Science.gov

Sample records for exposure alters l-a-amino-3-hydroxy-5-methyl-4-isoxazole

  1. Alterations in cognitive and psychological functioning after organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  2. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    PubMed

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.

  3. Produced water exposure alters bacterial response to biocides.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2014-11-01

    Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity. PMID:25279933

  4. Chronic bisphenol A exposure alters behaviors of zebrafish (Danio rerio).

    PubMed

    Wang, Ju; Wang, Xia; Xiong, Can; Liu, Jian; Hu, Bing; Zheng, Lei

    2015-11-01

    The adult zebrafish (Danio rerio) were exposed to treated-effluent concentration of bisphenol A (BPA) or 17β-estradiol (E2) for 6 months to evaluate their effects on behavioral characteristics: motor behavior, aggression, group preference, novel tank test and light/dark preference. E2 exposure evidently dampened fish locomotor activity, while BPA exposure had no marked effect. Interestingly, BPA-exposed fish reduced their aggressive behavior compared with control or E2. Both BPA and E2 exposure induced a significant decrease in group preference, as well as a weaker adaptability to new environment, exhibiting lower latency to reach the top, more entries to the top, longer time spent in the top, fewer frequent freezing, and fewer erratic movements. Furthermore, the circadian rhythmicity of light/dark preference was altered by either BPA or E2 exposure. Our results suggest that chronic exposure of treated-effluent concentration BPA or E2 induced various behavioral anomalies in adult fish and enhanced ecological risk to wildlife. PMID:26204572

  5. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish

    PubMed Central

    Özel, Rıfat Emrah; Wallace, Kenneth N.

    2014-01-01

    The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine. PMID:24639893

  6. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish.

    PubMed

    Ozel, Rıfat Emrah; Wallace, Kenneth N; Andreescu, Silvana

    2014-02-01

    The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine. PMID:24639893

  7. Vanadium Exposure-Induced Neurobehavioral Alterations among Chinese Workers

    PubMed Central

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2014-01-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the Simple Reaction Time, Digit Span, Benton Visual Retention and Pursuit Aiming were also poorer among exposed workers as compared to unexposed control workers(p<0.05). Some of these poor performances in tests were also significantly related to workers’ exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium. PMID:23500660

  8. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  9. Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development

    PubMed Central

    Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.

    2012-01-01

    Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191

  10. Neurobehavioral alteration in rodents following developmental exposure to aluminum.

    PubMed

    Alleva, E; Rankin, J; Santucci, D

    1998-01-01

    Aluminum (Al) is one of the most abundant metals in the earth's crust, and humans can be exposed to it from several sources. It is present in food, water, pharmaceutical compounds, and in the environment, e.g., as a result of acid rain leaching it from the soil. Exposure to Al has recently been implicated in a number of human pathologies, but it has not yet been definitely proved that it plays a major causal role in any of them. In this paper we review the effects of developmental exposure of laboratory animals to Al salts as a model for human pathological conditions. The data presented show behavioral and neurochemical changes in the offspring of AL-exposed mouse dams during gestation, which include alterations in the pattern of ultrasonic vocalizations and a marked reduction in central nervous system (CNS) choline acetyltransferase activity. Prenatal Al also affects CNS cholinergic functions under Nerve Growth Factor (NGF) control, as shown by increased central NGF levels and impaired performances in a maze learning task in young-adult mice. The need for more detailed studies to evaluate the risks for humans associated with developmental exposure to Al, as well as the importance of using more than one strain of laboratory animal in the experimental design, is emphasized.

  11. Alterations in surfactant protein A after acute exposure to ozone.

    PubMed

    Su, W Y; Gordon, T

    1996-05-01

    The surfactant layer covering the gas-exchange region of the lung serves as the initial site of interaction with inhaled oxidant gases. Among the endogenous compounds potentially vulnerable to oxidative injury are surfactant proteins. This study focused on the effect of ozone on surfactant protein A (SP-A) function, content, and gene expression. To determine the time course of response to ozone, guinea pigs were exposed to 0.2-0.8 parts/million (ppm) ozone for 6 h and were killed up to 120 h postexposure. To determine the effect of repeated exposure, animals were exposed to 0.8 ppm ozone for 6 h/day and were killed on days 3 and 5. A significant increase in surfactant's ability to modulate the respiratory burst induced by phorbol 12-myristate 13-acetate in naive macrophages was observed at 24 h after a single 0.8 ppm ozone exposure. Because neutralizing antibodies to SP-A blunted this stimulatory effect, we hypothesized that ozone enhanced the modulatory role of SP-A in macrophage function. This alteration in function was accompanied by an influx of inflammatory cells and only marginal changes in SP-A levels as determined by an enzyme-linked immunosorbent assay. No significant changes in steady-state levels of SP-A mRNA were observed after single or repeated exposure to ozone. Thus the inflammation that accompanies in vivo ozone exposure may result in a change in the structure and thus functional role of SP-A in modulating macrophage activity.

  12. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations.

    PubMed

    Hallene, K L; Oby, E; Lee, B J; Santaguida, S; Bassanini, S; Cipolla, M; Marchi, N; Hossain, M; Battaglia, G; Janigro, D

    2006-09-29

    Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.

  13. Predator exposure alters stress physiology in guppies across timescales.

    PubMed

    Fischer, Eva K; Harris, Rayna M; Hofmann, Hans A; Hoke, Kim L

    2014-02-01

    In vertebrates, glucocorticoids mediate a wide-range of responses to stressors. For this reason, they are implicated in adaptation to changes in predation pressure. Trinidadian guppies (Poecilia reticulata) from high-predation environments have repeatedly and independently colonized and adapted to low-predation environments, resulting in parallel changes in life history, morphology, and behavior. We validated methods for non-invasive waterborne hormone sample collection in this species, and used this technique to examine genetic and environmental effects of predation on basal glucocorticoid (cortisol) levels. To examine genetic differences, we compared waterborne cortisol levels in high- and low-predation fish from two distinct population pairs. We found that fish from high-predation localities had lower cortisol levels than their low-predation counterparts. To isolate environmental influences, we compared waterborne cortisol levels in genetically similar fish reared with and without exposure to predator chemical cues. We found that fish reared with predator chemical cues had lower waterborne cortisol levels than those reared without. Comparisons of waterborne and whole-body cortisol levels demonstrated that populations differed in overall cortisol levels in the body, whereas rearing conditions altered the release of cortisol from the body into the water. Thus, evolutionary history with predators and lifetime exposure to predator cues were both associated with lower cortisol release, but depended on distinct physiological mechanisms. PMID:24370688

  14. Ozone exposure alters tracheobronchial mucociliary function in humans

    SciTech Connect

    Foster, W.M.; Costa, D.L.; Langenback, E.G.

    1987-09-01

    Mucociliary function is a primary defense mechanism of the tracheobronchial airways, and yet the response of this system to an inhalational hazard, such as ozone, is undefined in humans. Utilizing noninvasive techniques to measure deposition and retention of insoluble radiolabeled particles on airway mucous membranes, we studied the effect on mucus transport of 0.2 and 0.4 ppm ozone compared with filtered air (FA) in seven healthy males. During 2-h chamber exposures, subjects alternated between periods of rest and light exercise with hourly spirometric measurement of lung function. Mechanical and mucociliary function responses to ozone by lung airways appeared concentration dependent. Reduction in particle retention was significant (P less than 0.005) (i.e., transport of lung mucus was increased during exposure to 0.4 ppm ozone and was coincident with impaired lung function; e.g., forced vital capacity and midmaximal flow rate fell by 12 and 16%, respectively, and forced expiratory volume at 1 s by 5%, of preexposure values). Regional analysis indicated that mucus flow from distal airways into central bronchi was significantly increased (P less than 0.025) by 0.2 ppm ozone. This peripheral effect, however, was buffered by only a marginal influence of 0.2 ppm ozone on larger bronchi, such that the resultant mucus transport for all airways of the lung in aggregate differed only slightly from FA exposures. These data may reflect differences in regional diffusion of ozone along the respiratory tract, rather than tissue sensitivity. In conclusion, mucociliary function of humans is acutely stimulated by ozone and may result from fluid additions to the mucus layer from mucosal and submucosal secretory cells and/or alteration of epithelial permeability.

  15. Ozone exposure alters tracheobronchial mucociliary function in humans.

    PubMed

    Foster, W M; Costa, D L; Langenback, E G

    1987-09-01

    Mucociliary function is a primary defense mechanism of the tracheobronchial airways, and yet the response of this system to an inhalational hazard, such as ozone, is undefined in humans. Utilizing noninvasive techniques to measure deposition and retention of insoluble radiolabeled particles on airway mucous membranes, we studied the effect on mucus transport of 0.2 and 0.4 ppm ozone compared with filtered air (FA) in seven healthy males. During 2-h chamber exposures, subjects alternated between periods of rest and light exercise with hourly spirometric measurement of lung function. Mechanical and mucociliary function responses to ozone by lung airways appeared concentration dependent. Reduction in particle retention was significant (P less than 0.005) (i.e., transport of lung mucus was increased during exposure to 0.4 ppm ozone and was coincident with impaired lung function; e.g., forced vital capacity and midmaximal flow rate fell by 12 and 16%, respectively, and forced expiratory volume at 1 s by 5%, of preexposure values). Regional analysis indicated that mucus flow from distal airways into central bronchi was significantly increased (P less than 0.025) by 0.2 ppm ozone. This peripheral effect, however, was buffered by only a marginal influence of 0.2 ppm ozone on larger bronchi, such that the resultant mucus transport for all airways of the lung in aggregate differed only slightly from FA exposures. These data may reflect differences in regional diffusion of ozone along the respiratory tract, rather than tissue sensitivity. In conclusion, mucociliary function of humans is acutely stimulated by ozone and may result from fluid additions to the mucus layer from mucosal and submucosal secretory cells and/or alteration of epithelial permeability.

  16. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER BRAINSTEM AUDITORY EVOKED RESPONSE (BAERS) IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...

  17. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  18. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    EPA Science Inventory

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  19. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    SciTech Connect

    Lantz, R. Clark Chau, Binh; Sarihan, Priyanka; Witten, Mark L.; Pivniouk, Vadim I.; Chen, Guan Jie

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

  20. Developmental timing of perchlorate exposure alters threespine stickleback dermal bone

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Adequate levels of thyroid hormone are critical during development and metamorphosis, and for maintaining metabolic homeostasis. Perchlorate, a common contaminant of water sources, inhibits thyroid function in vertebrates. We utilized threespine stickleback (Gasterosteus aculeatus) to determine if timing of perchlorate exposure during development impacts adult dermal skeletal phenotypes. Fish were exposed to water contaminated with perchlorate (30 mg/L or 100 mg/L) beginning at 0, 3, 7, 14, 21, 42, 154 or 305 days post fertilization until sexual maturity at one year of age. A reciprocal treatment moved stickleback from contaminated to clean water on the same schedule providing for different stages of initial exposure and different treatment durations. Perchlorate exposure caused concentration-dependent significant differences in growth for some bony traits. Continuous exposure initiated within the first 21 days post fertilization had the greatest effects on skeletal traits. Exposure to perchlorate at this early stage can result in small traits or abnormal skeletal morphology of adult fish which could affect predator avoidance and survival. PMID:25753171

  1. Cerebellar morphological alterations in rats induced by prenatal ozone exposure.

    PubMed

    Rivas-Manzano, P; Paz, C

    1999-11-26

    The present study analyzes the morphological aspects of the cerebellum of rats with prenatal exposure to ozone. A double blind histological and planimetric analysis was performed studying sagittal sections of the anterior cerebellar lobe at postnatal days 0, 12 and 60. Ozone exposed rats showed cerebellar necrotic signs at age 0, diminished area of the molecular layer with Purkinje cells with pale nucleoli and perinucleolar bodies at age 12, and Purkinje cells showing nuclei with unusual clumps of chromatin in the periphery at age 60. We conclude that exposure to high concentrations of ozone during gestation induces permanent cerebellar damage in rats.

  2. Alteration of mammary gland development and gene expression by in utero exposure to arsenic

    PubMed Central

    Parodi, Daniela A.; Greenfield, Morgan; Evans, Claire; Chichura, Anna; Alpaugh, Alexandra; Williams, James; Martin, Mary Beth

    2015-01-01

    Early life exposure to estrogens and estrogen like contaminants in the environment are thought to contribute to the early onset of puberty and consequently increase the risk of developing breast cancer in the exposed female. The results of this study show that in utero exposure to the metalloestrogen arsenite altered mammary gland development prior to its effect on puberty onset. In the prepubertal gland, in utero exposure resulted in an increase in the number of mammosphere-forming cells and an increase in branching, epithelial cells, and density. In the postpubertal gland, in utero exposure resulted in the overexpression of estrogen receptor-alpha (ERα) that was due to the increased and altered response of the ERα transcripts derived from exons O and OT to estradiol. These results suggest that, in addition to advancing puberty onset, in utero exposure to arsenite alters the pre- and postpubertal development of the mammary gland and possibly, the risk of developing breast cancer. PMID:25543096

  3. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  4. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  5. EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.

    EPA Science Inventory

    Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication

    Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.

    Exposure to ambient air pollution particulate matter (...

  6. ACUTE EXPOSURE TO MOLINATE ALTERS NEUROENDOCRINE CONTROL OF OVULATION IN THE RAT

    EPA Science Inventory

    Molinate, a thiocarbamate herbicide, has been shown previously to impair reproductive capability in the male rat. In a two-generation study, molinate exposure to female rats resulted in altered pregnancy outcome. However, published data is lacking on the effects of acute exposure...

  7. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  8. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability.

  9. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    PubMed

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. PMID:26493930

  10. Dietary exposure to chlorpyrifos alters core temperature in the rat.

    PubMed

    Gordon, Christopher J; Padnos, Beth K

    2002-08-15

    Administration of the organophosphate pesticide chlorpyrifos (CHP) to the male rat at a dose of 25-80 mg/kg (p.o.) results in hypothermia followed by a delayed fever lasting for several days. These are high doses of CHP that cause marked cholinergic stimulation. It is important to understand if chronic exposure to CHP would evoke changes in thermoregulation that are comparable to the acute administration. Male rats of the Long-Evans strain were subjected to dietary treatment of 0, 1, or 5 mg/(kg day) CHP for 6 months. A limited amount of food was given per day to maintain body weight at 350 g. The constant body weight allowed for the regulation of a consistent dosage of CHP per kg body weight throughout the feeding period. Core temperature (T(a)) and motor activity (MA) were monitored by radio telemetric transmitters implanted in the abdominal cavity. After 5 months of treatment, T(c) and MA were monitored in undisturbed animals for 96 h. CHP at 5 mg/(kg day) led to a slight elevation in T(c) without affecting MA. The rats were then administered a challenge dose of CHP (30 mg/kg, p.o.) while T(c) and MA were monitored. Rats fed the 1 and 5 mg/kg CHP diets showed a significantly greater hypothermic response and reduction in MA following CHP challenge compared to controls. The restricted feeding schedule resulted in marked changes in the pattern of the circadian rhythm. Therefore, in another study, rats were treated ad libitum for 17 days with a CHP diet that resulted in a dosage of 7 mg CHP/(mg day). There was a significant increase in T(c) during the daytime but not during the night throughout most of the treatment period. Overall, chronic CHP was associated with a slight but significant elevation in T(c) and greater hypothermic response to a CHP challenge. This latter finding was unexpected and suggests that chronic exposure to CHP sensitizes the rat's thermoregulatory response to acute CHP exposure. PMID:12135625

  11. Exposure to mercury alters early activation events in fish leukocytes.

    PubMed Central

    MacDougal, K C; Johnson, M D; Burnett, K G

    1996-01-01

    Although fish in natural populations may carry high body burdens of both organic and inorganic mercury, the effects of this divalent metal on such lower vertebrates is poorly understood. In this report, inorganic mercury in the form of mercuric chloride (HgCl2) is shown to produce both high-dose inhibition and low-dose activation of leukocytes in a marine teleost fish, Sciaenops ocellatus. Concentrations of inorganic mercury > or = 10 microM suppressed DNA synthesis and induced rapid influx of radiolabeled calcium, as well as tyrosine phosphorylation of numerous cellular proteins. Lower concentrations (0.1-1 microM) of HgCl2 that activated cell growth also induced a slow sustained rise in intracellular calcium in cells loaded with the calcium indicator dye fura-2, but did not produce detectable tyrosine phosphorylation of leukocyte proteins. These studies support the possibility that subtoxic doses of HgCl2 may inappropriately activate teleost leukocytes, potentially altering the processes that regulate the magnitude and specificity of the fish immune response to environmental pathogens. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. PMID:8930553

  12. Cocaine exposure alters dopaminergic modulation of prefronto-accumbens transmission.

    PubMed

    Wang, Xiusong; Liu, Lei; Adams, Wendy; Li, Shouxin; Zhang, Qian; Li, Bingjin; Wang, Min; Cui, Ranji

    2015-06-01

    In the nucleus accumbens (NAc), dopamine transmission modulates glutamatergic input from the prefrontal cortex (PFC). This neuromodulatory action of dopamine can be disrupted by repeated exposure to psychostimulants such as cocaine. However, it is unclear whether this modulation depends on the precise timing of transmission at the same medium spiny neurons (MSNs) and if so, then whether this timing related modulation is also influenced by cocaine experience. Here, combining cocaine self-administration and in vivo extracellular recordings in anesthetized rats, we show that dopamine efflux in the NAc evoked by electrically stimulating the ventral tegmental area (VTA) exerted timing-dependent regulation of the excitatory accumbens response to stimulation of the medial prefrontal cortex (mPFC), and also that this modulation was blunted following prolonged abstinence from cocaine self-administration. These data indicate that dopaminergic timing-dependent dysregulation of mPFC-NAc glutamatergic transmission is implicated in cocaine addiction and might contribute to vulnerability to drug relapse after prolonged abstinence.

  13. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    PubMed

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  14. Alterations in adult behavioral responses to cocaine and dopamine transporters following juvenile exposure to methamphetamine.

    PubMed

    McFadden, Lisa; Yamamoto, Bryan K; Matuszewich, Leslie

    2011-01-20

    The present experiment assessed whether preadolescent exposure to methamphetamine would alter adult behavioral responses to cocaine and dopamine transporter immunoreactivity in the striatum of male and female rats. Juvenile rats were injected once daily with 0 or 2 mg/kg methamphetamine from postnatal days 21 to 35 and tested in adulthood. Male rats, but not female rats, exposed to methamphetamine showed an increase in responsiveness to cocaine in the open field and an increase in dopamine transporter immunoreactivity in the striatum. These findings suggest that early exposure to methamphetamine can lead to sex specific altered responses to psychostimulants in adulthood, which may contribute to later vulnerability to drug use.

  15. PRENATAL EXPOSURE TO ENVIRONMENTAL TOBACCO SMOKE ALTERS GENE EXPRESSION IN THE DEVELOPING MURINE HIPPOCAMPUS

    PubMed Central

    Mukhopadhyay, Partha; Horn, Kristin H.; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Little is known about the effects of passive smoke exposures on the developing brain. Objective The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. Methods A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for six hours/day from gestational days 6–17 (gd 6–17) [for microarray] or gd 6–18.5 [for fetal phenotyping]. Results There were no significant effects of ETS exposure on fetal phenotype. However, 61 “expressed” genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5 fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were downregulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. Conclusions Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the “early” period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function. PMID:19969065

  16. Alterations in lung clearance mechanisms due to single and repeated nitrogen dioxide exposures in the rabbit

    SciTech Connect

    Vollmuth, T.A.

    1986-01-01

    Tracheobronchial mucociliary clearance was assessed following single, two-hour exposures to either 0.3, 1.0, 3.0, or 10.0 ppm NO/sub 2/, or 14 daily two hour exposures to 0.3, 1.0, 3.0 ppm NO/sub 2/. No significant changes in the mean residence time of tracer particles in the tracheobronchial region were produced under any exposure condition, indicating no effect upon mucociliary clearance. Macrophage functional properties were examined in vitro at select times following single, two hour in vivo exposures to 1.0 and 10.0 ppm NO/sub 2/. Macrophage number and viability were not affected; however, significant dose-related differences in phagocytosis and mobility were observed. These changes were associated with altered in vivo alveolar clearance patterns. Additional studies examined the effects of in vitro exposure to nitrite and hydrogen ion, two known NO/sub 2/ reaction products in the lung, on macrophage phagocytosis. While hydrogen ion had no effect at the levels used, nitrate was shown to enhance phagocytosis. These results demonstrate that alveolar clearance and macrophage function are altered by short-term NO/sub 2/ exposure at realistic, environmental levels. These data also provide insight into the mechanisms of NO/sub 2/-induced alteration in lung clearance pathways.

  17. Alterations in Cochlear Function after Exposure to Short Term Broad Band Noise Assessed by Otoacoustic Emissions

    PubMed Central

    Reddy, Prasen; M M, Kavitha; Khavasi, Prabhu; Doddamani, S S

    2014-01-01

    Background: Sudden or chronic exposure to sound alters the functioning of cochlea. This results in temporary or permanent alteration of functioning of cochlear cells. Alteration of functioning of outer hair cells (OHC) of cochlea following exposure to noise can be assessed by measurement of transient otoacoustic emissions (TEOAE). Such a measurement is of great clinical importance in early detection of the damage to the OHC. Aim: In this study we aim to study effect of noise on outer hair cell function by studying the changes in TEOAE’s amplitude following exposure to short term broad band noise in healthy volunteers. Materials and Methods: Twenty volunteers’ ten males and ten females participated in the study. They underwent pure tone and impedance audiometry to rule out ear pathology. Then pre-exposure TEOAE’s were recorded. After that they were exposed to broad band noise for two minutes. After gap of five minutes again TEOAE’s were recorded. Pre and post exposure amplitude of TEOAE’s was analysed statistically.s Results: There was statistically significant difference between pre exposure and post-exposure amplitude of TEOAE’s. Pre and post exposure values for A & B amplitudes showed p-value of 0.0001 whereas values for A-B amplitude showed p-value of 0.0001. Conclusion: Measurement of TEOAE’s can detect early changes in the functioning of outer hair cells which cannot be picked by routine pure tone audiometry. Thus they can be used in assessing early changes in cochlear function following exposure to noise in individuals exposed to sudden noise or working in noisy environments. Thus preventive methods to reduce the noise induced hearing loss in such individuals can be implemented. PMID:25386468

  18. Regionally specific alterations in the low-affinity GABAA receptor following perinatal exposure to diazepam.

    PubMed

    Gruen, R J; Elsworth, J D; Roth, R H

    1990-04-23

    Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period.

  19. Regionally specific alterations in the low-affinity GABAA receptor following perinatal exposure to diazepam.

    PubMed

    Gruen, R J; Elsworth, J D; Roth, R H

    1990-04-23

    Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period. PMID:2162709

  20. FINE AMBIENT AIR PARTICULAR MATTER EXPOSURE INDUCES MOLECULAR ALTERATIONS INDICATIVE OF CARDIOVASCULAR DISEASE PROGRESSION IN ATHEROSCLEROTIC SUSCEPTIBLE MICE

    EPA Science Inventory

    Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...

  1. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  2. PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS

    EPA Science Inventory

    PERINATAL EXPOSURE TO THE PESTICIDE HEPTACHLOR PRODUCES ALTERATIONS IN IMMUNE FUNCTION PARAMETERS IN SPRAGUE DAWLEY RATS. R A Matulka1, AA Rooney3, W Williams2, CB Copeland2, and R J Smialowicz2. 1Curriculum in Toxicology, UNC, Chapel Hill, NC, USA; 2US EPA, ITB, ETD, NHEERL, RT...

  3. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    EPA Science Inventory

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  4. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    EPA Science Inventory

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  5. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    EPA Science Inventory

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  6. Pulmonary biochemical and histological alterations after repeated low-level blast overpressure exposures.

    PubMed

    Elsayed, Nabil M; Gorbunov, Nikolai V

    2007-01-01

    Blast overpressure (BOP), also known as high energy impulse noise, is a damaging outcome of explosive detonations and firing of weapons. Exposure to BOP shock waves alone results in injury predominantly to the hollow organ systems such as auditory, respiratory, and gastrointestinal systems. In recent years, the hazards of BOP that once were confined to military and professional settings have become a global societal problem as terrorist bombings and armed conflicts involving both military and civilian populations increased significantly. We have previously investigated the effects of single BOP exposures at different peak pressures. In this study, we examined the effects of repeated exposure to a low-level BOP and whether the number of exposures or time after exposure would alter the injury outcome. We exposed deeply anesthetized rats to simulated BOP at 62 +/- 2 kPa peak pressure. The lungs were examined immediately after one exposure (1 + 0), or 1 h after one (1 + 1), two (2 + 1), or three (3 + 1) consecutive exposures at 3-min interval. In one group of animals, we examined the effects of repeated exposure on lung weight, methemoglobin, transferrin, antioxidants, and lipid peroxidation. In a second group, the lungs were fixed inflated at 25 cm water, sectioned, and examined histologically after one to three repeated exposures, or after one exposure at 1, 6, and 24 h. We found that single BOP exposure causes notable changes after 1 h, and that repeating BOP exposure did not add markedly to the effect of the first one. However, the effects increased significantly with time from 1 to 24 h. These observations have biological and occupational implications, and emphasize the need for protection from low-level BOP, and for prompt treatment within the first hour following BOP exposure. PMID:17060374

  7. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  8. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  9. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FALLS TO ALTER SOMATOSENSORY EVOKED POTENTIALS, COMPOUND NERVE ACTION POTENTIALS, OR NERVE CONDUCTION VELOCITY IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in sensory modulation in the cortex and cerebellum, and therefore may be altered following chlorpyrifos (CPF) exposure...

  10. Tight junction alterations of respiratory epithelium following long-term NO2 exposure and recovery.

    PubMed

    Gordon, R E; Solano, D; Kleinerman, J

    1986-01-01

    Acute exposure to NO2 is reported to disrupt tight junctions in lung epithelium. We have studied the effects of chronic NO2 exposure and recovery breathing clean air to tight junctions of distal airway and alveolar epithelium. Syrian Golden hamsters were exposed to NO2 (30 PPM) for 5 or 9 months and a group of those animals for 9 months were allowed to recover breathing clean air for 3 or 9 months. Animals were sacrificed after 5 and 9 months of NO2 exposure and after 3, and 9 mos. recovery breathing clean air. The lungs were carefully removed, inflation fixed with glutaraldehyde and then processed for freeze fracture and transmission electron microscopy of ultra-thin epon sections. Evaluation of tight junctions of bronchioles and alveoli were disrupted in ultrathin sections and freeze fracture replicas during the period of NO2 exposure. Fibril number, length, degree of fragmentation and orientation were different from age matched controls. The bronchiolar tight junctional fibrils were quantitatively reduced in number and fragmented into much smaller fibril lengths. Alveolar tight junctions were qualitatively disrupted in a similar fashion, however, the sites of damage were focal. During recovery tight junctions in bronchioles did not regain normal fibril number, orientation and continuity, based on quantitative assessment, observed in age matched controls. Alveolar tight junctions remained focally altered. This data indicated that chronic NO2 altered morphologic characteristics of epithelial tight junctions of the lung throughout the period of exposure. The repair process during recovery did not restore the normal tight junction ultrastructural organization observed in age controls. This persistent deviation from the normal is likely to alter and compromise airway epithelial barrier function in the lungs of these hamsters. PMID:3780600

  11. Exposure to arsenic via drinking water induces 5-hydroxymethylcytosine alteration in rat.

    PubMed

    Zhang, Jie; Mu, Xiaoli; Xu, Weipan; Martin, Francis L; Alamdar, Ambreen; Liu, Liangpo; Tian, Meiping; Huang, Qingyu; Shen, Heqing

    2014-11-01

    Arsenic exposure has been implicated to alter DNA methylation process in vitro and in vivo, but it remains obscure whether it disrupts DNA demethylation process, which is pivotal for epigenetic regulation. The objective of this descriptive study was to investigate the relationship between arsenic exposure and 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) alterations in various organs. In this study, we exposed male Sprague-Dawley rats to sodium arsenite (0.5, 2 or 10 ppm) via drinking water for 8 weeks. Spleen accumulated 2- to 3-fold higher arsenic levels than liver and heart. Lower arsenic levels were observed in the kidney, pancreas and lung. No significant arsenic-induced global 5mC alterations were observed in the majority of investigated organs. However, arsenic induced organ-specific alterations of 5hmC and/or 5hmC/5mC in some investigated organs, i.e. lung, heart, kidney, pancreas and spleen. Our observations suggest that 5hmC is a more sensitive biomarker of arsenic-induced impacts on epigenetic processes than 5mC. Moreover, demethylation via hydroxylation of 5mC appears to play a central role in the toxic mechanism of arsenic.

  12. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration.

    PubMed

    Zhang, Chong; Xu, Dan; Luo, Hanwen; Lu, Juan; Liu, Lian; Ping, Jie; Wang, Hui

    2014-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis.

  13. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  14. Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa

    PubMed Central

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu

    2015-01-01

    Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662

  15. Alterations in the Atlantic cod (Gadus morhua) hepatic thiol-proteome after methylmercury exposure.

    PubMed

    Karlsen, O A; Sheehan, D; Goksøyr, A

    2014-01-01

    Proteomic studies in general have demonstrated that the most effective and thorough analysis of biological samples requires subfractionation and/or enrichment prior to downstream processing. In the present study, Atlantic cod (Gadus morhua) liver samples were fractionated using activated thiol sepharose to isolate hepatic proteins containing free/reactive cysteines. This subset of proteins is of special interest when studying the physiological effects attributed to methylmercury (MeHg) exposure. Methylmercury is a persistent environmental contaminant that has a potent affinity toward thiol groups, and can directly bind proteins via available cysteine residues. Further, alterations in the cod thiol-proteome following MeHg exposure (2 mg/kg body weight) were explored with two-dimensional gel electrophoresis combined with downstream mass spectrometry analyses for protein identifications. Thirty-five protein spots were found to respond to MeHg exposure, and 13 of these were identified when searching cod-specific databases with acquired mass spectrometry data. Among the identified thiol-containing proteins, some are known to respond to MeHg treatment, including constituents of the cytoskeleton, and proteins involved in oxidative stress responses, protein synthesis, protein folding, and energy metabolism. Methylmercury also appeared to affect cod heme metabolism/turnover, producing significantly altered levels of hemoglobin and hemopexin in liver following metal exposure. The latter finding suggests that MeHg may also affect the hematological system in Atlantic cod.

  16. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  17. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    PubMed

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  18. Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies

    PubMed Central

    Shenoy, Kausalya

    2012-01-01

    Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species. PMID:22312428

  19. Glutamatergic receptor kinetics are not altered by perinatal exposure to aspartame.

    PubMed

    Reilly, M A; Lajtha, A

    1995-03-01

    Observation of reduced levels of glutamic acid and aspartic acid in brain of weanling rats exposed perinatally to aspartame prompted a study of the effect of this food additive on glutamatergic receptor kinetics. Aspartame 500 mg/kg/day in drinking water was administered to Sprague-Dawley rats throughout gestation and lactation. Brain was excised from weanlings 20-22 days old, and kinetics of the N-methyl-D-aspartate receptor and total glutamatergic binding in cerebral cortex and hippocampus were found to be unaffected by perinatal exposure to high levels of aspartame. Glutamic acid was decreased in both brain regions studied, and aspartic acid was decreased in hippocampus following perinatal aspartame exposure. These changes were reversible when aspartame administration was terminated. It is concluded that perinatal exposure to high doses of aspartame does not alter glutamatergic neurotransmission in cerebral cortex or hippocampus from weanling rats.

  20. Low-Level Environmental Phthalate Exposure Associates with Urine Metabolome Alteration in a Chinese Male Cohort.

    PubMed

    Zhang, Jie; Liu, Liangpo; Wang, Xiaofei; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2016-06-01

    The general population is exposed to phthalates through various sources and routes. Integration of omics data and epidemiological data is a key step toward directly linking phthalate biomonitoring data with biological response. Urine metabolomics is a powerful tool to identify exposure biomarkers and delineate the modes of action of environmental stressors. The objectives of this study are to investigate the association between low-level environmental phthalate exposure and urine metabolome alteration in male population, and to unveil the metabolic pathways involved in the mechanisms of phthalate toxicity. In this retrospective cross-sectional study, we studied the urine metabolomic profiles of 364 male subjects exposed to low-level environmental phthalates. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are the most widely used phthalates. ∑DEHP and MBP (the major metabolite of DBP) were associated with significant alteration of global urine metabolome in the male population. We observed significant increase in the levels of acetylneuraminic acid, carnitine C8:1, carnitine C18:0, cystine, phenylglycine, phenylpyruvic acid and glutamylphenylalanine; and meanwhile, decrease in the levels of carnitine C16:2, diacetylspermine, alanine, taurine, tryptophan, ornithine, methylglutaconic acid, hydroxyl-PEG2 and keto-PGE2 in high exposure group. The observations indicated that low-level environmental phthalate exposure associated with increased oxidative stress and fatty acid oxidation and decreased prostaglandin metabolism. Urea cycle, tryptophan and phenylalanine metabolism disruption was also observed. The urine metabolome disruption effects associated with ∑DEHP and MBP were similar, but not identical. The multibiomarker models presented AUC values of 0.845 and 0.834 for ∑DEHP and MBP, respectively. The predictive accuracy rates of established models were 81% for ΣDEHP and 73% for MBP. Our results suggest that low-level environmental phthalate

  1. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  2. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    PubMed Central

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  3. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    PubMed

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  4. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  5. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    PubMed

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  6. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    PubMed

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  7. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    PubMed

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  8. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    SciTech Connect

    Herring, M.J.; Putney, L.F.; St George, J.A.; Avdalovic, M.V.; Schelegle, E.S.; Miller, L.A.; Hyde, D.M.

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  9. Developmental cigarette smoke exposure: liver proteome profile alterations in low birth weight pups.

    PubMed

    Canales, Lorena; Chen, Jing; Kelty, Elizabeth; Musah, Sadiatu; Webb, Cindy; Pisano, M Michele; Neal, Rachel E

    2012-10-01

    Cigarette smoke is composed of over 4000 chemicals many of which are strong oxidizing agents and chemical carcinogens. Chronic cigarette smoke exposure (CSE) induces mild alterations in liver histology indicative of toxicity though the molecular pathways underlying these alterations remain to be explored. Utilizing a mouse model of 'active' developmental CSE (gestational day (GD) 1 through postnatal day (PD) 21; cotinine >50ng/mL) characterized by low birth weight offspring, the impact of developmental CSE on liver protein abundances was determined. On PD21, liver tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Protein spots of interest were identified by ESI-MS/MS with impacted molecular pathways identified by Ingenuity Pathway Analysis. Developmental CSE decreased the abundance of proteins associated with the small molecule biochemistry (includes glucose metabolism), lipid metabolism, amino acid metabolism, and inflammatory response pathways. Decreased gluconeogenic enzyme activity and lysophosphatidylcholine availability following developmental CSE were found and supports the impact of CSE on these pathways. Proteins with increased abundance belonged to the cell death and drug metabolism networks. Liver antioxidant enzyme abundances [glutathione-S-transferase (GST) and peroxiredoxins] were also altered by CSE, but GST enzymatic activity was unchanged. In summary, cigarette smoke exposure spanning pre- and post-natal development resulted in persistent decreased offspring weights, decreased abundances of liver metabolic proteins, decreased gluconeogenic activity, and altered lipid metabolism. The companion paper details the kidney proteome alterations in the same offspring.

  10. Acute exposure to 2,4-dinitrophenol alters zebrafish swimming performance and whole body triglyceride levels.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2011-06-01

    While swimming endurance (critical swimming speed or U(crit)) and lipid stores have both been reported to acutely decrease after exposure to a variety of toxicants, the relationship between these endpoints has not been clearly established. In order to examine these relationships, adult zebrafish (Danio rerio) were aqueously exposed to solvent control (ethanol) or two nominal concentrations of 2,4-dinitrophenol (DNP), a mitochondrial electron transport chain uncoupler, for a 24-h period. Following exposure, fish were placed in a swim tunnel in clean water for swimming testing or euthanized immediately without testing, followed by analysis of whole body triglyceride levels. U(crit) decreased in both the 6 mg/L and 12 mg/L DNP groups, with 12 mg/L approaching the LC₅₀. A decrease in tail beat frequency was observed without a significant change in tail beat amplitude. In contrast, triglyceride levels were elevated in a concentration-dependent manner in the DNP exposure groups, but only in fish subjected to swimming tests. This increase in triglyceride stores may be due to a direct interference of DNP on lipid catabolism as well as increased triglyceride production when zebrafish were subjected to the co-stressors of swimming and toxicant exposure. Future studies should be directed at determining how acute DNP exposure combines with swimming to cause alterations in triglyceride accumulation. PMID:21406246

  11. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  12. CHRONIC ZEBRAFISH PFOS EXPOSURE ALTERS SEX RATIO AND MATERNAL RELATED EFFECTS IN F1 OFFSPRING

    PubMed Central

    Wang, Mingyong; Chen, Jiangfei; Lin, Kuanfei; Chen, Yuanhong; Hu, Wei; Tanguay, Robert L.; Huang, Changjiang; Dong, Qiaoxiang

    2012-01-01

    Perfluorooctanesulfonic acid (PFOS) is an organic contaminant ubiquitous in the environment, wildlife, and humans. Few studies have assessed its chronic toxicity on aquatic organisms. The present study defined the effects of long-term exposure to PFOS on zebrafish development and reproduction. Specifically, zebrafish at 8 h postfertilization (hpf) were exposed to PFOS at 0, 5, 50, and 250 μg/L for five months. Growth suppression was observed in the 250 μg/L PFOS-treated group. The sex ratio was altered, with a significant female dominance in the high-dose PFOS group. Male gonad development was also impaired in a dose-dependent manner by PFOS exposure. Although female fecundity was not impacted, the F1 embryos derived from high-dose exposed females paired with males without PFOS exposure developed severe deformity at early development stages and resulted in 100% larval mortality at 7 d postfertilization (dpf). Perfluorooctanesulfonic acid quantification in embryos indicated that decreased larval survival in F1 offspring was directly correlated to the PFOS body burden, and larval lethality was attributable to maternal transfer of PFOS to the eggs. Lower-dose parental PFOS exposure did not result in decreased F1 survival; however, the offspring displayed hyperactivity of basal swimming speed in a light-to-dark behavior assessment test. These findings demonstrate that chronic exposure to PFOS adversely impacts embryonic growth, reproduction, and subsequent offspring development. Environ. PMID:21671259

  13. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    PubMed

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  14. Metabolic alterations induced by chronic heat exposure in the rat: the involvement of thyroid function.

    PubMed

    Rousset, B; Cure, M; Jordan, D; Kervran, A; Bornet, H; Mornex, R

    1984-05-01

    The effects of chronic exposure to high environmental temperature (34 degrees C) on T4 production rate, food-intake, growth-rate and resting metabolic rate were investigated in adult male rats. This study was designed to examine the extent of variations and possible relationships between these parameters. As compared to control rats of the same body weight kept at 25 degrees C, rats exposed to 34 degrees C for 3-4 weeks exhibited a retarded growth-rate: 2.3 vs 4.0 g/day, a reduced food-intake: 15.2 vs 23.2 g/day, a decreased T4 production-rate: 1.8 vs 2.7 micrograms/day and a decreased oxygen consumption: 4.0 vs 5.4 ml/min. Heat-exposure altered the 4 parameters to a similar extent. T4 supplementation (3 micrograms/day) which induced a decrease in plasma TSH concentration, did not restore a normal growth-rate in heat-exposed rats. The decreased food-intake of the heat-exposed rats was not associated with any significant changes in the daily pattern of variations of liver glycogen content, or in the mean daily levels of blood glucose or insulin. The ratio T3 to rT3 in plasma was not altered by chronic heat exposure. When rats which had been chronically exposed to heat (25 days at 34 degrees C) were exposed to 25 degrees C, growth-rate, food-intake and oxygen consumption rapidly increased to control values whereas the rate of T4 production remained low. It is concluded that (1) a decrease in thyroid hormone economy is not directly involved in the alterations of growth and energy expenditure in rats chronically exposed to heat, (2) heat exposure does not lead to the establishment of a fasted state resulting from a large reduction in voluntary food intake, (3) metabolic alterations induced by heat exposure are rapidly and completely reversible upon decreasing the environmental temperature.

  15. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.

  16. Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception.

    PubMed

    Weikum, Whitney M; Oberlander, Tim F; Hensch, Takao K; Werker, Janet F

    2012-10-16

    Language acquisition reflects a complex interplay between biology and early experience. Psychotropic medication exposure has been shown to alter neural plasticity and shift sensitive periods in perceptual development. Notably, serotonin reuptake inhibitors (SRIs) are antidepressant agents increasingly prescribed to manage antenatal mood disorders, and depressed maternal mood per se during pregnancy impacts infant behavior, also raising concerns about long-term consequences following such developmental exposure. We studied whether infants' language development is altered by prenatal exposure to SRIs and whether such effects differ from exposure to maternal mood disturbances. Infants from non-SRI-treated mothers with little or no depression (control), depressed but non-SRI-treated (depressed-only), and depressed and treated with an SRI (SRI-exposed) were studied at 36 wk gestation (while still in utero) on a consonant and vowel discrimination task and at 6 and 10 mo of age on a nonnative speech and visual language discrimination task. Whereas the control infants responded as expected (success at 6 mo and failure at 10 mo) the SRI-exposed infants failed to discriminate the language differences at either age and the depressed-only infants succeeded at 10 mo instead of 6 mo. Fetuses at 36 wk gestation in the control condition performed as expected, with a response on vowel but not consonant discrimination, whereas the SRI-exposed fetuses showed accelerated perceptual development by discriminating both vowels and consonants. Thus, prenatal depressed maternal mood and SRI exposure were found to shift developmental milestones bidirectionally on infant speech perception tasks.

  17. Alterations in the Striatal Dopamine System During Intravenous Methamphetamine Exposure: Effects of Contingent and Noncontingent Administration

    PubMed Central

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P.

    2014-01-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a ‘humanized’ plasma METH half life, or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7–1.5 μM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist-induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal’s total intake was similar within and across three 24 h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. PMID:23417852

  18. Alterations in the striatal dopamine system during intravenous methamphetamine exposure: effects of contingent and noncontingent administration.

    PubMed

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P

    2013-08-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long-term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a "humanized" plasma METH half life or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7 and 1.5 µM. Animals were sacrificed during their last METH administration for autoradiography assessment using [³H]ligands and D2 agonist-induced [³⁵S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15-20%) and [³⁵S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal's total intake was similar within and across three 24-h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans.

  19. Gestational exposure to yellow fever vaccine at different developmental stages induces behavioral alterations in the progeny.

    PubMed

    Marianno, P; Salles, M J S; Sonego, A B; Costa, G A; Galvão, T C; Lima, G Z; Moreira, E G

    2013-01-01

    The most effective method to prevent yellow fever and control the disease is a vaccine made with attenuated live virus. Due to the neurological tropism of the virus, preventive vaccination is not recommended for infants under 6 months and for pregnant women. However there is a paucity of data regarding the safety for pregnant women and there are no experimental studies investigating adverse effects to the offspring after maternal exposure to the vaccine. This study aimed to investigate, in mice, the effects of maternal exposure to the yellow fever vaccine at three different gestational ages on the physical and behavioral development of the offspring. Pregnant Swiss mice received a single subcutaneous injection of water for injection (control groups) or 2 log Plaque Forming Units (vaccine-treated groups) of the yellow fever vaccine on gestational days (GD) 5, 10 or 15. Neither maternal signs of toxicity nor alterations in physical development and reflex ontogeny of the offspring were observed in any of the groups. Data from behavioral evaluation indicated that yellow fever vaccine exposure induced motor hypoactivity in 22-day-old females independent of the day of exposure; and in 60-day-old male and female pups exposed at GD 10. Moreover, 22-day-old females also presented with a deficit in habituation memory. Altogether, these results indicate that in utero exposure to the yellow fever vaccine may induce behavioral alterations in the pups that may persist to adulthood in the absence of observed maternal toxicity or disruption of physical development milestones or reflex ontogeny.

  20. Alterations in the Rat Serum Proteome Induced by Prepubertal Exposure to Bisphenol A and Genistein

    PubMed Central

    2015-01-01

    Humans are exposed to an array of chemicals via the food, drink and air, including a significant number that can mimic endogenous hormones. One such chemical is Bisphenol A (BPA), a synthetic chemical that has been shown to cause developmental alterations and to predispose for mammary cancer in rodent models. In contrast, the phytochemical genistein has been reported to suppress chemically induced mammary cancer in rodents, and Asians ingesting a diet high in soy containing genistein have lower incidence of breast and prostate cancers. In this study, we sought to: (1) identify protein biomarkers of susceptibility from blood sera of rats exposed prepubertally to BPA or genistein using Isobaric Tandem Mass Tags quantitative mass spectrometry (TMT-MS) combined with MudPIT technology and, (2) explore the relevance of these proteins to carcinogenesis. Prepubertal exposures to BPA and genistein resulted in altered expression of 63 and 28 proteins in rat sera at postnatal day (PND) 21, and of 9 and 18 proteins in sera at PND35, respectively. This study demonstrates the value of using quantitative proteomic techniques to explore the effect of chemical exposure on the rat serum proteome and its potential for unraveling cellular targets altered by BPA and genistein involved in carcinogenesis. PMID:24552547

  1. Prenatal exposure of rats to nicotine causes persistent alterations of nicotinic cholinergic receptors

    PubMed Central

    Gold, Allison B.; Keller, Ashleigh B.; Perry, David C.

    2010-01-01

    We examined for immediate and persistent changes in nAChRs in cerebral cortex, thalamus and striatum of male rats caused by prenatal exposure to nicotine from gestational day 3 to postnatal day 10 (PN10), and how such exposure affected the responses of adolescents to subsequent nicotine challenge. Receptor numbers were assessed by [3H]epibatidine binding and receptor function was measured by acetylcholine-stimulated 86Rb efflux (cerebral cortex and thalamus) and nicotine-stimulated dopamine release (striatum). Immediate effects of prenatal nicotine, assessed in PN10 animals, were not detected for any parameter. A subsequent 14 day nicotine exposure in adolescence revealed persistent changes caused by prenatal nicotine exposure. Nicotine exposure in adolescents caused up-regulation of binding in all three regions; however, this up-regulation was lost in thalamus from animals prenatally exposed to nicotine. Nicotine exposure in adolescents caused decreased nicotine-stimulated dopamine release in striatum; this effect was also lost in animals prenatally exposed to nicotine. Comparison of parameters in PN10 and PN42 rats revealed developmental changes in the CNS cholinergic system. In thalamus, binding increased with age, as did the proportion of 86Rb efflux with high sensitivity to acetylcholine. In cortex, binding also increased with age, but there was no change in total 86Rb efflux, and the proportion of high to low sensitivity efflux declined with age. Nicotine-stimulated striatal dopamine release (both total and α-conotoxin MII-resistant release) increased with age in naïve animals, but not in those prenatally exposed to nicotine. These findings demonstrate that prenatal exposure to nicotine causes alterations in the regulation of nAChRs by nicotine that persist into adolescence. These changes may play a role in the increased risk for nicotine addiction observed in adolescent offspring of smoking mothers. PMID:19028470

  2. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish.

    PubMed

    Yu, Li-Qin; Zhao, Gao-Feng; Feng, Min; Wen, Wu; Li, Kun; Zhang, Pan-Wei; Peng, Xi; Huo, Wei-Jie; Zhou, Huai-Dong

    2014-01-01

    Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development.

  3. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  4. Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Bandfield, Joshua L.

    2016-09-01

    The Nili Fossae region of Mars contains some of the most mineralogically diverse bedrock on the planet. Previous studies have established three main stratigraphic units in the region: a phyllosilicate-bearing basement rock, a variably altered olivine-rich basalt, and a capping rock. Here, we present evidence for the localized alteration of the northeast Nili Fossae capping unit, previously considered to be unaltered. Both near-infrared and thermal-infrared spectral datasets were analyzed, including the application of a method for determining the relative abundance of bulk-silica (SiO2) over surfaces using thermal emission imaging system (THEMIS) images. Elevated bulk-silica exposures are present on surfaces previously defined as unaltered capping rock. Given the lack of spectral evidence for phyllosilicate, hydrated silica, or quartz phases coincident with the newly detected exposures-the elevated bulk-silica may have formed under a number of aqueous scenarios, including as a product of the carbonation of the underlying olivine-rich basalt under moderate water: rock scenarios and temperatures. Regardless of formation mechanism, the detection of elevated bulk-silica exposures in the Nili Fossae capping unit extends the history of aqueous activity in the region to include all three of the main stratigraphic units.

  5. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    SciTech Connect

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal by

  6. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs

    PubMed Central

    Schuster, Andrew; Skinner, Michael K.; Yan, Wei

    2016-01-01

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5′ halves of mature tRNAs (5′ halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5′ halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon. PMID:27390623

  7. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives. PMID:27192480

  8. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.

  9. Adolescent Alcohol Exposure Alters GABAA Receptor Subunit Expression in Adult Hippocampus

    PubMed Central

    Centanni, Samuel W.; Teppen, Tara; Risher, Mary-Louise; Fleming, Rebekah L.; Moss, Julia L.; Acheson, Shawn K.; Mulholland, Patrick J.; Pandey, Subhash C.; Chandler, L. Judson; Swartzwelder, H. Scott

    2014-01-01

    Background The long-term consequences of adolescent alcohol abuse that persist into adulthood are poorly understood and have not been widely investigated. We have shown that intermittent exposure to alcohol during adolescence decreased the amplitude of GABAA receptor-mediated tonic currents in hippocampal dentate granule cells in adulthood. The aim of the present study was to investigate the enduring effects of chronic intermittent alcohol exposure during adolescence or adulthood on the expression of hippocampal GABAA receptors (GABAARs). Methods We used a previously characterized tissue fractionation method to isolate detergent resistant membranes and soluble fractions, followed by western blots to measure GABAAR protein expression. We also measured mRNA levels of GABAAR subunits using quantitative real-time PCR. Results Although the protein levels of α1-, α4- and δ-GABAAR subunits remained stable between postnatal day (PD) 30 (early adolescence) and PD71 (adulthood), the α5-GABAAR subunit was reduced across that period. In rats that were subjected to adolescent intermittent ethanol (AIE) exposure between PD30–46, there was a significant reduction in the protein levels of the δ-GABAAR, in the absence of any changes in mRNA levels, at 48 hours and 26 days after the last ethanol exposure. Protein levels of the α4-GABAAR subunit were significantly reduced, but mRNA levels were increased, 26 days (but not 48 hours) after the last AIE exposure. Protein levels of α5-GABAAR were not changed by AIE, but mRNA levels were reduced at 48hrs but normalized 26 days after AIE. In contrast to the effects of AIE, chronic intermittent exposure to ethanol during adulthood (CIE) had no effect on expression of any of the GABAAR subunits examined. Conclusions AIE produced both short- and long-term alterations of GABAAR subunits mRNA and protein expression in the hippocampus, whereas CIE produced no long lasting effects on those measures. The observed reduction of protein

  10. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  11. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    SciTech Connect

    Zangar, R.C. Pacific Northwest Laboratories, Richland, WA ); Springer, D.L. ); Buhler, D.R. )

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  12. Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring.

    PubMed

    Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György

    2010-01-20

    The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior. PMID:19782105

  13. Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming.

    PubMed

    Borges, Cibele S; Dias, Ana Flávia M G; Rosa, Josiane Lima; Silva, Patricia V; Silva, Raquel F; Barros, Aline L; Sanabria, Marciana; Guerra, Marina T; Gregory, Mary; Cyr, Daniel G; De G Kempinas, Wilma

    2016-08-01

    Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders. PMID:27247242

  14. Alterations in male rats following in utero exposure to betamethasone suggests changes in reproductive programming.

    PubMed

    Borges, Cibele S; Dias, Ana Flávia M G; Rosa, Josiane Lima; Silva, Patricia V; Silva, Raquel F; Barros, Aline L; Sanabria, Marciana; Guerra, Marina T; Gregory, Mary; Cyr, Daniel G; De G Kempinas, Wilma

    2016-08-01

    Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders.

  15. Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome

    PubMed Central

    2014-01-01

    Background Environmental factors during perinatal development may influence developmental plasticity and disease susceptibility via alterations to the epigenome. Developmental exposure to the endocrine active compound, bisphenol A (BPA), has previously been associated with altered methylation at candidate gene loci. Here, we undertake the first genome-wide characterization of DNA methylation profiles in the liver of murine offspring exposed perinatally to multiple doses of BPA through the maternal diet. Results Using a tiered focusing approach, our strategy proceeds from unbiased broad DNA methylation analysis using methylation-based next generation sequencing technology to in-depth quantitative site-specific CpG methylation determination using the Sequenom EpiTYPER MassARRAY platform to profile liver DNA methylation patterns in offspring maternally exposed to BPA during gestation and lactation to doses ranging from 0 BPA/kg (Ctr), 50 μg BPA/kg (UG), or 50 mg BPA/kg (MG) diet (N = 4 per group). Genome-wide analyses indicate non-monotonic effects of DNA methylation patterns following perinatal exposure to BPA, corroborating previous studies using multiple doses of BPA with non-monotonic outcomes. We observed enrichment of regions of altered methylation (RAMs) within CpG island (CGI) shores, but little evidence of RAM enrichment in CGIs. An analysis of promoter regions identified several hundred novel BPA-associated methylation events, and methylation alterations in the Myh7b and Slc22a12 gene promoters were validated. Using the Comparative Toxicogenomics Database, a number of candidate genes that have previously been associated with BPA-related gene expression changes were identified, and gene set enrichment testing identified epigenetically dysregulated pathways involved in metabolism and stimulus response. Conclusions In this study, non-monotonic dose dependent alterations in DNA methylation among BPA-exposed mouse liver samples and their relevant pathways

  16. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol.

    PubMed

    Rinker, Jennifer A; Hutchison, Mary Anne; Chen, Scott A; Thorsell, Annika; Heilig, Markus; Riley, Anthony L

    2011-07-01

    The majority of smokers begin their habit during adolescence, which often precedes experimentation with alcohol. Interestingly, very little preclinical work has been done examining how exposure to nicotine during periadolescence impacts the affective properties of alcohol in adulthood. Understanding how periadolescent nicotine exposure influences the aversive effects of alcohol might help to explain why it becomes more acceptable to this preexposed population. Thus, Experiment 1 exposed male Sprague Dawley rats to either saline or nicotine (0.4mg/kg, IP) from postnatal days 34 to 43 (periadolescence) and then examined changes in the aversive effects of alcohol (0, 0.56, 1.0 and 1.8g/kg, IP) in adulthood using the conditioned taste aversion (CTA) design. Changes in blood alcohol concentration (BAC) as well as alcohol-induced hypothermia and locomotor suppression were also assessed. To determine if changes seen were specific to nicotine exposure during periadolescence, the procedures were replicated in adults (Experiment 2). Preexposure to nicotine during periadolescence attenuated the acquisition of the alcohol-induced CTAs (at 1.0g/kg) and the hypothermic effects of alcohol (1.0g/kg). Adult nicotine preexposure produced similar attenuation in alcohol's aversive (at 1.8g/kg) and hypothermic (1.8g/kg) effects. Neither adolescent nor adult nicotine preexposure altered BACs or alcohol-induced locomotor suppression. These results suggest that nicotine may alter the aversive and physiological effects of alcohol, regardless of the age at which exposure occurs, possibly increasing its overall reinforcing value and making it more likely to be consumed.

  17. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  18. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos

    SciTech Connect

    Meyer, Armando; Seidler, Frederic J.; Aldridge, Justin E.; Slotkin, Theodore A. . E-mail: t.slotkin@duke.edu

    2005-03-01

    Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a {beta}-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides.

  19. Effects of radiation exposure on glass alteration in a steam environment

    SciTech Connect

    Wronkiewicz, D.J.; Bates, J.K.; Tani, B.S.; Wang, L.M.

    1992-12-31

    Several Savannah River Plant (SRL) glass compositions were reacted in steam at temperatures of 150 to 200{degrees}C. Half of the tests utilized actinide-doped monoliths and were exposed to an external ionizing gamma source, while the remainder were doped only with U and reacted without gamma exposure. All glass samples readily reacted to form secondary mineral phases within the first week of testing. An in situ layer of smectite initially developed on nonirradiated SRL 202 glass test samples. After 21 days, a thin layer of illite was precipitated from solution onto the smectite layer. A number of alteration products including zeolite, Casilicate, and alkali or alkaline earth uranyl silicate phases were also distributed over most sample surfaces. In the irradiated SRL 202 glass tests, up to three layers enveloped rounded, and sometimes fractured, glass cores. After 35 to 56 days these remnant cores were replaced by a mottled or banded Fe- and Si-rich material. The formation of some secondary mineral phases also has been accelerated in the irradiated tests, and in some instances, the irradiated environment may have led to the precipitation of a different suite of minerals. The alteration layer(s) developed at rates of 2.3 and 32 {mu}m/day for the nonirradiated and irradiated SRL 202 glasses, respectively, indicating that layer development is accelerated by a factor of {approximately} 10 to 15X due to radiation exposure under the test conditions.

  20. Biochemical and physiological alterations induced in Diopatra neapolitana after a long-term exposure to Arsenic.

    PubMed

    Coppola, Francesca; Pires, Adília; Velez, Cátia; Soares, Amadeu M V M; Pereira, Eduarda; Figueira, Etelvina; Freitas, Rosa

    2016-11-01

    Several authors identified polychaetes as a group of marine invertebrates that respond rapidly to anthropogenic stressors. Furthermore, several studies have demonstrated that environmental pollution lead to the impoverishment of benthic communities with species replacement and biodiversity loss, but very few studies have investigated biochemical and physiological alterations that species undergo in response to Arsenic (As) exposure. Therefore, the present study assessed the toxicity induced in the polychaete Diopatra neapolitana after a long-term (28days) exposure to different As concentrations (0.0, 0.05, 0.25 and 1.25mg/L). For this biochemical and physiological alterations were evaluated. Biochemical analysis included the measurement of different biomarkers such as glutathione S-transferase (GST), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assessed in order to evaluate oxidative stress. Physiological analyzes included the observation of polychaetes regenerative capacity and the quantification of organisms total protein (PROT) and glycogen (GLY) content. The results obtained allowed to confirm the suitability of these biomarkers to identify the toxicity caused by As and moreover revealed that D. neapolitana is a good bioindicator of As pollution. PMID:27349727

  1. Exposure to altered gravity affects all stages of endochondral cartilage differentiation

    NASA Astrophysics Data System (ADS)

    Duke, P. J.; Montufar-Solis, D.

    1999-01-01

    Chondrogenesis has a number of well-defined steps: (1) condensation, which involves cell aggregation, adhesion and communication; (2) activation of cartilage genes, which is accompanied by rounding up of the cells and intracellular differentiation; and (3) production and secretion of cartilage specific matrix molecules. Our studies show that each of these steps is affected by exposure to gravitational changes. Clinorotation and centrifugation affected initial aggregation and condensation. In the CELLS experiment, where cells were exposed to microgravity after some condensation occurred perflight, intracellular differentiation and matrix production were delayed relative to controls. Once cartilage has developed, in rats, further differentiation (hypertrophy, matrix production) was also affected by spaceflight and hind limb suspension. For the process of chondrogenesis to proceed as we know it, loading and other factors present at lg are required at each step of the process. This requirement means that not only will skeletal development and bone healing, processes involving chondrogenesis, be altered by long term exposure to microgravity, but that continuous intervention will be necessary to correct any defects produced by altered gravity environments.

  2. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides.

    PubMed

    Alves, Stênio Nunes; Serrão, José Eduardo; Melo, Alan Lane

    2010-08-01

    This study describes morphological alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. To this end, both third and fourth instars of C. quinquefasciatus larvae were exposed for 30 and 60 min to organophosphate (50 ppb), pyrethroids (20 and 30 ppb), and avermectin derivates (1.5 and 54 ppb). Following incubation, pH measurements of the larvae gut were recorded. The fat body and midgut were also analyzed by light and transmission electron microscopy. These studies demonstrate a decrease in the pH of the larvae anterior midgut following exposure to all of the tested insecticides. Histochemical tests revealed a strong reaction for neutral lipids in the control group and a marked decrease in the group exposed to cypermethrin. Furthermore, a weak reaction with acidic lipids in larvae exposed to deltamethrin, temephos, ivermectin and abamectin was also observed. Insecticide-exposed larvae also exhibited cytoplasm granule differences, relative to control larvae. Finally, we noted a small reduction in microvilli size in the apex of digestive cells, although vesicles were found to be present. The destructive changes in the larvae were very similar regardless of the type of insecticide analyzed. These data suggest that alterations in the fat body and midgut are a common response to cellular intoxication.

  3. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.

  4. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. PMID:26965573

  5. Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations.

    PubMed

    Larguinho, Miguel; Costa, Pedro M; Sousa, Gonçalo; Costa, Maria H; Diniz, Mário S; Baptista, Pedro V

    2014-12-01

    Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.

  6. Alcohol exposure alters mouse lung inflammation in response to inhaled dust.

    PubMed

    McCaskill, Michael L; Romberger, Debra J; DeVasure, Jane; Boten, Jessica; Sisson, Joseph H; Bailey, Kristina L; Poole, Jill A; Wyatt, Todd A

    2012-07-01

    Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs) are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. HDE stimulated a 2-4 fold increase in lung and tracheal PKCε (epsilon) activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability of the lung to activate PKCε

  7. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    PubMed Central

    McCaskill, Michael L.; Romberger, Debra J.; DeVasure, Jane; Boten, Jessica; Sisson, Joseph H.; Bailey, Kristina L.; Poole, Jill A.; Wyatt, Todd A.

    2012-01-01

    Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs) are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon) activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability of the lung to activate PKCε

  8. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets

    PubMed Central

    Prusinski, Lauren; Al-Hendy, Ayman; Yang, Qiwei

    2016-01-01

    Endocrine disruptions induced by environmental toxicants have placed an immense burden on society to properly diagnose, treat and attempt to alleviate symptoms and disease. Environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life - a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical and cellular events. Humans may encounter endocrine disrupting chemicals (EDCs) daily and during all stages of life, from conception and fetal development through adulthood and senescence. Though puberty and perimenopausal periods may be affected by endocrine disruption due to hormonal effects, prenatal and early postnatal windows are most critical for proper development due to rapid changes in system growth. Developmental reprogramming is shown to be caused by alterations in the epigenome. Development is the time when epigenetic programs are ‘installed’ on the genome by ‘writers’, such as histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs), which add methyl groups to lysine and arginine residues on histone tails and to CpG sites in DNA, respectively. A number of environmental compounds, referred to as estrogenic endocrine disruptors (EEDs), are able to bind to estrogen receptors (ERs) and interfere with the normal cellular development in target tissues including the prostate and uterus. These EEDs, including diethylstilbestrol (DES), bisphenol A (BPA), and genistein (a phytoestrogen derived from soybeans), have been implicated in the malformation of reproductive organs and later development of disease. Due to the lack of fully understanding the underlying mechanisms of how environmental toxicants and their level of exposure affect the human genome, it can be challenging to create clear

  9. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure

    PubMed Central

    Hintsala, Heidi E.; Kiviniemi, Antti M.; Tulppo, Mikko P.; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55–65 years) who underwent a whole-body cold exposure (−10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg2, compared with hypertensive group [0 (−13, 20) mmHg2]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543

  10. Developmental Exposure to Estrogen Alters Differentiation and Epigenetic Programming in a Human Fetal Prostate Xenograft Model

    PubMed Central

    Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim

    2015-01-01

    Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167

  11. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  12. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure.

    PubMed

    Hintsala, Heidi E; Kiviniemi, Antti M; Tulppo, Mikko P; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J K; Ikäheimo, Tiina M

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55-65 years) who underwent a whole-body cold exposure (-10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg(2), compared with hypertensive group [0 (-13, 20) mmHg(2)]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543

  13. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain

    PubMed Central

    Patel, Dhyanesh Arvind; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP+ (type B cells) and nestin+(GFAP−) (Type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP+ expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP+ expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin+ expression with females showing approximately 8–13% higher nestin+ expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin+ expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. PMID:22119286

  14. ADOLESCENT BINGE ALCOHOL EXPOSURE ALTERS HIPPOCAMPAL PROGENITOR CELL PROLIFERATION IN RATS: EFFECTS ON CELL CYCLE KINETICS

    PubMed Central

    McClain, Justin A.; Hayes, Dayna M.; Morris, Stephanie A.; Nixon, Kimberly

    2012-01-01

    Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromo-deoxy-uridine incorporation, and phospho-histone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromo-deoxy-uridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis but also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure. PMID:21484803

  15. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-06-15

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  16. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  17. Bisphenol A Exposure Leads to Specific MicroRNA Alterations in Placental Cells

    PubMed Central

    Avissar-Whiting, Michele; Veiga, Keila; Uhl, Kristen; Maccani, Matthew; Gagne, Luc; Moen, Erika; Marsit, Carmen J.

    2010-01-01

    Exposure to bisphenol-A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity. PMID:20417706

  18. Prenatal Cigarette Smoke Exposure Causes Hyperactivity and Agressive Behavior: Role of Altered Catcholamines and BDNF

    PubMed Central

    Yochum, Carrie; Doherty-Lyon, Shannon; Hoffman, Carol; Hossain, Muhammad M.; Zellikoff, Judith T.; Richardson, Jason R.

    2014-01-01

    Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4 hr/d and 5 d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25 ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior assessed on at 4 weeks of age and again at 4–6 months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders and suggest a role for monoaminergic and BDNF alterations in these effects. PMID:24486851

  19. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus.

    PubMed

    Cao, Jinyan; Mickens, Jillian A; McCaffrey, Katherine A; Leyrer, Stephanie M; Patisaul, Heather B

    2012-01-01

    Developmental exposure to Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been purported to adversely impact reproductive function in female rodents. Because neonatal life is a critical window for the sexual dimorphic organization of the hypothalamic-pituitary-gonadal (HPG) axis, interference with this process could underlie compromised adult reproductive physiology. The goal of the present study was to determine if neonatal BPA exposure interferes with sex specific gene expression of estrogen receptor alpha (ERα), ER beta (ERβ) and kisspeptin (Kiss1) in the anterior and mediobasal hypothalamus. Long Evans (LE) neonatal rats were exposed to vehicle, 10μg estradiol benzoate (EB), 50mg/kg BPA or 50μg/kg BPA by subcutaneous injection daily from postnatal day 0 (PND 0) to PND 2. Gene expression was assessed by in situ hybridization on PNDs 4 and 10. Within the anterior hypothalamus ERα expression was augmented by BPA in PND 4 females, then fell to male-typical levels by PND 10. ERβ expression was not altered by BPA on PND 4, but significantly decreased or eliminated in both sexes by PND 10. Kiss1 expression was diminished by BPA in the anterior hypothalamus, especially in females. There were no significant impacts of BPA in the mediobasal hypothalamus. Collectively, BPA effects did not mirror those of EB. The results show that neonatal hypothalamic ER and Kiss1 expression is sensitive to BPA exposure. This disruption may alter sexually dimorphic hypothalamic organization and underlie adult reproductive deficiencies. Additionally, the discordant effects of EB and BPA indicate that BPA likely disrupts hypothalamic organization by a mechanism other than simply acting as an estrogen mimic.

  20. Acute exposure to methamphetamine alters TLR9-mediated cytokine expression in human macrophage.

    PubMed

    Burns, Ariel; Ciborowski, Pawel

    2016-02-01

    Recent studies show that methamphetamine (Meth) use leads to higher susceptibility to and progression of infections, which suggests impairment of the immune system. The first line of defense against infections is the innate immune system and the macrophage is a key player in preventing and fighting infections. So we profiled cytokines over time in Meth treated THP-1 cells, as a human macrophage model, at a relevant concentration using high throughput screening to find a signaling target. We showed that after a single exposure, the effect of Meth on macrophage cytokine production was rapid and time dependent and shifted the balance of expression of cytokines to pro-inflammatory. Our results were analogous to previous reports in that Meth up-regulates TNF-α and IL-8 after two hours of exposure. However, global screening led to the novel identification of CXCL16, CXCL1 and many other up-regulated cytokines. We also showed CCL7 as the most down-regulated chemokine due to Meth exposure, which led us to hypothesize that Meth dysregulates the MyD88-dependent Toll-like receptor 9 (TLR9) signaling pathway. In conclusion, altered cytokine expression in macrophages suggests it could lead to a suppressed innate immunity in people who use Meth.

  1. Prenatal alcohol exposure alters the cerebral cortex proteome in weanling rats.

    PubMed

    Canales, Lorena; Gambrell, Caitlin; Chen, Jing; Neal, Rachel E

    2013-08-01

    Maternal consumption of alcohol during pregnancy impairs neurodevelopment in offspring. Utilizing a rodent model of continuous moderate dose alcohol exposure throughout gestation [gestation day 1 (GD1)-GD22; BAC ~70 mg/dL], the impact of developmental alcohol exposure on juvenile cerebral cortex protein abundances was determined. At weaning, cerebral cortex tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Gestational alcohol exposure increased the abundance of post-translationally modified forms of cytoskeletal proteins and the abundance of proteins within the small molecule biochemistry (includes glucose metabolism) pathway and proteosome processing pathways though ubiquitin conjugating enzymes and chaperones were decreased in abundance. In weanling offspring exposed prenatally to alcohol, alterations in cytoskeletal protein post-translational modifications were noted. Increased abundance of proteins from the small molecule biochemistry pathway, which includes glucose metabolism, and proteosome processing pathways were also noted. Decreased abundances of ubiquitin conjugating enzyme and chaperone protein were noted in the cerebral cortex of these offspring.

  2. Neonatal exposure to amphetamine alters social affiliation and central dopamine activity in adult male prairie voles.

    PubMed

    Fukushiro, D F; Olivera, A; Liu, Y; Wang, Z

    2015-10-29

    The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating. Recent data have shown that amphetamine (AMPH) is rewarding to prairie voles as it induces conditioned place preferences. Further, repeated treatment with AMPH impairs social bonding in adult prairie voles through a central dopamine (DA)-dependent mechanism. The present study examined the effects of neonatal exposure to AMPH on behavior and central DA activity in adult male prairie voles. Our data show that neonatal exposure to AMPH makes voles less social in an affiliation test during adulthood, but does not affect animals' locomotor activity and anxiety-like behavior. Neonatal exposure to AMPH also increases the levels of tyrosine hydroxylase (TH) and DA transporter (DAT) mRNA expression in the ventral tegmental area (VTA) in the brain, indicating an increase in central DA activity. As DA has been implicated in AMPH effects on behavioral and cognitive functions, altered DA activity in the vole brain may contribute to the observed changes in social behavior.

  3. Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells.

    PubMed

    Alves, M G; Neuhaus-Oliveira, A; Moreira, P I; Socorro, S; Oliveira, P F

    2013-07-01

    The purpose of this study was to determine the effects of 2,4-D, an herbicide used worldwide also known as endocrine disruptor, in Sertoli cell (SC) metabolism. Immature rat SCs were maintained 50h under basal conditions or exposed to 2,4-D (100nM, 10μM and 1mM). SCs exposed to 10μM and 1mM of 2,4-D presented lower intracellular glucose and lactate content. Exposure to 10μM of 2,4-D induced a significant decrease in glucose transporter-3 mRNA levels and phosphofructokinase-1 mRNA levels decreased in cells exposed to 100nM and 10μM of 2,4-D. Exposure to 100nM and 10μM also induced a decrease in lactate dehydrogenase (LDH) mRNA levels while the LDH protein levels were only decreased in cells exposed to 1mM of 2,4-D. Exposure to 2,4-D altered glucose uptake and metabolization in SCs, as well as lactate metabolism and export that may result in impaired spermatogenesis.

  4. Neonatal exposure to amphetamine alters social affiliation and central dopamine activity in adult male prairie voles.

    PubMed

    Fukushiro, D F; Olivera, A; Liu, Y; Wang, Z

    2015-10-29

    The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating. Recent data have shown that amphetamine (AMPH) is rewarding to prairie voles as it induces conditioned place preferences. Further, repeated treatment with AMPH impairs social bonding in adult prairie voles through a central dopamine (DA)-dependent mechanism. The present study examined the effects of neonatal exposure to AMPH on behavior and central DA activity in adult male prairie voles. Our data show that neonatal exposure to AMPH makes voles less social in an affiliation test during adulthood, but does not affect animals' locomotor activity and anxiety-like behavior. Neonatal exposure to AMPH also increases the levels of tyrosine hydroxylase (TH) and DA transporter (DAT) mRNA expression in the ventral tegmental area (VTA) in the brain, indicating an increase in central DA activity. As DA has been implicated in AMPH effects on behavioral and cognitive functions, altered DA activity in the vole brain may contribute to the observed changes in social behavior. PMID:26321240

  5. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.

  6. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  7. Histological alterations in male A/J mice following nose-only exposure to tobacco smoke.

    PubMed

    Hamm, J T; Yee, S; Rajendran, N; Morrissey, R L; Richter, S J; Misra, M

    2007-05-01

    The incidence and multiplicity of grossly observed and microscopic lesions of the respiratory tract of A/J mice exposed nose-only to mainstream smoke (50, 200, or 400 mg total particulate matter/m3 from 2R4F cigarettes) was compared to those of filtered air controls. Animals were necropsied at the end of exposure (5 mo) or following 4 or 7 mo of recovery. Lungs were visually inspected for tumors at all necropsies and examined histopathologically at 9 and 12 mo. At 5 mo no tumors were recorded. No significant elevations in tumor incidence or multiplicity were recorded although at 9 mo multiplicity was elevated in the mid-exposure group (0.90 versus 0.55 tumors per animal for controls). At 12 mo, multiplicity was increased over the 9-mo necropsy at all exposures except 200 mg/m3; however, there were no dose-related trends in multiplicity or incidence. Histopathological alterations included hyperplasia, metaplasia, and inflammation of the nose and larynx and proliferative lesions of the lungs. At 9 mo, the multiplicity of focal lung lesions was 1.4 per animal in controls but averaged 1.0 among smoke-exposed groups. There was an inverse relation (p < .059) between smoke concentration and the percentage of hyperplastic lesions at 9 mo. At 12 mo the high-exposure group had slightly increased multiplicity of 2.3 lesions compared with 1.6 among controls, while the percentage of hyperplasic lesions was similar between groups. Nose-only inhalation of mainstream tobacco smoke resulted in chronic inflammatory changes of the respiratory tract yet failed to produce statistically significant changes in tumor incidence or multiplicity. PMID:17365046

  8. Does Switching to Reduced Ignition Propensity Cigarettes Alter Smoking Behavior or Exposure to Tobacco Smoke Constituents?

    PubMed Central

    Rees, Vaughan W.; Norton, Kaila J.; Cummings, K. Michael; Connolly, Gregory N.; Alpert, Hillel R.; Sjödin, Andreas; Romanoff, Lovisa; Li, Zheng; June, Kristie M.; Giovino, Gary A.

    2010-01-01

    Introduction: Since 2004, several jurisdictions have mandated that cigarettes show reduced ignition propensity (RIP) in laboratory testing. RIP cigarettes may limit fires caused by smoldering cigarettes, reducing fire-related deaths and injury. However, some evidence suggests that RIP cigarettes emit more carbon monoxide and polycyclic aromatic hydrocarbons, and smokers may alter their smoking patterns in response to RIP cigarettes. Both of these could increase smokers’ exposures to harmful constituents in cigarettes. Methods: An 18-day switching study with a comparison group was conducted in Boston, MA (N = 77), and Buffalo, NY (N = 83), in 2006–2007. Current daily smokers completed 4 laboratory visits and two 48-hr field data collections. After a 4-day baseline, Boston participants switched to RIP cigarettes for 14 days, whereas Buffalo participants smoked RIP cigarettes throughout. Outcome measures included cigarettes smoked per day; smoking topography; salivary cotinine; breath CO; and hydroxylated metabolites of pyrene, naphthalene, phenanthrene, and fluorene. Because the groups differed demographically, analyses adjusted for race, age, and sex. Results: We observed no significant changes in smoking topography or CO exposure among participants who switched to RIP cigarettes. Cigarette use decreased significantly in the switched group (37.7 cigarettes/48 hr vs. 32.6 cigarettes/48 hr, p = .031), while hydroxyphenanthrenes increased significantly (555 ng/g creatinine vs. 669 ng/g creatinine, p = .007). No other biomarkers were significantly affected. Discussion: Small increases in exposure to phenanthrene among smokers who switched to RIP versions were observed, while other exposures and smoking topography were not significantly affected. Toxicological implications of these findings are unclear. These findings should be weighed against the potential public health benefits of adopting RIP design standards for cigarette products. PMID:20805292

  9. Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    PubMed Central

    Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z.; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D.; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M.; Wheelock, Craig E.

    2011-01-01

    Background Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. Objectives This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Methods Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Results Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E2 (PGE2). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Conclusions Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas. PMID:21897859

  10. Altered testicular microsomal steroidogenic enzyme activities in rats with lifetime exposure to soy isoflavones.

    PubMed

    McVey, Mark J; Cooke, Gerard M; Curran, Ivan H A

    2004-12-01

    Androgen production in the testis is carried out by the Leydig cells, which convert cholesterol into androgens. Previously, isoflavones have been shown to affect serum androgen levels and steroidogenic enzyme activities. In this study, the effects of lifelong exposure to dietary soy isoflavones on testicular microsomal steroidogenic enzyme activities were examined in the rat. F1 male rats were obtained from a multi-generational study where the parental generation was fed diets containing alcohol-washed soy protein supplemented with increasing amounts of Novasoy, a commercially available isoflavone supplement. A control group was maintained on a soy-free casein protein-based diet (AIN93G). The diets were designed to approximate human consumption levels and ranged from 0 to 1046.6 mg isoflavones/kg pelleted feed, encompassing exposures representative of North American and Asian diets as well as infant fed soy-based formula. Activities of testicular 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450c17 (CYP17), 17beta-hydroxysteroid dehydrogenase (17beta-HSD) were assayed on post natal day (PND) 28, 70, 120, 240 and 360 while 5alpha-reducatase was assayed on PND 28. At PND 28, 3beta-HSD activity was elevated by approximately 50% in rats receiving 1046.6 mg total isoflavones/kg feed compared to those on the casein only diet. A similar increase in activity was observed for CYP17 in rats receiving 235.6 mg total isoflavones/kg feed, a level representative of infant exposure through formula, compared to those receiving 0mg isoflavones from the casein diet. These results demonstrate that rats fed a mixture of dietary soy isoflavones showed significantly altered enzyme activity profiles during development at PND 28 as a result of early exposure to isoflavones at levels obtainable by humans.

  11. Brief alcohol exposure alters transcription in astrocytes via the heat shock pathway

    PubMed Central

    Pignataro, Leonardo; Varodayan, Florence P; Tannenholz, Lindsay E; Protiva, Petr; Harrison, Neil L

    2013-01-01

    Astrocytes are critical for maintaining homeostasis in the central nervous system (CNS), and also participate in the genomic response of the brain to drugs of abuse, including alcohol. In this study, we investigated ethanol regulation of gene expression in astrocytes. A microarray screen revealed that a brief exposure of cortical astrocytes to ethanol increased the expression of a large number of genes. Among the alcohol-responsive genes (ARGs) are glial-specific immune response genes, as well as genes involved in the regulation of transcription, cell proliferation, and differentiation, and genes of the cytoskeleton and extracellular matrix. Genes involved in metabolism were also upregulated by alcohol exposure, including genes associated with oxidoreductase activity, insulin-like growth factor signaling, acetyl-CoA, and lipid metabolism. Previous microarray studies performed on ethanol-treated hepatocyte cultures and mouse liver tissue revealed the induction of almost identical classes of genes to those identified in our microarray experiments, suggesting that alcohol induces similar signaling mechanisms in the brain and liver. We found that acute ethanol exposure activated heat shock factor 1 (HSF1) in astrocytes, as demonstrated by the translocation of this transcription factor to the nucleus and the induction of a family of known HSF1-dependent genes, the heat shock proteins (Hsps). Transfection of a constitutively transcriptionally active Hsf1 construct into astrocytes induced many of the ARGs identified in our microarray study supporting the hypothesis that HSF1 transcriptional activity, as part of the heat shock cascade, may mediate the ethanol induction of these genes. These data indicate that acute ethanol exposure alters gene expression in astrocytes, in part via the activation of HSF1 and the heat shock cascade. PMID:23533150

  12. PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN

    PubMed Central

    Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne

    2016-01-01

    Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression

  13. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-01

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  14. Does ozone exposure alter growth and carbon allocation of mycorrhizal plants

    SciTech Connect

    Yoshida, L.C.; Gamon, J.A. ); Andersen, C.P. )

    1994-06-01

    Ozone is known to adversely affect plant growth. However, it is less clear how ozone affects belowground processes. This study tests the hypothesis that ozone alters growth and carbon allocation of vesicular arbuscular mycorrhizal (VAM) plants. Two ecotypes of Elymus glaucus (blue wild rye) were exposed to mycorrhizal inoculation and episodic ozone exposures simulating atmospheric conditions in the Los Angeles Basin. Preliminary results show that effects of ozone on growth were subtle. In both ecotypes, growth of aboveground biomass was not affected by ozone while root growth was decreased. In most treatments, mycorrhizal inoculation decreased growth of leaves and stems, but had no significant effect on root growth. Three-way ANOVA tests indicated interactive effects between ecotype, mycorrhiza and ozone. Further experimental work is needed to reveal the biological processes governing these responses.

  15. Neuropsychological evaluation for detecting alterations in the central nervous system after chemical exposure.

    PubMed

    Bolla, K I

    1996-08-01

    Individuals with multiple chemical sensitivity (MCS) report decreased attention/concentration, memory loss, disorientation, confusion, fatigue, depression, irritability, decreased libido, sleep disturbances, headaches, and weakness. These neurobehavioral symptoms represent possible alterations in the central nervous system (CNS). The evaluation of neurobehavioral functioning using neuropsychological techniques provides an indirect method for determining the integrity of the CNS. However, caution must be used in interpreting neuropsychological test results, since this technique is extremely sensitive but is not specific. Clinically significant aberrant test performance may be noted after chemical exposure as well as with other diseases of the CNS. In addition, neuropsychiatric conditions such as anxiety and depression are often manifested as cognitive difficulties that are similar in pattern to the cognitive dysfunction caused by toxic chemicals. Herein, limitations and cautions in the interpretations of neuropsychological test results are discussed. PMID:8921555

  16. Morphologic alteration of the olfactory bulb after acute ozone exposure in rats.

    PubMed

    Colín-Barenque, L; Avila-Costa, M R; Fortoul, T; Rugerio-Vargas, C; Machado-Salas, J P; Espinosa-Villanueva, J; Rivas-Arancibia, S

    1999-10-15

    The interaction of ozone with some molecules results in an increased production of free radicals. The objective of this study was to identify whether acute ozone exposure to 1-1.5 ppm for 4 h, produced cytological and ultrastructural modifications in the olfactory bulb cells. The results showed that in rats exposed to ozone there was a significant loss of dendritic spines on primary and secondary dendrites of granule cells, whereas the control rats did not present such changes. Besides these exposed cells showed vacuolation of neuronal cytoplasm, swelling of Golgi apparatus and mitochondrion, dilation cisterns of the rough endoplasmic reticulum. These findings suggest that oxidative stress produced by ozone induces alterations in the granule layer of the olfactory bulb, which may be related to functional modifications.

  17. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Shen, Jianliang; Reimer, David; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  18. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats.

    PubMed

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J Michael

    2010-08-24

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). In Experiment 1, male offspring were fed normal rat chow and tap water, while in Experiment 2, beta-alanine and taurine were treated from conception until weaning and then female pups were fed normal rat chow and 5% glucose in drinking water (CG, TDG or TSG) or water alone (CW, TDW or TSW). At 7-8 weeks of age, renal potassium excretion was measured at rest and after an acute saline load (5% of body weight) in conscious, restrained rats. Although all male groups displayed similar renal potassium excretion, TSF rats slightly increased fractional potassium excretion at rest but not in response to saline load, whereas TDF did the opposite. Plasma potassium concentration was only slightly altered by the diet manipulations. In female offspring, none of the perinatal treatments significantly altered renal potassium excretion at rest or after saline load. High sugar intake slightly decreased potassium excretion at rest in TDG and TSG, but only the TDG group displayed a decreased response to saline load. The present data indicates that perinatal taurine exposure only mildly influences renal potassium excretion in adult male and female rats.

  19. Neonatal exposure to technical methoxychlor alters pregnancy outcome in female mice.

    PubMed

    Swartz, W J; Eroschenko, V P

    1998-01-01

    This study was designed to determine the ability of female mice who were exposed neonatally to the pesticide methoxychlor (MXC) to mate, ovulate, and become pregnant upon reaching sexual maturity. One-day-old female mice (5 to 8/group) were exposed daily by intraperitoneal (ip) injection for 14 d to either sesame oil or 10 microg estradiol-17beta or 0.1, 0.5 or 1.0 mg MXC suspended in sesame oil. The MXC exposures corresponded to 14 to 71, 68 to 357, or 135 to 714 mg/kg body weight, respectively. Three months later, female mice were placed with proven breeder males and checked daily for vaginal plugs. Mated female mice were sacrificed 18 d after the appearance of a vaginal plug to evaluate pregnancy. Uteri were examined for the presence of living fetuses and/or resorption sites. Ovaries were removed and prepared for histologic evaluation and tabulation of corpora lutea. All mice from all three MXC-treated groups did in fact mate, in comparison with only one of those exposed neonatally to estradiol. Increasing the dose of MXC produced a decreased number of pregnant animals at 18 d following mating. The mean number of live fetuses/litter was reduced in the 0.5 and 1.0 mg MXC-treated groups. Corpora lutea were significantly reduced in ovaries from only the 1.0 mg MXC group and the estradiol group. No effects of treatment were seen at 0.1 mg MXC. It is concluded that neonatal exposure to MXC does not interfere with mating. Instead, significant alterations are seen in initiating and/or maintaining pregnancy. The deleterious effects on pregnancy may be due to the influence of neonatal MXC treatments on the hypothalamic-pituitary-ovarian axis as well as on possible alteration of the uterine environment.

  20. Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus.

    PubMed

    Zheng, W; Shen, H; Blaner, W S; Zhao, Q; Ren, X; Graziano, J H

    1996-08-01

    The choroid plexus, which is responsible for the maintenance of the biochemical milieu of the cerebrospinal fluid (CSF), avidly sequesters Pb. In order to test the hypothesis that chronic Pb exposure may impair choroid plexus function, male weanling Sprague-Dawley rats were exposed to Pb in drinking water at doses of 0, 50, or 250 micrograms Pb/ml (as Pb acetate) for 30, 60, or 90 days. The function of the choroid plexus was assessed as reflected by CSF concentrations of transthyretin (TTR, a major CSF protein manufactured by brain choroid plexus) and CSF essential metal ions (Ca2+, Mg2+, K+, and Na+). TTR concentrations were determined by radioimmunoassay using a monospecific rabbit anti-rat TTR polyclonal antibody, and CSF metal ions analyzed by flame atomic absorption spectrophotometry. Two-way ANOVA of CSF TTR concentrations revealed highly significant dose (p < 0.0001), time (p < 0.0223), and dose-by-time effects (p < 0.0379). Moreover, the percentage of reduction of CSF TTR was directly correlated with Pb concentrations in the choroid plexus (r = 0.703, p < 0.05). Pb exposure significantly increased CSF concentrations of Mg2+, but did not markedly altered CSF concentrations of Ca2+, K+, and Na+. Histopathologic examination under the light microscope did not show distinct alterations of plexus structure in Pb-treated rats. Since TTR is responsible for transport of thyroid hormones to the developing brain, we postulate that the depression of choroid plexus TTR production (and/or secretion) by Pb may impair brain development in young animals by depriving the CNS of thyroid hormones. PMID:8806863

  1. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    PubMed

    Davis, David A; Bortolato, Marco; Godar, Sean C; Sander, Thomas K; Iwata, Nahoko; Pakbin, Payam; Shih, Jean C; Berhane, Kiros; McConnell, Rob; Sioutas, Constantinos; Finch, Caleb E; Morgan, Todd E

    2013-01-01

    Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3)) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  2. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    PubMed

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development.

  3. Alterations in social behavior of Japanese medaka (Oryzias latipes) in response to sublethal chlorpyrifos exposure.

    PubMed

    Khalil, Fatma; Kang, Ik Joon; Undap, Suzanne; Tasmin, Rumana; Qiu, Xuchun; Shimasaki, Yohei; Oshima, Yuji

    2013-06-01

    The behavioral and biochemical responses of Japanese medaka (Oryzias latipes) to acute and subacute (sublethal) levels of chlorpyrifos were studied. In the acute exposure test, medaka were exposed to 0.018, 0.055, 0.166, or 0.500 mg L(-1) chlorpyrifos for 4 d. As a result, fish showed hypoactivity compared to the control (at 0.018, 0.055, and 0.166 mg L(-1), swimming speeds were 55.6%, 39.0%, and 27.3% those of the control), Brain acetylcholinesterase activity and swimming speed were significantly correlated. In the subacute toxicity test, medaka were exposed to 0.012 mg L(-1) chlorpyrifos (10% of LC(50)) for 8 d. On day 4, there were no significant differences in behavioral and biochemical endpoints in exposed fish as compared to the control. On day 8, exposed fish became hyperactive, and the swimming speed of the social group increased to 2 times that of the control, whereas acetylcholinesterase activity was decreased to 68% that of the control. In addition, fish exhibited significant alterations in social behavior (schooling duration increased to 2.6 times and solitary duration decreased to 28% that of the control). Our findings clearly demonstrate a subacute effect of chlorpyrifos on the social behavior of medaka, which may pose a risk at population level because of the disturbance of social behavior. In addition, the recorded behavioral alterations may provide a useful tool for assessing the toxicity of organophosphorous pesticides to aquatic organisms.

  4. In utero exposure to chloroquine alters sexual development in the male fetal rat

    SciTech Connect

    Clewell, Rebecca A. Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-06-15

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  5. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    PubMed

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development. PMID:25451122

  6. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Pinheiro, Cintia R; Santos-Silva, Ana Paula; de Oliveira, Elaine; Lisboa, Patricia C

    2013-08-01

    Maternal exposure to nicotine during lactation causes hyperleptinemia in the pups and, at adulthood, these animals are overweight and hyperleptinemic, while, in their hypothalamus, the leptin signaling pathway is reduced, evidencing a central leptin resistance. Then, we evaluated the expression of pro-opiomelanocortin (POMC), alpha-melanocyte stimulating hormone (α-MSH), cocaine and amphetamine-regulated transcript (CART), neuropeptide Y (NPY), agouti-related peptide (AgRP) and others in different hypothalamic nuclei in order to better understand the mechanisms underlying the obese phenotype observed in these animals at adulthood. On the 2nd postnatal day (P2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6 mg/kg/day) or saline for 14 days. Offspring were killed in P180 and immunohistochemistry and Western blot analysis were carried out. Significance data had p<0.05. Adult NIC offspring showed more intense NPY staining in the paraventricular nucleus (PVN) (+21%) and increased number of POMC-positive cells in the: arcuate nucleus (+33%), as an increase in fiber density of α-MSH in PVN (+85%). However, the number of CART-positive cells was reduced in the PVN (-25%). CRH staining was more intense in NIC offspring (+136%). Orexins and AgRP were not altered. Thus, maternal nicotine exposure changes hypothalamic neuropeptides in the adult progeny that is partially compatible with leptin resistance.

  7. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    PubMed Central

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  8. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    PubMed

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  9. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice.

    PubMed

    Onishchenko, Natalia; Tamm, Christoffer; Vahter, Marie; Hökfelt, Tomas; Johnson, Jeffrey A; Johnson, Delinda A; Ceccatelli, Sandra

    2007-06-01

    To investigate the long-term effects of developmental exposure to methylmercury (MeHg), pregnant mice were exposed to at 0.5 mg MeHg/kg/day via drinking water from gestational day 7 until day 7 after delivery. The behavior of offspring was monitored at 5-15 and 26-36 weeks of age using an automated system (IntelliCage) designed for continuous long-term recording of the home cage behavior in social groups and complex analysis of basic activities and learning. In addition, spontaneous locomotion, motor coordination on the accelerating rotarod, spatial learning in Morris water maze, and depression-like behavior in forced swimming test were also studied. The analysis of behavior performed in the IntelliCage without social deprivation occurred to be more sensitive in detecting alterations in activity and learning paradigms. We found normal motor function but decreased exploratory activity in MeHg-exposed male mice, especially at young age. Learning disturbances observed in MeHg-exposed male animals suggest reference memory impairment. Interestingly, the forced swimming test revealed a predisposition to depressive-like behavior in the MeHg-exposed male offspring. This study provides novel evidence that the developmental exposure to MeHg can affect not only cognitive functions but also motivation-driven behaviors.

  10. Ethanol exposure during gastrulation alters neuronal morphology and behavior in zebrafish.

    PubMed

    Shan, Shubham D; Boutin, Savanna; Ferdous, Jannatul; Ali, Declan W

    2015-01-01

    Ethanol (EtOH) exposure during development has been shown to lead to deficits in fine and gross motor control. In this study we used zebrafish embryos to determine the effects of EtOH treatment during gastrulation. We treated embryos in the gastrulation stage (5.25 hours post fertilization (hpf) to 10.75 hpf) with 10 mM, 50 mM or 100 mM EtOH and examined the effects on general animal morphology, the c-start reflex behavior, Mauthner cell (M-cell) morphology and motor neuron morphology. EtOH treated fish exhibited a minor but significant increase in gross morphological deformities compared with untreated fish. Behavioral studies showed that EtOH treatment resulted in an increase in the peak speed of the tail during the escape response. Furthermore, there was a marked increase in abnormally directed c-starts, with treated fish showing greater incidences of c-starts in inappropriate directions. Immunolabeling of the M-cells, which are born during gastrulation, revealed that they were significantly smaller in fish treated with 100 mM EtOH compared with controls. Immunolabeling of primary motor neurons using anti-znp1, showed no significant effect on axonal branching, whereas secondary motor axons had a greater number of branches in ethanol treated fish compared with controls. Together these findings indicate that ethanol exposure during gastrulation can lead to alterations in behavior, neuronal morphology and possibly function. PMID:25599605

  11. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    PubMed

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  12. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  13. Alteration of the aPA ELISA by UV exposure of polystyrene microtiter plates.

    PubMed

    Goldberg, J S; Wagenknecht, D R; McIntyre, J A

    1996-01-01

    Interlaboratory inconsistencies in antiphospholipid antibody (aPA) solid phase assays have prompted controversy in clinical laboratory testing for aPA. We found that the aPA ELISA can be influenced by the type of microtiter plate utilized and by the conditions in which the plates are stored. By exposing 96-well, flat-bottom polystyrene microtiter plates to short wave UV light (254 nm), the aPA ELISA signal decreased in a UV dose-dependent manner. No effect was seen with long wave UV light (366 nm). These results were independent of the antibody isotype under study or the phospholipid (PL) antigen used: anionic phosphatidylserine (PS) and cardiolipin (CL), or zwitterionic phosphatidylethanolamine (PE). Purified human beta 2-glycoprotein I (beta 2 GPI), a known cofactor for anionic PL, and rabbit anti-beta 2 GPI antisera were used to demonstrate that beta 2 GPI bound equally to UV treated and untreated microtiter plates. In contrast, recognition of beta 2 GPI on an anionic PL surface was decreased on UV treated plates, suggesting that UV exposure alters the lipid binding properties of the microliter plate. To determine whether UV exposure inhibited PL binding directly or caused a change in the way the PL was bound, the amount of PL bound to UV treated and untreated plates was measured by using fluorescent labeled PS and a fluorimeter. PS binding was decreased by 53% in UV treated wells as compared to untreated wells. These data show that short wave UV exposure reduces PL binding to polystyrene microtiter plates, thereby reducing the amount of beta 2 GPI bound to PL coated ELISA plates. Thus by using UV exposed microtiter plates, decreased or false-negative a PA ELISA results may be obtained for aPA positive plasmas. PMID:8887002

  14. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees.

    PubMed

    Williamson, Sally M; Moffat, Christopher; Gomersall, Martha A E; Saranzewa, Nastja; Connolly, Christopher N; Wright, Geraldine A

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival.

  15. Fetal hematopoietic alterations after maternal exposure to benzo[a]pyrene: A cytometric evaluation

    SciTech Connect

    Holladay, S.D.; Smith, B.J.

    1994-12-31

    In utero exposure to the environmental contaminant benzo[a]pyrene (BaP) was found to alter expression of murine thymocyte and liver fetal cell-surface markers. Pregnant mice were treated (via gavage) with 0, 50, 100, or 150 mg BaP/kg/d on gestational days (gd) 13-17, and offspring were examined on gd 18. Severe thymic atrophy and cellular depletion were found in BaP-exposed fetal mice. Flow cytometric analysis indicated that the BaP treatment resulted in a significant decrease in the percentage of CD4{sup +}8{sup +} fetal thymocytes, as well as significantly increased CD4{sup {minus}}8{sup {minus}} and CD4{sup {minus}}8{sup +} thymocytes. Staining of thymocytes with anti-mouse heat-stable antigen (HSA) and CD8 monoclonal antibodies produced similar results. These data suggest that BaP, in addition to producing thymic hypocellularity, inhibits normal thymocyte maturation processes. The BaP treatment was also found to decrease total fetal liver cellularity including numbers of cells within resident hematopoietic subpopulations. In particular, prolymphocytic cells, identified by CD44 and CD45R antigen expression and by presence of nuclear terminal deoxynucleotidyl transferase (TdT), were significantly decreased in animals gestationally exposed to BaP. These data, taken together, indicate that postnatal suppression of cell and humoral-mediated immune function following in utero exposure to BaP may result from multiple targeting of immune function following in utero exposure to BaP may result from multiple targeting of immune cells at different hematopoietic levels. Furthermore, results of the present study identify both qualitative and quantitative changes in fetal immune cell antigen expression that correlate well with the postnatal immunosuppression that occurs in experimental animals exposed to this carcinogenic polycyclic aromatic hydrocarbon. 41 refs., 4 figs., 3 tabs.

  16. Association between lead exposure from electronic waste recycling and child temperament alterations.

    PubMed

    Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia

    2011-08-01

    We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (P<0.01). Significant differences of mean scores in activity level (4.53±0.83 vs. 4.18±0.81), approach-withdrawal (4.62±0.85 vs. 4.31±0.89), and adaptability (4.96±0.73 vs. 4.67±0.83) were found between Guiyu and Chendian children (all P<0.01). High BLL (BLL≥10μg/dL) child had higher mean scores of approach-withdrawal when compared with those children with low BLL (BLL<10 μg/dL) (4.61±0.87 vs. 4.30±0.88, P<0.01). Location of child residence in Guiyu, and parents engagement in work related to e-waste were the risk factors related to child BLL, activity level, approach-withdrawal, adaptability, and mood. Child hand washing prior to food consumption was a protected factor for BLL and several dimensions. There are close relationships between BLL elevation, temperament alteration and the e-waste recycling activities in Guiyu. Primitive e-waste recycling may threaten the health of children by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies.

  17. Altered neuron-glia interactions in a low, chronic prenatal ethanol exposure.

    PubMed

    Evrard, Sergio Gustavo; Vega, Maite Duhalde; Ramos, Alberto Javier; Tagliaferro, Patricia; Brusco, Alicia

    2003-12-30

    Serotoninergic neurons, astrocytes and nitrergic system play an important role in central nervous system (CNS) development. These systems are altered in prenatal ethanol exposure (PEE) but ethanol (EtOH) effects may be very diverse under different conditions. In this study, we analyzed morphologically two serotoninergic mesencephalic nuclei and three prosencephalic areas of serotoninergic innervation in a model of pre- and postnatal low-ethanol exposure. Female Wistar rats were orally exposed to EtOH 6.6% (v/v), ad libitum, for 6 weeks before mating and during gestation and lactation while control group received water ad libitum. Twenty-day-old offspring (P21) brains were processed and immunoreactivity (IR) using antibodies against tryptophan hydroxylase (TPH), 5-HT, 5-HT transporter (5HTT), glial fibrillary acidic protein (GFAP), S-100B protein, 200-kDa neurofilaments (Nf-200) and neuronal nitric oxide synthase (nNOS) was evaluated. Dorsal and median raphe nucleus (DRN and MRN), hippocampus (Hipp), striatum (Strt) and frontal cortex (FCx) were studied by computer-assisted image analysis. Relative optical density (ROD) of TPH-IR, 5-HT-IR and nNOS-IR neurons; cell area of GFAP-IR astrocytes; relative area of 5HTT-IR fibers and Nf-200-IR were evaluated. TPH-IR was increased in DRN and MRN and 5-HT-IR was increased only in MRN. 5-HTT-IR fibers and ROD of S-100B-IR astrocytes were increased in the three prosencephalic areas while GFAP-IR astrocytes were hypertrophied only in Hipp and FCx. Nf-200 expression was increased in Hipp and Strt and morphologically altered in the FCx. ROD of nNOS-IR neurons was increased in Strt and FCx but was not detected in Hipp. We have also detected morphological changes resembling accelerated development and maturation, and early aging. Considering the evidences of a close 5-HT-astroglial-NO relationship during CNS development the differential response of the studied regions is an interesting result that could be due to different

  18. Motor alterations associated with exposure to manganese in the environment in Mexico.

    PubMed

    Rodríguez-Agudelo, Yaneth; Riojas-Rodríguez, Horacio; Ríos, Camilo; Rosas, Irma; Sabido Pedraza, Eva; Miranda, Javier; Siebe, Christina; Texcalac, José Luis; Santos-Burgoa, Carlos

    2006-09-15

    Overexposure to manganese (Mn) causes neurotoxicity (a Parkinson-like syndrome) or psychiatric damage ("manganese madness"). Several studies have shown alterations to motor and neural behavior associated with exposure to Mn in the workplace. However, there are few studies on the effects of environmental exposure of whole populations. We studied the risk of motor alterations in people living in a mining district in Mexico. We studied 288 individual people (168 women and 120 men) from eight communities at various distances from manganese extraction or processing facilities in the district of Molango. We measured manganese concentrations in airborne particles, water, soil and crops and evaluated the possible routes of Mn exposure. We also took samples of people's blood and determined their concentrations of Mn and lead (Pb). We used "Esquema de Diagnóstico Neuropsicológico" Ardila and Ostrosky-Solís's neuropsychological battery to evaluate motor functions. Concentrations of Mn in drinking water and maize grain were less than detection limits at most sampling sites. Manganese extractable by DTPA in soils ranged between 6 and 280 mg kg(-1) and means were largest close to Mn extraction or processing facilities. Air Mn concentration ranged between 0.003 and 5.86 microg/m(3); the mean value was 0.42 microg/m(3) and median was 0.10 microg/m(3), the average value (geometric mean) resulted to be 0.13 microg/m(3). Mean blood manganese concentration was 10.16 microg/l, and geometric mean 9.44 microg/l, ranged between 5.0 and 31.0 mcrog/l. We found no association between concentrations of Mn in blood and motor tests. There was a statistically significant association between Mn concentrations in air and motor tests that assessed the coordination of two movements (OR 3.69; 95% CI 0.9, 15.13) and position changes in hand movements (OR 3.09; CI 95% 1.07, 8.92). An association with tests evaluating conflictive reactions (task that explores verbal regulations of movements) was also

  19. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment.

    PubMed

    Tyler, Christina R; Allan, Andrea M

    2013-01-01

    Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor cells

  20. Adult Hippocampal Neurogenesis and mRNA Expression are Altered by Perinatal Arsenic Exposure in Mice and Restored by Brief Exposure to Enrichment

    PubMed Central

    Tyler, Christina R.; Allan, Andrea M.

    2013-01-01

    Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer’s disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor

  1. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.

    PubMed

    Miller, M W

    1996-02-01

    The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. The pregnant dams were administered with bromodeoxyuridine (BrdU) on either G15 or G21. The ratio of the number of cells that incorporated BrdU to the total number (the labeling index) was determined 1-hr postinjection (i.e., on G15 or G21) or on postnatal day 60, Ethanol treatment between G6 and G21 reduced the ratio of cells labeled by an injection of BrdU on G15 in the fetus and in the adult, and increased the ratio of cells labeled on G21. Regardless of when the injection was placed, ethanol treatment between G6 and G9 had no effect upon the ratio of BrdU-labeled cells in the fetus or mature cortex. Exposure from G12 to G15 decreased the number of VZ cells in the fetus and the number of immunolabeled cells in the adult cortex labeled by an injection on G15. This exposure had no effect on the incorporation by SZ cells. In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.

  2. Pulmonary structural and extracellular matrix alterations in Fischer 344 rats following subchronic phosgene exposure.

    PubMed

    Kodavanti, U P; Costa, D L; Giri, S N; Starcher, B; Hatch, G E

    1997-05-01

    hydroxyproline, taken as an index of collagen synthesis, were increased following 1.0 ppm phosgene exposure at 4 as well as 12 weeks, respectively. Desmosine levels, taken as an index of changes in elastin, were increased in the lung after 4 or 12 weeks in the 1.0 ppm phosgene group. Following 4 weeks of air recovery, lung hydroxyproline was further increased in 0.5 and 1.0 ppm phosgene groups. Lung weight also remained significantly higher than the controls; however, desmosine and lung displacement volume in phosgene-exposed animals were similar to controls. In summary, terminal bronchiolar and lung volume displacement changes occurred at very low phosgene concentrations (0.1 ppm). Phosgene concentration, rather than C x T product appeared to drive toxic responses. The changes induced by phosgene (except of collagen) following 4 weeks were not further amplified at 12 weeks despite continued exposure. Phosgene-induced alterations of matrix were only partially reversible after 4 weeks of clean air exposure.

  3. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    PubMed Central

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  4. Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations.

    PubMed

    Miandare, Hamed Kolangi; Niknejad, Mahtab; Shabani, Ali; Safari, Roghieh

    2016-01-01

    Sturgeon is one of the endangered families of fish in the Caspian Sea region, where there is up to 80% of their global caching. Unfortunately, in recent years, increase of pollutants has been resulted in their total population reduction. Due to their benthic nature, sturgeons are at great risk of exposing to contaminants such as cadmium. Despite their endangered status in the Caspian Sea, there are only a few studies on characterizing the relative sensitivity of sturgeons to cadmium. Adverse effects associated with pollution on angiogenesis are mediated by hypoxia inducing factor-1 (HIF-1) and vascular endothelial growth factor (VEGF). In this investigation, gene expression of two distinct HIFs-1, HIF-1α and HIF-2α, and VEGF was investigated at the mRNA transcript levels after exposure of Persian sturgeon (Acipenser persicus) to cadmium. VEGF, HIF-1α and HIF-2α expressions in treated Persian sturgeon were greater than controls. Significant increases (P<0.05) were also observed in cortisol and glucose levels compared to the control group especially in the fish exposed to higher cadmium concentration (800 μg/L). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactic acid dehydrogenase (LDH) levels were increased in the cadmium-exposed fish, although the observed increases were not significant between the control and 200 μg/L cadmium treatment at some sampling time points. Gill tissues also showed histopathological changes in the cadmium treatments. Overall, results indicated that cadmium resulted in some alterations in biochemical parameters, mRNA transcript level expression of two important angiogenesis related genes as well as histological alterations in Persian sturgeon.

  5. Prenatal exposure to dexamethasone alters Leydig cell steroidogenic capacity in immature and adult rats.

    PubMed

    Page, K C; Sottas, C M; Hardy, M P

    2001-01-01

    This study examines the effects of prenatal exposure to dexamethasone (DEX) on postnatal testosterone production in male rats. Pregnant female rats were treated on gestation days 14-19 with DEX (100 microg/kg body weight per day; n = 9) or vehicle (n = 9). Results show that 35-day-old male offspring from DEX-treated pregnant females (n = 42) had decreased levels of serum testosterone (45.6% lower, P < .05) compared with control offspring (n = 43), although serum luteinizing hormone (LH) levels were not significantly altered. These findings suggest that a direct programming of developing gonadal cells occurs in response to high levels of maternal glucocorticoid. Indeed, testosterone production was significantly reduced in Leydig cells isolated from immature offspring of DEX-treated pregnant females compared with controls (48.3%, P < .001), and LH stimulation of these cells did not compensate for the lowered steroidogenic capacity. The hypothalamic-pituitary-adrenal axis was also affected, because significant reductions in both serum adrenocorticotropic hormone (ACTH; 26.2%, P < .001) and corticosterone (CORT; 32.3%, P < .001) were measured in DEX-exposed immature male offspring. In contrast, adult male offspring from DEX-treated dams had significantly higher levels of serum ACTH (39.2%, P <. 001) and CORT (37.8%, P < .001). These same animals had higher serum testosterone (31.6%, P < or = .05) and a significant reduction in serum LH (30.8%, P < .001). Moreover, Leydig cells isolated from these adult offspring exhibited an increased capacity for testosterone biosynthesis under basal (38.6%, P < .001) and LH-stimulated conditions (33.5%, P < .001). In summary, sustained changes in steroidogenic capacity were observed in male rats exposed to high levels of glucocorticoid during prenatal development. More specifically, DEX exposure in utero perturbed Leydig cell testosterone production in both pubertal and adult rats.

  6. Exposure to Synthetic Gray Water Inhibits Amoeba Encystation and Alters Expression of Legionella pneumophila Virulence Genes

    PubMed Central

    Lu, Jingrang; Ashbolt, Nicholas J.

    2014-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems. PMID:25381242

  7. Tobacco Smoke Exposure and Altered Nasal Responses to Live Attenuated Influenza Virus

    PubMed Central

    Noah, Terry L.; Zhou, Haibo; Monaco, Jane; Horvath, Katie; Herbst, Margaret; Jaspers, Ilona

    2011-01-01

    Background Epidemiologic evidence links tobacco smoke and increased risk for influenza in humans, but the specific host defense pathways involved are unclear. Objective We developed a model to examine influenza-induced innate immune responses in humans and test the hypothesis that exposure to cigarette smoke alters nasal inflammatory and antiviral responses to live attenuated influenza virus (LAIV). Methods This was an observational cohort study comparing nasal mucosal responses to LAIV among young adult active smokers (n = 17), nonsmokers exposed to secondhand smoke (SHS; n = 20), and unexposed controls (n = 23). Virus RNA and inflammatory factors were measured in nasal lavage fluids (NLF) serially after LAIV inoculation. For key end points, peak and total (area under curve) responses were compared among groups. Results Compared with controls, NLF interleukin-6 (IL-6) responses to LAIV (peak and total) were suppressed in smokers. Virus RNA in NLF cells was significantly increased in smokers, as were interferon-inducible protein 10:virus ratios. Responses in SHS-exposed subjects were generally intermediate between controls and smokers. We observed significant associations between urine cotinine and NLF IL-6 responses (negative correlation) or virus RNA in NLF cells (positive correlation) for all subjects combined. Conclusions Nasal inoculation with LAIV results in measurable inflammatory and antiviral responses in human volunteers, thus providing a model for investigating environmental effects on influenza infections in humans. Exposure to cigarette smoke was associated with suppression of specific nasal inflammatory and antiviral responses, as well as increased virus quantity, after nasal inoculation with LAIV. These data suggest mechanisms for increased susceptibility to influenza infection among persons exposed to tobacco smoke. PMID:20920950

  8. Pesticide Exposure Alters Follicle-Stimulating Hormone Levels in Mexican Agricultural Workers

    PubMed Central

    Recio, Rogelio; Ocampo-Gómez, Guadalupe; Morán-Martínez, Javier; Borja-Aburto, Victor; López-Cervantes, Malaquías; Uribe, Marisela; Torres-Sánchez, Luisa; Cebrián, Mariano E.

    2005-01-01

    Organophosphorous pesticides (OPs) are suspected of altering reproductive function by reducing brain acetylcholinesterase activity and monoamine levels, thus impairing hypothalamic and/or pituitary endocrine functions and gonadal processes. Our objective was to evaluate in a longitudinal study the association between OP exposure and serum levels of pituitary and sex hormones. Urinary OP metabolite levels were measured by gas–liquid chromatography, and serum pituitary and sex hormone levels by enzymatic immunoassay and radioimmunoassay in 64 men. A total of 147 urine and blood samples were analyzed for each parameter. More than 80% of the participants had at least one OP metabolite in their urine samples. The most frequent metabolite found was diethylthiophosphate (DETP; 55%), followed by diethylphosphate (DEP; 46%), dimethylthiophosphate (DMTP; 32%), and dimethyldithiophosphate (DMDTP; 31%). However, the metabolites detected at higher concentrations were DMTP, DEP, DMDTP, and dimethylphosphate. There was a high proportion of individuals with follicle-stimulating hormone (FSH) concentrations outside the range of normality (48%). The average FSH serum levels were higher during the heavy pesticide spraying season. However, a multivariate analysis of data collected in all periods showed that serum FSH levels were negatively associated with urinary concentrations of both DMTP and DMDTP, whereas luteinizing hormone (LH) was negatively associated with DMTP. We observed no significant associations between estradiol or testosterone serum levels with OP metabolites. The hormonal disruption in agricultural workers presented here, together with results from experimental animal studies, suggests that OP exposure disrupts the hypothalamic–pituitary endocrine function and also indicates that FSH and LH are the hormones most affected. PMID:16140621

  9. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure

    PubMed Central

    Rizvi, Fariha Z.; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J.; Krumholz, Lee R.

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  10. Chromatin Modifications during Repair of Environmental Exposure-Induced DNA Damage: A Potential Mechanism for Stable Epigenetic Alterations

    PubMed Central

    O’Hagan, Heather M.

    2014-01-01

    Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure. PMID:24259318

  11. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  12. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    EPA Science Inventory

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  13. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Mason, Stephen; Anthony, Bruce; Lai, Xianyin; Ringham, Heather N.; Wang, Mu; Witzmann, Frank A.; You, Jin-Sam; Zhou, Feng C.

    2012-01-01

    Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P < 0.01), and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function. PMID:22745907

  14. Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure

    PubMed Central

    2011-01-01

    Background Total soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 μM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS. Results Dose-dependent molecular response to Pb (II) involved a total of 14 up-regulated and 21 down-regulated proteins. The induction of an isoform of glyceraldehyde 3-phosphate dehydrogenase, alcohol dehydrogenase class V, mRNA splicing factor, ATP-dependent RNA helicase, thioredoxin reductase and actin required a Pb (II) dose of at least 50 μM. Analysis of the proteome dynamics of mid-exponential phase cells of P. chrysosporium subjected to 50 μM lead at exposure time intervals of 1, 2, 4 and 8 h, identified a total of 23 proteins in increased and 67 proteins in decreased amount. Overall, the newly induced/strongly up-regulated proteins involved in (i) amelioration of lipid peroxidation products, (ii) defense against oxidative damage and redox metabolism, (iii) transcription, recombination and DNA repair (iv) a yet unknown function represented by a putative protein. Conclusion The present study implicated the particular role of the elements of DNA repair, post-tanscriptional regulation and heterotrimeric G protein signaling in response to Pb (II) stress as shown for the first time for a basidiomycete. PMID:21388532

  15. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  16. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  17. Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis.

    PubMed

    Simon, D; Daubos, A; Pain, C; Fitoussi, R; Vié, K; Taieb, A; de Benetti, L; Cario-André, M

    2013-02-01

    Exposure to electromagnetic radiations (EMR) produced by mobile phone concerns half the world's population and raises the problem of their impact on human health. In this study, we looked at the effects of mobile phone exposure (GSM basic, 900 MHz, SAR 2 mW g(-1) , 6 h) on a model of pigmented skin. We have analysed the expression and localization of various markers of keratinocyte and melanocyte differentiation 2, 6, 18 and 24 h after EMR exposure of reconstructed epidermis containing either only keratinocytes or a combination of keratinocytes and melanocytes grown on dead de-epidermized dermis, using histology, immunohistochemistry and Western blot. No changes were found in epidermal architecture, localization of epidermal markers, presence of apoptotic cells and the induction of p53 in both types of epidermis (with or without melanocytes) after exposure to EMR. In pigmented reconstructs, no change in the location and dendricity of melanocytes and in melanin transfer to neighbouring keratinocytes was detected after EMR exposure. Loricrin, cytokeratin 14 were significantly decreased at 6 h. The level of all markers increased at 24 h as compared to 6 h post-EMR exposure, associated with a significant decrease of the 20S proteasome activity. Our data indicate that exposure to 900 MHz frequency induces a transient alteration of epidermal homoeostasis, which may alter the protective capacity of the skin against external factors. Presence or absence of melanocytes did not modify the behaviour of reconstructs after EMR exposure.

  18. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential

  19. Alterations in catecholamine turnover in specific regions of the rat brain following acute exposure to nitrous oxide.

    PubMed

    Karuri, A R; Kugel, G; Engelking, L R; Kumar, M S

    1998-04-01

    The effects of nitrous oxide (N2O) on steady-state concentrations and turnover rates of catecholamines in the olfactory bulb, hypothalamus, brain stem, hippocampus, striatum, thalamus, cerebral cortex, and spinal cord were determined in rats. Animals were exposed for 2 h to either 60% N2O or air. Immediately following exposure, all animals were injected intraperitoneally with alpha-methylparatyrosine (alphaMPT), a competitive inhibitor of tyrosine hydroxylase, and sacrificed at 0, 30, or 90 min postinjection. Brain catecholamine concentrations were determined using high-performance liquid chromatography coupled with electrochemical detection (HPLC-EC). Results indicate that N2O exposure significantly elevates steady-state concentrations of norepinephrine (NE) in the hypothalamus and striatum yet decreases amine levels in the brain stem region. Steady-state levels of dopamine (DA) were not significantly altered in any region of the CNS by N2O exposure. Acute exposure to N2O also resulted in significant decreases in the turnover rate of NE in the brain stem, yet it increased turnover of this amine in the olfactory bulb, hypothalamus, and striatum. Acute exposure to N2O resulted in a decreased turnover rate of DA in the hippocampus and striatum. In contrast, N2O appears to increase DA turnover in the olfactory bulb. These results indicate that acute exposure to N2O in rats causes region-specific alterations in steady-state levels and turnover rates of DA and NE within the central nervous system.

  20. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation.

    PubMed

    Szutorisz, Henrietta; DiNieri, Jennifer A; Sweet, Eric; Egervari, Gabor; Michaelides, Michael; Carter, Jenna M; Ren, Yanhua; Miller, Michael L; Blitzer, Robert D; Hurd, Yasmin L

    2014-05-01

    Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual's lifetime. Here, we show that adolescent exposure to Δ(9)-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation.

  1. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    PubMed Central

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  2. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    PubMed

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure.

  3. Alteration of Bacterial Antibiotic Sensitivity After Short-Term Exposure to Diagnostic Ultrasound

    PubMed Central

    Mortazavi, Seyed Mohammad Javad; Darvish, Leili; Abounajmi, Mohammad; Zarei, Samira; Zare, Tahereh; Taheri, Mohammad; Nematollahi, Samaneh

    2015-01-01

    inhibition zones in exposed and non-exposed samples of Klebsiella pneumonia and Streptococcus. Conclusions This study clearly shows that short-term exposure of microorganisms to diagnostic ultrasonic waves can significantly alter their sensitivity to antibiotics. We believe that this physical method of making the antibiotic-resistant population susceptible can open new horizons in antibiotic therapy of a broad range of diseases, including tuberculosis. PMID:26732124

  4. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  5. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  6. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters.

    PubMed

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  7. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    PubMed

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  8. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    PubMed

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

  9. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    PubMed Central

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  10. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    PubMed

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  11. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  12. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    EPA Science Inventory

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  13. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  14. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat.

    PubMed

    Riffle, Brandy W; Klinefelter, Gary R; Cooper, Ralph L; Winnik, Witold M; Swank, Adam; Jayaraman, Saro; Suarez, Juan; Best, Deborah; Laws, Susan C

    2014-08-01

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and testis (intact) proteomes in rats after 3 days of exposure. The adrenal accounted for most of the serum progesterone and all of the corticosterone increases in intact and castrated males. Serum luteinizing hormone, androstenedione, and testosterone in intact males shared a non-monotonic response suggesting transition from an acute stimulatory to a latent inhibitory response to exposure. Eight adrenal proteins were significantly altered with dose. There were unique proteomic changes between the adrenals of intact and castrated males. Six testis proteins in intact males had non-monotonic responses that significantly correlated with serum testosterone. Different dose-response curves for steroids and proteins in the adrenal and testis reveal novel adverse outcome pathways in intact and castrated male rats.

  15. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs

    SciTech Connect

    Wolcott, J.A.; Zee, Y.C,; Osebold, J.W.

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity.

  16. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons

    PubMed Central

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-01-01

    The CB1 cannabinoid receptor, the main target of Δ9-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling. PMID:26460022

  17. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    PubMed

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  18. Meteoric alteration of early formed dolomite during long-term subaerial exposure: Mississippian Mission Canyon Formation

    SciTech Connect

    Smith, T.M.; Dorobek, S.L. )

    1990-05-01

    Dolomite from the Mississippian Mission Canyon Formation in south central Montana has been petrographically and geochemically analyzed to constrain the effects of long-term subaerial exposure on the formation of well-ordered and stoichiometric dolomite. Samples from five measured stratigraphic sections were analyzed for stoichiometry and for carbon and oxygen isotope composition. Dolomite {delta}{sup 18}O values from all sections vary from {minus}11.2 to +7.5{per thousand}. {delta}{sup 13}C ratios vary from +0.4 to +5.5{per thousand} but are relatively consistent within individual sections. Stoichiometry of the dolomite varies from 49.9 to 55.7 mole % CaCO{sub 3}. Measured sections from the northern portion of the study area dominantly contain {sup 18}O-depleted dolomite (+0.8 to {minus}11 2{per thousand} {delta}{sup 18}O). The most {sup 18}O-depleted dolomite, however. typically occurs in the upper 100 m of these sections. These {sup 18}O-depleted dolomites have homogeneous {delta}{sup 13}C ratios and are stoichiometric. Dolomite from the upper 100 m of these sections predates early calcite cement and locally is calcitized or partially replaced by Fe-oxides. These data suggest that early formed dolomite may have been recrystallized by meteoric water under very high water-rock ratio conditions. Decreasing amounts of water-rock interaction with depth is suggested by more heterogeneous {delta}{sup 18}O and {delta}{sup 13}C ratios downsection. Measured sections in the southern portion of the field area contain greater amounts of {sup 18}O-enriched dolomite (+7.5 to -7.1{per thousand} {delta}{sup 18}O). Dolomite from these sections also has more heterogeneous {delta}{sup 13}C values and variable CaCO{sup 3} content. These data suggest that the dolomite probably has not been extensively altered and may more closely represent the original geochemistry of the early formed dolomite.

  19. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    PubMed

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior.

  20. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan; Cooney, Craig A; Gilbert, Kathleen M; James, S Jill

    2012-12-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity.

  1. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  2. Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen.

    PubMed

    Eynan, Mirit; Mullokandov, Michael; Krinsky, Nitzan; Biram, Adi; Arieli, Yehuda

    2015-09-01

    Findings regarding blood glucose level (BGL) on exposure to hyperbaric oxygen (HBO) are contradictory. We investigated the influence of HBO on BGL, and of BGL on latency to central nervous system oxygen toxicity (CNS-OT). The study was conducted on five groups of rats: Group 1, exposure to oxygen at 2.5 atmospheres absolute (ATA), 90 min/day for 7 days; Group 2, exposure to oxygen once a week from 2 to 6 ATA in increments of 1 ATA/wk, for a period of time calculated as 60% of the latency to CNS-OT (no convulsions); Group 3, exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21; Group 4, received 10 U/kg insulin to induce hypoglycemia before exposure to HBO; Group 5, received 33% glucose to induce hyperglycemia before exposure to HBO. Blood samples were drawn before and after exposures for measurement of BGL. No change was observed in BGL after exposure to oxygen at 2.5 ATA, 90 min/day for 7 days. BGL was significantly elevated after exposure to oxygen at 6 ATA until the appearance of convulsions, and following exposure to 4, 5, and 6 ATA without convulsions (P < 0.01). No change was observed in BGL after exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21. Hypoglycemia shortened latency to CNS oxygen toxicity, whereas hyperglycemia had no effect. Our results demonstrate an influence of HBO exposure on elevation of BGL, starting at 4 ATA. This implies that BGL may serve as a marker for the generation of CNS-OT.

  3. Functional Alteration of Natural Killer Cells and Cytotoxic T Lymphocytes upon Asbestos Exposure and in Malignant Mesothelioma Patients

    PubMed Central

    Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kishimoto, Takumi; Fukuoka, Kazuya; Nakano, Takashi; Otsuki, Takemi

    2015-01-01

    Malignant mesothelioma is caused by exposure to asbestos, which is known to have carcinogenic effects. However, the development of mesothelioma takes a long period and results from a low or intermediate dose of exposure. These findings have motivated us to investigate the immunological effects of asbestos exposure and analyze immune functions of patients with mesothelioma and pleural plaque, a sign of exposure to asbestos. Here, we review our knowledge concerning natural killer (NK) cells and cytotoxic T lymphocytes (CTL). NK cells showed impaired cytotoxicity with altered expression of activating receptors upon exposure to asbestos, while induction of granzyme+ cells in CD8+ lymphocytes was suppressed by asbestos exposure. It is interesting that a decrease in NKp46, a representative activating receptor, is common between NK cells in PBMC culture with asbestos and those of mesothelioma patients. Moreover, it was observed that CD8+ lymphocytes may be stimulated by some kind of “nonself” cells in plaque-positive individuals and in mesothelioma patients, whereas CTL in mesothelioma is impaired by poststimulation maintenance of cytotoxicity. These findings suggest that analysis of immunological parameters might contribute to the evaluation of health conditions of asbestos-exposed individuals and to a greater understanding of the pathology of malignant mesothelioma. PMID:26161391

  4. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    SciTech Connect

    Peters, J.L.; Castillo, F.J.; Heath, R.L. )

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  5. Altered levels of endocrine biomarkers in juvenile barramundi (Lates calcarifer; Bloch) following exposure to commercial herbicide and surfactant formulations.

    PubMed

    Kroon, Frederieke J; Hook, Sharon E; Metcalfe, Suzanne; Jones, Dean

    2015-08-01

    Agricultural pesticides that are known endocrine disrupting chemicals have been detected in waters in the Great Barrier Reef catchment and lagoon. Altered transcription levels of liver vitellogenin (vtg) have been documented in wild populations of 2 Great Barrier Reef fisheries species and were strongly associated with pesticide-containing runoff from sugarcane plantations. The present study examined endocrine and physiological biomarkers in juvenile barramundi (Lates calcarifer) exposed to environmentally relevant concentrations of commercial herbicide (ATRADEX(®) WG Herbicide, DIUREX(®) WG Herbicide) and surfactant (ACTIVATOR(®) 90) formulations commonly used on sugarcane in the Great Barrier Reef catchment. Estrogenic biomarkers (namely, liver vtg messenger RNA and plasma 17β-estradiol) increased following exposure to commercial mixtures but not to the analytical grade chemical, suggesting an estrogenic response to the additives. In contrast, brain aromatase (cyp19a1b) transcription levels, plasma testosterone and 11-ketotestosterone concentrations, and gill ventilation rates were not affected by any of the experimental exposures. These findings support the assertion that exposure to pesticide-containing runoff from sugarcane plantations is a potential causative agent of altered liver vtg transcription levels in wild barramundi. Whether exposure patterns in the Great Barrier Reef catchment and lagoon are sufficient to impair fish sexual and reproductive development and ultimately influence fish population dynamics remains to be determined. These findings highlight the need to consider both active and so-called inert ingredients in commercial pesticide formulations for environmental risk assessments. PMID:25858168

  6. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat.

    PubMed

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  7. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure.

  8. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  9. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  10. Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala

    PubMed Central

    Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6–21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure. PMID:23457122

  11. Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome.

    PubMed

    Bilotta, Joseph; Barnett, Jalynn A; Hancock, Laura; Saszik, Shannon

    2004-01-01

    Prenatal exposure to alcohol has been shown to produce the overt physical and behavioral symptoms known as fetal alcohol syndrome (FAS) in humans. Also, it is believed that low concentrations and/or short durations of alcohol exposure can produce more subtle effects. The purpose of this study was to investigate the effects of embryonic ethanol exposure on the zebrafish (Danio rerio) in order to determine whether this species is a viable animal model for studying FAS. Fertilized embryos were reared in varying concentrations of ethanol (1.5% and 2.9%) and exposure times (e.g., 0-8, 6-24, 12-24, and 48-72 h postfertilization; hpf); anatomical measures including eye diameter and heart rate were compared across groups. Results found that at the highest concentration of ethanol (2.9%), there were more abnormal physical distortions and significantly higher mortality rates than any other group. Embryos exposed to ethanol for a shorter duration period (0-8 hpf) at a concentration of 1.5% exhibited more subtle effects such as significantly smaller eye diameter and lower heart rate than controls. These results indicate that embryonic alcohol exposure affects external and internal physical development and that the severity of these effects is a function of both the amount of ethanol and the timing of ethanol exposure. Thus, the zebrafish represents a useful model for examining basic questions about the effects of embryonic exposure to ethanol on development.

  12. Abuse pattern of toluene exposure alters mouse behavior in a waiting-for-reward operant task.

    PubMed

    Bowen, Scott E; McDonald, Phillip

    2009-01-01

    Inhaling solvents for recreational purposes continues to be a world-wide public health concern. Toluene, a volatile solvent in many abused products, adversely affects the central nervous system. However, the long-term neurobehavioral effects of exposure to high-concentration, binge patterns typical of toluene abuse remain understudied. We studied the behavioral effects of repeated toluene exposure on cognitive function following binge toluene exposure on behavioral impulse control in Swiss Webster mice using a "wait-for-reward" operant task. Mice were trained on a fixed-ratio (FR) schedule using sweetened milk as a reward. Upon achieving FR15, a wait component was added which delivered free rewards in the absence of responses at increasing time intervals (2s, 4s, 6s, etc...). Mice continued to receive free rewards until they pressed a lever that reinstated the FR component (FR Reset). Once proficient in the FR-Wait task, mice were exposed to either 1000 ppm, 3600 ppm or 6000 ppm toluene, or 0ppm (air controls) for 30 min per day for 40 days. To avoid acute effects of toluene exposure, behavior was assessed approximately 22-23 h later. Repeated toluene exposure decreased response rates, the number of FR resets, and increased mean wait time, resulting in a higher response-to-reinforcer ratio than exhibited by controls. Mice receiving the higher exposure level (6000 ppm) showed a dramatic decrease in the number of rewards received, which was reversed when toluene exposure ceased. Mice receiving the lower exposure level (1000 ppm) showed little change in the number of rewards. These results indicate that repeated binge exposures to high concentrations of toluene can significantly interfere with performance as measured by a waiting-for-reward task, suggesting a significant impact on cognitive and/or psychomotor function.

  13. Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure

    PubMed Central

    2013-01-01

    Background Maternal alcohol consumption is known to adversely affect fetal neurodevelopment. While it is known that alcohol dose and timing play a role in the cognitive and behavioral changes associated with prenatal alcohol exposure, it is unclear what developmental processes are disrupted that may lead to these phenotypes. Methods Mice (n=6 per treatment per developmental time) were exposed to two acute doses of alcohol (5 g/kg) at neurodevelopmental times representing the human first, second, or third trimester equivalent. Mice were reared to adulthood and changes to their adult brain transcriptome were assessed using expression arrays. These were then categorized based on Gene Ontology annotations, canonical pathway associations, and relationships to interacting molecules. Results The results suggest that ethanol disrupts biological processes that are actively occurring at the time of exposure. These include cell proliferation during trimester one, cell migration and differentiation during trimester two, and cellular communication and neurotransmission during trimester three. Further, although ethanol altered a distinct set of genes depending on developmental timing, many of these show interrelatedness and can be associated with one another via ‘hub’ molecules and pathways such as those related to huntingtin and brain-derived neurotrophic factor. Conclusions These changes to brain gene expression represent a ‘molecular footprint’ of neurodevelopmental alcohol exposure that is long-lasting and correlates with active processes disrupted at the time of exposure. This study provides further support that there is no neurodevelopmental time when alcohol cannot adversely affect the developing brain. PMID:23497526

  14. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis

    PubMed Central

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis-jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis. This makes the two compounds potential candidates to be integrated in pest management strategies. PMID:26726263

  15. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    PubMed Central

    Albores-Garcia, Damaris; Hernandez, Alberto J.; Loera, Miriam J.

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined. PMID:26885512

  16. Developmental Exposure to the Organochlorine Insecticide Endosulfan Alters Expression of Proteins Associated with Neurotransmission in the Frontal Cortex

    PubMed Central

    Wilson, W. Wyatt; Onyenwe, Wellington; Bradner, Joshua M.; Nennig, Sadie E.; Caudle, W. Michael

    2014-01-01

    Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides. PMID:25042905

  17. VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES

    EPA Science Inventory

    Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...

  18. IDENTIFICATION OF NEURAL BIOMARKERS OF ALTERED SEXUAL DIFFERENTIATION FOLLOWING GESTATIONAL EXPOSURE***

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  19. Identification of neural biomarkers of altered sexual differentiation following gestational exposure

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during...

  20. Identification of neural biomarkers of altered sexual differentiation following gestational exposure###

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  1. Developmental Exposure to PCBs Differentially Alters Sensitivity to Audiogenic and Kindling-Induced Seizures in Rats

    EPA Science Inventory

    Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...

  2. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    EPA Science Inventory

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  3. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission. PMID:26276081

  4. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission.

  5. Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos

    PubMed Central

    Mohammod Mostakim, Golam; Zahangir, Md. Mahiuddin; Monir Mishu, Mahbuba; Rahman, Md. Khalilur; Islam, M. Sadiqul

    2015-01-01

    Quinalphos (QP) is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. This study was conducted to evaluate the chronic toxicity of this pesticide on blood parameters and some organs of silver barb, Barbonymus gonionotus. Fish were exposed to two sublethal concentrations, 0.47 ppm and 0.94 ppm, of QP for a period of 28 days. All the blood parameters (red blood cell, hematocrit, and hemoglobin) and blood glucose except for white blood cells decreased with increasing concentration of toxicant and become significantly lower (p < 0.05) at higher concentration when compared with control. The derived hematological indices of mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were equally altered compared to control. Histoarchitectural changes of liver and kidney were observed after exposure to the QP. Hypertrophy of hepatocytes, mild to severe necrosis, ruptured central vein, and vacuolation were observed in the liver of treated groups. Highly degenerated kidney tubules and hematopoietic tissue, degeneration of renal corpuscle, vacuolization, and necrosis were evident in the kidney of treated groups. In conclusion, chronic exposure to QP at sublethal concentrations induced hematological and histological alterations in silver barb and offers a simple tool to evaluate toxicity derived alterations. PMID:26635877

  6. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring.

    PubMed

    Li, Na; Li, Yongmei; Gao, Qinqin; Li, Dawei; Tang, Jiaqi; Sun, Miao; Zhang, Pengjie; Liu, Bailin; Mao, Caiping; Xu, Zhice

    2015-01-01

    Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2(+)-activated K(+) (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca(2+) sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca(2+)]i fluorescence and vasoconstriction testing showed reduced Ca(2+), leading to diminished BKCa activation via ryanodine receptor Ca(2+) release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins. PMID:26277840

  7. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish.

    PubMed

    Liao, Pei-Han; Hwang, Chiu-Chu; Chen, Te-Hao; Chen, Pei-Jen

    2015-08-01

    Environmental pollution by neuroactive pharmaceuticals from wastewater discharge is a major threat to aquatic ecosystems. However, the ecotoxicologic effect of waterborne abused drugs remains unclear. Embryos of medaka fish (Oryzias latipes) were exposed to aqueous solutions of 2 hallucinogenic drugs, ketamine (KET) and methamphetamine (MET) (0.004-40μM) to assess developmental toxicity, oxidative stress and behavioral alteration in early life stages. The environmentally relevant concentration (0.004μM) of both KET and MET significantly delayed blood circulation and hatching time in embryos and altered larval swimming behavior (e.g., maximum velocity and relative turn angle). KET and MET induced similar oxidative stress responses in embryos, which were unrecoverable in hatchlings in drug-free solutions. Early life exposure to the 2 drugs conferred distinct patterns in larval locomotion: KET induced hyperactivity and a less tortuous swimming path, but MET-treated larvae showed hypoactivity and a clockwise swimming direction at high doses. The alteration in locomotor responses were generally similar in mammals and zebrafish. We report sensitive biomarkers (e.g., heartbeat, hatching and swimming behavior) by developmental stage of medaka that reflect environmentally relevant exposures of abused drugs. They could be useful for ecological risk assessment of waterborne neuroactive drugs. The toxicity results implicate a potential ecotoxicological impact of controlled or abused drugs on fish development and populations in aquatic environments.

  8. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring.

    PubMed

    Li, Na; Li, Yongmei; Gao, Qinqin; Li, Dawei; Tang, Jiaqi; Sun, Miao; Zhang, Pengjie; Liu, Bailin; Mao, Caiping; Xu, Zhice

    2015-08-17

    Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2(+)-activated K(+) (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca(2+) sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca(2+)]i fluorescence and vasoconstriction testing showed reduced Ca(2+), leading to diminished BKCa activation via ryanodine receptor Ca(2+) release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins.

  9. In utero exposure of neonatal buffalo calves to pesticide residues and the alterations within their reproductive tract.

    PubMed

    Kaur, Karanpreet; Ghuman, Sarvpreet Singh; Singh, Opinder; Bedi, Jasbir Singh; Gill, Jatinder Paul Singh

    2015-11-01

    In utero exposure of neonates to pesticide residues could be damaging to the reproductive tract. Hence, the present study assessed the circulating concentrations of pesticide residues in buffalo and their neonatal calves as well as in the reproductive tract tissue samples of same calves. Also, histopathological alterations were revealed in the reproductive tract of calves. Pesticide residues were high (P<0.05) in the reproductive tract of calves (119.5 ± 20.2 ng/g, 35% positive) in comparison to their blood (32.1 ± 8.4 ng/ml, 15% positive) or blood of their dams (41.5 ± 8.3 ng/ml, 25% positive). The number of histopathological alterations were high (P<0.05) in the reproductive tract of a calf contaminated with high concentrations of pesticide residues (3.43 ± 1.29) in comparison to a tract positive for low residue concentrations (1.57 ± 0.60) or pesticide negative tract (0.28 ± 0.10). In conclusion, in utero exposure of neonatal buffalo calves to pesticide residues may be associated with damaging alterations in their reproductive tract.

  10. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. PMID:26844865

  11. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment.

    PubMed

    Vigezzi, Lucía; Bosquiazzo, Verónica L; Kass, Laura; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2015-04-01

    We assessed the long-term effect of perinatal exposure to bisphenol A (BPA) on the rat uterus and the uterine response to estrogen (E2) replacement therapy. BPA (0.5 or 50μg/kg/day) was administered in the drinking water from gestational day 9 until weaning. We studied the uterus of female offspring on postnatal day (PND) 90 and 360, and the uterine E2 response on PND460 (PND460-E2). On PND90, BPA-exposed rats showed altered glandular proliferation and α-actin expression. On PND360, BPA exposure increased the incidence of abnormalities in the luminal and glandular epithelium. On PND460-E2, the multiplicity of glands with squamous metaplasia increased in BPA50 while the incidence of glands with daughter glands increased in BPA0.5. The expression of steroid receptors, p63 and IGF-I was modified in BPA-exposed rats on PND460-E2. The long-lasting effects of perinatal exposure to BPA included induction of abnormalities in uterine tissue and altered response to E2 replacement therapy.

  12. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    PubMed

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  13. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  14. Exposure of mice to cigarette smoke and/or light causes DNA alterations in heart and aorta.

    PubMed

    Izzotti, Alberto; D'Agostini, Francesco; Balansky, Roumen; Degan, Paolo; Pennisi, Tanya M; Steele, Vernon E; De Flora, Silvio

    2008-09-26

    Cigarette smoke (CS) is a major risk factor for cardiovascular diseases, cancer, and other chronic degenerative diseases. UV-containing light is the most ubiquitous DNA-damaging agent existing in nature, but its possible role in cardiovascular diseases had never been suspected before, although it is known that mortality for cardiovascular diseases is increased during periods with high temperature and solar irradiation. We evaluated whether exposure of Swiss CD-1 mice to environmental CS (ECS) and UV-C-covered halogen quartz lamps, either individually or in combination, can cause DNA damage in heart and aorta cells. Nucleotide alterations were evaluated by (32)P postlabeling methods and by HPLC-electrochemical detection. The whole-body exposure of mice to ECS considerably increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and of bulky DNA adducts in both heart and aorta. Surprisingly, even exposure to a light that simulated solar irradiation induced oxidatively generated damage in both tissues. The genotoxic effects of UV light in internal organs is tentatively amenable to formation of unidentified long-lived mutagenic products in the skin of irradiated mice. Nucleotide alterations were even more pronounced when the mice were exposed to smoke and/or light during the first 5 weeks of life rather than during adulthood for an equivalent period of time. Although the pathogenetic meaning is uncertain, DNA damage in heart and aorta may tentatively be related to cardiomyopathies and to the atherogenesis process, respectively.

  15. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure.

    PubMed

    Young, Philip R; Eyeghe-Bickong, Hans A; du Plessis, Kari; Alexandersson, Erik; Jacobson, Dan A; Coetzee, Zelmari; Deloire, Alain; Vivier, Melané A

    2016-03-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) 'Sauvignon Blanc' berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. PMID:26628747

  16. Larval ethanol exposure alters adult circadian free-running locomotor activity rhythm in Drosophila melanogaster.

    PubMed

    Seggio, Joseph A; Possidente, Bernard; Ahmad, S Tariq

    2012-02-01

    Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect. PMID:22217104

  17. Alteration in Pimephales promelas mucus production after exposure to nanosilver or silver nitrate.

    PubMed

    Hawkins, Adam D; Thornton, Cammi; Steevens, Jeffery A; Willett, Kristine L

    2014-12-01

    The fish gill's ability to produce mucus effectively is a critical part of the stress response and protection against xenobiotic toxicity. Adult fathead minnows were exposed to silver nitrate (0.82 µg/L or 13.2 µg/L), polyvinylpyrrolidone-coated silver nanoparticles (11.1 µg/L or 208 µg/L), and citrate-coated silver nanoparticles (10.1 µg/L or 175 µg/L) for 96 h. Mucus concentrations based on glucose as a surrogate were determined at 0 h, 1 h, 2 h, 3 h, 4 h and 24 h after re-dosing each day. Higher mucus production rates following silver treatment were observed at the beginning as compared to controls and compared to after 3 d of exposure. Control fish produced consistent mucus concentrations throughout the exposure (0.62 mg/L and 0.40 mg/L at 24 h and 96 h, respectively). Following 24 h of exposure, all silver treatment groups produced significantly more mucus than controls. Following 96 h of exposure, mucus concentrations in treatment groups were significantly reduced compared with each respective treatment at 24 h. Reduced mucus production following long-term silver exposure could prevent the gills from removing silver, and thus increase toxicity. PMID:25262928

  18. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John H.; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100 mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios towards males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  19. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback.

    PubMed

    Furin, Christoff G; von Hippel, Frank A; Postlethwait, John H; Buck, C Loren; Cresko, William A; O'Hara, Todd M

    2015-08-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios toward males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  20. Long-term exposure to incense smoke alters metabolism in Wistar albino rats.

    PubMed

    Alokail, Majed S; Al-Daghri, Nasser M; Alarifi, Saud A; Draz, Hossam M; Hussain, Tajamul; Yakout, Sobhy M

    2011-03-01

    The burning of incense is an important source of indoor air pollution in Asia. We assessed the effect of long-term exposure to incense smoke on the body weight and levels of circulating glucose, triglycerides, total cholesterol, HDL-cholesterol, insulin, adiponectin and leptin in Wistar albino rats. Two groups of rats were used. First group (n = 12) was exposed daily to incense smoke for 4 months at the rate of 4 g day(-1) in the exposure chamber. Another group of rats (n = 12), was used as non-exposed control. Blood samples were collected from all animals after 4, 8, 12 and 16 weeks of exposure. Serum glucose, triglycerides, total cholesterol and HDL-cholesterol, LDL-cholesterol insulin, adiponectin and leptin were measured. Our results showed that incense smoke exposure was associated with decreased weight gain and the adverse metabolic changes of increased triglycerides and decreased HDL-cholesterol concentrations. Exposure to incense was also associated with a transient increase of leptin levels. Taken together, these data suggest that incense smoke influences metabolism adversely in rats. The effect of incense smoke on human health and the underlying mechanisms need to be studied further.

  1. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    PubMed

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms.

  2. Chronic Exposure to Arsenic in the Drinking Water Alters the Expression of Immune Response Genes in Mouse Lung

    PubMed Central

    Kozul, Courtney D.; Hampton, Thomas H.; Davey, Jennifer C.; Gosse, Julie A.; Nomikos, Athena P.; Eisenhauer, Phillip L.; Weiss, Daniel J.; Thorpe, Jessica E.; Ihnat, Michael A.; Hamilton, Joshua W.

    2009-01-01

    Background Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. Objectives The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. Methods C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Results Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. Conclusions These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung. PMID:19654921

  3. Prenatal nicotine exposure alters the types of nicotinic receptors that facilitate excitatory inputs to cardiac vagal neurons.

    PubMed

    Huang, Zheng-Gui; Wang, Xin; Evans, Cory; Gold, Allison; Bouairi, Evguenia; Mendelowitz, David

    2004-10-01

    Nicotinic receptors play an important role in modulating the activity of parasympathetic cardiac vagal neurons in the medulla. Previous work has shown nicotine acts via at least three mechanisms to excite brain stem premotor cardiac vagal neurons. Nicotine evokes a direct increase in holding current and facilitates both the frequency and amplitude of glutamatergic neurotransmission to cardiac vagal neurons. This study tests whether these nicotinic receptor-mediated responses are endogenously active, whether alpha4beta2 and alpha7 nicotinic receptors are involved, and whether prenatal exposure to nicotine alters the magnitude of these responses and the types of nicotinic receptors involved. Application of neostigmine (10 microM) significantly increased the holding current, amplitude, and frequency of miniature excitatory postsynaptic current (mEPSC) glutamatergic events in cardiac vagal neurons. In unexposed animals, the nicotine-evoked facilitation of mEPSC frequency, but not mEPSC amplitude or holding current, was blocked by alpha-bungarotoxin (100 nM). Prenatal nicotine exposure significantly exaggerated and altered the types of nicotinic receptors involved in these responses. In prenatal nicotine-exposed animals, alpha-bungarotoxin only partially reduced the increase in mEPSC frequency. In addition, in prenatal nicotine-exposed animals, the increase in holding current was partially dependent on alpha-7 subunit-containing nicotinic receptors, in contrast to unexposed animals in which alpha-bungarotoxin had no effect. These results indicate prenatal nicotine exposure, one of the highest risk factors for sudden infant death syndrome (SIDS), exaggerates the responses and changes the types of nicotinic receptors involved in exciting premotor cardiac vagal neurons. These alterations could be responsible for the pronounced bradycardia that occurs during apnea in SIDS victims.

  4. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    PubMed Central

    Rafati, A.; Rahimi, S.; Talebi, A.; Soleimani, A.; Haghani, M.; Mortazavi, S. M. J.

    2015-01-01

    Introduction The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Materials and Methods Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. Results The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396969

  5. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES IN DETROIT ALTERS HEART RATE VARIABILITY IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    Elevations in airborne particulate matter (PM) are linked to increased mortality and morbidity in humans with cardiopulmonary disease. Clinical studies show that PM is associated with altered heart rate variability (HRV) and suggests that loss of autonomic control may underlie ca...

  6. POTENTIAL ALTERATIONS IN GENE EXPRESSION ASSOCIATED WITH CARCINOGEN EXPOSURE IN MYA ARENARIA

    EPA Science Inventory

    Gonadal cancers in soft-shell clams (Mya arenaria) have been found at high prevalences (20-40%) in populations in eastern Maine. The aetiology of these tumours is unknown. We hypothesized that gene expression would be altered in gonadal tumours and that examination of gene expres...

  7. Prenatal Alcohol Exposure and Chronic Mild Stress Differentially Alter Depressive- and Anxiety-Like Behaviors in Male and Female Offspring

    PubMed Central

    Hellemans, Kim G. C.; Verma, Pamela; Yoon, Esther; Yu, Wayne K.; Young, Allan H.; Weinberg, Joanne

    2016-01-01

    Background Fetal Alcohol Spectrum Disorder (FASD) is associated with numerous neuro behavioral alterations, as well as disabilities in a number of domains, including a high incidence of depression and anxiety disorders. Prenatal alcohol exposure (PAE) also alters hypothalamic-pituitary-adrenal (HPA) function, resulting in increased responsiveness to stressors and HPA dysregulation in adulthood. Interestingly, data suggest that pre-existing HPA abnormalities may be a major contributory factor to some forms of depression, particularly when an individual is exposed to stressors later in life. We tested the hypothesis that exposure to stressors in adulthood may unmask an increased vulnerability to depressive- and anxiety-like behaviors in PAE animals. Methods Male and female offspring from prenatal alcohol (PAE), pair-fed (PF), and ad libitumfed control (C) treatment groups were tested in adulthood. Animals were exposed to 10 consecutive days of chronic mild stress (CMS), and assessed in a battery of well-validated tasks sensitive to differences in depressive- and / or anxiety-like behaviors. Results We report here that the combination of PAE and CMS in adulthood increases depressive- and anxiety-like behaviors in a sexually dimorphic manner. PAE males showed impaired hedonic responsivity (sucrose contrast test), locomotor hyperactivity (open field), and alterations in affiliative and nonaffiliative social behaviors (social interaction test) compared to control males. By contrast, PAE and, to a lesser extent, PF, females showed greater levels of “behavioral despair” in the forced swim test, and PAE females showed altered behavior in the final 5 minutes of the social interaction test compared to control females. Conclusions These data support the possibility that stress may be a mediating or contributing factor in the psychopathologies reported in FASD populations. PMID:20102562

  8. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins. PMID:25552505

  9. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  10. Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    PubMed Central

    States, J. Christopher; Singh, Amar V.; Knudsen, Thomas B.; Rouchka, Eric C.; Ngalame, Ntube O.; Arteel, Gavin E.; Piao, Yulan; Ko, Minoru S. H.

    2012-01-01

    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing

  11. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation

    PubMed Central

    Bailey, Michael T.; Dowd, Scot E.; Galley, Jeffrey D.; Hufnagle, Amy R.; Allen, Rebecca G.; Lyte, Mark

    2010-01-01

    The bodies of most animals are populated by highly complex and genetically diverse communities of microorganisms. The majority of these microbes reside within the intestines in largely stable but dynamically interactive climax communities that positively interact with their host. Studies from this laboratory have shown that stressor exposure impacts the stability of the microbiota and leads to bacterial translocation. The biological importance of these alterations, however, is not well understood. To determine whether the microbiome contributes to stressor-induced immunoenhancement, mice were exposed to a social stressor called social disruption (SDR), that increases circulating cytokines and primes the innate immune system for enhanced reactivity. Bacterial populations in the cecum were characterized using bacterial tag-encoded FLX amplicon pyrosequencing. Stressor exposure significantly changed the community structure of the microbiota, particularly when the microbiota were assessed immediately after stressor exposure. Most notably, stressor exposure decreased the relative abundance of bacteria in the genus Bacteroides, while increasing the relative abundance of bacteria in the genus Clostridium. The stressor also increased circulating levels of IL-6 and MCP-1, which were significantly correlated with stressor-induced changes to three bacterial genera (i.e., Coprococcus, Pseudobutyrivibrio, and Dorea). In follow up experiments, mice were treated with an antibiotic cocktail to determine whether reducing the microbiota would abrogate the stressor-induced increases in circulating cytokines. Exposure to SDR failed to increase IL-6 and MCP-1 in the antibiotic treated mice. These data show that exposure to SDR significantly affects bacterial populations in the intestines, and remarkably also suggest that the microbiota are necessary for stressor-induced increases in circulating cytokines. PMID:21040780

  12. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    SciTech Connect

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  13. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal axis-associated proteins

    PubMed Central

    Zuloaga, Damian G.; Siegel, Jessica A.; Acevedo, Summer F.; Agam, Maayan; Raber, Jacob

    2013-01-01

    Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or Saline from postnatal day (P) 11–20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR-immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and area occupied by vasopressin-immunoreactiviy in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin-immunoreactivity in the PVN, or GR-immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, area occupied by GR-immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin-immunoreactivity no longer differed from Saline controls. No effects of MA were found on oxytocin or GR-immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin-immunoreactivity and short-term effects on GR-immunoreactivity. PMID:23860125

  14. Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites

    PubMed Central

    Capilla-Gonzalez, Vivian; Gil-Perotin, Sara; Ferragud, Antonio; Bonet-Ponce, Luis; Canales, Juan Jose; Garcia-Verdugo, Jose Manuel

    2012-01-01

    Background Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. Methodology/Principal Findings 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. Conclusions/Significance The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits. PMID:22238669

  15. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  16. Environmental enrichment alters structural plasticity of the adolescent brain but does not remediate the effects of prenatal nicotine exposure.

    PubMed

    Mychasiuk, Richelle; Muhammad, Arif; Kolb, Bryan

    2014-07-01

    Exposure to both drugs of abuse and environmental enrichment (EE) are widely studied experiences that induce large changes in dendritic morphology and synaptic connectivity. As there is an abundance of literature using EE as a treatment strategy for drug addiction, we sought to determine whether EE could remediate the effects of prenatal nicotine (PN) exposure. Using Golgi-Cox staining, we examined eighteen neuroanatomical parameters in four brain regions [medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), nucleus accumben, and Par1] of Long-Evans rats. EE in adolescence dramatically altered structural plasticity in the male and female brain, modifying 60% of parameters investigated. EE normalized three parameters (OFC spine density and dendritic branching and mPFC dendritic branching) in male offspring exposed to nicotine prenatally but did not remediate any measures in female offspring. PN exposure interfered with adolescent EE-induced changes in five neuroanatomical measurements (Par1 spine density and dendritic branching in both male and female offspring, and mPFC spine density in male offspring). And in four neuroanatomical parameters examined, PN exposure and EE combined to produce additive effects [OFC spine density in females and mPFC dendritic length (apical and basilar) and branching in males]. Despite demonstrated efficacy in reversing drug addiction, EE was not able to reverse many of the PN-induced changes in neuronal morphology, indicating that modifications in neural circuitry generated in the prenatal period may be more resistant to change than those generated in the adult brain.

  17. Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure

    PubMed Central

    Bañuelos, Cristina; Gilbert, Ryan J.; Montgomery, Karienn S.; Fincher, Annette S.; Wang, Haiying; Frye, Gerald D.; Setlow, Barry; Bizon, Jennifer L.

    2012-01-01

    Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague–Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4–9. At adolescence (between postnatal days 35–38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function. PMID:22129556

  18. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    PubMed Central

    Maskey, Dhiraj

    2013-01-01

    Calcium binding proteins (CaBPs) such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF) exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR) in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus. PMID:24069603

  19. Alterations in gills of Lepomis gibbosus, after acute exposure to several xenobiotics (pesticide, detergent and pharmaceuticals): morphometric and biochemical evaluation.

    PubMed

    Rodrigues, Sara; Correia, Alberto T; Antunes, Sara C; Nunes, Bruno

    2015-04-01

    In recent decades, scientific research about the effects of anthropogenic xenobiotics on non-target organisms has increased. Among the likely effects, some studies reported the evaluation of biochemical and morphological changes in specific tissues or organs of fishes, such as gills, which are key organs for the direct action of pollutants in the aquatic environment. This work intended to assess biochemical [oxidative stress/phase II conjugation isoenzymes glutathione S-transferase (GSTs)] and morphological [secondary lamellar length (SLL), secondary lamellar width (SLW), interlamellar distance (ID), basal epithelial thickness (BET) and proportion of the secondary lamellae available for gas exchange (PAGE)] changes in gills, after acute exposure to the pesticide chlorfenvinphos, the detergent sodium dodecylsulphate (SDS) and to the anticholinesterasic pharmaceuticals (neostigmine and pyridostigmine). Our results point to a significant, eventually hormetic, effect in the activity of GSTs following exposure to chlorfenvinphos that significantly increased the activity of GSTs at concentration of 0.2 mg/L. The activity of GSTs increased significantly after exposure to 100 mg/L of neostigmine. Considering the morphometric analysis of the gills, the data obtained showed that chlorfenvinphos exerted mainly minor architectural alterations in gills, with the exception of the highest tested concentration of chlorfenvinphos that produced also a slight decrease of the PAGE. The overall conclusions point to a null or negligible toxicity of the selected toxicants towards L. gibbosus, which may be reverted if exposure is withdrawn.

  20. Repeated exposures to chlorpyrifos lead to spatial memory retrieval impairment and motor activity alteration.

    PubMed

    Yan, Changhui; Jiao, Lifei; Zhao, Jun; Yang, Haiying; Peng, Shuangqing

    2012-07-01

    Chlorpyrifos (CPF) is one of the most commonly used insecticides throughout the world and has become one of the major pesticides detected in farm products. Chronic exposures to CPF, especially at the dosages without eliciting any systemic toxicity, require greater attention. The purpose of this study was, therefore, to evaluate the behavioral effects of repeated low doses (doses that do not produce overt signs of cholinergic toxicity) of CPF in adult rats. Male rats were given 0, 1.0, 5.0 or 10.0mg/kg of CPF through intragastric administration daily for 4 consecutive weeks. The behavioral functions were assessed in a series of behavioral tests, including water maze task, open-field test, grip strength and rotarod test. Furthermore, the present study was designed to evaluate the effects of repeated exposures to CPF on water maze recall and not acquisition. The results showed that the selected doses only had mild inhibition effects on cholinesterase activity, and have no effects on weight gain and daily food consumption. Performances in the spatial retention task (Morris water maze) were impaired after the 4-week exposure to CPF, but the performances of grip strength and rotarod test were not affected. Motor activities in the open field were changed, especially the time spent in the central zone increased. The results indicated that repeated exposures to low doses of CPF may lead to spatial recall impairments, behavioral abnormalities. However, the underlying mechanism needs further investigations.

  1. Alterations of metabolic enzymes in Australian bass, Macquaria novemaculeata, after exposure to petroleum hydrocarbons.

    PubMed

    Cohen, A; Gagnon, M M; Nugegoda, D

    2005-08-01

    Australian bass Macquaria novemaculeata were exposed to the water-accommodated fraction of Bass Strait crude oil, dispersed crude oil, or burnt crude oil to assess sublethal effects of oil spill remediation techniques on fish. Fish were exposed to these treatments for 16 days either through the water column or by way of a pre-exposed diet of amphipod Allorchestes compressa. Fish gills, liver, and white muscle were sampled and cytochrome C oxidase (CCO) and lactate dehydrogenase (LDH) activities quantified. In all treatments containing fish exposed by way of the water column, aerobic activity increased in the gills, whereas a decrease of this enzymic activity was observed in the liver and white muscle. Exposures by way of the food pathway indicated similar trends. Anaerobic (LDH) activity increased in the gills, liver, and white muscle after waterborne exposures. Stimulation in anaerobic activity also occurred in the liver and white muscle of fish after exposure to contaminated food. CCO activity in the gills was the most sensitive biomarker when monitoring waterborne exposures to petroleum hydrocarbons. In the gills, the dispersed oil treatment resulted in the most pronounced biological response, suggesting that in the short term the use of dispersants on an oil slick might cause the most perturbations to fish metabolism. PMID:16001154

  2. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  3. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  4. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  5. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    PubMed

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer.

  6. Exposure to hyperoxia in the neonatal period alters bone marrow function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...

  7. Exposure to Lipopolysaccharide in Utero Alters the Postnatal Metabolic Response in Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant crossbred cows (n = 50) were assigned to a prenatal immune stimulation (PIS; n = 25; administered 0.1 micrograms/kg BW LPS s...

  8. In utero exposure to lipopolysaccharide alters the postnatal metabolic response in heifers.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram body weight LPS ...

  9. The exposure to lipopolysaccharide in utero alters growth performance of calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal growth performance of calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram body weight LPS subcutaneously) and sali...

  10. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    EPA Science Inventory

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  11. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    PubMed

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer. PMID:27060830

  12. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    USGS Publications Warehouse

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  13. Fluoxetine Exposure during Adolescence Alters Responses to Aversive Stimuli in Adulthood

    PubMed Central

    Alcantara, Lyonna F.; Warren, Brandon L.; Riggs, Lace M.; Parise, Eric M.; Vialou, Vincent; Wright, Katherine N.; Dayrit, Genesis; Nieto, Steven J.; Wilkinson, Matthew B.; Lobo, Mary K.; Neve, Rachael L.; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2014-01-01

    The mechanisms underlying the enduring neurobiological consequences of antidepressant exposure during adolescence are poorly understood. Here, we assessed the long-term effects of exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, during adolescence on behavioral reactivity to emotion-eliciting stimuli. We administered FLX (10 mg/kg, bi-daily, for 15 d) to male adolescent [postnatal day 35 (P35) to P49] C57BL/6 mice. Three weeks after treatment (P70), reactivity to aversive stimuli (i.e., social defeat stress, forced swimming, and elevated plus maze) was assessed. We also examined the effects of FLX on the expression of extracellular signal-regulated kinase (ERK) 1/2-related signaling within the ventral tegmental area (VTA) of adolescent mice and Sprague Dawley rats. Adolescent FLX exposure suppressed depression-like behavior, as measured by the social interaction and forced swim tests, while enhancing anxiety-like responses in the elevated plus maze in adulthood. This complex behavioral profile was accompanied by decreases in ERK2 mRNA and protein phosphorylation within the VTA, while stress alone resulted in opposite neurobiological effects. Pharmacological (U0126) inhibition, as well as virus-mediated downregulation of ERK within the VTA mimicked the antidepressant-like profile observed after juvenile FLX treatment. Conversely, overexpression of ERK2 induced a depressive-like response, regardless of FLX pre-exposure. These findings demonstrate that exposure to FLX during adolescence modulates responsiveness to emotion-eliciting stimuli in adulthood, at least partially, via long-lasting adaptations in ERK-related signaling within the VTA. Our results further delineate the role ERK plays in regulating mood-related behaviors across the lifespan. PMID:24431458

  14. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    SciTech Connect

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J.

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  15. Liver structural alterations accompanying chronic toxicity in fishes: Potential biomarkers of exposure

    SciTech Connect

    Hinton, D.E.; Lauren, D.J. ); Holliday, T.L. ); Giam, C.S. )

    1988-09-01

    Hepatic neoplasms in fish involve hepatocytes, biliary epithelial cells and possibly perisinusoidal and endothelial cells. The application of this spectrum of hepatic alterations as biomarkers for field investigations will be proposed. Alternations in livers of sea pen cultured salmonids will be reviewed as an in situ verification of the validity of liver responses. Observations in livers of mature, moribund striped bass from the Carquinez Strait die-off will be reviewed as an example of hepatotoxicity in lethally injured feral fish. Confounding alterations associated with infectious disease including parasites will be compared using results obtained from recent survey of fishes of the Kanawha River, a heavily industrialized stream in West Virginia. Practical morphometric approaches designed to evaluate stress-related alterations in livers and their relation to assay of feral fishes will be presented. Histologic, progressive responses in a carcinogen resistant and a carcinogen responsive species will be presented and discussed as one means to determine toxic, but not necessarily neoplastic, alternations in livers of impacted organisms.

  16. Exposure to sublethal chromium and endosulfan alter the diel vertical migration (DVM) in freshwater zooplankton crustaceans.

    PubMed

    Gutierrez, María Florencia; Gagneten, Ana María; Paggi, Juan Cesar

    2012-01-01

    Among zooplankton behaviors, diel migrations constitute one of the most effective predator avoidance strategy and confer metabolic and demographic advantages. We aim to examine whether sublethal concentrations of two widespread pollutants (a pesticide with endosulfan and chromium as potassium dichromate) alter the depth selection, vertical migration and grouping of five freshwater species: Argyrodiaptomus falcifer, Notodiaptomus conifer, Pseudosida variabilis, Ceriodaphnia dubia and Daphnia magna. In a series of experimental assays, performed with 150 cm length transparent tubes, we analyzed the ascents and descents movements through periods of 24 h. Among controls, the copepods showed a tendency to remain closest to the surface, however, N. conifer registered a downward movement of 18.14 cm between 06:00 and 12:00. The cladoceran P. variabilis occupied the deeper position (85 cm), C. dubia showed a tendency to hike to the surface at 06:00 (57.7 cm) descending to lower levels at 18:00. D. magna showed a constant movement of ascent between 00:00 and 18:00, making an average travel of 29.4 cm. When subjected to pollutants, these behaviors were altered. It is hypothesized that a reduction in swimming activity and disorientation would be the main cause of such alterations. The high sensitivity of this endpoint sugests it to be adecuate as a complement in future standard toxicity tests.

  17. Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans

    PubMed Central

    Robertson, John A.; Théberge, Jean; Weller, Julie; Drost, Dick J.; Prato, Frank S.; Thomas, Alex W.

    2010-01-01

    Extremely low-frequency magnetic fields (from DC to 300 Hz) have been shown to affect pain sensitivity in snails, rodents and humans. Here, a functional magnetic resonance imaging study demonstrates how the neuromodulation effect of these magnetic fields influences the processing of acute thermal pain in normal volunteers. Significant interactions were found between pre- and post-exposure activation between the sham and exposed groups for the ipsilateral (right) insula, anterior cingulate and bilateral hippocampus/caudate areas. These results show, for the first time, that the neuromodulation induced by exposure to low-intensity low-frequency magnetic fields can be observed in humans using functional brain imaging and that the detection mechanism for these effects may be different from those used by animals for orientation and navigation. Magnetoreception may be more common than presently thought. PMID:19656823

  18. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.

  19. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. PMID:26825441

  20. Neonatal Idiotypic Exposure Alters Subsequent Cytokine, Pathology, and Survival Patterns in Experimental Schistosoma mansoni Infections

    PubMed Central

    Angela Montesano, M.; Colley, Daniel G.; Eloi-Santos, Silvana; Freeman, George L.; Secor, W. Evan

    1999-01-01

    Exposure to maternal idiotypes (Ids) or antigens might predispose a child to develop an immunoregulated, asymptomatic clinical presentation of schistosomiasis. We have used an experimental murine system to address the role of Ids in this immunoregulation. Sera from mice with 8-wk Schistosoma mansoni infection, chronic (20-wk infection) moderate splenomegaly syndrome (MSS), or chronic hypersplenomegaly syndrome (HSS) were passed over an S. mansoni soluble egg antigen (SEA) immunoaffinity column to prepare Ids (8WkId, MSS Id, HSS Id). Newborn mice were injected with 8WkId, MSS Id, HSS Id, or normal mouse immunoglobulin (NoMoIgG) and infected with S. mansoni 8 wk later. Mice exposed to 8WkId or MSS Id as newborns had prolonged survival and decreased morbidity compared with mice that received HSS Id or NoMoIgG. When stimulated with SEA, 8WkId, or MSS Id, spleen cells from mice neonatally injected with 8WkId or MSS Id produced more interferon γ than spleen cells from mice neonatally injected with HSS Id or NoMoIgG. Furthermore, neonatal exposure to 8WkId or MSS Id, but not NoMoIgG or HSS Id, led to significantly smaller granuloma size and lower hepatic fibrosis levels in infected mice. Together, these results indicate that perinatal exposure to appropriate anti-SEA Ids induces long-term effects on survival, pathology, and immune response patterns in mice subsequently infected with S. mansoni. PMID:9989978

  1. Prenatal Cocaine Exposure Alters Cortisol Stress Reactivity in 11 Year Old Children

    PubMed Central

    Lester, Barry M.; LaGasse, Linda L.; Shankaran, Seetha; Bada, Henrietta S.; Bauer, Charles R.; Lin, Richard; Das, Abhik; Higgins, Rosemary

    2011-01-01

    Objective Determine the association between prenatal cocaine exposure and postnatal environmental adversity on salivary cortisol stress reactivity in school aged children. Study design Subjects included 743 11 year old children (n=320 cocaine exposed; 423 comparison) followed since birth in a longitudinal prospective multisite study. Saliva samples were collected to measure cortisol at baseline and after a standardized procedure to induce psychological stress. Children were divided into those who showed an increase in cortisol from baseline to post stress and those who showed a decrease or blunted cortisol response. Covariates measured included site, birthweight, maternal pre and postnatal use of alcohol, tobacco or marijuana, social class, changes in caretakers, maternal depression and psychological symptoms, domestic and community violence, child abuse and quality of the home. Results With adjustment for confounding variables, cortisol reactivity to stress was more likely to be blunted in children with prenatal cocaine exposure. Cocaine exposed children exposed to domestic violence showed the strongest effects. Conclusion The combination of prenatal cocaine exposure and an adverse postnatal environment could down regulate the hypothalamic-pituitary-adrenal axis (HPA) resulting in the blunted cortisol response to stress possibly increasing risk for later psychopathology and adult disease. PMID:20400094

  2. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-02-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  3. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-30

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs.

  4. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    PubMed Central

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  5. Chronic intrauterine exposure to endotoxin does not alter fetal nephron number or glomerular size.

    PubMed

    Ryan, Danica; Atik, Anzari; De Matteo, Robert; Harding, Richard; Black, Mary J

    2013-11-01

    A reduced nephron endowment early in life adversely impacts on long-term functional reserve in the kidney. A recent study has shown that acute exposure to chorioamnionitis during late gestation can adversely impact on nephrogenesis. The present study aimed to examine the effects of chronic, low-dose endotoxin exposure in utero, during the period of nephrogenesis, on nephron number and glomerular size in preterm lambs. Ewes were administered either endotoxin (lipopolysaccharide; 1 mg/day) or saline at 110-133 days of gestation (term approximately 147 days) via surgically implanted osmotic minipumps within the amniotic cavity. The ewes were induced to deliver preterm at 133 days gestation and the kidneys of the lambs were analysed at 8 weeks after term-equivalent age. Nephron number per kidney was determined using a combined optical disector and fractionator stereological approach; renal corpuscle size was also measured stereologically. At 8 weeks after term-equivalent age there was no significant effect of in utero exposure to endotoxin on bodyweight or kidney weight and there were no significant differences in nephron number, nephron density or renal corpuscle volume between groups. We conclude that chronic intrauterine inflammation during the period of nephrogenesis may not adversely impact on the number of nephrons formed within the kidney or on the volume of the renal corpuscle.

  6. Histopathologic Alterations Associated with Global Gene Expression Due to Chronic Dietary TCDD Exposure in Juvenile Zebrafish

    PubMed Central

    Liu, Qing; Spitsbergen, Jan M.; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J.; Tonellato, Peter J.; Carvan, Michael J.

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption. PMID:24988445

  7. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    NASA Technical Reports Server (NTRS)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  8. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

  9. Altered resistance to Trichinella spiralis infection following subchronic exposure of adult mice to chemicals of environmental concern

    SciTech Connect

    Luebke, R.W.

    1981-01-01

    The effects of subchronic chemical exposure on expulsion of adult Trichinella spiralis from the small intestine of mice and encystment of newborn larvae in the host's musculature were investigated. Exposure to diethylstilbestrol, benzo(a)pyrene, tris-(1,3-dichloro-2-propyl) phosphate, cyclophosphamide, phorbol myristate acetate, and dimethylvinylchloride prior to infection of mice with 200 infective larvae resulted in larger worm burdens in treated animals than in controls 14 days after infection. Worm expulsion was not affected by exposure to tris-(2,3-dibromopropyl)phosphate, orthophenylphenol, and indomethacin. Increased burdens of muscle-phase larvae were found in animals that maintained significant numbers of adult worms in the gut at 14 days, except in mice administered diethylstilbestrol and dimethylvinylchloride. Exposure to diethylstilbestrol and cyclophosphamide resulted in decreased inflammatory reactions in the tissues of the small intestine and development of bone marrow eosinophilia in infected mice. Marrow eosinophilia was likewise decreased in mice given tris-(1,3-dichloro-2-propyl)phosphate before infection. Additional studies with diethylstilbestrol administered either before, at the time of, or after infection showed inhibition of worm expulsion. Drug exposure during a primary infection inhibited the expulsion of a second T. spiralis infection, but did not affect worm elimination when given during a second infection. Treatment with diethylstilbestrol after artificial sensitization of mice with Trichinella antigens decreased delayed hypersensitivity responses to the sensitizing antigen. Immune functions, assessed by lymphoproliferative responses to mitogens and antibody responses to sheep red blood cells, generally correlated with altered host resistance to T. spiralis infection.

  10. Repeated ethanol exposure during late gestation alters the maturation and innate immune status of the ovine fetal lung.

    PubMed

    Sozo, Foula; O'Day, Luke; Maritz, Gert; Kenna, Kelly; Stacy, Victoria; Brew, Nadine; Walker, David; Bocking, Alan; Brien, James; Harding, Richard

    2009-03-01

    Little is known about the effects of fetal ethanol exposure on lung development. Our aim was to determine the effects of repeated ethanol exposure during late gestation on fetal lung growth, maturation, and inflammatory status. Pregnant ewes were chronically catheterized at 91 days of gestational age (DGA; term approximately 147 days). From 95-133 DGA, ewes were given a 1-h daily infusion of either 0.75 g ethanol/kg (n = 9) or saline (n = 8), with tissue collection at 134 DGA. Fetal lungs were examined for changes in tissue growth, structure, maturation, inflammation, and oxidative stress. Between treatment groups, there were no differences in lung weight, DNA and protein contents, percent proliferating and apoptotic cells, tissue and air-space fractions, alveolar number and mean linear intercept, septal thickness, type-II cell number and elastin content. Ethanol exposure caused a 75% increase in pulmonary collagen I alpha1 mRNA levels (P < 0.05) and a significant increase in collagen deposition. Surfactant protein (SP)-A and SP-B mRNA levels were approximately one third of control levels following ethanol exposure (P < 0.05). The mRNA levels of the proinflammatory cytokines interleukin (IL)-1beta and IL-8 were also lower (P < 0.05) in ethanol-exposed fetuses compared with controls. Pulmonary malondialdehyde levels tended to be increased (P = 0.07) in ethanol-exposed fetuses. Daily exposure of the fetus to ethanol during the last third of gestation alters extracellular matrix deposition and surfactant protein gene expression, which could increase the risk of respiratory distress syndrome after birth. Changes to the innate immune status of the fetus could increase the susceptibility of the neonatal lungs to infection.

  11. In vivo tungsten exposure alters B-cell development and increases DNA damage in murine bone marrow.

    PubMed

    Kelly, Alexander D R; Lemaire, Maryse; Young, Yoon Kow; Eustache, Jules H; Guilbert, Cynthia; Molina, Manuel Flores; Mann, Koren K

    2013-02-01

    High environmental tungsten levels were identified near the site of a childhood pre-B acute lymphoblastic leukemia cluster; however, a causal link between tungsten and leukemogenesis has not been established. The major site of tungsten deposition is bone, the site of B-cell development. In addition, our in vitro data suggest that developing B lymphocytes are susceptible to tungsten-induced DNA damage and growth inhibition. To extend these results, we assessed whether tungsten exposure altered B-cell development and induced DNA damage in vivo. Wild-type mice were exposed to tungsten in their drinking water for up to 16 weeks. Tungsten concentration in bone was analyzed by inductively coupled plasma mass spectrometry and correlated with B-cell development and DNA damage within the bone marrow. Tungsten exposure resulted in a rapid deposition within the bone following 1 week, and tungsten continued to accumulate thereafter albeit at a decreased rate. Flow cytometric analyses revealed a transient increase in mature IgD(+) B cells in the first 8 weeks of treatment, in animals of the highest and intermediate exposure groups. Following 16 weeks of exposure, all tungsten groups had a significantly greater percentage of cells in the late pro-/large pre-B developmental stages. DNA damage was increased in both whole marrow and isolated B cells, most notably at the lowest tungsten concentration tested. These findings confirm an immunological effect of tungsten exposure and suggest that tungsten could act as a tumor promoter, providing leukemic "hits" in multiple forms to developing B lymphocytes within the bone marrow.

  12. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model.

    PubMed

    Tyler, Christina R; Allan, Andrea M

    2014-08-01

    Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis

  13. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    PubMed Central

    Chivukula, Venkat Keshav; Krog, Benjamin L; Nauseef, Jones T; Henry, Michael D; Vigmostad, Sarah C

    2015-01-01

    Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS) on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH) and transformed prostate cancer cells (PC-3) were used in this study. The Young’s modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared) and immediately after exposure to high (6,400 dyn/cm2) and low (510 dyn/cm2) FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young’s modulus after exposure to high FSS and a ~47% increase in Young’s modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young’s modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young’s modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study investigating the effect of FSS on the mechanical properties of cancer cells in suspension, and may provide significant insights into the mechanism by which some select cancer cells may survive in the circulation, ultimately leading to metastasis at distal sites. Our findings suggest that biomechanical analysis of cancer cells could

  14. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    PubMed

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  15. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    PubMed

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  16. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance.

    PubMed

    Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis. PMID:25559197

  17. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations.

    PubMed

    Nunes, B; Antunes, S C; Gomes, R; Campos, J C; Braga, M R; Ramos, A S; Correia, A T

    2015-02-01

    A large body of evidence was compiled in the recent decades showing a noteworthy increase in the detection of pharmaceutical drugs in aquatic ecosystems. Due to its ubiquitous presence, chemical nature, and practical purpose, this type of contaminant can exert toxic effects in nontarget organisms. Exposure to pharmaceutical drugs can result in adaptive alterations, such as changes in tissues, or in key homeostatic mechanisms, such as antioxidant mechanisms, biochemical/physiological pathways, and cellular damage. These alterations can be monitored to determine the impact of these compounds on exposed aquatic organisms. Among pharmaceutical drugs in the environment, antibiotics are particularly important because they include a variety of substances widely used in medical and veterinary practice, livestock production, and aquaculture. This wide use constitutes a decisive factor contributing for their frequent detection in the aquatic environment. Tetracyclines are the individual antibiotic subclass with the second highest frequency of detection in environmental matrices. The characterization of the potential ecotoxicological effects of tetracycline is a much-required task; to attain this objective, the present study assessed the acute toxic effects of tetracycline in the freshwater fish species Gambusia holbrooki by the determination of histological changes in the gills and liver, changes in antioxidant defense [glutathione S-transferase (GST), catalase (CAT), and lipoperoxidative damage] as well as potential neurotoxicity (acetylcholinesterase activity). The obtained results suggest the existence of a cause-and-effect relationship between the exposure to tetracycline and histological alterations (more specifically in gills) and enzymatic activity (particularly the enzyme CAT in liver and GST in gills) indicating that this compound can exert a pro-oxidative activity. PMID:25475590

  18. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin–angiotensin system of the rat

    PubMed Central

    Samuelsson, Anne-Maj; Alexanderson, Camilla; Mölne, Johan; Haraldsson, Börje; Hansell, Peter; Holmäng, Agneta

    2006-01-01

    Cytokines are emerging as important in developmental processes. They may induce alterations in normal gene expression patterns, activate angiotensinogen transcription, or alter expression of the renin–angiotensin system (RAS). To determine whether prenatal exposure to interleukin-6 (IL-6) influences gene expression of the intrarenal RAS and contributes to renal dysfunction and hypertension in adulthood, we exposed female rats to IL-6 early (EIL-6 females) and late (LIL-6 females) in pregnancy and analysed blood pressure in the offspring at 5–20 weeks of age. Renal fluid and electrolyte excretion was assessed in clearance experiments, mRNA expression by real-time PCR, and protein levels by Western blot. Systolic pressure was increased at 5 weeks in IL-6 females and at 11 weeks in males. Circulatory RAS levels were increased in all IL-6 females, but angiotensin-1-converting enzyme (ACE) activity was increased only in LIL-6 females. LIL-6 males and IL-6 females showed decreased urinary flow rate and urinary sodium and potassium excretion. Dopamine excretion was decreased IL-6 females. In adult renal cortex, renin expression was increased in all IL-6 females, but angiotensinogen mRNA was increased only in LIL-6 females; AT1 receptor (AT1-R) mRNA and protein levels were increased in LIL-6 females, whereas AT2 receptor (AT2-R) levels were decreased in LIL-6 females and EIL-6 males. In adult renal medulla, AT1-R protein levels were increased in LIL-6 females, and AT2-R mRNA and protein levels were decreased in EIL-6 males and LIL-6 females. Prenatal IL-6 exposure may cause hypertension by altering the renal and circulatory RAS and renal fluid and electrolyte excretion, especially in females. PMID:16825309

  19. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  20. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    PubMed

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety.

  1. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    PubMed

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. PMID:26632987

  2. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. PMID:26057477

  3. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  4. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring.

    PubMed

    Zumbrun, Elizabeth E; Sido, Jessica M; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2015-06-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as co-existing drug use make the impact of cannabis use on progeny inherently difficult to study in a human population. Data from various animal models suggests that in utero exposure to cannabinoids results in profound T cell dysfunction and a greatly reduced immune response to viral antigens. Furthermore, evidence from animal studies indicates that the immunosuppressive effects of cannabinoids can be mediated through epigenetic mechanisms such as altered microRNA, DNA methylation and histone modification profiles. Such studies support the hypothesis that that parental or prenatal exposure to cannabis can trigger epigenetic changes that could have significant immunological consequences for offspring as well as long term transgenerational effects.

  5. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    PubMed

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  6. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring

    PubMed Central

    Zumbrun, Elizabeth E.; Sido, Jessica M.; Nagarkatti, Prakash S.

    2015-01-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as coexisting drug use make the impact of cannabis use on progeny inherently difficult to study in a human population. Data from various animal models suggests that in utero exposure to cannabinoids results in profound T cell dysfunction and a greatly reduced immune response to viral antigens. Furthermore, evidence from animal studies indicates that the immunosuppressive effects of cannabinoids can be mediated through epigenetic mechanisms such as altered microRNA, DNA methylation and histone modification profiles. Such studies support the hypothesis that that parental or prenatal exposure to cannabis can trigger epigenetic changes that could have significant immunological consequences for offspring as well as long term transgenerational effects. PMID:25618446

  7. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    USGS Publications Warehouse

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  8. Alterations in Rat Fetal Morphology Following Abuse Patterns of Toluene Exposure

    PubMed Central

    Bowen, Scott E.; Irtenkauf, Susan; Hannigan, John H.; Stefanski, Adrianne L.

    2009-01-01

    Toluene is a commonly abused organic solvent. Inhalant abusers are increasingly women in their prime childbearing years. Children born to mothers who abused solvents during pregnancy may exhibit characteristics of a “fetal solvent syndrome” which may include dysmorphic features. This study examined the teratological effects of an abuse pattern of binge toluene exposure during gestation on skeletal and soft tissue abnormalities, body weight, and body size in fetal rats. Pregnant Sprague–Dawley rats were exposed for 30 min, twice daily, from gestational day (GD) 8 through GD20 to either air (0 ppm), 8,000 ppm, 12,000 ppm, or 16,000 ppm toluene. Two-thirds of each litter was prepared for skeletal examination using Alizarin Red S staining while the remaining third of each litter was fixed in Bouin’s solution for Wilson’s soft tissue evaluation. Exposure to toluene at all levels significantly reduced growth, including decreases in placental weight, fetal weight, and crown-rump length. In addition, numerous gross morphological anomalies were observed such as short or missing digits and missing limbs. Skeletal examination revealed that ossification of the extremities was significantly reduced as a result of toluene exposure at all levels. Specific skeletal defects included misshapen scapula, missing and supernumerary vertebrae and ribs, and fused digits. Soft tissue anomalies were also observed at all toluene levels and there was a dose-dependent increase in the number of anomalies which included cryptorchidism, displaced abdominal organs, gastromegaly, distended/hypoplastic bladder, and delayed cardiac development, among others. These results indicate that animals exposed prenatally to levels and patterns of toluene typical of inhalant abuse are at increased risk for skeletal and soft tissue abnormalities. PMID:19429395

  9. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta).

    PubMed

    Jandegian, Caitlin M; Deem, Sharon L; Bhandari, Ramji K; Holliday, Casey M; Nicks, Diane; Rosenfeld, Cheryl S; Selcer, Kyle W; Tillitt, Donald E; Vom Saal, Frederick S; Vélez-Rivera, Vanessa; Yang, Ying; Holliday, Dawn K

    2015-05-15

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26°C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20ng/g-egg) or 0.01, 1.0, 100μgBPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated "males", but in none of the control males (n=35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low=30%, BPA-medium=33%, BPA-high=39%), this difference was not significant (p=0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations. PMID:25863134

  10. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta).

    PubMed

    Jandegian, Caitlin M; Deem, Sharon L; Bhandari, Ramji K; Holliday, Casey M; Nicks, Diane; Rosenfeld, Cheryl S; Selcer, Kyle W; Tillitt, Donald E; Vom Saal, Frederick S; Vélez-Rivera, Vanessa; Yang, Ying; Holliday, Dawn K

    2015-05-15

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26°C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20ng/g-egg) or 0.01, 1.0, 100μgBPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated "males", but in none of the control males (n=35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low=30%, BPA-medium=33%, BPA-high=39%), this difference was not significant (p=0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  11. Alterations of cognitive function and 5-HT system in rats after long term microwave exposure.

    PubMed

    Li, Hai-Juan; Peng, Rui-Yun; Wang, Chang-Zhen; Qiao, Si-Mo; Yong, Zou; Gao, Ya-Bing; Xu, Xin-Ping; Wang, Shao-Xia; Dong, Ji; Zuo, Hong-Yan; Li, Zhao; Zhou, Hong-Mei; Wang, Li-Feng; Hu, Xiang-Jun

    2015-03-01

    The increased use of microwaves raises concerns about its impact on health including cognitive function in which neurotransmitter system plays an important role. In this study, we focused on the serotonin system and evaluated the long term effects of chronic microwave radiation on cognition and correlated items. Wistar rats were exposed or sham exposed to 2.856GHz microwaves with the average power density of 5, 10, 20 or 30mW/cm(2) respectively for 6min three times a week up to 6weeks. At different time points after the last exposure, spatial learning and memory function, morphology structure of the hippocampus, electroencephalogram (EEG) and neurotransmitter content (amino acid and monoamine) of rats were tested. Above results raised our interest in serotonin system. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase (MAO), two important rate-limiting enzymes in serotonin synthesis and metabolic process respectively, were detected. Expressions of serotonin receptors including 5-HT1A, 2A, 2C receptors were measured. We demonstrated that chronic exposure to microwave (2.856GHz, with the average power density of 5, 10, 20 and 30mW/cm(2)) could induce dose-dependent deficit of spatial learning and memory in rats accompanied with inhibition of brain electrical activity, the degeneration of hippocampus neurons, and the disturbance of neurotransmitters, among which the increase of 5-HT occurred as the main long-term change that the decrease of its metabolism partly contributed to. Besides, the variations of 5-HT1AR and 5-HT2CR expressions were also indicated. The results suggested that in the long-term way, chronic microwave exposure could induce cognitive deficit and 5-HT system may be involved in it.

  12. Skin alterations induced by long-term exposure to uranium and their effect on permeability

    SciTech Connect

    Ubios, A.M.; Marzorati, M.; Cabrini, R.L.

    1997-05-01

    The skin is a probable route of incorporation of uranium by percutaneous absorption. The changes in epidermal thickness and their effect on skin permeability after uranium exposure are reported herein. Two experiments (A and B) were performed in Wistar rats weighing 60 g. In experiment A the animals were exposed to U{sub 3}O{sub 8} (0.012 g d{sup - 1}) in 30 daily topical applications. In experiment B the animals were treated as in experiment A, followed by a period of non-exposure of 60 d. Samples of the treated area of skin were taken for histologic studies and for the study of the skin permeability. The epidermal thickness was measured on the histological sections. Epidermis was thinner in experimental than in control animals in both experiments. The values in the control groups were 41.05 {+-} 14.03 {mu}m (A) and 38.92 {+-} 16.50 {mu}m (B) and 21.35 {+-} 10.29 {mu}m (A) and 24.06 {+-} 16.50 {mu}m (B) in the experimental groups, the differences being statistically significant. Skin permeability was measured placing skin samples in a diffusion cell, in which the upper compartment was filled with a staining solution. The determinations were made with a spectrophotometer. The results revealed that the skin permeability in both experimental groups was higher than in the respective controls, 65% in experiment A and 77% in experiment B. The results revealed that a long term uranium exposure leads to an epidermal atrophy which in turn results in an increased permeability of the skin. 10 refs., 2 figs., 1 tab.

  13. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    PubMed

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. PMID:25543075

  14. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    PubMed

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution.

  15. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    PubMed

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  16. Aluminium exposure induces Alzheimer's disease-like histopathological alterations in mouse brain.

    PubMed

    Rodella, L F; Ricci, F; Borsani, E; Stacchiotti, A; Foglio, E; Favero, G; Rezzani, R; Mariani, C; Bianchi, R

    2008-04-01

    Aluminium (Al) is a neurotoxic metal and Al exposure may be a factor in the aetiology of various neurodegenerative diseases such as Alzheimer's disease (AD). The major pathohistological findings in the AD brain are the presence of neuritic plaques containing beta-amyloid (Abeta) which may interfere with neuronal communication. Moreover, it has been observed that GRP78, a stress-response protein induced by conditions that adversely affect endoplasmic reticulum (ER) function, is reduced in the brain of AD patients. In this study, we investigated the correlation between the expression of Abeta and GRP78 in the brain cortex of mice chronically treated with aluminium sulphate. Chronic exposure over 12 months to aluminium sulphate in drinking water resulted in deposition of Abeta similar to that seen in congophilic amyloid angiopathy (CAA) in humans and a reduction in neuronal expression of GRP78 similar to what has previously been observed in Alzheimer's disease. So, we hypothesise that chronic Al administration is responsible for oxidative cell damage that interferes with ER functions inducing Abeta accumulation and neurodegenerative damage.

  17. Chronic prenatal ethanol exposure alters glucocorticoid signalling in the hippocampus of the postnatal Guinea pig.

    PubMed

    Iqbal, U; Brien, J F; Banjanin, S; Andrews, M H; Matthews, S G; Reynolds, J N

    2005-09-01

    The present study tested the hypothesis that chronic prenatal ethanol exposure causes long-lasting changes in glucocorticoid signalling in postnatal offspring. Pregnant guinea pigs were treated with ethanol (4 g/kg maternal body weight/day), isocaloric-sucrose/pair-feeding or water throughout gestation, and maternal saliva cortisol concentration was determined 2 h after treatment at different stages of gestation. Electrically-stimulated release of glutamate and GABA, in the presence or absence of dexamethasone, as well as glucocorticoid and mineralocorticoid receptor mRNA expression, was determined in the hippocampus and prefrontal cortex of adult offspring of treated pregnant guinea pigs. Maternal saliva cortisol concentration increased throughout pregnancy, which was associated with increased foetal plasma and amniotic fluid cortisol concentration. Ethanol administration to pregnant guinea pigs increased maternal saliva cortisol concentration during early and mid-gestation. In late gestation, ethanol administration did not increase saliva cortisol concentration above that induced by pregnancy. Chronic prenatal ethanol exposure had no effect on stimulated glutamate or GABA release, but selectively prevented dexamethasone-mediated suppression of stimulated glutamate release, and decreased expression of mineralocorticoid, but not glucocorticoid, receptor mRNA in the hippocampus of adult offspring. These data indicate that maternal ethanol administration leads to excessively increased maternal cortisol concentration that can impact negatively the developing foetal brain, leading to persistent postnatal deficits in glucocorticoid regulation of glutamate signalling in the adult hippocampus. PMID:16101899

  18. Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness

    PubMed Central

    Hamilton, Trevor James; Kwan, Garfield T.; Gallup, Joshua; Tresguerres, Martin

    2016-01-01

    Aggression and responsiveness to noxious stimuli are adaptable traits that are ubiquitous throughout the animal kingdom. Like vertebrate animals, some invertebrates have been shown to exhibit anxiety-like behaviour and altered levels of aggression that are modulated by the neurotransmitter serotonin. To investigate whether this influence of serotonin is conserved in crabs and whether these behaviours are sensitive to human antidepressant drugs; the striped shore crab, Pachygrapsus crassipes, was studied using anxiety (light/dark test) and aggression (mirror test) paradigms. Crabs were individually exposed to acute doses of the selective serotonin reuptake inhibitor, fluoxetine (5 or 25 mg/L), commonly known as Prozac®, followed by behavioural testing. The high dose of fluoxetine significantly decreased anxiety-like behaviour but had no impact on mobility or aggression. These results suggest that anxiety-like behaviour is more sensitive to modulation of serotonin than is aggressiveness in the shore crab. PMID:26806870

  19. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    NASA Astrophysics Data System (ADS)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  20. Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

    PubMed

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Peterson, Lindsy M; Mai, Katherine; McHale, Quinn; Jenkins, Michael W; Linask, Kersti K; Rollins, Andrew M; Watanabe, Michiko

    2014-02-01

    Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities.

  1. In utero cannabinoid exposure alters breathing and the response to hypoxia in newborn mice.

    PubMed

    Tree, Keda C; Scotto di Perretolo, Maud; Peyronnet, Julie; Cayetanot, Florence

    2014-07-01

    Cannabis is one of the most commonly used recreational drugs at ages highly correlated with potential pregnancy. Endocannabinoid signalling regulates important stages of neuronal development. When cannabinoid receptors, which are widely distributed through the nervous system, are activated by exogenous cannabinoids, breathing in adult rats is depressed. Here, we show that, in newborn mice, endocannabinoids, through the activation of cannabinoid receptor type 1 (CB1 R), participate in the modulation of respiration and its control. Blocking CB1 Rs at birth suppressed the brake exerted by endocannabinoids on ventilation in basal and in hypoxic conditions. The number of apnoeas and their duration were also minimized by activation of CB1 Rs in normoxic and in hypoxic conditions. However, prenatal cannabis intoxication, caused by a daily injection of WIN55,212-2, in pregnant mice durably modified respiration of the offspring, as shown by hyperventilation in basal conditions, an altered chemoreflex in response to hypoxia, and longer apnoeas. When CB1 Rs were blocked in WIN55,212-2 treated newborns, persistent hyperventilation was still observed, which could partly be explained by a perturbation of the central respiratory network. In fact, in vitro medullary preparations from WIN55,212-2 treated pups, free of peripheral or of supramedullary structures, showed an altered fictive breathing frequency. In conclusion, the endocannabinoid pathway at birth seems to modulate breathing and protect the newborn against apnoeas. However, when exposed prenatally to an excess of cannabinoid, the breathing neuronal network in development seems to be modified, probably rendering the newborn more vulnerable in the face of an unstable environment. PMID:24717006

  2. Sensorimotor learning in children and adults: Exposure to frequency-altered auditory feedback during speech production.

    PubMed

    Scheerer, N E; Jacobson, D S; Jones, J A

    2016-02-01

    Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability.

  3. Caffeine exposure alters adenosine system and neurochemical markers during retinal development.

    PubMed

    Brito, Rafael; Pereira-Figueiredo, Danniel; Socodato, Renato; Paes-de-Carvalho, Roberto; Calaza, Karin C

    2016-08-01

    Evidence points to beneficial properties of caffeine in the adult central nervous system, but teratogenic effects have also been reported. Caffeine exerts most of its effects by antagonizing adenosine receptors, especially A1 and A2A subtypes. In this study, we evaluated the role of caffeine on the expression of components of the adenosinergic system in the developing avian retina and the impact of caffeine exposure upon specific markers for classical neurotransmitter systems. Caffeine exposure (5-30 mg/kg by in ovo injection) to 14-day-old chick embryos increased the expression of A1 receptors and concomitantly decreased A2A adenosine receptors expression after 48 h. Accordingly, caffeine (30 mg/kg) increased [(3) H]-8-cyclopentyl-1,3-dipropylxanthine (A1 antagonist) binding and reduced [(3) H]-ZM241385 (A2A antagonist) binding. The caffeine time-response curve demonstrated a reduction in A1 receptors 6 h after injection, but an increase after 18 and 24 h. In contrast, caffeine exposure increased the expression of A2A receptors from 18 and 24 h. Kinetic assays of [(3) H]-S-(4-nitrobenzyl)-6-thioinosine binding to the equilibrative adenosine transporter ENT1 revealed an increase in Bmax with no changes in Kd , an effect accompanied by an increase in adenosine uptake. Immunohistochemical analysis showed a decrease in retinal content of tyrosine hydroxylase, calbindin and choline acetyltransferase, but not Brn3a, after 48 h of caffeine injection. Furthermore, retinas exposed to caffeine had increased levels of phosphorylated extracellular signal-regulated kinase and cAMP-response element binding protein. Overall, we show an in vivo regulation of the adenosine system, extracellular signal-regulated kinase and cAMP-response element binding protein function and protein expression of specific neurotransmitter systems by caffeine in the developing retina. The beneficial or maleficent effects of caffeine have been demonstrated by the work of different studies. It

  4. Juvenile exposure to a high fat diet promotes behavioral and limbic alterations in the absence of obesity.

    PubMed

    Vinuesa, Angeles; Pomilio, Carlos; Menafra, Martin; Bonaventura, Maria Marta; Garay, Laura; Mercogliano, María Florencia; Schillaci, Roxana; Lux Lantos, Victoria; Brites, Fernando; Beauquis, Juan; Saravia, Flavia

    2016-10-01

    The incidence of metabolic disorders including obesity, type 2 diabetes and metabolic syndrome have seriously increased in the last decades. These diseases - with growing impact in modern societies - constitute major risk factors for neurodegenerative disorders such as Alzheimer's disease (AD), sharing insulin resistance, inflammation and associated cognitive impairment. However, cerebral cellular and molecular pathways involved are not yet clearly understood. Thus, our aim was to study the impact of a non-severe high fat diet (HFD) that resembles western-like alimentary habits, particularly involving juvenile stages where the brain physiology and connectivity are in plain maturation. To this end, one-month-old C57BL/6J male mice were given either a control diet or HFD during 4 months. Exposure to HFD produced metabolic alterations along with changes in behavioral and central parameters, in the absence of obesity. Two-month-old HFD mice showed increased glycemia and plasmatic IL1β but these values normalized at the end of the HFD protocol at 5 months of age, probably representing an acute response that is compensated at later stages. After four months of HFD exposure, mice presented dyslipidemia, increased Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, hepatic insulin resistance and inflammation. Alterations in the behavioral profile of the HFD group were shown by the impediment in nest building behavior, deficiencies in short and mid-term spatial memories, anxious and depressive- like behavior. Regarding the latter disruptions in emotional processing, we found an increased neural activity in the amygdala, shown by a greater number of c-Fos+ nuclei. We found that hippocampal adult neurogenesis was decreased in HFD mice, showing diminished cell proliferation measured as Ki67+ cells and neuronal differentiation in SGZ by doublecortin labeling. These phenomena were accompanied by a neuroinflammatory and insulin-resistant state in the hippocampus

  5. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. PMID:23756143

  6. Hepatic and intestine alterations in mice after prolonged exposure to low oral doses of Microcystin-LR.

    PubMed

    Sedan, Daniela; Laguens, Martín; Copparoni, Guido; Aranda, Jorge Oswaldo; Giannuzzi, Leda; Marra, Carlos Alberto; Andrinolo, Darío

    2015-09-15

    Oral intake of Microcystin-LR (MC-LR) is the principal route of exposure to this toxin, with prolonged exposure leading to liver damage of unspecific symptomatology. The aim of the present paper was therefore to investigate the liver and intestine damage generated by prolonged oral exposure to low MC-LR doses (50 and 100 μg MC-LR/kg body weight, administrated every 48 h during a month) in a murine model. We found alterations in TBARS, SOD activity and glutathione content in liver and intestine of mice exposed to both doses of MC-LR. Furthermore, the presence of MC-LR was detected in both organs. We also found hepatic steatosis (3.6 ± 0.6% and 15.3 ± 1.6%) and a decrease in intraepithelial lymphocytes (28.7 ± 5.0% and 44.2 ± 8.7%) in intestine of 50- and 100-μg MC-LR/kg treated animals, respectively. This result could have important implications for mucosal immunity, since intraepithelial lymphocytes are the principal effectors of this system. Our results indicate that prolonged oral exposure at 50 μg MC-LR/kg every 48 h generates significant damage not only in liver but also in intestine. This finding calls for a re-appraisal of the currently accepted NOAEL (No Observed Adverse Effect Level), 40 μg MC-LR/kg body weight, used to derive the guideline value for MC-LR in drinking water.

  7. Sublethal exposure to azamethiphos causes neurotoxicity, altered energy allocation and high mortality during simulated live transport in American lobster.

    PubMed

    Couillard, C M; Burridge, L E

    2015-05-01

    In the Bay of Fundy, New Brunswick, sea lice outbreaks in caged salmon are treated with pesticides including Salmosan(®), applied as bath treatments and then released into the surrounding seawater. The effect of chronic exposure to low concentrations of this pesticide on neighboring lobster populations is a concern. Adult male lobsters were exposed to 61 ngL(-1) of azamethiphos (a.i. in Salmosan(®) formulation) continuously for 10 days. In addition to the direct effects of pesticide exposure, effects on the ability to cope with shipping conditions and the persistence of the effects after a 24h depuration period in clean seawater were assessed. Indicators of stress and hypoxia (serum total proteins, hemocyanin and lactate), oxidative damage (protein carbonyls in gills and serum) and altered energy allocation (hepatosomatic and gonadosomatic indices, hepatopancreas lipids) were assessed in addition to neurotoxicity (chlolinesterase activity in muscle). Directly after exposure, azamethiphos-treated lobsters had inhibition of muscle cholinesterase, reduced gonadosomatic index and enhanced hepatosomatic index and hepatopancreas lipid content. All these responses persisted after 24-h depuration, increasing the risk of cumulative impacts with further exposure to chemical or non-chemical stressors. In both control and treated lobsters exposed to simulated shipment conditions, concentrations of protein and lactate in serum, and protein carbonyls in gills increased. However, mortality rate was higher in azamethiphos-treated lobsters (33 ± 14%) than in controls (2.6 ± 4%). Shipment and azamethiphos had cumulative impacts on serum proteins. Both direct effects on neurological function and energy allocation and indirect effect on ability to cope with shipping stress could have significant impacts on lobster population and/or fisheries.

  8. Atrazine-induced reproductive tract alterations after transplacental and/or lactational exposure in male Long-Evans rats

    SciTech Connect

    Rayner, Jennifer L.; Enoch, Rolondo R.; Wolf, Douglas C.; Fenton, Suzanne E. . E-mail: fenton.suzanne@epa.gov

    2007-02-01

    Studies showed that early postnatal exposure to the herbicide atrazine (ATR) delayed preputial separation (PPS) and increased incidence of prostate inflammation in adult Wistar rats. A cross-fostering paradigm was used in this study to determine if gestational exposure to ATR would also result in altered puberty and reproductive tissue effects in the male rat. Timed-pregnant Long-Evans (LE) rats were dosed by gavage on gestational days (GD) 15-19 with 100 mg ATR/kg body weight (BW) or 1% methylcellulose (controls, C). On postnatal day (PND)1, half litters were cross-fostered, creating 4 treatment groups; C-C, ATR-C, C-ATR, and ATR-ATR (transplacental-milk as source, respectively). On PND4, male offspring in the ATR-ATR group weighed significantly less than the C-C males. ATR-ATR male pups had significantly delayed preputial separation (PPS). BWs at PPS for C-ATR and ATR-ATR males were reduced by 6% and 9%, respectively, from that of C-C. On PND120, lateral prostate weights of males in the ATR-ATR group were significantly increased over C-C. Histological examination of lateral and ventral prostates identified an increased distribution of inflammation in the lateral prostates of C-ATR males. By PND220, lateral prostate weights were significantly increased for ATR-C and ATR-ATR, but there were no significant changes in inflammation in either the lateral or ventral prostate. These results suggest that in LE rats, gestational ATR exposure delays PPS when male offspring suckle an ATR dam, but leads to increased lateral prostate weight via transplacental exposure alone. Inflammation present at PND120 does not increase in severity with time.

  9. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice.

  10. Exposure to (12)C particles alters the normal dynamics of brain monoamine metabolism and behaviour in rats.

    PubMed

    Belov, Oleg V; Belokopytova, Ksenia V; Bazyan, Ara S; Kudrin, Vladimir S; Narkevich, Viktor B; Ivanov, Aleksandr A; Severiukhin, Yury S; Timoshenko, Gennady N; Krasavin, Eugene A

    2016-09-01

    Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer. PMID:27544862

  11. Sublethal exposure to azamethiphos causes neurotoxicity, altered energy allocation and high mortality during simulated live transport in American lobster.

    PubMed

    Couillard, C M; Burridge, L E

    2015-05-01

    In the Bay of Fundy, New Brunswick, sea lice outbreaks in caged salmon are treated with pesticides including Salmosan(®), applied as bath treatments and then released into the surrounding seawater. The effect of chronic exposure to low concentrations of this pesticide on neighboring lobster populations is a concern. Adult male lobsters were exposed to 61 ngL(-1) of azamethiphos (a.i. in Salmosan(®) formulation) continuously for 10 days. In addition to the direct effects of pesticide exposure, effects on the ability to cope with shipping conditions and the persistence of the effects after a 24h depuration period in clean seawater were assessed. Indicators of stress and hypoxia (serum total proteins, hemocyanin and lactate), oxidative damage (protein carbonyls in gills and serum) and altered energy allocation (hepatosomatic and gonadosomatic indices, hepatopancreas lipids) were assessed in addition to neurotoxicity (chlolinesterase activity in muscle). Directly after exposure, azamethiphos-treated lobsters had inhibition of muscle cholinesterase, reduced gonadosomatic index and enhanced hepatosomatic index and hepatopancreas lipid content. All these responses persisted after 24-h depuration, increasing the risk of cumulative impacts with further exposure to chemical or non-chemical stressors. In both control and treated lobsters exposed to simulated shipment conditions, concentrations of protein and lactate in serum, and protein carbonyls in gills increased. However, mortality rate was higher in azamethiphos-treated lobsters (33 ± 14%) than in controls (2.6 ± 4%). Shipment and azamethiphos had cumulative impacts on serum proteins. Both direct effects on neurological function and energy allocation and indirect effect on ability to cope with shipping stress could have significant impacts on lobster population and/or fisheries. PMID:25499691

  12. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    PubMed

    Chen, Yichang; Shu, Le; Qiu, Zhiqun; Lee, Dong Yeon; Settle, Sara J; Que Hee, Shane; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-07-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198

  13. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure

    PubMed Central

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Amarasiriwardena, Chitra; Svensson, Katherine; Oken, Emily; Solano-Gonzalez, Maritsa; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O

    2015-01-01

    Aim: Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. Materials & methods: We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. Results: Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. Conclusion: The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy. PMID:26418635

  14. Cholinergic and serotonergic alterations in the rat hippocampus following trimethyltin exposure and fetal neural transplantation.

    PubMed

    Roy, A; Agrawal, A K; Husain, R; Dubey, M P; Seth, P K

    1999-01-15

    Trimethyltin (TMT) apart from causing cholinergic denervation of the hippocampus, damages the serotonergic inputs into the hippocampus as well. In the present study, fetal cholinergic and serotonergic rich neuronal populations from septal and raphe regions, respectively, were transplanted alone or in combination (as co-grafts) in the hippocampus of TMT exposed rats. Neurotransmitter receptor binding and neurotransmitter levels were assayed 6 months post-transplantation. Fetal septal transplants (rich in cholinergic neurons) significantly restored the deficits in cholinergic (muscarinic) receptor binding and acetylcholinesterase activity caused by TMT exposure. Raphe transplants (rich in serotonergic neurons) restored the deficit in serotonergic receptor binding and serotonin levels caused by TMT. Co-grafts of fetal raphe and septal neurons restored both the cholinergic (muscarinic) and serotonergic receptor functions. The results suggest that co-grafting technique could provide a better restoration of functional deficits when more than one type of neuronal population is damaged. PMID:10025586

  15. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    PubMed

    Chen, Yichang; Shu, Le; Qiu, Zhiqun; Lee, Dong Yeon; Settle, Sara J; Que Hee, Shane; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-07-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  16. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function

    PubMed Central

    Chen, Yichang; Qiu, Zhiqun; Lee, Dong Yeon; Telesca, Donatello; Yang, Xia; Allard, Patrick

    2016-01-01

    Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198

  17. Altering genomic integrity: heavy metal exposure promotes trans-posable element-mediated damage

    PubMed Central

    Morales, Maria E.; Servant, Geraldine; Ade, Catherine; Roy-Enge, Astrid M.

    2015-01-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past two decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease and an overview of the current knowledge on how heavy metals influence TE-mediated damage. PMID:25774044

  18. Exposure to a novel stimulus environment alters patterns of lateralization in avian auditory cortex.

    PubMed

    Yang, L M; Vicario, D S

    2015-01-29

    Perceptual filters formed early in development provide an initial means of parsing the incoming auditory stream. However, these filters may not remain fixed, and may be updated by subsequent auditory input, such that, even in an adult organism, the auditory system undergoes plastic changes to achieve a more efficient representation of the recent auditory environment. Songbirds are an excellent model system for experimental studies of auditory phenomena due to many parallels between song learning in birds and language acquisition in humans. In the present study, we explored the effects of passive immersion in a novel heterospecific auditory environment on neural responses in caudo-medial neostriatum (NCM), a songbird auditory area similar to the secondary auditory cortex in mammals. In zebra finches, a well-studied species of songbirds, NCM responds selectively to conspecific songs and contains a neuronal memory for tutor and other familiar conspecific songs. Adult male zebra finches were randomly assigned to either a conspecific or heterospecific auditory environment. After 2, 4 or 9 days of exposure, subjects were presented with heterospecific and conspecific songs during awake electrophysiological recording. The neural response strength and rate of adaptation to the testing stimuli were recorded bilaterally. Controls exposed to conspecific environment sounds exhibited the normal pattern of hemispheric lateralization with higher absolute response strength and faster adaptation in the right hemisphere. The pattern of lateralization was fully reversed in birds exposed to heterospecific environment for 4 or 9 days and partially reversed in birds exposed to heterospecific environment for 2 days. Our results show that brief passive exposure to a novel category of sounds was sufficient to induce a gradual reorganization of the left and right secondary auditory cortices. These changes may reflect modification of perceptual filters to form a more efficient representation

  19. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  20. Alteration in carboxyhemoglobin concentrations during exposure to 9 ppm carbon monoxide for 8 hours at sea level and 2134 m altitude in a hypobaric chamber

    SciTech Connect

    Horvath, S.M.; Bedi, J.F. )

    1989-10-01

    Seventeen non-smoking young men served as subjects to determine the alteration in carboxyhemoglobin (COHb) concentrations during exposure to 0 or 9 ppm carbon monoxide for 8 hours (CO) at sea level or an altitude of 2134 meters (7000 feet) in a hypobaric chamber. Nine subjects rested during the exposure and 8 exercised for 10 minutes of each exposure hour at a mean ventilation of 25 L (BTPS). All subjects performed a maximal aerobic capacity test at the completion of their respective exposures. Carboxyhemoglobin concentrations fell in all subjects during their exposures to 0 ppm CO at sea level or 2134 m. During the 8-h exposures to 9 ppm CO, COHb rose linearly from approximately 0.2 percent to 0.7 percent. No significant differences in uptake were found whether the subjects were resting or intermittently exercising during their 8-h exposures. COHb levels attained were similar at both sea level and 2134 m. Maximal aerobic capacity was reduced approximately 7-10 percent consequent to altitude exposure during 0 ppm CO exposures. These values were not altered following exposure for 8 h to 9 ppm CO in either the resting or exercising subjects.

  1. Mainstream cigarette smoke exposure alters cytochrome P4502G1 expression in F344 rat olfactory mucosa

    SciTech Connect

    Hotchkiss, J.A.; Nikula, K.J.; Lewis, J.L.; Finch, G.L.; Belinsky, S.A.; Dahl, A.R.

    1994-11-01

    Inhalation of mainstream cigarette smoke (MCS) by rats results in multifocal rhinitis, mucous hypersecretion, nasal epithelial hyperplasia and metaplasia, and focal olfactory mucosal atrophy. In humans, cigarette smoking causes long-term, dose-related alterations in olfactory function in both current and former smokers. An olfactory-specific cytochrome P450 has been identified in rabbits and rats. The presence of olfactory-specific P450s, as well as relatively high levels of other biotransformation enzymes, such as NADPH-cytochrome P450 reductase and UDP-glucuronosyl transferase, in the olfactory neuroepithelium suggest that these enzyme systems may play a role in olfaction. This hypothesis is strengthened by the observation that, in rats, the temporal gene activation of P4502G1 coincides with the postnatal increase in the sensitivity of olfactory response to odorants. The purpose of this investigation was to examine the effect of MCS exposure on P4502G1 protein expression.

  2. Arsenic exposure in drinking water alters the dopamine system in the brains of C57BL/6 mice.

    PubMed

    Kim, Minjeong; Seo, Sangwook; Sung, Kyunghwa; Kim, Kisok

    2014-12-01

    Although exposure to arsenic (As) induces neurotoxic changes, there is a lack of data regarding its specific effects on neurotransmission, particularly dopaminergic neurotransmission. In this study, the dopamine content and expression of tyrosine hydroxylase (TH) and dopamine receptors (DRs) were examined in the striatum and cerebral cortex of the mouse brain following the administration of As (1-100 mg/L NaAsO2 in drinking water). After 3 weeks, significantly decreased TH expression and dopamine content, both in the striatum and the cerebral cortex of mice treated with 100 mg/L As, were observed when compared with controls. Although DR expression was similar in the cerebral cortex of As-treated mice, DRD1 to DRD4 expression significantly increased in the striatum of 100 mg/L As-exposed mice. These data indicate that altered dopaminergic neurotransmission may contribute to As-induced neurotoxic effects.

  3. Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris).

    PubMed

    Flahr, Leanne M; Michel, Nicole L; Zahara, Alexander R D; Jones, Paul D; Morrissey, Christy A

    2015-05-19

    Birds exposed to endocrine disrupting chemicals during development could be susceptible to neurological and other physiological changes affecting migratory behaviors. We investigated the effects of ecologically relevant levels of Aroclor 1254, a polychlorinated biphenyl (PCB) mixture, on moult, fattening, migratory activity, and orientation in juvenile European starlings (Sturnus vulgaris). Birds were orally administered 0 (control), 0.35 (low), 0.70 (intermediate), or 1.05 (high) μg Aroclor 1254/g-body weight by gavage from 1 through 18 days posthatch and later exposed in captivity to a photoperiod shift simulating an autumn migration. Migratory activity and orientation were examined using Emlen funnel trials. Across treatments, we found significant increases in mass, fat, and moulting and decreasing plasma thyroid hormones over time. We observed a significant increase in activity as photoperiod was shifted from 13L:11D (light:dark) to 12L:12D, demonstrating that migratory condition was induced in captivity. At 12L:12D, control birds oriented to 155.95° (South-Southeast), while high-dosed birds did not. High-dosed birds showed a delayed orientation to 197.48° (South-Southwest) under 10L:14D, concomitant with apparent delays in moult. These findings demonstrate how subtle contaminant-induced alterations during development could lead to longer-scale effects, including changes in migratory activity and orientation, which could potentially result in deleterious effects on fitness and survival.

  4. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus.

    PubMed

    Bristot Silvestrin, Roberta; Bambini-Junior, Victorio; Galland, Fabiana; Daniele Bobermim, Larissa; Quincozes-Santos, André; Torres Abib, Renata; Zanotto, Caroline; Batassini, Cristiane; Brolese, Giovana; Gonçalves, Carlos-Alberto; Riesgo, Rudimar; Gottfried, Carmem

    2013-02-01

    Autism spectrum disorders (ASD) are characterized by deficits in social interaction, language and communication impairments and repetitive and stereotyped behaviors, with involvement of several areas of the central nervous system (CNS), including hippocampus. Although neurons have been the target of most studies reported in the literature, recently, considerable attention has been centered upon the functionality and plasticity of glial cells, particularly astrocytes. These cells participate in normal brain development and also in neuropathological processes. The present work investigated hippocampi from 15 (P15) and 120 (P120) days old male rats prenatally exposed to valproic acid (VPA) as an animal model of autism. Herein, we analyzed astrocytic parameters such as glutamate transporters and glutamate uptake, glutamine synthetase (GS) activity and glutathione (GSH) content. In the VPA group glutamate uptake was unchanged at P15 and increased 160% at P120; the protein expression of GLAST did not change neither in P15 nor in P120, while GLT1 decreased 40% at P15 and increased 92% at P120; GS activity increased 43% at P15 and decreased 28% at P120; GSH content was unaltered at P15 and had a 27% increase at P120. These data highlight that the astrocytic clearance and destination of glutamate in the synaptic cleft might be altered in autism, pointing out important aspects to be considered from both pathophysiologic and pharmacological approaches in ASD.

  5. Developmental exposure to Passiflora incarnata induces behavioural alterations in the male progeny.

    PubMed

    Bacchi, André D; Ponte, Bianca; Vieira, Milene L; de Paula, Jaqueline C C; Mesquita, Suzana F P; Gerardin, Daniela C C; Moreira, Estefânia G

    2013-01-01

    Passiflora incarnata is marketed in many countries as a phytomedicine and is prescribed mainly as a sedative and anxiolytic. Even though the directions of most marketed phytomedicines recommend them to be used under medical supervision, reproductive and developmental studies are sparse and not mandatory for regulatory purposes. To evaluate the reproductive and developmental toxicity of P. incarnata, Wistar female rats were gavaged with 30 or 300 mg kg(-1) of this herb from gestational Day (GD) 0 to postnatal Day (PND) 21. P. incarnata treatment did not influence dams' bodyweight or food intake or their reproductive performance (post-implantation loss, litter size, litter weight). There was also no influence on the physical development of pups (bodyweight gain, day of vaginal opening or preputial separation) or their behaviour in the open-field at PND 22, 35 and 75. Sexual behaviour was disrupted in adult male pups exposed to 300 mg kg(-1) of P. incarnata; in this group, only 3 out of 11 pups were sexually competent. This behavioural disruption was not accompanied by alterations in plasma testosterone levels, reproductive-related organs and glands weights or sperm count. It is hypothesised that aromatase inhibition may be involved in the observed effect.

  6. Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris).

    PubMed

    Flahr, Leanne M; Michel, Nicole L; Zahara, Alexander R D; Jones, Paul D; Morrissey, Christy A

    2015-05-19

    Birds exposed to endocrine disrupting chemicals during development could be susceptible to neurological and other physiological changes affecting migratory behaviors. We investigated the effects of ecologically relevant levels of Aroclor 1254, a polychlorinated biphenyl (PCB) mixture, on moult, fattening, migratory activity, and orientation in juvenile European starlings (Sturnus vulgaris). Birds were orally administered 0 (control), 0.35 (low), 0.70 (intermediate), or 1.05 (high) μg Aroclor 1254/g-body weight by gavage from 1 through 18 days posthatch and later exposed in captivity to a photoperiod shift simulating an autumn migration. Migratory activity and orientation were examined using Emlen funnel trials. Across treatments, we found significant increases in mass, fat, and moulting and decreasing plasma thyroid hormones over time. We observed a significant increase in activity as photoperiod was shifted from 13L:11D (light:dark) to 12L:12D, demonstrating that migratory condition was induced in captivity. At 12L:12D, control birds oriented to 155.95° (South-Southeast), while high-dosed birds did not. High-dosed birds showed a delayed orientation to 197.48° (South-Southwest) under 10L:14D, concomitant with apparent delays in moult. These findings demonstrate how subtle contaminant-induced alterations during development could lead to longer-scale effects, including changes in migratory activity and orientation, which could potentially result in deleterious effects on fitness and survival. PMID:25893686

  7. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    NASA Astrophysics Data System (ADS)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  8. Chronic cannabinoid agonist (WIN 55,212-2) exposure alters hippocampal dentate gyrus spine density in adult rats

    PubMed Central

    Candelaria-Cook, Felicha Teresa; Hamilton, Derek Alexander

    2013-01-01

    Chronic abuse of drugs can result in vast negative repercussions on behavioral and biological systems by altering underlying neurocircuitry. Long-term cannabinoid administration in rats leads to detrimental cellular and dendritic morphology changes. Previous studies have found that chronic treatment with delta-9-THC selectively decreases dendritic morphology and spine density in the dentate gyrus of young rats (Rubino et al., 2009), however, whether these changes are specific to a particular developmental age is not known. The present study evaluated the effects of chronic exposure (7 or 21 days) to WIN 55, 212-2 (i.p., 3.7 mg/kg), a potent cannabinoid agonist, on dendritic morphology of dentate gyrus neurons in adult rats. Upon completion of treatment brains were processed for Golgi-Cox staining. No significant effects of WIN 55, 212-2 exposure were observed for dendritic branching or length. Spine density was quantified in the inner (proximal), middle, and outer (distal) thirds of the dendritic fields selected to approximate the spatial loci of afferents comprising the associational-commissural pathway, medial perforant path, and lateral perforant path, respectively. Compared to vehicle controls there was a significant reduction in spine density (~1 spine/10μm) in the inner and middle dendritic segments. The spine density reduction was significant in inner segments following 7 days of treatment. These results suggest that chronic cannabinoid treatment specifically alters spine density in the dendritic targets of the associational-commissural afferents and medial perforant path projections, but not lateral perforant path. The resulting loss of dendritic spine density may be an important factor underlying cannabinoid induced memory impairments. PMID:24183783

  9. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring.

    PubMed

    Dobson, Christine C; Thevasundaram, Kersh; Mongillo, Daniel L; Winterborn, Andrew; Holloway, Alison C; Brien, James F; Reynolds, James N

    2014-11-01

    Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling

  10. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring.

    PubMed

    Dobson, Christine C; Thevasundaram, Kersh; Mongillo, Daniel L; Winterborn, Andrew; Holloway, Alison C; Brien, James F; Reynolds, James N

    2014-11-01

    Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling

  11. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    PubMed

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  12. Prenatal nicotine exposure alters postnatal cardiorespiratory integration in young male but not female rats

    PubMed Central

    Boychuk, Carie R.; Hayward, Linda F.

    2011-01-01

    The present study tested the hypothesis that prenatal nicotine exposure (PNE) induces sex specific alternations in indices of cardiorespiratory coupling during early development. Rat pups exposed to either nicotine (6mg/kg/day) or saline (control) in utero were chronically instrumented with ECG electrodes for measurement of heart rate (HR) and respiratory frequency (RF) was monitored by whole body plethysmography on postnatal days (P)13, P16 and P26. PNE had no identifiable effect on resting respiratory frequency (RF) in either sex. There was however a strong trend (p=0.057) for resting HR to be elevated by PNE in male offspring only. Alternatively, the HR response to hypoxia (10% O2), was significantly blunted at P13 but significantly elevated at P26 s in the absence of any significant change in RF in PNE males only. Indicators of respiratory sinus arrhythmia (RSA) were also significantly reduced in P26 PNE males. No significant effects of PNE on HR, RF or RSA were identified in female offspring at any age. Our results demonstrate that PNE induces very specific changes in cardiorespiratory integration at select postnatal ages and these changes are more prominent in males. Additionally, alternations in cardiorespiratory integration appear to persist into later development in males only, potentially increasing the risk for cardiovascular diseases such as hypertension later in life. PMID:21945005

  13. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.

    PubMed

    Markad, Vijaykumar L; Adav, Sunil S; Ghole, Vikram S; Sze, Siu Kwan; Kodam, Kisan M

    2016-10-01

    Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding. PMID:27371791

  14. Estradiol Exposure Differentially Alters Monolayer versus Microtissue MCF-7 Human Breast Carcinoma Cultures.

    PubMed

    Vantangoli, Marguerite M; Madnick, Samantha J; Wilson, Shelby; Boekelheide, Kim

    2016-01-01

    The development of three-dimensional (3D) cultures is increasing, as they are able to provide the utility of in vitro models and the strength of testing in physiologically relevant systems. When cultured in a scaffold-free agarose hydrogel system, MCF-7 human breast carcinoma cells organize and develop into microtissues that contain a luminal space, in stark contrast to the flat morphology of MCF-7 two-dimensional (2D) monolayer cultures. Following exposure to 1nM E2, expression of typical estrogen-responsive genes, including progesterone receptor (PGR), PDZ containing domain 1 (PDZK1) and amphiregulin (AREG) is increased in both 2D and 3D cultures. When examining expression of other genes, particularly those involved in cell adhesion, there were large changes in 3D MCF-7 microtissues, with little to no change observed in the MCF-7 monolayer cultures. Together, these results indicate that while the initial estrogen-regulated transcriptional targets respond similarly in 2D and 3D cultures, there are large differences in activation of other pathways related to cell-cell interactions. PMID:27379522

  15. Vanadium exposure through lactation produces behavioral alterations and CNS myelin deficit in neonatal rats.

    PubMed

    Soazo, Marina; Garcia, Graciela Beatriz

    2007-01-01

    The current study was performed to assess the vanadium(V)-induced developmental toxicity in sucklings of Wistar rats. Dams of treated litters were intraperitoneally injected with 3 mg NaVO(3)/kg body weight/day during 12 days starting on postnatal day (PND) 10. Surface righting reflex, negative geotaxy and hindlimb support tests were performed on pups every 48 h, from 8th to 18th PND. Open field test was performed on the 21st PND. On 22nd PND, some animals were transcardially perfusion-fixed and their brains were removed and cut with a cryostat. Brain sections were processed for myelin histochemistry and for anti-myelin basic protein immunohistochemistry. Delay in eye opening and decreased muscular strength and locomotion were observed in V-exposed pups of both sexes. A decreased myelin staining in corpus callosum and cerebellum in these pups was also observed. Results suggest that vanadium exposure through lactation would induce neurotoxicity in rat developing CNS.

  16. Estradiol Exposure Differentially Alters Monolayer versus Microtissue MCF-7 Human Breast Carcinoma Cultures

    PubMed Central

    Madnick, Samantha J.; Wilson, Shelby; Boekelheide, Kim

    2016-01-01

    The development of three-dimensional (3D) cultures is increasing, as they are able to provide the utility of in vitro models and the strength of testing in physiologically relevant systems. When cultured in a scaffold-free agarose hydrogel system, MCF-7 human breast carcinoma cells organize and develop into microtissues that contain a luminal space, in stark contrast to the flat morphology of MCF-7 two-dimensional (2D) monolayer cultures. Following exposure to 1nM E2, expression of typical estrogen-responsive genes, including progesterone receptor (PGR), PDZ containing domain 1 (PDZK1) and amphiregulin (AREG) is increased in both 2D and 3D cultures. When examining expression of other genes, particularly those involved in cell adhesion, there were large changes in 3D MCF-7 microtissues, with little to no change observed in the MCF-7 monolayer cultures. Together, these results indicate that while the initial estrogen-regulated transcriptional targets respond similarly in 2D and 3D cultures, there are large differences in activation of other pathways related to cell-cell interactions. PMID:27379522

  17. Low-level radiocaesium exposure alters gene expression in roots of Arabidopsis.

    PubMed

    Sahr, Tobias; Voigt, Gabriele; Schimmack, Wolfgang; Paretzke, Herwig G; Ernst, Dieter

    2005-10-01

    Radiocaesium is one of the main anthropogenic sources of internal and external exposure to beta- and gamma-radiation (e.g. from global fallout of atmospheric atomic bomb testing and from the Chernobyl reactor accident). Here we investigated gene expression by suppression subtractive hybridization (SSH) and reverse transcription-polymerase chain reaction (RT-PCR) in Arabidopsis thaliana, which was induced by the root uptake of 134Cs. SSH analysis resulted in the isolation of 46 clones that were differentially expressed at 30 Bq cm(-3) 134Cs. Most of the expressed sequence tags identified belonged to genes encoding proteins that were involved in cell growth, cell division and the development of plants, and in proteins controlling translation, general metabolism and stress defence, including a DNA excision repair protein. The accumulation of caesium in plant material was measured in plants grown for 5 wk on agar contaminated by up to 60 Bq cm(-3) 134Cs. 134Cs was found to accumulate, in particular, in leaf rosettes and was dependent on the activity concentration in the growth media. The data indicate that low-level ionizing radiation influences important cellular responses, resulting in a changed gene-expression profile.

  18. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis.

    PubMed Central

    Crump, Doug; Werry, Kate; Veldhoen, Nik; Van Aggelen, Graham; Helbing, Caren C

    2002-01-01

    A growing number of substances released into the environment disrupt normal endocrine mechanisms in a wide range of vertebrates. Little is known about the effects and identities of endocrine-disrupting chemicals (EDCs) that target thyroid hormone (TH) action, particularly at the cellular level. Frog tadpole metamorphosis depends completely on TH, which has led to the suggestion of a metamorphosis-based assay for screening potential EDCs. A major mechanism of TH action is the alteration of gene expression via hormone-bound nuclear receptors. To assess the gene expression profiles in the frog model, we designed a novel multispecies frog cDNA microarray. Recently, the preemergent herbicide acetochlor was shown to accelerate 3,5,3 -triiodothyronine (T3)-induced forelimb emergence and increase mRNA expression of thyroid hormone ss receptors in ranid tadpoles. Here we show that T3-induced metamorphosis of Xenopus laevis, a species commonly used in the laboratory, is accelerated upon acute exposure to an environmentally relevant level of acetochlor. The morphologic changes observed are preceded by alterations in gene expression profiles detected in the tadpole tail, and the nature of these profiles suggest a novel mechanism of action for acetochlor. PMID:12460798

  19. Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages.

    PubMed

    Couture, J J; Holeski, L M; Lindroth, R L

    2014-03-01

    Anthropogenic activities are altering levels of greenhouse gases to the extent that multiple and diverse ecosystem processes are being affected. Two gases that substantially influence forest health are atmospheric carbon dioxide (CO2 ) and tropospheric ozone (O3 ). Plant chemistry will play an important role in regulating ecosystem processes in future environments, but little information exists about the longitudinal effects of elevated CO2 and O3 on phytochemistry, especially for long-lived species such as trees. To address this need, we analysed foliar chemical data from two genotypes of trembling aspen, Populus tremuloides, collected over 10 years of exposure to levels of CO2 and O3 predicted for the year 2050. Elevated CO2 and O3 altered both primary and secondary chemistry, and the magnitude and direction of the responses varied across developmental stages and between aspen genotypes. Our findings suggest that the effects of CO2 and O3 on phytochemical traits that influence forest processes will vary over tree developmental stages, highlighting the need to continue long-term, experimental atmospheric change research.

  20. Prenatal Hyperandrogenization Induces Metabolic and Endocrine Alterations Which Depend on the Levels of Testosterone Exposure

    PubMed Central

    Amalfi, Sabrina; Velez, Leandro Martín; Heber, María Florencia; Vighi, Susana; Ferreira, Silvana Rocío; Orozco, Adriana Vega; Pignataro, Omar; Motta, Alicia Beatriz

    2012-01-01

    Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS

  1. Altered gene expression in rat mesenteric tissue following in vivo exposure to a phosphodiesterase 4 inhibitor

    SciTech Connect

    Dagues, Nicolas . E-mail: nicolas.dagues@pfizer.com; Pawlowski, Valerie; Guigon, Ghislaine; Ledieu, David; Sobry, Cecile; Hanton, Gilles; Freslon, Jean-Louis; Chevalier, Stephan

    2007-01-01

    Vascular injury is a relatively common finding during the pre-clinical toxicity testing of drugs. The mechanisms of the injury are poorly understood and in turn, sensitive and specific biomarkers for pre-clinical and clinical monitoring do not exist. The present study was undertaken to investigate the molecular mechanisms of drug-induced vascular injury in mesenteric tissue of rats treated with the selective phosphodiesterase 4 (PDE4) inhibitor CI-1044. In a time-course study, male Sprague Dawley rats were given daily doses of 40 or 80 mg/kg for 1, 2 or 3 successive days and were euthanized the following day. Gene expression profiles in mesenteric tissue were determined using Affymetrix RG{sub U}34A microarrays and fibrinogen and cytokine measurements were performed in blood samples. Hierarchical clustering analysis produced a clear pattern separation of the animals with inflammation, animal with inflammation and necrosis and animals without any lesion. Genes associated with inflammation, procoagulation, extracellular matrix remodeling were up-regulated. An altered expression of genes involved in vascular tone regulation, lipid and glucose metabolism was also observed. Selected genes expression changes were confirmed by TaqMan real-time RT-PCR. The inflammatory process was also detected in the bloodstream at the protein level since fibrinogen, IL6 and IL1{beta} concentrations were increased in treated animals. Overall, the present study reveals several molecular changes supporting the hypothesis by which PDE4 inhibitor-induced vascular lesions in rats are triggered by an inflammatory mechanism and/or a vascular tone dysregulation.

  2. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  3. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics.

    PubMed

    Caffino, Lucia; Giannotti, Giuseppe; Malpighi, Chiara; Racagni, Giorgio; Fumagalli, Fabio

    2015-10-01

    Although glucocorticoid receptors (GRs) contribute to the action of cocaine, their role following developmental exposure to the psychostimulant is still unknown. To address this issue, we exposed adolescent male rats to cocaine (20mg/kg/day) from post-natal day (PND) 28 to PND 42 and sacrificed them at PND 45 or 90. We studied the medial prefrontal cortex (mPFC), a brain region that is still developing during adolescence. In PND 45 rats we found enhanced GR transcription and translation as well as increased trafficking toward the nucleus of the receptor, with no alteration in plasma corticosterone levels. We also showed reduced expression of the GR co-chaperone FKBP51, that normally keeps the receptor in the cytoplasm, and increased expression of Src1, which cooperates in the activation of GR transcriptional activity, revealing that short withdrawal alters the finely tuned mechanisms regulating GR action. Since activation of GRs regulate dendritic spine morphology, we next investigated spine dynamics in cocaine-withdrawn rats. We found that PSD95, cofilin and F-actin, molecules regulating spine actin network, are reduced in the mPFC of PND 45 rats suggesting reduced spine density, confirmed by confocal imaging. Further, formation of filopodia, i.e. the inactive spines, is enhanced suggesting the formation of non-functional spines. Of note, no changes were found in molecules related to GR machinery or spine dynamics following long-term abstinence, i.e. in adult rats (PND 90). These findings demonstrate that short withdrawal promotes plastic changes in the developing brain via the dysregulation of the GR system and alterations in the spine network. PMID:26004981

  4. Chronic anabolic androgenic steroid exposure alters corticotropin releasing factor expression and anxiety-like behaviors in the female mouse.

    PubMed

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-11-01

    In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central nucleus of the amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BnST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  5. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    PubMed Central

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  6. Chronic anabolic androgenic steroid exposure alters corticotropin releasing factor expression and anxiety-like behaviors in the female mouse.

    PubMed

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-11-01

    In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central nucleus of the amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BnST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST.

  7. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    PubMed

    Iguchi, Yoshio; Kosugi, Sakurako; Nishikawa, Hiromi; Lin, Ziqiao; Minabe, Yoshio; Toda, Shigenobu

    2014-01-01

    Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates. PMID:25489939

  8. Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule).

    PubMed

    Baudrimont, M; de Montaudouin, X

    2007-02-01

    The aim of the present study was to analyse the relation between parasitism and subsequent metallothioneins (MT) in the case of metal contamination. Experimental exposure of parasitized and unparasitized cockles (Cerastoderma edule) to cadmium (Cd) was performed, with the cockle as first or second intermediate host of 2 digenean species. After 7 days of Cd exposure in microcosms, cockles infected as first intermediate host by Labratrema minimus exhibited metal concentrations in tissues double that in uninfected cockles. Jointly, MT concentrations of parasitized cockles were not modified in comparison with uninfected individuals in which concentrations were increased 4.3-fold compared with controls. In cockles experimentally infected as the second intermediate host by Himasthla elongata, cadmium concentrations significantly increased again in parasitized cockles compared with uninfected individuals in contaminated conditions. Simultaneously, MT concentrations in healthy cockles increased, whereas they significantly decreased in parasitized individuals. Therefore, the presence of digenean parasites in Cd-exposed cockles leads to a maintenance or a decrease in MT concentrations compared with healthy individuals, whereas Cd accumulation in tissues is significantly increased. These experiments indicate a significant alteration of the protective effect of metallothioneins towards metals which could consequently enhance cockle vulnerability. Moreover, these results highlight the limit of the use of MT as a biomarker of metal pollution in field monitoring if parasitism is not taken into account.

  9. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill. PMID:26115348

  10. Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice.

    PubMed

    Vlkolinsky, R; Titova, E; Krucker, T; Chi, B B; Staufenbiel, M; Nelson, G A; Obenaus, A

    2010-03-01

    Abstract An unavoidable complication of space travel is exposure to high-charge, high-energy (HZE) particles. In animal studies, exposure of the CNS to HZE-particle radiation leads to neurological alterations similar to those seen in aging or Alzheimer's disease. In this study we examined whether HZE-particle radiation accelerated the age-related neuronal dysfunction that was previously described in transgenic mice overexpressing human amyloid precursor protein (APP). These APP23 transgenic mice exhibit age-related behavioral abnormalities and deficits in synaptic transmission. We exposed 7-week-old APP23 transgenic males to brain-only (56)Fe-particle radiation (600 MeV/nucleon; 1, 2, 4 Gy) and recorded synaptic transmission in hippocampal slices at 2, 6, 9, 14 and 18-24 months. We stimulated Schaeffer collaterals and recorded field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) in CA1 neurons. Radiation accelerated the onset of age-related fEPSP decrements recorded at the PS threshold from 14 months of age to 9 months and reduced synaptic efficacy. At 9 months, radiation also reduced PS amplitudes. At 6 months, we observed a temporary deficit in paired-pulse inhibition of the PS at 2 Gy. Radiation did not significantly affect survival of APP23 transgenic mice. We conclude that irradiation of the brain with HZE particles accelerates Alzheimer's disease-related neurological deficits.

  11. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill.

  12. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    PubMed

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life. PMID:24147415

  13. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    PubMed

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.

  14. Repeated Exposure of Adult Rats to Transient Oxidative Stress Induces Various Long-Lasting Alterations in Cognitive and Behavioral Functions

    PubMed Central

    Iguchi, Yoshio; Kosugi, Sakurako; Nishikawa, Hiromi; Lin, Ziqiao; Minabe, Yoshio; Toda, Shigenobu

    2014-01-01

    Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates. PMID:25489939

  15. Prenatal ethanol exposure alters the post-lesion reorganization (sprouting) of acetylcholinesterase staining in the dentate gyrus of adult rats.

    PubMed

    West, J R; Dewey, S L; Cassell, M D

    1984-01-01

    qrenatal exposure of rats to ethanol by feeding pregnant dams a liquid diet containing 35% ethanol-derived calories during days 1-21 of gestation produced an altered lesion-induced sprouting response in the offspring when they were lesioned as adults. The localization of acetylcholinesterase (AChE) in the molecular layer of the dentate gyrus was determined by histochemical methods and used to monitor sprouting following the unilateral ablation of the entorhinal cortex. Quantitative morphometric techniques, including computer-assisted image analysis, were used to measure the width of bands and the total area of AChE-positive staining. Both measures indicated an expanded commissural/associational (C/A) zone (indicating a more robust sprouting response) in the rats exposed to ethanol prenatally compared to normal and pair-fed control rats that received similar lesions. A comparison of the post-lesion changes in the supra- and infrapyramidal blades revealed a trend towards more C/A sprouting in the infrapyramidal blade, but only in the ethanol-exposed rats. These findings indicate that prenatal ethanol exposure has long-lasting effects on morphological responsiveness such as sprouting in the central nervous system.

  16. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure. PMID:26200068

  17. Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles.

    PubMed

    Zuykov, Michael; Pelletier, Emilien; Belzile, Claude; Demers, Serge

    2011-07-01

    This study describes the morphology of inner shell surface (ISS) of the blue mussel Mytilus edulis Linnaeus after short-term exposures to radiolabeled silver in free-ionic ((110m)Ag(+)) and engineered nanoparticulate ((110m)AgNPs, <40 nm) phases. Radiolabeled silver in starting solutions was used in a similar low concentration (∼15 Bq mL(-1)) for both treatments. After exposure experiments radiolabeled silver was leached from the ISS using HCl. It concentration for shells from both treatments was ∼0.5 Bq mL(-1). Whole ISS of young individuals and prismatic layer of adults showed no evidence of any major alteration process after silver uptake. However, the nacre portion of adult mussels exposed to both treatments revealed distinct doughnut shape structures (DSS) formed by calcium carbonate micrograins that covered the surface of aragonite tablets. Scanning electron microscope (SEM) imaging revealed the existence of only minor differences in DSS morphology between mussels exposed to Ag(+) and AgNPs. From literature survey, DSS were also found in bivalves exposed to Cd(2+). The DSS occurring in a specimen of a field-collected bivalve is also shown. Formation of distinctive DSS can be explained by a disturbance of the shell calcification mechanism. Although the occurrence of DSS is not exclusively associated with metal bioavailability to the mussels, the morphology of DSS seems to be linked to the speciation of the metal used in the uptake experiments.

  18. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  19. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells

    PubMed Central

    Arbon, Kate S.; Christensen, Cody M.; Harvey, Wendy A.; Heggland, Sara J.

    2012-01-01

    Recent reports of cadmium in electronic waste and jewelry have increased public awareness regarding this toxic metal. Human exposure to cadmium is associated with the development of osteoporosis. We previously reported cadmium induces apoptosis in human tumor-derived Saos-2 osteoblasts. In this study, we examine the extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC) pathways in cadmium-induced apoptosis and altered osteoblast gene expression. Saos-2 osteoblasts were cultured in the presence or absence of 10 μM CdCl2 for 2–72 hours. We detected significant ERK activation in response to CdCl2 and pretreatment with the ERK inhibitor PD98059 attenuated cadmium-induced apoptosis. However, PKCα activation was not observed after exposure to CdCl2 and pretreatment with the PKC inhibitor, Calphostin C, was unable to rescue cells from cadmium-induced apoptosis. Gene expression studies were conducted using qPCR. Cells exposed to CdCl2 exhibited a significant decrease in the bone-forming genes osteopontin (OPN) and alkaline phosphatase (ALP) mRNA. In contrast, SOST, whose protein product inhibits bone formation, significantly increased in response to CdCl2. Pretreatment with PD98059 had a recovery effect on cadmium-induced changes in gene expression. This research demonstrates cadmium can directly inhibit osteoblasts via ERK signaling pathway and identifies SOST as a target for cadmium-induced osteotoxicity. PMID:22019892

  20. Estrogen-induced breast cancer: Alterations in breast morphology and oxidative stress as a function of estrogen exposure

    SciTech Connect

    Mense, Sarah M.; Remotti, Fabrizio; Bhan, Ashima; Singh, Bhupendra; El-Tamer, Mahmoud; Hei, Tom K.; Bhat, Hari K.

    2008-10-01

    mammary tissue from age-matched animals. Similarly, alterations in glutathione peroxidase and superoxide dismutase activities were detected in both mammary and tumor tissue from E{sub 2}-treated rats. Taken together, our data reveal that proliferative changes in the breast tissue of ACI rats are associated with increases in 8-isoPGF{sub 2{alpha}} formation as well as changes in the activities of antioxidant enzymes. These oxidative changes appear to be a function of E{sub 2} exposure and occur prior to tumor development.

  1. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    PubMed

    Mailloux, Ryan J; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G; Jin, Xiaolei

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure

  2. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio).

    PubMed

    Dishaw, Laura V; Hunter, Deborah L; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M

    2014-12-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish.

  3. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.

  4. Exposure to monomethylarsonous acid (MMA{sup III}) leads to altered selenoprotein synthesis in a primary human lung cell model

    SciTech Connect

    Meno, Sarah R.; Nelson, Rebecca; Hintze, Korry J.; Self, William T.

    2009-09-01

    Monomethylarsonous acid (MMA{sup III}), a trivalent metabolite of arsenic, is highly cytotoxic and recent cell culture studies suggest that it might act as a carcinogen. The general consensus of studies indicates that the cytotoxicity of MMA{sup III} is a result of increased levels of reactive oxygen species (ROS). A longstanding relationship between arsenic and selenium metabolism has led to the use of selenium as a supplement in arsenic exposed populations, however the impact of organic arsenicals (methylated metabolites) on selenium metabolism is still poorly understood. In this study we determined the impact of exposure to MMA{sup III} on the regulation of expression of TrxR1 and its activity using a primary lung fibroblast line, WI-38. The promoter region of the gene encoding the selenoprotein thioredoxin reductase 1 (TrxR1) contains an antioxidant responsive element (ARE) that has been shown to be activated in the presence of electrophilic compounds. Results from radiolabeled selenoproteins indicate that exposure to low concentrations of MMA{sup III} resulted in increased synthesis of TrxR1 in WI-38 cells, and lower incorporation of selenium into other selenoproteins. MMA{sup III} treatment led to increased mRNA encoding TrxR1 in WI-38 cells, while lower levels of mRNA coding for cellular glutathione peroxidase (cGpx) were detected in exposed cells. Luciferase activity of TrxR1 promoter fusions increased with addition of MMA{sup III}, as did expression of a rat quinone reductase (QR) promoter fusion construct. However, MMA{sup III} induction of the TRX1 promoter fusion was abrogated when the ARE was mutated, suggesting that this regulation is mediated via the ARE. These results indicate that MMA{sup III} alters the expression of selenoproteins based on a selective induction of TrxR1, and this response to exposure to organic arsenicals that requires the ARE element.

  5. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. PMID:27038576

  6. Chlorpyrifos exposure during neurulation: cholinergic synaptic dysfunction and cellular alterations in brain regions at adolescence and adulthood.

    PubMed

    Qiao, Dan; Seidler, Frederic J; Abreu-Villaça, Yael; Tate, Charlotte A; Cousins, Mandy M; Slotkin, Theodore A

    2004-01-31

    The developmental neurotoxicity of chlorpyrifos (CPF) involves multiple mechanisms, thus rendering the immature brain susceptible to adverse effects over a wide window of vulnerability. Earlier work indicated that CPF exposure at the neural tube stage elicits apoptosis and disrupts mitotic patterns in the brain primordium but that rapid recovery ensues before birth. In the current study, we assessed whether defects in cholinergic synaptic activity emerge later in development. CPF was given to pregnant rats on gestational days 9-12, using regimens devoid of overt maternal or fetal toxicity. We then examined subsequent development of acetylcholine systems and compared the effects to those on general biomarkers of cell development. Choline acetyltransferase (ChAT), a constitutive marker for cholinergic nerve terminals, was increased in the hippocampus and striatum in adolescence and adulthood. In contrast, hemicholinium-3 (HC-3) binding to the presynaptic choline transporter, an index of nerve impulse activity, was markedly subnormal. Furthermore, m2-muscarinic cholinergic receptor binding was significantly reduced, instead of showing the expected compensatory upregulation for reduced neural input. CPF also elicited delayed-onset alterations in biomarkers of cell packing density, cell number, cell size and neuritic projections, involving brain regions both with and without reductions in indices of cholinergic activity. In combination with earlier results, the current findings indicate that the developing brain, and especially the hippocampus, is adversely affected by CPF regardless of whether exposure occurs early or late in brain development, and that defects emerge in adolescence or adulthood even in situations where normative values are initially restored in the immediate post-exposure period.

  7. Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio.

    PubMed

    Saucedo-Vence, Karinne; Dublán-García, Octavio; López-Martínez, Leticia Xochitl; Morachis-Valdes, Gabriela; Galar-Martínez, Marcela; Islas-Flores, Hariz; Gómez-Oliván, Leobardo Manuel

    2015-04-01

    Diclofenac (DCF) has been detected in significant amounts in municipal treated wastewater effluent. Diverse studies report that trace concentrations of DCF may induce toxic effects on different aquatic organisms as well as developmental, reproductive and renal damage. This study aimed to determine whether short and long-term exposure to DCF alter the oxidative stress (OS) status in blood, muscle, gills, brain and liver of common carp Cyprinus carpio. The median lethal concentration of DCF at 96 h (96-h LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed (short and long-term) to the latter value for different exposure times (4 and 24 days) and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxides content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF was determined by LC-MS/MS. Significant increases in HPC, LPX and PCC were observed respect to control (P < 0.05) particularly in blood, muscle, gill, brain and liver. SOD, CAT and GPx activity also increased in these organs, with respect to controls (P < 0.05). DCF concentrations decreased and increased in water system and carp, respectively. Cyprinus carpio exposed to DCF was affected in OS status during the initial days of the study (at 4 days), exhibiting an increased response at 24 days in blood and liver. In contrast, a decrease was observed in muscle, gills and brain at 24 days with respect to 4 days. In conclusion, DCF induces OS on blood, muscle, gills, brain and liver in the carp C. carpio in short and long-term exposure. The biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species. PMID:25512029

  8. Developmental Exposure to Organophosphate Flame Retardants Elicits Overt Toxicity and Alters Behavior in Early Life Stage Zebrafish (Danio rerio)

    PubMed Central

    Dishaw, Laura V.; Hunter, Deborah L.; Padnos, Beth; Padilla, Stephanie; Stapleton, Heather M.

    2014-01-01

    Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish. Chlorpyrifos was used as a positive control. For overt toxicity and neurobehavioral assessments, zebrafish were exposed from 0 to 5 days postfertilization (dpf). Hatching, death, or malformations were evaluated daily. Teratogenic effects were scored by visual examination on 6 dpf. To evaluate uptake and metabolism, zebrafish were exposed to 1 µM of each organophosphate (OP) flame retardant and collected on 1 and 5 dpf to monitor accumulation. Larval swimming activity was measured in 6 dpf larvae to evaluate neurobehavioral effects of exposures below the acute toxicity threshold. TDBPP elicited the greatest toxicity at >1 µM. TDCPP and chlorpyrifos were overtly toxic at concentrations ≥10 µM, TCEP, and TCPP were not overtly toxic at the doses tested. Tissue concentrations increased with increasing hydrophobicity of the parent chemical after 24 h exposures. TDCPP and TDBPP and their respective metabolites were detected in embryos on 5 dpf. For all chemicals tested, developmental exposures that were not overtly toxic significantly altered larval swimming activity. These data indicate that OPFRs adversely affect development of early life stage zebrafish. PMID:25239634

  9. Exposure to a Northern Contaminant Mixture (NCM) Alters Hepatic Energy and Lipid Metabolism Exacerbating Hepatic Steatosis in Obese JCR Rats

    PubMed Central

    Mailloux, Ryan J.; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C.; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G.; Jin, Xiaolei

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure

  10. Alteration of Serum Concentrations of Manganese, Iron, Ferritin, and Transferrin Receptor Following Exposure to Welding Fumes Among Career Welders

    PubMed Central

    Lu, Ling; Zhang, Long-lian; Li, G. Jane; Guo, Wenrui; Liang, Wannian; Zheng, Wei

    2014-01-01

    This study was performed to determine airborne manganese levels during welding practice and to establish the relationship between long-term, low-level exposure to manganese and altered serum concentrations of manganese, iron, and proteins associated with iron metabolism in career welders. Ninety-seven welders (average age of 36 years) who have engaged in electric arc weld in a vehicle manufacturer were recruited as the exposed group. Welders worked 7–8 h per day with employment duration of 1–33 years. Control subjects consisted of 91 employees (average age of 35 years) in the same factory but not in the welding profession. Ambient manganese levels in welders’ breathing zone were the highest inside the vehicle (1.5 ± 0.7 mg/m3), and the lowest in the center of the workshop (0.2 ± 0.05 mg/m3). Since the filter size was 0.8 μm, it is possible that these values may be likely an underestimation of the true manganese levels. Serum levels of manganese and iron in welders were about three-fold (p < 0.01) and 1.2-fold (p < 0.01), respectively, higher than those of controls. Serum concentrations of ferritin and transferrin were increased among welders, while serum transferrin receptor levels were significantly decreased in comparison to controls. Linear regression analyses revealed a lack of association between serum levels of manganese and iron. However, serum concentrations of iron and ferritin were positively associated with years of welder experience (p < 0.05). Moreover, serum transferrin receptor levels were inversely associated with serum manganese concentrations (p < 0.05). These findings suggest that exposure to welding fume among welders disturbs serum homeostasis of manganese, iron, and the proteins associated with iron metabolism. Serum manganese may serve as a reasonable biomarker for assessment of recent exposure to airborne manganese. PMID:15713346

  11. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    PubMed

    Mailloux, Ryan J; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G; Jin, Xiaolei

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure

  12. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  13. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    PubMed

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  14. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki).

    PubMed

    Frankel, Tyler E; Meyer, Michael T; Orlando, Edward F

    2016-08-01

    significant between the two treatments. LNG caused significant increases in the 4:6 anal fin ratio of males exposed to 100ng/L, with no effects observed in the 10ng/L treatment. In addition, the reproductive behavior of control males paired with female mosquitofish exposed to 100ng/L LNG was also altered, for these males spent more time exhibiting no reproductive behavior, had decreased attending behavior, and a lower number of gonopodial thrusts compared to control males paired to control female mosquitofish. Given the rapid effects on both anal fin morphology and behavior observed in this study, the mosquitofish is an excellent sentinel species for the detection of exposure to LNG and likely other 19-nortestosterone derived contraceptive progestins in the environment. PMID:26795917

  15. Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: influence of maternal Mg2+ supplementation.

    PubMed

    Wold, L E; Norby, F L; Hintz, K K; Colligan, P B; Epstein, P N; Ren, J

    2001-01-01

    Fetal alcohol syndrome (FAS) is often associated with cardiac hypertrophy and impaired ventricular function in a manner similar to postnatal chronic alcohol ingestion. Chronic alcoholism has been shown to lead to hypomagnesemia, and dietary Mg2+ supplementation was shown to ameliorate ethanol- induced cardiovascular dysfunction such as hypertension. However, the role of gestational Mg2+ supplementation on FAS-related cardiac dysfunction is unknown. This study was conducted to examine the influence of gestational dietary Mg2+ supplementation on prenatal ethanol exposure-induced cardiac contractile response at the ventricular myocyte level. Timed-pregnancy female rats were fed from gestation day 2 with liquid diets containing 0.13 g/L Mg2+ supplemented with ethanol (36%) or additional Mg2+ (0.52 g/L), or both. The pups were maintained on standard rat chow through adulthood, and ventricular myocytes were isolated and stimulated to contract at 0.5 Hz. Mechanical properties were evaluated using an IonOptix soft-edge system, and intracellular Ca2+ transients were measured as changes in fura-2 fluorescence intensity (Delta FFI). Offspring from all groups displayed similar growth curves. Myocytes from the ethanol group exhibited reduced cell length, enhanced peak shortening (PS), and shortened time to 90% relengthening (TR90) associated with a normal Delta FFI and time to PS (TPS). Mg2+ reverted the prenatal ethanol-induced alteration in PS and maximal velocity of relengthening. However, it shortened TPS and TR90, and altered the Delta FFI, as well as Ca2+ decay rate by itself. Additionally, myocytes from the ethanol group exhibited impaired responsiveness to increased extracellular Ca2+ or stimulating frequency, which were restored by gestational Mg2+ supplementation. These data suggest that although gestational Mg2+ supplementation may be beneficial to certain cardiac contractile dysfunctions in offspring of alcoholic mothers, caution must be taken, as Mg2

  16. Alteration of cytoskeletal molecules in a human T cell line caused by continuous exposure to chrysotile asbestos.

    PubMed

    Maeda, Megumi; Chen, Ying; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Matsuzaki, Hidenori; Lee, Suni; Hiratsuka, Jun-Ichi; Nishimura, Yasumitsu; Kimura, Yoshinobu; Otsuki, Takemi

    2013-09-01

    Among the various biological effects of asbestos such as fibrogenesis and carcinogenesis, we have been focusing on the immunological effects becausesilica (SiO(2)) and asbestos chemically is a mineral silicate of silica. Observations of the effects of asbestos on CD4+ T cells showed reduction of CXCR3 chemokine receptor and reduced capacity of interferon γ production. In particular, use of theHTLV-1 immortalized human T cell line, MT-2, and cDNA array analysis have helped to identify the modification of CXCR3. We investigated alteration of protein expression among MT-2 original cells that had no contact with asbestos, and six chrysotile-continuously exposed independent sublines using ProteinChip and two-dimensional gel electrophoresis (2DGE) assays. Further confirmation of the changes in protein expression due to asbestos exposure was obtained after the 2DGE method indicated protein modification of β-actin. β-actin was upregulated in mRNA, as were the levels of protein expression and phosphorylation. Moreover, a binding assay between cells and chrysotile showed that various molecules related to the cytoskeleton such as vimentin, myosin-9 and tubulin-β2, as well as β-actin, exhibited enhanced bindings in asbestos-exposed cells. The overall findings indicate that the cell surface cytoskeleton may play an important role in inducing the cellular changes caused by asbestos in immune cells, since fibers are not incorporated to the cells and how the alterations of cytoskeleton determined cell destiny to cause the reduction of tumor immunity is important to consider the biological effects of asbestos. Further studies to target several cytoskeleton-related molecules associated with the effects of asbestos will result in a better understanding of the immunological effects of asbestos and support the development of chemo-prevention to recover anti-tumor immunity in asbestos-exposed patients.

  17. Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge.

    PubMed

    Segal, David S; Kuczenski, Ronald; O'Neil, Meghan L; Melega, William P; Cho, Arthur K

    2003-10-01

    The neurotoxic effects of methamphetamine (METH) have been characterized primarily from the study of high-dose binge regimens in rodents. However, this drug administration paradigm does not include a potentially important feature of stimulant abuse in humans, that is, the gradual escalation of stimulant doses that frequently occurs prior to high-dose exposure. We have argued that pretreatment with escalating doses (EDs) might significantly alter the neurotoxic profile produced by a single high-dose binge. In the present study, we tested this hypothesis by pretreating rats with saline or gradually increasing doses of METH (0.1-4.0 mg/kg over 14 days), prior to an acute METH binge (4 x 6 mg/kg at 2 h intervals). These animals, whose behavior was continuously monitored throughout drug treatment, were then killed 3 days later for determination of caudate-putamen dopamine (DA) content, levels of [(3)H]WIN 35,428 binding to the DA transporter, and levels of [(3)H]dihydrotetrabenazine ([(3)H]DTBZ) binding to the vesicular monoamine transporter. ED pretreatment markedly attenuated the stereotypy response, as well as the hyperthermia and indices of sympathetic activation associated with the acute binge. In addition, ED pretreatment prevented the decline in [(3)H]WIN 35,428 binding, and significantly diminished the decrease in DA levels, but did not affect the decrease in [(3)H]DTBZ binding associated with the acute binge. We suggest that further study of the effects produced by a regimen which includes a gradual escalation of doses prior to high-dose METH binge exposure could more accurately identify the neurochemical and behavioral changes relevant to those that occur as a consequence of high-dose METH abuse in humans.

  18. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    PubMed

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.

  19. Methamphetamine Self-Administration Causes Persistent Striatal Dopaminergic Alterations and Mitigates the Deficits Caused by a Subsequent Methamphetamine Exposure

    PubMed Central

    McFadden, Lisa M.; Hadlock, Greg C.; Allen, Scott C.; Vieira-Brock, Paula L.; Stout, Kristen A.; Ellis, Jonathan D.; Hoonakker, Amanda J.; Andrenyak, David M.; Nielsen, Shannon M.; Wilkins, Diana G.; Hanson, Glen R.

    2012-01-01

    Preclinical studies have demonstrated that repeated methamphetamine (METH) injections (referred to herein as a “binge” treatment) cause persistent dopaminergic deficits. A few studies have also examined the persistent neurochemical impact of METH self-administration in rats, but with variable results. These latter studies are important because: 1) they have relevance to the study of METH abuse; and 2) the effects of noncontingent METH treatment do not necessarily predict effects of contingent exposure. Accordingly, the present study investigated the impact of METH self-administration on dopaminergic neuronal function. Results revealed that self-administration of METH, given according to a regimen that produces brain METH levels comparable with those reported postmortem in human METH abusers (0.06 mg/infusion; 8-h sessions for 7 days), decreased striatal dopamine transporter (DAT) uptake and/or immunoreactivity as assessed 8 or 30 days after the last self-administration session. Increasing the METH dose per infusion did not exacerbate these deficits. These deficits were similar in magnitude to decreases in DAT densities reported in imaging studies of abstinent METH abusers. It is noteworthy that METH self-administration mitigated the persistent deficits in dopaminergic neuronal function, as well as the increases in glial fibrillary acidic protein immunoreactivity, caused by a subsequent binge METH exposure. This protection was independent of alterations in METH pharmacokinetics, but may have been attributable (at least in part) to a pretreatment-induced attenuation of binge-induced hyperthermia. Taken together, these results may provide insight into the neurochemical deficits reported in human METH abusers. PMID:22034657

  20. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  1. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    SciTech Connect

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.

  2. The Pancreas Is Altered by In Utero Androgen Exposure: Implications for Clinical Conditions Such as Polycystic Ovary Syndrome (PCOS)

    PubMed Central

    Rae, Mick; Grace, Cathal; Hogg, Kirsten; Wilson, Lisa Marie; McHaffie, Sophie L.; Ramaswamy, Seshadri; MacCallum, Janis; Connolly, Fiona; McNeilly, Alan S.; Duncan, Colin

    2013-01-01

    Using an ovine model of polycystic ovary syndrome (PCOS), (pregnant ewes injected with testosterone propionate (TP) (100 mg twice weekly) from day (d)62 to d102 of d147 gestation (maternal injection – MI-TP)), we previously reported female offspring with normal glucose tolerance but hyperinsulinemia. We therefore examined insulin signalling and pancreatic morphology in these offspring using quantitative (Q) RT-PCR and western blotting. In addition the fetal pancreatic responses to MI-TP, and androgenic and estrogenic contributions to such responses (direct fetal injection (FI) of TP (20 mg) or diethylstilbestrol (DES) (20 mg) at d62 and d82 gestation) were assessed at d90 gestation. Fetal plasma was assayed for insulin, testosterone and estradiol, pancreatic tissue was cultured, and expression of key β-cell developmental genes was assessed by QRT-PCR. In female d62MI-TP offspring insulin signalling was unaltered but there was a pancreatic phenotype with increased numbers of β-cells (P<0.05). The fetal pancreas expressed androgen receptors in islets and genes involved in β-cell development and function (PDX1, IGF1R, INSR and INS) were up-regulated in female fetuses after d62MI-TP treatment (P<0.05–0.01). In addition the d62MI-TP pancreas showed increased insulin secretion under euglycaemic conditions (P<0.05) in vitro. The same effects were not seen in the male fetal pancreas or when MI-TP was started at d30, before the male programming window. As d62MI-TP increased both fetal plasma testosterone (P<0.05) and estradiol concentrations (P<0.05) we assessed the relative contribution of androgens and estrogens. FI-TP (commencing d62) (not FI-DES treatment) caused elevated basal insulin secretion in vitro and the genes altered by d62MI-TP treatment were similarly altered by FI-TP but not FI-DES. In conclusion, androgen over-exposure alters fetal pancreatic development and β-cell numbers in offspring. These data suggest that that there may be a primary pancreatic

  3. LACK OF ALTERATIONS IN THYROID HORMONES FOLLOWING EXPOSURE TO POLYBROMINATED DIPHENYL ETHER 47 DURING A PERIOD OF RAPID BRAIN DEVELOPMENT IN MICE

    EPA Science Inventory

    Polybrominated diphenyl ether 47 (PBDE-47) is one of a class of commonly used flame retardants that are accumulating in the environment, including human tissues. There are reports of thyroid alterations following exposure to PBDE mixtures, and it is possible that disruptions in t...

  4. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    EPA Science Inventory

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  5. PRENATAL EXPOSURE TO THE FUNGICIDE PROCHLORAZ ALTERS THE ONSET OF PARTURITION IN THE DAM AND SEXUAL DIFFERENTIATION IN MALE RAT OFFSPRING

    EPA Science Inventory

    Prenatal Exposure to the Fungicide Prochloraz alters the onset of Parturition in
    the Dam and Sexual Differentiation in Male Rat Offspring.
    N. Noriega1; E. Gray1; J. Ostby1; C. Lambright1; V. Wilson1
    1. RTD, NHEERL, ORD, USEPA, RTP, NC, USA;

    Prochloraz...

  6. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence.

    PubMed

    Schweitzer, Julie B; Riggins, Tracy; Liang, Xia; Gallen, Courtney; Kurup, Pradeep K; Ross, Thomas J; Black, Maureen M; Nair, Prasanna; Salmeron, Betty Jo

    2015-01-01

    The persistence of effects of prenatal drug exposure (PDE) on brain functioning during adolescence is poorly understood. We explored neural activation to a visuospatial working memory (VSWM) versus a control task using functional magnetic resonance imaging (fMRI) in adolescents with PDE and a community comparison group (CC) of non-exposed adolescents. We applied graph theory metrics to resting state data using a network of nodes derived from the VSWM task activation map to further explore connectivity underlying WM functioning. Participants (ages 12-15 years) included 47 adolescents (27 PDE and 20 CC). All analyses controlled for potentially confounding differences in birth characteristics and postnatal environment. Significant group by task differences in brain activation emerged in the left middle frontal gyrus (BA 6) with the CC group, but not the PDE group, activating this region during VSWM. The PDE group deactivated the culmen, whereas the CC group activated it during the VSWM task. The CC group demonstrated a significant relation between reaction time and culmen activation, not present in the PDE group. The network analysis underlying VSWM performance showed that PDE group had lower global efficiency than the CC group and a trend level reduction in local efficiency. The network node corresponding to the BA 6 group by task interaction showed reduced nodal efficiency and fewer direct connections to other nodes in the network. These results suggest that adolescence reveals altered neural functioning related to response planning that may reflect less efficient network functioning in youth with PDE.

  7. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autism-like stereotypical behaviors in offspring mice

    PubMed Central

    Miller, Elaine; Ariza, Jeanelle; Noctor, Stephen; de Water, Judy Van; Martínez-Cerdeño, Verónica

    2014-01-01

    Multiple studies have implicated a role of maternal autoantibodies reactive against fetal brain proteins specific to autism in the etiology of autism spectrum disorders (ASD). In the current study, we examined the impact of brain-reactive maternal autoantibodies of mothers of children with autism (MAU) on offspring behavior in mice compared to offspring exposed to non-reactive IgG of mothers of typically developing children (MTD). Embryonic offspring were exposed to a single intraventricular injection of MAU or MTD IgG on embryonic day 14. Offspring were allowed to mature to adulthood and were subsequently tested for sociability and stereotypic behaviors using a 3-chambered social approach task, marble burying task, and assessment of spontaneous grooming behaviors in response to a novel environment. Results indicate that MAU offspring display autistic-like stereotypic behavior in both marble burying and spontaneous grooming behaviors. Additionally, small alterations in social approach behavior were also observed in MAU offspring compared to MTD offspring. This report demonstrates for the first time the effects of a single, low dose intraventricular exposure of IgG derived from individual MAU samples on offspring behavior. PMID:24613242

  8. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice.

    PubMed

    Camacho, Jasmin; Jones, Karen; Miller, Elaine; Ariza, Jeanelle; Noctor, Stephen; Van de Water, Judy; Martínez-Cerdeño, Verónica

    2014-06-01

    Multiple studies have implicated a role of maternal autoantibodies reactive against fetal brain proteins specific to autism in the etiology of autism spectrum disorders (ASD). In the current study, we examined the impact of brain-reactive maternal autoantibodies of mothers of children with autism (MAU) on offspring behavior in mice compared to offspring exposed to non-reactive IgG of mothers of typically developing children (MTD). Embryonic offspring were exposed to a single intraventricular injection of MAU or MTD IgG on embryonic day 14. Offspring were allowed to mature to adulthood and were subsequently tested for sociability and stereotypic behaviors using a 3-chambered social approach task, marble burying task, and assessment of spontaneous grooming behaviors in response to a novel environment. Results indicate that MAU offspring display autistic-like stereotypical behavior in both marble burying and spontaneous grooming behaviors. Additionally, small alterations in social approach behavior were also observed in MAU offspring compared to MTD offspring. This report demonstrates for the first time the effects of a single, low dose intraventricular exposure of IgG derived from individual MAU samples on offspring behavior.

  9. Exposure to the water soluble fraction of crude oil or to naphthalenes alters breathing rates in Gulf killifish, Fundulus grandis

    SciTech Connect

    Russell, L.C.; Fingerman, M.

    1984-03-01

    Alteration in breathing rate has been used to monitor the effects of pollutants on fishes. Particularly pertinent to the study described herein are the observations that the water soluble fractions (WSF) from Cook Inlet crude oil, Prudhoe Bay crude oil and No. 2 fuel oil increased the breathing rate of pink salmon, Oncorhynchus gorbuscha, fry. However, possible underlying neurological mechanisms for this response have not been identified. Pollutant-induced changes in a fish's breathing rate may indicate neurochemical imbalances in the brain. Exposure of the longnose killifish, Fundulus similis, to the WSF of petroleum resulted in accumulation of naphthalenes from this WSF in high levels in the brain. Various organic compounds have been found to ultimately produce reductions in the whole brain concentration of dopamine in fishes. In view of these effects of various pollutants on breathing rate and the brain dopamine level in fishes, experiments were performed to determine the effects of (a) the WSF of South Louisiana crude oil, (b) two of its most toxic components (naphthalene and 2,6-dimethylnaphthalene) and (c) the dopamine precursor, L-DOPA, on the breathing rate of Fundulus grandis. These experiments would not only reveal whether the WSF and naphthalenes affect the breathing rate but also whether it might be affected by the dopamine concentration in the fish.

  10. Chronic Nicotine Exposure Systemically Alters MicroRNA Expression Profiles during Post-embryonic Stages in Caenorhabditis elegans

    PubMed Central

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is majorly attributed to nicotine. In this study, we employed C. elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20μM and 20mM) was limited to the post-embryonic stage from L1–L4 (~31 hours) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates “regulatory hormesis”, manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs’ regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine. PMID:23765240

  11. Chronic nicotine exposure systemically alters microRNA expression profiles during post-embryonic stages in Caenorhabditis elegans.

    PubMed

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is mainly attributed to nicotine. In this study, we employed Caenorhabditis elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20 µM and 20 mM) was limited to the post-embryonic stage from L1 to L4 (∼31 h) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates "regulatory hormesis", manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs' regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine.

  12. Hepatic mitochondrial alteration in CD1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA)

    PubMed Central

    Quist, Erin M.; Filgo, Adam J.; Cummings, Connie A.; Kissling, Grace E.; Hoenerhoff, Mark J.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid primarily used as an industrial surfactant. It persists in the environment and has been linked to potentially toxic and/or carcinogenic effects in animals and people. As a known activator of peroxisome proliferator-activated receptors (PPARs), PFOA exposure can induce defects in fatty acid oxidation, lipid transport, and inflammation. Here, pregnant CD-1 mice were orally gavaged with 0, 0.01, 0.1, 0.3 and 1 mg/kg of PFOA from gestation days (GD) 1 through 17. On postnatal day (PND) 21, histopathologic changes in the livers of offspring included hepatocellular hypertrophy and periportal inflammation that increased in severity by PND 91 in an apparent dose-dependent response. Transmission electron microscopy (TEM) of selected liver sections from PND 91 mice revealed PFOA-induced cellular damage and mitochondrial abnormalities with no evidence of peroxisome proliferation. Within hypertrophied hepatocytes, mitochondria were not only increased in number, but also exhibited altered morphologies suggestive of increased and/or uncontrolled fission and fusion reactions. These findings suggest that peroxisome proliferation is not a component of PFOA-induced hepatic toxicity in animals that are prenatally exposed to low doses of PFOA. PMID:25326589

  13. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    PubMed

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  14. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice

    PubMed Central

    2013-01-01

    Background Traffic-generated air pollution-exposure is associated with adverse effects in the central nervous system (CNS) in both human exposures and animal models, including neuroinflammation and neurodegeneration. While alterations in the blood brain barrier (BBB) have been implicated as a potential mechanism of air pollution-induced CNS pathologies, pathways involved have not been elucidated. Objectives To determine whether inhalation exposure to mixed vehicle exhaust (MVE) mediates alterations in BBB permeability, activation of matrix metalloproteinases (MMP) -2 and −9, and altered tight junction (TJ) protein expression. Methods Apolipoprotein (Apo) E−/− and C57Bl6 mice were exposed to either MVE (100 μg/m3 PM) or filtered air (FA) for 6 hr/day for 30 days and resulting BBB permeability, expression of ROS, TJ proteins, markers of neuroinflammation, and MMP activity were assessed. Serum from study mice was applied to an in vitro BBB co-culture model and resulting alterations in transport and permeability were quantified. Results MVE-exposed Apo E−/− mice showed increased BBB permeability, elevated ROS and increased MMP-2 and −9 activity, compared to FA controls. Additionally, cerebral vessels from MVE-exposed mice expressed decreased levels of TJ proteins, occludin and claudin-5, and increased levels of inducible nitric oxide synthase (iNOS) and interleukin (IL)-1β in the parenchyma. Serum from MVE-exposed animals also resulted in increased in vitro BBB permeability and altered P-glycoprotein transport activity. Conclusions These data indicate that inhalation exposure to traffic-generated air pollutants promotes increased MMP activity and degradation of TJ proteins in the cerebral vasculature, resulting in altered BBB permeability and expression of neuroinflammatory markers. PMID:24344990

  15. Exposure to Low-Dose 56Fe-Ion Radiation Induces Long-Term Epigenetic Alterations in Mouse Bone Marrow Hematopoietic Progenitor and Stem Cells

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong

    2014-01-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to 56Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose 56Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to 56Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to 56Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to 56Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in the

  16. Lifelong exposure to bisphenol a alters cardiac structure/function, protein expression, and DNA methylation in adult mice.

    PubMed

    Patel, Bhavini B; Raad, Mohamad; Sebag, Igal A; Chalifour, Lorraine E

    2013-05-01

    Bisphenol A (BPA) is an estrogenizing endocrine disruptor compound of concern. Our objective was to test whether lifelong BPA would impact cardiac structure/function, calcium homeostasis protein expression, and the DNA methylation of cardiac genes. We delivered 0.5 and 5.0 µg/kg/day BPA lifelong from gestation day 11 or 200 µg/kg/day from gestation day 11 to postnatal day 21 via the drinking water to C57bl/6n mice. BPA 5.0 males and females had increased body weight, body mass index, body surface area, and adiposity. Echocardiography identified concentric remodeling in all BPA-treated males. Systolic and diastolic cardiac functions were essentially similar, but lifelong BPA enhanced male and reduced female sex-specific differences in velocity of circumferential shortening and ascending aorta velocity time integral. Diastolic blood pressure was increased in all BPA females. The calcium homeostasis proteins sarcoendoplasmic reticulum ATPase 2a (SERCA2a), sodium calcium exchanger-1, phospholamban (PLB), phospho-PLB, and calsequestrin 2 are important for contraction and relaxation. Changes in their expression suggest increased calcium mobility in males and reduced calcium mobility in females supporting the cardiac function changes. DNA methyltransferase 3a expression was increased in all BPA males and BPA 0.5 females and reduced in BPA 200 females. Global DNA methylation was increased in BPA 0.5 males and reduced in BPA 0.5 females. BPA induced sex-specific altered DNA methylation in specific CpG pairs in the calsequestrin 2 CpG island. These results suggest that continual exposure to BPA impacts cardiac structure/function, protein expression, and epigenetic DNA methylation marks in males and females.

  17. Trauma-Induced Alterations in Cognition and Arc Expression are Reduced by Previous Exposure to 56Fe Irradiation

    PubMed Central

    Rosi, Susanna; Belarbi, Karim; Ferguson, Ryan A.; Fishman, Kelly; Obenaus, Andre; Raber, Jacob; Fike, John R.

    2013-01-01

    Exposure to ionizing irradiation may affect brain functions directly, but may also change tissue sensitivity to a secondary insult such as trauma, stroke or degenerative disease. To determine if a low dose of particulate irradiation sensitizes the brain to a subsequent injury, C56BL6 mice were exposed to brain only irradiation with 0.5 Gy of 56Fe ions. Two months later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Three weeks after trauma animals received multiple BrdU injections and 30 days later were tested for cognitive performance in the Morris water maze. All animals where able to locate the visible and hidden platform during training; however, treatment effects were seen when spatial memory retention was assessed in the probe trial (no platform). While sham and irradiated animals showed spatial memory retention, mice that received trauma alone did not. When trauma was preceded by irradiation, performance in the water maze was not different from sham-treated animals, suggesting that low dose irradiation had a protective effect in the context of a subsequent traumatic injury. Measures of hippocampal neurogenesis showed that combined injury did not induce any changes greater that those seen after trauma or radiation alone. After trauma there was a significant decrease in the percentage of neurons expressing the behaviorally-induced immediate early gene Arc in both hemispheres, without associated neuronal loss. After combined injury there were no differences relative to sham-treated mice. Our results suggest that combined injury resulted in decreased alterations of our endpoints compared to trauma alone. While the underlying mechanisms are not yet known, these results resemble a preconditioning, adaptive, or inducible-like protective response, where a sublethal or potentially injurious stimulus (i.e. irradiation) induces tolerance to a subsequent and potentially more damaging insult (trauma). PMID:21192069

  18. Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure.

    PubMed

    Bui, Phuong; Kelly, Scott P

    2015-11-01

    Gill epithelium permeability and qualitative/quantitative aspects of gill claudin (cldn) tight junction (TJ) protein transcriptomics were examined with a primary cultured model gill epithelium developed using euryhaline puffer fish (Tetraodon nigroviridis) gills. The model was prepared using seawater-acclimated fish gills and was cultured on permeable cell culture filter supports. The model is composed of 1-2 confluent layers of gill pavement cells (PVCs), with the outer layer exhibiting prominent apical surface microridges and TJs between adjacent cells. During development of electrophysiological characteristics, the model exhibits a sigmoidal increase in transpithelial resistance (TER) and plateaus around 30 kΩcm(2). At this point paracellular movement of [(3)H]polyethylene glycol (PEG) 4000 was low at ~1.75 cm s(-1)×10(-7). When exposed to apical seawater (SW) epithelia exhibit a marked decrease in TER while PEG flux remained unchanged for at least 6 h. In association with this, transcript encoding cldn TJ proteins cldn3c, -23b, -27a, -27c, -32a and -33b increased during the first 6 h while cldn11a decreased. This suggests that these proteins are involved in maintaining barrier properties between gill PVCs of SW fishes. Gill cldn mRNA abundance also altered 6 and 12 h following abrupt SW exposure of puffer fish, but in a manner that differed qualitatively and quantitatively from the cultured model. This most likely reflects the cellular heterogeneity of whole tissue and/or the contribution of the endocrine system in intact fish. The current study provides insight into the physiological and transcriptomic response of euryhaline fish gill cells to a hyperosmotic environment.

  19. Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure.

    PubMed

    Bui, Phuong; Kelly, Scott P

    2015-11-01

    Gill epithelium permeability and qualitative/quantitative aspects of gill claudin (cldn) tight junction (TJ) protein transcriptomics were examined with a primary cultured model gill epithelium developed using euryhaline puffer fish (Tetraodon nigroviridis) gills. The model was prepared using seawater-acclimated fish gills and was cultured on permeable cell culture filter supports. The model is composed of 1-2 confluent layers of gill pavement cells (PVCs), with the outer layer exhibiting prominent apical surface microridges and TJs between adjacent cells. During development of electrophysiological characteristics, the model exhibits a sigmoidal increase in transpithelial resistance (TER) and plateaus around 30 kΩcm(2). At this point paracellular movement of [(3)H]polyethylene glycol (PEG) 4000 was low at ~1.75 cm s(-1)×10(-7). When exposed to apical seawater (SW) epithelia exhibit a marked decrease in TER while PEG flux remained unchanged for at least 6 h. In association with this, transcript encoding cldn TJ proteins cldn3c, -23b, -27a, -27c, -32a and -33b increased during the first 6 h while cldn11a decreased. This suggests that these proteins are involved in maintaining barrier properties between gill PVCs of SW fishes. Gill cldn mRNA abundance also altered 6 and 12 h following abrupt SW exposure of puffer fish, but in a manner that differed qualitatively and quantitatively from the cultured model. This most likely reflects the cellular heterogeneity of whole tissue and/or the contribution of the endocrine system in intact fish. The current study provides insight into the physiological and transcriptomic response of euryhaline fish gill cells to a hyperosmotic environment. PMID:26239219

  20. Dietary exposure to technical hexabromocyclododecane (HBCD) alters courtship, incubation and parental behaviors in American kestrels (Falco sparverius).

    PubMed

    Marteinson, Sarah C; Bird, David M; Letcher, Robert J; Sullivan, Katrina M; Ritchie, Ian J; Fernie, Kim J

    2012-11-01

    Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant that has been detected in the environment and wildlife at increasing concentrations. This study was designed to determine potential effects of dietary exposure to environmentally relevant levels of HBCD on behavior during reproduction in captive American kestrels. Twenty kestrel pairs were exposed to 0.51 μg technical HBCD g(-1) kestrel d(-1) from 4 weeks prior to pairing until chicks hatched (~75 d). Ten pairs of controls received the safflower oil vehicle only and were used for comparison. During the courtship period the chitter-calls were reduced in both sexes (p=0.038) and females performed fewer bonding displays (p=0.053). Both sexes showed a propensity to be less active than controls during courtship. The reduction in male courtship behavior was correlated with reduced courtship behaviors of females (p=0.008) as well as reduced egg mass (p=0.019). During incubation, nest temperatures of treatment pairs were lower at mid-incubation (p=0.038). HBCD-exposed males performed fewer key parental behaviors when rearing nestlings, including entering the nest-box, pair-bonding displays and food-retrievals. HBCD-exposed females appeared to compensate for the reduced parental behavior of their mates by performing these same behaviors more frequently than controls (p=0.004, p=0.027, p=0.025, respectively). This study demonstrates that HBCD affects breeding behavior in American kestrels throughout the reproductive season and behavioral alterations were linked to reproductive changes (egg size). This is the first study to report HBCD effects on reproductive behavior in any animal model. PMID:22743184

  1. DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: A persistent epigenetic impact on health from maternal lifestyle?

    PubMed

    Nielsen, Christina H; Larsen, Agnete; Nielsen, Anders L

    2016-02-01

    Despite increased awareness, maternal cigarette smoking during pregnancy continues to be a common habit causing risk for numerous documented negative health consequences in the exposed children. It has been proposed that epigenetic mechanisms constitute the link between prenatal exposure to maternal cigarette smoking (PEMCS) and the diverse pathologies arising in later life. We here review the current literature, focusing on DNA methylation. Alterations in the global DNA methylation patterns were observed after exposure to maternal smoking during pregnancy in placenta, cord blood and buccal epithelium tissue. Further, a number of specific genes exemplified by CYP1A1, AhRR, FOXP3, TSLP, IGF2, AXL, PTPRO, C11orf52, FRMD4A and BDNF are shown to have altered DNA methylation patterns in at least one of these tissue types due to PEMCS. Investigations showing persistence and indications of trans-generational inheritance of DNA methylation alterations induced by smoking exposure are also described. Further, smoking-induced epigenetic manifestations can be both tissue-dependent and gender-specific which show the importance of addressing the relevant sex, tissue and cell types in the future studies linking specific epigenetic alterations to disease development. Moreover, the effect of paternal cigarette smoking and second-hand smoke exposure is documented and accordingly not to be neglected in future investigations and data evaluations. We also outline possible directions for the future research to address how DNA methylation alterations induced by maternal lifestyle, exemplified by smoking, have direct consequences for fetal development and later in life health and behavior of the child. PMID:25480659

  2. Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells.

    PubMed

    Howell, George; Mangum, Lauren

    2011-02-01

    Exposure to the organochlorine compounds p,p'-dichlorodiphenyldichloroethylene (DDE) and oxychlordane have been associated with an increased prevalence of diabetes. Although the exact etiology of diabetes, especially type 2 diabetes, is not known, it is thought that adipose dysfunction plays a vital role in the progression of this disease. Thus, the present study examined whether exposure to these bioaccumulative compounds promotes adipocyte dysfunction including alterations in adipogenesis, fatty acid storage, and adipokine production within the adipocyte. We employed the NIH3T3-L1 cell line as a model for adipogenesis and mature adipocyte function. Exposure to DDE or oxychlordane prior to and throughout differentiation did not affect adipogenesis. In mature NIH3T3-L1 adipocytes, exposure to oxychlordane, DDE, or dieldrin had no effect on insulin-stimulated fatty acid uptake but did increase basal fatty acid uptake over a 24 h period. There was no observed effect of exposure to these compounds on lipolysis. Exposure to DDE significantly increased the release of leptin, resistin, and adiponectin from mature adipocytes with corresponding increases in expression of resistin and adiponectin. Taken together, the current data suggest that exposure to these compounds, especially DDE, may promote some aspects of adipocyte dysfunction that are commonly associated with obesity and type 2 diabetes.

  3. Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors.

    PubMed

    Soto, Ana M; Brisken, Cathrin; Schaeberle, Cheryl; Sonnenschein, Carlos

    2013-06-01

    We are now witnessing a resurgence of theories of development and carcinogenesis in which the environment is again being accepted as a major player in phenotype determination. Perturbations in the fetal environment predispose an individual to disease that only becomes apparent in adulthood. For example, gestational exposure to diethylstilbestrol resulted in clear cell carcinoma of the vagina and breast cancer. In this review the effects of the endocrine disruptor bisphenol-A (BPA) on mammary development and tumorigenesis in rodents is used as a paradigmatic example of how altered prenatal mammary development may lead to breast cancer in humans who are also widely exposed to it through plastic goods, food and drink packaging, and thermal paper receipts. Changes in the stroma and its extracellular matrix led to altered ductal morphogenesis. Additionally, gestational and lactational exposure to BPA increased the sensitivity of rats and mice to mammotropic hormones during puberty and beyond, thus suggesting a plausible explanation for the increased incidence of breast cancer.

  4. Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum.

    PubMed

    Abdel-Rahman, A; Abou-Donia, Suzanne; El-Masry, Eman; Shetty, Ashok; Abou-Donia, Mohamed

    2004-01-23

    Exposure to a combination of stress and low doses of the chemicals pyridostigmine bromide (PB), DEET, and permethrin in adult rats, a model of Gulf War exposure, produces blood-brain barrier (BBB) disruption and neuronal cell death in the cingulate cortex, dentate gyrus, thalamus, and hypothalamus. In this study, neuropathological alterations in other areas of the brain where no apparent BBB disruption was observed was studied following such exposure. Animals exposed to both stress and chemical exhibited decreased brain acetylcholinesterase (AChE) activity in the midbrain, brainstem, and cerebellum and decreased m2 muscarinic acetylcholine (ACh) receptor ligand binding in the midbrain and cerebellum. These alterations were associated with significant neuronal cell death, reduced microtubule-associated protein (MAP-2) expression, and increased glial fibrillary acidic protein (GFAP) expression in the cerebral cortex and the hippocampal subfields CA1 and CA3. In the cerebellum, the neurochemical alterations were associated with Purkinje cell loss and increased GFAP immunoreactivity in the white matter. However, animals subjected to either stress or chemicals alone did not show any of these changes in comparison to vehicle-treated controls. Collectively, these results suggest that prolonged exposure to a combination of stress and the chemicals PB, DEET, and permethrin can produce significant damage to the cerebral cortex, hippocampus, and cerebellum, even in the absence of apparent BBB damage. As these areas of the brain are respectively important for the maintenance of motor and sensory functions, learning and memory, and gait and coordination of movements, such alterations could lead to many physiological, pharmacological, and behavioral abnormalities, particularly motor deficits and learning and memory dysfunction. PMID:14675905

  5. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    PubMed

    Caracciolo, Luca; Barbon, Alessandro; Palumbo, Sara; Mora, Cristina; Toscano, Christopher D; Bosetti, Francesca; Barlati, Sergio

    2011-01-01

    Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/-)) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/-) mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/-) mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/-) mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/-) compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/-) mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/-) mice. After KA exposure, COX-2(-/-) mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/-) mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  6. Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice

    SciTech Connect

    Bardullas, U.; Limon-Pacheco, J.H.; Giordano, M.; Carrizales, L.; Mendoza-Trejo, M.S.; Rodriguez, V.M.

    2009-09-01

    Arsenic (As) is a toxic metalloid widely present in the environment. Human exposure to As has been associated with the development of skin and internal organ cancers and cardiovascular disorders, among other diseases. A few studies report decreases in intelligence quotient (IQ), and sensory and motor alterations after chronic As exposure in humans. On the other hand, studies of rodents exposed to high doses of As have found alterations in locomotor activity, brain neurochemistry, behavioral tasks, and oxidative stress. In the present study both male and female C57Bl/6J mice were exposed to environmentally relevant doses of As such as 0.05, 0.5, 5.0, or 50 mg As/L of drinking water for 4 months, and locomotor activity was assessed every month. Male mice presented hyperactivity in the group exposed to 0.5 mg As/L and hypoactivity in the group exposed to 50 mg As/L after 4 months of As exposure, whereas female mice exposed to 0.05, 0.5, and 5.0 mg As/L exhibited hyperactivity in every monthly test during As exposure. Furthermore, striatal and hypothalamic dopamine content was decreased only in female mice. Also decreases in tyrosine hydroxylase (TH) and cytosolic thioredoxin (Trx-1) mRNA expression in striatum and nucleus accumbens were observed in male and female mice, respectively. These results indicate that chronic As exposure leads to gender-dependent alterations in dopaminergic markers and spontaneous locomotor activity, and down-regulation of the antioxidant capacity of the brain.

  7. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells.

    PubMed

    Mandarapu, Rajesh; Prakhya, Balakrishna Murthy

    2016-07-01

    The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings. PMID:26796295

  8. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells.

    PubMed

    Mandarapu, Rajesh; Prakhya, Balakrishna Murthy

    2016-07-01

    The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings.

  9. Dioxin exposure reduces the steroidogenic capacity of mouse antral follicles mainly at the level of HSD17B1 without altering atresia

    PubMed Central

    Karman, Bethany N.; Basavarajappa, Mallikarjuna S.; Hannon, Patrick; Flaws, Jodi A.

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent ovarian toxicant. Previously, we demonstrated that in vitro TCDD (1 nM) exposure decreases production/secretion of the sex steroid hormones progesterone (P4), androstenedione (A4), testosterone (T), and 17β-estradiol (E2) in mouse antral follicles. The purpose of this study was to determine the mechanism by which TCDD inhibits steroidogenesis. Specifically, we examined the effects of TCDD on the steroidogenic enzymes, atresia, and the aryl hydrocarbon receptor (AHR) protein. TCDD exposure for 48 h increased levels of A4, without changing HSD3B1 protein, HSD17B1 protein, estrone (E1), T or E2 levels. Further, TCDD did not alter atresia ratings compared to vehicle at 48 h. TCDD, however, did down regulate the AHR protein at 48 h. TCDD exposure for 96 h decreased transcript levels for Cyp11a1, Cyp17a1, Hsd17b1, and Cyp19a1, but increased Hsd3b1 transcript. TCDD exposure particularly lowered both Hsd17b1 transcript and HSD17B1 protein. However, TCDD exposure did not affect levels of E1 in the media nor atresia ratings at 96 h. TCDD, however, decreased levels of the proapoptotic factor Bax. Collectively, these data suggest that TCDD exposure causes a major block in the steroidogenic enzyme conversion of A4 to T and E1 to E2 and that it regulates apoptotic pathways, favoring survival over death in antral follicles. Finally, the down-regulation of the AHR protein in TCDD exposed follicles persisted at 96 h, indicating that the activation and proteasomal degradation of this receptor likely plays a central role in the impaired steroidogenic capacity and altered apoptotic pathway of exposed antral follicles. PMID:22889882

  10. Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production In Vivo

    PubMed Central

    Liu, Jinming; Ballaney, Manisha; Al-alem, Umaima; Quan, Chunli; Jin, Ximei; Perera, Frederica; Chen, Lung-Chi; Miller, Rachel L.

    2008-01-01

    Changes in methylation of CpG sites at the interleukin (IL)-4 and interferon (IFN)-γ promoters are associated with T helper (Th) 2 polarization in vitro. No previous studies have examined whether air pollution or allergen exposure alters methylation of these two genes in vivo. We hypothesized that diesel exhaust particles (DEP) would induce hypermethylation of the IFN-γ promoter and hypomethylation of IL-4 in CD4+ T cells among mice sensitized to the fungus allergen Aspergillus fumigatus.We also hypothesized that DEP-induced methylation changes would affect immunoglobulin (Ig) E regulation. BALB/c mice were exposed to a 3-week course of inhaled DEP exposure while undergoing intranasal sensitization to A. fumigatus. Purified DNA from splenic CD4+ cells underwent bisulfite treatment, PCR amplification, and pyrosequencing. Sera IgE levels were compared with methylation levels at several CpG sites in the IL-4 and IFN-γ promoter. Total IgE production was increased following intranasal sensitization A. fumigatus. IgE production was augmented further following combined exposure to A. fumigatus and DEP exposure. Inhaled DEP exposure and intranasal A. fumigatus induced hypermethylation at CpG−45, CpG−53, CpG−205 sites of the IFN-γ promoter and hypomethylation at CpG−408 of the IL-4 promoter. Altered methylation of promoters of both genes was correlated significantly with changes in IgE levels. This study is the first to demonstrate that inhaled environmental exposures influence methylation of Th genes in vivo, supporting a new paradigm in asthma pathogenesis. PMID:18042818

  11. ATRAZINE-INDUCED REPRODUCTIVE TRACT ALTERATIONS AFTER TRANSPLACENTAL AND LACTATIONAL EXPOSURE IN LONG-EVANS RAT PUPS

    EPA Science Inventory

    Studies have shown that early postnatal exposure to the common herbicide atrazine (ATR) will delay preputial separation (PPS) in Wistar rats and increase incidence of prostate inflammation in adults. To evaluate ATR exposure parameters required for pubertal delays (PPS), we used...

  12. ATRAZINE-INDUCED REPRODUCTIVE TRACT ALTERATIONS AFTER TRANSPLACENTAL AND LACTATIONAL EXPOSURE IN MALE LONG-EVANS RATS.

    EPA Science Inventory

    Studies showed that early postnatal exposure to the herbicide atrazine (ATR) delayed preputial separation (PPS) and increased incidence of prostate inflammation in adult Wistar rats. A cross-fostering paradigm was used in this study to determine if gestational exposure to ATR wou...

  13. Transcriptome Alterations Following Developmental Atrazine Exposure in Zebrafish Are Associated with Disruption of Neuroendocrine and Reproductive System Function, Cell Cycle, and Carcinogenesis

    PubMed Central

    Freeman, Jennifer L.

    2013-01-01

    Atrazine, a herbicide commonly applied to agricultural areas and a common contaminant of potable water supplies, is implicated as an endocrine-disrupting chemical (EDC) and potentia