Science.gov

Sample records for exposure induced hormesis

  1. Exposure to Nanoparticles and Hormesis

    PubMed Central

    Iavicoli, Ivo; Calabrese, Edward J.; Nascarella, Marc A.

    2010-01-01

    Nanoparticles are particles with lengths that range from 1 to 100 nm. They are increasingly being manufactured and used for commercial purpose because of their novel and unique physicochemical properties. Although nanotechnology-based products are generally thought to be at a pre-competitive stage, an increasing number of products and materials are becoming commercially available. Human exposure to nanoparticles is therefore inevitable as they become more widely used and, as a result, nanotoxicology research is now gaining attention. However, there are many uncertainties as to whether the unique properties of nanoparticles also pose occupational health risks. These uncertainties arise because of gaps in knowledge about the factors that are essential for predicting health risks such as routes of exposure, distribution, accumulation, excretion and dose-response relationship of the nanoparticles. In particular, uncertainty remains with regard to the nature of the dose-response curve at low level exposures below the toxic threshold. In fact, in the literature, some studies that investigated the biological effects of nanoparticles, observed a hormetic dose-response. However, currently available data regarding this topic are extremely limited and fragmentary. It therefore seems clear that future studies need to focus on this issue by studying the potential adverse health effects caused by low-level exposures to nanoparticles. PMID:21191487

  2. Insecticide-induced hormesis and arthropod pest management.

    PubMed

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas.

  3. Hormesis in aging.

    PubMed

    Rattan, Suresh I S

    2008-01-01

    Hormesis in aging is represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Single or multiple exposure to low doses of otherwise harmful agents, such as irradiation, food limitation, heat stress, hypergravity, reactive oxygen species and other free radicals have a variety of anti-aging and longevity-extending hormetic effects. Detailed molecular mechanisms that bring about the hormetic effects are being increasingly understood, and comprise a cascade of stress response and other pathways of maintenance and repair. Although the extent of immediate hormetic effects after exposure to a particular stress may only be moderate, the chain of events following initial hormesis leads to biologically amplified effects that are much larger, synergistic and pleiotropic. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of increased defence capacity and reduced load of damaged macromolecules. Hormetic strengthening of the homeodynamic space provides wider margins for metabolic fluctuation, stress tolerance, adaptation and survival. Hormesis thus counter-balances the progressive shrinkage of the homeodynamic space, which is the ultimate cause of aging, diseases and death. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in aging research and intervention.

  4. Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis.

    PubMed

    Lagisz, Malgorzata; Hector, Katie L; Nakagawa, Shinichi

    2013-03-01

    Hormesis is the response of organisms to a mild stressor resulting in improved health and longevity. Mild heat shocks have been thought to induce hormetic response because they promote increased activity of heat shock proteins (HSPs), which may extend lifespan. Using data from 27 studies on 12 animal species, we performed a comparative meta-analysis to quantify the effect of heat shock exposure on longevity. Contrary to our expectations, heat shock did not measurably increase longevity in the overall meta-analysis, although we observed much heterogeneity among studies. Thus, we explored the relative contributions of different experimental variables (i.e. moderators). Higher temperatures, longer durations of heat shock exposure, increased shock repeat and less time between repeat shocks, all decreased the likelihood of a life-extending effect, as would be expected when a hormetic response crosses the threshold to being a damaging exposure. We conclude that there is limited evidence that mild heat stress is a universal way of promoting longevity at the whole-organism level. Life extension via heat-induced hormesis is likely to be constrained to a narrow parameter window of experimental conditions.

  5. Modulating exercise-induced hormesis: Does less equal more?

    PubMed

    Peake, Jonathan M; Markworth, James F; Nosaka, Kazunori; Raastad, Truls; Wadley, Glenn D; Coffey, Vernon G

    2015-08-01

    Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.

  6. Mobile phone signal exposure triggers a hormesis-like effect in Atm(+/+) and Atm(-/-) mouse embryonic fibroblasts.

    PubMed

    Sun, Chuan; Wei, Xiaoxia; Fei, Yue; Su, Liling; Zhao, Xinyuan; Chen, Guangdi; Xu, Zhengping

    2016-11-18

    Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm(+/+)) or deficient (Atm(-/-)) ATM. In Atm(+/+) MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm(-/-) MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF.

  7. Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm−/− mouse embryonic fibroblasts

    PubMed Central

    Sun, Chuan; Wei, Xiaoxia; Fei, Yue; Su, Liling; Zhao, Xinyuan; Chen, Guangdi; Xu, Zhengping

    2016-01-01

    Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm+/+) or deficient (Atm−/−) ATM. In Atm+/+ MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm−/− MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF. PMID:27857169

  8. Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial.

    PubMed

    Tyne, William; Little, Simon; Spurgeon, David J; Svendsen, Claus

    2015-10-01

    Tests to assess toxic effects on the reproduction of adult C. elegans after 72h exposure for two chemicals, (3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)), also known as diuron, and silver nanoparticles (Ag NPs) indicated potential, although not significant hormesis. Follow up toxicity tests comparing the potential hormesis concentrations with controls at high replication confirmed that the stimulatory effect was repeatable and also statistically significant within the test. To understand the relevance of the hormesis effects for overall population fitness, full life-cycle toxicity tests were conducted for each chemical. When nematodes were exposed to DCMU over the full life-span, the hormesis effect for reproduction seen in short-term tests was no longer evident. Further at the putative hormesis concentrations, a negative effect of DCMU on time to maturation was also seen. For the Ag NPs, the EC50 for effects on reproduction in the life-cycle exposure was substantially lower than in the short-term test, the EC50s estimated by a three parameter log logistic model being 2.9mg/L and 0.75mg/L, respectively. This suggests that the level of toxicity for Ag NPs for C. elegans reproduction is dependant on the life stage exposed and possibly the duration of the exposure. Further, in the longer duration exposures, hormesis effects on reproduction seen in the short-term exposures were no longer apparent. Instead, all concentrations reduced both overall brood size and life-span. These results for both chemicals suggest that the hormesis observed for a single endpoint in short-term exposure may be the result of a temporary reallocation of resources between traits that are not sustained over the full life-time. Such reallocation is consistent with energy budget theories for organisms subject to toxic stress.

  9. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster.

    PubMed

    Sørensen, J G; Kristensen, T N; Kristensen, K V; Loeschcke, V

    2007-12-01

    In insects mild heat stress early in life has been reported to increase life span and heat resistance later in life, a phenomenon termed hormesis. Here, we test if the induction of the heat shock response by mild heat stress is mediating hormesis in longevity and heat resistance at older age. To test this hypothesis we used two heat shock transcription factor (Hsf) mutant stocks. One stock harbours a mutation giving rise to a heat sensitive Hsf which inactivates the heat shock response at high temperature and the other is a rescued mutant giving rise to a wild-type phenotype. We measured longevity, heat resistance and expression level of a heat shock protein, Hsp70, in controls and mildly heat treated flies. We found a marked difference between males and females with males showing a beneficial effect of the early heat treatment on longevity and heat resistance later in life in the rescued line, seemingly mediated by the production of heat shock proteins (Hsps). The results indicate that heat inducible Hsps are important for heat induced hormesis in longevity and heat stress resistance. However, the results also suggest that other processes are involved and that different mechanisms might have marked sex specific impact.

  10. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of

  11. Gene Expression During Imidacloprid-Induced Hormesis in Green Peach Aphid

    PubMed Central

    Ayyanath, Murali-Mohan; Cutler, G. Christopher; Scott-Dupree, Cynthia D.; Prithiviraj, Balakrishnan; Kandasamy, Saveetha; Prithiviraj, Kalyani

    2014-01-01

    Imidacloprid-induced hormesis in the form of stimulated reproduction has previously been reported in green peach aphid, Myzus persicae. Changes in gene expression accompanying this hormetic response have not been previously investigated. In this study, expression of stress response (Hsp60), dispersal (OSD, TOL and ANT), and developmental (FPPS I) genes were examined for two generations during imidacloprid-induced reproductive stimulation in M. persicae. Global DNA methylation was also measured to test the hypothesis that changes in gene expression are heritable. At hormetic concentrations, down-regulation of Hsp60 was followed by up-regulation of this gene in the subsequent generation. Likewise, expression of dispersal-related genes and FPPS I varied with concentration, life stage, and generation. These results indicate that reproductive hormesis in M. persicae is accompanied by a complex transgenerational pattern of up- and down-regulation of genes that likely reflects trade-offs in gene expression and related physiological processes during the phenotypic dose-response. Moreover, DNA methylation in second generation M. persicae occurred at higher doses than in first-generation aphids, suggesting that heritable adaptability to low doses of the stressor might have occurred. PMID:25249837

  12. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig.

    PubMed

    Nascarella, Marc A; Stoffolano, John G; Stanek, Edward J; Kostecki, Paul T; Calabrese, Edward J

    2003-01-01

    Hormesis is an adaptive response, commonly characterized by a biphasic dose-response that can be either directly induced, or the result of compensatory biological processes following an initial disruption in homeostasis [Calabrese and Baldwin, Hum. Exp.Toxicol., 21 (2002), 91]. Low and environmentally relevant levels of dietary cadmium significantly enhanced the pupation rate of blowfly larvae, while higher doses inhibited pupation success. However, dietary cadmium at all exposure levels adversely affected the emergence of the adult fly from the pupal case. Such findings represent the first report of a heavy metal displaying a hormetic-like biphasic response for pupation success, while at the same time displaying stage-specific toxicity at a later developmental period. These conclusions are based on substantial experimentation of over 1750 blowflies, in seven replicate experiments, involving 10 concentrations per experiment. These findings indicate the need to assess the impact of environmental stressors over a broad range of potential exposures as well as throughout the entire life cycle.

  13. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros

    PubMed Central

    Haddi, Khalid; Mendes, Marcos V.; Lino-Neto, José; Freitas, Hemerson L.; Guedes, Raul Narciso C.; Oliveira, Eugênio E.

    2016-01-01

    Environmental stress in newly-emerged adult insects can have dramatic consequences on their life traits (e.g., dispersion, survival and reproduction) as adults. For instance, insects sublethally exposed to environmental stressors (e.g., insecticides) can gain fitness benefits as a result of hormesis (i.e., benefits of low doses of compounds that would be toxic at higher doses). Here, we experimentally tested whether sublethal exposure to the insecticide imidacloprid would hormetically affect the sexual fitness of newly-emerged adults of the Neotropical brown stink bug Euschistus heros (Hemiptera: Heteroptera: Pentatomidae), which is the most abundant and prevalent insect pest in Neotropical soybean fields. We evaluated the sexual fitness of four couple combinations: unexposed couples, exposed females, exposed males, and exposed couples. Sublethal exposure to dry residues (i.e., contact) of imidacloprid (at 1% of recommended field rate) did not affect insect survival, but led to higher mating frequencies when at least one member of the couple was exposed. However, the average mating duration was shortened when only females were exposed to imidacloprid. Moreover, exposed males showed higher locomotory (walking) activity, lower respiration rates and induced higher fecundity rates when mated to unexposed females. Although the reproductive tracts of exposed males did not differ morphometrically from unexposed males, their accessory glands exhibited positive reactions for acidic and basic contents. Our findings suggest that males of the Neotropical brown stink bug hormetically increase their sexual fitness when cued by impending insecticidal stress in early adulthood. PMID:27284906

  14. Hormesis and Paradoxical Effects of Wheat Seedling (Triticum Aestivum L.) Parameters Upon Exposure to Different Pollutants in a Wide Range of Doses

    PubMed Central

    Erofeeva, Elena A.

    2014-01-01

    Chlorophyll and carotenoid content (ChCar), lipid peroxidation (LP) and growth parameters (GP) in plants are often used for environmental pollution estimation. However, the nonmonotonic dose–response dependences (hormesis and paradoxical effects) of these indices are insufficiently explored following exposure to different pollutants. In this experiment, we studied nonmonotonic changes in ChCar, LP, GP in wheat seedlings (Triticum aestivum L.) upon exposure to lead, cadmium, copper, manganese, formaldehyde, the herbicide glyphosate, and sodium chloride in a wide range from sublethal concentration to 102–105 times lower concentrations. 85.7% of dose–response dependences were nonmonotonic (of these, 5.5% were hormesis and paradoxical effects comprised 94.5%). Multiphasic dependences were the most widespread type of paradoxical effect. Hormesis was a part of some multiphasic responses (i.e. paradoxical effects), which indicates a relationship between these phenomena. Sublethal pollutant concentrations significantly increased LP (to 2.0–2.4 times, except for manganese and glyphosate) and decreased GP (to 2.1–36.6 times, except for glyphosate), while ChCar was reduced insignificantly, normalized or even increased. Lower pollutant concentrations caused a moderate deviation in all parameters from the control (not more than 62%) for hormesis and paradoxical effects. The seedling parameters could have different types of nonmonotonic responses upon exposure to the same pollutant. PMID:24659937

  15. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  16. Heat Stress and Hormetin-Induced Hormesis in Human Cells: Effects on Aging, Wound Healing, Angiogenesis, and Differentiation

    PubMed Central

    Rattan, Suresh I. S.; Fernandes, Ricardo A.; Demirovic, Dino; Dymek, Barbara; Lima, Cristovao F.

    2009-01-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of cellular aging. Mild stress-induced hormesis can be an effective way for reducing the accumulation of molecular damage, and thus slowing down aging from within. We have shown that repeated mild heat stress (RMHS) has anti-aging effects on growth and various other cellular and biochemical characteristics of normal human skin fibroblasts and keratinocytes undergoing aging in vitro. RMHS given to human cells increased the basal levels of various chaperones, reduced the accumulation of damaged proteins, stimulated proteasomal activities, increased the cellular resistance to other stresses, enhanced the levels of various antioxidant enzymes, enhanced the activity and amounts of sodium-potassium pump, and increased the phosphorylation-mediated activities of various stress kinases. We have now observed novel hormetic effects of mild heat stress on improving the wound healing capacity of skin fibroblasts and on enhancing the angiogenic ability of endothelial cells. We have also tested potential hormetins, such as curcumin and rosmarinic acid in bringing about their beneficial effects in human cells by inducing stress response pathways involving heat shock proteins and hemeoxygenase HO-1. These data further support the view that mild stress-induced hormesis can be applied for the modulation, intervention and prevention of aging and age-related impairments. PMID:19343114

  17. Evidence for Radiation Hormesis After In Vitro Exposure of Human Lymphocytes to Low Doses of Ionizing Radiation§

    PubMed Central

    Rithidech, Kanokporn Noy; Scott, Bobby R.

    2008-01-01

    Previous research has demonstrated that adding a very small gamma-ray dose to a small alpha radiation dose can completely suppress lung cancer induction by alpha radiation (a gamma-ray hormetic effect). Here we investigated the possibility of gamma-ray hormesis during low-dose neutron irradiation, since a small contribution to the total radiation dose from neutrons involves gamma rays. Using binucleated cells with micronuclei (micronucleated cells) among in vitro monoenergetic-neutron-irradiated human lymphocytes as a measure of residual damage, we investigated the influence of the small gamma-ray contribution to the dose on suppressing residual damage. We used residual damage data from previous experiments that involved neutrons with five different energies (0.22-, 0.44-, 1.5-, 5.9-, and 13.7-million electron volts [MeV]). Corresponding gamma-ray contributions to the dose were approximately 1%, 1%, 2%, 6%, and 6%, respectively. Total absorbed radiation doses were 0, 10, 50, and 100 mGy for each neutron source. We demonstrate for the first time a protective effect (reduced residual damage) of the small gamma-ray contribution to the neutron dose. Using similar data for exposure to gamma rays only, we also demonstrate a protective effect of 10 mGy (but not 50 or 100 mGy) related to reducing the frequency of micronucleated cells to below the spontaneous level. PMID:18846261

  18. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae).

    PubMed

    Mallqui, K S Vilca; Vieira, J L; Guedes, R N C; Gontijo, L M

    2014-04-01

    Insecticides can have lethal or sublethal effects upon targeted pest species, and sublethal effects may even favor pest outbreaks if insecticide-induced hormesis occurs. Hormesis is a biphasic dose-response of a given chemical compound that is stimulatory at low doses and toxic at high doses. The former response may result from the disruption of animal homeostasis leading to trade-off shifts between basic ecophysiological processes. A growing interest in the use of biorational insecticides, such as azadirachtin to control stored-product pests, raises concerns about potential sublethal effects. In this study, we explored the hypothesis that azadirachtin can negatively impact the reproductive capacity of the Mexican bean weevil, Zabrotes subfasciatus (Boheman) (Chrysomelidae: Bruchinae), a key pest of stored beans. In addition, we investigated whether adults of this species could compensate for any sublethal effect that might have affected any of their reproductive parameters by adjusting the allocation of its reproductive efforts. The results showed that females of Z. subfasciatus increased fecundity daily to compensate for azadirachtin-induced decreased longevity. In addition, a stage-structured matrix study revealed that populations of Z. subfasciatus engendered from females exposed to azadirachtin exhibited a higher rate of population increase (r) and a higher net reproductive rate (R(o)). Finally, a projection matrix analysis showed notably higher densities along the generations for azadirachtin-exposed Z. subfasciatus populations. Thus, our study provides empirical evidence for the capacity of Z. subfasciatus to adapt to sublethal effects caused by biorational insecticides; consequently, this study highlights the importance of understanding this phenomenon when devising pest management strategies.

  19. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    PubMed Central

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-01-01

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis. PMID:28208665

  20. Hormesis, hotspots and emissions trading.

    PubMed

    Wiener, Jonathan B

    2004-06-01

    Instrument choice--the comparison of technology standards, performance standards, taxes and tradable permits--has been a major topic in environmental law and environmental economics. Most analyses assume that emissions and health effects are positively and linearly related. If they are not, this complicates the instrument choice analysis. This article analyses the effects of a nonlinear dose-response function on instrument choice. In particular, it examines the effects of hormesis (high-dose harm but low-dose benefit) on the choice between fixed performance standards and tradable emissions permits. First, the article distinguishes the effects of hormesis from the effects of local emissions. Hormesis is an attribute of the dose-response or exposure-response relationship. Hotspots are an attribute of the emissions-exposure relationship. Some pollutants may be hormetic and cause local emissions-exposure effects; others may be hormetic without causing local emissions-exposure effects. It is only the local exposure effects of emissions that pose a problem for emissions trading. Secondly, the article shows that the conditions under which emissions trading would perform less well or even perversely under hormesis, depend on how stringent a level of protection is set. Only when the regulatory standard is set at the nadir of the hormetic curve would emissions trading be seriously perverse (assuming other restrictive conditions as well), and such a standard is unlikely. Moreover, the benefits of the overall programme may justify the risk of small perverse effects around this nadir. Thirdly, the article argues that hotspots can be of concern for two distinct reasons, harmfulness and fairness. Lastly, the paper argues that the solution to these problems may not be to abandon market-based incentive instruments and their cost-effectiveness gains, but to improve them further by moving from emissions trading and emissions taxes to risk trading and risk taxes. In short, the article

  1. Nutritional hormesis and aging.

    PubMed

    Hayes, Daniel P

    2009-11-16

    Nutritional hormesis has the potential to serve as a pro-healthy aging intervention by reducing the susceptibility of the elderly to various chronic degenerative diseases and thereby extending human healthspan. Supportive evidence for nutritional hormesis arising from essential nutrients (vitamins and minerals), dietary pesticides (natural and synthetic), dioxin and other herbicides, and acrylamide will be reviewed and discussed.

  2. Nutritional Hormesis and Aging

    PubMed Central

    Hayes, Daniel P.

    2009-01-01

    Nutritional hormesis has the potential to serve as a pro-healthy aging intervention by reducing the susceptibility of the elderly to various chronic degenerative diseases and thereby extending human healthspan. Supportive evidence for nutritional hormesis arising from essential nutrients (vitamins and minerals), dietary pesticides (natural and synthetic), dioxin and other herbicides, and acrylamide will be reviewed and discussed. PMID:20221283

  3. Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis.

    PubMed

    Sanders, Charles L; Scott, Bobby R

    2006-12-06

    Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epidemiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low-linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemio-logical studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers.

  4. Herbicides and plant hormesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide hormesis is commonly observed at sub-toxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon is influenced by plant growth stage and physiological status, environmental factors, the endpoint measured, and the timing between treatment and endpoint me...

  5. When less is more: hormesis against stress and disease

    PubMed Central

    Zimmermann, Andreas; Bauer, Maria A.; Kroemer, Guido; Madeo, Frank; Carmona-Gutierrez, Didac

    2014-01-01

    All living organisms need to adapt to ever changing adverse conditions in order to survive. The phenomenon termed hormesis describes an evolutionarily conserved process by which a cell or an entire organism can be preconditioned, meaning that previous exposure to low doses of an insult protects against a higher, normally harmful or lethal dose of the same stressor. Growing evidence suggests that hormesis is directly linked to an organism’s (or cell’s) capability to cope with pathological conditions such as aging and age-related diseases. Here, we condense the conceptual and potentially therapeutic importance of hormesis by providing a short overview of current evidence in favor of the cytoprotective impact of hormesis, as well as of its underlying molecular mechanisms. PMID:28357237

  6. Historical foundations of hormesis.

    PubMed

    Calabrese, Edward J

    2015-04-01

    The present paper provides an historical assessment of the concept of hormesis and its relationship to homeopathy and modern medicine. It is argued that the dose-response concept was profoundly influenced by the conflict between homeopathy and traditional medicine and that decisions on which dose-response model to adopt were not based on "science" but rater on historical antipathies. While the historical dispute between homeopathy and traditional medicine has long since subsided, their impact upon the field has been enduring and generally unappreciated, profoundly adversely affecting current drug development, therapeutic strategies and environmental risk assessment strategies and policies.

  7. Hormesis: a fundamental concept in biology

    PubMed Central

    Calabrese, Edward J.

    2014-01-01

    This paper assesses the hormesis dose response concept, including its historical foundations, frequency, generality, quantitative features, mechanistic basis and biomedical, pharmaceutical and environmental health implications. The hormetic dose response is highly generalizable, being independent of biology model (i.e. common from plants to humans), level of biological organization (i.e. cell, organ and organism), endpoint, inducing agent and mechanism, providing the first general and quantitative description of plasticity. The hormetic dose response describes the limits to which integrative endpoints (e.g. cell proliferation, cell migration, growth patterns, tissue repair, aging processes, complex behaviors such as anxiety, learning, memory, and stress, preconditioning responses, and numerous adaptive responses) can be modulated (i.e., enhanced or diminished) by pharmaceutical, chemical and physical means. Thus, the hormesis concept is a fundamental concept in biology with a wide range of biological implications and biomedical applications. PMID:28357236

  8. Hormesis and Paradoxical Effects of Drooping Birch (Betula pendula Roth) Parameters Under Motor Traffic Pollution.

    PubMed

    Erofeeva, Elena A

    2015-01-01

    Various plant indexes are used or recommended for bioindication. However, the nonmonotonic dose-response dependences (hormesis and paradoxical effects) of these indexes are insufficiently explored upon exposure to pollution. We studied the dependences of these Betula pendula indexes on the intensity of motor traffic pollution. Regression analysis did not reveal any dependence of chlorophyll and carotenoid content on traffic intensity (in 2008 and 2010-2013). Lipid peroxidation rate had different versions of paradoxical effects in 2008 and 2010 to 2012 and increased in comparison with control under an increase in pollution level in 2013. In 2010 to 2012, all dose-response dependences for total protein and thiol group content were biphasic and multiphasic paradoxical effects. In 2013, an increase in traffic intensity induced a linear reduction in protein content and an increase in thiol group level in comparison with the control. In most cases, the studied phenological indexes and seed production decreased monotonically in comparison with the control following an increase in traffic intensity. Only in 2010 and 2013, share of fallen leaves had hormesis and paradoxical effect accordingly. Fluctuating asymmetry had a paradoxical effect and hormesis in 2008 and 2012, accordingly, and increased in comparison with the control under an increase in the level of pollution in 2010 to 2011.

  9. Hormesis and Paradoxical Effects of Drooping Birch (Betula pendula Roth) Parameters Under Motor Traffic Pollution

    PubMed Central

    2015-01-01

    Various plant indexes are used or recommended for bioindication. However, the nonmonotonic dose–response dependences (hormesis and paradoxical effects) of these indexes are insufficiently explored upon exposure to pollution. We studied the dependences of these Betula pendula indexes on the intensity of motor traffic pollution. Regression analysis did not reveal any dependence of chlorophyll and carotenoid content on traffic intensity (in 2008 and 2010-2013). Lipid peroxidation rate had different versions of paradoxical effects in 2008 and 2010 to 2012 and increased in comparison with control under an increase in pollution level in 2013. In 2010 to 2012, all dose–response dependences for total protein and thiol group content were biphasic and multiphasic paradoxical effects. In 2013, an increase in traffic intensity induced a linear reduction in protein content and an increase in thiol group level in comparison with the control. In most cases, the studied phenological indexes and seed production decreased monotonically in comparison with the control following an increase in traffic intensity. Only in 2010 and 2013, share of fallen leaves had hormesis and paradoxical effect accordingly. Fluctuating asymmetry had a paradoxical effect and hormesis in 2008 and 2012, accordingly, and increased in comparison with the control under an increase in the level of pollution in 2010 to 2011. PMID:26676071

  10. Hormesis results in trade-offs with immunity.

    PubMed

    McClure, Colin D; Zhong, Weihao; Hunt, Vicky L; Chapman, Fiona M; Hill, Fiona V; Priest, Nicholas K

    2014-08-01

    Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low-level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress-induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade-offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress-induced trade-offs with immunity, not cost-free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen-induced life-history trade-offs, and indicate that reduced immune function may be an ironic side effect of the "elixirs of life."

  11. HORMESIS RESULTS IN TRADE-OFFS WITH IMMUNITY

    PubMed Central

    McClure, Colin D; Zhong, Weihao; Hunt, Vicky L; Chapman, Fiona M; Hill, Fiona V; Priest, Nicholas K

    2014-01-01

    Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low-level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress-induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade-offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress-induced trade-offs with immunity, not cost-free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen-induced life-history trade-offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.” PMID:24862588

  12. Transcript expression patterns illuminate the mechanistic background of hormesis in caenorhabditis elegans maupas.

    PubMed

    Steinberg, Christian E W; Pietsch, Kerstin; Saul, Nadine; Menzel, Stefanie; Swain, Suresh C; Stürzenbaum, Stephen R; Menzel, Ralph

    2013-01-01

    The animal model Caenorhabditis elegans was employed to study polyphenol- and humic substances-induced hormetic changes in lifespan. A detailed insight into the underlying mechanism of hormesis was uncovered by applying whole genome DNA microarray experimentation over a range of quercetin (Q), tannic acid (TA), and humic substances (HuminFeed(®), HF) concentrations. The transcriptional response to all exposures followed a non-linear mode which highlighted differential signaling and metabolic pathways. While low Q concentrations regulated processes improving the health of the nematodes, higher concentrations extended lifespan and modulated substantially the global transcriptional response. Over-represented transcripts were notably part of the biotransformation process: enhanced catabolism of toxic intermediates possibly contributes to the lifespan extension. The regulation of transcription, Dauer entry, and nucleosome suggests the presence of distinct exposure dependent differences in transcription and signaling pathways. TA- and HF-mediated transcript expression patterns were overall similar to each other, but changed across the concentration range indicating that their transcriptional dynamics are complex and cannot be attributed to a simple adaptive response. In contrast, Q-mediated hormesis was well aligned to fit the definition of an adaptive response. Simple molecules are more likely to induce an adaptive response than more complex molecules.

  13. Mitochondrial Hormesis in Pancreatic β Cells: Does Uncoupling Protein 2 Play a Role?

    PubMed Central

    Li, Ning; Stojanovski, Suzana; Maechler, Pierre

    2012-01-01

    In pancreatic β cells, mitochondrial metabolism translates glucose sensing into signals regulating insulin secretion. Chronic exposure of β cells to excessive nutrients, namely, glucolipotoxicity, impairs β-cell function. This is associated with elevated ROS production from overstimulated mitochondria. Mitochondria are not only the major source of cellular ROS, they are also the primary target of ROS attacks. The mitochondrial uncoupling protein UCP2, even though its uncoupling properties are debated, has been associated with protective functions against ROS toxicity. Hormesis, an adaptive response to cellular stresses, might contribute to the protection against β-cell death, possibly limiting the development of type 2 diabetes. Mitochondrial hormesis, or mitohormesis, is a defense mechanism observed in ROS-induced stress-responses by mitochondria. In β cells, mitochondrial damages induced by sublethal exogenous H2O2 can induce secondary repair and defense mechanisms. In this context, UCP2 is a marker of mitohormesis, being upregulated following stress conditions. When overexpressed in nonstressed naïve cells, UCP2 confers resistance to oxidative stress. Whether treatment with mitohormetic inducers is sufficient to restore or ameliorate secretory function of β cells remains to be determined. PMID:23029600

  14. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  15. [Metabolic memory enhances hormesis effect to the copper ions in age-depended manner].

    PubMed

    Bozhkov, A I; Sidorov, V I; Kurguzova, N I; Dlubovskaia, V L

    2014-01-01

    The ability of young and old rats to manifest the hormesis effect to lethal doses of copper sulphate and the ability to save the induced "adaptive" pattern of redistribution of copper ions after the transfer of animals in the standard conditions is the mechanism of metabolic memory. It was found that pretreatment of animals with low-dose (1 mg per 100 g body mass, i.e. 33% of the lethal dose) of copper sulfate induced the formation of their resistance to lethal doses (3 mg per 100 g), so the hormesis effect was manifested. Hormesis effect depended on the number of pre injections of small doses of copper sulphate in an S-shaped manner. The protective effect increased after 1 to 3 of preliminary injections of copper sulfate, and after four or more injections the hormesis effect decreased. It is shown that the cardinal role in intracellular pattern of copper ion redistribution play heat-stable copper binding proteins 12 kDa cytosolic proteins. The formed "adaptive" pattern of intracellular distribution of the copper ions may be reproduced, after at least, one month. The prolonged hormesis effect can be attributed to the forming metabolic memory. The intracellular distribution pattern of the copper ions was age-dependent. Age-related differences were found in hormesis effect induced by copper ions, which results in increased binding capacity of copper binding proteins in old animals, with a higher content of copper ions in the mitochondria and microsomes as compared to young animals.

  16. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes.

    PubMed

    Calabrese, V; Scapagnini, G; Davinelli, S; Koverech, G; Koverech, A; De Pasquale, C; Salinaro, A Trovato; Scuto, M; Calabrese, E J; Genazzani, A R

    2014-12-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons.Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased

  17. Bioreactivity of municipal solid waste landfill leachates-Hormesis and DNA damage.

    PubMed

    Koshy, Lata; Jones, Tim; BéruBé, Kelly

    2008-04-01

    The issue of domestic waste is recognised as one of the most serious environmental problems facing the nation. With the UK producing 35 million tonnes of municipal solid waste per annum, an understanding of the ranges of toxicity of landfill emissions is crucial to determine the degree of concern we should have about the potential effects these waste sites could have upon nearby populations and the surrounding environment. The aim of this study was to evaluate the bioreactivity of landfill leachates in terms of their capacity to damage ROS-sensitive bacteriophage plasmid DNA and induce toxicity in a commercial photobacterium toxicity assay, based on the light emission of Vibrio fischeri bacteria (ROTAS). The bacterial assay revealed widespread biostimulation and a hormesis response in the bacteria, with alpha-, beta- and gamma-response curves observed following exposure to the different landfill leachates. Different biological mechanisms lead to variations in bioreactivity, as seen in the plasmid DNA scission and ROTAS assays.

  18. Adaptation to acrolein through upregulating the protection by glutathione in human bronchial epithelial cells: the materialization of the hormesis concept.

    PubMed

    Sthijns, Mireille M J P E; Randall, Matthew J; Bast, Aalt; Haenen, Guido R M M

    2014-04-18

    Acrolein is a thiol reactive compound present in cigarette smoke and plays a pivotal role in the deleterious effects of smoking. Acrolein causes toxicity in human bronchial epithelial cells in a dose dependent manner. GSH forms the first line of defense against acrolein-induced toxicity. At high doses of acrolein (⩾10 μM) the capacity of the cellular protection by GSH is overwhelmed and GSH is not able to quench all the acrolein, resulting in cytotoxicity. At a relatively low dose of acrolein (3 μM), no cytotoxicity is observed due to protection by GSH. Moreover we found that exposure to a low dose of acrolein protects cells against the toxic effect of a second higher dose of acrolein. The adaptation to acrolein is induced via Nrf2 mediated gene expression of γ-glutamylcysteine synthetase leading to elevated GSH levels. This upregulation of the protection by GSH demonstrates a hormetic response to acrolein. Hormesis is an adaptive or compensatory response induced by a relatively subtle challenge of homeostasis by a toxic compound. Insight into the mechanism of hormesis is mandatory for a more accurate societal regulation of toxic compounds.

  19. Toxicological awakenings: the rebirth of hormesis as a central pillar of toxicology

    SciTech Connect

    Calabrese, Edward J. . E-mail: edwardc@schoolph.umass.edu

    2005-04-01

    This paper assesses historical reasons that may account for the marginalization of hormesis as a dose-response model in the biomedical sciences in general and toxicology in particular. The most significant and enduring explanatory factors are the early and close association of the concept of hormesis with the highly controversial medical practice of homeopathy and the difficulty in assessing hormesis with high-dose testing protocols which have dominated the discipline of toxicology, especially regulatory toxicology. The long-standing and intensely acrimonious conflict between homeopathy and 'traditional' medicine (allopathy) lead to the exclusion of the hormesis concept from a vast array of medical- and public health-related activities including research, teaching, grant funding, publishing, professional societal meetings, and regulatory initiatives of governmental agencies and their advisory bodies. Recent publications indicate that the hormetic dose-response is far more common and fundamental than the dose-response models [threshold/linear no threshold (LNT)] used in toxicology and risk assessment, and by governmental regulatory agencies in the establishment of exposure standards for workers and the general public. Acceptance of the possibility of hormesis has the potential to profoundly affect the practice of toxicology and risk assessment, especially with respect to carcinogen assessment.

  20. Radiation Hormesis: Historical and Current Perspectives.

    PubMed

    Baldwin, Jonathan; Grantham, Vesper

    2015-12-01

    The purpose of this article is to provide the reader with a better understanding of radiation hormesis, the investigational research that supports or does not support the theory, and the relationship between the theory and current radiation safety guidelines and practices. The concept of radiation hormesis is known to nuclear medicine technologists, but understanding its complexities and the historical development of the theory may bring about a better understanding of radiation safety and regulations.

  1. Hormesis does not make sense except in the light of TOR-driven aging.

    PubMed

    Blagosklonny, Mikhail V

    2011-11-01

    Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. "Hormesis A" inhibits the TOR pathway. "Hormesis B" increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions.

  2. Hormesis does not make sense except in the light of TOR-driven aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2011-01-01

    Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. “Hormesis A” inhibits the TOR pathway. “Hormesis B” increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions. PMID:22166724

  3. Optimal experimental design strategies for detecting hormesis.

    PubMed

    Dette, Holger; Pepelyshev, Andrey; Wong, Weng Kee

    2011-12-01

    Hormesis is a widely observed phenomenon in many branches of life sciences, ranging from toxicology studies to agronomy, with obvious public health and risk assessment implications. We address optimal experimental design strategies for determining the presence of hormesis in a controlled environment using the recently proposed Hunt-Bowman model. We propose alternative models that have an implicit hormetic threshold, discuss their advantages over current models, and construct and study properties of optimal designs for (i) estimating model parameters, (ii) estimating the threshold dose, and (iii) testing for the presence of hormesis. We also determine maximin optimal designs that maximize the minimum of the design efficiencies when we have multiple design criteria or there is model uncertainty where we have a few plausible models of interest. We apply these optimal design strategies to a teratology study and show that the proposed designs outperform the implemented design by a wide margin for many situations.

  4. Unequal brothers : are homeopathy and hormesis linked?

    PubMed

    Oberbaum, Menachem; Frass, Michael; Gropp, Cornelius

    2015-04-01

    The debate between those who believe homeopathy and hormesis derive from the same root and those who believe the two are different phenomena is as old as hormesis. It is an emotionally loaded discussion, with both sides fielding arguments which are far from scientific. Careful analysis of the basic paradigms of the two systems questions the claim of the homeopaths, who find similarities between them. The authors discuss these paradigms, indicating the differences between the claims of homeopathy and hormesis. It is time for thorough and serious research to lay this question to rest. One possible approach is to compare the activity of a hormetic agent, prepared in the usual way, with that of the same agent in the same concentration prepared homeopathically by serial dilution and succussion.

  5. Hormesis: its impact on medicine and health.

    PubMed

    Calabrese, E J; Iavicoli, I; Calabrese, V

    2013-02-01

    This article offers a broad assessment of the hormetic dose response and its relevance to biomedical researchers, physicians, the pharmaceutical industry, and public health scientists. This article contains a series of 61 questions followed by relatively brief but referenced responses that provides support for the conclusion that hormesis is a reproducible phenomenon, commonly observed, with a frequency far greater than other dose-response models such as the threshold and linear nonthreshold dose-response models. The article provides a detailed background information on the historical foundations of hormesis, its quantitative features, mechanistic foundations, as well as how hormesis is currently being used within medicine and identifying how this concept could be further applied in the development of new therapeutic advances and in improved public health practices.

  6. A catechin-enriched green tea extract prevents glucose-induced survival reduction in Caenorhabditis elegans through sir-2.1 and uba-1 dependent hormesis.

    PubMed

    Deusing, Dorothé Jenni; Winter, Sarah; Kler, Adolf; Kriesl, Erwin; Bonnländer, Bernd; Wenzel, Uwe; Fitzenberger, Elena

    2015-04-01

    Hyperglycemia is a hallmark of diabetes mellitus which leads to the onset of complications in the long term. Green tea through its high content of polyphenolic catechins, on the other hand, is suggested to prevent or at least delay such detrimental complications. In the present study we fed the nematode Caenorhabditis elegans on a liquid medium supplemented with 10mM glucose in the absence or presence of a catechin-enriched green tea extract (CEGTE). After exposure of young adults for 48h survival was subsequently measured under heat stress at 37°C. Whereas CEGTE at 0.01% did not affect the survival of wild type nematodes, it completely reversed the glucose-induced survival reduction. Those effects were not achieved through the monomeric catechins included in CEGTE. RNA interference (RNAi) for sir-2.1 not only prevented the survival extension by CEGTE under simultaneous glucose exposure but also caused a further reduction of survival. Likewise, the knockdown of uba-1, encoding the only E1-ubiquitin-activating enzyme in C. elegans, proved that UBA-1 is essential for the survival extension by CEGTE and that its loss of function changes CEGTE from a survival extending into a survival reducing extract. Stimulation of the proteasome by CEGTE was finally proven through measurements of the proteolytic cleavage of a fluorogenic peptide substrate. To conclude, our studies provide evidence that CEGTE reverses glucose-induced damage in C. elegans through activation of adaptive responses mediated by SIR-2.1 and proteasomal degradation. The hormetic mode of action is revealed by a reduction of survival once the adaptive processes were blocked.

  7. Hormesis phenomena under Cd stress in a hyperaccumulator--Lonicera japonica Thunb.

    PubMed

    Jia, Lian; He, Xingyuan; Chen, Wei; Liu, Zhouli; Huang, Yanqing; Yu, Shuai

    2013-04-01

    A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photosynthetic pigments in L. japonica, but decreased them at high concentrations, displayed inverted U-shaped dose response curves, confirming a typical biphasic hormetic response. The U-shaped dose response curves were displayed in malondialdehyde (MDA) and electrolyte leakage in leaves at low doses of Cd, indicating reduce oxidative stress and toxic effect. The increase of superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, indicative of increase in anti-oxidative capacity that ensures redox homeostasis is maintained. After 28 days exposure to 10 mg L(-1) Cd, stem and leaf Cd concentrations reached 502.96 ± 28.90 and 103.22 ± 5.62 mg kg(-1) DW, respectively and the plant had high bioaccumulation coefficient (BC) and translocation factor (TF'). Moreover, the maximum TF value was found at 2.5 mg L(-1) Cd treatment, implying that low Cd treatment improved the ability to transfer Cd from medium via roots to aerial structures. Taking together, L. japonica could be considered as a new plant to investigate the underlying mechanisms of hormesis and Cd tolerance. Our results suggest that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil.

  8. Research status on radiation hormesis at CRIEPI

    SciTech Connect

    Hattori, Sadao

    1996-12-31

    In 1982, Thomas D. Luckey, Prof. Emeritus, University of Missouri published a paper on radiation hormesis. His emphasis was on the beneficial effects of low-level radiation contributing to a healthy body, longer life, vitalization, etc. Radiation hormesis research by the Central Research Institute of Electric Power Industry in Japan was initiated on the rationale that if Luckey`s claim were true, radiation management in Japan was extremely erroneous and the research institutes had to determine the truth. Obtaining many test results from some human data and various animal experiments on the health effects of low-level radiation that support the radiation hormesis hypothesis, the Central Research Institute decided to expand their research activities into a collaborative testing program with 14 universities and 2 other institutes on various subjects. The subjects in which they are now interested are as follows: 1. enhancement of molecular biological activities such as gene repair and apoptosis by low-level radiation; 2. enhancement of the immune system such as the ratio of Helper T cell/Suppressor T cell by low-level radiation; 3. rejuvenation such as cell membrane permeability, superoxide dismutase activity, and the therapy of old-age diseases such as diabetes and high blood pressure.

  9. A CRITIQUE OF THE USE OF HORMESIS IN RISK ASSESSMENT

    EPA Science Inventory

    A critique of the use of hormesis in risk assessment.

    Kitchin, KT; and Drane, Wanzer

    Summary:
    There are severe problems and limitations with the use of hormesis as the principal dose-response default assumption in risk assessment. These problems and limitations i...

  10. Can poisons stimulate bees? Appreciating the potential of hormesis in bee-pesticide research.

    PubMed

    Cutler, G Christopher; Rix, Rachel R

    2015-10-01

    Hormesis, a biphasic dose response whereby exposure to low doses of a stressor can stimulate biological processes, has been reported in many organisms, including pest insects when they are exposed to low doses of a pesticide. However, awareness of the hormesis phenomenon seems to be limited among bee researchers, in spite of the increased emphasis of late on pollinator toxicology and risk assessment. In this commentary, we show that there are several examples in the literature of substances that are toxic to bees at high doses but stimulatory at low doses. Appreciation of the hormetic dose response by bee researchers will improve our fundamental understanding of how bees respond to low doses of chemical stressors, and may be useful in pollinator risk assessment.

  11. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid.

    PubMed

    Ayyanath, Murali-Mohan; Cutler, G Christopher; Scott-Dupree, Cynthia D; Sibley, Paul K

    2013-01-01

    Hormesis is a biphasic phenomenon that in toxicology is characterized by low-dose stimulation and high-dose inhibition. It has been observed in a wide range of organisms in response to many chemical stressors, including insects exposed to pesticides, with potential repercussions for agriculture and pest management. To address questions related to the nature of the dose-response and potential consequences on biological fitness, we examined transgenerational hormesis in the green peach aphid, Myzus persicae, when exposed to sublethal concentrations of the insecticide imidacloprid. A hormetic response in the form of increased reproduction was consistently observed and a model previously developed to test for hormesis adequately fit some of our data. However, the nature of the dose-response differed within and across generations depending upon the duration and mode of exposure. Decreased reproduction in intermediate generations confirmed that fitness tradeoffs were a consequence of the hormetic response. However, recovery to levels of reproduction equal to that of controls in subsequent generations and significantly greater total reproduction after four generations suggested that biological fitness was increased by exposure to low concentrations of the insecticide, even when insects were continuously exposed to the stressor. This was especially evident in a greenhouse experiment where the instantaneous rate of population increase almost doubled and total aphid production more than quadrupled when aphids were exposed to potato plants systemically treated with low amounts of imidacloprid. Our results show that although fitness tradeoffs do occur with hormetic responses, this does not necessarily compromise overall biological fitness.

  12. Hormesis and the Salk Polio Vaccine

    PubMed Central

    Calabrese, Edward J.

    2011-01-01

    The production of the Salk vaccine polio virus by monkey kidney cells was generated using the synthetic tissue culture medium, Mixture 199. In this paper’s retrospective assessment of this process, it was discovered that Mixture 199 was modified by the addition of ethanol to optimize animal cell survival based on experimentation that revealed a hormetic-like biphasic response relationship. This hormesis-based optimization procedure was then applied to all uses of Mixture 199 and modifications of it, including its application to the Salk polio vaccine during preliminary testing and in its subsequent major societal treatment programs. PMID:22423232

  13. A Perspective on the Scientific, Philosophical, and Policy Dimensions of Hormesis

    PubMed Central

    Hoffmann, George R.

    2009-01-01

    The hormesis concept has broad implications for biology and the biomedical sciences. This perspective on hormesis concentrates on toxicology and toxicological risk assessment and secondarily explores observations from other fields. It considers the varied manifestations of hormesis in the context of a broad family of biological stress responses. Evidence for hormesis is reviewed, and the hormesis model is contrasted with more widely accepted dose-response models in toxicology: a linear nonthreshold (LNT) model for mutagenesis and carcinogenesis, and a threshold model for most other toxicologic effects. Scientific, philosophical, and political objections to the hormesis concept are explored, and complications in the hormesis concept are analyzed. The review concludes with a perspective on the current state of hormesis and challenges that the hormesis model poses for risk assessment. PMID:19343115

  14. Hormesis-Based Anti-Aging Products: A Case Study of a Novel Cosmetic

    PubMed Central

    Rattan, Suresh I. S.; Kryzch, Valérie; Schnebert, Sylvianne; Perrier, Eric; Nizard, Carine

    2013-01-01

    Application of hormesis in aging research and interventions is becoming increasingly attractive and successful. The reason for this is the realization that mild stress-induced activation of one or more stress response (SR) pathways, and its consequent stimulation of repair mechanisms, is effective in reducing the age-related accumulation of molecular damage. For example, repeated heat stress-induced synthesis of heat shock proteins has been shown to have a variety of anti-aging effects on growth and other cellular and biochemical characteristics of normal human skin fibroblasts, keratinocytes and endothelial cells undergoing aging in vitro. Therefore, searching for potential hormetins – conditions and compounds eliciting SR-mediated hormesis – is drawing attention of not only the researchers but also the industry involved in developing healthcare products, including nutriceuticals, functional foods and cosmeceuticals. Here we present the example of a skin care cosmetic as one of the first successful product developments incorporating the ideas of hormesis. This was based on the studies to analyse the molecular effects of active ingredients extracted from the roots of the Chinese herb Sanchi (Panax notoginseng) on gene expression at the level of mRNAs and proteins in human skin cells. The results showed that the ginsenosides extracted from Sanchi induced the transcription of stress genes and increased the synthesis of stress proteins, especially the heat shock protein HSP1A1 or Hsp70, in normal human keratinocytes and dermal fibroblasts. Furthermore, this extract also has significant positive effects against facial wrinkles and other symptoms of facial skin aging as tested clinically, which may be due to its hormetic mode of action by stress-induced synthesis of chaperones involved in protein repair and removal of abnormal proteins. Acceptance of such a hormesis-based product by the wider public could be instrumental in the social recognition of the concept of

  15. Hormesis-based anti-aging products: a case study of a novel cosmetic.

    PubMed

    Rattan, Suresh I S; Kryzch, Valérie; Schnebert, Sylvianne; Perrier, Eric; Nizard, Carine

    2013-01-01

    Application of hormesis in aging research and interventions is becoming increasingly attractive and successful. The reason for this is the realization that mild stress-induced activation of one or more stress response (SR) pathways, and its consequent stimulation of repair mechanisms, is effective in reducing the age-related accumulation of molecular damage. For example, repeated heat stress-induced synthesis of heat shock proteins has been shown to have a variety of anti-aging effects on growth and other cellular and biochemical characteristics of normal human skin fibroblasts, keratinocytes and endothelial cells undergoing aging in vitro. Therefore, searching for potential hormetins - conditions and compounds eliciting SR-mediated hormesis - is drawing attention of not only the researchers but also the industry involved in developing healthcare products, including nutriceuticals, functional foods and cosmeceuticals. Here we present the example of a skin care cosmetic as one of the first successful product developments incorporating the ideas of hormesis. This was based on the studies to analyse the molecular effects of active ingredients extracted from the roots of the Chinese herb Sanchi (Panax notoginseng) on gene expression at the level of mRNAs and proteins in human skin cells. The results showed that the ginsenosides extracted from Sanchi induced the transcription of stress genes and increased the synthesis of stress proteins, especially the heat shock protein HSP1A1 or Hsp70, in normal human keratinocytes and dermal fibroblasts. Furthermore, this extract also has significant positive effects against facial wrinkles and other symptoms of facial skin aging as tested clinically, which may be due to its hormetic mode of action by stress-induced synthesis of chaperones involved in protein repair and removal of abnormal proteins. Acceptance of such a hormesis-based product by the wider public could be instrumental in the social recognition of the concept of

  16. Mitochondrial Hormesis and Diabetic Complications

    PubMed Central

    2015-01-01

    The concept that excess superoxide production from mitochondria is the driving, initial cellular response underlying diabetes complications has been held for the past decade. However, results of antioxidant-based trials have been largely negative. In the present review, the data supporting mitochondrial superoxide as a driving force for diabetic kidney, nerve, heart, and retinal complications are reexamined, and a new concept for diabetes complications—mitochondrial hormesis—is presented. In this view, production of mitochondrial superoxide can be an indicator of healthy mitochondria and physiologic oxidative phosphorylation. Recent data suggest that in response to excess glucose exposure or nutrient stress, there is a reduction of mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several target tissues of diabetes complications. Persistent reduction of mitochondrial oxidative phosphorylation complex activity is associated with the release of oxidants from nonmitochondrial sources and release of proinflammatory and profibrotic cytokines, and a manifestation of organ dysfunction. Restoration of mitochondrial function and superoxide production via activation of AMPK has now been associated with improvement in markers of renal, cardiovascular, and neuronal dysfunction with diabetes. With this Perspective, approaches that stimulate AMPK and PGC1α via exercise, caloric restriction, and medications result in stimulation of mitochondrial oxidative phosphorylation activity, restore physiologic mitochondrial superoxide production, and promote organ healing. PMID:25713188

  17. Insects, Insecticides and Hormesis: Evidence and Considerations for Study

    PubMed Central

    Cutler, G. Christopher

    2013-01-01

    Insects are ubiquitous, crucial components of almost all terrestrial and fresh water ecosystems. In agricultural settings they are subjected to, intentionally or unintentionally, an array of synthetic pesticides and other chemical stressors. These ecological underpinnings, the amenability of insects to laboratory and field experiments, and our strong knowledgebase in insecticide toxicology, make the insect-insecticide model an excellent one to study many questions surrounding hormesis. Moreover, there is practical importance for agriculture with evidence of pest population growth being accelerated by insecticide hormesis. Nevertheless, insects have been underutilized in studies of hormesis. Where hormesis hypotheses have been tested, results clearly demonstrate stimulatory effects on multiple taxa as measured through several biological endpoints, both at individual and population levels. However, many basic questions are outstanding given the myriad of chemicals, responses, and ecological interactions that are likely to occur. PMID:23930099

  18. Radiation Hormesis: The Good, the Bad, and the Ugly

    PubMed Central

    Luckey, T.D.

    2006-01-01

    Three aspects of hormesis with low doses of ionizing radiation are presented: the good, the bad, and the ugly. The good is acceptance by France, Japan, and China of the thousands of studies showing stimulation and/or benefit, with no harm, from low dose irradiation. This includes thousands of people who live in good health with high background radiation. The bad is the nonacceptance of radiation hormesis by the U. S. and most other governments; their linear no threshold (LNT) concept promulgates fear of all radiation and produces laws which have no basis in mammalian physiology. The LNT concept leads to poor health, unreasonable medicine and oppressed industries. The ugly is decades of deception by medical and radiation committees which refuse to consider valid evidence of radiation hormesis in cancer, other diseases, and health. Specific examples are provided for the good, the bad, and the ugly in radiation hormesis. PMID:18648595

  19. Hormesis in Aging and Neurodegeneration—A Prodigy Awaiting Dissection

    PubMed Central

    Mao, Lei; Franke, Jacqueline

    2013-01-01

    Hormesis describes the drug action of low dose stimulation and high dose inhibition. The hormesis phenomenon has been observed in a wide range of biological systems. Although known in its descriptive context, the underlying mode-of-action of hormesis is largely unexplored. Recently, the hormesis concept has been receiving increasing attention in the field of aging research. It has been proposed that within a certain concentration window, reactive oxygen species (ROS) or reactive nitrogen species (RNS) could act as major mediators of anti-aging and neuroprotective processes. Such hormetic phenomena could have potential therapeutic applications, if properly employed. Here, we review the current theories of hormetic phenomena in regard to aging and neurodegeneration, with the focus on its underlying mechanism. Facilitated by a simple mathematical model, we show for the first time that ROS-mediated hormesis can be explained by the addition of different biomolecular reactions including oxidative damage, MAPK signaling and autophagy stimulation. Due to their divergent scales, the optimal hormetic window is sensitive to each kinetic parameter, which may vary between individuals. Therefore, therapeutic utilization of hormesis requires quantitative characterizations in order to access the optimal hormetic window for each individual. This calls for a personalized medicine approach for a longer human healthspan. PMID:23799363

  20. Hormesis: Decoding Two Sides of the Same Coin

    PubMed Central

    Bhakta-Guha, Dipita; Efferth, Thomas

    2015-01-01

    In the paradigm of drug administration, determining the correct dosage of a therapeutic is often a challenge. Several drugs have been noted to demonstrate contradictory effects per se at high and low doses. This duality in function of a drug at different concentrations is known as hormesis. Therefore, it becomes necessary to study these biphasic functions in order to understand the mechanistic basis of their effects. In this article, we focus on different molecules and pathways associated with diseases that possess a duality in their function and thus prove to be the seat of hormesis. In particular, we have highlighted the pathways and factors involved in the progression of cancer and how the biphasic behavior of the molecules involved can alter the manifestations of cancer. Because of the pragmatic role that it exhibits, the imminent need is to draw attention to the concept of hormesis. Herein, we also discuss different stressors that trigger hormesis and how stress-mediated responses increase the overall adaptive response of an individual to stress stimulus. We talk about common pathways through which cancer progresses (such as nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1), sirtuin-forkhead box O (SIRT-FOXO) and others), analyzing how diverse molecules associated with these pathways conform to hormesis. PMID:26694419

  1. Herbicide phosphinothricin causes direct stimulation hormesis.

    PubMed

    Dragićević, Milan; Platiša, Jelena; Nikolić, Radomirka; Todorović, Slađana; Bogdanović, Milica; Mitić, Nevena; Simonović, Ana

    2012-01-01

    Herbicide phosphinothricin (PPT) inhibits glutamine synthetase (GS), a key enzyme in nitrogen assimilation, thus causing ammonia accumulation, glutamine depletion and eventually plant death. However, the growth response of Lotus corniculatus L. plants immersed in solutions with a broad range of PPT concentrations is biphasic, with pronounced stimulating effect on biomass production at concentrations ≤ 50 μM and growth inhibition at higher concentrations. The growth stimulation at low PPT concentrations is a result of activation of chloroplastic isoform GS2, while the growth suppression is caused by inhibition of both cytosolic GS1 and GS2 at higher PPT concentrations. Since the results are obtained in cell-free system (e.g. protein extracts), to which the principles of homeostasis are not applicable, this PPT effect is an unambiguous example of direct stimulation hormesis. A detailed molecular mechanism of concentration-dependent interaction of both PPT and a related GS inhibitor, methionine sulfoximine, with GS holoenzymes is proposed. The mechanism is in concurrence with all experimental and literature data.

  2. Defining hormesis: evaluation of a complex concentration response phenomenon.

    PubMed

    Kendig, Eric L; Le, Hoa H; Belcher, Scott M

    2010-01-01

    Hormesis describes dose-response relationships characterized by a reversal of response between low and high doses of chemicals, biological molecules, physical stressors, or other initiators of a response. Acceptance of hormesis as a viable dose-response theory has been limited until recently, in part, because of poor conceptual understanding, ad hoc and inappropriate use, and lack of a defined mechanism. By examining the history of this dose-response theory, it is clear that both pharmacological and toxicological studies provide evidence for hormetic dose responses, but retrospective examination of studies can be problematic at best. Limited scientific evidence and lack of a common lexicon with which to describe these responses have left hormesis open to inappropriate application to unrelated dose-response relationships. Future studies should examine low-dose effects using unbiased, descriptive criteria to further the scientific understanding of this dose response. A clear, concise definition is required to further the limited scientific evidence for hormetic dose responses.

  3. The occurrence of hormesis in plants and algae.

    PubMed

    Cedergreen, Nina; Streibig, Jens C; Kudsk, Per; Mathiassen, Solvejg K; Duke, Stephen O

    2006-10-17

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-alga Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one fungicide and binary mixtures thereof. In total 687 dose-response curves were included in the database. The study showed that both the frequency and the magnitude of the hormetic response depended on the endpoint being measured. Dry weight at harvest showed a higher frequency and a larger hormetic response compared to relative growth rates. Evaluating hormesis for relative growth rates for all species showed that 25% to 76% of the curves for each species had treatments above 105% of the control. Fitting the data with a dose-response model including a parameter for hormesis showed that the average growth increase ranged from 9+/-1% to 16+/-16% of the control growth rate, while if measured on a dry weight basis the response increase was 38+/-13% and 43+/-23% for the two terrestrial species. Hormesis was found in >70% of the curves with the herbicides glyphosate and metsulfuron-methyl, and in >50% of the curves for acifluorfen and terbuthylazine. The concentration ranges of the hormetic part of the dose-response curves corresponded well with literature values.

  4. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis.

    PubMed

    Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Vu, Trang; Roberts, Philip; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.

  5. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure.

  6. Low doses of glyphosate change the response of soybean to later glyphosate exposures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory effect of low doses of toxic substances is known as hormesis. Many herbicides that cause severe injury to plants at recommended rates, promote growth or have other stimulatory effects at very low doses. The objective of this study was to evaluate glyphosate-induced hormesis in soyb...

  7. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  8. A meta-analysis of evidence for hormesis in animal radiation carcinogenesis, including a discussion of potential pitfalls in statistical analyses to detect hormesis.

    PubMed

    Crump, Kenny S; Duport, Philippe; Jiang, Huixia; Shilnikova, Natalia S; Krewski, Daniel; Zielinski, Jan M

    2012-01-01

    A database containing 800 datasets on the incidence of specific tumor types from 262 radiation carcinogenicity experiments identified in a comprehensive literature search through September 2000 was analyzed for evidence of hormesis. This database includes lifetime studies of tumorigenic responses in mice, rats, and dogs to exposures to alpha, beta, gamma, neutron, or x-ray radiation. A J-shaped dose response, in the form of a significant decreased response at some low dose followed by a significant increased response at a higher dose, was found in only four datasets from three experiments. Three of these datasets involved the same control animals and two also shared dosed animals; the J shape in the fourth dataset appeared to be the result of an outlier within an otherwise monotonic dose response. A meta-analysis was conducted to determine whether there was an excess of dose groups with decreases in tumor response below that in controls at doses below no-observed-effect levels (NOELs) in individual datasets. Because the probability of a decreased response is generally not equal to the probability of an increased response even in the null case, the meta-analysis focused on comparing the number of statistically significant diminished responses to the number expected, assuming no dose effect below the NOEL. Only 54 dose groups out of the total of 2579 in the database had doses below the dataset-specific NOEL and that satisfied an a priori criterion for sufficient power to detect a reduced response. Among these 54, a liberal criterion for defining a significant decreases identified 15 such decreases, versus 54 × 0.2 = 10.8 expected. The excess in significant reductions was accounted for almost entirely by the excess from neutron experiments (10 observed, 6.2 expected). Nine of these 10 dose groups involved only 2 distinct control groups, and 2 pairs from the 10 even shared dosed animals. Given this high degree of overlap, this small excess did not appear remarkable

  9. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB.

    PubMed

    Belz, Regina G; Sinkkonen, Aki

    2016-10-01

    Natural plant populations have large phenotypic plasticity that enhances acclimation to local stress factors such as toxin exposures. While consequences of high toxin exposures are well addressed, effects of low-dose toxin exposures on plant populations are seldom investigated. In particular, the importance of 'selective low-dose toxicity' and hormesis, i.e. stimulatory effects, has not been studied simultaneously. Since selective toxicity can change the size distribution of populations, we assumed that hormesis alters the size distribution at the population level, and investigated whether and how these two low-dose phenomena coexist. The study was conducted with Lactuca sativa L. exposed to the auxin-inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB) in vitro. In two separate experiments, L. sativa was exposed to 12 PCIB doses in 24 replicates (50 plants/replicate). Shoot/root growth responses at the population level were compared to the fast-growing (≥90% percentile) and the slow-growing subpopulations (≤10% percentile) by Mann-Whitney U testing and dose-response modelling. In the formation of pronounced PCIB hormesis at the population level, low-dose effects proved selective, but widely stimulatory which seems to counteract low-dose selective toxicity. The selectivity of hormesis was dose- and growth rate-dependent. Stimulation occurred at lower concentrations and stimulation percentage was higher among slow-growing individuals, but partly or entirely masked at the population level by moderate or negligible stimulation among the faster growing individuals. We conclude that the hormetic effect up to the maximum stimulation may be primarily facilitated by an increase in size of the most slow-growing individuals, while thereafter it seems that mainly the fast-growing individuals contributed to the observed hormesis at the population level. As size distribution within a population is related to survival, our study hints that selective effects on slow

  10. Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis

    PubMed Central

    2010-01-01

    Background In the present work, we describe a group of anomalous dose-response (DR) profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol) against two microorganisms (Carnobacterium piscicola and Leuconostoc mesenteroides). Results Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between sensu stricto hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents. Conclusions The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena. PMID:20723220

  11. Stress and fish reproduction: The roles of allostasis and hormesis

    USGS Publications Warehouse

    Schreck, C.B.

    2010-01-01

    This paper is a review of the effects of stress on reproduction in fishes. I hope to further the development of the concepts of allostasis and hormesis as relevant to understanding reproduction in general and in fish in particular. The main contentions I derive in this review are the following: Stressors affect fish reproduction in a variety of ways depending on the nature and severity of the stressor. The effects are transduced through a hormonal cascade initiated by perception of the stressor and involving the hypothalamus-pituitary-interrenal axis, the catecholamines, and also cytokines. Mounting a stress response and resisting a stressor is an energetically costly process, including costs associated with allostasis, attempting to reset homeostatic norms. Responses in emergency situations (e.g., being chased by a predator or a net) can be different from those where fish can cope (e.g., being in a more crowded environment) with a stressor, but both situations involve energy re-budgeting. Emergency responses happen in concert with the onset of energy limitations (e.g., the fish may not eat), while coping with allostatic overload can happen in a more energy-rich environment (e.g., the fish can continue to eat). Low levels of stress may have a positive effect on reproductive processes while greater stress has negative effects on fish reproduction. The concept of hormesis is a useful way to think about the effect of stressors on fish reproduction since responses can be nonmonotonal, often biphasic.

  12. Early Life Hormetic Treatments Decrease Irradiation-Induced Oxidative Damage, Increase Longevity, and Enhance Sexual Performance during Old Age in the Caribbean Fruit Fly

    PubMed Central

    López-Martínez, Giancarlo; Hahn, Daniel A.

    2014-01-01

    Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d) and old age (30 d). We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating), but the beneficial effects also carry into old age by reducing late life oxidative damage and improving lifespan and

  13. Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri.

    PubMed

    You, Ruirong; Sun, Haoyu; Yu, Yan; Lin, Zhifen; Qin, Mengnan; Liu, Ying

    2016-01-01

    Sulfa antibiotics (SAs) and quorum-sensing inhibitor (QSI) may pose potential ecological risks because mixed using of them has been proposed to inhibit bacteria from generating antibiotic resistance. This study investigated the time-dependent hormesis of single and binary mixtures of QSI and SAs of Vibrio fischeri (V. fischeri) for 0-24 h. Although the low-dose SAs stimulated the expression of LuxR protein, the high-dose SAs could inhibit bacteria growth by competitively binding to dihydropteroate synthase. Moreover, AinR protein was bound to Benzofuran-3(2H)-one (B3O) with low concentration, thus the N-octanoyl homoserine lactone signal molecules (C8) has chance to bind to LuxR protein to promote light emission. The hormesis effect induced by the mixtures could be deduced that SAs promoted the expression of LuxR protein and B3O increases the chance of C8 binding to LuxR. Our findings facilitate new insight into the mechanistic study of hormesis and ecological risks of the chemical mixtures.

  14. Cadmium exposure induces hematuria in Korean adults

    SciTech Connect

    Han, Seung Seok; Kim, Myounghee; Lee, Su Mi; Lee, Jung Pyo; Kim, Sejoong; Joo, Kwon Wook; Lim, Chun Soo; Kim, Yon Su; Kim, Dong Ki

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  15. Research Findings on Radiation Hormesis and Radon Therapy

    SciTech Connect

    Hattori, Sadao

    1999-06-06

    Radiation hormesis research in Japan to determine the validity of Luckey's claims has revealed information on the health effects of low-level radiation. The scientific data of animal tests we obtained and successful results actually brought by radon therapy on human patients show us a clearer understanding of the health effects of low-level radiation. We obtained many animal test results and epidemiological survey data through our research activities cooperating with more than ten universities in Japan, categorized as follows: 1. suppression of cancer by enhancement of the immune system based on gene activation; 2. rejuvenation and suppression of aging by increasing cell membrane permeability and enzyme syntheses; 3. adaptive response by activation of gene expression on DNA repair and cell apoptosis; 4. pain relief and stress moderation by hormone formation in the brain and central nervous system; 5. avoidance and therapy of obstinate diseases by enhancing damage control systems and form one formation.

  16. Non-linear uptake and hormesis effects of selenium in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Harding, Lee E

    2008-01-25

    Effects of selenium on reproductive success were assessed in red-winged blackbirds (Agelaius phoeniceus). Mean egg selenium (MES) ranged from 2.96 to 21.7 mg/kg dry weight with individual eggs up to 40 mg/kg. Uptake was non-linear: increments in MES declined as aqueous selenium increased; the asymptote was approximately 23 mg/kg. Eggs were heavier and more were laid in 2004 compared to 2005, a year of record rainfall and below-normal temperatures. Mortality of embryos that were incubated to full term was low (2.6% in 2004 and 3.2% in 2005), as was the prevalence of embryonic defects (2.7% in 2004 and 5.1% in 2005). Abnormalities in nestlings were also rare. Egg mortality was caused by predation, weather, and parental abandonment. Nestlings died from predation, starvation, and hypothermia associated with rain and cold, drowning, and bacterial infections. Nestling liver concentrations reached 81 mg/kg dry wt. selenium and were highest at the most highly selenium-exposed sites. Blood glutathione peroxidase (a selenium-dependent enzyme indicative of selenium exposure) was unrelated to liver selenium concentrations, egg selenium, or ambient selenium exposure. The selenium concentration in prey that parents fed to nestlings was higher at the selenium-exposed sites (up to 37 mg/kg dry wt. Se) compared to reference sites. Aqueous selenate:selenite ratios were related to redox differences and were much higher at the site with the highest MES, liver selenium, and prey item selenium concentrations. Hatchability showed U-shaped, or hormesis, relationships with MES: productivity increased with selenium concentrations at low exposures and decreased at high exposures. The effects threshold was approximately 22 mg/kg dry wt. MES.

  17. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    PubMed

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  18. Nuclear Energy and Health: And the Benefits of Low-Dose Radiation Hormesis

    PubMed Central

    Cuttler, Jerry M.; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled. PMID:19343116

  19. Interpreting 'dose-response' curves using homeodynamic data: with an improved explanation for hormesis.

    PubMed

    Stebbing, A R D

    2009-04-15

    A re-interpretation of the 'dose-response' curve is given that accommodates homeostasis. The outcome, or overall effect, of toxicity is the consequence of toxicity that is moderated by homeodynamic responses. Equilibrium is achieved by a balance of opposing forces of toxic inhibition countered by a stimulatory response. A graphical model is given consisting of two linked curves (response vs concentration and effect vs concentration), which provide the basis for a re-interpretation of the 'dose-response' curve. The model indicates that such relationships are non-linear with a threshold, which is due to homeodynamic responses. Subthreshold concentrations in 'dose-response' curves provide the sum of toxic inhibition minus the homeodynamic response; the response itself is unseen in serving its purpose of neutralizing perturbation. This interpretation suggests why the alpha- and beta-curves are non-linear. The beta-curve indicates adaptive overcorrection to toxicity that confers greater resistance to subsequent toxic exposure, with hormesis as an epiphenomenon.

  20. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    PubMed

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  1. Pest Insect Olfaction in an Insecticide-Contaminated Environment: Info-Disruption or Hormesis Effect

    PubMed Central

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an “odor world” and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an “info-disruptor” by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests. PMID:22457653

  2. Prenatal music exposure induces long-term neural effects.

    PubMed

    Partanen, Eino; Kujala, Teija; Tervaniemi, Mari; Huotilainen, Minna

    2013-01-01

    We investigated the neural correlates induced by prenatal exposure to melodies using brains' event-related potentials (ERPs). During the last trimester of pregnancy, the mothers in the learning group played the 'Twinkle twinkle little star'-melody 5 times per week. After birth and again at the age of 4 months, we played the infants a modified melody in which some of the notes were changed while ERPs to unchanged and changed notes were recorded. The ERPs were also recorded from a control group, who received no prenatal stimulation. Both at birth and at the age of 4 months, infants in the learning group had stronger ERPs to the unchanged notes than the control group. Furthermore, the ERP amplitudes to the changed and unchanged notes at birth were correlated with the amount of prenatal exposure. Our results show that extensive prenatal exposure to a melody induces neural representations that last for several months.

  3. Prenatal Music Exposure Induces Long-Term Neural Effects

    PubMed Central

    Partanen, Eino; Kujala, Teija; Tervaniemi, Mari; Huotilainen, Minna

    2013-01-01

    We investigated the neural correlates induced by prenatal exposure to melodies using brains' event-related potentials (ERPs). During the last trimester of pregnancy, the mothers in the learning group played the ‘Twinkle twinkle little star’ -melody 5 times per week. After birth and again at the age of 4 months, we played the infants a modified melody in which some of the notes were changed while ERPs to unchanged and changed notes were recorded. The ERPs were also recorded from a control group, who received no prenatal stimulation. Both at birth and at the age of 4 months, infants in the learning group had stronger ERPs to the unchanged notes than the control group. Furthermore, the ERP amplitudes to the changed and unchanged notes at birth were correlated with the amount of prenatal exposure. Our results show that extensive prenatal exposure to a melody induces neural representations that last for several months. PMID:24205353

  4. Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis.

    PubMed

    Calabrese, E J; Baldwin, L A

    2000-01-01

    This paper compares the historical developments of chemical and radiation hormesis from their respective inceptions in the late 1880's for chemical hormesis and early 1900's for radiation hormesis to the mid 1930's to 1940 during which both hypotheses rose to some prominence but then became marginalized within the scientific community. This analysis documents that there were marked differences in their respective temporal developments, and the direction and maturity of research. In general, the formulation of the chemical hormesis hypothesis displayed an earlier, more-extensive and more sophisticated development than the radiation hormesis hypothesis. It was able to attract prestigious researchers with international reputations from leading institutions, to be the subject of numerous dissertations, to have its findings published in leading journals, and to have its concepts incorporated into leading microbiological texts. While both areas became the object of criticism from leading scientists, the intensity of the challenge was greatest for chemical hormesis due to its more visible association with the medical practice of homeopathy. Despite the presence of legitimate and flawed criticism, the most significant limitations of both chemical and radiation hormesis and their respective ultimate undoing were due to their: (1) lack of development of a coherent dose-response theory using data of low dose stimulation from both the chemical and radiation domains; (2) difficulty in replication of low dose stimulatory responses without an adequate study design especially with respect to an appropriate number and properly spaced doses below the toxic threshold; (3) modest degree of stimulation even under optimal conditions which was difficult to distinguish from normal variation; and (4) lack of appreciation of the practical and/or commercial applications of the concepts of low dose stimulation.

  5. [Evaluation of rounded atelectasis induced by exposure to asbestos].

    PubMed

    Kishimoto, Takumi; Gemba, Kenichi; Fujimoto, Nobukazu; Nishi, Hideyuki; Ozaki, Shinji

    2008-09-01

    We encountered 19 patients of rounded atelectasis induced by exposure to asbestos from 2000 to 2007. All patients were men whose ages arranged from 60 to 89 years with a mean of 74.2 years. Twenty rounded atelectasis were present in the right lung and 5 in the left lung. Five patients had 2 rounded atelectasis. In 21 rounded atelectasis were found in Segment 10 and while other 2 found in S1 and each in S5 and 9. Eleven patients were diagnosed with no symptoms through medical examinations. Other 8 patients complained of dyspnea, chest pain and cough. Thirteen patients complicated with benign asbestos pleurisy and only 3 patients accompanied asbestosis. Eighteen patients (95%) displayed pleural plaques and 15 patients with calcified plaques. Ten patients had been exposed to asbestos in the shipyards and 4 in construction works and other 5 patients had also exposed by occupational exposure to asbestos. The mean period of exposure to asbestos was 26.6 years and the mean latency periods from the first asbestos exposure to the diagnosis of rounded atelectasis were 51.6 years. An autopsied patient had 18,100 asbestos bodies per 1 g of dry lung tissue which meant the heavy asbestos exposure. High incidence of pleural plaques and long period of latency from the first exposure to the appearance of rounded atelectasis in this study suggested that rounded atelectasis might appear less high-dose exposure to asbestos than former patients who were reported 6 years ago.

  6. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  7. Exposure of Mice to Topical Bovine Thrombin Induces Systemic Autoimmunity

    PubMed Central

    Schoenecker, Jonathan G.; Johnson, Rachel K.; Lesher, Aaron P.; Day, Jarrod D.; Love, Stephanie D.; Hoffman, Maureane R.; Ortel, Thomas L.; Parker, William; Lawson, Jeffrey H.

    2001-01-01

    Bovine thrombin is used as an aid to hemostasis in medical and surgical procedures. At least 500,000 Americans are exposed to this therapeutic annually and reports suggest that exposure is associated with the development of autoreactive antibodies. To determine whether bovine thrombin can induce pathological autoimmunity we exposed nonautoimmune-prone galactose-α1-3-galactose-deficient mice to the two bovine thrombin preparations currently approved for use in the United States. We found that, like humans exposed to bovine thrombin, mice developed an immune response against the therapeutic and the xenogeneic carbohydrate galactose-α1-3-galactose, and some mice developed autoantibodies against clotting factors. Further, unexpectedly, a single exposure to this therapeutic also induced autoimmunity with features characteristic of systemic lupus erythematosus including antibodies against nuclear antigens, native DNA, double-stranded DNA, and cardiolipin. High levels of these autoantibodies correlated with glomerulonephritis in all mice evaluated. This autoimmune syndrome was detected in mice 15 weeks after a secondary exposure to bovine thrombin and female mice were found to develop the syndrome at a significantly greater frequency than males. Thus, these studies indicate that exposure to bovine thrombin preparations can induce a pathological systemic autoimmune syndrome with lupus-like serology. PMID:11696457

  8. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  9. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle.

    PubMed

    Rashkov, Peter; Barrett, Ian P; Beardmore, Robert E; Bendtsen, Claus; Gudelj, Ivana

    2016-11-01

    Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis.

  10. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle

    PubMed Central

    Rashkov, Peter; Barrett, Ian P.; Beardmore, Robert E.; Bendtsen, Claus

    2016-01-01

    Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis. PMID:27898662

  11. Structured Development and Promotion of a Research Field: Hormesis in Biology, Toxicology, and Environmental Regulatory Science.

    PubMed

    Mushak, Paul; Elliott, Kevin C

    2015-12-01

    The ability of powerful and well-funded interest groups to steer scientific research in ways that advance their goals has become a significant social concern. This steering ability is increasingly being recognized in the peer-reviewed scientific literature and in findings of deliberative scientific bodies. This paper provides a case study that illustrates some of the major strategies that can be used to structure and advance a controversial research field. It focuses on hormesis, described as a type of dose-response relationship in toxicology and biology showing low-dose stimulation but high-dose inhibition, or the reverse. Hormesis proponents tout its significance, arguing that substances toxic at high doses and beneficial at lower doses should be regulated less stringently. We identify five strategies employed by hormesis proponents to foster its acceptance: (1) creating institutions focused on supporting hormesis; (2) developing terminology, study designs, and data interpretations that cast it in a favorable light; (3) using bibliometric techniques and surveys to attract attention; (4) aggressively advocating for the phenomenon and challenging critics; and (5) working with outside interest groups to apply the hormesis phenomenon in the economic and political spheres. We also suggest a number of oversight strategies that can be implemented to help promote credible and socially responsible research in cases like this one.

  12. Environmental law applications of hormesis concepts: risk assessment and cost-benefit implications.

    PubMed

    Juni, R L; McElveen, J C

    2000-01-01

    This article focuses on legal structures that influence the degree to which hormesis can be incorporated into environmental law and policy. Three statutes-the Occupational Safety and Health Act, the Food Quality Protection Act, and the Clean Air Act-are used to illustrate the varied ways in which Congress, agencies and the courts have approached risk assessment and cost-benefit analyses that are relevant to the hormesis issue. This discussion features several examples of regulations and judicial decisions that have begun to recognize hormetic effects. The article concludes that hormesis concepts could be incorporated effectively into present risk assessment and cost-benefit mechanisms. In the context of agency action, an express policy decision might be made to broaden the typical scope of risk assessment and cost-benefit processes by including hormetic effects. In the judicial context, recognition of hormesis may occur where relevant statutory language is read to contemplate that an agency will consider both the beneficial and the detrimental effects of a particular substance in formulating regulations; in this circumstance, a reviewing court could reverse an agency decision that focuses solely on detrimental effects and ignores hormetic effects. Based on these evolving trends, the time may be ripe to seek further incorporation of hormesis concepts into environmental law and policy decisions.

  13. Exposure to diesel exhaust particulates induces cardiac dysfunction and remodeling

    PubMed Central

    Bradley, Jessica M.; Cryar, Kipp A.; El Hajj, Milad C.; El Hajj, Elia C.

    2013-01-01

    Chronic exposure to diesel exhaust particulates (DEP) increases the risk of cardiovascular disease in urban residents, predisposing them to the development of several cardiovascular stresses, including myocardial infarctions, arrhythmias, thrombosis, and heart failure. DEP contain a high level of polycyclic aromatic hydrocarbons, which activate the aryl hydrocarbon receptor (AHR). We hypothesize that exposure to DEP elicits ventricular remodeling through the activation of the AHR pathway, leading to ventricular dilation and dysfunction. Male Sprague-Dawley rats were exposed by nose-only nebulization to DEP (SRM 2975, 0.2 mg/ml) or vehicle for 20 min/day × 5 wk. DEP exposure resulted in eccentric left ventricular dilation (8% increased left ventricular internal diameter at diastole and 23% decreased left ventricular posterior wall thickness at diastole vs. vehicle), as shown by echocardiograph assessment. Histological analysis using Picrosirius red staining revealed that DEP reduced cardiac interstitial collagen (23% decrease vs. vehicle). Further assessment of cardiac function using a pressure-volume catheter indicated impaired diastolic function (85% increased end-diastolic pressure and 19% decreased Tau vs. vehicle) and contractility (57 and 48% decreased end-systolic pressure-volume relationship and maximum change in pressure over time vs. end-diastolic volume compared with vehicle, respectively) in the DEP-exposed animals. Exposure to DEP significantly increased cardiac expression of AHR (19% increase vs. vehicle). In addition, DEP significantly decreased the cardiac expression of hypoxia inducible factor-1α, the competitive pathway to the AHR, and vascular endothelial growth factor, a downstream mediator of hypoxia inducible factor-1α (26 and 47% decrease vs. vehicle, respectively). These findings indicate that exposure to DEP induced left ventricular dilation by loss of collagen through an AHR-dependent mechanism. PMID:23887904

  14. Prenatal exposure to nitrofen induces Fryns phenotype in mice.

    PubMed

    Acosta, J M; Chai, Y; Meara, J G; Bringas, P; Anderson, K D; Warburton, D

    2001-06-01

    Prenatal exposure to nitrofen is known to cause multiple malformations in mice. The reported malformations include lung hypoplasia, diaphragmatic hernia, cardiovascular defects, skeletal malformations, cleft palate, and renal abnormalities. The authors present detailed findings of craniofacial defects after prenatal exposure to nitrofen, and propose that together with the previously reported malformations, nitrofen exposure induces a Fryns phenotype in mice. Fryns syndrome is a rare human genetic syndrome that is an autosomal recessive disorder characterized by lung hypoplasia, diaphragmatic hernia, craniofacial malformations, skeletal malformations, cardiovascular malformations, and genitourinary malformations. Timed-pregnant Swiss Webster mice were gavage-fed 25 mg of nitrofen on day 8 of gestation. Control animals received olive oil. Osteogenesis and chondrogenesis were studied in fetuses recovered on day 17 after Alcian blue-Alizarin red staining. Approximately 26% of the nitrofen-exposed embryos had severe craniofacial defects, and there was generalized delay in chondrogenesis and osteogenesis throughout the skeleton. No such defects were noted in the control group. The authors propose that prenatal exposure to nitrofen induces a Fryns phenotype in mice, and thus speculate that nitrofen may target similar molecular mechanisms to those that lead to Fryns syndrome.

  15. Environmental arsenic exposure and microbiota in induced sputum.

    PubMed

    White, Allison G; Watts, George S; Lu, Zhenqiang; Meza-Montenegro, Maria M; Lutz, Eric A; Harber, Philip; Burgess, Jefferey L

    2014-02-21

    Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  16. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review.

    PubMed

    Song, Dongmei; Fang, Guoqiang; Greenberg, Harly; Liu, Shu Fang

    2015-12-01

    Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis.

  17. The Maturing of Hormesis as a Credible Dose-Response Model

    PubMed Central

    Calabrese, Edward J.

    2003-01-01

    Hormesis is a dose-response phenomenon that has received little recognition, credibility and acceptance as evidenced by its absence from major toxicological/risk assessment texts, governmental regulatory dose-response modeling for risk assessment, and non-visibility in major professional toxicological society national meetings. This paper traces the historical evolution of the hormetic dose-response hypothesis, why this model is not only credible but also more common than the widely accepted threshold model in direct comparative evaluation, and how the toxicological community made a critical error in rejecting hormesis, a rejection sustained over 70 years. PMID:19330138

  18. Statin-induced myopathy in the rat: relationship between systemic exposure, muscle exposure and myopathy.

    PubMed

    Sidaway, J; Wang, Y; Marsden, A M; Orton, T C; Westwood, F R; Azuma, C T; Scott, R C

    2009-01-01

    Rare instances of myopathy are associated with all statins, but cerivastatin was withdrawn from clinical use due to a greater incidence of myopathy. The mechanism of statin-induced myopathy with respect to tissue disposition was investigated by measuring the systemic, hepatic, and skeletal muscle exposure of cerivastatin, rosuvastatin, and simvastatin in rats before and after muscle damage. The development of myopathy was not associated with the accumulation of statins in skeletal muscle. For each statin exposure was equivalent in muscles irrespective of their fibre-type sensitivity to myopathy. The low amount of each statin in skeletal muscle relative to the liver does not support a significant role for transporters in the disposition of statins in skeletal muscle. Finally, the concentration of cerivastatin necessary to cause necrosis in skeletal muscle was considerably lower than rosuvastatin or simvastatin, supporting the concept cerivastatin is intrinsically more myotoxic than other statins.

  19. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  20. [The advance of model of action in low-dose chronic benzene exposure induced hematotoxicity].

    PubMed

    Gao, Chen; Zhang, Zhengbao; Chen, Liping; Chen, Wen

    2015-09-01

    Benzene is classified as Group 1 carcinogen by IARC. It has been found that benzene induces hematotoxicity even in low dose exposure. The identification of key events during benzene induced hematotoxicty leads to adjustment of occupational exposure limits of benzene. In this review, we focus on the exposure, metabolism, target organs, key epigenetic changes, toxicty effects and end points of low-dose chronic benzene exposure induced hematotoxicity and finally discuss the perspectives on the future study of this area.

  1. Abnormal cardiovascular responses induced by localized high power microwave exposure

    SciTech Connect

    Lu, S.-T; Brown, D.O.; Johnson, C.E.; Mathur, S.P. ); Elson, E.C. )

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in the neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.

  2. Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense.

    PubMed

    Westra, Edze R; van Houte, Stineke; Oyesiku-Blakemore, Sam; Makin, Ben; Broniewski, Jenny M; Best, Alex; Bondy-Denomy, Joseph; Davidson, Alan; Boots, Mike; Buckling, Angus

    2015-04-20

    In the face of infectious disease, organisms evolved a range of defense mechanisms, with a clear distinction between those that are constitutive (always active) and those that are inducible (elicited by parasites). Both defense strategies have evolved from each other, but we lack an understanding of the conditions that favor one strategy over the other. While it is hard to generalize about their degree of protection, it is possible to make generalizations about their associated fitness costs, which are commonly detected. By definition, constitutive defenses are always "on," and are therefore associated with a fixed cost, independent of parasite exposure. Inducible defenses, on the other hand, may lack costs in the absence of parasites but become costly when defense is elicited through processes such as immunopathology. Bacteria can evolve constitutive defense against phage by modification/masking of surface receptors, which is often associated with reduced fitness in the absence of phage. Bacteria can also evolve inducible defense using the CRISPR-Cas (clustered regularly interspaced short palindromic repeat, CRISPR associated) immune system, which is typically elicited upon infection. CRISPR-Cas functions by integrating phage sequences into CRISPR loci on the host genome. Upon re-infection, CRISPR transcripts guide cleavage of phage genomes. In nature, both mechanisms are important. Using a general theoretical model and experimental evolution, we tease apart the mechanism that drives their evolution and show that infection risk determines the relative investment in the two arms of defense.

  3. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.

  4. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    PubMed

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development.

  5. Different cell responses induced by exposure to maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M. Concepción

    2013-11-01

    Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible

  6. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    PubMed

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  7. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging.

    PubMed

    Tang, Feng Ru; Loke, Weng Keong; Khoo, Boo Cheong

    2017-04-01

    Irradiation of the brain in early human life may set abnormal developmental events into motion that last a lifetime, leading to a poor quality of life for affected individuals. While the effect of irradiation at different early developmental stages on the late human life has not been investigated systematically, animal experimental studies suggest that acute postnatal irradiation with ⩾0.1Gy may significantly reduce neurogenesis in the dentate gyrus and endotheliogenesis in cerebral vessels and induce cognitive impairment and aging. Fractionated irradiation also reduces neurogenesis. Furthermore, irradiation induces hippocampal neuronal loss in CA1 and CA3 areas, neuroinflammation and reduces gliogenesis. The hippocampal neurovascular niche and the total number of microvessels are also changed after radiation exposures. Each or combination of these pathological changes may cause cognitive impairment and aging. Interestingly, acute irradiation of aged brain with a certain amount of radiation has also been reported to induce brain hormesis or neurogenesis. At molecular levels, inflammatory cytokines, chemokines, neural growth factors, neurotransmitters, their receptors and signal transduction systems, reactive oxygen species are involved in radiation-induced adverse effect on brain development and functions. Further study at different omics levels after low dose/dose rate irradiation may not only unravel the mechanisms of radiation-induced adverse brain effect or hormesis, but also provide clues for detection or diagnosis of radiation exposure and for therapeutic approaches to effectively prevent radiation-induced cognitive impairment and aging. Investigation focusing on radiation-induced changes of critical brain development events may reveal many previously unknown adverse effects.

  8. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis.

    PubMed

    Calabrese, Edward J

    2008-01-01

    The adaptive response in toxicology and environmental mutagenesis, preconditioning in biomedicine and the Yerkes-Dodson Law in psychology have dominating research themes with widespread and significant scientific and societal implications. This paper suggests that these apparently independent biological dose-response phenomena are manifestations of the common and more general biphasic dose-response relationship concept called hormesis. These three types of dose-response, as well as the hormesis concept, may represent the same general type of adaptation, which were discovered independently in different biological disciplines, amongst which there has been little communication. This intellectual isolation, due principally to progressively greater disciplinary specialization, resulted in the evolution of different terminologies for dose-response phenomena with strikingly similar quantitative features. This lack of recognition of converging dose-response concepts across disciplines has important implications since it limits the recognition of a common and basic biological concept while minimizing collaborations by investigators in related areas. The paper concludes that the broadly recognized biological adaptive responses, as described by the concepts of adaptive response, preconditioning and the Yerkes-Dodson Law, are special cases of the more general hormesis dose-response concept.

  9. Early life exposure to air pollution induces adult cardiac dysfunction

    PubMed Central

    Gorr, Matthew W.; Velten, Markus; Nelin, Timothy D.; Youtz, Dane J.; Sun, Qinghua

    2014-01-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m3 from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (−9,203 ± 235 μl/s FA, −7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  10. Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats

    DTIC Science & Technology

    2012-01-01

    with noise. The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss ( NIHL ) using inhalation...The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss ( NIHL ) using inhalation exposure to...susceptibility to noise-induced hearing loss ( NIHL ). Once these objectives were met using a continuous noise exposure paradigm, an additional study

  11. Scientific foundations of hormesis. Part 2. Maturation, strengths, limitations, and possible applications in toxicology, pharmacology, and epidemiology.

    PubMed

    Rozman, Karl K; Doull, John

    2003-01-01

    The notion of hormesis has undergone numerous modifications in the course of the 20th century. Because of its unfortunate association with homeopathy, hormesis did not gain acceptance among biomedical professionals. The lack of a plausible mechanism for its occurrence may have contributed much to the rejection of this concept. This treatise outlines the conceptual struggle for an understanding of the widespread occurrence of low dose effects that appear to be opposite to those caused by high doses as also seen in hormesis. An incomplete conceptualization of time as a fundamental variable of effects (in addition to dose) is identified as one of the major reasons why hermetic responses were not observed more frequently than was reported by Calabrese and Baldwin. The definition of hormesis as an (over)compensation response to an inhibitory signal lacks a designation for (over)compensation responses to stimulatory signals in the other direction. Hormoligosis, which was coined by Luckey for all low-dose stimulatory responses of toxins, is suggested as a suitable term for generalizing the latter types of effects. Both types of effects are recognized as originating in a homeostatic overcompensation response that optimizes the ability of an organism to meet challenges beyond the limits of normal (unexercised) adaptation. Thus, repeated biochemical/physiologic/immunological, etc. exercises like physical exercise make an organism more fit and hence both hormetic and hormoligotic effects will have life-prolonging consequences. A more complete generalization was developed by linking hormesis/hormoligosis with the vast literature on Selye's general adaptation syndrome to stress. According to this broader view, stress is just one type of homeostatic exercise making organisms more fit for future biochemical/physiological/immunological, etc.challenges. Therefore, both hormesis and hormoligosis are manifestations of two nonmutational evolutionary principles--homeostasis and

  12. [Adverse cutaneous reactions induced by exposure to woods].

    PubMed

    Chomiczewska-Skóra, Dorota

    2013-01-01

    Various adverse cutaneous reactions may occur as a result of exposure to wood dust or solid woods. These include allergic contact dermatitis, irritant contact dermatitis and, more rarely, contact urticaria, photoallergic and phototoxic reactions. Also cases of erythema multiforme-like reactions have been reported. Contact dermatitis, both allergic and irritant, is most frequently provoked by exotic woods, e.g. wood of the Dalbergia spp., Machaerium scleroxylon or Tectona grandis. Cutaneous reactions are usually associated with manual or machine woodworking, in occupational setting or as a hobby. As a result of exposure to wood dust, airborne contact dermatitis is often diagnosed. Cases of allergic contact dermatitis due to solid woods of finished articles as jewelry or musical instruments have also been reported. The aim of the paper is to present various adverse skin reactions related to exposure to woods, their causal factors and sources of exposure, based on the review of literature.

  13. Lipid peroxidation induced by maternal cadmium exposure in mouse pups

    SciTech Connect

    Baohui Xu |; Yapin Jin; Zhaoliang Feng; Zhaofa Xu; Matsushita, Toshio

    1993-11-01

    Cadmium as an environmental pollutant has received considerable attention and its toxic effects have been studied extensively in human and adult animals. Moreover, an International Task Group on Metal Accumulation (1973) has established that although it is in a limited quantity cadmium can be transported across placenta and excreted through milk in animals. Likewise, it can pass through placenta in humans. Furthermore, the fact is that women in the cadmium-polluted areas are continuously exposed to cadmium during gestation and lactation. Even if they are removed from the exposure, the body burden of cadmium probably remains high because of the very long biological half-time of cadmium which is estimated to be between 17.6 and 33 years. Thus, it is possible that fetuses and pups may be exposed to cadmium during maternal gestation and lactation. Although placenta affords some protection from cadmium exposure, cadmium exposure prior to day 10-11 when placenta forms may be deleterious. Cadmium exposure during pregnancy and its effects on offsprings, which were mainly focused on litter size, pup survival, pup growth and cadmium contents in pups following maternal cadmium exposure have been reported. Lipid peroxide has been considered as a sensitive toxicological index for environmental pollutants. The inhibited antioxidant enzymes and enhanced lipid peroxidation due to cadmium exposure have been demonstrated both in humans and animals. Therefore, the present study was designed to evaluate the toxic effects of maternal cadmium exposure on mouse pups using both the indices used in the previous studies and determinations of lipid peroxide concentrations in various pup organs. In conclusion, data from the present study indicate that the detection of LPO concentration in selected pup tissues is a sensitive index for evaluating the effects of maternal cadmium exposure on mouse pups. 16 refs., 4 tabs.

  14. A novel method to assess human population exposure induced by a wireless cellular network.

    PubMed

    Varsier, Nadège; Plets, David; Corre, Yoann; Vermeeren, Günter; Joseph, Wout; Aerts, Sam; Martens, Luc; Wiart, Joe

    2015-09-01

    This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc.

  15. Is the integration of hormesis and essentiality into ecotoxicology now opening Pandora's Box?

    PubMed

    Kefford, Ben J; Zalizniak, Liliana; Warne, Michael St J; Nugegoda, Dayanthi

    2008-02-01

    Hormesis and essentiality are likely real and common effects at the level of the individual. However, the widespread incorporation of stimulatory effects into applications of ecotoxicology requires the acceptance of assumptions, value judgements and possibly lowering of water/sediment quality standards. There is also currently little data appropriate for considering hormetic effects in the ecotoxicological context. Except perhaps in the case of fitting concentration-response curves, it is not clear that incorporation of hormetic and essentiality type responses into ecotoxicology is necessary. Furthermore, its incorporation presents considerable intellectual and practical changes for ecotoxicology and could have unanticipated consequences.

  16. OZONE-INDUCED RESPIRATORY SYMPTOMS: EXPOSURE-RESPONSE MODELS AND ASSOCIATION WITH LUNG FUNCTION

    EPA Science Inventory

    Ozone-induced respiratory symptoms are known to be functions of concentration, minute ventilation, and duration of exposure. The purposes of this study were to identify an exposure-response model for symptoms, to determine whether response was related to age, and to assess the re...

  17. Chronic exposure to ELF fields may induce depression

    SciTech Connect

    Wilson, B.W.

    1988-01-01

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.

  18. Metal induced inhalation exposure in urban population: A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Widziewicz, Kamila; Loska, Krzysztof

    2016-03-01

    The paper was aimed at assessing the health risk in the populations of three Silesian cities: Bielsko-Biała, Częstochowa and Katowice exposed to the inhalation intake of cadmium, nickel and arsenic present in airborne particulate matter. In order to establish how the exposure parameters affects risk a probabilistic risk assessment framework was used. The risk model was based on the results of the annual measurements of As, Cd and Ni concentrations in PM2.5 and the sets of data on the concentrations of those elements in PM10 collected by the Voivodship Inspectorate of Environmental Protection over 2012-2013 period. The risk was calculated as an incremental lifetime risk of cancer (ILCR) in particular age groups (infants, children, adults) following Monte Carlo approach. With the aim of depicting the effect the variability of exposure parameters exerts on the risk, the initial parameters of the risk model: metals concentrations, its infiltration into indoor environment, exposure duration, exposure frequency, lung deposition efficiency, daily lung ventilation and body weight were modeled as random variables. The distribution of inhalation cancer risk due to exposure to ambient metals concentrations was LN (1.80 × 10-6 ± 2.89 × 10-6) and LN (6.17 × 10-7 ± 1.08 × 10-6) for PM2.5 and PM10-bound metals respectively and did not exceed the permissible limit of the acceptable risk. The highest probability of contracting cancer was observed for Katowice residents exposed to PM2.5 - LN (2.01 × 10-6 ± 3.24 × 10-6). Across the tested age groups adults were approximately one order of magnitude at higher risk compared to infants. Sensitivity analysis showed that exposure duration (ED) and body weight (BW) were the two variables, which contributed the most to the ILCR.

  19. Peri, pre and postnatal morphine exposure: exposure-induced effects and sex differences in the behavioural consequences in rat offspring.

    PubMed

    Timár, Julia; Sobor, Melinda; Király, Kornél P; Gyarmati, Susanna; Riba, Pál; Al-Khrasani, Mahmoud; Fürst, Susanna

    2010-02-01

    This study investigated the behavioural consequences of peri, pre and postnatal morphine (MO) exposure in rats. From gestational day 1 dams were treated with either saline or MO subcutaneously once a day (5 mg/kg on the first 2 days, 10 mg/kg subsequently). Spontaneous locomotor activity in a new environment (habituation) and antinociceptive effects of MO were measured separately in male and female pups after weaning and also in late adolescence or adulthood. The rewarding effect of MO was assessed by conditioned place preference in adult animals. Both exposure-induced and sex differences were observed. A significant delay in habituation to a new environment and decreased sensitivity to the antinociceptive effect of MO were found in male offspring of MO-treated dams. In contrast, the place preference induced by MO was enhanced in the MO-exposed adult animals and this effect was more marked in females. Prenatal exposure to MO resulted in more marked changes than the postnatal exposure through maternal milk. The results indicate that a medium MO dose administered once-daily results in long-term consequences in offspring and may make them more vulnerable to MO abuse in adulthood.

  20. Disorders Induced by Direct Occupational Exposure to Noise: Systematic Review

    PubMed Central

    Domingo-Pueyo, Andrea; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2016-01-01

    Background: To review the available scientific literature about the effects on health by occupational exposure to noise. Materials and Methods: A systematic review of the retrieved scientific literature from the databases MEDLINE (via PubMed), ISI-Web of Knowledge (Institute for Scientific Information), Cochrane Library Plus, SCOPUS, and SciELO (collection of scientific journals) was conducted. The following terms were used as descriptors and were searched in free text: “Noise, Occupational,” “Occupational Exposure,” and “Occupational Disease.” The following limits were considered: “Humans,” “Adult (more than 18 years),” and “Comparative Studies.” Results: A total of 281 references were retrieved, and after applying inclusion/exclusion criteria, 25 articles were selected. Of these selected articles, 19 studies provided information about hearing disturbance, four on cardiovascular disorders, one regarding respiratory alteration, and one on other disorders. Conclusions: It can be interpreted that the exposure to noise causes alterations in humans with different relevant outcomes, and therefore appropriate security measures in the work environment must be employed to minimize such an exposure and thereby to reduce the number of associated disorders. PMID:27762251

  1. Evidence supporting radiation hormesis in atomic bomb survivor cancer mortality data.

    PubMed

    Doss, Mohan

    2012-12-01

    A recent update on the atomic bomb survivor cancer mortality data has concluded that excess relative risk (ERR) for solid cancers increases linearly with dose and that zero dose is the best estimate for the threshold, apparently validating the present use of the linear no threshold (LNT) model for estimating the cancer risk from low dose radiation. A major flaw in the standard ERR formalism for estimating cancer risk from radiation (and other carcinogens) is that it ignores the potential for a large systematic bias in the measured baseline cancer mortality rate, which can have a major effect on the ERR values. Cancer rates are highly variable from year to year and between adjacent regions and so the likelihood of such a bias is high. Calculations show that a correction for such a bias can lower the ERRs in the atomic bomb survivor data to negative values for intermediate doses. This is consistent with the phenomenon of radiation hormesis, providing a rational explanation for the decreased risk of cancer observed at intermediate doses for which there is no explanation based on the LNT model. The recent atomic bomb survivor data provides additional evidence for radiation hormesis in humans.

  2. The notion of hormesis and the dose-response theory: a unified approach.

    PubMed

    Murado, M A; Vázquez, J A

    2007-02-07

    According to an opinion which is vigorous and insistently defended for approximately one decade, hormesis (the response of a biological entity to an effector, with stimulatory results at low doses and inhibitory results at high doses) radically puts into question the classic theory of dose-response (DR) relationships and demands a profound revision of environmental protection policies. Herein we show that DR theory, with the modifications which we propose, allows the modelling of various kinds of biphasic responses which are phenomenologically similar to hormetic ones and of well-defined origin, as well as responses which have been treated as genuinely hormetic. Our descriptive approach may also represent a useful resource for experimental design, directed towards identifying some of the potentially heterogeneous mechanisms which underlie the hormetic phenomenon. Finally, it also allows to discuss some factors which prevent the use of the notion of hormesis-perhaps useful in a clinical context, under strictly controlled conditions-to make decisions on environmental protection measures.

  3. Hormesis, Cell Death, and Regenerative Medicine for Neurode-Generative Diseases

    PubMed Central

    Wang, Guanghu

    2013-01-01

    Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells. Hormesis (or preconditioning, stress adaptation) is an adaptation mechanism by which cells or organisms are potentiated to survive an otherwise lethal condition, such as the harsh oxidative stress in the stroke brain. Stem cells treated by low levels of chemical, physical, or pharmacological stimuli have been shown to survive better in the neurodegenerative brain. Thus combining hormesis and stem cell therapy might improve the outcome for treatment of these diseases. In addition, since the cell death patterns and their underlying molecular mechanism may vary in different neurodegenerative diseases, even in different progression stages of the same disease, it is essential to design a suitable and optimum hormetic strategy that is tailored to the individual patient. PMID:23930104

  4. Hormesis associated with a low dose of methylmercury injected into mallard eggs

    USGS Publications Warehouse

    Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.; Kondrad, Shannon L.; Erwin, Carol A.

    2012-01-01

    We injected mallard (Anas platyrhynchos) eggs with methylmercury chloride at doses of 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 μg mercury/g egg contents on a wet-weight basis. A case of hormesis seemed to occur because hatching success of eggs injected with 0.05 μg mercury (the lowest dose) was significantly greater (93.3%) than that of controls (72.6%), whereas hatching success decreased at progressively greater doses of mercury. Our finding of hormesis when a low dose of methylmercury was injected into eggs agrees with a similar observation in a study in which a group of female mallards was fed a low dietary concentration of methylmercury and hatching of their eggs was significantly better than that of controls. If methylmercury has a hormetic effect at low concentrations in avian eggs, these low concentrations may be important in a regulatory sense in that they may represent a no-observed adverse effect level (NOAEL).

  5. Detection and assessment of chemical hormesis on the radial growth in vitro of oomycetes and fungal plant pathogens.

    PubMed

    Flores, Francisco J; Garzon, Carla D

    2012-01-01

    Although plant diseases can be caused by bacteria, viruses, and protists, most are caused by fungi and fungus-like oomycetes. Intensive use of fungicides with the same mode of action can lead to selection of resistant strains increasing the risk of unmanageable epidemics. In spite of the integrated use of nonchemical plant disease management strategies, agricultural productivity relies heavily on the use of chemical pesticides and biocides for disease prevention and treatment and sanitation of tools and substrates. Despite the prominent use of fungi in early hormesis studies and the continuous use of yeast as a research model, the relevance of hormesis in agricultural systems has not been investigated by plant pathologists, until recently. A protocol was standardized for detection and assessment of chemical hormesis in fungi and oomycetes using radial growth as endpoint. Biphasic dose-responses were observed in Pythium aphanidermatum exposed to sub-inhibitory doses of ethanol, cyazofamid, and propamocarb, and in Rhizoctonia zeae exposed to ethanol. This report provides an update on chemical hormesis in fungal plant pathogens and a perspective on the potential risks it poses to crop productivity and global food supply.

  6. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism.

    PubMed

    Tyler, Christina R; Solomon, Benjamin R; Ulibarri, Adam L; Allan, Andrea M

    2014-09-01

    Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic-pituitary-adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism.

  7. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans.

    PubMed

    Kishimoto, Saya; Uno, Masaharu; Okabe, Emiko; Nono, Masanori; Nishida, Eisuke

    2017-01-09

    Hormesis is a biological phenomenon, whereby exposure to low levels of toxic agents or conditions increases organismal viability. It thus represents a beneficial aspect of adaptive responses to harmful environmental stimuli. Here we show that hormesis effects induced in the parental generation can be passed on to the descendants in Caenorhabditis elegans. Animals subjected to various stressors during developmental stages exhibit increased resistance to oxidative stress and proteotoxicity. The increased resistance is transmitted to the subsequent generations grown under unstressed conditions through epigenetic alterations. Our analysis reveal that the insulin/insulin-like growth factor (IGF) signalling effector DAF-16/FOXO and the heat-shock factor HSF-1 in the parental somatic cells mediate the formation of epigenetic memory, which is maintained through the histone H3 lysine 4 trimethylase complex in the germline across generations. The elicitation of memory requires the transcription factor SKN-1/Nrf in somatic tissues. We propose that germ-to-soma communication across generations is an essential framework for the transgenerational inheritance of acquired traits, which provides the offspring with survival advantages to deal with environmental perturbation.

  8. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans

    PubMed Central

    Kishimoto, Saya; Uno, Masaharu; Okabe, Emiko; Nono, Masanori; Nishida, Eisuke

    2017-01-01

    Hormesis is a biological phenomenon, whereby exposure to low levels of toxic agents or conditions increases organismal viability. It thus represents a beneficial aspect of adaptive responses to harmful environmental stimuli. Here we show that hormesis effects induced in the parental generation can be passed on to the descendants in Caenorhabditis elegans. Animals subjected to various stressors during developmental stages exhibit increased resistance to oxidative stress and proteotoxicity. The increased resistance is transmitted to the subsequent generations grown under unstressed conditions through epigenetic alterations. Our analysis reveal that the insulin/insulin-like growth factor (IGF) signalling effector DAF-16/FOXO and the heat-shock factor HSF-1 in the parental somatic cells mediate the formation of epigenetic memory, which is maintained through the histone H3 lysine 4 trimethylase complex in the germline across generations. The elicitation of memory requires the transcription factor SKN-1/Nrf in somatic tissues. We propose that germ-to-soma communication across generations is an essential framework for the transgenerational inheritance of acquired traits, which provides the offspring with survival advantages to deal with environmental perturbation. PMID:28067237

  9. Vanadium exposure-induced neurobehavioral alterations among Chinese workers.

    PubMed

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2013-05-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the simple reaction time, digit span, benton visual retention and pursuit aiming were also poorer among exposed workers as compared to unexposed control workers (p<0.05). Some of these poor performances in tests were also significantly related to workers' exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium.

  10. Time in Redox Adaptation Processes: From Evolution to Hormesis

    PubMed Central

    Sthijns, Mireille M. J. P. E.; Weseler, Antje R.; Bast, Aalt; Haenen, Guido R. M. M.

    2016-01-01

    Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH) system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress. PMID:27690013

  11. Radiation hormesis: its expression in the immune system

    SciTech Connect

    Liu, S.Z.; Liu, W.H.; Sun, J.B.

    1987-05-01

    The effects of low-dose single and continuous whole-body irradiation on immune functions were studied in C57BL/6 mice. Plaque-forming cell reaction of the spleen was found to be stimulated by single doses of x rays in the range of 0.025 to 0.075 Gy and by continuous exposure to gamma rays with a cumulative dose of 0.065 Gy. The reactivity of thymocytes to interleukin 1 showed a dose-dependent depression in the dose range of 0.025 to 0.25 Gy, but there was an increase in cell number in the thymus between doses of 0.025 and 0.10 Gy, resulting in enhancement of reaction of the whole organ. Unscheduled DNA synthesis of spleen cells was stimulated by single irradiation with 0.05 Gy and continuous irradiation with a cumulative dose of 0.13 Gy. The implications of these immunologic changes under low-dose radiation are discussed.

  12. Commentary on 'resveratrol commonly displays hormesis: occurrence and biomedical significance'.

    PubMed

    Tedesco, Idolo; Russo, Maria; Russo, Gian Luigi

    2010-12-01

    The review by Calabrese et al. describes the hormetic dose responses induced by phytoalexin resveratrol in a wide range of biological models. We agree and support the authors' strategy to present an impressive number of experiments furnished with an exhaustive bibliography to emphasize that 'many effects induced by resveratrol are dependent on dose and that opposite effects occur at low and high doses, being indicative of a hormetic dose response.' We also highly appreciate the holistic view of the hormetic behavior of resveratrol provided by the authors spanning from tumor and non-tumor cell lines to human and parasitic diseases. In our comments, we touched minor points whose discussion would have strengthened the work of Calabrese, such as contradictions on the role of resveratrol in the 'French Paradox,' its effect on aromatase activity, glutamate cysteine ligase expression and glutathione levels. Overall, we encourage colleagues working in this field to read the present review and consider its relevant biological implications. The vision of Calabrese et al. is far too important to be ignored.

  13. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  14. Cognitive deficits induced by 56Fe radiation exposure

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  15. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  16. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  17. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    PubMed

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  18. Social Preference Deficits in Juvenile Zebrafish Induced by Early Chronic Exposure to Sodium Valproate.

    PubMed

    Liu, Xiuyun; Zhang, Yinglan; Lin, Jia; Xia, Qiaoxi; Guo, Ning; Li, Qiang

    2016-01-01

    Prenatal exposure to sodium valproate (VPA), a widely used anti-epileptic drug, is related to a series of dysfunctions, such as deficits in language and communication. Clinical and animal studies have indicated that the effects of VPA are related to the concentration and to the exposure window, while the neurobehavioral effects of VPA have received limited research attention. In the current study, to analyze the neurobehavioral effects of VPA, zebrafish at 24 h post-fertilization (hpf) were treated with early chronic exposure to 20 μM VPA for 7 h per day for 6 days or with early acute exposure to 100 μM VPA for 7 h. A battery of behavioral screenings was conducted at 1 month of age to investigate social preference, locomotor activity, anxiety, and behavioral response to light change. A social preference deficit was only observed in animals with chronic VPA exposure. Acute VPA exposure induced a change in the locomotor activity, while chronic VPA exposure did not affect locomotor activity. Neither exposure procedure influenced anxiety or the behavioral response to light change. These results suggested that VPA has the potential to affect some behaviors in zebrafish, such as social behavior and the locomotor activity, and that the effects were closely related to the concentration and the exposure window. Additionally, social preference seemed to be independent from other simple behaviors.

  19. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light.

    PubMed

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2016-03-11

    Bright nocturnal light has been shown to suppress melatonin secretion. However, bright light exposure during the day might reduce light-induced melatonin suppression at night. The human circadian system is sensitive to short wavelength light. This study evaluated the preventive effect of different wavelengths of daytime light on light-induced melatonin suppression at night. Twelve male subjects were exposed to various light conditions (dim, white, and bluish white light) between the hours of 09:00 and 10:30 (daytime light conditions). They were then exposed to light (300lx) again between 01:00 and 02:30 (night-time light exposure). Subjects provided saliva samples before (00:55) and after night-time light exposure (02:30). A two-tailed paired t-test yielded significant decrements in melatonin concentrations after night-time light exposure under daytime dim and white light conditions. No significant differences were found in melatonin concentrations between pre- and post-night-time light exposure with bluish-white light. Present findings suggest that daytime blue light exposure has an acute preventive impact on light-induced melatonin suppression in individuals with a general life rhythm (sleep/wake schedule). These findings may be useful for implementing artificial light environments for humans in, for example, hospitals and underground shopping malls to reduce health risks.

  20. Proposed iso standard determination of occupational noise exposure and estimation of noise-induced hearing impairment

    SciTech Connect

    Von Gierke, H.E.

    1986-01-01

    Research on the relationship between noise exposure and noise-induced hearing loss has been very intense over the last 30 years, and steady progress has been made in spite of many remaining questions and unresolved problems regarding the mechanisms. For the time being, avoidance of excessive noise exposure is the only way to prevent noise-induced hearing loss; this is the reason why governments, industry, workers and their representatives have been looking for scientific exposure criteria and guidelines to prevent hazardous noise exposure as part of comprehensive hearing conservation programs. Although it was clear from the beginning that noise-induced hearing loss in a population with exactly defined noise exposure would exhibit a statistical distribution due to differences in biological susceptibility, the epidemiological statistical data were not available to describe quantitatively the difference between the percentage of people with impaired hearing in a noise-exposed group and the percentage of people in a non-noise-exposed group, i.e., the risk of noise-induced hearing impairment.

  1. The influences of diet and exercise on mental health through hormesis.

    PubMed

    Gomez-Pinilla, Fernando

    2008-01-01

    It is likely that the capacity of the brain to remain healthy during aging depends upon its ability to adapt and nurture in response to environmental challenges. In these terms, main principles involved in hormesis can be also applied to understand relationships at a higher level of complexity such as those existing between the CNS and the environment. This review emphasizes the ability of diet, exercise, and other lifestyle adaptations to modulate brain function. Exercise and diet are discussed in relationship to their aptitude to impact systems that sustain synaptic plasticity and mental health, and are therefore important for combating the effects of aging. Mechanisms that interface energy metabolism and synaptic plasticity are discussed, as these are the frameworks for the actions of cellular stress on cognitive function. In particular, neurotrophins are emerging as main factors in the equation that may connect lifestyle factors and mental health.

  2. Look Different: Effect of Radiation Hormesis on the Survival Rate of Immunosuppressed Mice

    PubMed Central

    Alavi, M.; Taeb, S.; Okhovat, M.A.; Atefi, M.; Negahdari, F.

    2016-01-01

    Background: Hormesis is defined as the bio-positive response of something which is bio-negative in high doses. In the present study, the effect of radiation hormesis was evaluated on the survival rate of immunosuppressed BALB/c mice by Cyclosporine A. Material and Methods: We used 75 consanguine, male, BALB/c mice in this experiment. The first group received Technetium-99m and the second group was placed on a sample radioactive soil of Ramsar region (800Bq) for 20 days. The third group was exposed to X-rays and the fourth group was placed on the radioactive soil and then injected Technetium-99m. The last group was the sham irradiated control group. Finally, 30mg Cyclosporine A as the immunosuppressive agent was orally administered to all mice 48 hours after receiving X-rays and Technetium-99m. The mean survival rate of mice in each group was estimated during time. Results: A log rank test was run to determine if there were differences in the survival distribution for different groups and related treatments. According to the results, the survival rate of all pre-irradiated groups was more than the sham irradiated control group (p < .05). The highest survival time was related to the mice which were placed on the radioactive soil of Ramsar region for 20 days and then injected Technetium-99m. Conclusion: This study confirmed the presence of hormetic models and the enhancement of survival rate in immunosuppressed BALB/c mice as a consequence of low-dose irradiation. It is also revealed the positive synergetic radioadaptive response on survival rate of immunosuppressed animals. PMID:27853721

  3. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells

    PubMed Central

    Martino, Julieta; Holmes, Amie L.; Xie, Hong; Wise, Sandra S.; Wise, John Pierce

    2015-01-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  4. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes.

    PubMed

    Bolt, Alicia M; Douglas, Randi M; Klimecki, Walter T

    2010-11-30

    Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCLs), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCLs that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 μM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic.

  5. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    PubMed

    Sun, Bao-Fei; Wang, Qing-Qing; Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  6. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  7. Language exposure induced neuroplasticity in the bilingual brain: a follow-up fMRI study.

    PubMed

    Tu, Liu; Wang, Junjing; Abutalebi, Jubin; Jiang, Bo; Pan, Ximin; Li, Meng; Gao, Wei; Yang, Yuchen; Liang, Bishan; Lu, Zhi; Huang, Ruiwang

    2015-03-01

    Although several studies have shown that language exposure crucially influence the cerebral representation of bilinguals, the effects of short-term change of language exposure in daily life upon language control areas in bilinguals are less known. To explore this issue, we employed follow-up fMRI to investigate whether differential exposure induces neuroplastic changes in the language control network in high-proficient Cantonese (L1)-Mandarin (L2) early bilinguals. The same 10 subjects underwent twice BOLD-fMRI scans while performing a silent narration task which corresponded to two different language exposure conditions, CON-1 (L1/L2 usage percentage, 50%:50%) and CON-2 (L1/L2 usage percentage, 90%:10%). We report a strong effect of language exposure in areas related to language control for the less exposed language. Interestingly, these significant effects were present after only a 30-day period of differential language exposure. In detail, we reached the following results: (1) the interaction effect of language and language exposure condition was found significantly in the left pars opercularis (BA 44) and marginally in the left MFG (BA 9); (2) in CON-2, increases of activation values in L2 were found significantly in bilateral BA 46 and BA 9, in the left BA44, and marginally in the left caudate; and (3) in CON-2, we found a significant negative correlation between language exposure to L2 and the BOLD activation value specifically in the left ACC. These findings strongly support the hypothesis that even short periods of differential exposure to a given language may induce significant neuroplastic changes in areas responsible for language control. The language which a bilingual is less exposed to and is also less used will be in need of increased mental control as shown by the increased activity of language control areas.

  8. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2009-09-01

    an anti- oxidant agent and/or an NMDA receptor antagonist will reduce neurotoxicity resulting from chronic exposure to DU. This hypothesis is based...DU-induced oxidative stress. As prescribed by the Statement of Work, efforts continued in year 2 on Tasks 1 (drug therapies to reverse DU-induced...SUBJECT TERMS depleted uranium, glutamate release, military disease, hippocampus, oxidative stress, neuroprotectant drugs 16. SECURITY

  9. Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust.

    PubMed

    Määttä, Juha; Lehto, Maili; Leino, Marina; Tillander, Sari; Haapakoski, Rita; Majuri, Marja-Leena; Wolff, Henrik; Rautio, Sari; Welling, Irma; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai; Alenius, Harri

    2006-09-01

    Repeated airway exposure to wood dust has long been known to cause adverse respiratory effects such as asthma and chronic bronchitis and impairment of lung function. However, the mechanisms underlying the inflammatory responses of the airways after wood dust exposure are poorly known. We used a mouse model to elucidate the mechanisms of particle-induced inflammatory responses to fine wood dust particles. BALB/c mice were exposed to intranasally administered fine (more than 99% of the particles had a particle size of < or = 5 microm, with virtually identical size distribution) birch or oak dusts twice a week for 3 weeks. PBS, LPS, and titanium dioxide were used as controls. Intranasal instillation of birch or oak dusts elicited influx of inflammatory cells to the lungs in mice. Enhancement of lymphocytes and neutrophils was seen after oak dust exposure, whereas eosinophil infiltration was higher after birch dust exposure. Infiltration of inflammatory cells was associated with an increase in the mRNA levels of several cytokines, chemokines, and chemokine receptors in lung tissue. Oak dust appeared to be a more potent inducer of these inflammatory mediators than birch dust. The results from our in vivo mouse model show that repeated airway exposure to wood dust can elicit lung inflammation, which is accompanied by induction of several proinflammatory cytokines and chemokines. Oak and birch dusts exhibited quantitative and qualitative differences in the elicitation of pulmonary inflammation, suggesting that the inflammatory responses induced by the wood species may rise via different cellular mechanisms.

  10. Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis.

    PubMed

    Morthorst, Jane E; Korsgaard, Bodil; Bjerregaard, Poul

    2016-02-01

    Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization.

  11. Piracetam prevents memory deficit induced by postnatal propofol exposure in mice.

    PubMed

    Wang, Yuan-Lin; Li, Feng; Chen, Xin

    2016-05-15

    Postnatal propofol exposure impairs hippocampal synaptic development and memory. However, the effective agent to alleviate the impairments was not verified. In this study, piracetam, a positive allosteric modulator of AMPA receptor was administered following a seven-day propofol regime. Two months after propofol administration, hippocampal long-term potentiation (LTP) and long-term memory decreased, while intraperitoneal injection of piracetam at doses of 100mg/kg and 50mg/kg following last propofol exposure reversed the impairments of memory and LTP. Mechanically, piracetam reversed propofol exposure-induced decrease of BDNF and phosphorylation of mTor. Similar as piracetam, BDNF supplementary also ameliorated propofol-induced abnormalities of synaptic plasticity-related protein expressions, hippocampal LTP and long-term memory. These results suggest that piracetam prevents detrimental effects of propofol, likely via activating BDNF synthesis.

  12. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    PubMed

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control.

  13. Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology

    EPA Science Inventory

    ATS 2013 Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology Urmila P Kodavanti, Debora Andrews, Mette C Schaldweiler, Jaime M Cyphert, Darol E Dodd, and Stephen H Gavett NHEERL, U.S. EPA, Research Triangle Park, NC; NIEH...

  14. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  15. Environmental Enrichment Ameliorates Neonatal Sevoflurane Exposure-Induced Cognitive and Synaptic Plasticity Impairments.

    PubMed

    Ji, Mu-huo; Wang, Xing-ming; Sun, Xiao-ru; Zhang, Hui; Ju, Ling-sha; Qiu, Li-li; Yang, Jiao-jiao; Jia, Min; Wu, Jing; Yang, Jianjun

    2015-11-01

    Early exposure to sevoflurane, an inhalation anesthetic, induces neurodegeneration in the developing brain and subsequent long-term neurobehavioral abnormalities. Here, we investigated whether an enriched environment could mitigate neonatal sevoflurane exposure-induced long-term cognitive and synaptic plasticity impairments. Male C57BL/6 mice were exposed to 3 % sevoflurane 2 h daily for 3 days from postnatal day 6 (P6) to P8. The exposed mice were randomly allocated to an enriched environment for 2 h daily between P8 and P42 or to a standard environment. Their behavior and cognition were assessed using open field (P35) and fear conditioning tests (P41-P42). Hematoxylin-eosin staining was used to study morphological changes in pyramidal neurons of hippocampal CA1 and CA3 regions. Synaptic plasticity alternations were assessed using western blotting, Golgi staining, and electrophysiological recording. We found that sevoflurane-exposed mice housed in a standard environment exhibited a reduced freezing response in the contextual test, decreased number of dendritic spines on pyramidal neurons and synaptic plasticity-related proteins in the hippocampus, and impaired long-term potentiation. However, in an enriched environment, some of these abnormities induced by repeated sevoflurane exposure. In conclusion, neonatal sevoflurane exposure-induced cognitive and synaptic plasticity impairments are ameliorated by an enriched environment.

  16. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  17. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  18. Effect of low-level NO/sub 2/ chronic exposure on elastase-induced emphysema

    SciTech Connect

    Lafuma, C.; Harf, A.; Lange, F.; Bozzi, L.; Poncy, J.L.; Bignon, J.

    1987-06-01

    The effect of chronic exposure to 2 ppm nitrogen dioxide (NO/sub 2/) for 8 hr a day, 5 days a week, for 8 weeks was assessed in normal and emphysematous hamsters by measuring (1) lung morphometry (mean linear intercept (Lm) and internal surface area (ISA)), (2) lung mechanics (lung volume, compliance and coefficient of static deflation, pressure-volume curve fitted to an exponential equation), and (3) serum elastolytic activity and protease inhibitor capacity. Emphysema was induced by a single intratracheal injection of 6 IU porcine pancreatic elastase. Four groups of animals were used: control, NO/sub 2/-exposed, elastase-treated, and NO/sub 2/-exposed postelastase. Results show that NO/sub 2/ exposure alone induced mild emphysematous lesions whose degree of severity was of the same order as that of the lesions induced by 6 IU elastase. Exposure to 2 ppm NO/sub 2/ enhanced elastase-induced emphysema. By contrast, study of lung mechanics revealed no difference between the control and NO/sub 2/-exposed groups or between the elastase-treated animals exposed to NO/sub 2/ and those not so exposed. Lastly, results suggest that chronic exposure to 2 ppm NO/sub 2/ may cause individuals with inherited or acquired emphysematous lesions to develop more severe emphysema.

  19. Differential immunotoxicity induced by two different windows of developmental trichloroethylene exposure.

    PubMed

    Gilbert, Kathleen M; Woodruff, William; Blossom, Sarah J

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4(+) T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4(+) T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4(+) T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4(+) T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences.

  20. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  1. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    PubMed

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P<0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P<0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  2. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P < 0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P < 0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  3. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  4. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    PubMed

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  5. The temporary threshold shift of vibratory sensation induced by composite-band vibration exposure.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    Eight healthy subjects were exposed to three 1/3 octave-band vibrations (63, 200, and 500 Hz) by hand clasping a vibrated handle in a soundproof and thermoregulated room. The vibratory sensation threshold at 125 Hz was measured before and after the vibration exposure at an exposed fingertip. According to a preceding study, we first determined the relationship between the acceleration of the vibration and the temporary threshold shift of vibratory sensation immediately after the vibratory exposure (TTSv,0) induced by 1/3 octave-band vibration. We then measured TTSv after the exposure to a composite vibration composed of two 1/3 octave-band vibrations that might induce an equal magnitude of TTSv,0 on the basis of the above relationship. The TTSv,0 induced by the composite vibration was not larger than the TTSv,0 induced by the component vibrations. This result suggests that the component of the vibration inducing the largest TTSv,0 determines the TTSv,0 by broad-band random vibration.

  6. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    PubMed

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  7. Effects of acute low-level microwaves on pentobarbital-induced hypothermia depend on exposure orientation

    SciTech Connect

    Lai, H.; Horita, A.; Chou, C.K.; Guy, A.W.

    1984-01-01

    Two series of experiments were performed to study the effects of acute exposure (45 min) to 2,450-MHz circularly polarized, pulsed microwaves (1 mW/cm2, 2-mus pulses, 500 pps, specific absorption rate (SAR) 0.6 W/kg) on the actions of pentobarbital in the rat. In the first experiment, rats were irradiated with microwaves and then immediately injected with pentobarbital. Microwave exposure did not significantly affect the extent of the pentobarbital-induced fall in colonic temperature. However, the rate of recovery from the hypothermia was significantly slower in the microwave-irradiated rats and they also took a significantly longer time to regain their righting reflex. In a second experiment, rats were first anesthetized with pentobarbital and then exposed to microwaves with their heads either pointing toward the source of microwaves (anterior exposure) or pointing away (posterior exposure). Microwave radiation significantly retarded the pentobarbital-induced fall in colonic temperature regardless of the orientation of exposure. However, the recovery from hypothermia was significantly faster in posterior-exposed animals compared to those of the anterior-exposed and sham-irradiated animals. Furthermore, the posterior-exposed rats took a significantly shorter time to regain their righting reflex than both the anterior-exposed and sham-irradiated animals.

  8. Transmitted mutational events induced in mouse germ cells following acrylamide or glycidamide exposure.

    PubMed

    Favor, Jack; Shelby, Michael D

    2005-02-07

    An increase in the germ line mutation rate in humans will result in an increase in the incidence of genetically determined diseases in subsequent generations. Thus, it is important to identify those agents that are mutagenic in mammalian germ cells. Acrylamide is water soluble, absorbed and distributed in the body, chemically reactive with nucleophilic sites, and there are known sources of human exposure. Here we review all seven published studies that assessed the effectiveness of acrylamide or its active metabolite, glycidamide, in inducing transmitted reciprocal translocations or gene mutations in the mouse. Major conclusions were (a) acrylamide is mutagenic in spermatozoa and spermatid stages of the male germ line; (b) in these spermatogenic stages acrylamide is mainly or exclusively a clastogen; (c) per unit dose, i.p. exposure is more effective than dermal exposure; and (d) per unit dose, glycidamide is more effective than acrylamide. Since stem cell spermatogonia persist and may accumulate mutations throughout the reproductive life of males, assessment of induced mutations in this germ cell stage is critical for the assessment of genetic risk associated with exposure to a mutagen. The two specific-locus mutation experiments which studied the stem cell spermatogonial stage yielded conflicting results. This discrepancy should be resolved. Finally, it is noted that no experiments have studied the mutagenic potential of acrylamide to increase the frequency of transmitted mutational events following exposure in the female germ line.

  9. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  10. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    PubMed Central

    Waterhouse, Uta; Roper, Vic E.; Brennan, Katharine A.

    2016-01-01

    ABSTRACT Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin) at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg) at one of three neurodevelopmental time periods [gestation days (GD) 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND) 60] and included: prepulse inhibition (PPI), latent inhibition (LI) and delayed non-matching to sample (DNMTS). Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously) were administered, and animals were re-tested in the same tasks (PND 110). Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11) resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI) and selective (LI) improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI) and induced a global enhancement of sensorimotor gating (PPI). PMID:27483346

  11. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells.

    PubMed

    Brieño-Enríquez, Miguel A; García-López, Jesús; Cárdenas, David B; Guibert, Sylvain; Cleroux, Elouan; Děd, Lukas; Hourcade, Juan de Dios; Pěknicová, Jana; Weber, Michael; Del Mazo, Jesús

    2015-01-01

    In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.

  12. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  13. Bisphenol A exposure at an environmentally relevant dose induces meiotic abnormalities in adult male rats.

    PubMed

    Liu, Chuan; Duan, Weixia; Zhang, Lei; Xu, Shangcheng; Li, Renyan; Chen, Chunhai; He, Mindi; Lu, Yonghui; Wu, Hongjuan; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Whether environmental exposure to bisphenol A (BPA) may induce reproductive disorders is still controversial but certain studies have reported that BPA may cause meiotic abnormalities in C. elegans and female mice. However, little is known about the effect of BPA on meiosis in adult males. To determine whether BPA exposure at an environmentally relevant dose could induce meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 20 μg/kg body weight (bw)/day for 60 consecutive days. We found that BPA significantly increased the proportion of stage VII seminiferous epithelium and decreased the proportion of stage VIII. Consequently, spermiation was inhibited and spermatogenesis was disrupted. Further investigation revealed that BPA exposure delayed meiosis initiation in the early meiotic stage and induced the accumulation of chromosomal abnormalities and meiotic DNA double-strand breaks (DSBs) in the late meiotic stage. The latter event subsequently activated the phosphatidylinositol 3-kinase-related protein kinase (ATM). Our results suggest that long-term exposure to BPA may lead to continuous meiotic abnormalities and ultimately put mammalian reproductive health at risk.

  14. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  15. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.

  16. Chronic exposure to water-pipe smoke induces cardiovascular dysfunction in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Ali, Badreldin H

    2017-02-01

    Water-pipe tobacco smoking is becoming prevalent in all over the world including Western countries. There are limited data on the cardiovascular effects of water-pipe smoke (WPS), in particular following chronic exposure. Here, we assessed the chronic cardiovascular effects of nose-only WPS exposure in C57BL/6 mice. The duration of the session was 30 minutes/day, 5 days/week for 6 consecutive months. Control mice were exposed to air. WPS significantly increased systolic blood pressure. The relative heart weight and plasma concentrations of troponin-I and B-type natriuretic peptide were increased in mice exposed to WPS. Arterial blood gas analysis showed that WPS caused a significant decrease in [Formula: see text] and an increase in [Formula: see text] WPS significantly shortened the thrombotic occlusion time in pial arterioles and venules and increased the number of circulating platelet. Cardiac lipid peroxidation, measured as thiobarbituric acid-reactive substances, was significantly increased, while superoxide dismutase activity, total nitric oxide activity, and glutathione concentration were reduced by WPS exposure. Likewise, immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome c by cardiomyocytes of WPS-exposed mice. Moreover, hearts of WPS-exposed mice showed the presence of focal interstitial fibrosis. WPS exposure significantly increased heart DNA damage assessed by Comet assay. We conclude that chronic nose-only exposure to WPS impairs cardiovascular homeostasis. Our findings provide evidence that long-term exposure to WPS is harmful to the cardiovascular system and supports interventions to control the spread of WPS, particularly amid youths.NEW & NOTEWORTHY No data are available on the chronic cardiovascular effects of water-pipe smoke (WPS). Our findings provide experimental evidence that chronic exposure to WPS increased blood pressure, relative heart weight, troponin I, and

  17. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg(2+) (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl2) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg(2+) concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg(2+) caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl2 exposure (especially in the 16μg/L Hg(2+) group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish.

  18. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  19. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    PubMed

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

  20. Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.

    PubMed

    Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco

    2016-03-01

    The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system.

  1. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  2. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.

    PubMed

    Bodas, Manish; Van Westphal, Colin; Carpenter-Thompson, Rhett; K Mohanty, Dillip; Vij, Neeraj

    2016-08-01

    Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential

  3. Microwave-induced post-exposure hyperthermia: Involvement of endogenous opioids and serotonin

    SciTech Connect

    Lai, H.; Chou, C.K.; Guy, A.W.; Horita, A.

    1984-08-01

    Acute exposure to pulsed microwaves (2450 MHz, 1 mW/ cm/sup 2/, SAR 0.6 W/kg, 2-..mu..s pulses, 500 pulses/s) induces a transient post-exposure hyperthermia in the rat. The hyperthermia was attenuated by treatment with either the narcotic antagonist naltrexone or one of the serotonin antagonists cinanserin, cyproheptadine, or metergoline. It was not affected, however, by treatment with the peripheral serotonin antagonist xylamidine nor the dopamine antagonist haloperidol. It thus appears that both endogenous opioids and central serotonin are involved. It is proposed that pulsed microwaves activate endogenous opioid systems, and that they in turn activate a serotonergic mechanism that induces the rise in body temperature.

  4. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  5. Ethanol exposure induces a delay in the reacquisition of function during head regeneration in Schmidtea mediterranea.

    PubMed

    Lowe, Jesse R; Mahool, Tyler D; Staehle, Mary M

    2015-01-01

    Prenatal exposure to ethanol affects neurodevelopmental processes, leading to a variety of physical and cognitive impairments collectively termed Fetal Alcohol Spectrum Disorders (FASD). The molecular level ethanol-induced alterations that underlie FASD are poorly understood and are difficult to study in mammals. Ethanol exposure has been shown to affect regulation and differentiation of embryonic stem cells in vitro, suggesting that in vivo effects such as FASD could arise from similar alterations of stem cells. In this study, we hypothesize that ethanol exposure affects head regeneration and neuroregeneration in the Schmidtea mediterranea planarian. S. mediterranea freshwater flatworms have remarkable regenerative abilities arising from an abundant population of pluripotent adult somatic stem cells known as neoblasts. Here, we evaluated the mobility-normalized photophobic behavior of ethanol-exposed planaria as an indicator of cognitive function in intact and head-regenerating worms. Our studies show that exposure to 1% ethanol induces a delay in the reacquisition of behavior during head regeneration that cannot be attributed to the effect of ethanol on intact worms. This suggests that the S. mediterranea planarian could provide insight into conserved neurodevelopmental processes that are affected by ethanol and that lead to FASD in humans.

  6. The changes of heavy metal and metallothionein distribution in testis induced by cadmium exposure.

    PubMed

    Kusakabe, Takahiko; Nakajima, Katsuyuki; Suzuki, Keiji; Nakazato, Kyoumi; Takada, Hisashi; Satoh, Takahiro; Oikawa, Masakazu; Kobayashi, Kenji; Koyama, Hiroshi; Arakawa, Kazuo; Nagamine, Takeaki

    2008-02-01

    Cadmium (Cd) is known to cause various disorders in the testis, and metallothionein (MT) is known as a protein, which has a detoxification function for heavy metals. However, the changes of Fe, Cu, and Zn distribution in the testis induced by Cd exposure have not been well examined. Moreover, only a few studies have been reported on the localization of MT after Cd exposure. In this study, we have investigated the changes of Fe, Cu, and Zn distribution in Cd-exposed testis by a newly developed in air micro-Particle Induced X-ray Emission (PIXE) method. Also, we examined the distribution of MT expression in testis. In the testis of Cd-treated rats with significant increases of lipid peroxidation, the sertoli cell tight junction was damaged by Cd exposure, resulting from disintegration of the blood testis barrier (BTB). Evaluation by in air micro-PIXE method revealed that Cd and Fe distribution were increased in the interstitial tissues and seminiferous tubules. The histological findings indicated that the testicular tissue damage was advanced, which may have been caused by Fe flowing into seminiferous tubules followed by disintegration of the BTB. As a result, Fe was considered to enhance the tissue damage caused by Cd exposure. MT was detected in spermatogonia, spermatocytes, and Sertoli's cells in the testis of Cd-treated rats, but was not detected in interstitial tissues. These results suggested that MT was induced by Cd in spermatogonia, spermatocytes, and Sertoli's cells, and was involved in the resistance to tissue damage induced by Cd.

  7. Increased metallothionein content in rat liver induced by x irradiation and exposure to high oxygen tension

    SciTech Connect

    Shiraishi, N.; Aono, K.; Utsumi, K.

    1983-08-01

    X irradiation and exposure to high oxygen tension are known to induce lipid peroxidation. The effects of these stresses on hepatic content of metallothionein, which may be involved in the regulation of zinc and copper metabolism, have been studied. The amount of metallothionein in rat liver was increased 11-fold by a high dose of X irradiation (1000 R). Increased metallothionein content (about 15 times) was also observed in liver of rats exposed to high oxygen tension for 3 days.

  8. Exposure of mouse to high gravitation forces induces long-term potentiation in the hippocampus.

    PubMed

    Ishii, Masamitsu; Tomizawa, Kazuhito; Matsushita, Masayuki; Matsui, Hideki

    2004-06-01

    The central nervous system is highly plastic and has been shown to undergo both transient and chronic adaptive changes in response to environmental influences. The purpose of this study was to investigate the effect of hypergravic field on long-term potentiation (LTP) in the mouse hippocampus. Exposure of mice to 4G fields for 48 h had no effect on input-output coupling during extracellular stimulation of Schaffer collaterals and paired pulse facilitation, suggesting that the hypergravic exposure had no detrimental effect on basal neurotransmission in the hippocampus. However, the exposure to 4G fields for 48 h significantly induced LTP compared with the control mouse hippocampus. In contrast, no significant changes of late-phase LTP (L-LTP) were found in the hippocampi of mice exposed to the hypergravic field. Exposure of mice to 4G fields for 48 h enhanced AMPA receptor phosphorylation but not cyclic AMP-responsive element binding protein (CREB) phosphorylation. These results suggest that exposure to hyperdynamic fields influences the synaptic plasticity in the hippocampus.

  9. Similar Metabolic Changes Induced by HIPVs Exposure as Herbivore in Ammopiptanthus mongolicus

    PubMed Central

    Sun, Jingru; Zhang, Xiao; Cao, Chuanjian; Mei, Xindi; Wang, Ningning; Yan, Suli; Zong, Shixiang; Luo, Youqing; Yang, Haijun; Shen, Yingbai

    2014-01-01

    Herbivore-induced plant volatiles (HIPVs) are important compounds to prim neighboring undamaged plants; however, the mechanism for this priming process remains unclear. To reveal metabolic changes in plants exposed to HIPVs, metabolism of leaves and roots of Ammopiptanthus mongolicus seedlings exposed to HIPVs released from conspecific plants infested with larvae of Orgyia ericae were analyzed together with control and infested seedlings using nuclear magnetic resonance (NMR)-based metabolic technology and multi variate data analysis. Results presented showed that HIPVs exposure led to similar but specific metabolic changes compared with those induced by infestation in both leaves and roots. Furthermore, both HIPVs exposure and herbivore attack resulted in metabolic changes involving a series of primary and secondary metabolites in both leaves and roots. Taken together, these results suggested that priming of yet-damaged plants may be achieved by reconfiguring metabolic pathways in leaves and roots to make similar concentrations for all metabolites as those in seedlings infested. Therefore, we propose that improved readiness of defense induction of primed plants toward subsequent herbivore attack may be based on the similar metabolic profiling induced by HIPVs exposure as those caused by herbivore. PMID:24748156

  10. Hormesis--implications for risk assessment caloric intake (body weight) as an exemplar.

    PubMed

    Turturro, A; Hass, B; Hart, R W

    1998-08-01

    Hormesis can be considered as a parameter which has a non-monotonic relationship with some endpoint. Since caloric intake is such a parameter, and the impact of this parameter on risk assessment has been fairly well characterized, it can provide clues as to how to integrate the information from a hormetic parameter into risk assessments for toxicants. Based on the work with caloric intake, one could: (a) define a biomarker for hormetic effect; (b) integrate specific information on when in the animals lifespan the parameter is active to influence parameters such as survival; (c) evaluate component effects of the overall hormetic response; and (d) address the consequences of a non-monotonic relationship between the hormetic parameter and endpoints critical for risk assessment. These impacts on risk assessments have been characterized for chronic tests, but are also true for short-term tests. A priority is the characterization of the dose-response curves for hormetic parameters. This quantification will be critical in utilizing them in risk assessment. With this information, one could better quantitatively address the changes one expects to result from the hormetic parameter, and limit the uncertainty and variability which occurs in toxicity testing.

  11. Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

    PubMed Central

    Cornelius, Carolin; Dinkova-Kostova, Albena T.; Calabrese, Edward J.; Mattson, Mark P.

    2010-01-01

    Abstract Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose–response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling. Antioxid. Redox Signal. 13, 1763–1811. PMID:20446769

  12. Toxicology of cupric salts in honeybees. I. Hormesis effects of organic derivatives on lethality parameters.

    PubMed

    Bounias, M; Navone-Nectoux, M; Popeskovic, D S

    1995-07-01

    Feeding bees with organic cupric salts provides long-term control of the parasite Varroa jacobsoni. A set of new algebraic parameters (M. Bounias C.R. Acad. Sci. 310(3), 65-70, 1990) completely describing the population lethality function has been calculated following chronic administration of cupric gluconate, aspartate, and isoleucinate, with or without dietary pollen. Mortality curves allowed the calculation of LT50 (time for 50% lethality) as well as Hill coefficients (h) of the curves and the LD50 as a function of time. The tangent at the inflexion point of the sigmoidal time/mortality curves (delta i) gave the maximum mortality acceleration as an additional parameter. No toxicity (i.e., no decrease of TL50 vs doses and no LD50 values) was found for cupric gluconate and isoleucinate with pollen, whereas increases in LT50 and decreases in delta indicated hormesis effects. Doses decreasing by half-time LT50, h, or delta were used as objective lethality indexes for comparisons of toxicity in the other cases. Routine acute toxicity at high dosage was also compared with phosalone and lindane effects 24 hr after treatment.

  13. The Concept of Hormesis in Cancer Therapy – Is Less More?

    PubMed Central

    Akle, Charles A; Mudan, Satvinder; Grange, John

    2015-01-01

    There has, in recent years, been a paradigm shift in our understanding of the role of the immune system in the development of cancers. Immune dysregulation, manifesting as chronic inflammation, not only facilitates the growth and spread of tumors but prevents the host from mounting effective immune defenses against it. Many attempts are being made to develop novel immunotherapeutic strategies, but there is growing evidence that a radical reevaluation of the mode of action of chemotherapeutic agents and ionizing radiation is required in the light of advances in immunology. Based on the concept of hormesis – defined as the presence of different modes of action of therapeutic modalities at different doses – a ‘repositioning’ of chemotherapy and radiotherapy may be required in all aspects of cancer management. In the case of chemotherapy, this may involve a change from the maximum tolerated dose concept to low dose intermittent (‘metronomic’) therapy, whilst in radiation therapy, highly accurate stereotactic targeting enables ablative, antigen-releasing (immunogenic) doses of radiation to be delivered to the tumor with sparing of surrounding normal tissues. Coupled with emerging immunotherapeutic procedures, the future of cancer treatment may well lie in repositioned chemotherapy, radiotherapy, and more localized debulking surgery. PMID:26180685

  14. Commentary: Hormesis can be used in enhancing plant productivity and health; but not as previously envisaged.

    PubMed

    Gressel, Jonathan; Dodds, John

    2013-12-01

    Sub-toxic doses of many toxicants have positive, beneficial effects on productivity, or stress resistance (hormesis). Transcriptomic, proteomic, and metabolomic responses to a disparate variety hormetic agents, coupled with bioinformatic analyses, can be used to identify consensus genes, their controlling elements, and their metabolites related to stimulation of growth and/or health. This information can then be used as a method for generating healthier and higher yielding crops using transgenic or other biotechnological techniques. The same bioinformatic information can be used to develop knowledge-based, transcriptomic, proteomic and metabolomic high throughput pre-screens using young plants to identify hormetic chemicals that are potentially useful for enhancement of crop health and yield. Such pre-screens preclude the need to use whole plants through maturity. While the hormetic effectors themselves have to date been of limited direct utility, it is clear that they can be used to help pinpoint genes and chemicals that are potentially useful. This is superior to the presently used random screening or even "educated guess" screening of genes and chemicals.

  15. DNA damage-inducible genes as biomarkers for exposures to environmental agents.

    PubMed Central

    Johnson, N F; Carpenter, T R; Jaramillo, R J; Liberati, T A

    1997-01-01

    A biodosimetric approach to determine alpha-particle dose to the respiratory tract epithelium from known exposures to radon has been developed in the rat. Cytotoxicity assays have been used to obtain dose-conversion factors for cumulative exposures typical of those encountered by underground uranium miners. However, this approach is not sensitive enough to derive dose-conversion factors for indoor radon exposures. The expression of DNA damage-inducible genes is being investigated as a biomarker of exposure to radon progeny. Exposure of cultures of A549 cells to alpha particles resulted in an increase in the protein levels of the DNA damage-inducible genes, p53, Cip1, and Gadd45. These protein changes were associated with a transient arrest of cells passing through the cell cycle. This arrest was typified by an increase in the number of cells in the G1 and G2 phases and a decrease in the number of cells in the S phase. The effect of inhaled alpha particles (radon progeny) in rats was examined in the epithelial cells of the lateral well of the anterior nasal cavity. Exposures to radon progeny resulted in a significant increase in the number of cells in the G1 phase and a decrease in the number of cells in the S phase. These cell-cycle changes were concomitant with an increase in the number of cells containing DNA strand breaks. These results suggest a commonality between cell-cycle events in vitro and in vivo following exposure to ionizing radiation. In addition to ionizing radiation, A549 cells were exposed to 4-nitroquinoline-1-oxide, methyl methanesulphonate, crocidolite asbestos, and glass microfiber. These studies showed that physical and chemical agents induce different expression patterns of p53, Cip1, and Gadd153 proteins and they could be used to discriminate between toxic and nontoxic materials such as asbestos and glass microfiber. The measurement of gene expression in A549 cells may provide a means to identify a broad spectrum of physical and chemical

  16. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures.

    PubMed

    Proctor, Deborah M; Suh, Mina; Campleman, Sharan L; Thompson, Chad M

    2014-11-05

    Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m(3)), for which clear exposure-response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose-response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of particulate chromium in the bifurcations of the lung resulting in exceedance of clearance mechanisms and cellular absorption of Cr(VI). Once inside the cell, reduction of Cr(VI) results in oxidative stress and the formation of Cr ligands. Subsequent protein and DNA damage lead to tissue irritation, inflammation, and cytotoxicity. These effects, concomitant with increased cell proliferation, result in changes to DNA sequences and/or methylation status

  17. DNA damage-inducible genes as biomarkers for exposures to environmental agents.

    PubMed

    Johnson, N F; Carpenter, T R; Jaramillo, R J; Liberati, T A

    1997-06-01

    A biodosimetric approach to determine alpha-particle dose to the respiratory tract epithelium from known exposures to radon has been developed in the rat. Cytotoxicity assays have been used to obtain dose-conversion factors for cumulative exposures typical of those encountered by underground uranium miners. However, this approach is not sensitive enough to derive dose-conversion factors for indoor radon exposures. The expression of DNA damage-inducible genes is being investigated as a biomarker of exposure to radon progeny. Exposure of cultures of A549 cells to alpha particles resulted in an increase in the protein levels of the DNA damage-inducible genes, p53, Cip1, and Gadd45. These protein changes were associated with a transient arrest of cells passing through the cell cycle. This arrest was typified by an increase in the number of cells in the G1 and G2 phases and a decrease in the number of cells in the S phase. The effect of inhaled alpha particles (radon progeny) in rats was examined in the epithelial cells of the lateral well of the anterior nasal cavity. Exposures to radon progeny resulted in a significant increase in the number of cells in the G1 phase and a decrease in the number of cells in the S phase. These cell-cycle changes were concomitant with an increase in the number of cells containing DNA strand breaks. These results suggest a commonality between cell-cycle events in vitro and in vivo following exposure to ionizing radiation. In addition to ionizing radiation, A549 cells were exposed to 4-nitroquinoline-1-oxide, methyl methanesulphonate, crocidolite asbestos, and glass microfiber. These studies showed that physical and chemical agents induce different expression patterns of p53, Cip1, and Gadd153 proteins and they could be used to discriminate between toxic and nontoxic materials such as asbestos and glass microfiber. The measurement of gene expression in A549 cells may provide a means to identify a broad spectrum of physical and chemical

  18. Early immunological response to German cockroach frass exposure induces a Th2/Th17 environment.

    PubMed

    Page, Kristen; Zhou, Ping; Ledford, John R; Day, Scottie B; Lutfi, Riad; Dienger, Krista; Lewkowich, Ian P

    2011-01-01

    Cockroach exposure is a major risk factor for the development of asthma; however, the early immune events induced by cockroach leading to the Th2 response are not fully understood. Exposure of naïve mice to German cockroach (GC) feces (frass) was sufficient to induce dendritic cell (DC) recruiting and activating chemokines C-C motif ligand 20, granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor and macrophage inflammatory protein-1α into the airways. This corresponded with an increase in myeloid DCs (mDCs) in the airways as well as increased expression of CD80 and CD86 on the mDCs. Plasmacytoid DCs in the lung were unchanged. Levels of IL-5, IL-17A and IL-6 cytokines in whole lung cultures were significantly increased 18 h following GC frass exposure demonstrating the early development of a mixed Th2/Th17 response. In addition, GC frass stimulated the production of IL-23, IL-6 and IL-12p70 from bone marrow-derived mDCs. Adoptive transfer of GC frass-pulsed mDCs induced airway reactivity, airway inflammation as well as eosinophilia and induced a strong Th2/Th17 response in the lung. MyD88-deficient bone marrow-derived mDCs did not respond to GC frass treatment, suggesting a functional Toll-like receptor pathway was important to induce the Th2/Th17 response. Together, our data show that GC frass activated the innate immune response to augment DC recruitment and activation of mDCs which promoted robust T cell-skewing cytokines and ultimately drive the development of airway inflammation.

  19. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  20. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol.

    PubMed

    Rinker, Jennifer A; Hutchison, Mary Anne; Chen, Scott A; Thorsell, Annika; Heilig, Markus; Riley, Anthony L

    2011-07-01

    The majority of smokers begin their habit during adolescence, which often precedes experimentation with alcohol. Interestingly, very little preclinical work has been done examining how exposure to nicotine during periadolescence impacts the affective properties of alcohol in adulthood. Understanding how periadolescent nicotine exposure influences the aversive effects of alcohol might help to explain why it becomes more acceptable to this preexposed population. Thus, Experiment 1 exposed male Sprague Dawley rats to either saline or nicotine (0.4mg/kg, IP) from postnatal days 34 to 43 (periadolescence) and then examined changes in the aversive effects of alcohol (0, 0.56, 1.0 and 1.8g/kg, IP) in adulthood using the conditioned taste aversion (CTA) design. Changes in blood alcohol concentration (BAC) as well as alcohol-induced hypothermia and locomotor suppression were also assessed. To determine if changes seen were specific to nicotine exposure during periadolescence, the procedures were replicated in adults (Experiment 2). Preexposure to nicotine during periadolescence attenuated the acquisition of the alcohol-induced CTAs (at 1.0g/kg) and the hypothermic effects of alcohol (1.0g/kg). Adult nicotine preexposure produced similar attenuation in alcohol's aversive (at 1.8g/kg) and hypothermic (1.8g/kg) effects. Neither adolescent nor adult nicotine preexposure altered BACs or alcohol-induced locomotor suppression. These results suggest that nicotine may alter the aversive and physiological effects of alcohol, regardless of the age at which exposure occurs, possibly increasing its overall reinforcing value and making it more likely to be consumed.

  1. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke.

    PubMed

    Conklin, Daniel J; Haberzettl, Petra; Prough, Russell A; Bhatnagar, Aruni

    2009-05-01

    Exposure to tobacco smoke impairs endothelium-dependent arterial dilation. Reactive constituents of cigarette smoke are metabolized and detoxified by glutathione-S-transferases (GSTs). Although polymorphisms in GST genes are associated with the risk of cancer in smokers, the role of these enzymes in regulating the cardiovascular effects of smoking has not been studied. The P isoform of GST (GSTP), which catalyzes the conjugation of electrophilic molecules in cigarette smoke such as acrolein, was expressed in high abundance in the mouse lung and aorta. Exposure to tobacco smoke for 3 days (5 h/day) decreased total plasma protein. These changes were exaggerated in GSTP(-/-) mice. Aortic rings isolated from tobacco smoke-exposed GSTP(-/-) mice showed greater attenuation of ACh-evoked relaxation than those from GSTP(+/+) mice. The lung, plasma, and aorta of mice exposed to tobacco smoke or acrolein (for 5 h) accumulated more acrolein-adducted proteins than those tissues of mice exposed to air, indicating that exposure to tobacco smoke results in the systemic delivery of acrolein. Relative to GSTP(+/+) mice, modification of some proteins by acrolein was increased in the aorta of GSTP(-/-) mice. Aortic rings prepared from GSTP(-/-) mice that inhaled acrolein (1 ppm, 5 h/day for 3 days) or those exposed to acrolein in an organ bath showed diminished ACh-induced arterial relaxation more strongly than GSTP(+/+) mice. Acrolein-induced endothelial dysfunction was prevented by pretreatment of the aorta with N-acetylcysteine. These results indicate that GSTP protects against the endothelial dysfunction induced by tobacco smoke exposure and that this protection may be related to the detoxification of acrolein or other related cigarette smoke constituents.

  2. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure

    PubMed Central

    Yoshioka, Yasuo; Kuroda, Etsushi; Hirai, Toshiro; Tsutsumi, Yasuo; Ishii, Ken J.

    2017-01-01

    Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of

  3. Hyperactivity induced by prenatal BrdU exposure across several experimental conditions.

    PubMed

    Kuwagata, Makiko; Ogawa, Tetsuo; Muneoka, Katsumasa; Shioda, Seiji

    2011-12-01

    Behavioral results are sometimes not reproducible even in the positive controls of developmental neurotoxicity (DNT) tests. Effects of several factors on the results should be considered. In the present paper, we examined the effects of strain-, gender-, and test-condition differences on BrdU-induced hyperactivity. The results showed that BrdU-induced hyperactivity was reproducible in two rat strains (SD and F344 rats), rodent species (rat and mouse), and both sexes. When the level of background sound in a test room was increased, the hyperactivity was persistent, resulting in no effect of background sound on BrdU-induced hyperactivity. Thus, we have demonstrated that the BrdU-animal model is a useful positive control via prenatal exposure to validate the entire DNT test process.

  4. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  6. Human color vision deficits induced by accidental laser exposure and potential for long-term recovery

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Lund, Brian J.; Brown, Jeremiah, Jr.; Stuck, Bruce E.; Loveday, J.

    2003-06-01

    Purpose: To evaluate long term deficits in human color discrimination induced by accidental laser macular damage and assess potential for recovery of color vision deficits. Methods: Nine laser accident cases (Q-switched Neodymium) presenting initially with confined or vitreous macular hemorrhage were evaluated with the Farnsworth-Munsell 100 Hue test within 2 days to 3 months post exposure. Both total as well as partial errors in the blue/yellow (B/Y) and red/green (R/G) regions were assessed. Independent assessment of axis orientation and complexity were obtained via a Fourier series expansion of error scores. Comparisons of both total and partial B/Y and R/G errors were made with age matched normal subjects, idiopathic and juvenile onset macular holes. Confocal Scanning Laser Ophthalmoscopy and Optical Coherence Tomography characterized the presence of retinal traction, intraretinal scar, macular thickness and macular hole formation. Results: Comparison of exposed and non-exposed age matched individuals were significant (P<.001) for both total and partial errors. In four cases where macular injury ranged from mild scar to macular hole, color discrimination errors achieved normal levels in 1 to 12 months post exposure. A mild tritan axis, dominant B/Y ("blue/yellow") errors, and retinal traction were observed in a macular hole case. At 12 months post exposure, traction about the hole disappeared, and total and partial errors were normal. Where damage involved a greater degree of scarring, retinal traction and multiple injury sites, long term recovery of total and partial error recovery was retarded with complex axis makeup. Single exposures in the paramacula produced tritan axes, while multiple exposures within and external to the macula increased total and partial R/G ("red/green") error scores. Total errors increased when paramacular hole enlargement induced macular traction. Such hole formation produced significant increases in total errors, complex axis

  7. Genotoxicity Induced by Foetal and Infant Exposure to Magnetic Fields and Modulation of Ionising Radiation Effects

    PubMed Central

    Udroiu, Ion; Antoccia, Antonio; Tanzarella, Caterina; Giuliani, Livio; Pacchierotti, Francesca; Cordelli, Eugenia; Eleuteri, Patrizia; Villani, Paola; Sgura, Antonella

    2015-01-01

    Background Few studies have investigated the toxicity and genotoxicity of extremely low frequency magnetic fields (ELF-MF) during prenatal and neonatal development. These phases of life are characterized by cell proliferation and differentiation, which might make them sensitive to environmental stressors. Although in vitro evidences suggest that ELF-MF may modify the effects of ionizing radiation, no research has been conducted so far in vivo on the genotoxic effects of ELF-MF combined with X-rays. Aim and methods Aim of this study was to investigate in somatic and germ cells the effects of chronic ELF-MF exposure from mid gestation until weaning, and any possible modulation produced by ELF-MF exposure on ionizing radiation-induced damage. Mice were exposed to 50 Hz, 65 μT magnetic field, 24 hours/day, for a total of 30 days, starting from 12 days post-conception. Another group was irradiated with 1 Gy X-rays immediately before ELF-MF exposure, other groups were only X-irradiated or sham-exposed. Micronucleus test on blood erythrocytes was performed at multiple times from 1 to 140 days after birth. Additionally, 42 days after birth, genotoxic and cytotoxic effects on male germ cells were assessed by comet assay and flow cytometric analysis. Results ELF-MF exposure had no teratogenic effect and did not affect survival, growth and development. The micronucleus test indicated that ELF-MF induced a slight genotoxic damage only after the maximum exposure time and that this effect faded away in the months following the end of exposure. ELF-MF had no effects on ionizing radiation (IR)-induced genotoxicity in erythrocytes. Differently, ELF–MF appeared to modulate the response of male germ cells to X-rays with an impact on proliferation/differentiation processes. These results point to the importance of tissue specificity and development on the impact of ELF-MF on the early stages of life and indicate the need of further research on the molecular mechanisms underlying

  8. Prenatal nicotine exposure changes natural and drug-induced reinforcement in adolescent male rats.

    PubMed

    Franke, Ryan M; Park, Minjung; Belluzzi, James D; Leslie, Frances M

    2008-06-01

    Clinical studies have demonstrated an increased incidence of substance misuse and obesity in adolescents whose mothers smoked during pregnancy. Although dopamine systems that mediate natural and drug-induced reinforcement have been shown in animal studies to be altered by gestational nicotine treatment, it is not clear whether there are concomitant changes in reinforcement sensitivity. To test whether prenatal nicotine exposure influences sensitivity to natural and drug rewards, timed pregnant rats were implanted with osmotic minipumps delivering saline or nicotine (3 mg/kg/day) from gestational day 4 to 18. Male offspring were tested as adolescents, on postnatal day 32, for operant responding maintained by sucrose pellets or i.v. cocaine (200 or 500 mug/kg per injection). Cocaine-induced stereotypy and c-fos mRNA expression in cortex and striatum were also examined. Complex changes in reward circuitry were observed in the offspring of nicotine-exposed dams. Nicotine-exposed adolescents did not self-administer the low dose of cocaine, but, at the higher dose, exhibited significantly greater cocaine intake and c-fos mRNA expression in nucleus accumbens than did controls. In contrast, control animals showed significantly greater drug-induced stereotypy at both cocaine doses. Operant responding maintained by sucrose was also influenced by gestational nicotine exposure. At a fixed ratio (FR) 1 schedule, although the number of pellets eaten by the two experimental groups was equivalent, more pellets were left uneaten by nicotine-exposed offspring. At FR2 and FR5 schedules, the responding maintained by sucrose pellets was lower in nicotine-exposed offspring. These findings suggest that nicotine exposure during gestation may induce changes in both natural and drug reward pathways.

  9. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  10. Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones.

    PubMed

    Fleshner, Monika; Campisi, Jay; Amiri, Leila; Diamond, David M

    2004-10-01

    Heat-shock proteins (Hsp) play an important role in stress physiology. Exposure to a variety of stressors will induce intracellular Hsp72, and this induction is believed to be beneficial for cell survival. In contrast, Hsp72 released during stress (extracellular Hsp72; eHsp72) activates pro-inflammatory responses. Clearly, physical stressors such as heat, cold, H(2)O(2), intense exercise and tail shock will induce both intra- and extracellular Hsp72. The current study tested whether a psychological stressor, cat exposure, would also trigger this response. In addition, the potential role of adrenal hormones in the Hsp72 response was examined. Adult, male Sprague Dawley rats were either adrenalectomized (ADX) or sham operated. Ten days post-recovery, rats were exposed to either a cat with no physical contact or control procedures (n = 5-6/group) for 2 h. Levels of intracellular Hsp72 were measured in the brain (frontal cortex, hippocampus, hypothalamus, dorsal vagal complex) and pituitary (ELISA). Levels of eHsp72 (ELISA) and corticosterone (RIA) were measured from serum obtained at the end of the 2-h stress period. Rats that were exposed to a cat had elevated intracellular Hsp72 in hypothalamus and dorsal vagal complex, and elevated eHsp72 and corticosterone in serum. Both the intra- and extracellular Hsp72 responses were blocked or attenuated by ADX. This study demonstrates that cat exposure can stimulate the Hsp72 response and that adrenal hormones contribute to this response.

  11. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.

  12. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.

  13. Wood dust exposure induces cell transformation through EGFR-mediated OGG1 inhibition.

    PubMed

    Staffolani, Sara; Manzella, Nicola; Strafella, Elisabetta; Nocchi, Linda; Bracci, Massimo; Ciarapica, Veronica; Amati, Monica; Rubini, Corrado; Re, Massimo; Pugnaloni, Armanda; Pasquini, Ernesto; Tarchini, Paolo; Valentino, Matteo; Tomasetti, Marco; Santarelli, Lory

    2015-07-01

    A high risk of neoplastic transformation of nasal and paranasal sinuses mucosa is related to the occupational exposure to wood dust. However, the role of occupational exposures in the aetiology of the airway cancers remains largely unknown. Here, an in vitro model was performed to investigate the carcinogenic effect of wood dusts. Human bronchial epithelial cells were incubated with hard and soft wood dusts and the DNA damage and response to DNA damage evaluated. Wood dust exposure induced accumulation of oxidised DNA bases, which was associated with a delay in DNA repair activity. By exposing cells to wood dust at a prolonged time, wood dust-initiated cells were obtained. Initiated-cells were able to form colonies in soft agar, and to induce blood vessel formation. These cells showed extensive autophagy, reduced DNA repair, which was associated with reduced OGG1 expression and oxidised DNA base accumulation. These events were found related to the activation of EGFR/AKT/mTOR pathway, through phosphorylation and subsequent inactivation of tuberin. The persistence in the tissue of wood dusts, their repetitious binding with EGFR may continually trigger the activation switch, leading to chronic down-regulation of genes involved in DNA repair, leading to cell transformation and proliferation.

  14. Long-term nicotine exposure induces dysfunction of mouse endothelial progenitor cells

    PubMed Central

    Li, Wei; Du, Da-Yong; Liu, Yang; Jiang, Feng; Zhang, Pan; Li, Yun-Tian

    2017-01-01

    Endothelial progenitor cells (EPCs) have an important role in maintaining endothelial homeostasis. Previous studies reported that smoking has detrimental effects on EPCs; however, recent studies revealed that short-term nicotine exposure may benefit EPCs. As most smokers are exposed to nicotine over an extended time period, the present study aimed to investigate the long-term effects of nicotine on EPCs. Mice were administered nicotine orally for 1, 3 or 6 months. The mice exposed to nicotine for 1 month demonstrated increased EPC counts and telomerase activity and reduced cell senescence compared with control mice, consistent with previous reports. However, long-term nicotine exposure resulted in opposing effects on EPCs, causing decreased counts, functional impairment and reduced telomerase activity. Furthermore, the effects of nicotine exposure were correlated with changes in sirtuins type 1 (SIRT1) protein expression. The current study indicated that long-term nicotine exposure induces dysfunction and senescence of EPCs, which may be associated with impairment of telomerase activity through SIRT1 downregulation. The present results emphasize the necessity of smoking cessation to prevent dysfunction of EPCs. PMID:28123473

  15. In utero arsenic exposure induces early onset of atherosclerosis in ApoE−/− mice

    PubMed Central

    Srivastava, Sanjay; D’Souza, Stanley E.; Sen, Utpal; States, J. Christopher

    2007-01-01

    Consumption of arsenic contaminated drinking water has been linked to higher rates of coronary disease, stroke, and peripheral arterial disease. Recent evidence suggests that early life exposures may play a significant role in the onset of chronic adult diseases. To investigate the potential for in utero exposure to accelerate the onset of cardiovascular disease we exposed pregnant ApoE-knockout (ApoE−/−) mice to arsenic in their drinking water and examined the aortic trees of their male offspring for evidence of early disease 10 and 16 weeks after birth. Mice were maintained on normal chow after weaning. ApoE−/− mice are a commonly used model for atherogenesis and spontaneously develop atherosclerotic disease. Mice exposed to arsenic in utero showed a >2-fold increase in lesion formation in the aortic roots as well as the aortic arch compared to control mice at both 10 and 16 weeks of age. The mice exposed to arsenic also had a 20 – 40% decrease in total triglycerides, but no change in total cholesterol, phospholipids and total abundance of VLDL or HDL particles. Subfractionation of VLDL particles showed a decrease in large VLDL particles. In addition, the arsenic exposed mice showed a vasorelaxation defect in response to acetylcholine suggesting disturbance of endothelial cell signalling. These results indicate that in utero arsenic exposure induces an early onset of atherosclerosis in ApoE−/− mice without a hyperlipidemic diet and support the hypothesis that in utero arsenic exposure may be atherogenic in humans. PMID:17317095

  16. Gap states in pentacene thin film induced by inert gas exposure.

    PubMed

    Bussolotti, Fabio; Kera, Satoshi; Kudo, Kazuhiro; Kahn, Antoine; Ueno, Nobuo

    2013-06-28

    We studied gas-exposure effects on pentacene (Pn) films on SiO2 and Au(111) substrates by ultrahigh sensitivity photoelectron spectroscopy, which can detect the density of states of ∼10(16) states eV-1 cm-3 comparable to electrical measurements. The results show the striking effects for Pn/SiO2: exposure to inert gas (N2 and Ar) produces a sharp rise in gap states from ∼10(16) to ∼10(18) states eV-1 cm-3 and pushes the Fermi level closer to the valence band (0.15-0.17 eV), as does exposure to O2 (0.20 eV), while no such gas-exposure effect is observed for Pn/Au(111). The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the crystal grain boundaries.

  17. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome

    PubMed Central

    2012-01-01

    Background Induction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital. Results Exposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters. Conclusions Collectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen. PMID:23034186

  18. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    PubMed

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects.

  19. Developmental ethanol exposure-induced sleep fragmentation predicts adult cognitive impairment.

    PubMed

    Wilson, D A; Masiello, K; Lewin, M P; Hui, M; Smiley, J F; Saito, M

    2016-05-13

    Developmental ethanol (EtOH) exposure can lead to long-lasting cognitive impairment, hyperactivity, and emotional dysregulation among other problems. In healthy adults, sleep plays an important role in each of these behavioral manifestations. Here we explored circadian rhythms (activity, temperature) and slow-wave sleep (SWS) in adult mice that had received a single day of EtOH exposure on postnatal day 7 and saline littermate controls. We tested for correlations between slow-wave activity and both contextual fear conditioning and hyperactivity. Developmental EtOH resulted in adult hyperactivity within the home cage compared to controls but did not significantly modify circadian cycles in activity or temperature. It also resulted in reduced and fragmented SWS, including reduced slow-wave bout duration and increased slow-wave/fast-wave transitions over 24-h periods. In the same animals, developmental EtOH exposure also resulted in impaired contextual fear conditioning memory. The impairment in memory was significantly correlated with SWS fragmentation. Furthermore, EtOH-treated animals did not display a post-training modification in SWS which occurred in controls. In contrast to the memory impairment, sleep fragmentation was not correlated with the developmental EtOH-induced hyperactivity. Together these results suggest that disruption of SWS and its plasticity are a secondary contributor to a subset of developmental EtOH exposure's long-lasting consequences.

  20. Pulsed electromagnetic wave exposure induces ultrastructural damage and upregulated expression of heat shock protein 70 in the rat adenohypophysis.

    PubMed

    Cheng, Kang; Ren, Dong-Qing; Yi, Jun; Zhou, Xiao-Guang; Yang, Wen-Qing; Chen, Yong-Bin; Li, Yong-Qiang; Huang, Xiao-Feng; Zeng, Gui-Ying

    2015-08-01

    The aim of the present study was to investigate the ultrastructural damage and the expression of heat shock protein 70 (HSP70) in the rat adenohypophysis following pulsed electromagnetic wave (PEMW) exposure. The rats were randomly divided into four groups: Sham PEMW exposure, 1 x 10(4) pulses of PEMW exposure, 1 x 10(5) pulses of PEMW exposure and 3 x 10(5) pulses of PEMW exposure. Whole body radiation of 1 x 10(4) pulses, 1 x 10(5) pulses and 3 x 10(5) pulses of PEMW were delivered with a field strength of 100 kV/m. The rats in each group (n=6 in each) were sacrificed 12, 24, 48 and 96 h after PEMW exposure. Transmission electron microscopy was then used to detect the ultrastructural changes and immunocytochemistry was used to examine the expression of HSP70. Cellular damage, including mitochondrial vacuolation occurred as early as 12 h after PEMW exposure.More severe cellular damages, including cell degeneration and necrosis, occurred 24 and 48 h after PEMW exposure. The PEMW-induced cellular damage increased as the number of PEMW pulses increased. In addition, the expression of HSP70 significantly increased following PEMW exposure and peaked after 12 h. These findings suggested that PEMW induced ultrastructural damages in the rat adenohypophysis and that HSP70 may have contributed to the PEMW-induced adenohypophyseal damage.

  1. Ultrastructural changes in the lung following exposure to perfluoroisobutylene (PFIB) and potentiation of PFIB-induced lung injury by post-exposure exercise

    SciTech Connect

    Lehnert, B.E.; Stavert, D.M.

    1990-01-01

    The authors investigated the kinetics of development of the injurious effects of perfluoroisobutylene (PFIB) in the lower respiratory tract of the rat as a function of inhaled mass concentration. We additionally examined if exercise performed after exposure to PFIB can potentiate the severity of expression of PFIB-induced lung injury, while also assessing how PFIB exposure may result in reductions in work performance capacity. The severity of PFIB-induced lung injury was found to be directly proportional to inhaled PFIB mass concentration whereas the post-exposure kinetics of development of the injurious response was inversely proportional to the mass concentration of PFIB, with post-exposure latency periods prior to the onset of detectable injury increasing with decreasing inhaled mass concentration. Exercise was found to potentiate PFIB-induced lung injury only after pulmonary edema was demonstrably present using lung gravimetric and light histopathologic criteria, even though ultrastructural observations indicated significant cellular changes occur during the latency period. Our collective findings suggest that pre-existing permeability changes in the lung are a necessary prerequisite for post-exposure exercise to exert a potentiating effect. Reductions in work performance capacity occurred only after the latency period, and such reductions proportionately scaled with the severity of pulmonary edema. 9 refs., 5 figs.

  2. Hormetic effect induced by depleted uranium in zebrafish embryos.

    PubMed

    Ng, C Y P; Cheng, S H; Yu, K N

    2016-06-01

    The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  3. Prolonged exposure to insulin induces mitochondrion-derived oxidative stress through increasing mitochondrial cholesterol content in hepatocytes.

    PubMed

    Mei, Shuang; Gu, Haihua; Yang, Xuefeng; Guo, Huailan; Liu, Zhenqi; Cao, Wenhong

    2012-05-01

    We addressed the link between excessive exposure to insulin and mitochondrion-derived oxidative stress in this study and found that prolonged exposure to insulin increased mitochondrial cholesterol in cultured hepatocytes and in mice and stimulated production of reactive oxygen species (ROS) and decreased the reduced glutathione to glutathione disulfide ratio in cultured hepatocytes. Exposure of isolated hepatic mitochondria to cholesterol alone promoted ROS emission. The oxidative stress induced by the prolonged exposure to insulin was prevented by inhibition of cholesterol synthesis with simvastatin. We further found that prolonged exposure to insulin decreased mitochondrial membrane potential and the increased ROS production came from mitochondrial respiration complex I. Finally, we observed that prolonged exposure to insulin decreased mitochondrial membrane fluidity in a cholesterol synthesis-dependent manner. Together our results demonstrate that excess exposure to insulin causes mitochondrion-derived oxidative stress through cholesterol synthesis in hepatocytes.

  4. Long-term allergen exposure induces adipose tissue inflammation and circulatory system injury.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen

    2016-05-01

    The purpose of this study was to study whether allergen exposure can induce inflammation and lower the anti-inflammation levels in serum and in adipose tissues, and further develop cardiovascular injury. Our data showed that heart rate was significantly higher in the OVA-challenged mice compared to control mice. Moreover, there were higher expressions of pro-inflammation genes in the OVA-challenged mice in adipose tissues, and the expressions of anti-inflammation genes were lower. The levels of inflammation mediators were associated in serum and adipose tissues. The level of circulatory injury lactate dehydrogenase was significantly associated with the levels of E-selectin, resistin and adiponectin in the serum. The hematoxylin and eosin and immunohistochemistry stains indicated the OVA-challenged mice had higher levels of inflammation. In summary, the current study demonstrated allergen exposure can cause cardiovascular injury, and inflammatory mediators in adipose tissues play an important role in the pathogenesis of cardiovascular injury.

  5. Apoptosis induced by prolonged exposure to odorants in cultured cells from rat olfactory epithelium.

    PubMed

    Brauchi, Sebastian; Cea, Christian; Farias, Jorge G; Bacigalupo, Juan; Reyes, Juan G

    2006-08-04

    Multicellular organisms undergo programmed cell death (PCD) as a mechanism for tissue remodeling during development and tissue renewal throughout adult life. Overdose of some neuronal receptor agonists like glutamate can trigger a PCD process termed excitotoxicity in neurons of the central nervous system. Calcium has an important role in PCD processes, especially in excitotoxicity. Since the normal turnover of olfactory receptor neurons (ORNs) relies, at least in part, on an apoptotic mechanism and odor transduction in ORNs involves an increase in intracellular Ca2+ concentration ([Ca2+]i), we investigated the possibility that long-term exposures to odorants could trigger an excitotoxic process in olfactory epithelial cells (EC). We used single-cell [Ca2+]i determinations and fluorescence microscopy techniques to study the effects of sustained odorant exposures in olfactory EC in primary culture. Induction of PCD was evaluated successively by three independent criteria: (1) measurements of DNA fragmentation, (2) translocation of phosphatidylserine to the external leaflet of the plasma membrane, and (3) caspase-3 activation. Our results support the notion of an odorant-induced PCD in olfactory EC. This odorant-induced PCD was prevented by LY83583, an odorant response inhibitor, suggesting that ORNs are the main epithelial cell population undergoing odorant-induced PCD.

  6. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat.

    PubMed

    Baracchi, Francesca; Zamboni, Giovanni; Cerri, Matteo; Del Sindaco, Elide; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Amici, Roberto

    2008-06-01

    In the albino rat, a REM sleep (REMS) onset can be induced with a high probability and a short latency when the light is suddenly turned off (dark pulse, DP) during non-REM sleep (NREMS). The aim of this study was to investigate to what extent DP delivery could overcome the integrative thermoregulatory mechanisms that depress REMS occurrence during exposure to low ambient temperature (Ta). To this aim, the efficiency of a non-rhythmical repetitive DP (3 min each) delivery during the first 6-h light period of a 12 h:12 h light-dark cycle in inducing REMS was studied in the rat, through the analysis of electroencephalogram, electrocardiogram, hypothalamic temperature and motor activity at different Tas. The results showed that DP delivery triggers a transition from NREMS to REMS comparable to that which occurs spontaneously. However, the efficiency of DP delivery in inducing REMS was reduced during cold exposure to an extent comparable with that observed in spontaneous REMS occurrence. Such impairment was associated with low Delta activity and high sympathetic tone when DPs were delivered. Repetitive DP administration increased REMS amount during the delivery period and a subsequent negative REMS rebound was observed. In conclusion, DP delivery did not overcome the integrative thermoregulatory mechanisms that depress REMS in the cold. These results underline the crucial physiological meaning of the mutual exclusion of thermoregulatory activation and REMS occurrence, and support the hypothesis that the suspension of the central control of body temperature is a prerequisite for REMS occurrence.

  7. Effect of ozone exposure on antigen-induced airway hyperresponsiveness in guinea pigs

    SciTech Connect

    Vargas, M.H.; Segura, P.; Campos, M.G.; Hong, E.; Montano, L.M.

    1994-12-31

    Airway hyperresponsiveness can be induced by several stimuli including antigen and ozone, both of which may be present in the air of polluted cities. Though the effect of ozone on the bronchoconstrictor response to antigen has been well described, the combined effect of these stimuli on airway hyperresponsiveness has not yet been studied. Sensitized guinea pigs with or without ozone exposure for 1 h at 3 ppm, 18 h prior to study, were challenged with a dose-response curve to histamine (0.01-1.8 {mu}g/kg, iv), and then by a second histamine dose-response curve 1 h later. Airway responses were measured as the increase in pulmonary insufflation pressure. In sensitized guinea pigs, the histamine ED50 significantly decreased after antigen challenge, demonstrating the development of airway hyperresponsiveness. Sensitized guinea pigs exposed to ozone showed airway hyperresponsiveness to histamine when compared with nonexposed animals, and such hyperresponsiveness was further enhanced after antigen challenge. We conclude that in this guinea pig model of acute allergic bronchoconstriction both antigen challenge and ozone induce airway hyperresponsiveness, while ozone exposure does not modify the development of antigen-induced hyperresponsiveness. 25 refs., 1 fig., 1 tab.

  8. Characterization of skin inflammation induced by repeated exposure of toluene, xylene, and formaldehyde in mice.

    PubMed

    Saito, Asaka; Tanaka, Hiroyuki; Usuda, Haruki; Shibata, Tomonori; Higashi, Sayaka; Yamashita, Hirotaka; Inagaki, Naoki; Nagai, Hiroichi

    2011-06-01

    Volatile organic compounds (VOCs) are considered the main cause of sick building syndrome and they are likely to irritate the skin, eyes, and mucous membrane; however, the toxic threshold and the mechanisms of cutaneous reaction induced by long-time VOC exposure have not been clarified. In the present study, we investigated the effect of repeated painting of VOCs onto mouse skin. Various concentrations of toluene, xylene, and formaldehyde (FA) were applied once a week for 5 weeks. While FA solution (2-10%) induced remarkable ear swelling and caused evident infiltration of inflammatory cells, high concentrations of toluene and xylene (50 or 100%) evoked mild ear swelling and marginal inflammatory cell invasion. In addition, FA exposure markedly increased the expression of interleukin-4 (IL-4), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and transient receptor potential vanilloid-1 (TRPV-1) mRNAs in the ears and IL-4 and NT-3 mRNAs in the cervical lymph nodes. Furthermore, capsazepine, a TRPV-1 antagonist, significantly suppressed ear swelling caused by repeated painting of 5% FA. These findings demonstrate that FA has more potent irritancy against skin than toluene or xylene and suggest that the Th2 response, neurotrophins and TRPV-1 play important roles in FA-induced skin inflammation.

  9. Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge

    PubMed Central

    He, Rui; Oyoshi, Michiko K.; Jin, Haoli; Geha, Raif S.

    2007-01-01

    IL-17 has been implicated in a number of inflammatory diseases, but the conditions of antigen exposure that drive the generation of Th17 responses have not been well defined. Epicutaneous (EC) immunization of mice with ovalbumin (OVA), which causes allergic skin inflammation with many characteristics of the skin lesions of atopic dermatitis, was found to also drive IL-17 expression in the skin. EC, but not i.p., immunization of mice with OVA drove the generation of IL-17-producing T cells in draining lymph nodes and spleen and increased serum IL-17 levels. OVA inhalation by EC-sensitized mice induced IL-17 and CXCL2 expression and neutrophil influx in the lung along with bronchial hyperreactivity, which were reversed by IL-17 blockade. Dendritic cells trafficking from skin to lymph nodes expressed more IL-23 and induced more IL-17 secretion by naïve T cells than splenic dendritic cells. This was inhibited by neutralizing IL-23 in vitro and by intradermal injection of anti-TGFβ neutralizing antibody in vivo. Our findings suggest that initial cutaneous exposure to antigens in patients with atopic dermatitis may selectively induce the production of IL-17, which, in turn, drives inflammation of their airways. PMID:17893340

  10. Chronic Exposure to Tributyltin Induces Brain Functional Damage in Juvenile Common Carp (Cyprinus carpio)

    PubMed Central

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity. PMID:25879203

  11. ADAM17 Inhibitors Attenuate Corneal Epithelial Detachment Induced by Mustard Exposure

    PubMed Central

    DeSantis-Rodrigues, Andrea; Chang, Yoke-Chen; A. Hahn, Rita; P. Po, Iris; Zhou, Peihong; Lacey, C. Jeffrey; Pillai, Abhilash; C. Young, Sherri; A. Flowers II, Robert; A. Gallo, Michael; D. Laskin, Jeffrey; R. Gerecke, Donald; K. H. Svoboda, Kathy; D. Heindel, Ned; Gordon, Marion K.

    2016-01-01

    Purpose Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial–stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial–stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. Methods Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3–100 nmol in 20 μL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. Results Nitrogen mustard–induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial–stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial–stromal attachment. Conclusions Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial–stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial–stromal separation. PMID:27058125

  12. Exposure of Allium cepa root cells to zidovudine or nevirapine induces cytogenotoxic changes.

    PubMed

    Onwuamah, Chika K; Ekama, Sabdat O; Audu, Rosemary A; Ezechi, Oliver C; Poirier, Miriam C; Odeigah, Peter G C

    2014-01-01

    Antiretroviral drugs have proved useful in the clinical management of HIV-infected persons, though there are concerns about the effects of exposure to these DNA-reactive drugs. We investigated the potential of the plant model Allium cepa root tip assay to demonstrate the cytogenotoxicity of zidovudine and nevirapine and as a replace-reduce-refine programme amenable to resource-poor research settings. Cells mitotic index were determined in squashed root cells from Allium cepa bulbs exposed to zidovudine or nevirapine for 48 hr. The concentration of zidovudine and nevirapine inhibiting 50% root growth after 96 hr exposure was 65.0 µM and 92.5 µM respectively. Root length of all antiretroviral-exposed roots after 96 hr exposure was significantly shorter than the unexposed roots while additional root growth during a subsequent 48 hr recovery period in the absence of drug was not significantly different. By ANOVA, there was a significant association between percentage of cells in mitosis and zidovudine dose (p=0.004), but not nevirapine dose (p=0.68). Chromosomal aberrations such as sticky chromosomes, chromatin bridges, multipolar mitoses and binucleated cells were observed in root cells exposed to zidovudine and nevirapine for 48 hr. The most notable chromosomal aberration was drug-related increases in sticky chromosomes. Overall, the study showed inhibition in root length growth, changes in the mitotic index, and the induction of chromosomal aberrations in Allium bulbs treated for 96 hr or 48 hr with zidovudine and nevirapine. The study reveals generalized cytogenotoxic damage induced by exposure to zidovudine and nevirapine, and further show that the two compounds differ in their effects on mitosis and the types of chromosomal aberrations induced.

  13. Exposure to tobacco-derived materials induces overproduction of secreted proteinases in mast cells

    SciTech Connect

    Small-Howard, Andrea; Turner, Helen . E-mail: hturner@queens.org

    2005-04-15

    Mast cells reside at interfaces with the environment, including the mucosa of the respiratory and gastrointestinal tracts. This localization exposes mast cells to inhaled, or ingested, environmental challenges. In the airways of smokers, resident immune cells will be in contact with the condensed components of cigarette smoke. Mast cells are of particular interest due to their ability to promote airway remodeling and mucus hypersecretion. Clinical data show increased levels of mast cell-secreted tryptase and increased numbers of degranulated mast cells in the lavage and bronchial tissue of smokers. Since mast cell-secreted proteinases (MCPTs), including tryptases, contribute to pathological airway remodeling, we investigated the relationship between mast cell proteinases and smoke exposure. We exposed a mast cell line to cigarette smoke condensate (CSC). We show that CSC exposure increases MCPT levels in mast cells using an assay for tryptase-type MCPT activity. We hypothesized that this increase in MCPT activity reflects a CSC-induced increase in the cytosolic pool of proteinase molecules, via stimulation of MCPT transcription. Transcript array data suggested that mRNA changes in response to CSC were limited in number and peaked after 3 h of CSC exposure. However, we noted marked transcriptional regulation of several MCPT genes. CSC-induced changes in the mRNA levels for MCPTs were confirmed using quantitative RT-PCR. Taken together, our data suggest that chronic exposure to cigarette smoke up-regulates MCPT levels in mast cells at both the protein and the mRNA level. We suggest that the pathological airway remodeling that has been described in clinical studies of smoke inhalation may be attributable to MCPT overproduction in vivo.

  14. Exposure of Allium cepa Root Cells to Zidovudine or Nevirapine Induces Cytogenotoxic Changes

    PubMed Central

    Onwuamah, Chika K.; Ekama, Sabdat O.; Audu, Rosemary A.; Ezechi, Oliver C.; Poirier, Miriam C.; Odeigah, Peter G C.

    2014-01-01

    Antiretroviral drugs have proved useful in the clinical management of HIV-infected persons, though there are concerns about the effects of exposure to these DNA-reactive drugs. We investigated the potential of the plant model Allium cepa root tip assay to demonstrate the cytogenotoxicity of zidovudine and nevirapine and as a replace-reduce-refine programme amenable to resource–poor research settings. Cells mitotic index were determined in squashed root cells from Allium cepa bulbs exposed to zidovudine or nevirapine for 48 hr. The concentration of zidovudine and nevirapine inhibiting 50% root growth after 96 hr exposure was 65.0 µM and 92.5 µM respectively. Root length of all antiretroviral-exposed roots after 96 hr exposure was significantly shorter than the unexposed roots while additional root growth during a subsequent 48 hr recovery period in the absence of drug was not significantly different. By ANOVA, there was a significant association between percentage of cells in mitosis and zidovudine dose (p = 0.004), but not nevirapine dose (p = 0.68). Chromosomal aberrations such as sticky chromosomes, chromatin bridges, multipolar mitoses and binucleated cells were observed in root cells exposed to zidovudine and nevirapine for 48 hr. The most notable chromosomal aberration was drug-related increases in sticky chromosomes. Overall, the study showed inhibition in root length growth, changes in the mitotic index, and the induction of chromosomal aberrations in Allium bulbs treated for 96 hr or 48 hr with zidovudine and nevirapine. The study reveals generalized cytogenotoxic damage induced by exposure to zidovudine and nevirapine, and further show that the two compounds differ in their effects on mitosis and the types of chromosomal aberrations induced. PMID:24599327

  15. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure.

    PubMed

    Zychowski, Katherine E; Lucas, Selita N; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J

    2016-08-15

    Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.

  16. Vascular leakage induced by exposure to arsenic via increased production of NO, hydroxyl radical and peroxynitrite.

    PubMed

    Chen, Shih-Chieh; Chen, Wei-Chi

    2008-04-01

    Previous studies have shown that in situ exposure to arsenic induced increased vascular leakage. However, the underlying mechanism remains unclear. Reactive nitrogen and oxygen species such as nitric oxide (NO) and hydroxyl radical (OH(-)) are known to affect vascular permeability. Therefore, the goal of our present studies is to investigate the functional impact of the generation of NO or OH(-) on arsenic-induced vascular leakage. Vascular permeability changes were evaluated by means of Evans blue (EB) assay. Rats were anesthetized and intravenously injected with EB. Permeability changes were induced in back skin by intradermal injections of sodium arsenite mixed with NOS inhibitor: N(omega)-Nitro-L-arginine methyl ester (L-NAME) or aminoguanidine (AG) and OH(-) scavenger: 1,3 Dimethyl-2 thiourea (DMTU). Experiments were also performed to determine whether DMTU mixed with L-NAME would further inhibit arsenic-induced vascular leakage as compared with attenuation effects by either DMTU or L-NAME. One hour after administration, EB accumulated in the skin was extracted and quantified. Both L-NAME (0.02, 0.1 and 0.5 micromol/site) and DMTU (0.05, 0.2 and 1.2 micromol/site) inhibited the increase in vascular leakage induced by arsenite. However, only high dose (1 micromol/site) of AG significantly attenuated arsenite-induced vascular leakage. In contrast, neither D-NAME (0.02, 0.1 and 0.5 micromol/site) nor AG (0.04 and 0.2 micromol/site) attenuated increased vascular leakage by arsenic. DMTU mixed with L-NAME caused no further inhibition of arsenic-induced vascular leakage by either DMTU or L-NAME. The techniques of India ink and immunostaining were used to demonstrate both vascular labeling and nitrotyrosine staining in tissue treated with arsenic. L-NAME apparently reduced the density of leaky vessels and the levels of peroxynitrite staining induced by arsenite. These results suggest that NO, OH(-) and peroxynitrite play a role in increased vascular permeability

  17. Repeated cocaine exposure facilitates the expression of incentive motivation and induces habitual control in rats.

    PubMed

    LeBlanc, Kimberly H; Maidment, Nigel T; Ostlund, Sean B

    2013-01-01

    There is growing evidence that mere exposure to drugs can induce long-term alterations in the neural systems that mediate reward processing, motivation, and behavioral control, potentially causing the pathological pursuit of drugs that characterizes the addicted state. The incentive sensitization theory proposes that drug exposure potentiates the influence of reward-paired cues on behavior. It has also been suggested that drug exposure biases action selection towards the automatic execution of habits and away from more deliberate goal-directed control. The current study investigated whether rats given repeated exposure to peripherally administered cocaine would show alterations in incentive motivation (assayed using the Pavlovian-to-instrumental transfer (PIT) paradigm) or habit formation (assayed using sensitivity to reward devaluation). After instrumental and Pavlovian training for food pellet rewards, rats were given 6 daily injections of cocaine (15 mg/kg, IP) or saline, followed by a 10-d period of rest. Consistent with the incentive sensitization theory, cocaine-treated rats showed stronger cue-evoked lever pressing than saline-treated rats during the PIT test. The same rats were then trained on a new instrumental action with a new food pellet reward before undergoing a reward devaluation testing. Although saline-treated rats exhibited sensitivity to reward devaluation, indicative of goal-directed performance, cocaine-treated rats were insensitive to this treatment, suggesting a reliance on habitual processes. These findings, when taken together, indicate that repeated exposure to cocaine can cause broad alterations in behavioral control, spanning both motivational and action selection processes, and could therefore help explain aberrations of decision-making that underlie drug addiction.

  18. Gestational Toluene Exposure Effects on Spontaneous and Amphetamine-Induced Locomotor Behavior in Rats

    PubMed Central

    Mohammadi, Michael H.; Batis, Jeffery C.; Hannigan, John H.

    2007-01-01

    The abuse of volatile organic solvents (inhalants) continues to be a major health concern throughout the world. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. The neurobehavioral teratogenic sequelae of solvent abuse (i.e., repeated, brief inhalation exposures to very high concentrations of solvents) have not been examined thoroughly. In a preclinical model of inhalant abuse, timed-pregnant Sprague-Dawley rats were exposed to 0, 8,000, or 12,000 parts per million (ppm) for 15 min twice daily from gestation day 8 (GD8) through GD20. In the first experiment, separate groups of offspring were observed individually in an open-field on postnatal day 22 (PN22), PN42 or PN63. In the second experiment, other offspring given identical prenatal toluene exposures were observed in an “open-field” following an acute i.p. injection of amphetamine (0, 0.56, 1.78 mg/kg) on PN28. Automated measurements of distance traveled and ambulatory time were recorded. Prenatal toluene exposure resulted in small alterations in spontaneous activity compared to non-exposed rats. Prenatal exposure to 12,000 ppm toluene resulted in significant hyposensitivity to the locomotor stimulatory effects of the amphetamine challenge in male but not female rats on PN28. The results demonstrate that prenatal exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous and amphetamine-induced locomotor behavior in rats. The expression of these effects also appears to depend upon the postnatal age of testing. These results imply that abuse of organic solvents during pregnancy in humans may also produce long-lasting effects on biobehavioral development. PMID:17112700

  19. Exposure Stress Induces Reversible Corneal Graft Opacity in Recipients With Herpes Simplex Virus-1 Infections

    PubMed Central

    Rowe, Alexander M.; Yun, Hongmin; Hendricks, Robert L.

    2017-01-01

    Purpose Most of the inflammation in murine herpes simplex virus type 1 (HSV-1)-induced stromal keratitis (HSK) is due to exposure stress resulting from loss of corneal nerves and blink reflex. Corneal grafts often fail when placed on corneal beds with a history of HSK. We asked if corneal exposure contributes to the severe pathology of corneal grafts on HSV-1–infected corneal beds. Methods Herpes simplex virus type 1–infected corneas were tested for blink reflex. Opacity and vascularization were monitored in allogeneic and syngeneic corneal grafts that were transplanted to corneal beds with no blink reflex or to those that retained blink reflex in at least one quadrant following infection. Results Retention of any level of blink reflex significantly reduced inflammation in HSV-1–infected corneas. Corneal allografts placed on HSV-1–infected beds lacking corneal blink reflex developed opacity faster and more frequently than those placed on infected beds that partially or completely retained blink reflex. Corneal grafts placed on infected corneal beds with no blink reflex rapidly became opaque to a level that would be considered rejection. However, protecting these grafts from exposure by tarsorrhaphy prevented or reversed the opacity in both syngeneic and allogenic grafts. Conclusions Exposure due to HSV-1–engendered hypoesthesia causes rapid, severe, persistent, but reversible opacification of both allogeneic and syngeneic corneal grafts. This opacity should not be interpreted as immunologic rejection. Exposure stress may contribute to the high rate of corneal graft pathology in patients with recurrent HSK. PMID:28055100

  20. Repeated Cocaine Exposure Facilitates the Expression of Incentive Motivation and Induces Habitual Control in Rats

    PubMed Central

    LeBlanc, Kimberly H.; Maidment, Nigel T.; Ostlund, Sean B.

    2013-01-01

    There is growing evidence that mere exposure to drugs can induce long-term alterations in the neural systems that mediate reward processing, motivation, and behavioral control, potentially causing the pathological pursuit of drugs that characterizes the addicted state. The incentive sensitization theory proposes that drug exposure potentiates the influence of reward-paired cues on behavior. It has also been suggested that drug exposure biases action selection towards the automatic execution of habits and away from more deliberate goal-directed control. The current study investigated whether rats given repeated exposure to peripherally administered cocaine would show alterations in incentive motivation (assayed using the Pavlovian-to-instrumental transfer (PIT) paradigm) or habit formation (assayed using sensitivity to reward devaluation). After instrumental and Pavlovian training for food pellet rewards, rats were given 6 daily injections of cocaine (15 mg/kg, IP) or saline, followed by a 10-d period of rest. Consistent with the incentive sensitization theory, cocaine-treated rats showed stronger cue-evoked lever pressing than saline-treated rats during the PIT test. The same rats were then trained on a new instrumental action with a new food pellet reward before undergoing a reward devaluation testing. Although saline-treated rats exhibited sensitivity to reward devaluation, indicative of goal-directed performance, cocaine-treated rats were insensitive to this treatment, suggesting a reliance on habitual processes. These findings, when taken together, indicate that repeated exposure to cocaine can cause broad alterations in behavioral control, spanning both motivational and action selection processes, and could therefore help explain aberrations of decision-making that underlie drug addiction. PMID:23646106

  1. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution

    SciTech Connect

    Calderon-Garciduenas, L.; Osnaya-Brizuela, N.; Ramirez-Martinez, L.

    1996-02-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p>0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 {+-}8.34% in the first week to 67.29 {+-}2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be evaluated in ozone-exposed individuals. 43 refs., 5 figs., 4 tabs.

  2. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure

    PubMed Central

    Miranda da Silva, Cristiane; Peres Leal, Mayara; Brochetti, Robson Alexandre; Braga, Tárcio; Vitoretti, Luana Beatriz; Saraiva Câmara, Niels Olsen; Damazo, Amílcar Sabino; Ligeiro-de-Oliveira, Ana Paula; Chavantes, Maria Cristina; Lino-dos-Santos-Franco, Adriana

    2015-01-01

    Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT) has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA), an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1%) or vehicle (distillated water) during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure). Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant. PMID:26569396

  3. Chromatin Modifications during Repair of Environmental Exposure-Induced DNA Damage: A Potential Mechanism for Stable Epigenetic Alterations

    PubMed Central

    O’Hagan, Heather M.

    2014-01-01

    Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure. PMID:24259318

  4. Fucoidan Extracted from Hijiki Protects Brain Microvessel Endothelial Cells Against Diesel Exhaust Particle Exposure-Induced Disruption.

    PubMed

    Choi, Young-Sook; Eom, Sang-Yong; Kim, In-Soo; Ali, Syed F; Kleinman, Michael T; Kim, Yong-Dae; Kim, Heon

    2016-05-01

    This study was performed to evaluate the protective effects of fucoidan against the decreased function of primary cultured bovine brain microvessel endothelial cells (BBMECs) after exposure to diesel exhaust particles (DEPs). BBMECs were extracted from bovine brains and cultured until confluent. To evaluate the function of BBMECs, we performed a permeability test using cell-by-cell equipment and by Western blot analysis for zonular occludens-1 (ZO-1), which is a tight junction protein of BMECs, and evaluated oxidative stress in BBMECs using the DCFH-DA assay and the CUPRAC-BCS assay. The increased oxidative stress in BBMECs following DEP exposure was suppressed by fucoidan. In addition, permeability of BBMECs induced by DEP exposure was decreased by fucoidan treatment. Our results showed that fucoidan protects against BBMEC disruption induced by DEP exposure. This study provides evidence that fucoidan might protect the central nervous system (CNS) against DEP exposure.

  5. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  6. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  7. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  8. Exposure to BDE-153 induces autophagy in HepG2 cells.

    PubMed

    Pereira, Lilian Cristina; Duarte, Filipe Valente; Varela, Ana Teresa Inácio Ferreira; Rolo, Anabela Pinto; Palmeira, Carlos Manuel Marques; Dorta, Daniel Junqueira

    2017-04-07

    Autophagy is a pro-survival process that occurs under stressful "life-threatening" conditions. This process clears the cells of damaged organelles, long-lived proteins, and/or misfolded proteins. Under stressful conditions, activation of the autophagic process leads to cell death and acts as a protective mechanism against xenobiotic, which is the most widely accepted mechanism in the literature. Exposure to flame retardants and other pollutants is associated with several diseases, during which cell death and mitochondrial damage takes place. Although a body of research has aimed to understand the toxicity mechanism of flame retardants better, risk evaluation and the consequences of exposure to these toxicants have been poorly described. In this work, we have found that the BDE-153 congener (representant of flame retardants) induces autophagy after 24 and 48h (0.1-25μM). The autophagic process is associated with accumulation of lysosomes, and process triggering is evident from the levels of autophagy-related proteins such as p62 and LC3. Mitophagy (an autophagic process that specifically involves damaged mitochondria) may be involved, as judged from the decreased amount of mitochondrial DNA. Taken together, our results point out that induction of autophagy upon cell should contribute to better understanding of the consequences of human exposure to this class of environmental contaminants.

  9. Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population

    NASA Astrophysics Data System (ADS)

    Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.

    2010-11-01

    In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.

  10. Exposure smart hearing protector for reducing noise-induced hearing loss

    NASA Astrophysics Data System (ADS)

    Nykaza, Ed; Frank, Tom

    2003-10-01

    The Exposure Smart Hearing Protector (ESHP) is a new device that can be used for measuring noise exposure levels (NELs) and the prevention of noise induced hearing loss (NIHL). The ESHP consists of two microphones, located in a right and left earplug, that are connected to a dosimeter. In practice, the user wears the ESHP. When the noise level exceeds a safe dose a warning light comes on. The user then inserts the earplugs. If the earplugs are correctly inserted and the noise level in the user's earcanal is below a safe level the warning lights go off. As a result, the ESHP measures the user's total daily noise exposure (unprotected and protected). To increase the efficiency of using the ESHP for preventing NIHL, the user downloads the information stored in the ESHP via a scanner into user friendly-software. The software can be used not only to record a user's daily NELs, but more importantly to determine if the user needs intervention because the NELs exceed a safe level. The purpose of this poster session is to demonstrate the ESHP and software, and to report the results of a pilot study. [Work supported by NIOSH/CDC Grant No. U60/CCU 315855.

  11. Manganese exposure induces α-synuclein aggregation in the frontal cortex of non-human primates.

    PubMed

    Verina, Tatyana; Schneider, Jay S; Guilarte, Tomás R

    2013-03-13

    Aggregation of α-synuclein (α-syn) in the brain is a defining pathological feature of neurodegenerative disorders classified as synucleinopathies. They include Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Occupational and environmental exposure to manganese (Mn) is associated with a neurological syndrome consisting of psychiatric symptoms, cognitive impairment and parkinsonism. In this study, we examined α-syn immunoreactivity in the frontal cortex of Cynomolgus macaques as part of a multidisciplinary assessment of the neurological effects produced by exposure to moderate levels of Mn. We found increased α-syn-positive cells in the gray matter of Mn-exposed animals, typically observed in pyramidal and medium-sized neurons in deep cortical layers. Some of these neurons displayed loss of Nissl staining with α-syn-positive spherical aggregates. In the white matter we also observed α-syn-positive glial cells and in some cases α-syn-positive neurites. These findings suggest that Mn exposure promotes α-syn aggregation in neuronal and glial cells that may ultimately lead to degeneration in the frontal cortex gray and white matter. To our knowledge, this is the first report of Mn-induced neuronal and glial cell α-syn accumulation and aggregation in the frontal cortex of non-human primates.

  12. Exposure and compositional factors that influence polarization induced birefringence in silica glass

    NASA Astrophysics Data System (ADS)

    Allan, Douglas C.; Mlejnek, Michal; Neukirch, Ulrich; Smith, Charlene M.; Smith, Frances M.

    2007-03-01

    Silica glass exhibits a permanent anisotropic response, referred to as polarization induced birefringence (PIB), when exposed to short wavelength, polarized light. The magnitude of the PIB has been empirically correlated with the OH content of the glass. Our recent studies pertaining to PIB have focused on careful characterization of PIB, with particular emphasis on understanding all of the contributions to the measured birefringence signal and finally extracting only that signal associated with birefringence arising from exposure to a polarized light beam. We will demonstrate that a critical contributor to the total birefringence signal is birefringence that comes from exposure beam inhomogeneities. After subtracting beam profile effects we are able to show that PIB is proportional to the OH content of the glass. Polarized infrared (IR) measurements were performed on glasses that developed PIB as a consequence of exposure to polarized 157-nm light. These studies reveal that there is preferential bleaching of a specific hydroxyl (OH) species in the glass with OH aligned parallel to the incident polarization undergoing more bleaching than those perpendicular. Further, we observe a very strong correlation between the measured PIB of these samples and the anisotropic bleaching. From these studies we propose a mechanism that can explain the role of hydroxyl in PIB.

  13. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    PubMed

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida.

  14. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    SciTech Connect

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P.

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  15. Intraperitoneal exposure of whitefish to microcystin-LR induces rapid liver injury followed by regeneration and resilience to subsequent exposures.

    PubMed

    Woźny, Maciej; Lewczuk, Bogdan; Ziółkowska, Natalia; Gomułka, Piotr; Dobosz, Stefan; Łakomiak, Alicja; Florczyk, Maciej; Brzuzan, Paweł

    2016-12-15

    To date, there has been no systematic approach comprehensively describing the sequence of pathological changes in fish during prolonged exposure to microcystin-LR (MC-LR). Towards this aim, juvenile whitefish individuals received an intraperitoneal injection with pure MC-LR, and the injection was repeated every week to maintain continuous exposure for 28days. During the exposure period, growth and condition of the fish were assessed based on biometric measurements. Additionally, selected biochemical markers were analysed in the fishes' blood, and their livers were carefully examined for morphological, ultrastructural, and molecular changes. The higher dose of MC-LR (100μg·kg(-1)) caused severe liver injury at the beginning of the exposure period, whereas the lower dose (10μg·kg(-1)) caused less, probably reversible injury, and its effects began to be observed later in the exposure period. These marked changes were accompanied by substantial MC-LR uptake by the liver. However, starting on the 7th day of exposure, cell debris began to be removed by phagocytes, then by 14th day, proliferation of liver cells had markedly increased, which led to reconstruction of the liver parenchyma at the end of the treatment. Surprisingly, despite weekly-repeated intraperitoneal injections, MC-LR did not accumulate over time of exposure which suggests its limited uptake in the later phase of exposure. In support, mRNA expression of the membrane transport protein oatp1d was decreased at the same time as the regenerative processes were observed. Our study shows that closing of active membrane transport may serve as one defence mechanism against further MC-LR intoxication.

  16. Behavioral training reverses global cortical network dysfunction induced by perinatal antidepressant exposure

    PubMed Central

    Zhou, Xiaoming; Lu, Jordan Y.-F.; Darling, Ryan D.; Simpson, Kimberly L.; Zhu, Xiaoqing; Wang, Fang; Yu, Liping; Sun, Xinde; Merzenich, Michael M.; Lin, Rick C. S.

    2015-01-01

    Abnormal cortical circuitry and function as well as distortions in the modulatory neurological processes controlling cortical plasticity have been argued to underlie the origin of autism. Here, we chemically distorted those processes using an antidepressant drug-exposure model to generate developmental neurological distortions like those characteristics expressed in autism, and then intensively trained altered young rodents to evaluate the potential for neuroplasticity-driven renormalization. We found that young rats that were injected s.c. with the antidepressant citalopram from postnatal d 1–10 displayed impaired neuronal repetition-rate following capacity in the primary auditory cortex (A1). With a focus on recovering grossly degraded auditory system processing in this model, we showed that targeted temporal processing deficits induced by early-life antidepressant exposure within the A1 were almost completely reversed through implementation of a simple behavioral training strategy (i.e., a modified go/no-go repetition-rate discrimination task). Degraded parvalbumin inhibitory GABAergic neurons and the fast inhibitory actions that they control were also renormalized by training. Importantly, antidepressant-induced degradation of serotonergic and dopaminergic neuromodulatory systems regulating cortical neuroplasticity was sharply reversed. These findings bear important implications for neuroplasticity-based therapeutics in autistic patients. PMID:25646455

  17. Exposure to ethanol and nicotine induces stress responses in human placental BeWo cells.

    PubMed

    Repo, Jenni K; Pesonen, Maija; Mannelli, Chiara; Vähäkangas, Kirsi; Loikkanen, Jarkko

    2014-01-13

    Human placental trophoblastic cancer BeWo cells can be used as a model of placental trophoblasts. We found that combined exposure to relevant exposure concentrations of ethanol (2‰) and nicotine (15 μM) induces an increase in the amount of reactive oxygen species (ROS). Neither ethanol or nicotine alone, nor their combination affected cell viability. However, nicotine decreased cell proliferation, both alone and combined with ethanol. Nicotine increased the expression of the endoplasmic reticulum (ER)-stress related protein GRP78/BiP, but not another marker of ER-stress, IRE1α. We also studied the effects of nicotine and/or ethanol on phosphorylation and expression of three mitogen-activated protein kinases (MAPKs), i.e. JNK, p38 and ERK1/2. Nicotine decreased the phosphorylation of JNK and also had similar effect on total amount of this protein. Phosphorylation and expression of p38 were increased 1.7- and 1.6-fold, respectively, by nicotine alone, and 1.9- and 2.1-fold by the combined treatment. Some increase (1.8-fold) was also seen in the phosphorylation of ERK2 at 48 h, in cells exposed to both ethanol and nicotine. This study shows that ethanol and nicotine, which harm the development of fetus may induce both oxidative and ER stress responses in human placental trophoblastic cells, implicating these mechanisms in their fetotoxic effects.

  18. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    PubMed

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  19. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice*

    PubMed Central

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice. PMID:25559957

  20. Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae.

    PubMed

    Morales, Mónica; Martínez-Paz, Pedro; Martín, Raquel; Planelló, Rosario; Urien, Josune; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2014-12-01

    Pentachlorophenol (PCP) has been extensively used worldwide as a pesticide and biocide and is frequently detected in the aquatic environment. In the present work, the toxicity of PCP was investigated in Chironomus riparius aquatic larvae. The effects following short- and long-term exposures were evaluated at the molecular level by analyzing changes in the transcriptional profile of different endocrine genes, as well as in genes involved in the stress response and detoxification. Interestingly, although no differences were found after 12- and 24-h treatments, at 96-h exposures PCP was able to induce significant increases in transcripts from the ecdysone receptor gene (EcR), the early ecdysone-inducible E74 gene, the estrogen-related receptor gene (ERR), the Hsp70 gene and the CYP4G gene. In contrast, the Hsp27 gene appeared to be downregulated, while the ultraspiracle gene (usp) (insect ortholog of the retinoid X receptor) was not altered in any of the conditions assayed. Moreover, Glutathione-S-Transferase (GST) activity was not affected. The results obtained show the ability of PCP to modulate transcription of different biomarker genes from important cellular metabolic activities, which could be useful in genomic approaches to monitoring. In particular, the significant upregulation of hormonal genes represents the first evidence at the genomic level of the potential endocrine disruptive effects of PCP on aquatic invertebrates.

  1. Oral Exposure to Atrazine Induces Oxidative Stress and Calcium Homeostasis Disruption in Spleen of Mice

    PubMed Central

    Wang, Zhichun; Zhang, Chonghua; Jia, Liming

    2016-01-01

    The widely used herbicide atrazine (ATR) can cause many adverse effects including immunotoxicity, but the underlying mechanisms are not fully understood. The current study investigated the role of oxidative stress and calcium homeostasis in ATR-induced immunotoxicity in mice. ATR at doses of 0, 100, 200, or 400 mg/kg body weight was administered to Balb/c mice daily for 21 days by oral gavage. The studies performed 24 hr after the final exposure showed that ATR could induce the generation of reactive oxygen species in the spleen of the mice, increase the level of advanced oxidation protein product (AOPP) in the host serum, and cause the depletion of reduced glutathione in the serum, each in a dose-related manner. In addition, DNA damage was observed in isolated splenocytes as evidenced by increase in DNA comet tail formation. ATR exposure also caused increases in intracellular Ca2+ within splenocytes. Moreover, ATR treatment led to increased expression of genes for some antioxidant enzymes, such as HO-1 and Gpx1, as well as increased expression of NF-κB and Ref-1 proteins in the spleen. In conclusion, it appears that oxidative stress and disruptions in calcium homeostasis might play an important role in the induction of immunotoxicity in mice by ATR. PMID:27957240

  2. Sub-chronic exposure to paraoxon neither induces nor exacerbates diabetes mellitus in Wistar rat.

    PubMed

    Nurulain, Syed M; Petroianu, Georg; Shafiullah, Mohamed; Kalász, Huba; Oz, Murat; Saeed, Tariq; Adem, Abdu; Adeghate, Ernest

    2013-10-01

    There is an increasing belief that organophosphorus compounds (OPCs) impair glucose homeostasis and cause hyperglycemia and diabetes mellitus. The present study was undertaken to investigate the putative diabetogenic effect of sub-lethal and sub-chronic exposure to paraoxon (POX), an extremely hazardous OPC used in pesticides. The effect of paraoxon on streptozotocin-induced diabetic rats was also examined. Each rat was injected with 100 nmol of POX 5 days per week for 6 weeks. Blood glucose levels and red blood cell acetylcholinesterase activity were measured weekly. Biochemical analysis and morphological studies were performed at the end of the experiment. The results revealed that POX neither induces nor exacerbates diabetes mellitus in experimental rats. Liver and kidney/body weight ratios revealed statistically insignificant differences when compared with controls. Biochemical analysis of urine samples showed a small but not significant increase in protein level in all groups. Urine bilirubin was significantly higher in the diabetes + POX group when compared with the control group. The number of blood cells in urine was significantly higher in the POX-treated group compared with the control group. Hyperglycemia was noted in the diabetes and diabetes + POX groups, but neither in the saline control nor in POX-treated normal rats. Electron microscopy of POX-treated pancreas did not show any morphological changes in beta cells. These results suggest that POX does not cause diabetes mellitus at sub-lethal sub-chronic exposure.

  3. Active immunity induced by passive IgG post-exposure protection against ricin.

    PubMed

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W; Hu, Wei-Gang

    2014-01-21

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab')2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab')2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab')2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab')2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.

  4. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  5. Characterization of seizures induced by acute exposure to an organophosphate herbicide, glufosinate-ammonium.

    PubMed

    Calas, André-Guilhem; Perche, Olivier; Richard, Olivier; Perche, Astrid; Pâris, Arnaud; Lauga, Fabien; Herzine, Ameziane; Palomo, Jennifer; Ardourel, Marie-Yvonne; Menuet, Arnaud; Mortaud, Stéphane; Pichon, Jacques; Montécot-Dubourg, Céline

    2016-05-04

    Glufosinate-ammonium (GLA), the active component of a widely used herbicide, induces convulsions in rodents and humans. In mouse, intraperitoneal treatment with 75 mg/kg GLA generates repetitive tonic-clonic seizures associated with 100% mortality within 72 h after treatment. In this context, we characterized GLA-induced seizures, their histological consequences and the effectiveness of diazepam treatment. Epileptic discharges on electroencephalographic recordings appeared simultaneously in the hippocampus and the cerebral cortex. Diazepam treatment at 6 h immediately stopped the seizures and prevented animal death. However, intermittent seizures were recorded on electroencephalogram from 6 h after diazepam treatment until 24 h, but had disappeared after 15 days. In our model, neuronal activation (c-Fos immunohistochemistry) was observed 6 h after GLA exposure in the dentate gyrus, CA1, CA3, amygdala, piriform and entorhinal cortices, indicating the activation of the limbic system. In these structures, Fluoro-Jade C and Cresyl violet staining did not show neuronal suffering. However, astroglial activation was clearly observed at 24 h and 15 days after GLA treatment in the amygdala, piriform and entorhinal cortices by PCR quantitative, western blot and immunohistochemistry. Concomitantly, glutamine synthetase mRNA expression (PCR quantitative), protein expression (western blot) and enzymatic activity were upregulated. In conclusion, our study suggests that GLA-induced seizures: (a) involved limbic structures and (b) induced astrocytosis without neuronal degeneration as an evidence of a reactive astrocyte beneficial effect for neuronal protection.

  6. Exposure to Green Tea Extract Alters the Incidence of Specific Cyclophosphamide-Induced Malformations

    PubMed Central

    Logsdon, Amanda L.; Herring, Betty J.; Lockard, Jarrett E.; Miller, Brittany M.; Kim, Hanna; Hood, Ronald D.; Bailey, Melissa M.

    2012-01-01

    BACKGROUND Green tea extract (GTE) has been shown to have antioxidative properties due to its high content of polyphenols and catechin gallates. Previous studies indicated that catechin gallates scavenge free radicals and attenuate the effects of reactive oxidative species (ROS). Cyclophosphamide (CP) produces ROS, which can have adverse effects on development, causing limb, digit, and cranial abnormalities. The current study was performed to determine if exposure to GTE can decrease teratogenic effects induced by CP in CD-1 mice. METHODS From gestation days (GD) 6–13, mated CD-1 mice were dosed with 400 or 800 mg/kg/d GTE; 100, 200, 400, or 800 mg/kg/d GTE + CP; CP alone, or the vehicle. GTE was given by gavage. CP (20 mg/kg) was given by intraperitoneal injection on GD 10. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS The highest GTE dose did not effectively attenuate, and in some cases exacerbated the negative effect of CP. GTE alone was also associated with an increased incidence of microblepharia. Conversely, moderate GTE doses (200 &/or 400 mg/kg/d) attenuated the effect of CP on fetal weight and (GTE 200 mg/kg/d) decreased the incidences of certain defects resulting from CP exposure. CONCLUSIONS Exposure of a developing mammal to moderate doses of GTE can modulate the effects of exposure to CP during development, possibly by affecting biotransformation, while a higher GTE dose tended to exacerbate the developmental toxicity of CP. GTE alone appeared to cause an adverse effect on eyelid development. PMID:22447743

  7. Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity.

    PubMed

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G

    2014-07-01

    Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson's disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182μg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions.

  8. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy.

    PubMed

    Gabriel, Marta F; Postigo, Idoia; Tomaz, Cândida T; Martínez, Jorge

    2016-01-01

    Alternaria alternata spores are considered a well-known biological contaminant and a very common potent aeroallergen source that is found in environmental samples. The most intense exposure to A. alternata allergens is likely to occur outdoors; however, Alternaria and other allergenic fungi can colonize in indoor environments and thereby increase the fungal aeroallergen exposure levels. A consequence of human exposure to fungal aeroallergens, sensitization to A. alternata, has been unequivocally associated with increased asthma severity. Among allergenic proteins described in this fungal specie, the major allergen, Alt a 1, has been reported as the main elicitor of airborne allergies in patients affected by a mold allergy and considered a marker of primary sensitization to A. alternata. Moreover, A. alternata sensitization seems to be a triggering factor in the development of poly-sensitization, most likely because of the capability of A. alternata to produce, in addition to Alt a 1, a broad and complex array of cross-reactive allergens that present homologs in several other allergenic sources. The study and understanding of A. alternata allergen information may be the key to explaining why sensitization to A. alternata is a risk factor for asthma and also why the severity of asthma is associated to this mold. Compared to other common environmental allergenic sources, such as pollens and dust mites, fungi are reported to be neglected and underestimated. The rise of the A. alternata allergy has enabled more research into the role of this fungal specie and its allergenic components in the induction of IgE-mediated respiratory diseases. Indeed, recent research on the identification and characterization of A. alternata allergens has allowed for the consideration of new perspectives in the categorization of allergenic molds, assessment of exposure and diagnosis of fungi-induced allergies.

  9. Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2014-01-01

    Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions. PMID:24362016

  10. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function

    PubMed Central

    Zheng, Wei; Sivasankar, M. Preeti

    2016-01-01

    Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3) expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001). Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (p<0.05) and a reduction in transepithelial electrical resistance (TEER) by 180.0% (p<0.001). While the expression of tight junctional protein did not change in acrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (p<0.05). Taken together, these data provide evidence that acute acrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium. PMID:27643990

  11. Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise.

    PubMed

    Litovitz, T A; Penafiel, L M; Farrel, J M; Krause, D; Meister, R; Mullins, J M

    1997-01-01

    We have previously demonstrated that microwave fields, amplitude modulated (AM) by an extremely low-frequency (ELF) sine wave, can induce a nearly twofold enhancement in the activity of ornithine decarboxylase (ODC) in L929 cells at SAR levels of the order of 2.5 W/kg. Similar, although less pronounced, effects were also observed from exposure to a typical digital cellular phone test signal of the same power level, burst modulated at 50 Hz. We have also shown that ODC enhancement in L929 cells produced by exposure to ELF fields can be inhibited by superposition of ELF noise. In the present study, we explore the possibility that similar inhibition techniques can be used to suppress the microwave response. We concurrently exposed L929 cells to 60 Hz AM microwave fields or a 50 Hz burst-modulated DAMPS (Digital Advanced Mobile Phone System) digital cellular phone field at levels known to produce ODC enhancement, together with band-limited 30-100 Hz ELF noise with root mean square amplitude of up to 10 microT. All exposures were carried out for 8 h, which was previously found to yield the peak microwave response. In both cases, the ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz AM microwaves, complete inhibition was obtained with noise levels at or above 2 microT. With the DAMPS digital cellular phone signal, complete inhibition occurred with noise levels at or above 5 microT. These results suggest a possible practical means to inhibit biological effects from exposure to both ELF and microwave fields.

  12. Chronic dietary exposure to environmental organochlorine contaminants induces thyroid gland lesions in Arctic foxes (Vulpes lagopus).

    PubMed

    Sonne, Christian; Wolkers, Hans; Leifsson, Pall S; Iburg, Tine; Jenssen, Bjørn Munro; Fuglei, Eva; Ahlstrøm, Oystein; Dietz, Rune; Kirkegaard, Maja; Muir, Derek C G; Jørgensen, Even H

    2009-08-01

    The impact of dietary organochlorine (OC) exposure on thyroid gland pathology was studied in farmed male Arctic foxes (Vulpes lagopus). The exposed group (n=16) was fed a diet based on wild minke whale (Balaenoptera acutorostrata) blubber as a main fat source in order to mimic the exposure to OC cocktails in the Artic environment. This resulted in an exposure of approximately 17 microg Sigma OC/kg day and a Sigma OC residue adipose tissue and liver concentration of 1700 and 4470 ng/gl.w., respectively, after 16 months of exposure. Control foxes (n=13) were fed a diet with pork (Sus scrofa) fat as a main fat source containing significantly lower OC concentrations. The food composition fed to the control and exposed group was standardized for nutrient contents. Four OC-related histopathological changes were found: (1) flat-epithelial-cell true thyroid cysts (TC) characterized by neutral content; (2) remnants of simple squamous epithelial-cell embryonic ducts containing neutral debris (EDN); (3) remnants of stratified squamous epithelial-cell embryonic ducts containing acid mucins often accompanied with debris of leukocyte inflammatory nature (EDM) and (4) disseminated thyroid C-cell hyperplasia (HPC). Of these, the prevalence of TC, EDN and HPC was significantly highest in the exposed group (chi(2) test: all p<0.04). The study shows that the OC mixture in minke whale blubber may cause development of thyroid gland cysts, C-cell hyperplasia and increase the prevalence of cystic remnants of embryonic ducts. The mechanism causing these effects could include endocrine disruption of the hypothalamus-pituitary-thyroid (HPT) axis, a disturbance of the calcium homeostasis/metabolism or energy metabolism or immune suppression. Because concentrations of OCs are higher in wild Arctic foxes, it is likely that these animals could suffer from similar OC-induced thyroid gland pathological and functional changes.

  13. High perfluorooctanoic acid exposure induces autophagy blockage and disturbs intracellular vesicle fusion in the liver.

    PubMed

    Yan, Shengmin; Zhang, Hongxia; Guo, Xuejiang; Wang, Jianshe; Dai, Jiayin

    2017-01-01

    Perfluorooctanoic acid (PFOA) has been shown to cause hepatotoxicity and other toxicological effects. Though PPARα activation by PFOA in the liver has been well accepted as an important mechanism of PFOA-induced hepatotoxicity, several pieces of evidence have shown that the hepatotoxic effects of PFOA may not be fully explained by PPARα activation. In this study, we observed autophagosome accumulation in mouse livers as well as HepG2 cells after PFOA exposure. Further in vitro study revealed that the accumulation of autophagosomes was not caused by autophagic flux stimulation. In addition, we observed that PFOA exposure affected the proteolytic activity of HepG2 cells while significant dysfunction of lysosomes was not detected. Quantitative proteomic analysis of crude lysosomal fractions from HepG2 cells treated with PFOA revealed that 54 differentially expressed proteins were related to autophagy or vesicular trafficking and fusion. The proteomic results were further validated in the cells in vitro and livers in vivo after PFOA exposure, which implied potential dysfunction at the late stage of autophagy. However, in HepG2 cells, it seemed that further inhibition of autophagy did not significantly alter the effects of PFOA on cell viability. Although these findings demonstrate that PFOA blocked autophagy and disturbed intracellular vesicle fusion in the liver, the changes in autophagy were observed only at high cytotoxic concentrations of PFOA, suggesting that autophagy may not be a primary target or mode of toxicity. Furthermore, since altered liver autophagy was not observed at concentrations of PFOA associated with human exposures, the relevance of these findings must be questioned.

  14. DNA damage induced by occupational and environmental exposure to miscellaneous chemicals.

    PubMed

    da Silva, Juliana

    Epidemiological studies for hazardous situations resulting from the risk of environmental and/or occupational exposure to miscellaneous chemicals present several difficulties. Biomonitoring of human populations can provide an early detection system for the initiation of cell dysregulation in the development of cancer, which would help develop an efficient prevention program. Recently, the cytokinesis-block micronucleus (CBMN) assay in lymphocyte cells has become an important tool for assessing DNA damage in exposed populations. This is the method of choice for population-based studies of occupational and/or environmental exposure to different agents. In this review, human populations exposed to coal, dyes, paints, organic solvents in a complex mixture, and others miscellaneous chemicals were analyzed. Data from 28 studies was evaluated in relation to the effect of complex mixture exposition on micronucleus (MN) frequency. Other biomarkers and the background factors were evaluated as well, such as gender, age, or smoking habit. Most of these studies (75%) showed a significant increase of micronucleated cells to exposed groups in relation to the control groups, besides chromosomal aberrations (CA), sister chromatid exchanging (SCE) and comet cells (comet assay). The studies from this review about miscellaneous chemicals exposures using CBMN assay have indicated some time and dose-dependent effects. Overall, the findings suggest that the responses resulting from exposure to complex mixtures are varied and complicated. However, they are also an important mechanism of DNA damage concerning disruption of metal ion homeostasis that may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently could induce cancer.

  15. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution.

    PubMed Central

    Calderon-Garciduenas, L; Osnaya-Brizuela, N; Ramirez-Martinez, L; Villarreal-Calderon, A

    1996-01-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant induces SSBs in nasal epithelium, we studied 139 volunteers, including a control population of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p<0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 +/- 8.34% in the first week to 67.29 +/- 2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be

  16. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution.

    PubMed

    Calderon-Garciduenas, L; Osnaya-Brizuela, N; Ramirez-Martinez, L; Villarreal-Calderon, A

    1996-02-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant induces SSBs in nasal epithelium, we studied 139 volunteers, including a control population of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p<0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 +/- 8.34% in the first week to 67.29 +/- 2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be

  17. DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences

    PubMed Central

    Musilli, S.; Nicolas, N.; El Ali, Z.; Orellana-Moreno, P.; Grand, C.; Tack, K.; Kerdine-Römer, S.; Bertho, J. M.

    2017-01-01

    90Sr is one of the radionuclides released after nuclear accidents that can significantly impact human health in the long term. 90Sr accumulates mostly in the bones of exposed populations. Previous research has shown that exposure induces changes in bone physiology both in humans and in mice. We hypothesize that, due to its close location with bone marrow stromal cells (BMSCs), 90Sr could induce functional damage to stromal cells that may explain these biological effects due to chronic exposure to 90Sr. The aim of this work was to verify this hypothesis through the use of an in vitro model of MS5 stromal cell lines exposed to 1 and 10 kBq.mL−1 of 90Sr. Results indicated that a 30-minute exposure to 90Sr induced double strand breaks in DNA, followed by DNA repair, senescence and differentiation. After 7 days of exposure, MS5 cells showed a decreased ability to proliferate, changes in cytokine expression, and changes in their ability to support hematopoietic progenitor proliferation and differentiation. These results demonstrate that chronic exposure to a low concentration of 90Sr can induce functional changes in BMSCs that in turn may explain the health effects observed in following chronic 90Sr exposure. PMID:28134299

  18. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression.

    PubMed

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan; Cheng, Tain-Junn; Chuu, Jiunn-Jye

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  19. Developmental subchronic exposure to diphenylarsinic acid induced increased exploratory behavior, impaired learning behavior, and decreased cerebellar glutathione concentration in rats.

    PubMed

    Negishi, Takayuki; Matsunaga, Yuki; Kobayashi, Yayoi; Hirano, Seishiro; Tashiro, Tomoko

    2013-12-01

    In Japan, people using water from the well contaminated with high-level arsenic developed neurological, mostly cerebellar, symptoms, where diphenylarsinic acid (DPAA) was a major compound. Here, we investigated the adverse effects of developmental exposure to 20mg/l DPAA in drinking water (early period [0-6 weeks of age] and/or late period [7-12]) on behavior and cerebellar development in male rats. In the open field test at 6 weeks of age, early exposure to DPAA significantly increased exploratory behaviors. At 12 weeks of age, late exposure to DPAA similarly increased exploratory behavior independent of the early exposure although a 6-week recovery from DPAA could reverse that change. In the passive avoidance test at 6 weeks of age, early exposure to DPAA significantly decreased the avoidance performance. Even at 12 weeks of age, early exposure to DPAA significantly decreased the test performance, which was independent of the late exposure to DPAA. These results suggest that the DPAA-induced increase in exploratory behavior is transient, whereas the DPAA-induced impairment of passive avoidance is long lasting. At 6 weeks of age, early exposure to DPAA significantly reduced the concentration of cerebellar total glutathione. At 12 weeks of age, late, but not early, exposure to DPAA also significantly reduced the concentration of cerebellar glutathione, which might be a primary cause of oxidative stress. Early exposure to DPAA induced late-onset suppressed expression of NMDAR1 and PSD95 protein at 12 weeks of age, indicating impaired glutamatergic system in the cerebellum of rats developmentally exposed to DPAA.

  20. Pre-administration of curcumin prevents neonatal sevoflurane exposure-induced neurobehavioral abnormalities in mice.

    PubMed

    Ji, Mu-Huo; Qiu, Li-Li; Yang, Jiao-Jiao; Zhang, Hui; Sun, Xiao-Ru; Zhu, Si-Hai; Li, Wei-Yan; Yang, Jian-Jun

    2015-01-01

    Sevoflurane, a commonly used inhaled anesthetic, can induce neuronal apoptosis in the developing rodent brain and correlate with functional neurological impairment later in life. However, the mechanisms underlying these deleterious effects of sevoflurane remain unclear and no effective treatment is currently available. Herein, the authors investigated whether curcumin can prevent the sevoflurane anesthesia-induced cognitive impairment in mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane 2h daily for 3 consecutive days and were treated with curcumin at the dose of 20 mg/kg or vehicle 30 min before the sevoflurane anesthesia from postnatal days 6 (P6) to P8. Cognitive functions were evaluated by open field, Morris water maze, and fear conditioning tests on P61, P63-69, and P77-78, respectively. In another separate experiment, mice were killed on day P8 or P78, and the brain tissues were harvested and then subjected to biochemistry studies. Our results showed that repeated neonatal sevoflurane exposure led to significant cognitive impairment later in life, which was associated with increased neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, and decreased memory related proteins. By contrast, pre-administration of curcumin ameliorated early neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, memory related proteins, and later cognitive dysfunction. In conclusion, our data suggested that curcumin pre-administration can prevent the sevoflurane exposure-induced cognitive impairment later in life, which may be partly attributed to its ability to attenuate the neural apoptosis, inflammation, and oxidative nitrosative stress in mouse brain.

  1. Reversible Antibiotic Tolerance Induced in Staphylococcus aureus by Concurrent Drug Exposure

    PubMed Central

    Haaber, Jakob; Friberg, Cathrine; McCreary, Mark; Lin, Richard

    2015-01-01

    ABSTRACT   Resistance of Staphylococcus aureus to beta-lactam antibiotics has led to increasing use of the glycopeptide antibiotic vancomycin as a life-saving treatment for major S. aureus infections. Coinfection by an unrelated bacterial species may necessitate concurrent treatment with a second antibiotic that targets the coinfecting pathogen. While investigating factors that affect bacterial antibiotic sensitivity, we discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram-negative pathogens. We show that colistin-induced vancomycin tolerance persists only as long as the inducer is present and is accompanied by gene expression changes similar to those resulting from mutations that produce stably inherited reduction of vancomycin sensitivity (vancomycin-intermediate S. aureus [VISA] strains). As colistin-induced vancomycin tolerance is reversible, it may not be detected by routine sensitivity testing and may be responsible for treatment failure at vancomycin doses expected to be clinically effective based on such routine testing. Importance   Commonly, antibiotic resistance is associated with permanent genetic changes, such as point mutations or acquisition of resistance genes. We show that phenotypic resistance can arise where changes in gene expression result in tolerance to an antibiotic without any accompanying genetic changes. Specifically, methicillin-resistant Staphylococcus aureus (MRSA) behaves like vancomycin-intermediate S. aureus (VISA) upon exposure to colistin, which is currently used against infections by Gram-negative bacteria. Vancomycin is a last-resort drug for treatment of serious S. aureus infections, and VISA is associated with poor clinical prognosis. Phenotypic and reversible resistance will not be revealed by standard susceptibility testing and may underlie treatment failure. PMID:25587013

  2. Phosphatidylserine metabolism modification precedes manganese-induced apoptosis and phosphatidylserine exposure in PC12 cells.

    PubMed

    Ferrara, G; Gambelunghe, A; Mozzi, R; Marchetti, M C; Migliorati, G; Muzi, G; Buratta, S

    2013-12-01

    Long-term exposure to high manganese (Mn) levels can lead to Parkinson-like neurological disorders. Molecular mechanisms underlying Mn cytotoxicity have been not defined. It is known that Mn induces apoptosis in PC12 cells and that this involves the activation of some signal transduction pathways. Although the role of phospholipids in apoptosis and signal transduction is well-known, the membrane phospholipid component in Mn-related damage has not yet been investigated. Phosphatidylserine (PS) facilitates protein translocation from cytosol to plasma membrane and PS exposure on the cell surface allows macrophage recognition of apoptotic cells. This study investigates the effects of MnCl2 on PS metabolism in PC12 cells, relating them to those on cell apoptosis. Apoptosis induction decreased PS radioactivity of PC12 cells incubated with radioactive serine. MnCl2 reduced PS radioactivity even under conditions that did not affect cell viability or PS exposure, suggesting that the effects on PS metabolism may represent an early event in cell apoptosis. Thus the latter conditions that also induced a greater PS decarboxylation were utilized for further investigating on the effects on PS synthesis, by measuring the activity and expression of PS-synthesizing enzymes, in cell lysates and in total cellular membranes (TM). Compared with corresponding controls, enzyme activity of MnCl2-treated cells was lower in cell lysates and greater in TM. Evaluating the expression of two isoforms of PS-synthesizing enzyme (PSS), PSSII was increased both in cell lysate and TM, while PSSI was unchanged. MnCl2 addition to control cell lysate reduced enzyme activity. These results suggest Mn plays a dual role on PS synthesis. Once inside the cell, Mn inhibits the enzyme/s, thus accounting for reduced PS synthesis in lysates and intact cells. On the other hand, it increases PSSII expression in cell membranes. The possibility that this occurs to counteract the direct effects of Mn ions on enzyme

  3. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice

    SciTech Connect

    Arteel, Gavin E. Guo, Luping; Schlierf, Thomas; Beier, Juliane I.; Kaiser, J. Phillip; Chen, Theresa S.; Liu, Marsha; Conklin, Daniel J.; Miller, Heather L.; Montfort, Claudia von; States, J. Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  4. Exposure to TiO2 Nanoparticles Induces Immunological Dysfunction in Mouse Testitis.

    PubMed

    Hong, Fashui; Wang, Yajing; Zhou, Yingjun; Zhang, Qi; Ge, Yushuang; Chen, Ming; Hong, Jie; Wang, Ling

    2016-01-13

    Although TiO2 nanoparticles (NPs) as endocrine disruptors have been demonstrated to be able to cross the blood-testis barriers and induce reproductive toxicity in male animals, whether the reproductive toxicity of male animals due to exposure to endocrine disruptor TiO2 NPs is related to immunological dysfunction in the testis remains not well understood. This study determined whether the reproductive toxicity and immunological dysfunction induced by exposure to TiO2 NPs is associated with activation or inhibition of TAM/TLR-mediated signal pathway in mouse testis. The results showed that male mice exhibited significant reduction of fertility, infiltration of inflammatory cells, rarefaction, apoptosis, and/or necrosis of spermatogenic cells and Sertoli cells due to TiO2 NPs. Furthermore, these were associated with decreased expression of Tyro3 (-18.16 to -66.6%), Axl (-14.7 to -57.99%), Mer (-7.98 to -72.62%), and IκB (-11.25 to -63.16%), suppression of cytokine signaling (SOCS) 1 (-21.99 to -73.8%) and SOCS3 (-8.11 to -34.86%), and increased expression of Toll-like receptor (TLR)-3 (21.4-156.03%), TLR-4 (37.0-109.87%), nuclear factor-κB (14.75-69.34%), interleukin (IL)-lβ (46.15-123.08%), IL-6 (2.54-81.98%), tumor necrosis factor-α (6.95-88.39%), interferon (IFN)-α (2.54-37.25%), and IFN-β (10.19-80.56%), which are involved in the immune environment in the testis. The findings showed that reproductive toxicity of male mice induced by exposure to endocrine disruptor TiO2 NPs may be associated with biomarkers of impairment of immune environment or dysfunction of TAM/TLR3-mediated signal pathway in mouse testitis. Therefore, the potential risks to reproductive health should be attended, especially in those who are occupationally exposed to TiO2 NPs.

  5. Chemiexcitation of Melanin Derivatives Induces DNA Photoproducts Long after UV Exposure

    PubMed Central

    Premi, Sanjay; Wallisch, Silvia; Mano, Camila M.; Weiner, Adam B.; Bacchiocchi, Antonella; Wakamatsu, Kazumasa; Bechara, Etelvino J. H.; Halaban, Ruth; Douki, Thierry; Brash, Douglas E.

    2015-01-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPD), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Here we show that in melanocytes, CPD are generated for >3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These “dark CPD” constitute the majority of CPD and include the cytosine-containing CPD that initiate UV-signature C→T mutations. Dark CPD arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but that induces CPD by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically-generated excited electronic states are relevant to mammalian biology. PMID:25700512

  6. Left ventricular dysfunction induced by cold exposure in patients with systemic sclerosis

    SciTech Connect

    Ellis, W.W.; Baer, A.N.; Robertson, R.M.; Pincus, T.; Kronenberg, M.W.

    1986-03-01

    Raynaud's phenomenon and cardiac abnormalities are frequent in patients with systemic sclerosis. Radionuclide ventriculograms were obtained in 16 patients with Raynaud's phenomenon and systemic sclerosis or the related CREST syndrome and in 11 normal volunteers in order to evaluate changes in left ventricular function that might be induced by exposure to cold. Left ventricular regional wall motion abnormalities developed in nine of 16 patients during cooling compared with only one of 11 control subjects, despite a comparable rise in mean arterial pressure (p less than 0.02). The abnormalities occurred in seven of 11 patients with systemic sclerosis, one of four with CREST syndrome, and one with Raynaud's disease. To test the potential protective effect of nifedipine, radionuclide ventriculograms were then obtained during cooling after sublingual nifedipine (20 mg). Only five of 13 patients had wall motion abnormalities, and the severity of the abnormalities was significantly less than during the first cooling period (p = 0.03). Five of eight patients who had cold-induced wall motion abnormalities during the first cooling period had none after nifedipine, whereas two other patients demonstrated small abnormalities only during the second cooling period after treatment with nifedipine. It is concluded that cold induces segmental myocardial dysfunction in patients with systemic sclerosis and that nifedipine may blunt the severity of this abnormal response.

  7. MALDI imaging delineates hippocampal glycosphingolipid changes associated with neurotoxin induced proteopathy following neonatal BMAA exposure.

    PubMed

    Karlsson, Oskar; Michno, Wojciech; Ransome, Yusuf; Hanrieder, Jörg

    2016-12-09

    The environmental toxin β-N-methylamino-L-alanine (BMAA) has been proposed to contribute to neurodegenerative diseases. We have previously shown that neonatal exposure to BMAA results in dose-dependent cognitive impairments, proteomic alterations and progressive neurodegeneration in the hippocampus of adult rats. A high BMAA dose (460mg/kg) also induced intracellular fibril formation, increased protein ubiquitination and enrichment of proteins important for lipid transport and metabolism. The aim of this study was therefore to elucidate the role of neuronal lipids in BMAA-induced neurodegeneration. By using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we characterized the spatial lipid profile in the hippocampus of six month-old rats that were treated neonatally (postnatal days 9-10) with 460mg/kg BMAA. Multivariate statistical analysis revealed long-term changes in distinct ganglioside species (GM, GD, GT) in the dentate gyrus. These changes could be a consequence of direct effects on ganglioside biosynthesis through the b-series (GM3-GD3-GD2-GD1b-GT1b) and may be linked to astrogliosis. Complementary immunohistochemistry experiments towards GFAP and S100β further verified the role of increased astrocyte activity in BMAA-induced brain damage. This highlights the potential of imaging MS for probing chemical changes associated with neuropathological mechanisms in situ. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.

  8. Neural Cell Apoptosis Induced by Microwave Exposure Through Mitochondria-dependent Caspase-3 Pathway

    PubMed Central

    Zuo, Hongyan; Lin, Tao; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Gao, Yabing; Xu, Xinping; Li, Yang; Wang, Shaoxia; Zhao, Li; Wang, Lifeng; Zhou, Hongmei

    2014-01-01

    To determine whether microwave (MW) radiation induces neural cell apoptosis, differentiated PC12 cells and Wistar rats were exposed to 2.856GHz for 5min and 15min, respectively, at an average power density of 30 mW/cm2. JC-1 and TUNEL staining detected significant apoptotic events, such as the loss of mitochondria membrane potential and DNA fragmentation, respectively. Transmission electron microscopy and Hoechst staining were used to observe chromatin ultrastructure and apoptotic body formation. Annexin V-FITC/PI double staining was used to quantify the level of apoptosis. The expressions of Bax, Bcl-2, cytochrome c, cleaved caspase-3 and PARP were examined by immunoblotting or immunocytochemistry. Caspase-3 activity was measured using an enzyme-linked immunosorbent assay. The results showed chromatin condensation and apoptotic body formation in neural cells 6h after microwave exposure. Moreover, the mitochondria membrane potential decreased, DNA fragmentation increased, leading to an increase in the apoptotic cell percentage. Furthermore, the ratio of Bax/Bcl-2, expression of cytochrome c, cleaved caspase-3 and PARP all increased. In conclusion, microwave radiation induced neural cell apoptosis via the classical mitochondria-dependent caspase-3 pathway. This study may provide the experimental basis for further investigation of the mechanism of the neurological effects induced by microwave radiation. PMID:24688304

  9. Protective effects of selenium on mercury induced immunotoxic effects in mice by way of concurrent drinking water exposure.

    PubMed

    Li, Xuan; Yin, Daqiang; Li, Jiang; Wang, Rui

    2014-07-01

    Selenium (Se) has been recognized as one key to understanding mercury (Hg) exposure risks. To explore the effects of Se on Hg-induced immunotoxicity, female Balb/c mice were exposed to HgCl2- or MeHgCl-contaminated drinking water (0.001, 0.01, and 0.1 mM as Hg) with coexisting Na2SeO3 at different Se/Hg molar ratios (0:1, 1/3:1, 1:1 and 3:1). The potential immunotoxicity induced by Na2SeO3 exposure alone (by way of drinking water) was also determined within a wide range of concentrations. After 14 days' exposure, the effects of Hg or Se on the immune system of Balb/c mice were investigated by determining the proliferation of T and B lymphocytes and the activity of natural killer cells. Hg exposure alone induced a dose-dependent suppression effect, whereas Se provided promotion effects at low exposure level (<0.01 mM) and inhibition effects at high exposure level (>0.03 mM). Under Hg and Se coexposure condition, the effects on immunotoxicity depended on the Hg species, Se/Hg ratio, and exposure concentration. At low Hg concentration (0.001 mM), greater Se ingestion exhibited stronger protective effects on Hg-induced suppression effect mainly by way of decreasing Hg concentrations in target organs. At greater Hg concentration (0.01 and 0.1 mM), immunotoxicity induced by Se (>0.03 mM) became evident, and the protective effects appeared more significant at an Se/Hg molar ratio of 1:1. The complex antagonistic effects between Se and Hg suggested that both Se/Hg molar ratio and concentration should be considered when evaluating the potential health risk of Hg-contaminated biota.

  10. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    PubMed

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases.

  11. Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity.

    PubMed

    Manchandani, Pooja; Zhou, Jian; Babic, Jessica T; Ledesma, Kimberly R; Truong, Luan D; Tam, Vincent H

    2017-04-01

    Despite dose-limiting nephrotoxic potentials, polymyxin B has reemerged as the last line of therapy against multidrug-resistant Gram-negative bacterial infections. However, the handling of polymyxin B by the kidneys is still not thoroughly understood. The objectives of this study were to evaluate the impact of renal polymyxin B exposure on nephrotoxicity and to explore the role of megalin in renal drug accumulation. Sprague-Dawley rats (225 to 250 g) were divided into three dosing groups, and polymyxin B was administered (5 mg/kg, 10 mg/kg, and 20 mg/kg) subcutaneously once daily. The onset of nephrotoxicity over 7 days and renal drug concentrations 24 h after the first dose were assessed. The effects of sodium maleate (400 mg/kg intraperitoneally) on megalin homeostasis were evaluated by determining the urinary megalin concentration and electron microscopic study of renal tissue. The serum/renal pharmacokinetics of polymyxin B were assessed in megalin-shedding rats. The onset of nephrotoxicity was correlated with the daily dose of polymyxin B. Renal polymyxin B concentrations were found to be 3.6 ± 0.4 μg/g, 9.9 ± 1.5 μg/g, and 21.7 ± 4.8 μg/g in the 5-mg/kg, 10-mg/kg, and 20-mg/kg dosing groups, respectively. In megalin-shedding rats, the serum pharmacokinetics of polymyxin B remained unchanged, but the renal exposure was attenuated by 40% compared to that of control rats. The onset of polymyxin B-induced nephrotoxicity is correlated with the renal drug exposure. In addition, megalin appears to play a pivotal role in the renal accumulation of polymyxin B, which might contribute to nephrotoxicity.

  12. Perinatal Nicotine Exposure Induces Myogenic Differentiation, But Not Epithelial–Mesenchymal Transition in Rat Offspring Lung

    PubMed Central

    Sakurai, Reiko; Liu, Jie; Gong, Ming; Bo, Ji; Rehan, Virender K.

    2016-01-01

    Summary Objective Perinatal nicotine exposure alters offspring lung structure and function; however, the underlying mechanisms remain incompletely understood. Whether epithelial– mesenchymal transition (EMT), a known contributor to pulmonary pathology, occurs following moderate perinatal nicotine exposure is not known. Methods Pregnant, pair-fed Sprague Dawley rat dams received either placebo (diluent) or nicotine [1 mg/kg, subcutaneously] once daily from embryonic day (e) 6 to postnatal day (PND) 21. Generation 1 (F1) and 3 (F3) offspring lungs were isolated at PND 21, and using Western analysis, q-RT-PCR and immunohistochemistry examined for evidence of EMT. To gain further supportive evidence for nicotine-induced EMT, embryonic day 19 primary rat lung alveolar type II (ATII) cells were cultured and treated with nicotine for 24 hr. Results Protein levels of α-smooth muscle actin, fibronectin, and calponin (myogenic differentiation markers) increased significantly. However, surfactant proteins B and C, and cholinephosphate cytidylyltransferase- α (epithelial cell markers), as well as the typical markers of EMT, E-cadherin, N-cadherin, and fibroblast specific protein (FSP)-1, in both F1 and F3 generation lungs, showed no significant change between the nicotine exposed and control dams. Immunostaining of lung sections and data from in vitro treated ATII cells strongly supported the Western data. Conclusions Enhanced myogenic molecular profile, without evidence of EMT, as evidenced by the absence of the loss of E-cadherin or gains in N-cadherin and FSP-1, suggest that perinatal nicotine exposure does not result in EMT, but it leads to myogenesis, which predominantly accounts for the lung phenotype seen in perinatally nicotine exposed rat offspring. PMID:27183179

  13. Polychlorinated-biphenyl-induced oxidative stress and cytotoxicity can be mitigated by antioxidants after exposure.

    PubMed

    Zhu, Yueming; Kalen, Amanda L; Li, Ling; Lehmler, Hans-J; Robertson, Larry W; Goswami, Prabhat C; Spitz, Douglas R; Aykin-Burns, Nukhet

    2009-12-15

    PCBs and PCB metabolites have been suggested to cause cytotoxicity by inducing oxidative stress, but the effectiveness of antioxidant intervention after exposure has not been established. Exponentially growing MCF-10A human breast and RWPE-1 human prostate epithelial cells continuously exposed for 5 days to 3 microM PCBs [Aroclor 1254 (Aroclor), PCB153, and the 2-(4-chlorophenyl)-1,4-benzoquinone metabolite of PCB3 (4ClBQ)] were found to exhibit growth inhibition and clonogenic cell killing, with 4ClBQ having the most pronounced effects. These PCBs were also found to increase steady-state levels of intracellular O(2)(*-) and H(2)O(2) (as determined by dihydroethidium, MitoSOX red, and 5-(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate oxidation). These PCBs also caused 1.5- to 5.0-fold increases in MnSOD activity in MCF-10A cells and 2.5- to 5-fold increases in CuZnSOD activity in RWPE-1 cells. Measurement of MitoSOX red oxidation with confocal microscopy coupled with colocalization of MitoTracker green in MCF-10A and RWPE-1 cells supported the hypothesis that PCBs caused increased steady-state levels of O(2)(*-) in mitochondria. Finally, treatment with either N-acetylcysteine (NAC) or the combination of polyethylene glycol (PEG)-conjugated CuZnSOD and PEG-catalase added 1 h after PCBs significantly protected these cells from PCB toxicity. These results support the hypothesis that exposure of exponentially growing human breast and prostate epithelial cells to PCBs causes increased steady-state levels of intracellular O(2)(*-) and H(2)O(2), induction of MnSOD or CuZnSOD activity, and clonogenic cell killing that could be inhibited by a clinically relevant thiol antioxidant, NAC, as well as by catalase and superoxide dismutase after PCB exposure.

  14. Lanthanum Affects Bell Pepper Seedling Quality Depending on the Genotype and Time of Exposure by Differentially Modifying Plant Height, Stem Diameter and Concentrations of Chlorophylls, Sugars, Amino Acids, and Proteins.

    PubMed

    García-Jiménez, Atonaltzin; Gómez-Merino, Fernando C; Tejeda-Sartorius, Olga; Trejo-Téllez, Libia I

    2017-01-01

    Lanthanum (La) is considered a beneficial element, capable of inducing hormesis. Hormesis is a dose-response relationship phenomenon characterized by low-dose stimulation and high-dose inhibition. Herein we tested the effect of 0 and 10 μM La on growth and biomolecule concentrations of seedlings of four sweet bell pepper (Capsicum annuum L.) varieties, namely Sven, Sympathy, Yolo Wonder, and Zidenka. Seedling evaluations were performed 15 and 30 days after treatment applications (dat) under hydroponic greenhouse conditions. Seedling height was significantly increased by La, growing 20% taller in Yolo Wonder plants, in comparison to the control. Similarly, La significantly enhanced shoot diameter, with increases of 9 and 9.8% in measurements performed 15 and 30 dat, respectively, as compared to the control. Likewise, La-treated seedlings had a higher number of flower buds than the control. An increase in the number of leaves because of La application was observed in Yolo Wonder seedlings, both 15 and 30 dat, while leaf area was augmented in this variety only 30 dat. Nevertheless, La did not affect dry biomass accumulation. La effects on biomolecule concentration were differential over time. In all varieties, La stimulated the biosynthesis of chlorophyll a, b and total 15 dat, though 30 dat only the varieties Sympathy and Yolo Wonder showed enhanced concentrations of these molecules because of La. Total soluble sugars increased in La-treated seedlings 30 dat. Interestingly, while most varieties exposed to La showed a reduction in amino acid concentration 15 dat, the opposite trend was observed 30 dat. Importantly, in all varieties evaluated, La stimulated soluble protein concentration 30 dat. It is important to note that while chlorophyll concentrations increased in all varieties exposed to La, both 15 and 30 dat, those of soluble sugars and proteins consistently increased only 30 dat, but not 15 dat. Our results confirm that La may improve seedling quality by

  15. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

    PubMed

    Xu, Shangcheng; Zhou, Zhou; Zhang, Lei; Yu, Zhengping; Zhang, Wei; Wang, Yuan; Wang, Xubu; Li, Maoquan; Chen, Yang; Chen, Chunhai; He, Mindi; Zhang, Guangbin; Zhong, Min

    2010-01-22

    Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.

  16. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    PubMed Central

    Nagasawa, Kazumichi; Tanizaki, Yuta; Okui, Takehito; Watarai, Atsuko; Ueda, Shinobu; Kato, Takashi

    2013-01-01

    Summary The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control) and a low environmental temperature (5°C, cold exposure). Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism. PMID:24167716

  17. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice.

    PubMed

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-Ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.

  18. Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats.

    PubMed

    Xing, Yingshou; Qin, Yi; Jing, Wei; Zhang, Yunxiang; Wang, Yanran; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-02-01

    Patients with temporal lobe epilepsy (TLE) often display cognitive deficits. However, current epilepsy therapeutic interventions mainly aim at how to reduce the frequency and degree of epileptic seizures. Recovery of cognitive impairment is not attended enough, resulting in the lack of effective approaches in this respect. In the pilocarpine-induced temporal lobe epilepsy rat model, memory impairment has been classically reported. Here we evaluated spatial cognition changes at different epileptogenesis stages in rats of this model and explored the effects of long-term Mozart music exposure on the recovery of cognitive ability. Our results showed that pilocarpine rats suffered persisting cognitive impairment during epileptogenesis. Interestingly, we found that Mozart music exposure can significantly enhance cognitive ability in epileptic rats, and music intervention may be more effective for improving cognitive function during the early stages after Status epilepticus. These findings strongly suggest that Mozart music may help to promote the recovery of cognitive damage due to seizure activities, which provides a novel intervention strategy to diminish cognitive deficits in TLE patients.

  19. Chronic nicotine exposure exacerbates transient focal cerebral ischemia-induced brain injury.

    PubMed

    Li, Chun; Sun, Hong; Arrick, Denise M; Mayhan, William G

    2016-02-01

    Tobacco smoking is a risk factor contributing to the development and progression of ischemic stroke. Among many chemicals in tobacco, nicotine may be a key contributor. We hypothesized that nicotine alters the balance between oxidant and antioxidant networks leading to an increase in brain injury following transient focal cerebral ischemia. Male Sprague-Dawley were treated with nicotine (2 or 4 mg·kg(-1)·day(-1)) for 4 wk via an implanted subcutaneous osmotic minipump and subjected to a 2-h middle cerebral artery occlusion (MCAO). Infarct size and neurological deficits were evaluated at 24 h of reperfusion. Superoxide levels were determined by lucigenin-enhanced chemiluminescence. Expression of oxidant and antioxidant proteins was measured using Western blot analysis. We found that chronic nicotine exposure significantly increased infarct size and worsened neurological deficits. In addition, nicotine significantly elevated superoxide levels of cerebral cortex under basal conditions. Transient focal cerebral ischemia produced an increase in superoxide levels of cerebral cortex in control group, but no further increase was found in the nicotine group. Furthermore, chronic nicotine exposure did not alter protein expression of NADPH oxidase but significantly decreased MnSOD and uncoupling protein-2 (UCP-2) in the cerebral cortex and cerebral arteries. Our findings suggest that nicotine-induced exacerbation in brain damage following transient focal cerebral ischemia may be related to a preexisting oxidative stress via decreasing of MnSOD and UCP-2.

  20. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    SciTech Connect

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon; Jung, Kwang Hwa; Kim, Jeong Kyu; Bae, Hyun Jin; Xie Hongjian; Ryu, Jae Chun; Ahn, Young Min; Min, Jin-Hye; Park, Won Sang; Lee, Jung Young; Rhee, Gyu Seek; Nam, Suk Woo

    2009-05-15

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.

  1. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants

    PubMed Central

    van Eeden, Stephan F.

    2013-01-01

    Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells) and systemic (bone marrow and vascular system, controlled predominantly by macrophages) inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants. PMID:24058272

  2. Alterations in the Rat Serum Proteome Induced by Prepubertal Exposure to Bisphenol A and Genistein

    PubMed Central

    2015-01-01

    Humans are exposed to an array of chemicals via the food, drink and air, including a significant number that can mimic endogenous hormones. One such chemical is Bisphenol A (BPA), a synthetic chemical that has been shown to cause developmental alterations and to predispose for mammary cancer in rodent models. In contrast, the phytochemical genistein has been reported to suppress chemically induced mammary cancer in rodents, and Asians ingesting a diet high in soy containing genistein have lower incidence of breast and prostate cancers. In this study, we sought to: (1) identify protein biomarkers of susceptibility from blood sera of rats exposed prepubertally to BPA or genistein using Isobaric Tandem Mass Tags quantitative mass spectrometry (TMT-MS) combined with MudPIT technology and, (2) explore the relevance of these proteins to carcinogenesis. Prepubertal exposures to BPA and genistein resulted in altered expression of 63 and 28 proteins in rat sera at postnatal day (PND) 21, and of 9 and 18 proteins in sera at PND35, respectively. This study demonstrates the value of using quantitative proteomic techniques to explore the effect of chemical exposure on the rat serum proteome and its potential for unraveling cellular targets altered by BPA and genistein involved in carcinogenesis. PMID:24552547

  3. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice

    PubMed Central

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner. PMID:26869994

  4. Malathion exposure induces the endocrine disruption and growth retardation in the catfish, Clarias batrachus (Linn.).

    PubMed

    Lal, Bechan; Sarang, Mukesh Kumar; Kumar, Pankaj

    2013-01-15

    Many hormones are known for their role in the regulation of metabolic activities and somatic growth in fishes. The present study deals with the effects of malathion (an organophosphorous pesticide) on the levels of metabolic hormones that are responsible for promotion of somatic and ovarian growth of the freshwater catfish, Clarias batrachus. Malathion treatment for thirty days drastically reduced the food intake and body weight of fish. These fish also exhibited a great avoidance to food. Exposure of catfish to malathion reduced the levels of thyroxine (T(4)), triiodothyronine (T(3)), growth hormone (GH), insulin like growth factor-I (IGF-I), testosterone (T) and estradiol-17β (E(2)) in a dose dependent manner during all the studied reproductive phases, in general, except that malathion increased the level of GH during the quiescence phase. Significant reduction in muscle and hepatic protein content also occurred in the malathion-treated fish. Malathion exposure induced lipolysis too in the liver and muscle. The results thus support that malathion treatment disrupts the endocrine functions and the olfactory sensation responsible for food intake and gustatory feeding behavior, which ultimately leads to retardation of fish growth.

  5. Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters.

    PubMed

    Bambini-Junior, Victorio; Rodrigues, Leticia; Behr, Guilherme Antônio; Moreira, José Cláudio Fonseca; Riesgo, Rudimar; Gottfried, Carmem

    2011-08-23

    Autism is characterized by behavioral impairments in three main domains: social interaction; language, communication and imaginative play; and range of interests and activities. This syndrome has attracted social attention by its high prevalence. The animal model induced by prenatal exposure to valproic acid (VPA) has been proposed to study autism. Several characteristics of behavioral abnormalities found in the VPA rats, such as repetitive/stereotypic-like activity and deficit in social interaction have been correlated with autism. Features like flexibility to change strategy, social memory and metabolic status of the induced rats have not been examined. Thus, the main aim of this work was to investigate additional behavioral rodent similarities with autism, as well as, liver redox parameters after prenatal exposure to VPA. Young rats from the VPA group presented aberrant approach to a stranger rat, decreased conditioned place preference to conspecifics, normal spatial learning and a lack of flexibility to change their strategy. As adults, they presented inappropriate social approach to a stranger rat, decreased preference for social novelty, apparently normal social recognition and no spatial learning deficits. Examination of the liver from the VPA group presented significantly increased (12%) levels of catalase (CAT) activity, no alteration in superoxide dismutase (SOD) activity and a decrease in the SOD/CAT ratio. TBARS, sulfhydril and carbonyl contents, and serum levels of aminotransferases remained unchanged. In summary, rats prenatally exposed to VPA presented decreased flexibility to change strategy and social impairments similar to the autism symptoms, contributing to the understanding of neurodevelopmental symptoms and oxidative imbalance associated to the autism spectrum disorder.

  6. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure.

  7. Exposure to Hyperbaric Oxygen Intensified Vancomycin-Induced Nephrotoxicity in Rats.

    PubMed

    Sabler, Itay M; Berkovitch, Matitiahu; Sandbank, Judith; Kozer, Eran; Dagan, Zahi; Goldman, Michael; Bahat, Hilla; Stav, Kobi; Zisman, Amnon; Klin, Baruch; Abu-Kishk, Ibrahim

    2016-01-01

    It has been suggested that oxidative stress is a potential mechanism for vancomycin-induced nephrotoxicity and hyperbaric oxygen therapy (HBO) has been shown to be effective in treating renal toxicity that has been pharmacologically induced in animal models. The aim of this study was to investigate the effect of HBO therapy on vancomycin-induced nephrotoxicity in rats. The study group comprised 36 Sprague Dawley male rats. We treated 30 with 500 mg/kg of intraperitoneal vancomycin once a day for 7 days. Half of these rats received a daily 1-hour treatment with HBO at 2 Atmospheres (ATM) on the same 7 days and formed the HBO+ group. The other 15 subjects received no HBO treatment (HBO- group). The remaining six rats served as the control group, three received HBO treatments alone and no treatment was administered to the other three rats. Laboratory results were obtained on day 8 and the intervention and control groups were compared. Rats in the HBO+ group gained less weight than the HBO- group (11.6 grams vs 22.6 grams; P = 0,008) and had significantly higher serum blood urea nitrogen (99.6 vs 52.6 mg/dL; P<0.001), serum creatinine (0.42 vs 0.16 mg/dL; P = 0.001) and magnesium (3.6 vs 3.1 mg/dL; P = 0.014). The vancomycin blood levels were also higher in the HBO+ group (27.8 vs 6.7 μg/mL; P = 0.078). There were no pathological kidney changes in the control group. All the kidneys from the treated groups (vancomycin +HBO and vancomycin HBO-) showed moderate to severe histopathological changes with no statistical significance between them. This study demonstrated that exposure to hyperbaric oxygen intensified vancomycin-induced nephrotoxicity in rats.

  8. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  9. Exposure to Hyperbaric Oxygen Intensified Vancomycin-Induced Nephrotoxicity in Rats

    PubMed Central

    Sandbank, Judith; Kozer, Eran; Dagan, Zahi; Goldman, Michael; Bahat, Hilla; Stav, Kobi; Zisman, Amnon; Klin, Baruch; Abu-Kishk, Ibrahim

    2016-01-01

    It has been suggested that oxidative stress is a potential mechanism for vancomycin-induced nephrotoxicity and hyperbaric oxygen therapy (HBO) has been shown to be effective in treating renal toxicity that has been pharmacologically induced in animal models. The aim of this study was to investigate the effect of HBO therapy on vancomycin-induced nephrotoxicity in rats. The study group comprised 36 Sprague Dawley male rats. We treated 30 with 500 mg/kg of intraperitoneal vancomycin once a day for 7 days. Half of these rats received a daily 1-hour treatment with HBO at 2 Atmospheres (ATM) on the same 7 days and formed the HBO+ group. The other 15 subjects received no HBO treatment (HBO- group). The remaining six rats served as the control group, three received HBO treatments alone and no treatment was administered to the other three rats. Laboratory results were obtained on day 8 and the intervention and control groups were compared. Rats in the HBO+ group gained less weight than the HBO- group (11.6 grams vs 22.6 grams; P = 0,008) and had significantly higher serum blood urea nitrogen (99.6 vs 52.6 mg/dL; P<0.001), serum creatinine (0.42 vs 0.16 mg/dL; P = 0.001) and magnesium (3.6 vs 3.1mg/dL; P = 0.014). The vancomycin blood levels were also higher in the HBO+ group (27.8 vs 6.7 μg/mL; P = 0.078). There were no pathological kidney changes in the control group. All the kidneys from the treated groups (vancomycin +HBO and vancomycin HBO-) showed moderate to severe histopathological changes with no statistical significance between them. This study demonstrated that exposure to hyperbaric oxygen intensified vancomycin-induced nephrotoxicity in rats. PMID:27092557

  10. Acrylonitrile potentiates hearing loss and cochlear damage induced by moderate noise exposure in rats

    SciTech Connect

    Pouyatos, BenoIt . E-mail: benoit.pouyatos@med.va.gov; Gearhart, Caroline A.; Fechter, Laurence D.

    2005-04-01

    The diversity of chemical and drugs that can potentiate noise-induced hearing loss (NIHL) has impeded efforts to predict such interactions. We have hypothesized that chemical contaminants that disrupt intrinsic antioxidant defenses hold significant risk for potentiating NIHL. If this is true, then acrylonitrile (ACN) would be expected to potentiate NIHL. ACN, one of the 50 most commonly used chemicals in the United States, is metabolized via two pathways that are likely to disrupt intrinsic reactive oxygen species (ROS) buffering systems: (1) it conjugates glutathione, depleting this important antioxidant rapidly; (2) a second pathway involves the formation of cyanide, which can inhibit superoxide dismutase. We hypothesized that moderate noise exposure, that does not produce permanent hearing loss by itself, could initiate oxidative stress and that ACN could render the inner ear more sensitive to noise by disrupting intrinsic antioxidant defenses. Temporary and persistent effects of ACN alone (50 mg/kg, sc 5 days), noise alone (95 or 97 dB octave band noise, 4 h/day for 5 days), or ACN in combination with noise were determined using distortion product otoacoustic emissions (DPOAEs) and compound action potential (CAP) amplitudes. Histopathological damage to hair cells resulting from these treatments was also investigated using surface preparations of the organ of Corti. Individually, neither ACN nor noise exposures caused any permanent hearing or hair cell loss; only a reversible temporary threshold shift was measured in noise-exposed animals. However, when given in combination, ACN and noise induced permanent threshold shifts (13-16 dB between 7 and 40 kHz) and a decrease in DPOAE amplitudes (up to 25 dB at 19 kHz), as well as significant outer hair cell (OHC) loss (up to 20% in the first row between 13 and 47 kHz). This investigation demonstrates that ACN can potentiate NIHL at noise levels that are realistic in terms of human exposure, and that the OHCs are the

  11. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  12. Drug development and hormesis: changing conceptual understanding of the dose response creates new challenges and opportunities for more effective drugs.

    PubMed

    Calabrese, Edward J; Staudenmayer, John W; Stanek, Edward J

    2006-01-01

    This review proposes that the emerging acceptance of the hormetic dose-response model in toxicology and pharmacology has the potential to significantly change important aspects of drug development. Two situations where the hormesis concept may affect drug development are considered: one in which low-dose stimulation may represent an adverse/unwanted effect (eg, stimulation of tumor cell proliferation by antitumor drugs), the other in which low-dose stimulation defines the therapeutic zone (ie, a beneficial or intended effect; eg, cognition enhancement in Alzheimer's disease treatment). Examples are used to demonstrate that the hormetic dose-response model has implications for the definition of an ideal candidate for a therapeutic agent, as well as implications for study designs needed to assess the quantitative features of the dose-response relationship.

  13. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    SciTech Connect

    Qu, Wei Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  14. Long-term exposure to diesel exhaust enhances antigen-induced eosinophilic inflammation and epithelial damage in the murine airway.

    PubMed

    Ichinose, T; Takano, H; Miyabara, Y; Sagai, M

    1998-07-01

    The histopathologic changes in the murine airway induced by long-term exposure to diesel exhaust (DE), ovalbumin (OA), or both were investigated. The relationship between the histopathologic appearances in the airway and immunoglobulin production or local cytokine levels in the lungs was also studied. ICR mice were exposed to clean air or DE at a soot concentrations of 0.3, 1.0, or 3.0 mg/m3 for 34 weeks. Fifteen weeks after exposure to DE, mice were sensitized intraperitoneally with 10 micrograms of OA and challenged by an aerosol of 1% OA six times at 3-week intervals during the last 18 weeks of the exposure. DE exposure caused a dose-dependent increase of nonciliated cell proliferation and epithelial cell hypertrophy in the airway, but showed no effect on goblet cell proliferation in the bronchial epithelium and eosinophil recruitment in the submucosa of the airway. OA treatment induced very slight changes in goblet cell proliferation and eosinophil recruitment. The combination of OA and DE exposure produced dose-dependent increases of goblet cells and eosinophils, in addition to further increases of the typical changes induced by DE. OA treatment induced OA-specific IgG1 and IgE production in plasma, whereas the adjuvant effects of DE exposure on immunoglobulin production were not observed. Inhalation of DE led to increased levels of IL-5 protein in the lung at a soot concentration of 1.0 and 3.0 mg/m3 with OA, although these increases did not reach statistical significance. We conclude that the combination of antigen and chronic exposure to DE produces increased eosinophilic inflammation, and cell damage to the epithelium may depend on the degree of eosinophilic inflammation in the airway.

  15. PERM Hypothesis: The Fundamental Machinery Able to Elucidate the Role of Xenobiotics and Hormesis in Cell Survival and Homeostasis

    PubMed Central

    Chirumbolo, Salvatore; Bjørklund, Geir

    2017-01-01

    In this article the Proteasome, Endoplasmic Reticulum and Mitochondria (PERM) hypothesis is discussed. The complex machinery made by three homeostatic mechanisms involving the proteasome (P), endoplasmic reticulum (ER) and mitochondria (M) is addressed in order to elucidate the beneficial role of many xenobiotics, either trace metals or phytochemicals, which are spread in the human environment and in dietary habits, exerting their actions on the mechanisms underlying cell survival (apoptosis, cell cycle regulation, DNA repair and turnover, autophagy) and stress response. The “PERM hypothesis” suggests that xenobiotics can modulate this central signaling and the regulatory engine made fundamentally by the ER, mitochondria and proteasome, together with other ancillary components such as peroxisomes, by acting on the energetic balance, redox system and macromolecule turnover. In this context, reactive species and stressors are fundamentally signalling molecules that could act as negative-modulating signals if PERM-mediated control is offline, impaired or dysregulated, as occurs in metabolic syndrome, degenerative disorders, chronic inflammation and cancer. Calcium is an important oscillatory input of this regulation and, in this hypothesis, it might play a role in maintaining the correct rhythm of this PERM modulation, probably chaotic in its nature, and guiding cells to a more drastic decision, such as apoptosis. The commonest effort sustained by cells is to maintain their survival balance and the proterome has the fundamental task of supporting this mechanism. Mild stress is probably the main stimulus in this sense. Hormesis is therefore re-interpreted in the light of this hypothetical model and that experimental evidence arising from flavonoid and hormesis reasearch. PMID:28098843

  16. Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta ( = Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs.

    PubMed

    Leite, Germano L D; de Paulo, Paula D; Zanuncio, José C; Tavares, Wagner De S; Alvarenga, Anarelly C; Dourado, Luan R; Bispo, Edilson P R; Soares, Marcus A

    2017-01-02

    Selective agrochemicals including herbicides that do not affect non-target organisms such as natural enemies are important in the integrated pest management (IPM) programs. The aim of this study was to evaluate the herbicide toxicity, selectivity and hormesis of nicosulfuron, recommended for the corn Zea mays L. (Poaceae) crop, on 10 Trichogrammatidae (Hymenoptera) species. A female of each Trichogramma spp. or Trichogrammatoidea annulata De Santis, 1972 was individually placed in plastic test tubes (no choice) with a cardboard containing 45 flour moth Anagasta ( = Ephestia) kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs. Parasitism by these natural enemies was allowed for 48 h and the cardboards were sprayed with the herbicide nicosulfuron at 1.50 L.ha(-1), along with the control (only distilled water). Nicosulfuron reduced the emergence rate of Trichogramma bruni Nagaraja, 1983 females, but increased that of Trichogramma pretiosum Riley, 1879, Trichogramma acacioi Brun, Moraes and Smith, 1984 and T. annulata females. Conversely, this herbicide increased the emergence rate of Trichogramma brasiliensis Ashmead, 1904, T. bruni, Trichogramma galloi Zucchi, 1988 and Trichogramma soaresi Nagaraja, 1983 males and decreased those of T. acacioi, Trichogramma atopovilia Oatman and Platner, 1983 and T. pretiosum males. In addition, nicosulfuron reduced the sex ratio of T. galloi, Trichogramma bennetti Nagaraja and Nagarkatti, 1973 and T. pretiosum and increased that of T. acacioi, T. bruni, T. annulata, Trichogramma demoraesi Nagaraja, 1983, T. soaresi and T. brasiliensis. The herbicide nicosulfuron was "harmless" (class 1, <30% reduction) for females and the sex ratio of all Trichogrammatidae species based on the International Organization for Biological Control (IOBC) classification. The possible hormesis effect of nicosulfuron on Trichogrammatidae species and on the bacterium Wolbachia sp. (Rickettsiales: Rickettsiaceae) was also discussed.

  17. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction

    PubMed Central

    Zhang, Xiao-Yu; Ng, Tsz Kin; Brelén, Mårten Erik; Wu, Di; Wang, Jian Xiong; Chan, Kwok Ping; Yung, Jasmine Sum Yee; Cao, Di; Wang, Yumeng; Zhang, Shaodan; Chan, Sun On; Pang, Chi Pui

    2016-01-01

    Age-related macular degeneration (AMD), characterized by progressive degeneration of retinal pigment epithelium (RPE), is the major cause of irreversible blindness and visual impairment in elderly population. We previously established a RPE degeneration model using an acute high dose sodium iodate to induce oxidative stress. Here we report findings on a prolonged treatment of low doses of sodium iodate on human RPE cells (ARPE-19). RPE cells were treated continuously with low doses (2–10 mM) of sodium iodate for 5 days. Low doses (2–5 mM) of sodium iodate did not reduce RPE cell viability, which is contrasting to cell apoptosis in 10 mM treatment. These low doses are sufficient to retard RPE cell migration and reduced expression of cell junction protein ZO-1. Phagocytotic activity of RPE cells was attenuated by sodium iodate dose-dependently. Sodium iodate also increased expression of FGF-2, but suppressed expression of IL-8, PDGF, TIMP-2 and VEGF. Furthermore, HTRA1 and epithelial-to-mesenchymal transition marker proteins were downregulated, whereas PERK and LC3B-II proteins were upregulated after sodium iodate treatment. These results suggested that prolonged exposure to non-lethal doses of oxidative stress induces RPE cell dysfunctions that resemble conditions in AMD. This model can be used for future drug/treatment investigation on AMD. PMID:27849035

  18. Chronic Arsenic Exposure-Induced Oxidative Stress is Mediated by Decreased Mitochondrial Biogenesis in Rat Liver.

    PubMed

    Prakash, Chandra; Kumar, Vijay

    2016-09-01

    The present study was executed to study the effect of chronic arsenic exposure on generation of mitochondrial oxidative stress and biogenesis in rat liver. Chronic sodium arsenite treatment (25 ppm for 12 weeks) decreased mitochondrial complexes activity in rat liver. There was a decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rats that might be responsible for increased protein and lipid oxidation as observed in our study. The messenger RNA (mRNA) expression of mitochondrial and nuclear-encoded subunits of complexes I (ND1 and ND2) and IV (COX I and COX IV) was downregulated in arsenic-treated rats only. The protein and mRNA expression of MnSOD was reduced suggesting increased mitochondrial oxidative damage after arsenic treatment. There was activation of Bax and caspase-3 followed by release of cytochrome c from mitochondria suggesting induction of apoptotic pathway under oxidative stress. The entire phenomenon was associated with decrease in mitochondrial biogenesis as evident by decreased protein and mRNA expression of nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2), peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in arsenic-treated rat liver. The results of the present study indicate that arsenic-induced mitochondrial oxidative stress is associated with decreased mitochondrial biogenesis in rat liver that may present one of the mechanisms for arsenic-induced hepatotoxicity.

  19. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy.

    PubMed

    Shen, Yunyun; Xia, Ruohong; Jiang, Hengjun; Chen, Yanfeng; Hong, Ling; Yu, Yunxian; Xu, Zhengping; Zeng, Qunli

    2016-08-01

    As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.

  20. Phase-shift nano-emulsions induced cavitation and ablation during high intensity focused ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Qiao, Yangzi; Yin, Hui; Chang, Nan; Wan, Mingxi

    2017-03-01

    Phase-shift Nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The aim of this work was to provide spatial and temporal information on PSNE induced cavitation and ablation effects during pulsed high intensity focused ultrasound (HIFU) exposure. The PSNEs were composed of perfluorohaxane (PFH) and bovine serum albumin (BSA), and then uniformly distributed in a transparent polyacrylamide phantom. The Sonoluminescence (SL) method was employed to visualize the cavitation distribution and formation process of PSNEs induced cavitation. For the phantom which was used for ablation observation, heat sensitive BSA was added. When the temperature generated by ultrasound exposure was high enough to denature BSA, the transparent phantom would turn out white lesions. The shape of the lesion and the formation process were compared with those of cavitation. Each of the pulse contained 12 cycles for a duration of 10 µs. And the duty cycle changed from 1:10 to 1:40. The total "on" time of HIFU was 2s. PSNE can evidently accelerate cavitation emitting bright SL in pre-focal region. The cavitation was generated layer by layer towards the transducer. The formed bubble wall can block acoustic waves transmitting to the distal end. And the lesion appeared to be separated into two parts. One in pre-focal region stemmed from one point and grew quickly toward the transducer. The other in focal region was formed by merging some small white dots, and grew much slower. The influence of duty cycle has also been examined. The lower duty cycle with longer pulse-off time would generate more intense cavitation, however, smaller lesion. Bubble cloud gradually developed within phantom would greatly influence the cavitation and ablation

  1. Chronic Nerve Growth Factor Exposure Increases Apoptosis in a Model of In Vitro Induced Conjunctival Myofibroblasts

    PubMed Central

    Micera, Alessandra; Puxeddu, Ilaria; Balzamino, Bijorn Omar; Bonini, Stefano; Levi-Schaffer, Francesca

    2012-01-01

    In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB) migrate and differentiate into myofibroblasts (myoFB), contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF), often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkANGFR) and/or the pan-neurotrophin glycoprotein receptor (p75NTR). Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB) was developed and characterized for cell viability/proliferation as well as αSMA, p75NTR and trkANGFR expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75NTR/trkANGFR, αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75NTR, associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75NTR expressing myoFB, an effect counteracted by the specific trkANGFR and/or p75NTR inhibitors. Focused single p75NTR and double trkANGFR/p75NTR knocking-down experiments highlighted the role of p75NTR in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75NTR. The trkANGFR/p75NTR ratio in favor of p75NTR characterizes this process. Due to the lack of effective pharmacological agents for balanced

  2. Involvement of sodium in early phosphatidylserine exposure and phospholipid scrambling induced by P2X7 purinoceptor activation in thymocytes.

    PubMed

    Courageot, Marie-Pierre; Lépine, Sandrine; Hours, Michel; Giraud, Françoise; Sulpice, Jean-Claude

    2004-05-21

    Extracellular ATP (ATP(ec)), a possible effector in thymocyte selection, induces thymocyte death via purinoceptor activation. We show that ATP(ec) induced cell death by apoptosis, rather than lysis, and early phosphatidylserine (PS) exposure and phospholipid scrambling in a limited thymocyte population (35-40%). PS externalization resulted from the activation of the cationic channel P2X7 (formerly P2Z) receptor and was triggered in all thymocyte subsets although to different proportions in each one. Phospholipid movement was dependent on ATP(ec)-induced Ca(2+) and/or Na(+) influx. At physiological external Na(+) concentration, without external Ca(2+), PS was exposed in all ATP(ec)-responsive cells. In contrast, without external Na(+), physiological external Ca(2+) concentration promoted a submaximal response. Altogether these data show that Na(+) influx plays a major role in the rapid PS exposure induced by P2X7 receptor activation in thymocytes.

  3. Post effect of repetitive exposures to pressure nitrogen-induced narcosis on the dopaminergic activity at atmospheric pressure.

    PubMed

    Lavoute, C; Weiss, M; Sainty, J M; Risso, J J; Rostain, J C

    2008-01-01

    Nitrogen at pressure produces a neurological syndrome called nitrogen narcosis. Neurochemical experiments indicated that a single exposure to 3 MPa of nitrogen reduced the concentration of dopamine by 20% in the striatum, a structure involved in the control of extrapyramidal motor activity. This effect of nitrogen was explained by enhanced GABAergic neurotransmission through GABAA receptors and, to a lesser extent, by a decreased glutamatergic input to DA cells through NMDA receptors. The aim of this study was to study, under normobaric conditions, possible alterations of NMDA receptor activity in the substantia nigra pars compacta (SNc) induced by repetitive exposures to nitrogen pressure. Under general anesthesia, male Sprague-Dawley rats were implanted in the striatum with multifiber carbon dopamine-sensitive electrodes and in the SNc with guide cannulae for drug injections. After recovery from surgery, the striatal dopamine level was recorded by voltammetry in freely-moving rats, in normobaric conditions, before and after 5 repetitive exposures to 1MPa of nitrogen (threshold of nitrogen narcosis occurrence in rat). The effect of NMDA receptor activity on DA concentration was investigated using agonist (NMDA) and specific antagonist (AP7) SNc administration. Following repetitive nitrogen exposures, the ability of NMDA to elevate DA concentrations was enhanced. In contrast, after nitrogen exposure AP7 produced a paradoxical increase in DA concentration compared to its inhibitory effect before any exposure. Similar responses were obtained after a single exposure to 3MPa nitrogen. Thus, repetitive exposures to nitrogen narcosis produced a sensitization of postsynaptic NMDA receptors on DA cells, related to a decreased glutamatergic input in SNc. Consequently, successive nitrogen narcosis exposures disrupted ion-channel receptor activity revealing a persistent nitrogen-induced neurochemical change underlying the pathologic process.

  4. Sequential steps underlying neuronal plasticity induced by a transient exposure to gabazine.

    PubMed

    Pegoraro, Silvia; Broccard, Frédéric D; Ruaro, Maria Elisabetta; Bianchini, Daniele; Avossa, Daniela; Pastore, Giada; Bisson, Giacomo; Altafini, Claudio; Torre, Vincent

    2010-03-01

    Periods of intense electrical activity can initiate neuronal plasticity leading to long lasting changes of network properties. By combining multielectrode extracellular recordings with DNA microarrays, we have investigated in rat hippocampal cultures the temporal sequence of events of neuronal plasticity triggered by a transient exposure to the GABA(A) receptor antagonist gabazine (GabT). GabT induced a synchronous bursting pattern of activity. The analysis of electrical activity identified three main phases during neuronal plasticity induced by GabT: (i) immediately after termination of GabT, an early synchronization (E-Sync) of the spontaneous electrical activity appears that progressively decay after 3-6 h. E-Sync is abolished by inhibitors of the ERK1/2 pathway but not by inhibitors of gene transcription; (ii) the evoked response (induced by a single pulse of extracellular electrical stimulation) was maximally potentiated 3-10 h after GabT (M-LTP); and (iii) at 24 h the spontaneous electrical activity became more synchronous (L-Sync). The genome-wide analysis identified three clusters of genes: (i) an early rise of transcription factors (Cluster 1), primarily composed by members of the EGR and Nr4a families, maximally up-regulated 1.5 h after GabT; (ii) a successive up-regulation of some hundred genes, many of which known to be involved in LTP (Cluster 2), 3 h after GabT likely underlying M-LTP. Moreover, in Cluster 2 several genes coding for K(+) channels are down-regulated at 24 h. (iii) Genes in Cluster 3 are up-regulated at 24 h and are involved in cellular homeostasis. This approach allows relating different steps of neuronal plasticity to specific transcriptional profiles.

  5. Neoplastic alterations induced in mammalian skin following mancozeb exposure using in vivo and in vitro models.

    PubMed

    Tyagi, Shilpa; George, Jasmine; Singh, Richa; Bhui, Kulpreet; Shukla, Yogeshwer

    2011-03-01

    Mancozeb, ethylene(bis)dithiocarbamate fungicides, has been well documented in the literature as a multipotent carcinogen, but the underlying mechanism remains unrevealed. Thus, mancozeb has been selected in this study with the objective to decipher the molecular mechanism that culminates in carcinogenesis. We employed two-dimensional gel electrophoresis and mass spectrometry to generate a comparative proteome profile of control and mancozeb (200 mg/kg body weight) exposed mouse skin. Although many differentially expressed proteins were found, among them, two significantly upregulated proteins, namely, S100A6 (Calcyclin) and S100A9 (Calgranulin-B), are known markers of keratinocyte differentiation and proliferation, which suggested their role in mancozeb-induced neoplastic alterations. Therefore, we verified these alterations in the human system by using HaCaT cells as an in vitro model for human skin keratinocyte carcinogenesis. Upregulation of these two proteins upon mancozeb (0.5 μg/mL) exposure in HaCaT cells indicated its neoplastic potential in human skin also. This potential was confirmed by increase in number of colonies in colony formation and anchorage-independent growth assays. Modulation of S100A6/S100A9 targets, elevated phosphorylation of extracellular signal regulated kinase (ERK1/2), Elk1, nuclear factor- kappa B and cell division cycle 25 C phosphatase, and cyclin D1 and cyclooxygenase-2 upregulation was seen. In addition, PD98059 (ERK1/2 inhibitor) reduced cell proliferation induced by mancozeb, confirming the involvement of ERK1/2 signaling. Conclusively, we herein present the first report asserting that the mechanism involving S100A6 and S100A9 regulated ERK1/2 signaling underlies the mancozeb-induced neoplastic potential in human skin.

  6. Malformations and mortality in the Asian Common Toad induced by exposure to pleurolophocercous cercariae (Trematoda: Cryptogonimidae).

    PubMed

    Jayawardena, Uthpala A; Tkach, Vasyl V; Navaratne, Ayanthi N; Amerasinghe, Priyanie H; Rajakaruna, Rupika S

    2013-06-01

    Malformations and increased mortality due to infection by the digenetic trematode, Riberioa ondatrae have been reported for many species of amphibians. Severe malformations have also been reported in the Common Hourglass Tree Frog, Polypedates cruciger induced by pleurolophocercous cercariae in Sri Lanka in addition to the changes in the behaviour, development and survival of the host. We exposed pre-limb bud stage tadpoles (Gosner stages 25-26) of the Asian Common Toad, Duttaphrynus melanostictus to the same pleurolophocercous type cercariae under laboratory conditions. Molecular and morphological identification showed that these cercariae belonged Acanthostomum burminis infecting freshwater snakes as definitive hosts. These cercariae induced malformations (27.8%) and reduced survival to metamorphosis (53.8%). The magnitude of the effects increased with the dose of cercariae. Types of malformations were mainly axial, such as scoliosis and kyphosis. Severe limb malformations such as extra or missing limbs as reported for amphibians exposed to R. ondatrae were not observed in the D. melanostictus. Same authors reported a higher percentage of malformations previously when P. cruciger was exposed to the cercariae A. burminis compared to D. melanostictus. However, tadpoles of D. melanostictus, which are smaller compared to those of P. cruciger, experienced higher mortality than P. cruciger tadpoles. Trematode induced malformations and mortality in amphibians are highly variable and depend on multiple factors such as host species differences such as resistance to infection and tolerance, life-history characteristics such as size at metamorphosis and length of the metamorphosis period, and other factors such as size of the amphibian at the time of trematode exposure.

  7. L-Serine deaminase activity is induced by exposure of Escherichia coli K-12 to DNA-damaging agents.

    PubMed Central

    Newman, E B; Ahmad, D; Walker, C

    1982-01-01

    The synthesis of L-serine deaminase in Escherichia coli K-12 was induced after exposure of cells to a variety of DNA-damaging agents, including UV irradiation, nalidixic acid, and mitomycin C. Synthesis was also induced during growth at high temperature. A mutant constitutive for SOS functions showed an elevated level of L-serine deaminase activity. The response to DNA-damaging agents thus may be mediated via the SOS system. PMID:6813312

  8. Exposure to time varying magnetic fields associated with magnetic resonance imaging reduces fentanyl-induced analgesia in mice

    SciTech Connect

    Teskey, G.C.; Prato, F.S.; Ossenkopp, K.P.; Kavaliers, M.

    1988-01-01

    The effects of exposure to clinical magnetic resonance imaging (MRI) on analgesia induced by the mu opiate agonist, fentanyl, was examined in mice. During the dark period, adult male mice were exposed for 23.2 min to the time-varying (0.6 T/sec) magnetic field (TVMF) component of the MRI procedure. Following this exposure, the analgesic potency of fentanyl citrate (0.1 mg/kg) was determined at 5, 10, 15, and 30 min post-injection, using a thermal test stimulus (hot-plate 50 degrees C). Exposure to the magnetic-field gradients attenuated the fentanyl-induced analgesia in a manner comparable to that previously observed with morphine. These results indicate that the time-varying magnetic fields associated with MRI have significant inhibitory effects on the analgesic effects of specific mu-opiate-directed ligands.

  9. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    SciTech Connect

    Kurita, Hirofumi E-mail: mizuno@ens.tut.ac.jp; Miyachika, Saki; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira E-mail: mizuno@ens.tut.ac.jp

    2015-12-28

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma.

  10. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation.

    PubMed

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  11. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation

    PubMed Central

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  12. Transcriptomic Responses in the Bloom-Forming Cyanobacterium Microcystis Induced during Exposure to Zooplankton

    PubMed Central

    Harke, Matthew J.; Jankowiak, Jennifer G.; Morrell, Brooke K.

    2016-01-01

    ABSTRACT The bloom-forming, toxic cyanobacterium Microcystis synthesizes multiple secondary metabolites and has been shown to deter zooplankton grazing. However, the biochemical and/or molecular basis by which Microcystis deters zooplankton remains unclear. This global transcriptomic study explored the response of Microcystis to direct and indirect exposures to multiple densities of two cladoceran grazers, Daphnia pulex and D. magna. Higher densities of both daphnids significantly reduced Microcystis cell densities and elicited a stronger transcriptional response in Microcystis. While many putative grazer deterrence genes (encoding microcystin, aeruginosin, cyanopeptolin, and microviridin) were largely unaffected by zooplankton, transcripts for heat shock proteins (hsp) increased in abundance. Beyond metabolites and hsp, large increases in the abundances of transcripts from photosynthetic processes were observed, evidencing energy acquisition pathways were stimulated by grazing. In addition, transcripts of genes associated with the production of extracellular polysaccharides and gas vesicles significantly increased in abundance. These genes have been associated with colony formation and may have been invoked to deter grazers. Collectively, this study demonstrates that daphnid grazers induce a significant transcriptomic response in Microcystis, suggesting this cyanobacterium upregulates specific biochemical pathways to adapt to predation. IMPORTANCE This work explores the transcriptomic responses of Microcystis aeruginosa following exposure to grazing by two cladocerans, Daphnia magna and D. pulex. Contrary to previous hypotheses, Microcystis did not employ putative grazing deterrent secondary metabolites in response to the cladocerans, suggesting they may have other roles within the cell, such as oxidative stress protection. The transcriptional metabolic signature during intense grazing was largely reflective of a growth and stress response, although increasing

  13. DPOAE level mapping for detecting noise-induced cochlear damage from short-duration music exposures

    PubMed Central

    Buckey, Jay C.; Fellows, Abigail M.; Clavier, Odile H.; Allen, Lindsay V.; Brooks, Chris A.; Norris, Jesse A.; Gui, Jiang; Meinke, Deanna K.

    2015-01-01

    Distortion product otoacoustic emission (DPOAE) level mapping provides a comprehensive picture of cochlear responses over a range of DP frequencies and f2/f1 ratios. We hypothesized that individuals exposed to high-level sound would show changes detectable by DPOAE mapping, but not apparent on a standard DP-gram. Thirteen normal hearing subjects were studied before and after attending music concerts. Pure-tone audiometry (500-8,000 Hz), DP-grams (0.3-10 kHz) at 1.22 ratio, and DPOAE level maps were collected prior to, as soon as possible after, and the day after the concerts. All maps covered the range of 2,000-6,000 Hz in DP frequency and from 1.3 to -1.3 in ratio using equi-level primary tone stimuli. Changes in the pure-tone audiogram were significant (P ≤ 0.01) immediately after the concert at 1,000 Hz, 4,000 Hz, and 6,000 Hz. The DP-gram showed significant differences only at f2 = 4,066 (P = 0.01) and f2 = 4,348 (P = 0.04). The postconcert changes were readily apparent both visually and statistically (P ≤ 0.01) on the mean DP level maps, and remained statistically significantly different from baseline the day after noise exposure although no significant changes from baseline were seen on the DP-gram or audiogram the day after exposure. Although both the DP-gram and audiogram showed recovery by the next day, the average DPOAE level maps remained significantly different from baseline. The mapping data showed changes in the cochlea that were not detected from the DP-gram obtained at a single ratio. DPOAE level mapping provides comprehensive information on subtle cochlear responses, which may offer advantages for studying and tracking noise-induced hearing loss (NIHL). PMID:26356368

  14. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure.

    PubMed

    Ouda, Ladislav; Burianová, Jana; Balogová, Zuzana; Lu, Hui Pin; Syka, Josef

    2016-01-01

    In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats. In this study, we analyze on the basis of the Golgi-Cox method the morphology of neurons in the IC, the medial geniculate body (MGB) and the auditory cortex (AC) of 3-month-old Long-Evans rats exposed to identical noise at postnatal day 14 and compare the results to littermate controls. In rats exposed to noise as pups, the mean total length of the neuronal tree was found to be larger in the external cortex and the central nucleus of the IC and in the ventral division of the MGB. In addition, the numerical density of dendritic spines was decreased on the branches of neurons in the ventral division of the MGB in noise-exposed animals. In the AC, the mean total length of the apical dendritic segments of pyramidal neurons was significantly shorter in noise-exposed rats, however, only slight differences with respect to controls were observed in the length of basal dendrites of pyramidal cells as well as in the neuronal trees of AC non-pyramidal neurons. The numerical density of dendritic spines on the branches of pyramidal AC neurons was lower in exposed rats than in controls. These findings demonstrate that early postnatal short noise exposure can induce permanent changes in the development of neurons in the central auditory system, which apparently represent morphological correlates of functional plasticity.

  15. Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis.

    PubMed

    Jin, Yuanxiang; Zeng, Zhaoyang; Wu, Yan; Zhang, Songbin; Fu, Zhengwei

    2015-09-01

    Carbendazim (CBZ) has been considered as an endocrine disruptor that caused mammalian toxicity in different endpoints. Here, we revealed that oral administrations with CBZ at 100 and 500 mg/kg body weight for 28 days induced hepatic lipid metabolism disorder which was characterized by significant increases of hepatic lipid accumulation and triglyceride (TG) levels in mice. The serum cholesterol (TC), high-density lipoprotein, and low-density lipoprotein levels also increased after CBZ exposure. Correspondingly, the relative mRNA levels of some key genes related to lipogenesis and TG synthesis increased significantly both in the liver and fat. Moreover, the increase in serum IL-1β and IL-6 levels by the treatment of CBZ indicated the occurring of inflammation. Furthermore, the levels of bioaccumulation of CBZ in the liver and gut were very low as compared in the feces, indicating that most of CBZ stayed in gastrointestinal tract and interacted with gut microbiota until excreted. At phylum level, the amounts of the Bacteroidetes decreased significantly in the feces after 5 days CBZ exposure. High throughput sequencing of the 16S rRNA gene V3-V4 region revealed a significant reduction in richness and diversity of gut microbiota in the cecum of CBZ-treated mice. UniFrac principal coordinates analysis observed a marked shift of the gut microbiota structure in CBZ-treated mice away from that of the controls. More deeply, operational taxonomic units' analysis identified that a total of 361 gut microbes were significant changed. In CBZ-treated groups, the relative abundance of Firmicutes, Proteobacteria, and Actinobacteria increased and that of Bacteroidetes decreased. Our findings suggested that CBZ could lead hepatic lipid metabolism disorder and gut microbiota dysbiosis in mice.

  16. Erythromycin prevents the pulmonary inflammation induced by exposure to cigarette smoke.

    PubMed

    Mikura, Shinichiro; Wada, Hiroo; Higaki, Manabu; Yasutake, Tetsuo; Ishii, Haruyuki; Kamiya, Shigeru; Goto, Hajime

    2011-07-01

    The effect of erythromycin on the inflammation caused by exposure to cigarette smoke was investigated in this study. Mice were exposed either to cigarette smoke or to environmental air (control), and some mice exposed to cigarette smoke were treated with oral erythromycin (100 mg/kg/day for 8 days). Pulmonary inflammation was assessed by determining the cellular content of bronchoalveolar lavage (BAL) fluid. The messenger RNA (mRNA) levels of various mediators, including keratinocyte-derived chemokine (KC), macrophage inflammatory protein (MIP)-2, surfactant protein (SP)-D, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, interleukin (IL)-6 in lung tissue were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. The exposure to cigarette smoke increased significantly the numbers of neutrophils (P = 0.029), macrophages (P = 0.029), and lymphocytes (P = 0.029) recovered in BAL fluid. Moreover, mRNA levels of KC (P = 0.029), MIP-2 (P = 0.029), SP-D (P = 0.029), and GM-CSF (P = 0.057) in the lung tissue were higher in mice exposed to cigarette smoke than in mice exposed to environmental air. In the erythromycin-treated mice that were exposed also to cigarette smoke, both neutrophil and lymphocyte counts were significantly lower in the BAL fluid than those in the vehicle-treated mice (P = 0.029). Erythromycin-treated mice exposed to cigarette smoke showed a trend of lower mRNA levels of KC and TNF-α in the lung tissue than those in the vehicle-treated mice, although the statistical significance was not achieved (P = 0.057). Our data demonstrated that erythromycin prevented lung inflammation induced by cigarette smoke, in parallel to the reduced mRNA levels of KC and TNF-α.

  17. DPOAE level mapping for detecting noise-induced cochlear damage from short-duration music exposures.

    PubMed

    Buckey, Jay C; Fellows, Abigail M; Clavier, Odile H; Allen, Lindsay V; Brooks, Chris A; Norris, Jesse A; Gui, Jiang; Meinke, Deanna K

    2015-01-01

    Distortion product otoacoustic emission (DPOAE) level mapping provides a comprehensive picture of cochlear responses over a range of DP frequencies and f₂/f₁ratios. We hypothesized that individuals exposed to high-level sound would show changes detectable by DPOAE mapping, but not apparent on a standard DP-gram. Thirteen normal hearing subjects were studied before and after attending music concerts. Pure-tone audiometry (500-8,000 Hz), DP-grams (0.3-10 kHz) at 1.22 ratio, and DPOAE level maps were collected prior to, as soon as possible after, and the day after the concerts. All maps covered the range of 2,000-6,000 Hz in DP frequency and from 1.3 to -1.3 in ratio using equi-level primary tone stimuli. Changes in the pure-tone audiogram were significant (P ≤ 0.01) immediately after the concert at 1,000 Hz, 4,000 Hz, and 6,000 Hz. The DP-gram showed significant differences only at f₂= 4,066 (P = 0.01) and f₂= 4,348 (P = 0.04). The postconcert changes were readily apparent both visually and statistically (P ≤ 0.01) on the mean DP level maps, and remained statistically significantly different from baseline the day after noise exposure although no significant changes from baseline were seen on the DP-gram or audiogram the day after exposure. Although both the DP-gram and audiogram showed recovery by the next day, the average DPOAE level maps remained significantly different from baseline. The mapping data showed changes in the cochlea that were not detected from the DP-gram obtained at a single ratio. DPOAE level mapping provides comprehensive information on subtle cochlear responses, which may offer advantages for studying and tracking noise-induced hearing loss (NIHL).

  18. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  19. EFFECT OF EXPOSURE PROTOCOL AND HEAT SHOCK PROTEIN EXPRESSION ON ARSENITE INDUCED GENOTOXICITY IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory


    Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells

    The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...

  20. Distinctive expression patterns of hypoxia-inducible factor-1α and endothelial nitric oxide synthase following hypergravity exposure

    PubMed Central

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    This study was designed to examine the expression of hypoxia-inducible factor-1α (HIF-1α) and the level and activity of endothelial nitric oxide synthase (eNOS) in the hearts and livers of mice exposed to hypergravity. Hypergravity-induced hypoxia and the subsequent post-exposure reoxygenation significantly increased cardiac HIF-1α levels. Furthermore, the levels and activity of cardiac eNOS also showed significant increase immediately following hypergravity exposure and during the reoxygenation period. In contrast, the expression of phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) showed significant elevation only during the reoxygenation period. These data raise the possibility that the increase in cardiac HIF-1α expression induced by reoxygenation involves a cascade of signaling events, including activation of the Akt and ERK pathways. In the liver, HIF-1α expression was significantly increased immediately after hypergravity exposure, indicating that hypergravity exposure to causes hepatocellular hypoxia. The hypergravity-exposed livers showed significantly higher eNOS immunoreactivity than did those of control mice. Consistent with these results, significant increases in eNOS activity and nitrate/nitrite levels were also observed. These findings suggest that hypergravity-induced hypoxia plays a significant role in the upregulation of hepatic eNOS. PMID:27191892

  1. IN UTERO EXPOSURE TO ATRAZINE INDUCES DELAYED PUBERTY OF LONG EVANS RATS: DAM-MEDIATED EFFECTS IN FEMALES

    EPA Science Inventory

    IN UTERO EXPOSURE TO ATRAZINE INDUCES DELAYED PUBERTY OF LONG EVANS RATS: DAM-MEDIATED EFFECTS IN FEMALES.

    J L Rayner1 and S E Fenton2.

    1 University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill, NC, and 2 Reproductive Toxicology Divisio...

  2. Sensitivity analysis for direct and indirect effects in the presence of exposure-induced mediator-outcome confounders

    PubMed Central

    Chiba, Yasutaka

    2014-01-01

    Questions of mediation are often of interest in reasoning about mechanisms, and methods have been developed to address these questions. However, these methods make strong assumptions about the absence of confounding. Even if exposure is randomized, there may be mediator-outcome confounding variables. Inference about direct and indirect effects is particularly challenging if these mediator-outcome confounders are affected by the exposure because in this case these effects are not identified irrespective of whether data is available on these exposure-induced mediator-outcome confounders. In this paper, we provide a sensitivity analysis technique for natural direct and indirect effects that is applicable even if there are mediator-outcome confounders affected by the exposure. We give techniques for both the difference and risk ratio scales and compare the technique to other possible approaches. PMID:25580387

  3. POLYCHLORINATED BIPHENYL (PCB)-INDUCED OXIDATIVE STRESS AND CYTOTOXICITY CAN BE MITIGATED BY ANTIOXIDANTS FOLLOWING EXPOSURE

    PubMed Central

    Zhu, Yueming; Kalen, Amanda L.; Li, Ling; Lehmler, Hans-J; Robertson, Larry W.; Goswami, Prabhat C.; Spitz, Douglas R.; Aykin-Burns, Nukhet

    2009-01-01

    PCBs and PCB metabolites have been suggested to cause cytotoxicity by inducing oxidative stress but the effectiveness of antioxidant intervention following exposure is not established. Exponentially growing MCF-10A human breast and RWPE-1 human prostate epithelial cells continuously exposed for 5 days to 3 μM PCBs [Aroclor 1254, PCB153, and the 2-(4-chlorophenyl)-1,4-benzoquinone metabolite of PCB3 (4ClBQ)] were found to exhibit growth inhibition and clonogenic cell killing, with 4ClBQ having the most pronounced effects. These PCBs were also found to increase steady-state levels intracellular O2·− and H2O2 (as determined by dihydroethidium, MitoSOX™red and 5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate oxidation). These PCBs also caused 1.5- to 5.0-fold increases in MnSOD activity in MCF-10A cells and 2.5- to 5-fold increases in CuZnSOD activity in RWPE-1 cells. Measurement of MitoSOX™red oxidation with confocal microscopy coupled with co-localization of MitoTracker green in MCF-10A and RWPE-1 cells, supported the hypothesis that PCBs caused increased steady-state levels of O2·− in mitochondria. Finally, treatment with either N-acetyl-cysteine (NAC), or the combination of polyethylene glycol (PEG) conjugated CuZnSOD and PEG-catalase added 1 hour after PCBs, significantly protected these cells from PCB toxicity. These results support the hypothesis that exposure of exponentially growing human breast and prostate epithelial cells to PCBs causes increased steady-state levels of intracellular O2·− and H2O2, induction of MnSOD or CuZnSOD activities, as well as clonogenic cell killing that could be inhibited by a clinically relevant thiol antioxidant, NAC, as well as by catalase and superoxide dismutase following PCB exposure. PMID:19796678

  4. Does developmental exposure to perflurooctanoic acid (PFOA) induce immunopathologies commonly observed in neurodevelopmental disorders?

    PubMed

    Hu, Qing; Franklin, Jason N; Bryan, Ian; Morris, Erin; Wood, Andrew; DeWitt, Jamie C

    2012-12-01

    Immune comorbidities often are reported in subsets of patients with neurodevelopmental disorders, including autism spectrum disorders and attention-deficit hyperactivity disorder. A common immunopathology is an increase in serum autoantibodies against myelin basic protein (MBP) relative to control patients. Increases in autoantibodies suggest possible deficits in self-tolerance that may contribute to the formation of brain-specific autoantibodies and subsequent effects on the central nervous system (CNS). Oppositely, the formation of neuronal autoantibodies may be a reaction to neuronal injury or damage. Perfluorooctanoic acid (PFOA) is an environmental pollutant that induces multisystem toxicity in rodent models, including immunotoxicity and neurotoxicity. We hypothesized that developmental exposure to PFOA may induce immunotoxicity similar to that observed in subsets of patients with neurodevelopmental disorders. To test this hypothesis, we evaluated subsets of T cells from spleens, serum markers of autoreactivity, and levels of MBP and T cell infiltration in the cerebella of adult offspring exposed to 0.02, 0.2, or 2mg/kg of PFOA given to dams from gestation through lactation. Litter weights of offspring from dams exposed to 2mg/kg of PFOA were reduced by 32.6%, on average, from postnatal day one (PND1) through weaning (PND21). The percentage of splenic CD4+CD25+Foxp3+ T cells in male and female offspring from dams exposed to 2mg/kg of PFOA was reduced by 22% relative to the control percentage. Ex vivo co-cultures of splenic CD4+CD25+ T cells and CD4+CD25- T cells from dosed male offspring produced less IL-10 relative to control cells. Anti-ssDNA, a serum marker of autoreactivity, was decreased by 26%, on average, in female offspring from dams exposed to 0.02 and 2mg/kg PFOA. No other endpoints were statistically different by dose. These data suggest that developmental PFOA exposure may impact T cell responses and may be a possible route to downstream effects on

  5. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  6. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism.

    PubMed

    Wu, Yi-Meng; Luo, Han-Wen; Kou, Hao; Wen, Yin-Xian; Shen, Lang; Pei, Ling-Guo; Zhou, Jin; Zhang, Yuan-Zhen; Wang, Hui

    2015-11-15

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30-120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8-20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta.

  7. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  8. Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa.

    PubMed

    Mazon, A F; Cerqueira, C C C; Fernandes, M N

    2002-01-01

    The cellular changes in gill tissue induced by exposure to copper were studied in the tropical freshwater fish Prochilodus scrofa, with emphasis on chloride and pavement cells. Damage to gills included epithelial changes such as lifting, rupture, peeling of lamellar epithelium, lamellar fusion, hyperplasia, and cellular hypertrophy. Cell degeneration by necrosis and apoptosis was intense in fish exposed to 25 and 29 microg Cu L-1. Pavement cells showed microridge reduction on their surface. Chloride cells proliferated in the lamellar epithelia close to the onset of the lamellae. However, no changes in total chloride cell density in contact with the water were observed. The chloride cell apical area of fish exposed to copper increased, but only fish exposed to 25 microg Cu L-1 showed significant increase in the chloride cell fractional area. At this water copper concentration, almost 60% of the chloride cells were apoptotic. Necrotic chloride cells increased with copper in water, reaching 70% in fish exposed to 29 microg Cu L-1 (=LC50 calculated for this species). Pavement and chloride cell proliferation and hypertrophy on lamellar epithelia increased the thickness of the water-blood barrier. Our findings suggest severe impairment of ion regulation and gas transfer of fish exposed to copper.

  9. Manifestation of Hyperandrogenism in the Continuous Light Exposure-Induced PCOS Rat Model

    PubMed Central

    Kang, Xuezhi; Jia, Lina; Shen, Xueyong

    2015-01-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, and its pathogenesis has yet to be completely clarified. A fully convincing animal model has not been established for PCOS. In earlier studies, researchers have shown that the exposure of rats to continuous light can induce PCOS; nevertheless, hyperandrogenism, a key characteristic observed in human PCOS, has not been reported previously. In the present study, we found that (1) body weights decreased in female rats in a continuous light environment with both ovarian and uterine augmentation; (2) the estrous cycle in rats under continuous light environment was disordered, and polycystic ovary-like changes occurred, accompanied with fur loss and lethargy; and (3) serum testosterone levels in rats in a continuous light environment significantly increased. Our data suggest that continuous light can lead to the occurrence of PCOS in female rats without the need for drugs; this is a reasonable PCOS animal model that is more consistent with the natural disease state in humans; and poor sleep habits or negligence of sleep hygiene may be an important lifestyle factor in pathogenesis of PCOS. PMID:26064969

  10. Metallothioneins and trace elements dyshomeostasis induced by exposure to gasoline vapor in mice.

    PubMed

    Grebić, Damir; Tota, Marin; Jakovac, Hrvoje; Broznić, Dalibor; Marinić, Jelena; Canadi, Gordana; Milin, Cedomila; Radosević-Stasić, Biserka

    2014-03-01

    To investigate the effects of air pollution related with the gasoline/petrochemical industry the expression of metallothionein I (MT-I) mRNA and tissue metals were analyzed in organs of mice, exposed to gasoline (G) vapor in laboratory conditions. Control groups consisted of intact mice and of those exposed in the metabolic chamber to fresh air. The data obtained by RT-PCR and inductively coupled plasma spectrometry have shown that exposure to G vapor leads to upregulation of MT-I mRNA in organs that receive a strong respiratory and olfactory input or participate in gasoline degradation and elimination (lungs, brain, kidney and liver). Besides, in the brain and in the lungs, kidney and liver a decreased tissue content of Zn²⁺ or Cu²⁺ and Mg²⁺ was found (p<0.001). Some of these changes were obtained also in mice closed in the metabolic chamber, pointing to the involvement of stress-induced mechanisms in the transcriptional regulation of MTs.

  11. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  12. Size Changes in Honey Bee Larvae Oenocytes Induced by Exposure to Paraquat at Very Low Concentrations

    PubMed Central

    Cousin, Marianne; Silva-Zacarin, Elaine; Kretzschmar, André; El Maataoui, Mohamed; Brunet, Jean-Luc; Belzunces, Luc P.

    2013-01-01

    The effects of the herbicide Paraquat were investigated in honey bee larvae with attention focused on oenocytes. Honey bee larvae were exposed to Paraquat at different concentrations in the food: 0, 0.001, 0.01, 0.1 and 1 µg/kg. In controls, between 24 h and 48 h, oenocytes grew from 630.1 to 1643.8 µm2 while nuclei changed in size from 124.9 to 245.6 µm2. At 24 h, Paraquat induced a slight decrease in the size of oenocytes and nuclei. N-acetylcysteine (NAC), an antioxidant substance, slightly lowered the effects of Paraquat. At 48 h, Paraquat elicited a strong concentration-dependent decrease in the size of oenocytes, even at the lowest concentration. NAC reversed the effect of Paraquat at a concentration of ≥0.01 µg/kg. This reversion suggested different modes of action of Paraquat, with an oxidant action prevalent at concentrations ≥0.01 µg/kg. This study is the first which reports an effect of a pesticide at the very low concentration of 1 ng/kg, a concentration below the detection limits of the most efficient analytic methods. It shows that chemicals, including pesticides, are likely to have a potential impact at such exposure levels. We also suggest that Paraquat could be used as a suitable tool for investigating the functions of oenocytes. PMID:23724149

  13. Frequency weighting for vibration-induced white finger compatible with exposure-response models.

    PubMed

    Brammer, Anthony J; Pitts, Paul M

    2012-01-01

    An analysis has been performed to derive a frequency weighting for the development of vibration-induced white finger (VWF). It employs a model to compare health risks for pairs of population groups that are selected to have similar health outcomes from operating power tools or machines with markedly different acceleration spectra (rock drills, chain saws, pavement breakers and motorcycles). The model defines the Relative Risk, RR(f(trial)), which is constructed from the ratio of daily exposures and includes a trial frequency weighting that is applied to the acceleration spectra. The trial frequency weighting consists of a frequency-independent primary frequency range, and subordinate frequency ranges in which the response to vibration diminishes, with cut-off frequencies that are changed to influence the magnitude of RR(f(trial)). The frequency weighting so derived when RR(f(trial)) = 1 is similar to those obtained by other methods (W(hf), W(hT)). It consists of a frequency independent range from about 25 Hz to 500 Hz (-3 dB frequencies), with an amplitude cut-off rate of 12 dB/octave below 25 Hz and above 500 Hz. The range is compatible with studies of vasoconstriction in persons with VWF. The results provide further evidence that the ISO frequency weighting may be inappropriate for assessing the risk of developing VWF.

  14. Brief low [Mg2+]o-induced Ca2+ spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons

    PubMed Central

    Kim, Hee Jung; Yang, Ji Seon

    2016-01-01

    Reducing [Mg2+]o to 0.1 mM can evoke repetitive [Ca2+]i spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM [Mg2+]o are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether Ca2+ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM [Mg2+]o for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type Ca2+ channel antagonist nimodipine, which blocked 0.1 mM [Mg2+]o-induced [Ca2+]i spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the [Ca2+]i spikes. The intracellular Ca2+ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the [Ca2+]i spikes. While Gö6976, a specific inhibitor of PKCα had no effect on the tolerance, both the PKCε translocation inhibitor and the PKCζ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the [Ca2+]i spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low [Mg2+]o preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the [Ca2+]i spike-induced activation of PKCε and PKCξ, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins. PMID:26807029

  15. Perinatal BPA exposure induces hyperglycemia, oxidative stress and decreased adiponectin production in later life of male rat offspring.

    PubMed

    Song, Shunzhe; Zhang, Ling; Zhang, Hongyuan; Wei, Wei; Jia, Lihong

    2014-04-03

    The main object of the present study was to explore the effect of perinatal bisphenol A (BPA) exposure on glucose metabolism in early and later life of male rat offspring, and to establish the potential mechanism of BPA-induced dysglycemia. Pregnant rats were treated with either vehicle or BPA by drinking water at concentrations of 1 and 10 µg/mL BPA from gestation day 6 through the end of lactation. We measured the levels of fasting serum glucose, insulin, adiponectin and parameters of oxidative stress on postnatal day (PND) 50 and PND100 in male offspring, and adiponectin mRNA and protein expression in adipose tissue were also examined. Our results showed that perinatal exposure to 1 or 10 µg/mL BPA induced hyperglycemia with insulin resistance on PND100, but only 10 µg/mL BPA exposure had similar effects as early as PND50. In addition, increased oxidative stress and decreased adiponectin production were also observed in BPA exposed male offspring. Our findings indicated that perinatal exposure to BPA resulted in abnormal glucose metabolism in later life of male offspring, with an earlier and more exacerbated effect at higher doses. Down-regulated expression of adiponectin gene and increased oxidative stress induced by BPA may be associated with insulin resistance.

  16. Low level of lead can induce phosphatidylserine exposure and erythrophagocytosis: a new mechanism underlying lead-associated anemia.

    PubMed

    Jang, Won-Hee; Lim, Kyung-Min; Kim, Keunyoung; Noh, Ji-Yoon; Kang, Seojin; Chang, Youn-Kyeong; Chung, Jin-Ho

    2011-07-01

    Anemia is probably one of the most well-known toxic effects of lead. Previously, lead-induced anemia was considered to be from the inhibition of δ-aminolevulinic acid dehydratase participating in the heme biosynthesis. However, little is known whether lead could affect the destruction of erythrocyte, another important factor for anemia. In the present study, we demonstrated that lead could accelerate the splenic sequestration of erythrocytes through phosphatidylserine (PS) exposure and subsequently increased erythrophagocytosis. In freshly isolated human erythrocytes, Pb(2+)- induced PS exposure at relatively low concentrations (∼0.1 μM) by inhibiting flippase, a key aminophospholipid translocase for the maintenance of PS asymmetry and adenosine triphosphate depletion appeared to underlie this phenomenon. Abnormal shape changes of erythrocytes and microvesicle generation and other triggers for the erythrophagocytosis were also observed in the Pb(2+)-exposed erythrocytes. In vitro data showed that human macrophage indeed recognized and phagocytosis PS-exposed erythrocytes. In good accordance with these in vitro results, the oral administration of Pb(2+) increased PS exposure on erythrocytes in rat in vivo. In addition, reduction of hematocrit and hemoglobin and increased spleen weight were observed along with enhanced splenic sequestration of erythrocytes in the rats exposed to Pb(2+) subchronically for 4 weeks through drinking water. In conclusion, these results suggest that Pb(2+)-induced anemia may be explained at least in part by increased PS exposure on erythrocytes, erythrophagocytosis, and splenic sequestration.

  17. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet.

  18. Early life exposure to a rodent carcinogen propiconazole fungicide induces oxidative stress and hepatocarcinogenesis in medaka fish.

    PubMed

    Tu, Tzu-Yi; Hong, Chwan-Yang; Sasado, Takao; Kashiwada, Shosaku; Chen, Pei-Jen

    2016-01-01

    Conazole pollution is an emerging concern to human health and environmental safety because of the broad use of conazole fungicides in agriculture and medicine and their frequent occurrence in aquifers. The agricultural pesticide propiconazole has received much regulatory interest because it is a known rodent carcinogen with evidence of multiple adverse effects in mammals and non-targeted organisms. However, the carcinogenic effect and associated mechanism of propiconazole in fish under microgram-per-liter levels of environmental-relevant exposure remains unclear. To explore whether early life of propiconzaole exposure would induce oxidative stress and latent carcinogenic effects in fish, we continuously exposed larvae of wild type or p53(-/-) mutant of medaka fish (Oryzias latipes) to propiconazole (2.5-250μg/L) for 3, 7, 14 or 28 days and assessed liver histopathology and/or the oxidative stress response and gene expression during exposure and throughout adulthood. Propiconazole dose-dependently induced reactive oxygen species (ROS) level, altered homeostasis of antioxidant superoxide dismutase, catalase and glutathione S-transferase and caused lipid and protein peroxidation during early life exposure in wild type medaka. Such exposure also significantly upregulated gene expression of the cytochrome P450 CYP1A, but marginally suppressed that of tumor suppressor p53 in adults. Furthermore, histopathology revealed that p53(-/-) mutant medaka with early life exposure to propiconazole showed increased incidence of hepatocarcionogensis, as compared to the p53(-/-) control group and wild type strain. We demonstrated that propiconazole can initiate ROS-mediated oxidative stress and induce hepatic tumorigenesis associated with CYP1A- and/or p53 -mediated pathways with the use of wild type and p53(-/-) mutant of medaka fish. The toxic response of medaka to propiconazole is compatible with that observed in rodents.

  19. Larval Exposure to Chlorpyrifos Affects Nutritional Physiology and Induces Genotoxicity in Silkworm Philosamia ricini (Lepidoptera: Saturniidae)

    PubMed Central

    Kalita, Moni K.; Haloi, Kishor; Devi, Dipali

    2016-01-01

    Chlorpyrifos is a most widely used organophosphate insecticide because of its cost effectiveness and degradable nature. However, this pesticide enters and contaminates the environment either by direct application, spray drifts or crop run off and shows adverse effect on the non-targeted organisms. Philosamia ricini (eri silkworm), one of the most exploited, domesticated and commercialized non mulberry silkworm is known for mass production of eri silk. The silkworm larvae get exposed to pesticide residues on the leaves of food plants. The present study investigates the effect of commercial formulation of chlorpyrifos (Pyrifos-20 EC) on eri silkworm. Initially the LC50 value of chlorpyrifos was determined at 24–96 h and further experiments were carried out with sub lethal concentrations of the chlorpyrifos after 24 h of exposure period. The potential toxicity of chlorpyrifos was evaluated as a fuction of metabolism and nutritional physiology in 3rd, 4th, and 5th instar larvae. Alteration in histoarchitecture of 5th instar eri silkworm gut exposed to sub lethal concentration of chlorpyrifos formulation was also studied. Chlorpyrifos induced genotoxicity in silkworm hemocytes was also investigated by single cell gel electrophoresis, micronuclei assay, and apoptosis assay. Herein, LC50 values of chlorpyrifos were calculated as 3.83, 3.35, 2.68, and 2.35 mg/L at 24, 48, 72, and 96h respectively. A significant decrease in trehalose activity along with digestive enzyme activity was observed in chlorpyrifos affected groups (P < 0.05). Further, genotoxicity study revealed higher tail percentage, tail length and tail moment of the damage DNA in chlorpyrifos exposed groups (P < 0.001). Moreover, at 2.0 mg/L concentration, ~10 fold increases in tail length was observed as compared to the control. Results showed activation of caspase activity following 24 h chlorpyrifos exposure (1.5 and 2.0 mg/L) in a dose-dependent manner. Moreover, in control group less number of apoptotic

  20. Larval Exposure to Chlorpyrifos Affects Nutritional Physiology and Induces Genotoxicity in Silkworm Philosamia ricini (Lepidoptera: Saturniidae).

    PubMed

    Kalita, Moni K; Haloi, Kishor; Devi, Dipali

    2016-01-01

    Chlorpyrifos is a most widely used organophosphate insecticide because of its cost effectiveness and degradable nature. However, this pesticide enters and contaminates the environment either by direct application, spray drifts or crop run off and shows adverse effect on the non-targeted organisms. Philosamia ricini (eri silkworm), one of the most exploited, domesticated and commercialized non mulberry silkworm is known for mass production of eri silk. The silkworm larvae get exposed to pesticide residues on the leaves of food plants. The present study investigates the effect of commercial formulation of chlorpyrifos (Pyrifos-20 EC) on eri silkworm. Initially the LC50 value of chlorpyrifos was determined at 24-96 h and further experiments were carried out with sub lethal concentrations of the chlorpyrifos after 24 h of exposure period. The potential toxicity of chlorpyrifos was evaluated as a fuction of metabolism and nutritional physiology in 3rd, 4th, and 5th instar larvae. Alteration in histoarchitecture of 5th instar eri silkworm gut exposed to sub lethal concentration of chlorpyrifos formulation was also studied. Chlorpyrifos induced genotoxicity in silkworm hemocytes was also investigated by single cell gel electrophoresis, micronuclei assay, and apoptosis assay. Herein, LC50 values of chlorpyrifos were calculated as 3.83, 3.35, 2.68, and 2.35 mg/L at 24, 48, 72, and 96h respectively. A significant decrease in trehalose activity along with digestive enzyme activity was observed in chlorpyrifos affected groups (P < 0.05). Further, genotoxicity study revealed higher tail percentage, tail length and tail moment of the damage DNA in chlorpyrifos exposed groups (P < 0.001). Moreover, at 2.0 mg/L concentration, ~10 fold increases in tail length was observed as compared to the control. Results showed activation of caspase activity following 24 h chlorpyrifos exposure (1.5 and 2.0 mg/L) in a dose-dependent manner. Moreover, in control group less number of apoptotic

  1. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, improves cognitive impairments induced by smoke exposure

    PubMed Central

    Chunhua, Ma; Kun, Hao

    2016-01-01

    The current study was designed to investigate the pathological changes in brain induced by smoke exposure, and explore whether fasudil could alleviate these impairments. Adult C57BL/6 mice were exposed to tobacco smoking for four months, and fasudil was treated from the third months. To investigate lung injuries, the immunohistochemistry of lung tissue, immune cell infiltrations, cytokine productions in bronchoalveolar lavage (BAL) fluid, and seurm inflammatory cytokines were evaluated. To investigate cognitive impairments, Morris water maze test, hippocampal inflammatory cytokines and Rho associated signaling pathways were evaluated. Our findings showed fasudil administration inhibited the inflitration of inflammatory cells (macrophages, neutrophils, and lymphocytes), suppressed the production of inflammatory cytokines both in the BAL fluid, serum, and hippocampus. Further, fasudil significantly improved the spatial learning and memory impairments and reduced the elevation of hippocampal inflammatory cytokines induced by tobacco smoking. Of note, expressions of RhoA, ROCK1, ROCK2, caspase-3, caspase-9, bax and the phosphorylation of NF-κBp65 were increased accompanying the smoke exposure-induced cognitive impairments, which were significantly inhibited by fasudil treatment as indicted in western blot and immunohistochemistry analysis. Our results showed that fasudil exhibited protective effects on smoke exposure induced cognitive deficits which might involve with the regulation of Rho/ROCK/NF-κB pathways. Further studies are warranted before clinical application of fasudil. PMID:27791202

  2. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  3. Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-microsecs pulses

    DTIC Science & Technology

    2014-10-07

    exposure duration.1 The primary retinal damage mechanism for exposure to a single pulse in the range of 10 ns to 10 μs duration is micro cavitation , or...thermal denaturation injury mechanism dominates for PRF > ∼1000 Hz. At 1000 Hz, thermal denaturation occurs at near the same level that micro cavitation ...with the observation of micro cavitation for exposure durations < ∼50 μs, while for expo sures >100 to 200 μs, cell death occurs at radiant exposures

  4. 7,12-Dimethylbenz[a]anthracene exposure induces the DNA repair response in neonatal rat ovaries

    SciTech Connect

    Ganesan, Shanthi Bhattacharya, Poulomi Keating, Aileen F.

    2013-11-01

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles at all stages of development. This study investigated DMBA-induced DNA double strand break (DSB) formation with subsequent activation of the ovarian DNA repair response in models of pre-antral or pre-ovulatory follicle loss. Postnatal day (PND) 4 Fisher 344 (F344) rat ovaries were cultured for 4 days followed by single exposures of vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and maintained in culture for 4 or 8 days. Alternately, PND4 F344 rat ovaries were exposed to 1 μM DMBA at the start of culture for 2 days. Total RNA or protein was isolated, followed by qPCR or Western blotting to quantify mRNA or protein level, respectively. γH2AX and phosphorylated ATM were localized and quantified using immunofluorescence staining. DMBA exposure increased caspase 3 and γH2AX protein. Additionally, DMBA (12.5 nM and 1 μM) increased levels of mRNA encoding Atm, Xrcc6, Brca1 and Rad51. In contrast, Parp1 mRNA was decreased on d4 and increased on d8 of DMBA exposure, while PARP1 protein increased after 8 days of DMBA exposure. Total ATM increased in a concentration-dependent temporal pattern (75 nM d4; 12.5 nM d8), while pATM was localized in large primary and secondary follicles and increased after 8 days of 75 nM DMBA exposure compared to both control and 12.5 nM DMBA. These findings support that, despite some concentration effects, DMBA induces ovarian DNA damage and that DNA repair mechanisms are induced as a potential mechanism to prevent follicle loss. - Highlights: • DMBA exposure increases ovarian caspase-3 protein expression. • DMBA exposure increases the γH2AX protein in oocytes. • DMBA exposure activates a DNA repair response in the ovary.

  5. Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L.

    PubMed

    Delaney, Kevin J; Wawrzyniak, Maria; Lemańczyk, Grzegorz; Wrzesińska, Danuta; Piesik, Dariusz

    2013-05-01

    The plant semiochemical cis-jasmone primes/induces plant resistance that deters herbivores and attracts natural enemies. We studied the induction of volatile organic compounds (VOCs) in winter wheat and spring barley after exposure of plants to three synthetic cis-jasmone doses (50 μl of 1, 100, and 1 × 10(4) ng μl(-1)) and durations of exposure (1, 3, and 6 h). Cereal leaf beetle, Oulema melanopus, adult behavioral responses were examined in a Y-tube olfactometer to cis-jasmone induced plant VOC bouquets and to two synthetic blends of VOCs (3 green leaf volatiles (GLVs); 4 terpenes + indole). In both cereals, eight VOCs [(Z)-3-hexanal, (Z)-3-hexanol, (Z)-3-hexanyl acetate, (Z)-β-ocimene, linalool, β-caryophyllene, (E)-ß-farnesene, and indole] were induced 100- to 1000-fold after cis-jasmone exposure. The degree of induction in both cereals was usually positively and linearly associated with increasing exposure dose and duration. However, VOC emission rate was only ~2-fold greater from plants exposed to the highest vs. lowest cis-jasmone exposure doses (1 × 10(4) difference) or durations (6-fold difference). Male and female O. melanopus were deterred by both cereal VOC bouquets after plant exposure to the high cis-jasmone dose (1 × 10(4) ng μl(-1)), while females were also deterred after plant exposure to the low dose (1 ng μl(-1)) but attracted to unexposed plant VOC bouquets. Both O. melanopus sexes were repelled by terpene/indole and GLV blends at two concentrations (25 ng · min(-1); 125 ng · min(-1)), but attracted to the lowest dose (1 ng · min(-1)) of a GLV blend. It is possible that the biologically relevant low cis-jasmone dose has ecological activity and potential for inducing field crop VOCs to deter O. melanopus.

  6. Facial cold-induced vasodilation and skin temperature during exposure to cold wind.

    PubMed

    Brajkovic, Dragan; Ducharme, Michel B

    2006-04-01

    One purpose of this study was to characterize the facial skin temperature and cold-induced vasodilation (CIVD) response of 12 subjects (six males and six females) during exposure to cold wind (i.e., -10 to 10 degrees C; 2, 5, and 8 m/s wind speed). This study found that at each wind speed, facial skin temperature decreased as ambient temperature decreased. The percentage of subjects showing facial CIVD decreased significantly at an ambient temperature above -10 degrees C. A similar CIVD percentage was observed between 0 degrees C dry and 10 degrees C wet (face sprayed with fine water mist) at each wind speed. No CIVDs were observed during the 10 degrees C dry condition at any wind speed. The incidence of CIVD response was more uniform across facial sites when there was a greater cold stress (i.e., -10 degrees C and 8 m/s wind). Another objective of the study was to examine the effect of the thermal state of the body (as reflected by core temperature) on the facial skin temperature response during rest and exercise. This study found that nose skin temperature was significantly higher in exercising subjects with an elevated core temperature even though there was no significant difference in face skin temperature between the two conditions. Therefore, this finding suggests that acral regions of the face, such as the nose, are more sensitive to changes in the thermal state of the body, and hence will stay warmer relative to other parts of the face during exercise in the cold.

  7. Microstructural changes induced by CO2 exposure in alkali-activated slag/metakaolin pastes

    NASA Astrophysics Data System (ADS)

    Bernal, Susan

    2016-09-01

    The structural changes induced by accelerated carbonation in alkali-activated slag/ metakaolin (MK) cements were determined. The specimens were carbonated for 540 h in an environmental chamber with a CO2 concentration of 1.0 ± 0.2%, a temperature of 20 ± 2ºC, and relative humidity of 65 ± 5 %. Accelerated carbonation led to decalcification of the main binding phase of these cements, which is an aluminium substituted calcium silicate hydrate (C-(N-)A-S-H) type gel, and the consequent formation of calcium carbonate. The sodium-rich carbonates trona (Na2CO3·NaHCO3·2H2O) and gaylussite (Na2Ca(CO3)2·5H2O) were identified in cements containing up to 10 wt.% MK as carbonation products. The formation of these carbonates is mainly associated with the chemical reaction between the CO2 and the free alkalis present in the pore solution. The structure of the carbonated cements is dominated by an aluminosilicate hydrate (N-A-S-H) type gel, independent of the MK content. The N-A-S-H type gels identified are likely to be derived both from the activation reaction of the MK, forming a low-calcium gel product which does not seem to undergo structural changes upon CO2 exposure, and the decalcification of C-(N-)A-S-H type gel. The carbonated pastes present a highly porous microstructure, more notable as the content of MK content in the cement increases, which might have a negative impact on the durability of these materials in service.

  8. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats.

    PubMed

    Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana

    2015-01-01

    Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.

  9. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats.

    PubMed

    Ju, Ling-sha; Jia, Min; Sun, Jie; Sun, Xiao-ru; Zhang, Hui; Ji, Mu-huo; Yang, Jian-jun; Wang, Zhong-yun

    2016-02-01

    General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.

  10. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio)

    PubMed Central

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-01-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  11. Chronic nicotine exposure systemically alters microRNA expression profiles during post-embryonic stages in Caenorhabditis elegans.

    PubMed

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is mainly attributed to nicotine. In this study, we employed Caenorhabditis elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20 µM and 20 mM) was limited to the post-embryonic stage from L1 to L4 (∼31 h) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates "regulatory hormesis", manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs' regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine.

  12. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2017-05-01

    Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation.

  13. Acute microinstillation inhalation exposure to sarin induces changes in respiratory dynamics and functions in guinea pigs.

    PubMed

    Conti, Michele L; Che, Magnus M; Boylan, Megan; Sciuto, Alfred M; Gordon, Richard K; Nambiar, Madhusoodana P

    2009-01-01

    This study investigates the toxic effects of sarin on respiratory dynamics following microinstillation inhalation exposure in guinea pigs. Animals are exposed to sarin for 4 minutes, and respiratory functions are monitored at 4 hours and 24 hours by whole-body barometric plethysmography. Data show significant changes in respiratory dynamics and function following sarin exposure. An increase in respiratory frequency is observed at 4 hours post exposure compared with saline controls. Tidal volume and minute volume are also increased in sarin-exposed animals 4 hours after exposure. Peak inspiratory flow increases, whereas peak expiratory flow increases at 4 hours and is erratic following sarin exposure. Animals exposed to sarin show a significant decrease in expiratory time and inspiratory time. End-inspiratory pause is unchanged whereas end-expiratory pause is slightly decreased 24 hours after sarin exposure. These results indicate that inhalation exposure to sarin alters respiratory dynamics and function at 4 hours, with return to normal levels at 24 hours post exposure.

  14. OZONE-INDUCED RESPIRATORY SYMPTOMS AND LUNG FUNCTION DECREMENTS IN HUMANS: EXPOSURE-RESPONSE MODELS

    EPA Science Inventory

    Short duration exposure to ozone (<8 hr) is known to result in lung function decrements and respiratory symptoms in humans. The magnitudes of these responses are functions of ozone concentration (C), activity level measured by minute ventilation (Ve), duration of exposure (T), a...

  15. Model for Estimating Noise-Induced Hearing Loss Associated With Occupational Noise Exposure in a Specified US Navy Population

    DTIC Science & Technology

    2007-01-10

    U.S. government for noise-induced hearing loss ( NIHL ) caused to service personnel by noisy systems and spaces are unaccounted for in estimates of...life-cycle costs. This pilot study explored whether a NIHL prediction algorithm from the American National Standards Institute (ANSI S3.44-1996) could...medical and compensation costs of NIHL in this population. This population of Sailors has a “simple” exposure in that the main career-long noise

  16. Exposure to stimulatory CpG oligonucleotides during gestation induces maternal hypertension and excess vasoconstriction in pregnant rats.

    PubMed

    Goulopoulou, Styliani; Wenceslau, Camilla F; McCarthy, Cameron G; Matsumoto, Takayuki; Webb, R Clinton

    2016-04-15

    Bacterial infections increase risk for pregnancy complications, such as preeclampsia and preterm birth. Unmethylated CpG DNA sequences are present in bacterial DNA and have immunostimulatory effects. Maternal exposure to CpG DNA induces fetal demise and craniofacial malformations; however, the effects of CpG DNA on maternal cardiovascular health have not been examined. We tested the hypothesis that exposure to synthetic CpG oligonucleotides (ODNs) during gestation would increase blood pressure and cause vascular dysfunction in pregnant rats. Pregnant and nonpregnant female rats were treated with CpG ODN (ODN 2395) or saline (Veh) starting on gestational day 14or corresponding day for the nonpregnant groups. Exposure to CpG ODN increased systolic blood pressure in pregnant (Veh: 121 ± 2 mmHg vs. ODN 2395: 134 ± 2 mmHg,P< 0.05) but not in nonpregnant rats (Veh: 111 ± 2 mmHg vs. ODN 2395: 108 ± 5 mmHg,P> 0.05). Mesenteric resistance arteries from pregnant CpG ODN-treated rats had increased contractile responses to U46619 [thromboxane A2(TxA2) mimetic] compared with arteries from vehicle-treated rats [Emax(%KCl), Veh: 87 ± 4 vs. ODN 2395: 104 ± 4,P< 0.05]. Nitric oxide synthase (NOS) inhibition increased contractile responses to U46619, and CpG ODN treatment abolished this effect in arteries from pregnant ODN 2395-treated rats. CpG ODN potentiated the involvement of cyclooxygenase (COX) to U46619-induced contractions. In conclusion, exposure to CpG ODN during gestation induces maternal hypertension, augments resistance artery contraction, increases the involvement of COX-dependent mechanisms and reduces the contribution of NOS-dependent mechanisms to TxA2-induced contractions in mesenteric resistance arteries.

  17. Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice.

    PubMed

    Zhong, T; Ren, F; Huang, C S; Zou, W Y; Yang, Y; Pan, Y D; Sun, B; Wang, E; Guo, Q L

    2016-03-01

    Isoflurane-induced neurocognitive impairment in the developing rodent brain is well documented, and regular physical exercise has been demonstrated to be a viable intervention for some types of neurocognitive impairment. This study was designed to investigate the potential protective effect of swimming exercise on both neurocognitive impairment caused by repeated neonatal exposure to isoflurane and the underlying molecular mechanism. Mice received 0.75% isoflurane exposures for 4h on postnatal days 7, 8, and 9. From the third month after anesthesia, the mice were subjected to regular swimming exercise for 4weeks, followed by a contextual fear condition (CFC) trial. We found that repeated neonatal exposure to isoflurane reduced freezing behavior during CFC testing and deregulated hippocampal histone H4K12 acetylation. Conversely, mice subjected to regular swimming exercise showed enhanced hippocampal H3K9, H4K5, and H4K12 acetylation levels, increased numbers of c-Fos-positive cells 1h after CFC training, and less isoflurane-induced memory impairment. We also observed increases in histone acetylation and of cAMP-response element-binding protein (CREB)-binding protein (CBP) during the swimming exercise program. The results suggest that neonatal isoflurane exposure-induced memory impairment was associated with dysregulation of H4K12 acetylation, which may lead to less hippocampal activation following learning tasks. Swimming exercise was associated with enhanced hippocampal histone acetylation and CBP expression. Exercise most likely ameliorated isoflurane-induced memory impairment by enhancing hippocampal histone acetylation and activating more neuron cells during memory formation.

  18. Discriminating Gene Expression Signature of Radiation-Induced Thyroid Tumors after Either External Exposure or Internal Contamination

    PubMed Central

    Ory, Catherine; Ugolin, Nicolas; Schlumberger, Martin; Hofman, Paul; Chevillard, Sylvie

    2011-01-01

    Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation. PMID:24704841

  19. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods.

  20. Exposure to copper and a cytotoxic polyunsaturated aldehyde induces reproductive failure in the marine polychaete Nereis virens (Sars).

    PubMed

    Caldwell, Gary S; Lewis, Ceri; Pickavance, Georgia; Taylor, Rebecca L; Bentley, Matthew G

    2011-07-01

    A number of metabolites from microalgae, including polyunsaturated aldehydes (PUAs), have been implicated as inducers of reproductive failure in aquatic invertebrates. Current work describes the impacts of the model PUA 2E, 4E-decadienal and copper sulphate applied in isolation and combination on the reproductive performance of the infaunal polychaete, Nereis virens (Sars). The reproductive and life cycle parameters investigated were; fertilisation success, larval survival, sperm motility (percent motility and curvilinear velocity) and sperm DNA damage. Exposure to decadienal and copper sulphate in isolation resulted in dose- and time-dependent reductions for each evaluated endpoint. Fertilisation success was heavily impacted at concentrations of up to 10μM for both compounds. Copper sulphate was more toxic in larval survival assays. Sperm motility impacts, although variable, exhibited rapid onset with pronounced reductions in sperm swimming performance observed within 3min of exposure. The extent of DNA damage was dose-dependent, and in the case of decadienal, rapid in onset. Dual compound exposures resulted in enhanced overall toxicity in all assays. Logistic regression analysis of fertilisation and larval survival assays showed significant synergistic interactions between decadienal and copper sulphate; an increase in concentration of either compound resulted in enhanced toxicity of the other. Longer exposure durations during larval survival assays demonstrated a further increase in both toxicity and synergism. The results indicate that the effects of additional environmental stressors must be considered when attempting to extrapolate laboratory-derived single compound exposures to field situations.

  1. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  2. Effects of chronic caffeine pre-exposure on conditioned and unconditioned psychomotor activity induced by nicotine and amphetamine in rats.

    PubMed

    Palmatier, M I; Fung, E Y K; Bevins, R A

    2003-05-01

    Three experiments examined the effects of chronic pre-exposure to caffeine on the subsequent conditioned and unconditioned locomotor activating effects of nicotine or amphetamine in rats. Rats were given daily intraperitoneal injections of caffeine anhydrous (0, 10 or 30 mg/kg base) for 30 days. Conditioning (environment-drug pairings) began after the last day of caffeine pre-exposure. Pre-exposure to 30 mg/kg of caffeine enhanced the acute and chronic locomotor effects of amphetamine (0.5 mg/kg). A similar enhancement of activity was not seen with the high (0.421 mg/kg base) or low dose (0.175 mg/kg) of nicotine. In a drug-free test, the distinct environment paired with amphetamine and the high dose of nicotine evoked increases in activity relative to controls. Caffeine pre-exposure did not affect expression of this conditioned hyperactivity. These effects of caffeine pre-exposure on amphetamine-induced activity could not be attributed to non-specific effects of caffeine.

  3. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  4. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    SciTech Connect

    Marchini, T.; Magnani, N.D.; Paz, M.L.; Vanasco, V.; Tasat, D.; González Maglio, D.H.; and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN

  5. Are chromosomal instabilities induced by exposure of cultured normal human cells to low- or high-LET radiation?

    NASA Technical Reports Server (NTRS)

    Dugan, Lawrence C.; Bedford, Joel S.

    2003-01-01

    Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.

  6. Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Glebova, Larissa; Glebov, Leonid B.

    2014-01-01

    Photo-thermo-refractive (PTR) glass is a multicomponent photosensitive silicate glass that, after successive UV-exposure and thermal treatment, exhibits a refractive index change that results from the precipitation of nano-crystalline NaF. This glass is successfully used for the fabrication of holographic optical elements (volume Bragg gratings) that dramatically enhance properties of numerous laser systems and spectrometers. In this paper, induced absorption and scattering that determine efficiency of such elements were studied. It is found that the main contribution to induced absorption is produced by several types of silver containing particles having absorption bands with maxima in the blue-green region with exponential tails extending to the near IR spectral region. Evolution of all absorption bands was studied for different conditions of UV exposure and thermal development. Complex mechanisms of interconversion of silver containing particles is demonstrated as well as the fact that some of these particles can be associated with catalyzers of the nucleation process. It is also found that induced scattering obeys the classic Rayleigh law with an intensity depending on the conditions of UV exposure and thermal development. For short development times, scattering increases with dosage because of increased volume fraction of crystalline phase. For long development times, scattering decreases with dosage because of decreased size of individual crystals.

  7. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  8. How Do Nutritional Antioxidants Really Work: Nucleophilic Tone and Para-Hormesis Versus Free Radical Scavenging in vivo

    PubMed Central

    Forman, Henry Jay; Davies, Kelvin J. A.; Ursini, Fulvio

    2013-01-01

    We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of non-radical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of ‘Nucleophilic Tone,’ by a mechanism that can be called ‘Para-Hormesis,’ provides a means for regulating physiological non-toxic concentrations of the non-radical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health. PMID:23747930

  9. Molecular responses to stress induced in normal human caucasian melanocytes in culture by exposure to simulated solar UV.

    PubMed

    Marrot, Laurent; Belaïdi, Jean-Philippe; Jones, Christophe; Perez, Philippe; Meunier, Jean-Roch

    2005-01-01

    Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300-400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320-400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight

  10. Dermal and ocular exposure systems for the development of models of sulfur mustard-induced injury.

    PubMed

    Weber, Waylon M; Kracko, Dean A; Lehman, Mericka R; Cox, Christopher E; Cheng, Yung-Sung; Grotendorst, Gary R; McDonald, Jacob D

    2011-09-01

    Sulfur mustard (SM) is a chemical threat agent for which the effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present article details the techniques used to develop SM laboratory exposure systems for the development of animal models of ocular and dermal injury. These models are critical to enable evaluation of SM injury and therapeutics against that injury. Iterative trials were conducted to optimize dermal and ocular injury models in guinea pigs and rabbits respectively. The goal was a homogeneous and diffuse ocular and dermal injury that compares to the human injury. Dermal exposures were conducted by either a flow-past or static vapor cup system. Ocular exposures were conducted by a static exposure system. Ocular and dermal exposures were conducted with vaporized SM. Vapor concentrations increased with time in the dermal and ocular exposure systems but were stable with varying amounts of applied SM. A dermal deposition estimation study was also conducted. Deposited volumes increased with exposure time.

  11. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65

    PubMed Central

    Liu, Dandan; Perkins, Jordan T.; Petriello, Michael C.; Hennig, Bernhard

    2015-01-01

    Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 induced the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications. PMID:26519613

  12. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Halstead, Neal T.; McMahon, Taegan A.; Johnson, Steve A.; Boughton, Raoul K.; Martin, Lynn B.

    2013-01-01

    Exposure to stressors at formative stages in the development of wildlife and humans can have enduring effects on health. Understanding which, when and how stressors cause enduring health effects is crucial because these stressors might then be avoided or mitigated during formative stages to prevent lasting increases in disease susceptibility. Nevertheless, the impact of early-life exposure to stressors on the ability of hosts to resist and tolerate infections has yet to be thoroughly investigated. Here, we show that early-life, 6-day exposure to the herbicide atrazine (mean ± s.e.: 65.9±3.48 µg l−1) increased frog mortality 46 days after atrazine exposure (post-metamorphosis), but only when frogs were challenged with a chytrid fungus implicated in global amphibian declines. Previous atrazine exposure did not affect resistance of infection (fungal load). Rather, early-life exposure to atrazine altered growth and development, which resulted in exposure to chytrid at more susceptible developmental stages and sizes, and reduced tolerance of infection, elevating mortality risk at an equivalent fungal burden to frogs unexposed to atrazine. Moreover, there was no evidence of recovery from atrazine exposure. Hence, reducing early-life exposure of amphibians to atrazine could reduce lasting increases in the risk of mortality from a disease associated with worldwide amphibian declines. More generally, these findings highlight that a better understanding of how stressors cause enduring effects on disease susceptibility could facilitate disease prevention in wildlife and humans, an approach that is often more cost-effective and efficient than reactive medicine. PMID:24266041

  13. Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish

    PubMed Central

    Chen, Jiangfei; Huang, Changjiang; Truong, Lisa; La Du, Jane; Tilton, Susan C.; Waters, Katrina M.; Lin, Kuanfei; Tanguay, Robert L; Dong, Qiaoxiang

    2012-01-01

    Trimethyltin chloride (TMT) is an organotin contaminant, widely detected in aqueous environments, posing potential human and environmental risks. In this study, we utilized the zebrafish model to investigate the impact of transient TMT exposure on developmental progression, angiogenesis, and cardiovascular development. Embryos were waterborne exposed to a wide TMT concentration range from 8 to 96 hours post fertilization (hpf). The TMT concentration that led to mortality in 50% of the embryos (LC50) at 96 hpf was 8.2 μM; malformations in 50% of the embryos (EC50) was 2.8 μM. The predominant response observed in surviving embryos was pericardial edema. Additionally, using the Tg (fli1a: EGFP) y1 transgenic zebrafish line to non-invasively monitor vascular development, TMT exposure led to distinct disarrangements in the vascular system. The most susceptible developmental stage to TMT exposure was between 48–72 hpf. High density whole genome microarrays were used to identify the early transcriptional changes following TMT exposure from 48 to 60 hpf or 72 hpf. In total, 459 transcripts were differentially expressed at least 2-fold (P < 0.05) by TMT compared to control. Using Ingenuity Pathway Analysis (IPA) tools, it was revealed that the transcripts misregulated by TMT exposure were clustered in numerous categories including metabolic and cardiovascular disease, cellular function, cell death, molecular transport, and physiological development. In situ localization of highly elevated transcripts revealed intense staining of ADP-ribosylation factors arf3 and arf5 in the head, trunk, and tail regions. When arf5 expression was blocked by morpholinos, the zebrafish did not display the prototypical TMT-induced vascular deficits, indicating that the induction of arf5 was necessary for TMT-induced vascular toxicity. PMID:23000284

  14. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-04

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission.

  15. Cold Exposure Induces Proliferation of Mature Brown Adipocyte in a ß3-Adrenergic Receptor-Mediated Pathway

    PubMed Central

    Fukano, Keigo; Okamatsu-Ogura, Yuko; Tsubota, Ayumi; Nio-Kobayashi, Junko; Kimura, Kazuhiro

    2016-01-01

    Hyperplasia of brown adipose tissue (BAT) is a fundamental mechanism for adaptation to survive in the cold environment in rodents. To determine which cell types comprising BAT contribute to tissue hyperplasia, immunohistochemical analysis using a proliferative marker Ki67 was performed on the BAT from 6-week-old C57BL/6J mice housed at 23°C (control) or 10°C (cold) for 5 days. Interestingly, in the control group, the cell proliferative marker Ki67 was detected in the nuclei of uncoupling protein 1-positive mature brown adipocytes (7.2% ± 0.4% of brown adipocyte), as well as in the non-adipocyte stromal-vascular (SV) cells (19.6% ± 2.3% of SV cells), which include preadiopocytes. The percentage of Ki67-positive brown adipocytes increased to 25.6% ± 1.8% at Day 1 after cold exposure and was significantly higher than the non-cold acclimated control until Day 5 (21.8% ± 1.7%). On the other hand, the percentage of Ki67-positive SV cells gradually increased by a cold exposure and peaked to 42.1% ± 8.3% at Day 5. Injection of a ß3-adrenergic receptor (ß3-AR) agonist for continuous 5 days increased the number of Ki67-positive brown adipocytes even at Day 1 but not that of SV cells. In addition, the ß3-AR antagonist, but not ß1-AR antagonist, attenuated the cold exposure-induced increase in the number of Ki67-positive brown adipocytes. These results suggest that mature brown adipocytes proliferate immediately after cold exposure in a ß3-AR-mediated pathway. Thus, proliferation of mature brown adipocytes as well as preadipocytes in SV cells may contribute to cold exposure-induced BAT hyperplasia. PMID:27846311

  16. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    PubMed

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner.

  17. Social Isolation-Induced Territorial Aggression in Male Offspring Is Enhanced by Exposure to Diesel Exhaust during Pregnancy.

    PubMed

    Yokota, Satoshi; Oshio, Shigeru; Moriya, Nozomu; Takeda, Ken

    2016-01-01

    Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident-intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women

  18. Social Isolation-Induced Territorial Aggression in Male Offspring Is Enhanced by Exposure to Diesel Exhaust during Pregnancy

    PubMed Central

    Yokota, Satoshi; Oshio, Shigeru; Moriya, Nozomu; Takeda, Ken

    2016-01-01

    Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident−intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women

  19. Arsenic Exposure Induces Unscheduled Mitotic S Phase Entry Coupled with Cell Death in Mouse Cortical Astrocytes

    PubMed Central

    Htike, Nang T. T.; Maekawa, Fumihiko; Soutome, Haruka; Sano, Kazuhiro; Maejima, Sho; Aung, Kyaw H.; Tokuda, Masaaki; Tsukahara, Shinji

    2016-01-01

    There is serious concern about arsenic in the natural environment, which exhibits neurotoxicity and increases the risk of neurodevelopmental disorders. Adverse effects of arsenic have been demonstrated in neurons, but it is not fully understood how arsenic affects other cell types in the brain. In the current study, we examined whether sodium arsenite (NaAsO2) affects the cell cycle, viability, and apoptosis of in vitro-cultured astrocytes isolated from the cerebral cortex of mice. Cultured astrocytes from transgenic mice expressing fluorescent ubiquitination-based cell cycle indicator (Fucci) were subjected to live imaging analysis to assess the effects of NaAsO2 (0, 1, 2, and 4 μM) on the cell cycle and number of cells. Fucci was designed to express monomeric Kusabira Orange2 (mKO2) fused with the ubiquitylation domain of hCdt1, a marker of G1 phase, and monomeric Azami Green (mAG) fused with the ubiquitylation domain of hGem, a marker of S, G2, and M phases. NaAsO2 concentration-dependently decreased the peak levels of the mAG/mKO2 emission ratio when the ratio had reached a peak in astrocytes without NaAsO2 exposure, which was due to attenuating the increase in the mAG-expressing cell number. In contrast, the mAG/mKO2 emission ratio and number of mAG-expressing cells were concentration-dependently increased by NaAsO2 before their peak levels, indicating unscheduled S phase entry. We further examined the fate of cells forced to enter S phase by NaAsO2. We found that most of these cells died up to the end of live imaging. In addition, quantification of the copy number of the glial fibrillary acidic protein gene expressed specifically in astrocytes revealed a concentration-dependent decrease caused by NaAsO2. However, NaAsO2 did not increase the amount of nucleosomes generated from DNA fragmentation and failed to alter the gene expression of molecules relevant to unscheduled S phase entry-coupled apoptosis (p21, p53, E2F1, E2F4, and Gm36566). These findings

  20. Exposure of Staphylococcus aureus to subinhibitory concentrations of β-lactam antibiotics induces heterogeneous vancomycin-intermediate Staphylococcus aureus.

    PubMed

    Roch, Mélanie; Clair, Perrine; Renzoni, Adriana; Reverdy, Marie-Elisabeth; Dauwalder, Olivier; Bes, Michèle; Martra, Annie; Freydière, Anne-Marie; Laurent, Frédéric; Reix, Philippe; Dumitrescu, Oana; Vandenesch, François

    2014-09-01

    Glycopeptides are known to select for heterogeneous vancomycin-intermediate Staphylococcus aureus (h-VISA) from susceptible strains. In certain clinical situations, h-VISA strains have been isolated from patients without previous exposure to glycopeptides, such as cystic fibrosis patients, who frequently receive repeated treatments with beta-lactam antibiotics. Our objective was to determine whether prolonged exposure to beta-lactam antibiotics can induce h-VISA. We exposed 3 clinical vancomycin-susceptible methicillin-resistant Staphylococcus aureus (MRSA) strains to ceftazidime, ceftriaxone, imipenem, and vancomycin (as a control) at subinhibitory concentrations for 18 days in vitro. Population analyses showed progressive increases in vancomycin resistance; seven of the 12 derived strains obtained after induction were classified as h-VISA according to the following criteria: area under the curve (AUC) on day 18/AUC of Mu3 of ≥90% and/or growth on brain heart infusion (BHI) agar with 4 mg/liter vancomycin. The derived isolates had thickened cell walls proportional to the level of glycopeptide resistance. Genes known to be associated with glycopeptide resistance (vraSR, yvqF, SA1703, graRS, walKR, and rpoB) were PCR sequenced; no de novo mutations were observed upon beta-lactam exposure. To determine whether trfA, a gene encoding a glycopeptide resistance factor, was essential in the selection of h-VISA upon beta-lactam pressure, a trfA-knockout strain was generated by allelic replacement. Indeed, beta-lactam exposure of this mutated strain showed no capacity to induce vancomycin resistance. In conclusion, these results showed that beta-lactam antibiotics at subinhibitory concentrations can induce intermediate vancomycin resistance in vitro. This induction required an intact trfA locus. Our results suggest that prior use of beta-lactam antibiotics can compromise vancomycin efficacy in the treatment of MRSA infections.

  1. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila.

    PubMed

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.

  2. Modeling of exposure to carpet-cleaning chemicals preceding irritant-induced asthma in one patient.

    PubMed

    Lynch, R M

    2000-09-01

    42-year-old woman experienced an acute asthma attack, seizures, and unconsciousness immediately after a carpet-cleaning and deodorizing job was conducted in her home. Exposure modeling estimates that she was exposed to approximately 3.4-17 mg/m(3) of sodium tripolyphosphate and more than 14 mg/m(3) volatile organic compounds immediately after the cleaning. I derived two separate exposure models for these estimates that evidenced good consistency of exposure estimates. Asthmatics and carpet-cleaning companies should be advised about safety during carpet-cleaning operations, including adequate warnings about excess risk for asthmatics, temporary removal from the home, reduced detergent levels within cleaners, and reduced overall levels of cleaning solutions used within the home. Further studies of carpet-cleaning exposures are indicated.

  3. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  4. Developmental Exposure to PCBs Differentially Alters Sensitivity to Audiogenic and Kindling-Induced Seizures in Rats

    EPA Science Inventory

    Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...

  5. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  6. Granular parakeratosis induced by benzalkonium chloride exposure from laundry rinse aids.

    PubMed

    Robinson, Aaron J; Foster, Rachael S; Halbert, Anne R; King, Emma; Orchard, David

    2016-09-19

    Benzalkonium chloride is a quaternary ammonium cationic detergent present in a number of household products, which can act as a major skin irritant. We present the case of six children who developed granular parakeratosis after exposure to benzalkonium chloride in laundry rinse aids, presenting as a brightly erythematous, tender but minimally pruritic, intertriginous eruption followed by superficial desquamation. The eruptions resolved over 3-4 weeks after cessation of exposure.

  7. Utilization of Hyperbaric Oxygen Therapy and Induced Hypothermia After Hydrogen Sulfide Exposure

    PubMed Central

    Asif, Mir J.; Exline, Matthew C.

    2013-01-01

    Hydrogen sulfide is a toxic gas produced as a byproduct of organic waste and many industrial processes. Hydrogen sulfide exposure symptoms may vary from mild (dizziness, headaches, nausea) to severe lactic acidosis via its inhibition of oxidative phosphorylation, leading to cardiac arrhythmias and death. Treatment is generally supportive. We report the case of a patient presenting with cardiac arrest secondary to hydrogen sulfide exposure treated with both hyperbaric oxygen therapy and therapeutic hypothermia with great improvement in neurologic function. PMID:22004989

  8. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

    PubMed Central

    Al-Maleki, Anis Rageh; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Tay, Sun Tee; Vadivelu, Jamuna

    2015-01-01

    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis. PMID:25996927

  9. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage.

    PubMed

    Hernández, Antonio F; Gil, Fernando; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Tsatsakis, Aristidis M; Requena, Mar; Parrón, Tesifón; Alarcón, Raquel

    2013-11-01

    Metabolic activation of pesticides in the liver may result in highly reactive intermediates capable of impairing various cellular functions. Nevertheless, the knowledge about the effect of pesticide exposure on liver function is still limited. This study assessed whether exposure to pesticides elicits early biochemical changes in biomarkers of liver function and looked for potential gene-environmental interactions between pesticide exposure and polymorphisms of pesticide-metabolizing genes. A longitudinal study was conducted in farm-workers from Andalusia (South Spain), during two periods of the same crop season with different degree of pesticide exposure. Blood samples were taken for the measurement of serum and erythrocyte cholinesterase activities as well as for determining clinical chemistry parameters as biomarkers of liver function. Serum lipid levels were also measured as they may help to monitor the progress of toxic liver damage. A reduction in serum cholinesterase was associated with decreased levels of all clinical chemistry parameters studied except HDL-cholesterol. Conversely, a decreased erythrocyte cholinesterase (indicating long-term pesticide exposure) was associated with increased levels of aspartate aminotransferase and alkaline phosphatase and increased levels of triglycerides, total cholesterol and LDL-cholesterol, but reduced levels of HDL-cholesterol. Changes in liver biomarkers were particularly associated with the PON155M/192R haplotype. The obtained results therefore support the hypothesis that pesticide exposure results in subtle biochemical liver toxicity and highlight the role of genetic polymorphisms in pesticide-metabolizing enzymes as biomarkers of susceptibility for developing adverse health effects.

  10. Behavioral and autonomic thermoregulation in hamsters during microwave-induced heat exposure

    SciTech Connect

    Gordon, C.J.; Long, M.D.; Fehlner, K.S.

    1984-01-01

    Preferred ambient temperature (Ta) and ventilatory frequency were measured in free-moving hamsters exposed to 2450-MHz microwaves. A waveguide exposure system that permits continuous monitoring of the absorbed heat load accrued from microwave exposure was imposed with a longitudinal temperature gradient which allowed hamsters to select their preferred Ta. Ventilatory frequency was monitored remotely by analysing the rhythmic shifts in unabsorbed microwave energy passing down the waveguide. Without microwave exposure hamsters selected an average T2 of 30.2 C. This preferred Ta did not change until the rate of heat absorption (SAR) from microwave exposure exceeded approx. 2 W kg-1. In a separate experiment, a SAR of 2.0 W kg-1 at a Ta of 30C was shown to promote an average 0.5 C increase in colonic temperature. Hamsters maintained their ventilatory frequency at baseline levels by selecting a cooler Ta during microwave exposure. These data support previous studies suggesting that during thermal stress behavioral thermo-regulation (i.e. preferred Ta) takes prescedence over autonomic thermoregulation (i.e. ventilatory frequency). It is apparent that selecting a cooler Ta is a more efficient and/or effective than autonomic thermoregulation for dissipating a heat load accrued from microwave exposure.

  11. Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent.

    PubMed

    Lipinski, Robert J; Hammond, Peter; O'Leary-Moore, Shonagh K; Ament, Jacob J; Pecevich, Stephen J; Jiang, Yi; Budin, Francois; Parnell, Scott E; Suttie, Michael; Godin, Elizabeth A; Everson, Joshua L; Dehart, Deborah B; Oguz, Ipek; Holloway, Hunter T; Styner, Martin A; Johnson, G Allan; Sulik, Kathleen K

    2012-01-01

    Prenatal ethanol exposure is the leading preventable cause of congenital mental disability. Whereas a diagnosis of fetal alcohol syndrome (FAS) requires identification of a specific pattern of craniofacial dysmorphology, most individuals with behavioral and neurological sequelae of heavy prenatal ethanol exposure do not exhibit these defining facial characteristics. Here, a novel integration of MRI and dense surface modeling-based shape analysis was applied to characterize concurrent face-brain phenotypes in C57Bl/6J fetuses exposed to ethanol on gestational day (GD)7 or GD8.5. The facial phenotype resulting from ethanol exposure depended upon stage of insult and was predictive of unique patterns of corresponding brain abnormalities. Ethanol exposure on GD7 produced a constellation of dysmorphic facial features characteristic of human FAS, including severe midfacial hypoplasia, shortening of the palpebral fissures, an elongated upper lip, and deficient philtrum. In contrast, ethanol exposure on GD8.5 caused mild midfacial hypoplasia and palpebral fissure shortening, a shortened upper lip, and a preserved philtrum. These distinct, stage-specific facial phenotypes were associated with unique volumetric and shape abnormalities of the septal region, pituitary, and olfactory bulbs. By demonstrating that early prenatal ethanol exposure can cause more than one temporally-specific pattern of defects, these findings illustrate the need for an expansion of current diagnostic criteria to better capture the full range of facial and brain dysmorphology in fetal alcohol spectrum disorders.

  12. Exposure to light-at-night increases the growth of DMBA-induced mammary adenocarcinomas in rats.

    PubMed

    Cos, Samuel; Mediavilla, Dolores; Martínez-Campa, Carlos; González, Alicia; Alonso-González, Carolina; Sánchez-Barceló, Emilio J

    2006-04-28

    In order to assess whether light exposure at night influences the growth of mammary tumors, as well as the role of melatonin in this process, female rats bearing DMBA-induced mammary adenocarcinomas were exposed to different lighting environments. Animals exposed to light-at-night, especially those under a constant dim light during the darkness phase, showed: (a) significantly higher rates of tumor growth as well as lower survival than controls, (b) higher concentration of serum estradiol, and (c) lower nocturnal excretion of 6-sulfatoxymelatonin, without there being differences between nocturnal and diurnal levels. These results suggest that circadian and endocrine disruption induced by light pollution, could induce the growth of mammary tumors.

  13. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress.

    PubMed

    Perrine, Shane A; Eagle, Andrew L; George, Sophie A; Mulo, Kostika; Kohler, Robert J; Gerard, Justin; Harutyunyan, Arman; Hool, Steven M; Susick, Laura L; Schneider, Brandy L; Ghoddoussi, Farhad; Galloway, Matthew P; Liberzon, Israel; Conti, Alana C

    2016-04-15

    Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex.

  14. Increased Expression of Osteopontin in Retinal Degeneration Induced by Blue Light-Emitting Diode Exposure in Mice

    PubMed Central

    Chang, Seung Wook; Kim, Hyung Il; Kim, Gyu Hyun; Park, Su Jin; Kim, In-Beom

    2016-01-01

    Osteopontin (OPN) is a multifunctional adhesive glycoprotein that is implicated in a variety of pro-inflammatory as well as neuroprotective and repair-promoting effects in the brain. As a first step towards understanding the role of OPN in retinal degeneration (RD), we examined changes in OPN expression in a mouse model of RD induced by exposure to a blue light-emitting diode (LED). RD was induced in BALB/c mice by exposure to a blue LED (460 nm) for 2 h. Apoptotic cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In order to investigate changes in OPN in RD, western blotting and immunohistochemistry were performed. Anti-OPN labeling was compared to that of anti-glial fibrillary acidic protein (GFAP), which is a commonly used marker for retinal injury or stress including inflammation. OPN expression in RD retinas markedly increased at 24 h after exposure, was sustained through 72 h, and subsided at 120 h. Increased OPN expression was observed co-localized with microglial cells in the outer nuclear layer (ONL), outer plexiform layer (OPL), and subretinal space. Expression was restricted to the central retina in which photoreceptor cell death occurred. Interestingly, OPN expression in the ONL/OPL was closely associated with microglia, whereas most of the OPN plaques observed in the subretinal space were not. Immunogold electron microscopy demonstrated that OPN was distributed throughout the cytoplasm of microglia and in nearby fragments of degenerating photoreceptors. In addition, we found that OPN was induced more acutely and with greater region specificity than GFAP. These results indicate that OPN may be a more useful marker for retinal injury or stress, and furthermore act as a microglial pro-inflammatory mediator and a phagocytosis-inducing opsonin in the subretinal space. Taken together, our data suggest that OPN plays an important role in the pathogenesis of RD. PMID:27504084

  15. Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure.

    PubMed

    Pettersson, Hans; Burström, Lage; Nilsson, Tohr

    2014-01-01

    Raynaud's phenomenon is characterized by constriction in blood supply to the fingers causing finger blanching, of white fingers (WF) and is triggered by cold. Earlier studies found that workers using vibrating hand-held tools and who had vibration-induced white fingers (VWF) had an increased risk for hearing loss compared with workers without VWF. This study examined the occurrence of Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure. All 342 participants had a confirmed noise-induced hearing loss medico legally accepted as work-related by AFA Insurance. Each subject answered a questionnaire concerning their health status and the kinds of exposures they had at the time when their hearing loss was first discovered. The questionnaire covered types of exposures, discomforts in the hands or fingers, diseases and medications affecting the blood circulation, the use of alcohol and tobacco and for women, the use of hormones and whether they had been pregnant. The participation rate was 41% (n = 133) with 38% (n = 94) for men and 50% (n = 39) for women. 84 men and 36 women specified if they had Raynaud's phenomenon and also if they had used hand-held vibrating machines. Nearly 41% of them had used hand-held vibrating machines and 18% had used vibrating machines at least 2 h each workday. There were 23 men/6 women with Raynaud's phenomenon. 37% reported WF among those participants who were exposed to hand-arm vibration (HAV) and 15% among those not exposed to HAV. Among the participants with hearing loss with daily use of vibrating hand-held tools more than twice as many reports WF compared with participants that did not use vibrating hand-held tools. This could be interpreted as Raynaud's phenomenon could be associated with an increased risk for noise-induced hearing loss. However, the low participation rate limits the generalization of the results from this study.

  16. Difluoromethylornithine (DFMO) reduces deficits in isolation-induced ultrasonic vocalizations and balance following neonatal ethanol exposure in rats

    PubMed Central

    Rubin, Maribel A.; Wellmann, Kristen A.; Lewis, Ben; Overgaauw, Ben J.; Littleton, John M.; Barron, Susan

    2010-01-01

    Neonatal ethanol (EtOH) exposure is associated with central nervous system dysfunction and neurotoxicity in rats. Increases in polyamine levels have been implicated as one underlying mechanism for some of EtOH’s effects on the developing brain. In this study we addressed whether the inhibition of polyamine biosynthesis by α-difluoromethylornithine (DFMO) could reduce behavioral deficits induced by early EtOH exposure. Male and female rat pups received ethanol (6 g/kg/day EtOH i.g.), or isocaloric maltose (control) from postnatal days (PND) 1-8. On PND 8, animals were injected with either saline or DFMO (500 mg/kg, s.c.) immediately following the final neonatal treatment. Subjects were tested for isolation-induced ultrasonic vocalizations (USV) on PND 16; spontaneous activity in an open field apparatus on PND 20 and 21; and balance on PND 31. Animals exposed to EtOH neonatally displayed an increased latency to the first USV and reduced frequencies of USV, hyperactivity and preference for the center of the open field and poorer balance relative to controls. DFMO minimized these deficits in latency to the first USV and balance. These data provide further support that polyamines play a role in some of the functional deficits associated with EtOH exposure during early development and that reducing polyamine activity can improve outcome. PMID:18992275

  17. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    PubMed Central

    da Silva, Danielle Cristina Tomaz; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; de Campos, Dijon Henrique Salomé; do Nascimento, André Ferreira; de Oliveira, Sílvio Assis; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2014-01-01

    Background Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Objective Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Methods Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C15 and Ob15) and 30 (C30 and Ob30) consecutive weeks. Obesity was determined by adiposity index. Results The Ob15 group was similar to the C15 group regarding the expression of myocardial collagen type I; however, expression in the Ob30 group was less than C30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob30 when compared with Ob15. Obesity did not affect collagen type III expression. Conclusion This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression. PMID:24676371

  18. An exposure system to study the effects of water-soluble gases on PM-induced toxicity.

    PubMed

    Li, T H; Hooper, K A; Fischer, E; Laskin, D L; Buckley, B; Turpin, B J

    2000-06-01

    An aerosol generation and exposure system to evaluate the role of water-soluble gases in particulate matter (PM)-induced injury was designed, built, and validated by generating test atmospheres to study the role of hydrogen peroxide in PM-induced toxicity. In this system, particle number concentration, size distribution, hydrogen peroxide concentration, and water concentration can all be varied. An ammonium sulfate aerosol with mass median diameter 0.46 +/- 0.01 microm was used as a model atmospheric aerosol because ammonium sulfate is a major component of the fine aerosol, and the water uptake of ammonium sulfate aerosol is well characterized. The following four test atmospheres were generated: (1) ammonium sulfate aerosol, (2) an aerosol containing hydrogen peroxide and ammonium sulfate, (3) vapor-phase hydrogen peroxide, and (4) particle-free air. All test atmospheres were maintained at a relative humidity of 85%. Particle size distribution, number concentration, total hydrogen peroxide concentration, temperature, and relative humidity were measured continuously in the exposure chamber. The gas-particle partitioning of hydrogen peroxide was calculated using total hydrogen peroxide concentration, the Henry's law constant for hydrogen peroxide in water, and aerosol water content. We found that the aerosol generation system produced stable concentrations throughout the 2-hour exposures.

  19. Blast Exposure Induces Post-Traumatic Stress Disorder-Related Traits in a Rat Model of Mild Traumatic Brain Injury

    PubMed Central

    Dorr, Nathan P.; De Gasperi, Rita; Gama Sosa, Miguel A.; Shaughness, Michael C.; Maudlin-Jeronimo, Eric; Hall, Aaron A.; McCarron, Richard M.; Ahlers, Stephen T.

    2012-01-01

    Abstract Blast related traumatic brain injury (TBI) has been a major cause of injury in the wars in Iraq and Afghanistan. A striking feature of the mild TBI (mTBI) cases has been the prominent association with post-traumatic stress disorder (PTSD). However, because of the overlapping symptoms, distinction between the two disorders has been difficult. We studied a rat model of mTBI in which adult male rats were exposed to repetitive blast injury while under anesthesia. Blast exposure induced a variety of PTSD-related behavioral traits that were present many months after the blast exposure, including increased anxiety, enhanced contextual fear conditioning, and an altered response in a predator scent assay. We also found elevation in the amygdala of the protein stathmin 1, which is known to influence the generation of fear responses. Because the blast overpressure injuries occurred while animals were under general anesthesia, our results suggest that a blast-related mTBI exposure can, in the absence of any psychological stressor, induce PTSD-related traits that are chronic and persistent. These studies have implications for understanding the relationship of PTSD to mTBI in the population of veterans returning from the wars in Iraq and Afghanistan. PMID:22780833

  20. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury.

    PubMed

    Elder, Gregory A; Dorr, Nathan P; De Gasperi, Rita; Gama Sosa, Miguel A; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A; McCarron, Richard M; Ahlers, Stephen T

    2012-11-01

    Blast related traumatic brain injury (TBI) has been a major cause of injury in the wars in Iraq and Afghanistan. A striking feature of the mild TBI (mTBI) cases has been the prominent association with post-traumatic stress disorder (PTSD). However, because of the overlapping symptoms, distinction between the two disorders has been difficult. We studied a rat model of mTBI in which adult male rats were exposed to repetitive blast injury while under anesthesia. Blast exposure induced a variety of PTSD-related behavioral traits that were present many months after the blast exposure, including increased anxiety, enhanced contextual fear conditioning, and an altered response in a predator scent assay. We also found elevation in the amygdala of the protein stathmin 1, which is known to influence the generation of fear responses. Because the blast overpressure injuries occurred while animals were under general anesthesia, our results suggest that a blast-related mTBI exposure can, in the absence of any psychological stressor, induce PTSD-related traits that are chronic and persistent. These studies have implications for understanding the relationship of PTSD to mTBI in the population of veterans returning from the wars in Iraq and Afghanistan.

  1. Long-Term Ozone Exposure Attenuates 1-Nitronaphthalene–Induced Cytotoxicity in Nasal Mucosa

    PubMed Central

    Lee, Myong Gyong; Wheelock, Åsa M.; Boland, Bridget; Plopper, Charles G.

    2008-01-01

    1-Nitronaphthalene (1-NN) and ozone are cytotoxic air pollutants commonly found as components of photochemical smog. The mechanism of toxicity for 1-NN involves bioactivation by cytochrome P450s and subsequent adduction to proteins. Previous studies have shown that 1-NN toxicity in the lung is considerably higher in rats after long-term exposure to ozone compared with the corresponding filtered air–exposed control rats. The aim of the present study was to establish whether long-term exposure to ozone alters the susceptibility of nasal mucosa to the bioactivated toxicant, 1-NN. Adult male Sprague-Dawley rats were exposed to filtered air or 0.8 ppm ozone for 8 hours per day for 90 days, followed by a single treatment with 0, 12.5, or 50.0 mg/kg 1-NN by intraperitoneal injection. The results of the histopathologic analyses show that the nasal mucosa of rats is a target of systemic 1-NN, and that long-term ozone exposure markedly lessens the severity of injury, as well as the protein adduct formation by reactive 1-NN metabolites. The antagonistic effects were primarily seen in the nasal transitional epithelium, which corresponds to the main site of histologic changes attributed to ozone exposure (goblet cell metaplasia and hyperplasia). Long-term ozone exposure did not appear to alter susceptibility to 1-NN injury in other nasal regions. This study shows that long-term ozone exposure has a protective effect on the susceptibility of nasal transitional epithelium to subsequent 1-NN, a result that clearly contrasts with the synergistic toxicological effect observed in pulmonary airway epithelium in response to the same exposure regimen. PMID:17901409

  2. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    SciTech Connect

    Onodera, Akira; Kawai, Yuichi; Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  3. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion

    NASA Astrophysics Data System (ADS)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G.

    2014-10-01

    An in vivo exposure to 197 W/cm2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197 W/cm2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  4. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion.

    PubMed

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G

    2014-01-01

    An in vivo exposure to 197  W/cm 2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197  W/cm 2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  5. Passive exposure to speech sounds induces long-term memory representations in the auditory cortex of adult rats

    PubMed Central

    Kurkela, Jari L. O.; Lipponen, Arto; Hämäläinen, Jarmo A.; Näätänen, Risto; Astikainen, Piia

    2016-01-01

    Experience-induced changes in the functioning of the auditory cortex are prominent in early life, especially during a critical period. Although auditory perceptual learning takes place automatically during this critical period, it is thought to require active training in later life. Previous studies demonstrated rapid changes in single-cell responses of anesthetized adult animals while exposed to sounds presented in a statistical learning paradigm. However, whether passive exposure to sounds can form long-term memory representations remains to be demonstrated. To investigate this issue, we first exposed adult rats to human speech sounds for 3 consecutive days, 12 h/d. Two groups of rats exposed to either spectrotemporal or tonal changes in speech sounds served as controls for each other. Then, electrophysiological brain responses from the auditory cortex were recorded to the same stimuli. In both the exposure and test phase statistical learning paradigm, was applied. The exposure effect was found for the spectrotemporal sounds, but not for the tonal sounds. Only the animals exposed to spectrotemporal sounds differentiated subtle changes in these stimuli as indexed by the mismatch negativity response. The results point to the occurrence of long-term memory traces for the speech sounds due to passive exposure in adult animals. PMID:27996015

  6. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei).

    PubMed

    Liang, Zhongxiu; Liu, Rui; Zhao, Depeng; Wang, Lingling; Sun, Mingzhe; Wang, Mengqiang; Song, Linsheng

    2016-07-01

    Ammonia is one of major environmental pollutants in the aquatic system that poses a great threat to the survival of shrimp. In the present study, the mRNA expression of endoplasmic reticulum (ER) stress marker and unfolded protein response (UPR) related genes, as well as the change of redox enzyme and apoptosis were investigated in hepatopancreas of the pacific white shrimp, Litopenaeus vannamei after the exposure of 20 mg L(-1) total ammonia nitrogen (TAN). Compared with the control group, the superoxide dismutase (SOD) activity in hepatopancreas decreased significantly (p < 0.05) at 96 h, whereas the malonyldialdehyde (MDA) concentration increased significantly (p < 0.05). The mRNA expression levels of ER stress marker-immunoglobulin heavy chain binding protein (Bip) gene and key UPR related genes including activating transcription factor 4 (ATF4) and the spliced form of X box binding protein 1 (XBP1) increased significantly (p < 0.05) in hepatopancreas at 96 h after exposure to ammonia. In addition, apoptosis was observed obviously in the hepatopancreas of L. vannamei after exposure to ammonia by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The results indicated that ammonia exposure could induce oxidative stress, which further caused ER stress and apoptosis in hepatopancreas of L. vannamei.

  7. A single exposure to particulate or gaseous air pollution increases the risk of aconitine-induced cardiac arrythmia in hypertensive rats

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  8. Airways Hyperresponsiveness Following a Single Inhalation Exposure to Doxorubicin-Induced Heart Failure Prevents Airways Transition Metal-Rich Particulate Matter in Hypertensive Rats

    EPA Science Inventory

    Exposure to particulate matter (PM) air pollution results in airways hyperresponsiveness (AHR), however it also results in adverse cardiovascular effects, particularly in individuals with underlying cardiovascular disease. The impact of pre-existing cardiac deficit on PM-induced ...

  9. Glucocorticoids Prevent Enterovirus 71 Capsid Protein VP1 Induced Calreticulin Surface Exposure by Alleviating Neuronal ER Stress.

    PubMed

    Hu, Dan-Dan; Mai, Jian-Ning; He, Li-Ya; Li, Pei-Qing; Chen, Wen-Xiong; Yan, Jian-Jiang; Zhu, Wei-Dong; Deng, Li; Wei, Dan; Liu, Di-Hui; Yang, Si-Da; Yao, Zhi-Bin

    2017-02-01

    Severe hand-foot-and-mouth disease (HFMD) caused by Enterovirus 71 (EV71) always accompanies with inflammation and neuronal damage in the central nervous system (CNS). During neuronal injuries, cell surface-exposed calreticulin (Ecto-CRT) is an important mediator for primary phagocytosis of viable neurons by microglia. Our data confirmed that brainstem neurons underwent neuronophagia by glia in EV71-induced death cases of HFMD. EV71 capsid proteins VP1, VP2, VP3, or VP4 did not induce apoptosis of brainstem neurons. Interestingly, we found VP1-activated endoplasmic reticulum (ER) stress and autophagy could promote Ecto-CRT upregulation, but ER stress or autophagy alone was not sufficient to induce CRT exposure. Furthermore, we demonstrated that VP1-induced autophagy activation was mediated by ER stress. Meaningfully, we found dexamethasone treatment could attenuate Ecto-CRT upregulation by alleviating VP1-induced ER stress. Altogether, these findings identify VP1-promoted Ecto-CRT upregulation as a novel mechanism of EV71-induced neuronal cell damage and highlight the potential of the use of glucocorticoids to treat severe HFMD patients with CNS complications.

  10. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  11. Up-regulation of Gadd45α after Exposure to Metal Nanoparticles: the Role of Hypoxia Inducible Factor 1α

    PubMed Central

    Feng, Lingfang; Zhang, Yue; Jiang, Mizu; Mo, Yiqun; Wan, Rong; Jia, Zhenyu; Tollerud, David J.; Zhang, Xing; Zhang, Qunwei

    2014-01-01

    The increased development and use of nanoparticles in various fields may lead to increased exposure, directly affecting human health. Our current knowledge of the health effects of metal nanoparticles such as Cobalt and Titanium dioxide (Nano-Co and Nano-TiO2) is limited but suggests that some metal nanoparticles may cause genotoxic effects including cell cycle arrest, DNA damage and apoptosis. The growth arrest and DNA damage-inducible 45α protein (Gadd45α) has been characterized as one of the key players in the cellular responses to a variety of DNA damaging agents. The aim of this study was to investigate the alteration of Gadd45α expression in mouse embryo fibroblasts (PW) exposed to metal nanoparticles and the possible mechanisms. Non-toxic doses of Nano-Co and Nano-TiO2 were selected to treat cells. Our results showed that Nano-Co caused a dose- and time-dependent increase in Gadd45α expression, but Nano-TiO2 did not. To investigate the potential pathways involved in Nano-Co-induced Gadd45α up-regulation, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in PW cells exposed to Nano-Co and Nano-TiO2. Our results showed that exposure to Nano-Co caused HIF-1α accumulation in the nucleus. In addition, hypoxia inducible factor 1α knock-out cells [HIF-1α (−/−)] and its wild-type cells [HIF-1α (+/+)] were used. Our results demonstrated that Nano-Co caused a dose- and time-dependent increase in Gadd45α expression in wild-type HIF-1α (+/+) cells, but only a slight increase in HIF-1α (−/−) cells. Pre-treatment of PW cells with heat shock protein 90 (Hsp90) inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Co significantly abolished the Nano-Co-induced Gadd45α expression. These results suggest that HIF-1α accumulation may be partially involved in the increased Gadd45α expression in cells exposed to Nano-Co. These findings may have important implications for understanding the potential health

  12. MC-LR Exposure Leads to Subfertility of Female Mice and Induces Oxidative Stress in Granulosa Cells

    PubMed Central

    Wu, Jiang; Yuan, Mingming; Song, Yuefeng; Sun, Feng; Han, Xiaodong

    2015-01-01

    Health risk of human exposure to microcystin-leucine arginine (MC-LR) has aroused more and more attention over the past few decades. In the present study, MC-LR was orally administered to female mice at 0, 1, 10 and 40 μg/L for three and six months. We found that chronic exposure to MC-LR at environmental levels could stimulate follicle atresia and lead to decreased developmental follicles, accompanied by a reduction of gonadosomatic index (GSI). In line with the irregular gonadal hormone level and estrus cycles, subfertility of female mice was also confirmed by analyzing numbers of litters and pups. The in vitro study suggested that granulosa cells could uptake MC-LR and should be the target of the toxicant. Oxidative stress in granulose cells