doses of T.E. In both intact and castrated rats, serum LH remained undetectable in GnRH-A-treated rats with or without T.E. However, addition of T.E. to GnRH-A led to a dose-dependent increase in serum FSH in castrated animals as well, thus pointing against mediation by a selective testicular regulator of FSH. These data provide evidence that pituitary LH and FSH responses may be differentially regulated under certain conditions. When the action of GnRH is blocked (such as in GnRH-A-treated animals), T directly and selectively increases pituitary FSH secretion.

  15. Superovulation of mice with human menopausal gonadotropin or pure follicle-stimulating hormone in combination with human chorionic gonadotropin and the effects of oocyte aging on in vitro fertilization.

    PubMed

    Edirisinghe, W R; Law, H Y; NG, S C; Chia, C M; Ratnam, S S

    1986-10-01

    The response of female mice of F1 hybrids (CBA x C57/BL) to superovulatory doses of human menopausal gonadotropin (hMG) or pure follicle-stimulating hormone (FSH) in combination with human chorionic gonadotropin (hCG) was studied. Furthermore, the effect of oocyte aging in vivo on the subsequent rate of fertilization in vitro was also investigated. The oocytes were collected at 12, 18, and 24 hr after hCG injection and in vitro fertilization (IVF) was carried out in T6 medium. A higher proportion of animals responded to hMG stimulation (32/70) compared to pure FSH (15/66). Furthermore, hMG gave a higher oocyte recovery (454/32) than pure FSH (77/15). Fertilization rates of 57.8, 51.5, and 53.5% were obtained for the 12-, 18-, and 24-hr groups, respectively, after correction for parthenogenetic division of oocytes in the controls. No significant differences in fertilization rates were observed among the three time intervals used in recovering oocytes. However, as the degeneration and parthenogenetic division increased with the delay in collection of oocytes, 12 hr post-hCG injection was the best time to collect oocytes to obtain optimum results in in vitro fertilization.

  16. Outcome from consecutive in-vitro fertilization/intracytoplasmic sperm injection attempts in the final group treated with urinary gonadotrophins and the first group treated with recombinant follicle stimulating hormone.

    PubMed

    Jacob, S; Drudy, L; Conroy, R; Harrison, R F

    1998-07-01

    In the absence of specific dose equivalency data, the aim of this study was to compare the clinical results during the cross-over from menopausal urinary products (human menopausal gonadotrophin; HMG) to recombinant follicle stimulating hormone (FSH) follitrophin beta (FSHr) in order to determine whether the manufacturer's recommendation for equivalence of ampoule to ampoule (50 IU FSHr:75 IU HMG) would prove clinically correct. A total of 353 consecutive in-vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment cycles was studied between 1st September 1996 and mid-February 1997. This included cycles in the last 191 women receiving HMG and the first 162 taking FSHr. All were down-regulated using a gonadotrophin releasing hormone (GnRH) agonist long protocol method from day 1 of the cycle. Greater efficacy was seen in the HMG group in terms of days of stimulation required, need to increase dosage, cycle discontinuation, number of follicles punctured, the numbers of oocytes retrieved and their quality. The hormonal response to stimulation assessed by oestradiol concentrations on days 5, 8 and day of human chorionic gonadotrophin (HCG) was significantly lower in the FSHr group. The ratio of oestradiol per follicle and per oocyte was significantly lower in the FSHr group. There was a highly significant increase in cost with FSHr therapy. Clinical pregnancy rates were 14% per cycle with FSHr and 20% per cycle with HMG.

  17. Ovarian follicular growth and maturity and follicular production of progesterone and oestradiol in response to porcine luteinising hormone and porcine follicle stimulating hormone in albino (S*AS) hens in vivo and in vitro.

    PubMed

    Su, H; Silversides, F G; Villeneuve, P

    1999-09-01

    The effects of the SAS gene on follicular growth were studied by feeding Sudan IV and Sudan Black B, on follicular maturity by measuring P4 and E2 output of the 5 largest follicles (F1 to F5) in vitro, and on ovarian response (plasma progesterone, P4, and oestradiol, E2) to administration of porcine follicle-stimulating hormone (pFSH) and porcine luteinising hormone (pLH) in old laying hens. Albino hens had fewer dye rings in the yolks of their eggs than non-albinos (8.32 compared to 8.59) and the yolks from albinos weighed less. The numbers of normal and atretic follicles larger than 3 mm in diameter did not differ between the two genotypes. The P4 outputs from the F1 and F2 follicles were significantly greater for albino hens, but P4 production of other follicles was not different for the two genotypes. The P4 output of the F1 follicle in response to pLH was dose-dependent and greater for albino hens than for non-albinos. Porcine LH did not increase the follicular E2 output in either genotype. Administration of pLH, but not pFSH, increased plasma P4 and E2 concentrations, with no difference between genotypes. These data suggest that the F1 follicles for albino hens are precocious, resulting in a reduced growth period and a smaller weight at ovulation.

  18. Alterations in the Rat Serum Proteome Induced by Prepubertal Exposure to Bisphenol A and Genistein

    PubMed Central

    2015-01-01

    Humans are exposed to an array of chemicals via the food, drink and air, including a significant number that can mimic endogenous hormones. One such chemical is Bisphenol A (BPA), a synthetic chemical that has been shown to cause developmental alterations and to predispose for mammary cancer in rodent models. In contrast, the phytochemical genistein has been reported to suppress chemically induced mammary cancer in rodents, and Asians ingesting a diet high in soy containing genistein have lower incidence of breast and prostate cancers. In this study, we sought to: (1) identify protein biomarkers of susceptibility from blood sera of rats exposed prepubertally to BPA or genistein using Isobaric Tandem Mass Tags quantitative mass spectrometry (TMT-MS) combined with MudPIT technology and, (2) explore the relevance of these proteins to carcinogenesis. Prepubertal exposures to BPA and genistein resulted in altered expression of 63 and 28 proteins in rat sera at postnatal day (PND) 21, and of 9 and 18 proteins in sera at PND35, respectively. This study demonstrates the value of using quantitative proteomic techniques to explore the effect of chemical exposure on the rat serum proteome and its potential for unraveling cellular targets altered by BPA and genistein involved in carcinogenesis. PMID:24552547

  19. Prenatal exposure of rats to nicotine causes persistent alterations of nicotinic cholinergic receptors

    PubMed Central

    Gold, Allison B.; Keller, Ashleigh B.; Perry, David C.

    2010-01-01

    We examined for immediate and persistent changes in nAChRs in cerebral cortex, thalamus and striatum of male rats caused by prenatal exposure to nicotine from gestational day 3 to postnatal day 10 (PN10), and how such exposure affected the responses of adolescents to subsequent nicotine challenge. Receptor numbers were assessed by [3H]epibatidine binding and receptor function was measured by acetylcholine-stimulated 86Rb efflux (cerebral cortex and thalamus) and nicotine-stimulated dopamine release (striatum). Immediate effects of prenatal nicotine, assessed in PN10 animals, were not detected for any parameter. A subsequent 14 day nicotine exposure in adolescence revealed persistent changes caused by prenatal nicotine exposure. Nicotine exposure in adolescents caused up-regulation of binding in all three regions; however, this up-regulation was lost in thalamus from animals prenatally exposed to nicotine. Nicotine exposure in adolescents caused decreased nicotine-stimulated dopamine release in striatum; this effect was also lost in animals prenatally exposed to nicotine. Comparison of parameters in PN10 and PN42 rats revealed developmental changes in the CNS cholinergic system. In thalamus, binding increased with age, as did the proportion of 86Rb efflux with high sensitivity to acetylcholine. In cortex, binding also increased with age, but there was no change in total 86Rb efflux, and the proportion of high to low sensitivity efflux declined with age. Nicotine-stimulated striatal dopamine release (both total and α-conotoxin MII-resistant release) increased with age in naïve animals, but not in those prenatally exposed to nicotine. These findings demonstrate that prenatal exposure to nicotine causes alterations in the regulation of nAChRs by nicotine that persist into adolescence. These changes may play a role in the increased risk for nicotine addiction observed in adolescent offspring of smoking mothers. PMID:19028470

  20. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish.

    PubMed

    Yu, Li-Qin; Zhao, Gao-Feng; Feng, Min; Wen, Wu; Li, Kun; Zhang, Pan-Wei; Peng, Xi; Huo, Wei-Jie; Zhou, Huai-Dong

    2014-01-01

    Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development.

  1. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  2. Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Bandfield, Joshua L.

    2016-09-01

    The Nili Fossae region of Mars contains some of the most mineralogically diverse bedrock on the planet. Previous studies have established three main stratigraphic units in the region: a phyllosilicate-bearing basement rock, a variably altered olivine-rich basalt, and a capping rock. Here, we present evidence for the localized alteration of the northeast Nili Fossae capping unit, previously considered to be unaltered. Both near-infrared and thermal-infrared spectral datasets were analyzed, including the application of a method for determining the relative abundance of bulk-silica (SiO2) over surfaces using thermal emission imaging system (THEMIS) images. Elevated bulk-silica exposures are present on surfaces previously defined as unaltered capping rock. Given the lack of spectral evidence for phyllosilicate, hydrated silica, or quartz phases coincident with the newly detected exposures-the elevated bulk-silica may have formed under a number of aqueous scenarios, including as a product of the carbonation of the underlying olivine-rich basalt under moderate water: rock scenarios and temperatures. Regardless of formation mechanism, the detection of elevated bulk-silica exposures in the Nili Fossae capping unit extends the history of aqueous activity in the region to include all three of the main stratigraphic units.

  3. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    SciTech Connect

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal by

  4. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs

    PubMed Central

    Schuster, Andrew; Skinner, Michael K.; Yan, Wei

    2016-01-01

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5′ halves of mature tRNAs (5′ halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5′ halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon. PMID:27390623

  5. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives. PMID:27192480

  6. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.

  7. Adolescent Alcohol Exposure Alters GABAA Receptor Subunit Expression in Adult Hippocampus

    PubMed Central

    Centanni, Samuel W.; Teppen, Tara; Risher, Mary-Louise; Fleming, Rebekah L.; Moss, Julia L.; Acheson, Shawn K.; Mulholland, Patrick J.; Pandey, Subhash C.; Chandler, L. Judson; Swartzwelder, H. Scott

    2014-01-01

    Background The long-term consequences of adolescent alcohol abuse that persist into adulthood are poorly understood and have not been widely investigated. We have shown that intermittent exposure to alcohol during adolescence decreased the amplitude of GABAA receptor-mediated tonic currents in hippocampal dentate granule cells in adulthood. The aim of the present study was to investigate the enduring effects of chronic intermittent alcohol exposure during adolescence or adulthood on the expression of hippocampal GABAA receptors (GABAARs). Methods We used a previously characterized tissue fractionation method to isolate detergent resistant membranes and soluble fractions, followed by western blots to measure GABAAR protein expression. We also measured mRNA levels of GABAAR subunits using quantitative real-time PCR. Results Although the protein levels of α1-, α4- and δ-GABAAR subunits remained stable between postnatal day (PD) 30 (early adolescence) and PD71 (adulthood), the α5-GABAAR subunit was reduced across that period. In rats that were subjected to adolescent intermittent ethanol (AIE) exposure between PD30–46, there was a significant reduction in the protein levels of the δ-GABAAR, in the absence of any changes in mRNA levels, at 48 hours and 26 days after the last ethanol exposure. Protein levels of the α4-GABAAR subunit were significantly reduced, but mRNA levels were increased, 26 days (but not 48 hours) after the last AIE exposure. Protein levels of α5-GABAAR were not changed by AIE, but mRNA levels were reduced at 48hrs but normalized 26 days after AIE. In contrast to the effects of AIE, chronic intermittent exposure to ethanol during adulthood (CIE) had no effect on expression of any of the GABAAR subunits examined. Conclusions AIE produced both short- and long-term alterations of GABAAR subunits mRNA and protein expression in the hippocampus, whereas CIE produced no long lasting effects on those measures. The observed reduction of protein

  8. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  9. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    SciTech Connect

    Zangar, R.C. Pacific Northwest Laboratories, Richland, WA ); Springer, D.L. ); Buhler, D.R. )

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  10. Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring.

    PubMed

    Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György

    2010-01-20

    The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior. PMID:19782105

  11. Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming.

    PubMed

    Borges, Cibele S; Dias, Ana Flávia M G; Rosa, Josiane Lima; Silva, Patricia V; Silva, Raquel F; Barros, Aline L; Sanabria, Marciana; Guerra, Marina T; Gregory, Mary; Cyr, Daniel G; De G Kempinas, Wilma

    2016-08-01

    Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders. PMID:27247242

  12. Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming.

    PubMed

    Borges, Cibele S; Dias, Ana Flávia M G; Rosa, Josiane Lima; Silva, Patricia V; Silva, Raquel F; Barros, Aline L; Sanabria, Marciana; Guerra, Marina T; Gregory, Mary; Cyr, Daniel G; De G Kempinas, Wilma

    2016-08-01

    Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders.

  13. Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome

    PubMed Central

    2014-01-01

    Background Environmental factors during perinatal development may influence developmental plasticity and disease susceptibility via alterations to the epigenome. Developmental exposure to the endocrine active compound, bisphenol A (BPA), has previously been associated with altered methylation at candidate gene loci. Here, we undertake the first genome-wide characterization of DNA methylation profiles in the liver of murine offspring exposed perinatally to multiple doses of BPA through the maternal diet. Results Using a tiered focusing approach, our strategy proceeds from unbiased broad DNA methylation analysis using methylation-based next generation sequencing technology to in-depth quantitative site-specific CpG methylation determination using the Sequenom EpiTYPER MassARRAY platform to profile liver DNA methylation patterns in offspring maternally exposed to BPA during gestation and lactation to doses ranging from 0 BPA/kg (Ctr), 50 μg BPA/kg (UG), or 50 mg BPA/kg (MG) diet (N = 4 per group). Genome-wide analyses indicate non-monotonic effects of DNA methylation patterns following perinatal exposure to BPA, corroborating previous studies using multiple doses of BPA with non-monotonic outcomes. We observed enrichment of regions of altered methylation (RAMs) within CpG island (CGI) shores, but little evidence of RAM enrichment in CGIs. An analysis of promoter regions identified several hundred novel BPA-associated methylation events, and methylation alterations in the Myh7b and Slc22a12 gene promoters were validated. Using the Comparative Toxicogenomics Database, a number of candidate genes that have previously been associated with BPA-related gene expression changes were identified, and gene set enrichment testing identified epigenetically dysregulated pathways involved in metabolism and stimulus response. Conclusions In this study, non-monotonic dose dependent alterations in DNA methylation among BPA-exposed mouse liver samples and their relevant pathways

  14. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol.

    PubMed

    Rinker, Jennifer A; Hutchison, Mary Anne; Chen, Scott A; Thorsell, Annika; Heilig, Markus; Riley, Anthony L

    2011-07-01

    The majority of smokers begin their habit during adolescence, which often precedes experimentation with alcohol. Interestingly, very little preclinical work has been done examining how exposure to nicotine during periadolescence impacts the affective properties of alcohol in adulthood. Understanding how periadolescent nicotine exposure influences the aversive effects of alcohol might help to explain why it becomes more acceptable to this preexposed population. Thus, Experiment 1 exposed male Sprague Dawley rats to either saline or nicotine (0.4mg/kg, IP) from postnatal days 34 to 43 (periadolescence) and then examined changes in the aversive effects of alcohol (0, 0.56, 1.0 and 1.8g/kg, IP) in adulthood using the conditioned taste aversion (CTA) design. Changes in blood alcohol concentration (BAC) as well as alcohol-induced hypothermia and locomotor suppression were also assessed. To determine if changes seen were specific to nicotine exposure during periadolescence, the procedures were replicated in adults (Experiment 2). Preexposure to nicotine during periadolescence attenuated the acquisition of the alcohol-induced CTAs (at 1.0g/kg) and the hypothermic effects of alcohol (1.0g/kg). Adult nicotine preexposure produced similar attenuation in alcohol's aversive (at 1.8g/kg) and hypothermic (1.8g/kg) effects. Neither adolescent nor adult nicotine preexposure altered BACs or alcohol-induced locomotor suppression. These results suggest that nicotine may alter the aversive and physiological effects of alcohol, regardless of the age at which exposure occurs, possibly increasing its overall reinforcing value and making it more likely to be consumed.

  15. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  16. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos

    SciTech Connect

    Meyer, Armando; Seidler, Frederic J.; Aldridge, Justin E.; Slotkin, Theodore A. . E-mail: t.slotkin@duke.edu

    2005-03-01

    Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a {beta}-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides.

  17. Effects of radiation exposure on glass alteration in a steam environment

    SciTech Connect

    Wronkiewicz, D.J.; Bates, J.K.; Tani, B.S.; Wang, L.M.

    1992-12-31

    Several Savannah River Plant (SRL) glass compositions were reacted in steam at temperatures of 150 to 200{degrees}C. Half of the tests utilized actinide-doped monoliths and were exposed to an external ionizing gamma source, while the remainder were doped only with U and reacted without gamma exposure. All glass samples readily reacted to form secondary mineral phases within the first week of testing. An in situ layer of smectite initially developed on nonirradiated SRL 202 glass test samples. After 21 days, a thin layer of illite was precipitated from solution onto the smectite layer. A number of alteration products including zeolite, Casilicate, and alkali or alkaline earth uranyl silicate phases were also distributed over most sample surfaces. In the irradiated SRL 202 glass tests, up to three layers enveloped rounded, and sometimes fractured, glass cores. After 35 to 56 days these remnant cores were replaced by a mottled or banded Fe- and Si-rich material. The formation of some secondary mineral phases also has been accelerated in the irradiated tests, and in some instances, the irradiated environment may have led to the precipitation of a different suite of minerals. The alteration layer(s) developed at rates of 2.3 and 32 {mu}m/day for the nonirradiated and irradiated SRL 202 glasses, respectively, indicating that layer development is accelerated by a factor of {approximately} 10 to 15X due to radiation exposure under the test conditions.

  18. Biochemical and physiological alterations induced in Diopatra neapolitana after a long-term exposure to Arsenic.

    PubMed

    Coppola, Francesca; Pires, Adília; Velez, Cátia; Soares, Amadeu M V M; Pereira, Eduarda; Figueira, Etelvina; Freitas, Rosa

    2016-11-01

    Several authors identified polychaetes as a group of marine invertebrates that respond rapidly to anthropogenic stressors. Furthermore, several studies have demonstrated that environmental pollution lead to the impoverishment of benthic communities with species replacement and biodiversity loss, but very few studies have investigated biochemical and physiological alterations that species undergo in response to Arsenic (As) exposure. Therefore, the present study assessed the toxicity induced in the polychaete Diopatra neapolitana after a long-term (28days) exposure to different As concentrations (0.0, 0.05, 0.25 and 1.25mg/L). For this biochemical and physiological alterations were evaluated. Biochemical analysis included the measurement of different biomarkers such as glutathione S-transferase (GST), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assessed in order to evaluate oxidative stress. Physiological analyzes included the observation of polychaetes regenerative capacity and the quantification of organisms total protein (PROT) and glycogen (GLY) content. The results obtained allowed to confirm the suitability of these biomarkers to identify the toxicity caused by As and moreover revealed that D. neapolitana is a good bioindicator of As pollution. PMID:27349727

  19. Exposure to altered gravity affects all stages of endochondral cartilage differentiation

    NASA Astrophysics Data System (ADS)

    Duke, P. J.; Montufar-Solis, D.

    1999-01-01

    Chondrogenesis has a number of well-defined steps: (1) condensation, which involves cell aggregation, adhesion and communication; (2) activation of cartilage genes, which is accompanied by rounding up of the cells and intracellular differentiation; and (3) production and secretion of cartilage specific matrix molecules. Our studies show that each of these steps is affected by exposure to gravitational changes. Clinorotation and centrifugation affected initial aggregation and condensation. In the CELLS experiment, where cells were exposed to microgravity after some condensation occurred perflight, intracellular differentiation and matrix production were delayed relative to controls. Once cartilage has developed, in rats, further differentiation (hypertrophy, matrix production) was also affected by spaceflight and hind limb suspension. For the process of chondrogenesis to proceed as we know it, loading and other factors present at lg are required at each step of the process. This requirement means that not only will skeletal development and bone healing, processes involving chondrogenesis, be altered by long term exposure to microgravity, but that continuous intervention will be necessary to correct any defects produced by altered gravity environments.

  20. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides.

    PubMed

    Alves, Stênio Nunes; Serrão, José Eduardo; Melo, Alan Lane

    2010-08-01

    This study describes morphological alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. To this end, both third and fourth instars of C. quinquefasciatus larvae were exposed for 30 and 60 min to organophosphate (50 ppb), pyrethroids (20 and 30 ppb), and avermectin derivates (1.5 and 54 ppb). Following incubation, pH measurements of the larvae gut were recorded. The fat body and midgut were also analyzed by light and transmission electron microscopy. These studies demonstrate a decrease in the pH of the larvae anterior midgut following exposure to all of the tested insecticides. Histochemical tests revealed a strong reaction for neutral lipids in the control group and a marked decrease in the group exposed to cypermethrin. Furthermore, a weak reaction with acidic lipids in larvae exposed to deltamethrin, temephos, ivermectin and abamectin was also observed. Insecticide-exposed larvae also exhibited cytoplasm granule differences, relative to control larvae. Finally, we noted a small reduction in microvilli size in the apex of digestive cells, although vesicles were found to be present. The destructive changes in the larvae were very similar regardless of the type of insecticide analyzed. These data suggest that alterations in the fat body and midgut are a common response to cellular intoxication.

  1. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.

  2. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. PMID:26965573

  3. Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations.

    PubMed

    Larguinho, Miguel; Costa, Pedro M; Sousa, Gonçalo; Costa, Maria H; Diniz, Mário S; Baptista, Pedro V

    2014-12-01

    Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.

  4. Alcohol exposure alters mouse lung inflammation in response to inhaled dust.

    PubMed

    McCaskill, Michael L; Romberger, Debra J; DeVasure, Jane; Boten, Jessica; Sisson, Joseph H; Bailey, Kristina L; Poole, Jill A; Wyatt, Todd A

    2012-07-01

    Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs) are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. HDE stimulated a 2-4 fold increase in lung and tracheal PKCε (epsilon) activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability of the lung to activate PKCε

  5. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    PubMed Central

    McCaskill, Michael L.; Romberger, Debra J.; DeVasure, Jane; Boten, Jessica; Sisson, Joseph H.; Bailey, Kristina L.; Poole, Jill A.; Wyatt, Todd A.

    2012-01-01

    Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs) are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon) activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability of the lung to activate PKCε

  6. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets

    PubMed Central

    Prusinski, Lauren; Al-Hendy, Ayman; Yang, Qiwei

    2016-01-01

    Endocrine disruptions induced by environmental toxicants have placed an immense burden on society to properly diagnose, treat and attempt to alleviate symptoms and disease. Environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life - a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical and cellular events. Humans may encounter endocrine disrupting chemicals (EDCs) daily and during all stages of life, from conception and fetal development through adulthood and senescence. Though puberty and perimenopausal periods may be affected by endocrine disruption due to hormonal effects, prenatal and early postnatal windows are most critical for proper development due to rapid changes in system growth. Developmental reprogramming is shown to be caused by alterations in the epigenome. Development is the time when epigenetic programs are ‘installed’ on the genome by ‘writers’, such as histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs), which add methyl groups to lysine and arginine residues on histone tails and to CpG sites in DNA, respectively. A number of environmental compounds, referred to as estrogenic endocrine disruptors (EEDs), are able to bind to estrogen receptors (ERs) and interfere with the normal cellular development in target tissues including the prostate and uterus. These EEDs, including diethylstilbestrol (DES), bisphenol A (BPA), and genistein (a phytoestrogen derived from soybeans), have been implicated in the malformation of reproductive organs and later development of disease. Due to the lack of fully understanding the underlying mechanisms of how environmental toxicants and their level of exposure affect the human genome, it can be challenging to create clear

  7. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure

    PubMed Central

    Hintsala, Heidi E.; Kiviniemi, Antti M.; Tulppo, Mikko P.; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55–65 years) who underwent a whole-body cold exposure (−10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg2, compared with hypertensive group [0 (−13, 20) mmHg2]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543

  8. Developmental Exposure to Estrogen Alters Differentiation and Epigenetic Programming in a Human Fetal Prostate Xenograft Model

    PubMed Central

    Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim

    2015-01-01

    Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167

  9. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  10. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure.

    PubMed

    Hintsala, Heidi E; Kiviniemi, Antti M; Tulppo, Mikko P; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J K; Ikäheimo, Tiina M

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55-65 years) who underwent a whole-body cold exposure (-10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg(2), compared with hypertensive group [0 (-13, 20) mmHg(2)]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543

  11. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain

    PubMed Central

    Patel, Dhyanesh Arvind; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP+ (type B cells) and nestin+(GFAP−) (Type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP+ expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP+ expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin+ expression with females showing approximately 8–13% higher nestin+ expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin+ expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. PMID:22119286

  12. ADOLESCENT BINGE ALCOHOL EXPOSURE ALTERS HIPPOCAMPAL PROGENITOR CELL PROLIFERATION IN RATS: EFFECTS ON CELL CYCLE KINETICS

    PubMed Central

    McClain, Justin A.; Hayes, Dayna M.; Morris, Stephanie A.; Nixon, Kimberly

    2012-01-01

    Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromo-deoxy-uridine incorporation, and phospho-histone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromo-deoxy-uridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis but also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure. PMID:21484803

  13. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-06-15

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  14. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  15. Bisphenol A Exposure Leads to Specific MicroRNA Alterations in Placental Cells

    PubMed Central

    Avissar-Whiting, Michele; Veiga, Keila; Uhl, Kristen; Maccani, Matthew; Gagne, Luc; Moen, Erika; Marsit, Carmen J.

    2010-01-01

    Exposure to bisphenol-A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity. PMID:20417706

  16. The time course of follicle-stimulating hormone suppression by recombinant human inhibin A in the adult male rhesus monkey (Macaca mulatta).

    PubMed

    Ramaswamy, S; Pohl, C R; McNeilly, A S; Winters, S J; Plant, T M

    1998-08-01

    In higher primates, FSH secretion appears to be regulated by a control system consistent with that described by the classical inhibin hypothesis. The purpose of the present experiment was to examine the time course of inhibin's action to suppress FSH secretion in the intact adult male rhesus monkey. To this end, five adult males implanted with indwelling venous catheters and exhibiting typical episodic patterns of LH and testosterone (T) secretion received a 4-day i.v. infusion of recombinant human (rh) inhibin A (832 ng/h x kg) followed, after a 4-week interval, by vehicle infusion of similar duration. Changes in circulating FSH concentrations during the inhibin and vehicle infusions were determined using a sensitive homologous macaque RIA, whereas enzyme-linked immunosorbent assays were employed to track inhibin A, inhibin B, and inhibin pro-alpha-C levels during the experiment. Normal pulsatile activity in the hypothalamic-pituitary-Leydig cell axis was confirmed by monitoring changes in circulating concentrations of LH and T in 12-h windows of sequential blood collection (1200-2400 h; every 20 min) before, during, and after the rh inhibin A and vehicle infusions. Although infusion of rh inhibin A, which led to a 12 ng/ml square wave increment in circulating levels of this inhibin dimer, produced a marked decline in circulating FSH concentrations, significant suppression of the secretion of this gonadotropin was not manifest until 54 h after initiation of the infusion. Despite the marked decline in FSH secretion during the last 24 h of the 4-day infusion of recombinant hormone, circulating inhibin B and pro-alpha-C concentrations were maintained at preinfusion control levels (1 ng/ml). The finding that imposition of an exaggerated circulating inhibin signal led to suppression of FSH secretion in the male monkey only after 2 days of exposure to the hormone indicates that in this species the feedback action of testicular inhibin on FSH secretion is heavily lagged

  17. Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice.

    PubMed

    Han, Haijun; Sun, Zilong; Luo, Guangying; Wang, Chong; Wei, Ruifen; Wang, Jundong

    2015-09-01

    Numerous studies have shown that fluoride exposure adversely affected the male reproductive function, while the molecular mechanism is not clear. The present study was to investigate the effects of fluoride exposure (60 days) on the expressions of reproductive related genes, serum sex hormone levels and structures of the hypothalamus-pituitary-testicular axis (HPTA), which plays a vital role in regulating the spermatogenesis in male mice. In this study, 48 male mice were administrated with 0, 25, 50, and 100 mg/L NaF through drinking water. Results showed that the malformation ratio of sperm was significantly increased (P<0.05). At transcriptional level, the expression levels of follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), inhibin alpha (INHα), inhibin beta-B (INHβB), and sex hormone binding globulin (SHBG) mRNA in testis were significantly decreased (P<0.05). Moreover, histological lesions in testis and ultrastructural alterations in hypothalamus, pituitary and testis were obvious. However, the same fluoride exposure did not lead to significant changes of related mRNA expressions in hypothalamus and pituitary (P>0.05). Also, there were no marked changes in serum hormones. Taken together, we conclude that the mechanism of HPTA dysfunction is mainly elucidated through affecting testes, and its effect on hypothalamus and pituitary was secondary at exposure for 60 days.

  18. Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice.

    PubMed

    Han, Haijun; Sun, Zilong; Luo, Guangying; Wang, Chong; Wei, Ruifen; Wang, Jundong

    2015-09-01

    Numerous studies have shown that fluoride exposure adversely affected the male reproductive function, while the molecular mechanism is not clear. The present study was to investigate the effects of fluoride exposure (60 days) on the expressions of reproductive related genes, serum sex hormone levels and structures of the hypothalamus-pituitary-testicular axis (HPTA), which plays a vital role in regulating the spermatogenesis in male mice. In this study, 48 male mice were administrated with 0, 25, 50, and 100 mg/L NaF through drinking water. Results showed that the malformation ratio of sperm was significantly increased (P<0.05). At transcriptional level, the expression levels of follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), inhibin alpha (INHα), inhibin beta-B (INHβB), and sex hormone binding globulin (SHBG) mRNA in testis were significantly decreased (P<0.05). Moreover, histological lesions in testis and ultrastructural alterations in hypothalamus, pituitary and testis were obvious. However, the same fluoride exposure did not lead to significant changes of related mRNA expressions in hypothalamus and pituitary (P>0.05). Also, there were no marked changes in serum hormones. Taken together, we conclude that the mechanism of HPTA dysfunction is mainly elucidated through affecting testes, and its effect on hypothalamus and pituitary was secondary at exposure for 60 days. PMID:25966048

  19. Prenatal Cigarette Smoke Exposure Causes Hyperactivity and Agressive Behavior: Role of Altered Catcholamines and BDNF

    PubMed Central

    Yochum, Carrie; Doherty-Lyon, Shannon; Hoffman, Carol; Hossain, Muhammad M.; Zellikoff, Judith T.; Richardson, Jason R.

    2014-01-01

    Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4 hr/d and 5 d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25 ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior assessed on at 4 weeks of age and again at 4–6 months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders and suggest a role for monoaminergic and BDNF alterations in these effects. PMID:24486851

  20. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus.

    PubMed

    Cao, Jinyan; Mickens, Jillian A; McCaffrey, Katherine A; Leyrer, Stephanie M; Patisaul, Heather B

    2012-01-01

    Developmental exposure to Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been purported to adversely impact reproductive function in female rodents. Because neonatal life is a critical window for the sexual dimorphic organization of the hypothalamic-pituitary-gonadal (HPG) axis, interference with this process could underlie compromised adult reproductive physiology. The goal of the present study was to determine if neonatal BPA exposure interferes with sex specific gene expression of estrogen receptor alpha (ERα), ER beta (ERβ) and kisspeptin (Kiss1) in the anterior and mediobasal hypothalamus. Long Evans (LE) neonatal rats were exposed to vehicle, 10μg estradiol benzoate (EB), 50mg/kg BPA or 50μg/kg BPA by subcutaneous injection daily from postnatal day 0 (PND 0) to PND 2. Gene expression was assessed by in situ hybridization on PNDs 4 and 10. Within the anterior hypothalamus ERα expression was augmented by BPA in PND 4 females, then fell to male-typical levels by PND 10. ERβ expression was not altered by BPA on PND 4, but significantly decreased or eliminated in both sexes by PND 10. Kiss1 expression was diminished by BPA in the anterior hypothalamus, especially in females. There were no significant impacts of BPA in the mediobasal hypothalamus. Collectively, BPA effects did not mirror those of EB. The results show that neonatal hypothalamic ER and Kiss1 expression is sensitive to BPA exposure. This disruption may alter sexually dimorphic hypothalamic organization and underlie adult reproductive deficiencies. Additionally, the discordant effects of EB and BPA indicate that BPA likely disrupts hypothalamic organization by a mechanism other than simply acting as an estrogen mimic.

  1. Acute exposure to methamphetamine alters TLR9-mediated cytokine expression in human macrophage.

    PubMed

    Burns, Ariel; Ciborowski, Pawel

    2016-02-01

    Recent studies show that methamphetamine (Meth) use leads to higher susceptibility to and progression of infections, which suggests impairment of the immune system. The first line of defense against infections is the innate immune system and the macrophage is a key player in preventing and fighting infections. So we profiled cytokines over time in Meth treated THP-1 cells, as a human macrophage model, at a relevant concentration using high throughput screening to find a signaling target. We showed that after a single exposure, the effect of Meth on macrophage cytokine production was rapid and time dependent and shifted the balance of expression of cytokines to pro-inflammatory. Our results were analogous to previous reports in that Meth up-regulates TNF-α and IL-8 after two hours of exposure. However, global screening led to the novel identification of CXCL16, CXCL1 and many other up-regulated cytokines. We also showed CCL7 as the most down-regulated chemokine due to Meth exposure, which led us to hypothesize that Meth dysregulates the MyD88-dependent Toll-like receptor 9 (TLR9) signaling pathway. In conclusion, altered cytokine expression in macrophages suggests it could lead to a suppressed innate immunity in people who use Meth.

  2. Prenatal alcohol exposure alters the cerebral cortex proteome in weanling rats.

    PubMed

    Canales, Lorena; Gambrell, Caitlin; Chen, Jing; Neal, Rachel E

    2013-08-01

    Maternal consumption of alcohol during pregnancy impairs neurodevelopment in offspring. Utilizing a rodent model of continuous moderate dose alcohol exposure throughout gestation [gestation day 1 (GD1)-GD22; BAC ~70 mg/dL], the impact of developmental alcohol exposure on juvenile cerebral cortex protein abundances was determined. At weaning, cerebral cortex tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Gestational alcohol exposure increased the abundance of post-translationally modified forms of cytoskeletal proteins and the abundance of proteins within the small molecule biochemistry (includes glucose metabolism) pathway and proteosome processing pathways though ubiquitin conjugating enzymes and chaperones were decreased in abundance. In weanling offspring exposed prenatally to alcohol, alterations in cytoskeletal protein post-translational modifications were noted. Increased abundance of proteins from the small molecule biochemistry pathway, which includes glucose metabolism, and proteosome processing pathways were also noted. Decreased abundances of ubiquitin conjugating enzyme and chaperone protein were noted in the cerebral cortex of these offspring.

  3. Neonatal exposure to amphetamine alters social affiliation and central dopamine activity in adult male prairie voles.

    PubMed

    Fukushiro, D F; Olivera, A; Liu, Y; Wang, Z

    2015-10-29

    The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating. Recent data have shown that amphetamine (AMPH) is rewarding to prairie voles as it induces conditioned place preferences. Further, repeated treatment with AMPH impairs social bonding in adult prairie voles through a central dopamine (DA)-dependent mechanism. The present study examined the effects of neonatal exposure to AMPH on behavior and central DA activity in adult male prairie voles. Our data show that neonatal exposure to AMPH makes voles less social in an affiliation test during adulthood, but does not affect animals' locomotor activity and anxiety-like behavior. Neonatal exposure to AMPH also increases the levels of tyrosine hydroxylase (TH) and DA transporter (DAT) mRNA expression in the ventral tegmental area (VTA) in the brain, indicating an increase in central DA activity. As DA has been implicated in AMPH effects on behavioral and cognitive functions, altered DA activity in the vole brain may contribute to the observed changes in social behavior.

  4. Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells.

    PubMed

    Alves, M G; Neuhaus-Oliveira, A; Moreira, P I; Socorro, S; Oliveira, P F

    2013-07-01

    The purpose of this study was to determine the effects of 2,4-D, an herbicide used worldwide also known as endocrine disruptor, in Sertoli cell (SC) metabolism. Immature rat SCs were maintained 50h under basal conditions or exposed to 2,4-D (100nM, 10μM and 1mM). SCs exposed to 10μM and 1mM of 2,4-D presented lower intracellular glucose and lactate content. Exposure to 10μM of 2,4-D induced a significant decrease in glucose transporter-3 mRNA levels and phosphofructokinase-1 mRNA levels decreased in cells exposed to 100nM and 10μM of 2,4-D. Exposure to 100nM and 10μM also induced a decrease in lactate dehydrogenase (LDH) mRNA levels while the LDH protein levels were only decreased in cells exposed to 1mM of 2,4-D. Exposure to 2,4-D altered glucose uptake and metabolization in SCs, as well as lactate metabolism and export that may result in impaired spermatogenesis.

  5. Neonatal exposure to amphetamine alters social affiliation and central dopamine activity in adult male prairie voles.

    PubMed

    Fukushiro, D F; Olivera, A; Liu, Y; Wang, Z

    2015-10-29

    The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating. Recent data have shown that amphetamine (AMPH) is rewarding to prairie voles as it induces conditioned place preferences. Further, repeated treatment with AMPH impairs social bonding in adult prairie voles through a central dopamine (DA)-dependent mechanism. The present study examined the effects of neonatal exposure to AMPH on behavior and central DA activity in adult male prairie voles. Our data show that neonatal exposure to AMPH makes voles less social in an affiliation test during adulthood, but does not affect animals' locomotor activity and anxiety-like behavior. Neonatal exposure to AMPH also increases the levels of tyrosine hydroxylase (TH) and DA transporter (DAT) mRNA expression in the ventral tegmental area (VTA) in the brain, indicating an increase in central DA activity. As DA has been implicated in AMPH effects on behavioral and cognitive functions, altered DA activity in the vole brain may contribute to the observed changes in social behavior. PMID:26321240

  6. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.

  7. Dynamics of circulating concentrations of gonadotropins and ovarian hormones throughout the menstrual cycle in the bonnet monkey: role of inhibin A in the regulation of follicle-stimulating hormone secretion.

    PubMed

    Suresh, P S; Medhamurthy, R

    2009-10-01

    In higher primates, increased circulating follicle-stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P(4)) secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern of P(4) secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3+/-2 vs. 27.3+/-3 pg/mL), and a 2- to 3-fold rise in circulating FSH levels by 24 hr (0.20+/-0.02 vs. 0.53+/-0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 microg/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P(4) concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase.

  8. Economic evaluation of highly purified human menopausal gonadotropin versus recombinant human follicle-stimulating hormone in fresh and frozen in vitro fertilization/intracytoplasmic sperm-injection cycles in Sweden

    PubMed Central

    Wex, Jaro; Abou-Setta, Ahmed M

    2013-01-01

    Gonadotropin-releasing hormone-analog type, fertilization method, and number of embryos available for cryopreservation should be incorporated into economic evaluations of highly purified human menopausal gonadotropin (HP-hMG) and recombinant human follicle-stimulating hormone (r-hFSH), as they may affect treatment costs. We searched for randomized trials and meta-analyses comparing HP-hMG and r-hFSH. Meta-analysis showed no significant difference in live births (odds ratio 0.82, 95% confidence interval [CI] 0.66–1.01), but a greater number of oocytes with r-hFSH (mean difference [MD] 1.96, 95% CI 1.02–2.90). Using a cost-minimization model for Sweden, accounting for embryo availability, survival following thawing, and patient dropout, we simulated patients individually for up to three cycles. R-hFSH was found to be cost-saving, at 2,767 kr (95% CI 1,580–4,057) per patient (€315 or $411); baseline savings were 6.43% of the total HP-hMG cost. In fresh cycles only, the savings for r-hFSH were 1,752 kr (95% CI 48–3,658) per patient (€200 or $260). In univariate sensitivity analyses, savings were obtained until the price of r-hFSH increased by 30% or the dosage of HP-hMG decreased by 38%–62% of baseline value. In probabilistic sensitivity analysis, r-hFSH was cost-saving in 100% of the simulated cohort per patient and in 85% per live birth; the respective percentages for fresh cycles only were 97.3% and 73.1%. In conclusion, a greater number of oocytes with r-hFSH allows for more frozen embryo transfers, thereby reducing overall treatment cost. PMID:23966798

  9. Economic evaluation of highly purified human menopausal gonadotropin versus recombinant human follicle-stimulating hormone in fresh and frozen in vitro fertilization/intracytoplasmic sperm-injection cycles in Sweden.

    PubMed

    Wex, Jaro; Abou-Setta, Ahmed M

    2013-01-01

    Gonadotropin-releasing hormone-analog type, fertilization method, and number of embryos available for cryopreservation should be incorporated into economic evaluations of highly purified human menopausal gonadotropin (HP-hMG) and recombinant human follicle-stimulating hormone (r-hFSH), as they may affect treatment costs. We searched for randomized trials and meta-analyses comparing HP-hMG and r-hFSH. Meta-analysis showed no significant difference in live births (odds ratio 0.82, 95% confidence interval [CI] 0.66-1.01), but a greater number of oocytes with r-hFSH (mean difference [MD] 1.96, 95% CI 1.02-2.90). Using a cost-minimization model for Sweden, accounting for embryo availability, survival following thawing, and patient dropout, we simulated patients individually for up to three cycles. R-hFSH was found to be cost-saving, at 2,767 kr (95% CI 1,580-4,057) per patient (€315 or $411); baseline savings were 6.43% of the total HP-hMG cost. In fresh cycles only, the savings for r-hFSH were 1,752 kr (95% CI 48-3,658) per patient (€200 or $260). In univariate sensitivity analyses, savings were obtained until the price of r-hFSH increased by 30% or the dosage of HP-hMG decreased by 38%-62% of baseline value. In probabilistic sensitivity analysis, r-hFSH was cost-saving in 100% of the simulated cohort per patient and in 85% per live birth; the respective percentages for fresh cycles only were 97.3% and 73.1%. In conclusion, a greater number of oocytes with r-hFSH allows for more frozen embryo transfers, thereby reducing overall treatment cost.

  10. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  11. Histological alterations in male A/J mice following nose-only exposure to tobacco smoke.

    PubMed

    Hamm, J T; Yee, S; Rajendran, N; Morrissey, R L; Richter, S J; Misra, M

    2007-05-01

    The incidence and multiplicity of grossly observed and microscopic lesions of the respiratory tract of A/J mice exposed nose-only to mainstream smoke (50, 200, or 400 mg total particulate matter/m3 from 2R4F cigarettes) was compared to those of filtered air controls. Animals were necropsied at the end of exposure (5 mo) or following 4 or 7 mo of recovery. Lungs were visually inspected for tumors at all necropsies and examined histopathologically at 9 and 12 mo. At 5 mo no tumors were recorded. No significant elevations in tumor incidence or multiplicity were recorded although at 9 mo multiplicity was elevated in the mid-exposure group (0.90 versus 0.55 tumors per animal for controls). At 12 mo, multiplicity was increased over the 9-mo necropsy at all exposures except 200 mg/m3; however, there were no dose-related trends in multiplicity or incidence. Histopathological alterations included hyperplasia, metaplasia, and inflammation of the nose and larynx and proliferative lesions of the lungs. At 9 mo, the multiplicity of focal lung lesions was 1.4 per animal in controls but averaged 1.0 among smoke-exposed groups. There was an inverse relation (p < .059) between smoke concentration and the percentage of hyperplastic lesions at 9 mo. At 12 mo the high-exposure group had slightly increased multiplicity of 2.3 lesions compared with 1.6 among controls, while the percentage of hyperplasic lesions was similar between groups. Nose-only inhalation of mainstream tobacco smoke resulted in chronic inflammatory changes of the respiratory tract yet failed to produce statistically significant changes in tumor incidence or multiplicity. PMID:17365046

  12. Does Switching to Reduced Ignition Propensity Cigarettes Alter Smoking Behavior or Exposure to Tobacco Smoke Constituents?

    PubMed Central

    Rees, Vaughan W.; Norton, Kaila J.; Cummings, K. Michael; Connolly, Gregory N.; Alpert, Hillel R.; Sjödin, Andreas; Romanoff, Lovisa; Li, Zheng; June, Kristie M.; Giovino, Gary A.

    2010-01-01

    Introduction: Since 2004, several jurisdictions have mandated that cigarettes show reduced ignition propensity (RIP) in laboratory testing. RIP cigarettes may limit fires caused by smoldering cigarettes, reducing fire-related deaths and injury. However, some evidence suggests that RIP cigarettes emit more carbon monoxide and polycyclic aromatic hydrocarbons, and smokers may alter their smoking patterns in response to RIP cigarettes. Both of these could increase smokers’ exposures to harmful constituents in cigarettes. Methods: An 18-day switching study with a comparison group was conducted in Boston, MA (N = 77), and Buffalo, NY (N = 83), in 2006–2007. Current daily smokers completed 4 laboratory visits and two 48-hr field data collections. After a 4-day baseline, Boston participants switched to RIP cigarettes for 14 days, whereas Buffalo participants smoked RIP cigarettes throughout. Outcome measures included cigarettes smoked per day; smoking topography; salivary cotinine; breath CO; and hydroxylated metabolites of pyrene, naphthalene, phenanthrene, and fluorene. Because the groups differed demographically, analyses adjusted for race, age, and sex. Results: We observed no significant changes in smoking topography or CO exposure among participants who switched to RIP cigarettes. Cigarette use decreased significantly in the switched group (37.7 cigarettes/48 hr vs. 32.6 cigarettes/48 hr, p = .031), while hydroxyphenanthrenes increased significantly (555 ng/g creatinine vs. 669 ng/g creatinine, p = .007). No other biomarkers were significantly affected. Discussion: Small increases in exposure to phenanthrene among smokers who switched to RIP versions were observed, while other exposures and smoking topography were not significantly affected. Toxicological implications of these findings are unclear. These findings should be weighed against the potential public health benefits of adopting RIP design standards for cigarette products. PMID:20805292

  13. Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    PubMed Central

    Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z.; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D.; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M.; Wheelock, Craig E.

    2011-01-01

    Background Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. Objectives This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Methods Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Results Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E2 (PGE2). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Conclusions Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas. PMID:21897859

  14. Altered testicular microsomal steroidogenic enzyme activities in rats with lifetime exposure to soy isoflavones.

    PubMed

    McVey, Mark J; Cooke, Gerard M; Curran, Ivan H A

    2004-12-01

    Androgen production in the testis is carried out by the Leydig cells, which convert cholesterol into androgens. Previously, isoflavones have been shown to affect serum androgen levels and steroidogenic enzyme activities. In this study, the effects of lifelong exposure to dietary soy isoflavones on testicular microsomal steroidogenic enzyme activities were examined in the rat. F1 male rats were obtained from a multi-generational study where the parental generation was fed diets containing alcohol-washed soy protein supplemented with increasing amounts of Novasoy, a commercially available isoflavone supplement. A control group was maintained on a soy-free casein protein-based diet (AIN93G). The diets were designed to approximate human consumption levels and ranged from 0 to 1046.6 mg isoflavones/kg pelleted feed, encompassing exposures representative of North American and Asian diets as well as infant fed soy-based formula. Activities of testicular 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450c17 (CYP17), 17beta-hydroxysteroid dehydrogenase (17beta-HSD) were assayed on post natal day (PND) 28, 70, 120, 240 and 360 while 5alpha-reducatase was assayed on PND 28. At PND 28, 3beta-HSD activity was elevated by approximately 50% in rats receiving 1046.6 mg total isoflavones/kg feed compared to those on the casein only diet. A similar increase in activity was observed for CYP17 in rats receiving 235.6 mg total isoflavones/kg feed, a level representative of infant exposure through formula, compared to those receiving 0mg isoflavones from the casein diet. These results demonstrate that rats fed a mixture of dietary soy isoflavones showed significantly altered enzyme activity profiles during development at PND 28 as a result of early exposure to isoflavones at levels obtainable by humans.

  15. Brief alcohol exposure alters transcription in astrocytes via the heat shock pathway

    PubMed Central

    Pignataro, Leonardo; Varodayan, Florence P; Tannenholz, Lindsay E; Protiva, Petr; Harrison, Neil L

    2013-01-01

    Astrocytes are critical for maintaining homeostasis in the central nervous system (CNS), and also participate in the genomic response of the brain to drugs of abuse, including alcohol. In this study, we investigated ethanol regulation of gene expression in astrocytes. A microarray screen revealed that a brief exposure of cortical astrocytes to ethanol increased the expression of a large number of genes. Among the alcohol-responsive genes (ARGs) are glial-specific immune response genes, as well as genes involved in the regulation of transcription, cell proliferation, and differentiation, and genes of the cytoskeleton and extracellular matrix. Genes involved in metabolism were also upregulated by alcohol exposure, including genes associated with oxidoreductase activity, insulin-like growth factor signaling, acetyl-CoA, and lipid metabolism. Previous microarray studies performed on ethanol-treated hepatocyte cultures and mouse liver tissue revealed the induction of almost identical classes of genes to those identified in our microarray experiments, suggesting that alcohol induces similar signaling mechanisms in the brain and liver. We found that acute ethanol exposure activated heat shock factor 1 (HSF1) in astrocytes, as demonstrated by the translocation of this transcription factor to the nucleus and the induction of a family of known HSF1-dependent genes, the heat shock proteins (Hsps). Transfection of a constitutively transcriptionally active Hsf1 construct into astrocytes induced many of the ARGs identified in our microarray study supporting the hypothesis that HSF1 transcriptional activity, as part of the heat shock cascade, may mediate the ethanol induction of these genes. These data indicate that acute ethanol exposure alters gene expression in astrocytes, in part via the activation of HSF1 and the heat shock cascade. PMID:23533150

  16. PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN

    PubMed Central

    Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne

    2016-01-01

    Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression

  17. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-01

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  18. Does ozone exposure alter growth and carbon allocation of mycorrhizal plants

    SciTech Connect

    Yoshida, L.C.; Gamon, J.A. ); Andersen, C.P. )

    1994-06-01

    Ozone is known to adversely affect plant growth. However, it is less clear how ozone affects belowground processes. This study tests the hypothesis that ozone alters growth and carbon allocation of vesicular arbuscular mycorrhizal (VAM) plants. Two ecotypes of Elymus glaucus (blue wild rye) were exposed to mycorrhizal inoculation and episodic ozone exposures simulating atmospheric conditions in the Los Angeles Basin. Preliminary results show that effects of ozone on growth were subtle. In both ecotypes, growth of aboveground biomass was not affected by ozone while root growth was decreased. In most treatments, mycorrhizal inoculation decreased growth of leaves and stems, but had no significant effect on root growth. Three-way ANOVA tests indicated interactive effects between ecotype, mycorrhiza and ozone. Further experimental work is needed to reveal the biological processes governing these responses.

  19. Neuropsychological evaluation for detecting alterations in the central nervous system after chemical exposure.

    PubMed

    Bolla, K I

    1996-08-01

    Individuals with multiple chemical sensitivity (MCS) report decreased attention/concentration, memory loss, disorientation, confusion, fatigue, depression, irritability, decreased libido, sleep disturbances, headaches, and weakness. These neurobehavioral symptoms represent possible alterations in the central nervous system (CNS). The evaluation of neurobehavioral functioning using neuropsychological techniques provides an indirect method for determining the integrity of the CNS. However, caution must be used in interpreting neuropsychological test results, since this technique is extremely sensitive but is not specific. Clinically significant aberrant test performance may be noted after chemical exposure as well as with other diseases of the CNS. In addition, neuropsychiatric conditions such as anxiety and depression are often manifested as cognitive difficulties that are similar in pattern to the cognitive dysfunction caused by toxic chemicals. Herein, limitations and cautions in the interpretations of neuropsychological test results are discussed. PMID:8921555

  20. Morphologic alteration of the olfactory bulb after acute ozone exposure in rats.

    PubMed

    Colín-Barenque, L; Avila-Costa, M R; Fortoul, T; Rugerio-Vargas, C; Machado-Salas, J P; Espinosa-Villanueva, J; Rivas-Arancibia, S

    1999-10-15

    The interaction of ozone with some molecules results in an increased production of free radicals. The objective of this study was to identify whether acute ozone exposure to 1-1.5 ppm for 4 h, produced cytological and ultrastructural modifications in the olfactory bulb cells. The results showed that in rats exposed to ozone there was a significant loss of dendritic spines on primary and secondary dendrites of granule cells, whereas the control rats did not present such changes. Besides these exposed cells showed vacuolation of neuronal cytoplasm, swelling of Golgi apparatus and mitochondrion, dilation cisterns of the rough endoplasmic reticulum. These findings suggest that oxidative stress produced by ozone induces alterations in the granule layer of the olfactory bulb, which may be related to functional modifications.

  1. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Shen, Jianliang; Reimer, David; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  2. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats.

    PubMed

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J Michael

    2010-08-24

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). In Experiment 1, male offspring were fed normal rat chow and tap water, while in Experiment 2, beta-alanine and taurine were treated from conception until weaning and then female pups were fed normal rat chow and 5% glucose in drinking water (CG, TDG or TSG) or water alone (CW, TDW or TSW). At 7-8 weeks of age, renal potassium excretion was measured at rest and after an acute saline load (5% of body weight) in conscious, restrained rats. Although all male groups displayed similar renal potassium excretion, TSF rats slightly increased fractional potassium excretion at rest but not in response to saline load, whereas TDF did the opposite. Plasma potassium concentration was only slightly altered by the diet manipulations. In female offspring, none of the perinatal treatments significantly altered renal potassium excretion at rest or after saline load. High sugar intake slightly decreased potassium excretion at rest in TDG and TSG, but only the TDG group displayed a decreased response to saline load. The present data indicates that perinatal taurine exposure only mildly influences renal potassium excretion in adult male and female rats.

  3. Neonatal exposure to technical methoxychlor alters pregnancy outcome in female mice.

    PubMed

    Swartz, W J; Eroschenko, V P

    1998-01-01

    This study was designed to determine the ability of female mice who were exposed neonatally to the pesticide methoxychlor (MXC) to mate, ovulate, and become pregnant upon reaching sexual maturity. One-day-old female mice (5 to 8/group) were exposed daily by intraperitoneal (ip) injection for 14 d to either sesame oil or 10 microg estradiol-17beta or 0.1, 0.5 or 1.0 mg MXC suspended in sesame oil. The MXC exposures corresponded to 14 to 71, 68 to 357, or 135 to 714 mg/kg body weight, respectively. Three months later, female mice were placed with proven breeder males and checked daily for vaginal plugs. Mated female mice were sacrificed 18 d after the appearance of a vaginal plug to evaluate pregnancy. Uteri were examined for the presence of living fetuses and/or resorption sites. Ovaries were removed and prepared for histologic evaluation and tabulation of corpora lutea. All mice from all three MXC-treated groups did in fact mate, in comparison with only one of those exposed neonatally to estradiol. Increasing the dose of MXC produced a decreased number of pregnant animals at 18 d following mating. The mean number of live fetuses/litter was reduced in the 0.5 and 1.0 mg MXC-treated groups. Corpora lutea were significantly reduced in ovaries from only the 1.0 mg MXC group and the estradiol group. No effects of treatment were seen at 0.1 mg MXC. It is concluded that neonatal exposure to MXC does not interfere with mating. Instead, significant alterations are seen in initiating and/or maintaining pregnancy. The deleterious effects on pregnancy may be due to the influence of neonatal MXC treatments on the hypothalamic-pituitary-ovarian axis as well as on possible alteration of the uterine environment.

  4. Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus.

    PubMed

    Zheng, W; Shen, H; Blaner, W S; Zhao, Q; Ren, X; Graziano, J H

    1996-08-01

    The choroid plexus, which is responsible for the maintenance of the biochemical milieu of the cerebrospinal fluid (CSF), avidly sequesters Pb. In order to test the hypothesis that chronic Pb exposure may impair choroid plexus function, male weanling Sprague-Dawley rats were exposed to Pb in drinking water at doses of 0, 50, or 250 micrograms Pb/ml (as Pb acetate) for 30, 60, or 90 days. The function of the choroid plexus was assessed as reflected by CSF concentrations of transthyretin (TTR, a major CSF protein manufactured by brain choroid plexus) and CSF essential metal ions (Ca2+, Mg2+, K+, and Na+). TTR concentrations were determined by radioimmunoassay using a monospecific rabbit anti-rat TTR polyclonal antibody, and CSF metal ions analyzed by flame atomic absorption spectrophotometry. Two-way ANOVA of CSF TTR concentrations revealed highly significant dose (p < 0.0001), time (p < 0.0223), and dose-by-time effects (p < 0.0379). Moreover, the percentage of reduction of CSF TTR was directly correlated with Pb concentrations in the choroid plexus (r = 0.703, p < 0.05). Pb exposure significantly increased CSF concentrations of Mg2+, but did not markedly altered CSF concentrations of Ca2+, K+, and Na+. Histopathologic examination under the light microscope did not show distinct alterations of plexus structure in Pb-treated rats. Since TTR is responsible for transport of thyroid hormones to the developing brain, we postulate that the depression of choroid plexus TTR production (and/or secretion) by Pb may impair brain development in young animals by depriving the CNS of thyroid hormones. PMID:8806863

  5. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    PubMed

    Davis, David A; Bortolato, Marco; Godar, Sean C; Sander, Thomas K; Iwata, Nahoko; Pakbin, Payam; Shih, Jean C; Berhane, Kiros; McConnell, Rob; Sioutas, Constantinos; Finch, Caleb E; Morgan, Todd E

    2013-01-01

    Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3)) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  6. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    PubMed

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development.

  7. Alterations in social behavior of Japanese medaka (Oryzias latipes) in response to sublethal chlorpyrifos exposure.

    PubMed

    Khalil, Fatma; Kang, Ik Joon; Undap, Suzanne; Tasmin, Rumana; Qiu, Xuchun; Shimasaki, Yohei; Oshima, Yuji

    2013-06-01

    The behavioral and biochemical responses of Japanese medaka (Oryzias latipes) to acute and subacute (sublethal) levels of chlorpyrifos were studied. In the acute exposure test, medaka were exposed to 0.018, 0.055, 0.166, or 0.500 mg L(-1) chlorpyrifos for 4 d. As a result, fish showed hypoactivity compared to the control (at 0.018, 0.055, and 0.166 mg L(-1), swimming speeds were 55.6%, 39.0%, and 27.3% those of the control), Brain acetylcholinesterase activity and swimming speed were significantly correlated. In the subacute toxicity test, medaka were exposed to 0.012 mg L(-1) chlorpyrifos (10% of LC(50)) for 8 d. On day 4, there were no significant differences in behavioral and biochemical endpoints in exposed fish as compared to the control. On day 8, exposed fish became hyperactive, and the swimming speed of the social group increased to 2 times that of the control, whereas acetylcholinesterase activity was decreased to 68% that of the control. In addition, fish exhibited significant alterations in social behavior (schooling duration increased to 2.6 times and solitary duration decreased to 28% that of the control). Our findings clearly demonstrate a subacute effect of chlorpyrifos on the social behavior of medaka, which may pose a risk at population level because of the disturbance of social behavior. In addition, the recorded behavioral alterations may provide a useful tool for assessing the toxicity of organophosphorous pesticides to aquatic organisms.

  8. In utero exposure to chloroquine alters sexual development in the male fetal rat

    SciTech Connect

    Clewell, Rebecca A. Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-06-15

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  9. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    PubMed

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development. PMID:25451122

  10. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Pinheiro, Cintia R; Santos-Silva, Ana Paula; de Oliveira, Elaine; Lisboa, Patricia C

    2013-08-01

    Maternal exposure to nicotine during lactation causes hyperleptinemia in the pups and, at adulthood, these animals are overweight and hyperleptinemic, while, in their hypothalamus, the leptin signaling pathway is reduced, evidencing a central leptin resistance. Then, we evaluated the expression of pro-opiomelanocortin (POMC), alpha-melanocyte stimulating hormone (α-MSH), cocaine and amphetamine-regulated transcript (CART), neuropeptide Y (NPY), agouti-related peptide (AgRP) and others in different hypothalamic nuclei in order to better understand the mechanisms underlying the obese phenotype observed in these animals at adulthood. On the 2nd postnatal day (P2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6 mg/kg/day) or saline for 14 days. Offspring were killed in P180 and immunohistochemistry and Western blot analysis were carried out. Significance data had p<0.05. Adult NIC offspring showed more intense NPY staining in the paraventricular nucleus (PVN) (+21%) and increased number of POMC-positive cells in the: arcuate nucleus (+33%), as an increase in fiber density of α-MSH in PVN (+85%). However, the number of CART-positive cells was reduced in the PVN (-25%). CRH staining was more intense in NIC offspring (+136%). Orexins and AgRP were not altered. Thus, maternal nicotine exposure changes hypothalamic neuropeptides in the adult progeny that is partially compatible with leptin resistance.

  11. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    PubMed Central

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  12. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    PubMed

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  13. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice.

    PubMed

    Onishchenko, Natalia; Tamm, Christoffer; Vahter, Marie; Hökfelt, Tomas; Johnson, Jeffrey A; Johnson, Delinda A; Ceccatelli, Sandra

    2007-06-01

    To investigate the long-term effects of developmental exposure to methylmercury (MeHg), pregnant mice were exposed to at 0.5 mg MeHg/kg/day via drinking water from gestational day 7 until day 7 after delivery. The behavior of offspring was monitored at 5-15 and 26-36 weeks of age using an automated system (IntelliCage) designed for continuous long-term recording of the home cage behavior in social groups and complex analysis of basic activities and learning. In addition, spontaneous locomotion, motor coordination on the accelerating rotarod, spatial learning in Morris water maze, and depression-like behavior in forced swimming test were also studied. The analysis of behavior performed in the IntelliCage without social deprivation occurred to be more sensitive in detecting alterations in activity and learning paradigms. We found normal motor function but decreased exploratory activity in MeHg-exposed male mice, especially at young age. Learning disturbances observed in MeHg-exposed male animals suggest reference memory impairment. Interestingly, the forced swimming test revealed a predisposition to depressive-like behavior in the MeHg-exposed male offspring. This study provides novel evidence that the developmental exposure to MeHg can affect not only cognitive functions but also motivation-driven behaviors.

  14. Ethanol exposure during gastrulation alters neuronal morphology and behavior in zebrafish.

    PubMed

    Shan, Shubham D; Boutin, Savanna; Ferdous, Jannatul; Ali, Declan W

    2015-01-01

    Ethanol (EtOH) exposure during development has been shown to lead to deficits in fine and gross motor control. In this study we used zebrafish embryos to determine the effects of EtOH treatment during gastrulation. We treated embryos in the gastrulation stage (5.25 hours post fertilization (hpf) to 10.75 hpf) with 10 mM, 50 mM or 100 mM EtOH and examined the effects on general animal morphology, the c-start reflex behavior, Mauthner cell (M-cell) morphology and motor neuron morphology. EtOH treated fish exhibited a minor but significant increase in gross morphological deformities compared with untreated fish. Behavioral studies showed that EtOH treatment resulted in an increase in the peak speed of the tail during the escape response. Furthermore, there was a marked increase in abnormally directed c-starts, with treated fish showing greater incidences of c-starts in inappropriate directions. Immunolabeling of the M-cells, which are born during gastrulation, revealed that they were significantly smaller in fish treated with 100 mM EtOH compared with controls. Immunolabeling of primary motor neurons using anti-znp1, showed no significant effect on axonal branching, whereas secondary motor axons had a greater number of branches in ethanol treated fish compared with controls. Together these findings indicate that ethanol exposure during gastrulation can lead to alterations in behavior, neuronal morphology and possibly function. PMID:25599605

  15. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    PubMed

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  16. Follicle-stimulating hormone (FSH) blood test

    MedlinePlus

    ... the test done on certain days of your menstrual cycle. ... In women, FSH helps manage the menstrual cycle and stimulates the ovaries to produce eggs. The test is used to help diagnose or evaluate: Menopause Women who have polycystic ovary ...

  17. FSH (Follicle-Stimulating Hormone) Test

    MedlinePlus

    ... FSH and LH may be ordered when a boy or girl does not appear to be entering puberty at ... hair Growth of the testicles and penis in boys Beginning of menstruation in girls ^ Back to top What does the test result ...

  18. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  19. Alteration of the aPA ELISA by UV exposure of polystyrene microtiter plates.

    PubMed

    Goldberg, J S; Wagenknecht, D R; McIntyre, J A

    1996-01-01

    Interlaboratory inconsistencies in antiphospholipid antibody (aPA) solid phase assays have prompted controversy in clinical laboratory testing for aPA. We found that the aPA ELISA can be influenced by the type of microtiter plate utilized and by the conditions in which the plates are stored. By exposing 96-well, flat-bottom polystyrene microtiter plates to short wave UV light (254 nm), the aPA ELISA signal decreased in a UV dose-dependent manner. No effect was seen with long wave UV light (366 nm). These results were independent of the antibody isotype under study or the phospholipid (PL) antigen used: anionic phosphatidylserine (PS) and cardiolipin (CL), or zwitterionic phosphatidylethanolamine (PE). Purified human beta 2-glycoprotein I (beta 2 GPI), a known cofactor for anionic PL, and rabbit anti-beta 2 GPI antisera were used to demonstrate that beta 2 GPI bound equally to UV treated and untreated microtiter plates. In contrast, recognition of beta 2 GPI on an anionic PL surface was decreased on UV treated plates, suggesting that UV exposure alters the lipid binding properties of the microliter plate. To determine whether UV exposure inhibited PL binding directly or caused a change in the way the PL was bound, the amount of PL bound to UV treated and untreated plates was measured by using fluorescent labeled PS and a fluorimeter. PS binding was decreased by 53% in UV treated wells as compared to untreated wells. These data show that short wave UV exposure reduces PL binding to polystyrene microtiter plates, thereby reducing the amount of beta 2 GPI bound to PL coated ELISA plates. Thus by using UV exposed microtiter plates, decreased or false-negative a PA ELISA results may be obtained for aPA positive plasmas. PMID:8887002

  20. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees.

    PubMed

    Williamson, Sally M; Moffat, Christopher; Gomersall, Martha A E; Saranzewa, Nastja; Connolly, Christopher N; Wright, Geraldine A

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival.

  1. Fetal hematopoietic alterations after maternal exposure to benzo[a]pyrene: A cytometric evaluation

    SciTech Connect

    Holladay, S.D.; Smith, B.J.

    1994-12-31

    In utero exposure to the environmental contaminant benzo[a]pyrene (BaP) was found to alter expression of murine thymocyte and liver fetal cell-surface markers. Pregnant mice were treated (via gavage) with 0, 50, 100, or 150 mg BaP/kg/d on gestational days (gd) 13-17, and offspring were examined on gd 18. Severe thymic atrophy and cellular depletion were found in BaP-exposed fetal mice. Flow cytometric analysis indicated that the BaP treatment resulted in a significant decrease in the percentage of CD4{sup +}8{sup +} fetal thymocytes, as well as significantly increased CD4{sup {minus}}8{sup {minus}} and CD4{sup {minus}}8{sup +} thymocytes. Staining of thymocytes with anti-mouse heat-stable antigen (HSA) and CD8 monoclonal antibodies produced similar results. These data suggest that BaP, in addition to producing thymic hypocellularity, inhibits normal thymocyte maturation processes. The BaP treatment was also found to decrease total fetal liver cellularity including numbers of cells within resident hematopoietic subpopulations. In particular, prolymphocytic cells, identified by CD44 and CD45R antigen expression and by presence of nuclear terminal deoxynucleotidyl transferase (TdT), were significantly decreased in animals gestationally exposed to BaP. These data, taken together, indicate that postnatal suppression of cell and humoral-mediated immune function following in utero exposure to BaP may result from multiple targeting of immune function following in utero exposure to BaP may result from multiple targeting of immune cells at different hematopoietic levels. Furthermore, results of the present study identify both qualitative and quantitative changes in fetal immune cell antigen expression that correlate well with the postnatal immunosuppression that occurs in experimental animals exposed to this carcinogenic polycyclic aromatic hydrocarbon. 41 refs., 4 figs., 3 tabs.

  2. Association between lead exposure from electronic waste recycling and child temperament alterations.

    PubMed

    Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia

    2011-08-01

    We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (P<0.01). Significant differences of mean scores in activity level (4.53±0.83 vs. 4.18±0.81), approach-withdrawal (4.62±0.85 vs. 4.31±0.89), and adaptability (4.96±0.73 vs. 4.67±0.83) were found between Guiyu and Chendian children (all P<0.01). High BLL (BLL≥10μg/dL) child had higher mean scores of approach-withdrawal when compared with those children with low BLL (BLL<10 μg/dL) (4.61±0.87 vs. 4.30±0.88, P<0.01). Location of child residence in Guiyu, and parents engagement in work related to e-waste were the risk factors related to child BLL, activity level, approach-withdrawal, adaptability, and mood. Child hand washing prior to food consumption was a protected factor for BLL and several dimensions. There are close relationships between BLL elevation, temperament alteration and the e-waste recycling activities in Guiyu. Primitive e-waste recycling may threaten the health of children by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies.

  3. Altered neuron-glia interactions in a low, chronic prenatal ethanol exposure.

    PubMed

    Evrard, Sergio Gustavo; Vega, Maite Duhalde; Ramos, Alberto Javier; Tagliaferro, Patricia; Brusco, Alicia

    2003-12-30

    Serotoninergic neurons, astrocytes and nitrergic system play an important role in central nervous system (CNS) development. These systems are altered in prenatal ethanol exposure (PEE) but ethanol (EtOH) effects may be very diverse under different conditions. In this study, we analyzed morphologically two serotoninergic mesencephalic nuclei and three prosencephalic areas of serotoninergic innervation in a model of pre- and postnatal low-ethanol exposure. Female Wistar rats were orally exposed to EtOH 6.6% (v/v), ad libitum, for 6 weeks before mating and during gestation and lactation while control group received water ad libitum. Twenty-day-old offspring (P21) brains were processed and immunoreactivity (IR) using antibodies against tryptophan hydroxylase (TPH), 5-HT, 5-HT transporter (5HTT), glial fibrillary acidic protein (GFAP), S-100B protein, 200-kDa neurofilaments (Nf-200) and neuronal nitric oxide synthase (nNOS) was evaluated. Dorsal and median raphe nucleus (DRN and MRN), hippocampus (Hipp), striatum (Strt) and frontal cortex (FCx) were studied by computer-assisted image analysis. Relative optical density (ROD) of TPH-IR, 5-HT-IR and nNOS-IR neurons; cell area of GFAP-IR astrocytes; relative area of 5HTT-IR fibers and Nf-200-IR were evaluated. TPH-IR was increased in DRN and MRN and 5-HT-IR was increased only in MRN. 5-HTT-IR fibers and ROD of S-100B-IR astrocytes were increased in the three prosencephalic areas while GFAP-IR astrocytes were hypertrophied only in Hipp and FCx. Nf-200 expression was increased in Hipp and Strt and morphologically altered in the FCx. ROD of nNOS-IR neurons was increased in Strt and FCx but was not detected in Hipp. We have also detected morphological changes resembling accelerated development and maturation, and early aging. Considering the evidences of a close 5-HT-astroglial-NO relationship during CNS development the differential response of the studied regions is an interesting result that could be due to different

  4. Motor alterations associated with exposure to manganese in the environment in Mexico.

    PubMed

    Rodríguez-Agudelo, Yaneth; Riojas-Rodríguez, Horacio; Ríos, Camilo; Rosas, Irma; Sabido Pedraza, Eva; Miranda, Javier; Siebe, Christina; Texcalac, José Luis; Santos-Burgoa, Carlos

    2006-09-15

    Overexposure to manganese (Mn) causes neurotoxicity (a Parkinson-like syndrome) or psychiatric damage ("manganese madness"). Several studies have shown alterations to motor and neural behavior associated with exposure to Mn in the workplace. However, there are few studies on the effects of environmental exposure of whole populations. We studied the risk of motor alterations in people living in a mining district in Mexico. We studied 288 individual people (168 women and 120 men) from eight communities at various distances from manganese extraction or processing facilities in the district of Molango. We measured manganese concentrations in airborne particles, water, soil and crops and evaluated the possible routes of Mn exposure. We also took samples of people's blood and determined their concentrations of Mn and lead (Pb). We used "Esquema de Diagnóstico Neuropsicológico" Ardila and Ostrosky-Solís's neuropsychological battery to evaluate motor functions. Concentrations of Mn in drinking water and maize grain were less than detection limits at most sampling sites. Manganese extractable by DTPA in soils ranged between 6 and 280 mg kg(-1) and means were largest close to Mn extraction or processing facilities. Air Mn concentration ranged between 0.003 and 5.86 microg/m(3); the mean value was 0.42 microg/m(3) and median was 0.10 microg/m(3), the average value (geometric mean) resulted to be 0.13 microg/m(3). Mean blood manganese concentration was 10.16 microg/l, and geometric mean 9.44 microg/l, ranged between 5.0 and 31.0 mcrog/l. We found no association between concentrations of Mn in blood and motor tests. There was a statistically significant association between Mn concentrations in air and motor tests that assessed the coordination of two movements (OR 3.69; 95% CI 0.9, 15.13) and position changes in hand movements (OR 3.09; CI 95% 1.07, 8.92). An association with tests evaluating conflictive reactions (task that explores verbal regulations of movements) was also

  5. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment.

    PubMed

    Tyler, Christina R; Allan, Andrea M

    2013-01-01

    Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor cells

  6. Adult Hippocampal Neurogenesis and mRNA Expression are Altered by Perinatal Arsenic Exposure in Mice and Restored by Brief Exposure to Enrichment

    PubMed Central

    Tyler, Christina R.; Allan, Andrea M.

    2013-01-01

    Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer’s disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor

  7. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.

    PubMed

    Miller, M W

    1996-02-01

    The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. The pregnant dams were administered with bromodeoxyuridine (BrdU) on either G15 or G21. The ratio of the number of cells that incorporated BrdU to the total number (the labeling index) was determined 1-hr postinjection (i.e., on G15 or G21) or on postnatal day 60, Ethanol treatment between G6 and G21 reduced the ratio of cells labeled by an injection of BrdU on G15 in the fetus and in the adult, and increased the ratio of cells labeled on G21. Regardless of when the injection was placed, ethanol treatment between G6 and G9 had no effect upon the ratio of BrdU-labeled cells in the fetus or mature cortex. Exposure from G12 to G15 decreased the number of VZ cells in the fetus and the number of immunolabeled cells in the adult cortex labeled by an injection on G15. This exposure had no effect on the incorporation by SZ cells. In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.

  8. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells.

    PubMed

    Ezzat, A Ahmed; Saito, H; Sawada, T; Yaegashi, T; Goto, Y; Nakajima, Y; Jin, J; Yamashita, T; Sawai, K; Hashizume, T

    2010-09-01

    The aims of the present study were to clarify the effect of Kisspeptin-10 (Kp10) on the secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) from bovine anterior pituitary (AP) cells and evaluate the ability of sex steroids to enhance the sensitivity of gonadotropic and lactotropic cells to Kp10. AP cells prepared from 7-week-old male calves were incubated for 12h with estradiol (E(2); 10(-8)M), progesterone (P(4); 10(-8)M), testosterone (T; 10(-8)M), or vehicle only (control), and then for 2h with Kp10 (10(-6)M). The amounts of LH, FSH and PRL released into the culture medium after the 2-h incubation period were examined. Kp10 significantly stimulated the secretion of LH from the AP cells treated with E(2) and T (P<0.05), but not from the P(4)-treated cells. In contrast, Kp10 had no effect on the secretion of FSH regardless of the steroid treatment. Kp10 significantly stimulated the secretion of PRL (P<0.05), the sexual steroid hormones having no effect. The LH- or FSH-releasing response to gonadotropin-releasing hormone (GnRH; 10(-8)M) and PRL-releasing response to thyrotropin-releasing hormone (TRH; 10(-8)M) were significantly greater than those to Kp10 (P<0.05). The present results suggest that E(2) and T, but not P(4), enhance the sensitivity of gonadotropic cells to the secretion of LH in response to Kp10. However, Kp10 had no stimulatory effect on the secretion of FSH regardless of the effect of sex steroids. Kp10 directly stimulates the secretion of PRL from the pituitary cells, and sex steroids do not enhance the sensitivity of lactotropic cells to Kp10. Furthermore, the LH- and FSH-releasing effect and the PRL-releasing effect of Kp10 are less potent than that of GnRH and TRH, respectively.

  9. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background The potential benefit of adding recombinant human luteinizing hormone (r-hLH) to recombinant human follicle-stimulating hormone (r-hFSH) during ovarian stimulation is a subject of debate, although there is evidence that it may benefit certain subpopulations, e.g. poor responders. Methods A systematic review and a meta-analysis were performed. Three databases (MEDLINE, Embase and CENTRAL) were searched (from 1990 to 2011). Prospective, parallel-, comparative-group randomized controlled trials (RCTs) in women aged 18–45 years undergoing in vitro fertilization, intracytoplasmic sperm injection or both, treated with gonadotrophin-releasing hormone analogues and r-hFSH plus r-hLH or r-hFSH alone were included. The co-primary endpoints were number of oocytes retrieved and clinical pregnancy rate. Analyses were conducted for the overall population and for prospectively identified patient subgroups, including patients with poor ovarian response (POR). Results In total, 40 RCTs (6443 patients) were included in the analysis. Data on the number of oocytes retrieved were reported in 41 studies and imputed in two studies. Therefore, data were available from 43 studies (r-hFSH plus r-hLH, n = 3113; r-hFSH, n = 3228) in the intention-to-treat (ITT) population (all randomly allocated patients, including imputed data). Overall, no significant difference in the number of oocytes retrieved was found between the r-hFSH plus r-hLH and r-hFSH groups (weighted mean difference −0.03; 95% confidence interval [CI] −0.41 to 0.34). However, in poor responders, significantly more oocytes were retrieved with r-hFSH plus r-hLH versus r-hFSH alone (n = 1077; weighted mean difference +0.75 oocytes; 95% CI 0.14–1.36). Significantly higher clinical pregnancy rates were observed with r-hFSH plus r-hLH versus r-hFSH alone in the overall population analysed in this review (risk ratio [RR] 1.09; 95% CI 1.01–1.18) and in poor responders (n = 1179; RR 1.30; 95% CI 1

  10. Pulmonary structural and extracellular matrix alterations in Fischer 344 rats following subchronic phosgene exposure.

    PubMed

    Kodavanti, U P; Costa, D L; Giri, S N; Starcher, B; Hatch, G E

    1997-05-01

    hydroxyproline, taken as an index of collagen synthesis, were increased following 1.0 ppm phosgene exposure at 4 as well as 12 weeks, respectively. Desmosine levels, taken as an index of changes in elastin, were increased in the lung after 4 or 12 weeks in the 1.0 ppm phosgene group. Following 4 weeks of air recovery, lung hydroxyproline was further increased in 0.5 and 1.0 ppm phosgene groups. Lung weight also remained significantly higher than the controls; however, desmosine and lung displacement volume in phosgene-exposed animals were similar to controls. In summary, terminal bronchiolar and lung volume displacement changes occurred at very low phosgene concentrations (0.1 ppm). Phosgene concentration, rather than C x T product appeared to drive toxic responses. The changes induced by phosgene (except of collagen) following 4 weeks were not further amplified at 12 weeks despite continued exposure. Phosgene-induced alterations of matrix were only partially reversible after 4 weeks of clean air exposure.

  11. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    PubMed Central

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  12. Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations.

    PubMed

    Miandare, Hamed Kolangi; Niknejad, Mahtab; Shabani, Ali; Safari, Roghieh

    2016-01-01

    Sturgeon is one of the endangered families of fish in the Caspian Sea region, where there is up to 80% of their global caching. Unfortunately, in recent years, increase of pollutants has been resulted in their total population reduction. Due to their benthic nature, sturgeons are at great risk of exposing to contaminants such as cadmium. Despite their endangered status in the Caspian Sea, there are only a few studies on characterizing the relative sensitivity of sturgeons to cadmium. Adverse effects associated with pollution on angiogenesis are mediated by hypoxia inducing factor-1 (HIF-1) and vascular endothelial growth factor (VEGF). In this investigation, gene expression of two distinct HIFs-1, HIF-1α and HIF-2α, and VEGF was investigated at the mRNA transcript levels after exposure of Persian sturgeon (Acipenser persicus) to cadmium. VEGF, HIF-1α and HIF-2α expressions in treated Persian sturgeon were greater than controls. Significant increases (P<0.05) were also observed in cortisol and glucose levels compared to the control group especially in the fish exposed to higher cadmium concentration (800 μg/L). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactic acid dehydrogenase (LDH) levels were increased in the cadmium-exposed fish, although the observed increases were not significant between the control and 200 μg/L cadmium treatment at some sampling time points. Gill tissues also showed histopathological changes in the cadmium treatments. Overall, results indicated that cadmium resulted in some alterations in biochemical parameters, mRNA transcript level expression of two important angiogenesis related genes as well as histological alterations in Persian sturgeon.

  13. Prenatal exposure to dexamethasone alters Leydig cell steroidogenic capacity in immature and adult rats.

    PubMed

    Page, K C; Sottas, C M; Hardy, M P

    2001-01-01

    This study examines the effects of prenatal exposure to dexamethasone (DEX) on postnatal testosterone production in male rats. Pregnant female rats were treated on gestation days 14-19 with DEX (100 microg/kg body weight per day; n = 9) or vehicle (n = 9). Results show that 35-day-old male offspring from DEX-treated pregnant females (n = 42) had decreased levels of serum testosterone (45.6% lower, P < .05) compared with control offspring (n = 43), although serum luteinizing hormone (LH) levels were not significantly altered. These findings suggest that a direct programming of developing gonadal cells occurs in response to high levels of maternal glucocorticoid. Indeed, testosterone production was significantly reduced in Leydig cells isolated from immature offspring of DEX-treated pregnant females compared with controls (48.3%, P < .001), and LH stimulation of these cells did not compensate for the lowered steroidogenic capacity. The hypothalamic-pituitary-adrenal axis was also affected, because significant reductions in both serum adrenocorticotropic hormone (ACTH; 26.2%, P < .001) and corticosterone (CORT; 32.3%, P < .001) were measured in DEX-exposed immature male offspring. In contrast, adult male offspring from DEX-treated dams had significantly higher levels of serum ACTH (39.2%, P <. 001) and CORT (37.8%, P < .001). These same animals had higher serum testosterone (31.6%, P < or = .05) and a significant reduction in serum LH (30.8%, P < .001). Moreover, Leydig cells isolated from these adult offspring exhibited an increased capacity for testosterone biosynthesis under basal (38.6%, P < .001) and LH-stimulated conditions (33.5%, P < .001). In summary, sustained changes in steroidogenic capacity were observed in male rats exposed to high levels of glucocorticoid during prenatal development. More specifically, DEX exposure in utero perturbed Leydig cell testosterone production in both pubertal and adult rats.

  14. Exposure to Synthetic Gray Water Inhibits Amoeba Encystation and Alters Expression of Legionella pneumophila Virulence Genes

    PubMed Central

    Lu, Jingrang; Ashbolt, Nicholas J.

    2014-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems. PMID:25381242

  15. Tobacco Smoke Exposure and Altered Nasal Responses to Live Attenuated Influenza Virus

    PubMed Central

    Noah, Terry L.; Zhou, Haibo; Monaco, Jane; Horvath, Katie; Herbst, Margaret; Jaspers, Ilona

    2011-01-01

    Background Epidemiologic evidence links tobacco smoke and increased risk for influenza in humans, but the specific host defense pathways involved are unclear. Objective We developed a model to examine influenza-induced innate immune responses in humans and test the hypothesis that exposure to cigarette smoke alters nasal inflammatory and antiviral responses to live attenuated influenza virus (LAIV). Methods This was an observational cohort study comparing nasal mucosal responses to LAIV among young adult active smokers (n = 17), nonsmokers exposed to secondhand smoke (SHS; n = 20), and unexposed controls (n = 23). Virus RNA and inflammatory factors were measured in nasal lavage fluids (NLF) serially after LAIV inoculation. For key end points, peak and total (area under curve) responses were compared among groups. Results Compared with controls, NLF interleukin-6 (IL-6) responses to LAIV (peak and total) were suppressed in smokers. Virus RNA in NLF cells was significantly increased in smokers, as were interferon-inducible protein 10:virus ratios. Responses in SHS-exposed subjects were generally intermediate between controls and smokers. We observed significant associations between urine cotinine and NLF IL-6 responses (negative correlation) or virus RNA in NLF cells (positive correlation) for all subjects combined. Conclusions Nasal inoculation with LAIV results in measurable inflammatory and antiviral responses in human volunteers, thus providing a model for investigating environmental effects on influenza infections in humans. Exposure to cigarette smoke was associated with suppression of specific nasal inflammatory and antiviral responses, as well as increased virus quantity, after nasal inoculation with LAIV. These data suggest mechanisms for increased susceptibility to influenza infection among persons exposed to tobacco smoke. PMID:20920950

  16. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure

    PubMed Central

    Rizvi, Fariha Z.; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J.; Krumholz, Lee R.

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  17. Chromatin Modifications during Repair of Environmental Exposure-Induced DNA Damage: A Potential Mechanism for Stable Epigenetic Alterations

    PubMed Central

    O’Hagan, Heather M.

    2014-01-01

    Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure. PMID:24259318

  18. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  19. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    EPA Science Inventory

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  20. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Mason, Stephen; Anthony, Bruce; Lai, Xianyin; Ringham, Heather N.; Wang, Mu; Witzmann, Frank A.; You, Jin-Sam; Zhou, Feng C.

    2012-01-01

    Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P < 0.01), and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function. PMID:22745907

  1. Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure

    PubMed Central

    2011-01-01

    Background Total soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 μM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS. Results Dose-dependent molecular response to Pb (II) involved a total of 14 up-regulated and 21 down-regulated proteins. The induction of an isoform of glyceraldehyde 3-phosphate dehydrogenase, alcohol dehydrogenase class V, mRNA splicing factor, ATP-dependent RNA helicase, thioredoxin reductase and actin required a Pb (II) dose of at least 50 μM. Analysis of the proteome dynamics of mid-exponential phase cells of P. chrysosporium subjected to 50 μM lead at exposure time intervals of 1, 2, 4 and 8 h, identified a total of 23 proteins in increased and 67 proteins in decreased amount. Overall, the newly induced/strongly up-regulated proteins involved in (i) amelioration of lipid peroxidation products, (ii) defense against oxidative damage and redox metabolism, (iii) transcription, recombination and DNA repair (iv) a yet unknown function represented by a putative protein. Conclusion The present study implicated the particular role of the elements of DNA repair, post-tanscriptional regulation and heterotrimeric G protein signaling in response to Pb (II) stress as shown for the first time for a basidiomycete. PMID:21388532

  2. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  3. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  4. Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis.

    PubMed

    Simon, D; Daubos, A; Pain, C; Fitoussi, R; Vié, K; Taieb, A; de Benetti, L; Cario-André, M

    2013-02-01

    Exposure to electromagnetic radiations (EMR) produced by mobile phone concerns half the world's population and raises the problem of their impact on human health. In this study, we looked at the effects of mobile phone exposure (GSM basic, 900 MHz, SAR 2 mW g(-1) , 6 h) on a model of pigmented skin. We have analysed the expression and localization of various markers of keratinocyte and melanocyte differentiation 2, 6, 18 and 24 h after EMR exposure of reconstructed epidermis containing either only keratinocytes or a combination of keratinocytes and melanocytes grown on dead de-epidermized dermis, using histology, immunohistochemistry and Western blot. No changes were found in epidermal architecture, localization of epidermal markers, presence of apoptotic cells and the induction of p53 in both types of epidermis (with or without melanocytes) after exposure to EMR. In pigmented reconstructs, no change in the location and dendricity of melanocytes and in melanin transfer to neighbouring keratinocytes was detected after EMR exposure. Loricrin, cytokeratin 14 were significantly decreased at 6 h. The level of all markers increased at 24 h as compared to 6 h post-EMR exposure, associated with a significant decrease of the 20S proteasome activity. Our data indicate that exposure to 900 MHz frequency induces a transient alteration of epidermal homoeostasis, which may alter the protective capacity of the skin against external factors. Presence or absence of melanocytes did not modify the behaviour of reconstructs after EMR exposure.

  5. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential

  6. Alterations in catecholamine turnover in specific regions of the rat brain following acute exposure to nitrous oxide.

    PubMed

    Karuri, A R; Kugel, G; Engelking, L R; Kumar, M S

    1998-04-01

    The effects of nitrous oxide (N2O) on steady-state concentrations and turnover rates of catecholamines in the olfactory bulb, hypothalamus, brain stem, hippocampus, striatum, thalamus, cerebral cortex, and spinal cord were determined in rats. Animals were exposed for 2 h to either 60% N2O or air. Immediately following exposure, all animals were injected intraperitoneally with alpha-methylparatyrosine (alphaMPT), a competitive inhibitor of tyrosine hydroxylase, and sacrificed at 0, 30, or 90 min postinjection. Brain catecholamine concentrations were determined using high-performance liquid chromatography coupled with electrochemical detection (HPLC-EC). Results indicate that N2O exposure significantly elevates steady-state concentrations of norepinephrine (NE) in the hypothalamus and striatum yet decreases amine levels in the brain stem region. Steady-state levels of dopamine (DA) were not significantly altered in any region of the CNS by N2O exposure. Acute exposure to N2O also resulted in significant decreases in the turnover rate of NE in the brain stem, yet it increased turnover of this amine in the olfactory bulb, hypothalamus, and striatum. Acute exposure to N2O resulted in a decreased turnover rate of DA in the hippocampus and striatum. In contrast, N2O appears to increase DA turnover in the olfactory bulb. These results indicate that acute exposure to N2O in rats causes region-specific alterations in steady-state levels and turnover rates of DA and NE within the central nervous system.

  7. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation.

    PubMed

    Szutorisz, Henrietta; DiNieri, Jennifer A; Sweet, Eric; Egervari, Gabor; Michaelides, Michael; Carter, Jenna M; Ren, Yanhua; Miller, Michael L; Blitzer, Robert D; Hurd, Yasmin L

    2014-05-01

    Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual's lifetime. Here, we show that adolescent exposure to Δ(9)-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation.

  8. Alteration of serum sex hormonal profile in male gasoline filling station workers in respect to their polymorphism of glutathione S-transferase M1.

    PubMed

    Saadat, Mostafa; Bahaoddini, Samaneh; Saadat, Iraj

    2013-03-01

    Alterations in offspring sex ratio at birth and level of serum testosterone in filling-station workers have been reported. To determine the association of glutathione S-transferase M1 (GSTM1) polymorphism with serum levels of total testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) of male filling-station workers, the present study was carried out on 114 gasoline workers and 100 age- and sex-matched controls with no occupational exposure to gasoline. We have found no significant difference between the workers and controls for levels of sex hormones in the presence of active GSTM1 genotype. Among subjects with the GSTM1 null genotype, there was significant difference between exposed and unexposed subjects for the concentration of testosterone (t=4.37, df=97, P<0.001). To investigate whether one null genotype could be compensated by an active genotype for the other isoenzyme, the mean concentrations of sex hormones was compared between the exposed and control groups with respect to their combinations of the GSTM1 and GSTT1 genotypes. The exposed group having either "null GSTM1/positive GSTT1" (t=2.76, df=72, P=0.007) or "null GSTM1/null GSTT1" (t=4.91, df=23, P<0.001) combinations had a lower testosterone compared with the controls. It seems that GSTM1 polymorphism has more effect on serum testosterone compared to the GSTT1 polymorphism, in exposed workers.

  9. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    PubMed Central

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  10. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    PubMed

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure.

  11. Alteration of Bacterial Antibiotic Sensitivity After Short-Term Exposure to Diagnostic Ultrasound

    PubMed Central

    Mortazavi, Seyed Mohammad Javad; Darvish, Leili; Abounajmi, Mohammad; Zarei, Samira; Zare, Tahereh; Taheri, Mohammad; Nematollahi, Samaneh

    2015-01-01

    inhibition zones in exposed and non-exposed samples of Klebsiella pneumonia and Streptococcus. Conclusions This study clearly shows that short-term exposure of microorganisms to diagnostic ultrasonic waves can significantly alter their sensitivity to antibiotics. We believe that this physical method of making the antibiotic-resistant population susceptible can open new horizons in antibiotic therapy of a broad range of diseases, including tuberculosis. PMID:26732124

  12. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  13. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  14. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters.

    PubMed

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  15. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    PubMed

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  16. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    PubMed

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

  17. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    PubMed Central

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  18. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    PubMed

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  19. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  20. Modulatory effects of lipoic acid and selenium against cadmium-induced biochemical alterations in testicular steroidogenesis.

    PubMed

    El-Maraghy, Shohda A; Nassar, Noha N

    2011-01-01

    Exposure to toxic metals including cadmium has become an increasingly recognized source of illness worldwide. Cadmium (Cd(2+) ) is one of the environmental pollutants affecting various tissues and organs including testis. The protective effect of lipoic acid and selenium on Cd(2+) -induced testicular damage was investigated. Accordingly, male Wistar rats were allocated into four groups (n = 8; each). Gp I: (control), whereas the other 3 groups received CdCl(2) (2 mg/kg, i.p. for 28 days) alone or in combination with either (i) lipoic acid (35 mg/kg, p.o) or (ii) selenium (0.35 mg/kg, p.o) throughout the experiment. Serum testosterone, luteinizing hormone and follicle-stimulating hormone levels significantly decreased in the Cd(2+) -exposed rats. The activities of testicular key androgenic enzymes, 3β-hydroxysteroid dehydrogenase and 17 β-HSD significantly decreased in Cd(2) exposed rats compared to the control counterparts. In addition, the activities of testicular marker enzymes were significantly altered in cadmium-treated animals. Significant reductions in body and testicular weight as well as antioxidant status were also observed in Cd(2+) -exposed rats. Moreover, some testicular metal levels were altered. Lipoic acid and selenium significantly increased serum testosterone level and restored testicular activity of 3β-HSD and 17 β-HSD and were effective in modulation of most of the measured biochemical parameters. The biochemical parameters were further confirmed with histopathological findings. In conclusion, the present study demonstrated the beneficial influences of lipoic acid and selenium in reducing harmful effects of Cd(2+) in rats' testes. PMID:20957662

  1. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  2. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  3. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    EPA Science Inventory

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  4. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  5. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat.

    PubMed

    Riffle, Brandy W; Klinefelter, Gary R; Cooper, Ralph L; Winnik, Witold M; Swank, Adam; Jayaraman, Saro; Suarez, Juan; Best, Deborah; Laws, Susan C

    2014-08-01

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and testis (intact) proteomes in rats after 3 days of exposure. The adrenal accounted for most of the serum progesterone and all of the corticosterone increases in intact and castrated males. Serum luteinizing hormone, androstenedione, and testosterone in intact males shared a non-monotonic response suggesting transition from an acute stimulatory to a latent inhibitory response to exposure. Eight adrenal proteins were significantly altered with dose. There were unique proteomic changes between the adrenals of intact and castrated males. Six testis proteins in intact males had non-monotonic responses that significantly correlated with serum testosterone. Different dose-response curves for steroids and proteins in the adrenal and testis reveal novel adverse outcome pathways in intact and castrated male rats.

  6. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs

    SciTech Connect

    Wolcott, J.A.; Zee, Y.C,; Osebold, J.W.

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity.

  7. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons

    PubMed Central

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-01-01

    The CB1 cannabinoid receptor, the main target of Δ9-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling. PMID:26460022

  8. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    PubMed

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  9. Meteoric alteration of early formed dolomite during long-term subaerial exposure: Mississippian Mission Canyon Formation

    SciTech Connect

    Smith, T.M.; Dorobek, S.L. )

    1990-05-01

    Dolomite from the Mississippian Mission Canyon Formation in south central Montana has been petrographically and geochemically analyzed to constrain the effects of long-term subaerial exposure on the formation of well-ordered and stoichiometric dolomite. Samples from five measured stratigraphic sections were analyzed for stoichiometry and for carbon and oxygen isotope composition. Dolomite {delta}{sup 18}O values from all sections vary from {minus}11.2 to +7.5{per thousand}. {delta}{sup 13}C ratios vary from +0.4 to +5.5{per thousand} but are relatively consistent within individual sections. Stoichiometry of the dolomite varies from 49.9 to 55.7 mole % CaCO{sub 3}. Measured sections from the northern portion of the study area dominantly contain {sup 18}O-depleted dolomite (+0.8 to {minus}11 2{per thousand} {delta}{sup 18}O). The most {sup 18}O-depleted dolomite, however. typically occurs in the upper 100 m of these sections. These {sup 18}O-depleted dolomites have homogeneous {delta}{sup 13}C ratios and are stoichiometric. Dolomite from the upper 100 m of these sections predates early calcite cement and locally is calcitized or partially replaced by Fe-oxides. These data suggest that early formed dolomite may have been recrystallized by meteoric water under very high water-rock ratio conditions. Decreasing amounts of water-rock interaction with depth is suggested by more heterogeneous {delta}{sup 18}O and {delta}{sup 13}C ratios downsection. Measured sections in the southern portion of the field area contain greater amounts of {sup 18}O-enriched dolomite (+7.5 to -7.1{per thousand} {delta}{sup 18}O). Dolomite from these sections also has more heterogeneous {delta}{sup 13}C values and variable CaCO{sup 3} content. These data suggest that the dolomite probably has not been extensively altered and may more closely represent the original geochemistry of the early formed dolomite.

  10. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    PubMed

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior.

  11. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan; Cooney, Craig A; Gilbert, Kathleen M; James, S Jill

    2012-12-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity.

  12. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  13. Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen.

    PubMed

    Eynan, Mirit; Mullokandov, Michael; Krinsky, Nitzan; Biram, Adi; Arieli, Yehuda

    2015-09-01

    Findings regarding blood glucose level (BGL) on exposure to hyperbaric oxygen (HBO) are contradictory. We investigated the influence of HBO on BGL, and of BGL on latency to central nervous system oxygen toxicity (CNS-OT). The study was conducted on five groups of rats: Group 1, exposure to oxygen at 2.5 atmospheres absolute (ATA), 90 min/day for 7 days; Group 2, exposure to oxygen once a week from 2 to 6 ATA in increments of 1 ATA/wk, for a period of time calculated as 60% of the latency to CNS-OT (no convulsions); Group 3, exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21; Group 4, received 10 U/kg insulin to induce hypoglycemia before exposure to HBO; Group 5, received 33% glucose to induce hyperglycemia before exposure to HBO. Blood samples were drawn before and after exposures for measurement of BGL. No change was observed in BGL after exposure to oxygen at 2.5 ATA, 90 min/day for 7 days. BGL was significantly elevated after exposure to oxygen at 6 ATA until the appearance of convulsions, and following exposure to 4, 5, and 6 ATA without convulsions (P < 0.01). No change was observed in BGL after exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21. Hypoglycemia shortened latency to CNS oxygen toxicity, whereas hyperglycemia had no effect. Our results demonstrate an influence of HBO exposure on elevation of BGL, starting at 4 ATA. This implies that BGL may serve as a marker for the generation of CNS-OT.

  14. Functional Alteration of Natural Killer Cells and Cytotoxic T Lymphocytes upon Asbestos Exposure and in Malignant Mesothelioma Patients

    PubMed Central

    Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kishimoto, Takumi; Fukuoka, Kazuya; Nakano, Takashi; Otsuki, Takemi

    2015-01-01

    Malignant mesothelioma is caused by exposure to asbestos, which is known to have carcinogenic effects. However, the development of mesothelioma takes a long period and results from a low or intermediate dose of exposure. These findings have motivated us to investigate the immunological effects of asbestos exposure and analyze immune functions of patients with mesothelioma and pleural plaque, a sign of exposure to asbestos. Here, we review our knowledge concerning natural killer (NK) cells and cytotoxic T lymphocytes (CTL). NK cells showed impaired cytotoxicity with altered expression of activating receptors upon exposure to asbestos, while induction of granzyme+ cells in CD8+ lymphocytes was suppressed by asbestos exposure. It is interesting that a decrease in NKp46, a representative activating receptor, is common between NK cells in PBMC culture with asbestos and those of mesothelioma patients. Moreover, it was observed that CD8+ lymphocytes may be stimulated by some kind of “nonself” cells in plaque-positive individuals and in mesothelioma patients, whereas CTL in mesothelioma is impaired by poststimulation maintenance of cytotoxicity. These findings suggest that analysis of immunological parameters might contribute to the evaluation of health conditions of asbestos-exposed individuals and to a greater understanding of the pathology of malignant mesothelioma. PMID:26161391

  15. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    SciTech Connect

    Peters, J.L.; Castillo, F.J.; Heath, R.L. )

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  16. Altered levels of endocrine biomarkers in juvenile barramundi (Lates calcarifer; Bloch) following exposure to commercial herbicide and surfactant formulations.

    PubMed

    Kroon, Frederieke J; Hook, Sharon E; Metcalfe, Suzanne; Jones, Dean

    2015-08-01

    Agricultural pesticides that are known endocrine disrupting chemicals have been detected in waters in the Great Barrier Reef catchment and lagoon. Altered transcription levels of liver vitellogenin (vtg) have been documented in wild populations of 2 Great Barrier Reef fisheries species and were strongly associated with pesticide-containing runoff from sugarcane plantations. The present study examined endocrine and physiological biomarkers in juvenile barramundi (Lates calcarifer) exposed to environmentally relevant concentrations of commercial herbicide (ATRADEX(®) WG Herbicide, DIUREX(®) WG Herbicide) and surfactant (ACTIVATOR(®) 90) formulations commonly used on sugarcane in the Great Barrier Reef catchment. Estrogenic biomarkers (namely, liver vtg messenger RNA and plasma 17β-estradiol) increased following exposure to commercial mixtures but not to the analytical grade chemical, suggesting an estrogenic response to the additives. In contrast, brain aromatase (cyp19a1b) transcription levels, plasma testosterone and 11-ketotestosterone concentrations, and gill ventilation rates were not affected by any of the experimental exposures. These findings support the assertion that exposure to pesticide-containing runoff from sugarcane plantations is a potential causative agent of altered liver vtg transcription levels in wild barramundi. Whether exposure patterns in the Great Barrier Reef catchment and lagoon are sufficient to impair fish sexual and reproductive development and ultimately influence fish population dynamics remains to be determined. These findings highlight the need to consider both active and so-called inert ingredients in commercial pesticide formulations for environmental risk assessments. PMID:25858168

  17. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat.

    PubMed

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  18. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure.

  19. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  20. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  1. Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala

    PubMed Central

    Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6–21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure. PMID:23457122

  2. Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome.

    PubMed

    Bilotta, Joseph; Barnett, Jalynn A; Hancock, Laura; Saszik, Shannon

    2004-01-01

    Prenatal exposure to alcohol has been shown to produce the overt physical and behavioral symptoms known as fetal alcohol syndrome (FAS) in humans. Also, it is believed that low concentrations and/or short durations of alcohol exposure can produce more subtle effects. The purpose of this study was to investigate the effects of embryonic ethanol exposure on the zebrafish (Danio rerio) in order to determine whether this species is a viable animal model for studying FAS. Fertilized embryos were reared in varying concentrations of ethanol (1.5% and 2.9%) and exposure times (e.g., 0-8, 6-24, 12-24, and 48-72 h postfertilization; hpf); anatomical measures including eye diameter and heart rate were compared across groups. Results found that at the highest concentration of ethanol (2.9%), there were more abnormal physical distortions and significantly higher mortality rates than any other group. Embryos exposed to ethanol for a shorter duration period (0-8 hpf) at a concentration of 1.5% exhibited more subtle effects such as significantly smaller eye diameter and lower heart rate than controls. These results indicate that embryonic alcohol exposure affects external and internal physical development and that the severity of these effects is a function of both the amount of ethanol and the timing of ethanol exposure. Thus, the zebrafish represents a useful model for examining basic questions about the effects of embryonic exposure to ethanol on development.

  3. Abuse pattern of toluene exposure alters mouse behavior in a waiting-for-reward operant task.

    PubMed

    Bowen, Scott E; McDonald, Phillip

    2009-01-01

    Inhaling solvents for recreational purposes continues to be a world-wide public health concern. Toluene, a volatile solvent in many abused products, adversely affects the central nervous system. However, the long-term neurobehavioral effects of exposure to high-concentration, binge patterns typical of toluene abuse remain understudied. We studied the behavioral effects of repeated toluene exposure on cognitive function following binge toluene exposure on behavioral impulse control in Swiss Webster mice using a "wait-for-reward" operant task. Mice were trained on a fixed-ratio (FR) schedule using sweetened milk as a reward. Upon achieving FR15, a wait component was added which delivered free rewards in the absence of responses at increasing time intervals (2s, 4s, 6s, etc...). Mice continued to receive free rewards until they pressed a lever that reinstated the FR component (FR Reset). Once proficient in the FR-Wait task, mice were exposed to either 1000 ppm, 3600 ppm or 6000 ppm toluene, or 0ppm (air controls) for 30 min per day for 40 days. To avoid acute effects of toluene exposure, behavior was assessed approximately 22-23 h later. Repeated toluene exposure decreased response rates, the number of FR resets, and increased mean wait time, resulting in a higher response-to-reinforcer ratio than exhibited by controls. Mice receiving the higher exposure level (6000 ppm) showed a dramatic decrease in the number of rewards received, which was reversed when toluene exposure ceased. Mice receiving the lower exposure level (1000 ppm) showed little change in the number of rewards. These results indicate that repeated binge exposures to high concentrations of toluene can significantly interfere with performance as measured by a waiting-for-reward task, suggesting a significant impact on cognitive and/or psychomotor function.

  4. Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure

    PubMed Central

    2013-01-01

    Background Maternal alcohol consumption is known to adversely affect fetal neurodevelopment. While it is known that alcohol dose and timing play a role in the cognitive and behavioral changes associated with prenatal alcohol exposure, it is unclear what developmental processes are disrupted that may lead to these phenotypes. Methods Mice (n=6 per treatment per developmental time) were exposed to two acute doses of alcohol (5 g/kg) at neurodevelopmental times representing the human first, second, or third trimester equivalent. Mice were reared to adulthood and changes to their adult brain transcriptome were assessed using expression arrays. These were then categorized based on Gene Ontology annotations, canonical pathway associations, and relationships to interacting molecules. Results The results suggest that ethanol disrupts biological processes that are actively occurring at the time of exposure. These include cell proliferation during trimester one, cell migration and differentiation during trimester two, and cellular communication and neurotransmission during trimester three. Further, although ethanol altered a distinct set of genes depending on developmental timing, many of these show interrelatedness and can be associated with one another via ‘hub’ molecules and pathways such as those related to huntingtin and brain-derived neurotrophic factor. Conclusions These changes to brain gene expression represent a ‘molecular footprint’ of neurodevelopmental alcohol exposure that is long-lasting and correlates with active processes disrupted at the time of exposure. This study provides further support that there is no neurodevelopmental time when alcohol cannot adversely affect the developing brain. PMID:23497526

  5. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis

    PubMed Central

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis-jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis. This makes the two compounds potential candidates to be integrated in pest management strategies. PMID:26726263

  6. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    PubMed Central

    Albores-Garcia, Damaris; Hernandez, Alberto J.; Loera, Miriam J.

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined. PMID:26885512

  7. Developmental Exposure to the Organochlorine Insecticide Endosulfan Alters Expression of Proteins Associated with Neurotransmission in the Frontal Cortex

    PubMed Central

    Wilson, W. Wyatt; Onyenwe, Wellington; Bradner, Joshua M.; Nennig, Sadie E.; Caudle, W. Michael

    2014-01-01

    Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides. PMID:25042905

  8. VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES

    EPA Science Inventory

    Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...

  9. IDENTIFICATION OF NEURAL BIOMARKERS OF ALTERED SEXUAL DIFFERENTIATION FOLLOWING GESTATIONAL EXPOSURE***

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  10. Identification of neural biomarkers of altered sexual differentiation following gestational exposure

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during...

  11. Identification of neural biomarkers of altered sexual differentiation following gestational exposure###

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  12. Developmental Exposure to PCBs Differentially Alters Sensitivity to Audiogenic and Kindling-Induced Seizures in Rats

    EPA Science Inventory

    Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...

  13. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    EPA Science Inventory

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  14. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission. PMID:26276081

  15. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission.

  16. Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos

    PubMed Central

    Mohammod Mostakim, Golam; Zahangir, Md. Mahiuddin; Monir Mishu, Mahbuba; Rahman, Md. Khalilur; Islam, M. Sadiqul

    2015-01-01

    Quinalphos (QP) is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. This study was conducted to evaluate the chronic toxicity of this pesticide on blood parameters and some organs of silver barb, Barbonymus gonionotus. Fish were exposed to two sublethal concentrations, 0.47 ppm and 0.94 ppm, of QP for a period of 28 days. All the blood parameters (red blood cell, hematocrit, and hemoglobin) and blood glucose except for white blood cells decreased with increasing concentration of toxicant and become significantly lower (p < 0.05) at higher concentration when compared with control. The derived hematological indices of mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were equally altered compared to control. Histoarchitectural changes of liver and kidney were observed after exposure to the QP. Hypertrophy of hepatocytes, mild to severe necrosis, ruptured central vein, and vacuolation were observed in the liver of treated groups. Highly degenerated kidney tubules and hematopoietic tissue, degeneration of renal corpuscle, vacuolization, and necrosis were evident in the kidney of treated groups. In conclusion, chronic exposure to QP at sublethal concentrations induced hematological and histological alterations in silver barb and offers a simple tool to evaluate toxicity derived alterations. PMID:26635877

  17. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring.

    PubMed

    Li, Na; Li, Yongmei; Gao, Qinqin; Li, Dawei; Tang, Jiaqi; Sun, Miao; Zhang, Pengjie; Liu, Bailin; Mao, Caiping; Xu, Zhice

    2015-01-01

    Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2(+)-activated K(+) (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca(2+) sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca(2+)]i fluorescence and vasoconstriction testing showed reduced Ca(2+), leading to diminished BKCa activation via ryanodine receptor Ca(2+) release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins. PMID:26277840

  18. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish.

    PubMed

    Liao, Pei-Han; Hwang, Chiu-Chu; Chen, Te-Hao; Chen, Pei-Jen

    2015-08-01

    Environmental pollution by neuroactive pharmaceuticals from wastewater discharge is a major threat to aquatic ecosystems. However, the ecotoxicologic effect of waterborne abused drugs remains unclear. Embryos of medaka fish (Oryzias latipes) were exposed to aqueous solutions of 2 hallucinogenic drugs, ketamine (KET) and methamphetamine (MET) (0.004-40μM) to assess developmental toxicity, oxidative stress and behavioral alteration in early life stages. The environmentally relevant concentration (0.004μM) of both KET and MET significantly delayed blood circulation and hatching time in embryos and altered larval swimming behavior (e.g., maximum velocity and relative turn angle). KET and MET induced similar oxidative stress responses in embryos, which were unrecoverable in hatchlings in drug-free solutions. Early life exposure to the 2 drugs conferred distinct patterns in larval locomotion: KET induced hyperactivity and a less tortuous swimming path, but MET-treated larvae showed hypoactivity and a clockwise swimming direction at high doses. The alteration in locomotor responses were generally similar in mammals and zebrafish. We report sensitive biomarkers (e.g., heartbeat, hatching and swimming behavior) by developmental stage of medaka that reflect environmentally relevant exposures of abused drugs. They could be useful for ecological risk assessment of waterborne neuroactive drugs. The toxicity results implicate a potential ecotoxicological impact of controlled or abused drugs on fish development and populations in aquatic environments.

  19. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring.

    PubMed

    Li, Na; Li, Yongmei; Gao, Qinqin; Li, Dawei; Tang, Jiaqi; Sun, Miao; Zhang, Pengjie; Liu, Bailin; Mao, Caiping; Xu, Zhice

    2015-08-17

    Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2(+)-activated K(+) (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca(2+) sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca(2+)]i fluorescence and vasoconstriction testing showed reduced Ca(2+), leading to diminished BKCa activation via ryanodine receptor Ca(2+) release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins.

  20. In utero exposure of neonatal buffalo calves to pesticide residues and the alterations within their reproductive tract.

    PubMed

    Kaur, Karanpreet; Ghuman, Sarvpreet Singh; Singh, Opinder; Bedi, Jasbir Singh; Gill, Jatinder Paul Singh

    2015-11-01

    In utero exposure of neonates to pesticide residues could be damaging to the reproductive tract. Hence, the present study assessed the circulating concentrations of pesticide residues in buffalo and their neonatal calves as well as in the reproductive tract tissue samples of same calves. Also, histopathological alterations were revealed in the reproductive tract of calves. Pesticide residues were high (P<0.05) in the reproductive tract of calves (119.5 ± 20.2 ng/g, 35% positive) in comparison to their blood (32.1 ± 8.4 ng/ml, 15% positive) or blood of their dams (41.5 ± 8.3 ng/ml, 25% positive). The number of histopathological alterations were high (P<0.05) in the reproductive tract of a calf contaminated with high concentrations of pesticide residues (3.43 ± 1.29) in comparison to a tract positive for low residue concentrations (1.57 ± 0.60) or pesticide negative tract (0.28 ± 0.10). In conclusion, in utero exposure of neonatal buffalo calves to pesticide residues may be associated with damaging alterations in their reproductive tract.

  1. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. PMID:26844865

  2. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment.

    PubMed

    Vigezzi, Lucía; Bosquiazzo, Verónica L; Kass, Laura; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2015-04-01

    We assessed the long-term effect of perinatal exposure to bisphenol A (BPA) on the rat uterus and the uterine response to estrogen (E2) replacement therapy. BPA (0.5 or 50μg/kg/day) was administered in the drinking water from gestational day 9 until weaning. We studied the uterus of female offspring on postnatal day (PND) 90 and 360, and the uterine E2 response on PND460 (PND460-E2). On PND90, BPA-exposed rats showed altered glandular proliferation and α-actin expression. On PND360, BPA exposure increased the incidence of abnormalities in the luminal and glandular epithelium. On PND460-E2, the multiplicity of glands with squamous metaplasia increased in BPA50 while the incidence of glands with daughter glands increased in BPA0.5. The expression of steroid receptors, p63 and IGF-I was modified in BPA-exposed rats on PND460-E2. The long-lasting effects of perinatal exposure to BPA included induction of abnormalities in uterine tissue and altered response to E2 replacement therapy.

  3. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    PubMed

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  4. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  5. Exposure of mice to cigarette smoke and/or light causes DNA alterations in heart and aorta.

    PubMed

    Izzotti, Alberto; D'Agostini, Francesco; Balansky, Roumen; Degan, Paolo; Pennisi, Tanya M; Steele, Vernon E; De Flora, Silvio

    2008-09-26

    Cigarette smoke (CS) is a major risk factor for cardiovascular diseases, cancer, and other chronic degenerative diseases. UV-containing light is the most ubiquitous DNA-damaging agent existing in nature, but its possible role in cardiovascular diseases had never been suspected before, although it is known that mortality for cardiovascular diseases is increased during periods with high temperature and solar irradiation. We evaluated whether exposure of Swiss CD-1 mice to environmental CS (ECS) and UV-C-covered halogen quartz lamps, either individually or in combination, can cause DNA damage in heart and aorta cells. Nucleotide alterations were evaluated by (32)P postlabeling methods and by HPLC-electrochemical detection. The whole-body exposure of mice to ECS considerably increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and of bulky DNA adducts in both heart and aorta. Surprisingly, even exposure to a light that simulated solar irradiation induced oxidatively generated damage in both tissues. The genotoxic effects of UV light in internal organs is tentatively amenable to formation of unidentified long-lived mutagenic products in the skin of irradiated mice. Nucleotide alterations were even more pronounced when the mice were exposed to smoke and/or light during the first 5 weeks of life rather than during adulthood for an equivalent period of time. Although the pathogenetic meaning is uncertain, DNA damage in heart and aorta may tentatively be related to cardiomyopathies and to the atherogenesis process, respectively.

  6. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure.

    PubMed

    Young, Philip R; Eyeghe-Bickong, Hans A; du Plessis, Kari; Alexandersson, Erik; Jacobson, Dan A; Coetzee, Zelmari; Deloire, Alain; Vivier, Melané A

    2016-03-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) 'Sauvignon Blanc' berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. PMID:26628747

  7. Larval ethanol exposure alters adult circadian free-running locomotor activity rhythm in Drosophila melanogaster.

    PubMed

    Seggio, Joseph A; Possidente, Bernard; Ahmad, S Tariq

    2012-02-01

    Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect. PMID:22217104

  8. Alteration in Pimephales promelas mucus production after exposure to nanosilver or silver nitrate.

    PubMed

    Hawkins, Adam D; Thornton, Cammi; Steevens, Jeffery A; Willett, Kristine L

    2014-12-01

    The fish gill's ability to produce mucus effectively is a critical part of the stress response and protection against xenobiotic toxicity. Adult fathead minnows were exposed to silver nitrate (0.82 µg/L or 13.2 µg/L), polyvinylpyrrolidone-coated silver nanoparticles (11.1 µg/L or 208 µg/L), and citrate-coated silver nanoparticles (10.1 µg/L or 175 µg/L) for 96 h. Mucus concentrations based on glucose as a surrogate were determined at 0 h, 1 h, 2 h, 3 h, 4 h and 24 h after re-dosing each day. Higher mucus production rates following silver treatment were observed at the beginning as compared to controls and compared to after 3 d of exposure. Control fish produced consistent mucus concentrations throughout the exposure (0.62 mg/L and 0.40 mg/L at 24 h and 96 h, respectively). Following 24 h of exposure, all silver treatment groups produced significantly more mucus than controls. Following 96 h of exposure, mucus concentrations in treatment groups were significantly reduced compared with each respective treatment at 24 h. Reduced mucus production following long-term silver exposure could prevent the gills from removing silver, and thus increase toxicity. PMID:25262928

  9. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John H.; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100 mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios towards males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  10. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback.

    PubMed

    Furin, Christoff G; von Hippel, Frank A; Postlethwait, John H; Buck, C Loren; Cresko, William A; O'Hara, Todd M

    2015-08-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios toward males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  11. Long-term exposure to incense smoke alters metabolism in Wistar albino rats.

    PubMed

    Alokail, Majed S; Al-Daghri, Nasser M; Alarifi, Saud A; Draz, Hossam M; Hussain, Tajamul; Yakout, Sobhy M

    2011-03-01

    The burning of incense is an important source of indoor air pollution in Asia. We assessed the effect of long-term exposure to incense smoke on the body weight and levels of circulating glucose, triglycerides, total cholesterol, HDL-cholesterol, insulin, adiponectin and leptin in Wistar albino rats. Two groups of rats were used. First group (n = 12) was exposed daily to incense smoke for 4 months at the rate of 4 g day(-1) in the exposure chamber. Another group of rats (n = 12), was used as non-exposed control. Blood samples were collected from all animals after 4, 8, 12 and 16 weeks of exposure. Serum glucose, triglycerides, total cholesterol and HDL-cholesterol, LDL-cholesterol insulin, adiponectin and leptin were measured. Our results showed that incense smoke exposure was associated with decreased weight gain and the adverse metabolic changes of increased triglycerides and decreased HDL-cholesterol concentrations. Exposure to incense was also associated with a transient increase of leptin levels. Taken together, these data suggest that incense smoke influences metabolism adversely in rats. The effect of incense smoke on human health and the underlying mechanisms need to be studied further.

  12. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    PubMed

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms.

  13. Chronic Exposure to Arsenic in the Drinking Water Alters the Expression of Immune Response Genes in Mouse Lung

    PubMed Central

    Kozul, Courtney D.; Hampton, Thomas H.; Davey, Jennifer C.; Gosse, Julie A.; Nomikos, Athena P.; Eisenhauer, Phillip L.; Weiss, Daniel J.; Thorpe, Jessica E.; Ihnat, Michael A.; Hamilton, Joshua W.

    2009-01-01

    Background Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. Objectives The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. Methods C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Results Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. Conclusions These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung. PMID:19654921

  14. Prenatal nicotine exposure alters the types of nicotinic receptors that facilitate excitatory inputs to cardiac vagal neurons.

    PubMed

    Huang, Zheng-Gui; Wang, Xin; Evans, Cory; Gold, Allison; Bouairi, Evguenia; Mendelowitz, David

    2004-10-01

    Nicotinic receptors play an important role in modulating the activity of parasympathetic cardiac vagal neurons in the medulla. Previous work has shown nicotine acts via at least three mechanisms to excite brain stem premotor cardiac vagal neurons. Nicotine evokes a direct increase in holding current and facilitates both the frequency and amplitude of glutamatergic neurotransmission to cardiac vagal neurons. This study tests whether these nicotinic receptor-mediated responses are endogenously active, whether alpha4beta2 and alpha7 nicotinic receptors are involved, and whether prenatal exposure to nicotine alters the magnitude of these responses and the types of nicotinic receptors involved. Application of neostigmine (10 microM) significantly increased the holding current, amplitude, and frequency of miniature excitatory postsynaptic current (mEPSC) glutamatergic events in cardiac vagal neurons. In unexposed animals, the nicotine-evoked facilitation of mEPSC frequency, but not mEPSC amplitude or holding current, was blocked by alpha-bungarotoxin (100 nM). Prenatal nicotine exposure significantly exaggerated and altered the types of nicotinic receptors involved in these responses. In prenatal nicotine-exposed animals, alpha-bungarotoxin only partially reduced the increase in mEPSC frequency. In addition, in prenatal nicotine-exposed animals, the increase in holding current was partially dependent on alpha-7 subunit-containing nicotinic receptors, in contrast to unexposed animals in which alpha-bungarotoxin had no effect. These results indicate prenatal nicotine exposure, one of the highest risk factors for sudden infant death syndrome (SIDS), exaggerates the responses and changes the types of nicotinic receptors involved in exciting premotor cardiac vagal neurons. These alterations could be responsible for the pronounced bradycardia that occurs during apnea in SIDS victims.

  15. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    PubMed Central

    Rafati, A.; Rahimi, S.; Talebi, A.; Soleimani, A.; Haghani, M.; Mortazavi, S. M. J.

    2015-01-01

    Introduction The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Materials and Methods Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. Results The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396969

  16. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES IN DETROIT ALTERS HEART RATE VARIABILITY IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    Elevations in airborne particulate matter (PM) are linked to increased mortality and morbidity in humans with cardiopulmonary disease. Clinical studies show that PM is associated with altered heart rate variability (HRV) and suggests that loss of autonomic control may underlie ca...

  17. POTENTIAL ALTERATIONS IN GENE EXPRESSION ASSOCIATED WITH CARCINOGEN EXPOSURE IN MYA ARENARIA

    EPA Science Inventory

    Gonadal cancers in soft-shell clams (Mya arenaria) have been found at high prevalences (20-40%) in populations in eastern Maine. The aetiology of these tumours is unknown. We hypothesized that gene expression would be altered in gonadal tumours and that examination of gene expres...

  18. Prenatal Alcohol Exposure and Chronic Mild Stress Differentially Alter Depressive- and Anxiety-Like Behaviors in Male and Female Offspring

    PubMed Central

    Hellemans, Kim G. C.; Verma, Pamela; Yoon, Esther; Yu, Wayne K.; Young, Allan H.; Weinberg, Joanne

    2016-01-01

    Background Fetal Alcohol Spectrum Disorder (FASD) is associated with numerous neuro behavioral alterations, as well as disabilities in a number of domains, including a high incidence of depression and anxiety disorders. Prenatal alcohol exposure (PAE) also alters hypothalamic-pituitary-adrenal (HPA) function, resulting in increased responsiveness to stressors and HPA dysregulation in adulthood. Interestingly, data suggest that pre-existing HPA abnormalities may be a major contributory factor to some forms of depression, particularly when an individual is exposed to stressors later in life. We tested the hypothesis that exposure to stressors in adulthood may unmask an increased vulnerability to depressive- and anxiety-like behaviors in PAE animals. Methods Male and female offspring from prenatal alcohol (PAE), pair-fed (PF), and ad libitumfed control (C) treatment groups were tested in adulthood. Animals were exposed to 10 consecutive days of chronic mild stress (CMS), and assessed in a battery of well-validated tasks sensitive to differences in depressive- and / or anxiety-like behaviors. Results We report here that the combination of PAE and CMS in adulthood increases depressive- and anxiety-like behaviors in a sexually dimorphic manner. PAE males showed impaired hedonic responsivity (sucrose contrast test), locomotor hyperactivity (open field), and alterations in affiliative and nonaffiliative social behaviors (social interaction test) compared to control males. By contrast, PAE and, to a lesser extent, PF, females showed greater levels of “behavioral despair” in the forced swim test, and PAE females showed altered behavior in the final 5 minutes of the social interaction test compared to control females. Conclusions These data support the possibility that stress may be a mediating or contributing factor in the psychopathologies reported in FASD populations. PMID:20102562

  19. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins. PMID:25552505

  20. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  1. Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    PubMed Central

    States, J. Christopher; Singh, Amar V.; Knudsen, Thomas B.; Rouchka, Eric C.; Ngalame, Ntube O.; Arteel, Gavin E.; Piao, Yulan; Ko, Minoru S. H.

    2012-01-01

    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing

  2. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation

    PubMed Central

    Bailey, Michael T.; Dowd, Scot E.; Galley, Jeffrey D.; Hufnagle, Amy R.; Allen, Rebecca G.; Lyte, Mark

    2010-01-01

    The bodies of most animals are populated by highly complex and genetically diverse communities of microorganisms. The majority of these microbes reside within the intestines in largely stable but dynamically interactive climax communities that positively interact with their host. Studies from this laboratory have shown that stressor exposure impacts the stability of the microbiota and leads to bacterial translocation. The biological importance of these alterations, however, is not well understood. To determine whether the microbiome contributes to stressor-induced immunoenhancement, mice were exposed to a social stressor called social disruption (SDR), that increases circulating cytokines and primes the innate immune system for enhanced reactivity. Bacterial populations in the cecum were characterized using bacterial tag-encoded FLX amplicon pyrosequencing. Stressor exposure significantly changed the community structure of the microbiota, particularly when the microbiota were assessed immediately after stressor exposure. Most notably, stressor exposure decreased the relative abundance of bacteria in the genus Bacteroides, while increasing the relative abundance of bacteria in the genus Clostridium. The stressor also increased circulating levels of IL-6 and MCP-1, which were significantly correlated with stressor-induced changes to three bacterial genera (i.e., Coprococcus, Pseudobutyrivibrio, and Dorea). In follow up experiments, mice were treated with an antibiotic cocktail to determine whether reducing the microbiota would abrogate the stressor-induced increases in circulating cytokines. Exposure to SDR failed to increase IL-6 and MCP-1 in the antibiotic treated mice. These data show that exposure to SDR significantly affects bacterial populations in the intestines, and remarkably also suggest that the microbiota are necessary for stressor-induced increases in circulating cytokines. PMID:21040780

  3. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    SciTech Connect

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  4. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal axis-associated proteins

    PubMed Central

    Zuloaga, Damian G.; Siegel, Jessica A.; Acevedo, Summer F.; Agam, Maayan; Raber, Jacob

    2013-01-01

    Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or Saline from postnatal day (P) 11–20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR-immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and area occupied by vasopressin-immunoreactiviy in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin-immunoreactivity in the PVN, or GR-immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, area occupied by GR-immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin-immunoreactivity no longer differed from Saline controls. No effects of MA were found on oxytocin or GR-immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin-immunoreactivity and short-term effects on GR-immunoreactivity. PMID:23860125

  5. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  6. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  7. Environmental enrichment alters structural plasticity of the adolescent brain but does not remediate the effects of prenatal nicotine exposure.

    PubMed

    Mychasiuk, Richelle; Muhammad, Arif; Kolb, Bryan

    2014-07-01

    Exposure to both drugs of abuse and environmental enrichment (EE) are widely studied experiences that induce large changes in dendritic morphology and synaptic connectivity. As there is an abundance of literature using EE as a treatment strategy for drug addiction, we sought to determine whether EE could remediate the effects of prenatal nicotine (PN) exposure. Using Golgi-Cox staining, we examined eighteen neuroanatomical parameters in four brain regions [medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), nucleus accumben, and Par1] of Long-Evans rats. EE in adolescence dramatically altered structural plasticity in the male and female brain, modifying 60% of parameters investigated. EE normalized three parameters (OFC spine density and dendritic branching and mPFC dendritic branching) in male offspring exposed to nicotine prenatally but did not remediate any measures in female offspring. PN exposure interfered with adolescent EE-induced changes in five neuroanatomical measurements (Par1 spine density and dendritic branching in both male and female offspring, and mPFC spine density in male offspring). And in four neuroanatomical parameters examined, PN exposure and EE combined to produce additive effects [OFC spine density in females and mPFC dendritic length (apical and basilar) and branching in males]. Despite demonstrated efficacy in reversing drug addiction, EE was not able to reverse many of the PN-induced changes in neuronal morphology, indicating that modifications in neural circuitry generated in the prenatal period may be more resistant to change than those generated in the adult brain.

  8. Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure

    PubMed Central

    Bañuelos, Cristina; Gilbert, Ryan J.; Montgomery, Karienn S.; Fincher, Annette S.; Wang, Haiying; Frye, Gerald D.; Setlow, Barry; Bizon, Jennifer L.

    2012-01-01

    Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague–Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4–9. At adolescence (between postnatal days 35–38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function. PMID:22129556

  9. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    PubMed Central

    Maskey, Dhiraj

    2013-01-01

    Calcium binding proteins (CaBPs) such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF) exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR) in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus. PMID:24069603

  10. Alterations in gills of Lepomis gibbosus, after acute exposure to several xenobiotics (pesticide, detergent and pharmaceuticals): morphometric and biochemical evaluation.

    PubMed

    Rodrigues, Sara; Correia, Alberto T; Antunes, Sara C; Nunes, Bruno

    2015-04-01

    In recent decades, scientific research about the effects of anthropogenic xenobiotics on non-target organisms has increased. Among the likely effects, some studies reported the evaluation of biochemical and morphological changes in specific tissues or organs of fishes, such as gills, which are key organs for the direct action of pollutants in the aquatic environment. This work intended to assess biochemical [oxidative stress/phase II conjugation isoenzymes glutathione S-transferase (GSTs)] and morphological [secondary lamellar length (SLL), secondary lamellar width (SLW), interlamellar distance (ID), basal epithelial thickness (BET) and proportion of the secondary lamellae available for gas exchange (PAGE)] changes in gills, after acute exposure to the pesticide chlorfenvinphos, the detergent sodium dodecylsulphate (SDS) and to the anticholinesterasic pharmaceuticals (neostigmine and pyridostigmine). Our results point to a significant, eventually hormetic, effect in the activity of GSTs following exposure to chlorfenvinphos that significantly increased the activity of GSTs at concentration of 0.2 mg/L. The activity of GSTs increased significantly after exposure to 100 mg/L of neostigmine. Considering the morphometric analysis of the gills, the data obtained showed that chlorfenvinphos exerted mainly minor architectural alterations in gills, with the exception of the highest tested concentration of chlorfenvinphos that produced also a slight decrease of the PAGE. The overall conclusions point to a null or negligible toxicity of the selected toxicants towards L. gibbosus, which may be reverted if exposure is withdrawn.

  11. Repeated exposures to chlorpyrifos lead to spatial memory retrieval impairment and motor activity alteration.

    PubMed

    Yan, Changhui; Jiao, Lifei; Zhao, Jun; Yang, Haiying; Peng, Shuangqing

    2012-07-01

    Chlorpyrifos (CPF) is one of the most commonly used insecticides throughout the world and has become one of the major pesticides detected in farm products. Chronic exposures to CPF, especially at the dosages without eliciting any systemic toxicity, require greater attention. The purpose of this study was, therefore, to evaluate the behavioral effects of repeated low doses (doses that do not produce overt signs of cholinergic toxicity) of CPF in adult rats. Male rats were given 0, 1.0, 5.0 or 10.0mg/kg of CPF through intragastric administration daily for 4 consecutive weeks. The behavioral functions were assessed in a series of behavioral tests, including water maze task, open-field test, grip strength and rotarod test. Furthermore, the present study was designed to evaluate the effects of repeated exposures to CPF on water maze recall and not acquisition. The results showed that the selected doses only had mild inhibition effects on cholinesterase activity, and have no effects on weight gain and daily food consumption. Performances in the spatial retention task (Morris water maze) were impaired after the 4-week exposure to CPF, but the performances of grip strength and rotarod test were not affected. Motor activities in the open field were changed, especially the time spent in the central zone increased. The results indicated that repeated exposures to low doses of CPF may lead to spatial recall impairments, behavioral abnormalities. However, the underlying mechanism needs further investigations.

  12. Alterations of metabolic enzymes in Australian bass, Macquaria novemaculeata, after exposure to petroleum hydrocarbons.

    PubMed

    Cohen, A; Gagnon, M M; Nugegoda, D

    2005-08-01

    Australian bass Macquaria novemaculeata were exposed to the water-accommodated fraction of Bass Strait crude oil, dispersed crude oil, or burnt crude oil to assess sublethal effects of oil spill remediation techniques on fish. Fish were exposed to these treatments for 16 days either through the water column or by way of a pre-exposed diet of amphipod Allorchestes compressa. Fish gills, liver, and white muscle were sampled and cytochrome C oxidase (CCO) and lactate dehydrogenase (LDH) activities quantified. In all treatments containing fish exposed by way of the water column, aerobic activity increased in the gills, whereas a decrease of this enzymic activity was observed in the liver and white muscle. Exposures by way of the food pathway indicated similar trends. Anaerobic (LDH) activity increased in the gills, liver, and white muscle after waterborne exposures. Stimulation in anaerobic activity also occurred in the liver and white muscle of fish after exposure to contaminated food. CCO activity in the gills was the most sensitive biomarker when monitoring waterborne exposures to petroleum hydrocarbons. In the gills, the dispersed oil treatment resulted in the most pronounced biological response, suggesting that in the short term the use of dispersants on an oil slick might cause the most perturbations to fish metabolism. PMID:16001154

  13. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  14. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  15. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  16. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    PubMed

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer.

  17. Exposure to hyperoxia in the neonatal period alters bone marrow function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...

  18. Exposure to Lipopolysaccharide in Utero Alters the Postnatal Metabolic Response in Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant crossbred cows (n = 50) were assigned to a prenatal immune stimulation (PIS; n = 25; administered 0.1 micrograms/kg BW LPS s...

  19. In utero exposure to lipopolysaccharide alters the postnatal metabolic response in heifers.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram body weight LPS ...

  20. The exposure to lipopolysaccharide in utero alters growth performance of calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal growth performance of calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram body weight LPS subcutaneously) and sali...

  1. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    EPA Science Inventory

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  2. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    PubMed

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer. PMID:27060830

  3. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    USGS Publications Warehouse

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  4. Fluoxetine Exposure during Adolescence Alters Responses to Aversive Stimuli in Adulthood

    PubMed Central

    Alcantara, Lyonna F.; Warren, Brandon L.; Riggs, Lace M.; Parise, Eric M.; Vialou, Vincent; Wright, Katherine N.; Dayrit, Genesis; Nieto, Steven J.; Wilkinson, Matthew B.; Lobo, Mary K.; Neve, Rachael L.; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2014-01-01

    The mechanisms underlying the enduring neurobiological consequences of antidepressant exposure during adolescence are poorly understood. Here, we assessed the long-term effects of exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, during adolescence on behavioral reactivity to emotion-eliciting stimuli. We administered FLX (10 mg/kg, bi-daily, for 15 d) to male adolescent [postnatal day 35 (P35) to P49] C57BL/6 mice. Three weeks after treatment (P70), reactivity to aversive stimuli (i.e., social defeat stress, forced swimming, and elevated plus maze) was assessed. We also examined the effects of FLX on the expression of extracellular signal-regulated kinase (ERK) 1/2-related signaling within the ventral tegmental area (VTA) of adolescent mice and Sprague Dawley rats. Adolescent FLX exposure suppressed depression-like behavior, as measured by the social interaction and forced swim tests, while enhancing anxiety-like responses in the elevated plus maze in adulthood. This complex behavioral profile was accompanied by decreases in ERK2 mRNA and protein phosphorylation within the VTA, while stress alone resulted in opposite neurobiological effects. Pharmacological (U0126) inhibition, as well as virus-mediated downregulation of ERK within the VTA mimicked the antidepressant-like profile observed after juvenile FLX treatment. Conversely, overexpression of ERK2 induced a depressive-like response, regardless of FLX pre-exposure. These findings demonstrate that exposure to FLX during adolescence modulates responsiveness to emotion-eliciting stimuli in adulthood, at least partially, via long-lasting adaptations in ERK-related signaling within the VTA. Our results further delineate the role ERK plays in regulating mood-related behaviors across the lifespan. PMID:24431458

  5. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    SciTech Connect

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J.

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  6. Liver structural alterations accompanying chronic toxicity in fishes: Potential biomarkers of exposure

    SciTech Connect

    Hinton, D.E.; Lauren, D.J. ); Holliday, T.L. ); Giam, C.S. )

    1988-09-01

    Hepatic neoplasms in fish involve hepatocytes, biliary epithelial cells and possibly perisinusoidal and endothelial cells. The application of this spectrum of hepatic alterations as biomarkers for field investigations will be proposed. Alternations in livers of sea pen cultured salmonids will be reviewed as an in situ verification of the validity of liver responses. Observations in livers of mature, moribund striped bass from the Carquinez Strait die-off will be reviewed as an example of hepatotoxicity in lethally injured feral fish. Confounding alterations associated with infectious disease including parasites will be compared using results obtained from recent survey of fishes of the Kanawha River, a heavily industrialized stream in West Virginia. Practical morphometric approaches designed to evaluate stress-related alterations in livers and their relation to assay of feral fishes will be presented. Histologic, progressive responses in a carcinogen resistant and a carcinogen responsive species will be presented and discussed as one means to determine toxic, but not necessarily neoplastic, alternations in livers of impacted organisms.

  7. Exposure to sublethal chromium and endosulfan alter the diel vertical migration (DVM) in freshwater zooplankton crustaceans.

    PubMed

    Gutierrez, María Florencia; Gagneten, Ana María; Paggi, Juan Cesar

    2012-01-01

    Among zooplankton behaviors, diel migrations constitute one of the most effective predator avoidance strategy and confer metabolic and demographic advantages. We aim to examine whether sublethal concentrations of two widespread pollutants (a pesticide with endosulfan and chromium as potassium dichromate) alter the depth selection, vertical migration and grouping of five freshwater species: Argyrodiaptomus falcifer, Notodiaptomus conifer, Pseudosida variabilis, Ceriodaphnia dubia and Daphnia magna. In a series of experimental assays, performed with 150 cm length transparent tubes, we analyzed the ascents and descents movements through periods of 24 h. Among controls, the copepods showed a tendency to remain closest to the surface, however, N. conifer registered a downward movement of 18.14 cm between 06:00 and 12:00. The cladoceran P. variabilis occupied the deeper position (85 cm), C. dubia showed a tendency to hike to the surface at 06:00 (57.7 cm) descending to lower levels at 18:00. D. magna showed a constant movement of ascent between 00:00 and 18:00, making an average travel of 29.4 cm. When subjected to pollutants, these behaviors were altered. It is hypothesized that a reduction in swimming activity and disorientation would be the main cause of such alterations. The high sensitivity of this endpoint sugests it to be adecuate as a complement in future standard toxicity tests.

  8. Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans

    PubMed Central

    Robertson, John A.; Théberge, Jean; Weller, Julie; Drost, Dick J.; Prato, Frank S.; Thomas, Alex W.

    2010-01-01

    Extremely low-frequency magnetic fields (from DC to 300 Hz) have been shown to affect pain sensitivity in snails, rodents and humans. Here, a functional magnetic resonance imaging study demonstrates how the neuromodulation effect of these magnetic fields influences the processing of acute thermal pain in normal volunteers. Significant interactions were found between pre- and post-exposure activation between the sham and exposed groups for the ipsilateral (right) insula, anterior cingulate and bilateral hippocampus/caudate areas. These results show, for the first time, that the neuromodulation induced by exposure to low-intensity low-frequency magnetic fields can be observed in humans using functional brain imaging and that the detection mechanism for these effects may be different from those used by animals for orientation and navigation. Magnetoreception may be more common than presently thought. PMID:19656823

  9. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.

  10. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. PMID:26825441

  11. Neonatal Idiotypic Exposure Alters Subsequent Cytokine, Pathology, and Survival Patterns in Experimental Schistosoma mansoni Infections

    PubMed Central

    Angela Montesano, M.; Colley, Daniel G.; Eloi-Santos, Silvana; Freeman, George L.; Secor, W. Evan

    1999-01-01

    Exposure to maternal idiotypes (Ids) or antigens might predispose a child to develop an immunoregulated, asymptomatic clinical presentation of schistosomiasis. We have used an experimental murine system to address the role of Ids in this immunoregulation. Sera from mice with 8-wk Schistosoma mansoni infection, chronic (20-wk infection) moderate splenomegaly syndrome (MSS), or chronic hypersplenomegaly syndrome (HSS) were passed over an S. mansoni soluble egg antigen (SEA) immunoaffinity column to prepare Ids (8WkId, MSS Id, HSS Id). Newborn mice were injected with 8WkId, MSS Id, HSS Id, or normal mouse immunoglobulin (NoMoIgG) and infected with S. mansoni 8 wk later. Mice exposed to 8WkId or MSS Id as newborns had prolonged survival and decreased morbidity compared with mice that received HSS Id or NoMoIgG. When stimulated with SEA, 8WkId, or MSS Id, spleen cells from mice neonatally injected with 8WkId or MSS Id produced more interferon γ than spleen cells from mice neonatally injected with HSS Id or NoMoIgG. Furthermore, neonatal exposure to 8WkId or MSS Id, but not NoMoIgG or HSS Id, led to significantly smaller granuloma size and lower hepatic fibrosis levels in infected mice. Together, these results indicate that perinatal exposure to appropriate anti-SEA Ids induces long-term effects on survival, pathology, and immune response patterns in mice subsequently infected with S. mansoni. PMID:9989978

  12. Prenatal Cocaine Exposure Alters Cortisol Stress Reactivity in 11 Year Old Children

    PubMed Central

    Lester, Barry M.; LaGasse, Linda L.; Shankaran, Seetha; Bada, Henrietta S.; Bauer, Charles R.; Lin, Richard; Das, Abhik; Higgins, Rosemary

    2011-01-01

    Objective Determine the association between prenatal cocaine exposure and postnatal environmental adversity on salivary cortisol stress reactivity in school aged children. Study design Subjects included 743 11 year old children (n=320 cocaine exposed; 423 comparison) followed since birth in a longitudinal prospective multisite study. Saliva samples were collected to measure cortisol at baseline and after a standardized procedure to induce psychological stress. Children were divided into those who showed an increase in cortisol from baseline to post stress and those who showed a decrease or blunted cortisol response. Covariates measured included site, birthweight, maternal pre and postnatal use of alcohol, tobacco or marijuana, social class, changes in caretakers, maternal depression and psychological symptoms, domestic and community violence, child abuse and quality of the home. Results With adjustment for confounding variables, cortisol reactivity to stress was more likely to be blunted in children with prenatal cocaine exposure. Cocaine exposed children exposed to domestic violence showed the strongest effects. Conclusion The combination of prenatal cocaine exposure and an adverse postnatal environment could down regulate the hypothalamic-pituitary-adrenal axis (HPA) resulting in the blunted cortisol response to stress possibly increasing risk for later psychopathology and adult disease. PMID:20400094

  13. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-02-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  14. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-30

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs.

  15. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    PubMed Central

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  16. Chronic intrauterine exposure to endotoxin does not alter fetal nephron number or glomerular size.

    PubMed

    Ryan, Danica; Atik, Anzari; De Matteo, Robert; Harding, Richard; Black, Mary J

    2013-11-01

    A reduced nephron endowment early in life adversely impacts on long-term functional reserve in the kidney. A recent study has shown that acute exposure to chorioamnionitis during late gestation can adversely impact on nephrogenesis. The present study aimed to examine the effects of chronic, low-dose endotoxin exposure in utero, during the period of nephrogenesis, on nephron number and glomerular size in preterm lambs. Ewes were administered either endotoxin (lipopolysaccharide; 1 mg/day) or saline at 110-133 days of gestation (term approximately 147 days) via surgically implanted osmotic minipumps within the amniotic cavity. The ewes were induced to deliver preterm at 133 days gestation and the kidneys of the lambs were analysed at 8 weeks after term-equivalent age. Nephron number per kidney was determined using a combined optical disector and fractionator stereological approach; renal corpuscle size was also measured stereologically. At 8 weeks after term-equivalent age there was no significant effect of in utero exposure to endotoxin on bodyweight or kidney weight and there were no significant differences in nephron number, nephron density or renal corpuscle volume between groups. We conclude that chronic intrauterine inflammation during the period of nephrogenesis may not adversely impact on the number of nephrons formed within the kidney or on the volume of the renal corpuscle.

  17. Histopathologic Alterations Associated with Global Gene Expression Due to Chronic Dietary TCDD Exposure in Juvenile Zebrafish

    PubMed Central

    Liu, Qing; Spitsbergen, Jan M.; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J.; Tonellato, Peter J.; Carvan, Michael J.

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption. PMID:24988445

  18. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    NASA Technical Reports Server (NTRS)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  19. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

  20. Altered resistance to Trichinella spiralis infection following subchronic exposure of adult mice to chemicals of environmental concern

    SciTech Connect

    Luebke, R.W.

    1981-01-01

    The effects of subchronic chemical exposure on expulsion of adult Trichinella spiralis from the small intestine of mice and encystment of newborn larvae in the host's musculature were investigated. Exposure to diethylstilbestrol, benzo(a)pyrene, tris-(1,3-dichloro-2-propyl) phosphate, cyclophosphamide, phorbol myristate acetate, and dimethylvinylchloride prior to infection of mice with 200 infective larvae resulted in larger worm burdens in treated animals than in controls 14 days after infection. Worm expulsion was not affected by exposure to tris-(2,3-dibromopropyl)phosphate, orthophenylphenol, and indomethacin. Increased burdens of muscle-phase larvae were found in animals that maintained significant numbers of adult worms in the gut at 14 days, except in mice administered diethylstilbestrol and dimethylvinylchloride. Exposure to diethylstilbestrol and cyclophosphamide resulted in decreased inflammatory reactions in the tissues of the small intestine and development of bone marrow eosinophilia in infected mice. Marrow eosinophilia was likewise decreased in mice given tris-(1,3-dichloro-2-propyl)phosphate before infection. Additional studies with diethylstilbestrol administered either before, at the time of, or after infection showed inhibition of worm expulsion. Drug exposure during a primary infection inhibited the expulsion of a second T. spiralis infection, but did not affect worm elimination when given during a second infection. Treatment with diethylstilbestrol after artificial sensitization of mice with Trichinella antigens decreased delayed hypersensitivity responses to the sensitizing antigen. Immune functions, assessed by lymphoproliferative responses to mitogens and antibody responses to sheep red blood cells, generally correlated with altered host resistance to T. spiralis infection.

  1. Repeated ethanol exposure during late gestation alters the maturation and innate immune status of the ovine fetal lung.

    PubMed

    Sozo, Foula; O'Day, Luke; Maritz, Gert; Kenna, Kelly; Stacy, Victoria; Brew, Nadine; Walker, David; Bocking, Alan; Brien, James; Harding, Richard

    2009-03-01

    Little is known about the effects of fetal ethanol exposure on lung development. Our aim was to determine the effects of repeated ethanol exposure during late gestation on fetal lung growth, maturation, and inflammatory status. Pregnant ewes were chronically catheterized at 91 days of gestational age (DGA; term approximately 147 days). From 95-133 DGA, ewes were given a 1-h daily infusion of either 0.75 g ethanol/kg (n = 9) or saline (n = 8), with tissue collection at 134 DGA. Fetal lungs were examined for changes in tissue growth, structure, maturation, inflammation, and oxidative stress. Between treatment groups, there were no differences in lung weight, DNA and protein contents, percent proliferating and apoptotic cells, tissue and air-space fractions, alveolar number and mean linear intercept, septal thickness, type-II cell number and elastin content. Ethanol exposure caused a 75% increase in pulmonary collagen I alpha1 mRNA levels (P < 0.05) and a significant increase in collagen deposition. Surfactant protein (SP)-A and SP-B mRNA levels were approximately one third of control levels following ethanol exposure (P < 0.05). The mRNA levels of the proinflammatory cytokines interleukin (IL)-1beta and IL-8 were also lower (P < 0.05) in ethanol-exposed fetuses compared with controls. Pulmonary malondialdehyde levels tended to be increased (P = 0.07) in ethanol-exposed fetuses. Daily exposure of the fetus to ethanol during the last third of gestation alters extracellular matrix deposition and surfactant protein gene expression, which could increase the risk of respiratory distress syndrome after birth. Changes to the innate immune status of the fetus could increase the susceptibility of the neonatal lungs to infection.

  2. In vivo tungsten exposure alters B-cell development and increases DNA damage in murine bone marrow.

    PubMed

    Kelly, Alexander D R; Lemaire, Maryse; Young, Yoon Kow; Eustache, Jules H; Guilbert, Cynthia; Molina, Manuel Flores; Mann, Koren K

    2013-02-01

    High environmental tungsten levels were identified near the site of a childhood pre-B acute lymphoblastic leukemia cluster; however, a causal link between tungsten and leukemogenesis has not been established. The major site of tungsten deposition is bone, the site of B-cell development. In addition, our in vitro data suggest that developing B lymphocytes are susceptible to tungsten-induced DNA damage and growth inhibition. To extend these results, we assessed whether tungsten exposure altered B-cell development and induced DNA damage in vivo. Wild-type mice were exposed to tungsten in their drinking water for up to 16 weeks. Tungsten concentration in bone was analyzed by inductively coupled plasma mass spectrometry and correlated with B-cell development and DNA damage within the bone marrow. Tungsten exposure resulted in a rapid deposition within the bone following 1 week, and tungsten continued to accumulate thereafter albeit at a decreased rate. Flow cytometric analyses revealed a transient increase in mature IgD(+) B cells in the first 8 weeks of treatment, in animals of the highest and intermediate exposure groups. Following 16 weeks of exposure, all tungsten groups had a significantly greater percentage of cells in the late pro-/large pre-B developmental stages. DNA damage was increased in both whole marrow and isolated B cells, most notably at the lowest tungsten concentration tested. These findings confirm an immunological effect of tungsten exposure and suggest that tungsten could act as a tumor promoter, providing leukemic "hits" in multiple forms to developing B lymphocytes within the bone marrow.

  3. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model.

    PubMed

    Tyler, Christina R; Allan, Andrea M

    2014-08-01

    Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis

  4. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    PubMed Central

    Chivukula, Venkat Keshav; Krog, Benjamin L; Nauseef, Jones T; Henry, Michael D; Vigmostad, Sarah C

    2015-01-01

    Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS) on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH) and transformed prostate cancer cells (PC-3) were used in this study. The Young’s modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared) and immediately after exposure to high (6,400 dyn/cm2) and low (510 dyn/cm2) FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young’s modulus after exposure to high FSS and a ~47% increase in Young’s modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young’s modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young’s modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study investigating the effect of FSS on the mechanical properties of cancer cells in suspension, and may provide significant insights into the mechanism by which some select cancer cells may survive in the circulation, ultimately leading to metastasis at distal sites. Our findings suggest that biomechanical analysis of cancer cells could

  5. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    PubMed

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  6. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    PubMed

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  7. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance.

    PubMed

    Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis. PMID:25559197

  8. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations.

    PubMed

    Nunes, B; Antunes, S C; Gomes, R; Campos, J C; Braga, M R; Ramos, A S; Correia, A T

    2015-02-01

    A large body of evidence was compiled in the recent decades showing a noteworthy increase in the detection of pharmaceutical drugs in aquatic ecosystems. Due to its ubiquitous presence, chemical nature, and practical purpose, this type of contaminant can exert toxic effects in nontarget organisms. Exposure to pharmaceutical drugs can result in adaptive alterations, such as changes in tissues, or in key homeostatic mechanisms, such as antioxidant mechanisms, biochemical/physiological pathways, and cellular damage. These alterations can be monitored to determine the impact of these compounds on exposed aquatic organisms. Among pharmaceutical drugs in the environment, antibiotics are particularly important because they include a variety of substances widely used in medical and veterinary practice, livestock production, and aquaculture. This wide use constitutes a decisive factor contributing for their frequent detection in the aquatic environment. Tetracyclines are the individual antibiotic subclass with the second highest frequency of detection in environmental matrices. The characterization of the potential ecotoxicological effects of tetracycline is a much-required task; to attain this objective, the present study assessed the acute toxic effects of tetracycline in the freshwater fish species Gambusia holbrooki by the determination of histological changes in the gills and liver, changes in antioxidant defense [glutathione S-transferase (GST), catalase (CAT), and lipoperoxidative damage] as well as potential neurotoxicity (acetylcholinesterase activity). The obtained results suggest the existence of a cause-and-effect relationship between the exposure to tetracycline and histological alterations (more specifically in gills) and enzymatic activity (particularly the enzyme CAT in liver and GST in gills) indicating that this compound can exert a pro-oxidative activity. PMID:25475590

  9. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin–angiotensin system of the rat

    PubMed Central

    Samuelsson, Anne-Maj; Alexanderson, Camilla; Mölne, Johan; Haraldsson, Börje; Hansell, Peter; Holmäng, Agneta

    2006-01-01

    Cytokines are emerging as important in developmental processes. They may induce alterations in normal gene expression patterns, activate angiotensinogen transcription, or alter expression of the renin–angiotensin system (RAS). To determine whether prenatal exposure to interleukin-6 (IL-6) influences gene expression of the intrarenal RAS and contributes to renal dysfunction and hypertension in adulthood, we exposed female rats to IL-6 early (EIL-6 females) and late (LIL-6 females) in pregnancy and analysed blood pressure in the offspring at 5–20 weeks of age. Renal fluid and electrolyte excretion was assessed in clearance experiments, mRNA expression by real-time PCR, and protein levels by Western blot. Systolic pressure was increased at 5 weeks in IL-6 females and at 11 weeks in males. Circulatory RAS levels were increased in all IL-6 females, but angiotensin-1-converting enzyme (ACE) activity was increased only in LIL-6 females. LIL-6 males and IL-6 females showed decreased urinary flow rate and urinary sodium and potassium excretion. Dopamine excretion was decreased IL-6 females. In adult renal cortex, renin expression was increased in all IL-6 females, but angiotensinogen mRNA was increased only in LIL-6 females; AT1 receptor (AT1-R) mRNA and protein levels were increased in LIL-6 females, whereas AT2 receptor (AT2-R) levels were decreased in LIL-6 females and EIL-6 males. In adult renal medulla, AT1-R protein levels were increased in LIL-6 females, and AT2-R mRNA and protein levels were decreased in EIL-6 males and LIL-6 females. Prenatal IL-6 exposure may cause hypertension by altering the renal and circulatory RAS and renal fluid and electrolyte excretion, especially in females. PMID:16825309

  10. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  11. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    PubMed

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety.

  12. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    PubMed

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. PMID:26632987

  13. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. PMID:26057477

  14. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  15. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring.

    PubMed

    Zumbrun, Elizabeth E; Sido, Jessica M; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2015-06-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as co-existing drug use make the impact of cannabis use on progeny inherently difficult to study in a human population. Data from various animal models suggests that in utero exposure to cannabinoids results in profound T cell dysfunction and a greatly reduced immune response to viral antigens. Furthermore, evidence from animal studies indicates that the immunosuppressive effects of cannabinoids can be mediated through epigenetic mechanisms such as altered microRNA, DNA methylation and histone modification profiles. Such studies support the hypothesis that that parental or prenatal exposure to cannabis can trigger epigenetic changes that could have significant immunological consequences for offspring as well as long term transgenerational effects.

  16. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    PubMed

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  17. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring

    PubMed Central

    Zumbrun, Elizabeth E.; Sido, Jessica M.; Nagarkatti, Prakash S.

    2015-01-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as coexisting drug use make the impact of cannabis use on progeny inherently difficult to study in a human population. Data from various animal models suggests that in utero exposure to cannabinoids results in profound T cell dysfunction and a greatly reduced immune response to viral antigens. Furthermore, evidence from animal studies indicates that the immunosuppressive effects of cannabinoids can be mediated through epigenetic mechanisms such as altered microRNA, DNA methylation and histone modification profiles. Such studies support the hypothesis that that parental or prenatal exposure to cannabis can trigger epigenetic changes that could have significant immunological consequences for offspring as well as long term transgenerational effects. PMID:25618446

  18. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    USGS Publications Warehouse

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  19. Alterations in Rat Fetal Morphology Following Abuse Patterns of Toluene Exposure

    PubMed Central

    Bowen, Scott E.; Irtenkauf, Susan; Hannigan, John H.; Stefanski, Adrianne L.

    2009-01-01

    Toluene is a commonly abused organic solvent. Inhalant abusers are increasingly women in their prime childbearing years. Children born to mothers who abused solvents during pregnancy may exhibit characteristics of a “fetal solvent syndrome” which may include dysmorphic features. This study examined the teratological effects of an abuse pattern of binge toluene exposure during gestation on skeletal and soft tissue abnormalities, body weight, and body size in fetal rats. Pregnant Sprague–Dawley rats were exposed for 30 min, twice daily, from gestational day (GD) 8 through GD20 to either air (0 ppm), 8,000 ppm, 12,000 ppm, or 16,000 ppm toluene. Two-thirds of each litter was prepared for skeletal examination using Alizarin Red S staining while the remaining third of each litter was fixed in Bouin’s solution for Wilson’s soft tissue evaluation. Exposure to toluene at all levels significantly reduced growth, including decreases in placental weight, fetal weight, and crown-rump length. In addition, numerous gross morphological anomalies were observed such as short or missing digits and missing limbs. Skeletal examination revealed that ossification of the extremities was significantly reduced as a result of toluene exposure at all levels. Specific skeletal defects included misshapen scapula, missing and supernumerary vertebrae and ribs, and fused digits. Soft tissue anomalies were also observed at all toluene levels and there was a dose-dependent increase in the number of anomalies which included cryptorchidism, displaced abdominal organs, gastromegaly, distended/hypoplastic bladder, and delayed cardiac development, among others. These results indicate that animals exposed prenatally to levels and patterns of toluene typical of inhalant abuse are at increased risk for skeletal and soft tissue abnormalities. PMID:19429395

  20. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta).

    PubMed

    Jandegian, Caitlin M; Deem, Sharon L; Bhandari, Ramji K; Holliday, Casey M; Nicks, Diane; Rosenfeld, Cheryl S; Selcer, Kyle W; Tillitt, Donald E; Vom Saal, Frederick S; Vélez-Rivera, Vanessa; Yang, Ying; Holliday, Dawn K

    2015-05-15

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26°C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20ng/g-egg) or 0.01, 1.0, 100μgBPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated "males", but in none of the control males (n=35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low=30%, BPA-medium=33%, BPA-high=39%), this difference was not significant (p=0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations. PMID:25863134

  1. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta).

    PubMed

    Jandegian, Caitlin M; Deem, Sharon L; Bhandari, Ramji K; Holliday, Casey M; Nicks, Diane; Rosenfeld, Cheryl S; Selcer, Kyle W; Tillitt, Donald E; Vom Saal, Frederick S; Vélez-Rivera, Vanessa; Yang, Ying; Holliday, Dawn K

    2015-05-15

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26°C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20ng/g-egg) or 0.01, 1.0, 100μgBPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated "males", but in none of the control males (n=35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low=30%, BPA-medium=33%, BPA-high=39%), this difference was not significant (p=0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  2. Alterations of cognitive function and 5-HT system in rats after long term microwave exposure.

    PubMed

    Li, Hai-Juan; Peng, Rui-Yun; Wang, Chang-Zhen; Qiao, Si-Mo; Yong, Zou; Gao, Ya-Bing; Xu, Xin-Ping; Wang, Shao-Xia; Dong, Ji; Zuo, Hong-Yan; Li, Zhao; Zhou, Hong-Mei; Wang, Li-Feng; Hu, Xiang-Jun

    2015-03-01

    The increased use of microwaves raises concerns about its impact on health including cognitive function in which neurotransmitter system plays an important role. In this study, we focused on the serotonin system and evaluated the long term effects of chronic microwave radiation on cognition and correlated items. Wistar rats were exposed or sham exposed to 2.856GHz microwaves with the average power density of 5, 10, 20 or 30mW/cm(2) respectively for 6min three times a week up to 6weeks. At different time points after the last exposure, spatial learning and memory function, morphology structure of the hippocampus, electroencephalogram (EEG) and neurotransmitter content (amino acid and monoamine) of rats were tested. Above results raised our interest in serotonin system. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase (MAO), two important rate-limiting enzymes in serotonin synthesis and metabolic process respectively, were detected. Expressions of serotonin receptors including 5-HT1A, 2A, 2C receptors were measured. We demonstrated that chronic exposure to microwave (2.856GHz, with the average power density of 5, 10, 20 and 30mW/cm(2)) could induce dose-dependent deficit of spatial learning and memory in rats accompanied with inhibition of brain electrical activity, the degeneration of hippocampus neurons, and the disturbance of neurotransmitters, among which the increase of 5-HT occurred as the main long-term change that the decrease of its metabolism partly contributed to. Besides, the variations of 5-HT1AR and 5-HT2CR expressions were also indicated. The results suggested that in the long-term way, chronic microwave exposure could induce cognitive deficit and 5-HT system may be involved in it.

  3. Skin alterations induced by long-term exposure to uranium and their effect on permeability

    SciTech Connect

    Ubios, A.M.; Marzorati, M.; Cabrini, R.L.

    1997-05-01

    The skin is a probable route of incorporation of uranium by percutaneous absorption. The changes in epidermal thickness and their effect on skin permeability after uranium exposure are reported herein. Two experiments (A and B) were performed in Wistar rats weighing 60 g. In experiment A the animals were exposed to U{sub 3}O{sub 8} (0.012 g d{sup - 1}) in 30 daily topical applications. In experiment B the animals were treated as in experiment A, followed by a period of non-exposure of 60 d. Samples of the treated area of skin were taken for histologic studies and for the study of the skin permeability. The epidermal thickness was measured on the histological sections. Epidermis was thinner in experimental than in control animals in both experiments. The values in the control groups were 41.05 {+-} 14.03 {mu}m (A) and 38.92 {+-} 16.50 {mu}m (B) and 21.35 {+-} 10.29 {mu}m (A) and 24.06 {+-} 16.50 {mu}m (B) in the experimental groups, the differences being statistically significant. Skin permeability was measured placing skin samples in a diffusion cell, in which the upper compartment was filled with a staining solution. The determinations were made with a spectrophotometer. The results revealed that the skin permeability in both experimental groups was higher than in the respective controls, 65% in experiment A and 77% in experiment B. The results revealed that a long term uranium exposure leads to an epidermal atrophy which in turn results in an increased permeability of the skin. 10 refs., 2 figs., 1 tab.

  4. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    PubMed

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. PMID:25543075

  5. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    PubMed

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution.

  6. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    PubMed

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  7. Aluminium exposure induces Alzheimer's disease-like histopathological alterations in mouse brain.

    PubMed

    Rodella, L F; Ricci, F; Borsani, E; Stacchiotti, A; Foglio, E; Favero, G; Rezzani, R; Mariani, C; Bianchi, R

    2008-04-01

    Aluminium (Al) is a neurotoxic metal and Al exposure may be a factor in the aetiology of various neurodegenerative diseases such as Alzheimer's disease (AD). The major pathohistological findings in the AD brain are the presence of neuritic plaques containing beta-amyloid (Abeta) which may interfere with neuronal communication. Moreover, it has been observed that GRP78, a stress-response protein induced by conditions that adversely affect endoplasmic reticulum (ER) function, is reduced in t