Science.gov

Sample records for exposure induces angiogenesis

  1. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development.

  2. Cellular and molecular mechanisms of inflammation-induced angiogenesis.

    PubMed

    Szade, Agata; Grochot-Przeczek, Anna; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2015-03-01

    Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.

  3. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    PubMed Central

    Liu, D; Pearlman, E; Diaconu, E; Guo, K; Mori, H; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the "molecular saboteurs" to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755562

  4. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  5. Exposure to benzo[a]pyrene impairs decidualization and decidual angiogenesis in mice during early pregnancy.

    PubMed

    Li, Xueyan; Shen, Cha; Liu, Xueqing; He, Junlin; Ding, Yubin; Gao, Rufei; Mu, Xinyi; Geng, Yanqing; Wang, Yingxiong; Chen, Xuemei

    2017-03-01

    Benzo[a]pyrene (BaP) is a ubiquitous environmental persistent organic pollutant and a well-known endocrine disruptor. BaP exposure could alter the steroid balance in females. Endometrium decidualization and decidual angiogenesis are critical events for embryo implantation and pregnancy maintenance during early pregnancy and are modulated by steroids. However, the effect of BaP on decidualization is not clear. This study aimed to explore the effects of BaP on decidualization and decidual angiogenesis in pregnant mice. The result showed that the uteri in the BaP-treated groups were smaller and exhibited an uneven size compared with those in the control group. Artificial decidualization was detected in the uteri of the controls, but weakened decidualization response was observed in the BaP-treated groups. BaP significantly reduced the levels of estradiol, progesterone, and their cognate receptors ER and PR, respectively. The expression of several decidualization-related factors, including FOXO1, HoxA10, and BMP2, were altered after BaP treatment. BaP reduced the expression of cluster designation 34 (CD34), which indicated that the decidual angiogenesis was inhibited by BaP treatment. In addition, BaP induced the downregulation of vascular endothelial growth factor A. These data suggest that oral BaP ingestion compromised decidualization and decidual angiogenesis. Our results provide experimental data for the maternal reproductive toxicity of BaP during early pregnancy, which is very important for a comprehensive risk assessment of BaP on human reproductive health.

  6. Hybrid modeling of tumor-induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Capasso, V.; Alvaro, M.; Carretero, M.

    2014-12-01

    When modeling of tumor-driven angiogenesis, a major source of analytical and computational complexity is the strong coupling between the kinetic parameters of the relevant stochastic branching-and-growth of the capillary network, and the family of interacting underlying fields. To reduce this complexity, we take advantage of the system intrinsic multiscale structure: we describe the stochastic dynamics of the cells at the vessel tip at their natural mesoscale, whereas we describe the deterministic dynamics of the underlying fields at a larger macroscale. Here, we set up a conceptual stochastic model including branching, elongation, and anastomosis of vessels and derive a mean field approximation for their densities. This leads to a deterministic integropartial differential system that describes the formation of the stochastic vessel network. We discuss the proper capillary injecting boundary conditions and include the results of relevant numerical simulations.

  7. Basic Fibroblast Growth Factor Induces Angiogenesis in vitro

    NASA Astrophysics Data System (ADS)

    Montesano, R.; Vassalli, J.-D.; Baird, A.; Guillemin, R.; Orci, L.

    1986-10-01

    Fibroblast growth factors (FGFs) are potent mitogens for vascular and capillary endothelial cells in vitro and can stimulate the formation of blood capillaries (angiogenesis) in vivo. A crucial event in this process is the invasion of the perivascular extracellular matrix by sprouting endothelial cells. Using a recently developed in vitro model of angiogenesis, we show here that highly purified basic pituitary FGF can induce capillary endothelial cells to invade a three-dimensional collagen matrix and to organize themselves to form characteristic tubules that resemble blood capillaries. We also show that basic FGF concomitantly stimulates endothelial cells to produce a urokinase-type plasminogen activator, a protease that has been implicated in the neovascular response. The results demonstrate that basic FGF can stimulate processes that are characteristic of angiogenesis in vivo, including endothelial cell migration, invasion, and production of plasminogen activator.

  8. Fucoidan inhibits angiogenesis induced by multiple myeloma cells.

    PubMed

    Liu, Fen; Luo, Guoping; Xiao, Qing; Chen, Liping; Luo, Xiaohua; Lv, Jinglong; Chen, Lixue

    2016-10-01

    Multiple myeloma (MM) remains an incurable hematological neoplasms. Our previous studies showed that Fucoidan possessed anti-myeloma effect by inducing apoptosis and inhibiting invasion of myeloma cells. In this study, we evaluated the effect of Fucoidan on angiogenesis induced by human myeloma cells and elucidated its possible mechanisms. Multiple myeloma cells were treated with Fucoidan at different concentrations, then the conditioned medium (CM) was collected. The levels of VEGF in the CM were tested by ELISA. The results showed that Fucoidan significantly decreased VEGF secretion by RPMI-8226 and U266 cells. The tube formation assay and migration test on human umbilical vein endothelial cells (HUVECs) were used to examine the effect of Fucoidan on angiogenesis induced by human myeloma cells. The results showed that Fucoidan decreased HUVECs formed tube structures and inhibited HUVECs migration, and suppressed the angiogenic ability of multiple myeloma RPMI-8226 and U266 cells in a dose-dependent manner. The study also showed that Fucoidan downregulated the expression of several kinds of proteins, which may be correlated with the reduction of angiogenesis induced by myeloma cells. Moreover, results were compared from normoxic and hypoxic conditions, they showed that Fucoidan had anti-angiogenic activity. Furthermore, in a multiple myeloma xenograft mouse model, it indicated that Fucoidan negatively affected tumor growth and angiogenesis in vivo. In conclusion, our results demonstrate that Fucoidan was able to interfere with angiogenesis of multiple myeloma cells both in vitro and in vivo and may have a substantial potential in the treatment of MM.

  9. Enriched environment induces angiogenesis and improves neural function outcomes in rat stroke model.

    PubMed

    Yu, Kewei; Wu, Yi; Zhang, Qi; Xie, Hongyu; Liu, Gang; Guo, Zhenzhen; Li, Fang; Jia, Jie; Kuang, Shenyi; Hu, Ruiping

    2014-12-15

    Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury has neuroprotective benefits in animal models, including enhancing functional recovery after ischemic stroke. However, the mechanism underlying this effect remains unclear. To clarify this critical issue, the current study investigated the effects of EE on the improvement of damaged neural function and the induction of angiogenesis. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Neurological status scores were used to evaluate neural function on postoperative days 2, 7, and 14. A beam-walking task was used to test the recovery of motor behavior on postoperative days 2, 5, 10, and 15. We also used a Morris water maze task to examine whether EE protected learning and memory performance. The specific marker of angiogenesis of CD31 was examined by western blot. Angiogenesis around the peri-infarction region was assayed by laser scanning confocal microscopy (LSCM) after 14 days of EE exposure starting 24h after ischemia. Neurological status scores of animals in the EE group were significantly higher than those in the standard housing condition (SC) control group from the seventh day after ischemic. EE accelerated the recovery of motor coordination and integration and also improved learning and memory performance after cerebral ischemia. Furthermore, EE increased CD31 levels and promoted angiogenesis of cortex in the peri-infarction region compared to the SC group. Neural function outcomes are positively correlated with post-ischemia angiogenesis. These findings suggest that EE plays an important role in the recovery of damaged neural function via regulation of angiogenesis after ischemia.

  10. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis.

    PubMed

    Zibrova, Darya; Vandermoere, Franck; Göransson, Olga; Peggie, Mark; Mariño, Karina V; Knierim, Anne; Spengler, Katrin; Weigert, Cora; Viollet, Benoit; Morrice, Nicholas A; Sakamoto, Kei; Heller, Regine

    2017-03-07

    Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.

  11. Aspartame induces angiogenesis in vitro and in vivo models.

    PubMed

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.

  12. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  13. Role of Phosphorylated HDAC4 in Stroke-Induced Angiogenesis

    PubMed Central

    Liu, Juan; Zhou, Xiang; Li, Qing; Zhou, Shu-Min; Hu, Bin; Hu, Guo-Wen; Niu, Xin; Guo, Shang-Chun

    2017-01-01

    Acetylation or deacetylation of chromatin proteins and transcription factors is part of a complex signaling system that is involved in the control of neurological disorders. Recent studies have demonstrated that histone deacetylases (HDACs) exert protective effects in attenuating neuronal injury after ischemic insults. Class IIa HDAC4 is highly expressed in the brain, and neuronal activity depends on the nucleocytoplasmic shuttling of HDAC4. However, little is known about HDAC4 and its roles in ischemic stroke. In this study, we report that phosphorylation of HDAC4 was remarkably upregulated after stroke and blockade of HDAC4 phosphorylation with GÖ6976 repressed stroke-induced angiogenesis. Phosphorylation of HDAC4 was also increased in endothelial cells hypoxia model and suppression of HDAC4 phosphorylation inhibited the tube formation and migration of endothelial cells in vitro. Furthermore, in addition to the inhibition of angiogenesis, blockade of HDAC4 phosphorylation suppressed the expression of genes downstream of HIF-VEGF signaling in vitro and in vivo. These data indicate that phosphorylated HDAC4 may serve as an important regulator in stroke-induced angiogenesis. The protective mechanism of phosphorylated HDAC4 is associated with HIF-VEGF signaling, implicating a novel therapeutic target in stroke. PMID:28127553

  14. Angiogenesis is induced by airway smooth muscle strain.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  15. Investigating the effect of excess caffeine exposure on placental angiogenesis using chicken 'functional' placental blood vessel network.

    PubMed

    Ma, Zheng-Lai; Wang, Guang; Lu, Wen-Hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-02-01

    It is now known that over-consumption of caffeine by pregnant mothers could have detrimental effects on normal fetal development. However, it remains obscure how caffeine's harmful effect impacts directly or indirectly on the developing embryo/fetus through damaging placenta development. In this study, we demonstrated the morphological similarities between the yolk sac and chorioallantoic membranes (CAM) of chick embryos and the villi of the mammalian placenta. Using the chick yolk sac and the CAM as a model, we found that 5-15 µmol per egg of caffeine exposure inhibited angiogenesis. Under the same condition, cell proliferation in extraembryonic mesoderm was reduced while apoptosis was enhanced. Semi-quantitative RT-PCR analysis revealed that caffeine treatment down-regulated VEGF, VEGFR2, PIGF, IGF2 and NRP1 expression, but up-regulated Ang1 and Ang2 expression. We performed in situ hybridization to show VE-cadherin expression and as to demonstrate the blood vessels in the CAM and yolk sac membranes. This distribution of the VE-cadherin(+) blood vessels was determined to be reduced after caffeine treatment. Furthermore, MDA activity was induced after caffeine exposure, but GSH-PX activity was inhibited after caffeine exposure; SOD activity was unchanged as compared with the control. In summary, our results suggest that caffeine exposure could negatively impact on angiogenesis in the chick yolk sac and CAM by targeting angiogenesis-related genes. Some of these genes are also involved in regulating excess ROS generation. The results implied that the negative impact of caffeine on fetal development was partly attributed to impaired placental angiogenesis.

  16. Glycaemic variability affects ischaemia-induced angiogenesis in diabetic mice.

    PubMed

    Biscetti, Federico; Pitocco, Dario; Straface, Giuseppe; Zaccardi, Francesco; de Cristofaro, Raimondo; Rizzo, Paola; Lancellotti, Stefano; Arena, Vincenzo; Stigliano, Egidio; Musella, Tittania; Ghirlanda, Giovanni; Flex, Andrea

    2011-12-01

    The aim of the present study was to investigate the role of GV (glycaemic variability) in diabetic vascular complications and to explore the molecular pathways modulated by glycaemic 'swings'. We developed a murine model. A total of 30 diabetic mice received once daily basal insulin administration plus two oral boluses of glucose solution (GV group, named 'V') and 30 diabetic mice received once daily basal insulin plus two oral boluses of saline solution (stable hyperglycaemia group, named 'S') for a period of 30 days. Glycaemia was measured eight times daily to detect GV. Finally, postischaemic vascularization, induced by hindlimb ischaemia 30 days after diabetes onset, was evaluated. We found that GV was significantly different between S and V groups, whereas no significant difference in the mean glycaemic values was detected. Laser Doppler perfusion imaging and histological analyses revealed that the ischaemia-induced angiogenesis was significantly impaired in V mice compared with S group, after ischaemic injury. In addition, immunostaining and Western blot analyses revealed that impaired angiogenic response in V mice occurred in association with reduced VEGF (vascular endothelial growth factor) production and decreased eNOS (endothelial nitric oxide synthase) and Akt (also called protein kinase B) phosphorylation. In conclusion, we describe a murine model of GV. GV causes an impairment of ischaemia-induced angiogenesis in diabetes, likely to be independent of changes in average blood glucose levels, and this impaired collateral vessel formation is associated with an alteration of the VEGF pathway.

  17. Hypoxia-induced angiogenesis in human hepatocellular carcinoma.

    PubMed

    Kim, Kwang-Rok; Moon, Hyo-Eun; Kim, Kyu-Won

    2002-11-01

    Hepatocellular carcinoma is a typical hypervascular tumor. Generally, hepatocellular carcinoma is developed through liver cirrhosis induced by chronic liver injury. This chronic injury leads to changes in the cellular property of the liver and subsequently causes fibrogenesis to demolish normal liver blood system. The catastrophe of the normal liver blood system leads to the shortage of blood circulation in the liver and causes hypoxia. Moreover, the increased cellularity due to highly proliferative tumor cells also induces local hypoxia inside hepatocellular carcinoma. Hypoxia can stimulate angiogenesis to support tumor growth by induction of angiogenic factors. Thus hypoxia may be a major cause of hypervasculature of hepatocellular carcinoma. Recently it has been reported that several hypoxia-regulatory factors are closely involved in angiogenesis of hepatocellular carcinoma. The stability and function of these factors can be regulated by interaction with other protein factors and consequently modulate the expression of angiogenic factors depending on oxygen tension. Therefore induction mechanism of hypoxia and the role of hypoxia-regulatory factors could provide new insights into hepatocarcinogenesis and the treatment of hepatocellular carcinoma.

  18. Tumor-induced remote ECM network orientation steers angiogenesis

    PubMed Central

    Balcioglu, Hayri E.; van de Water, Bob; Danen, Erik H. J.

    2016-01-01

    Tumor angiogenesis promotes tumor growth and metastasis. Here, we use automated sequential microprinting of tumor and endothelial cells in extracellular matrix (ECM) scaffolds to study its mechanical aspects. Quantitative reflection microscopy shows that tumor spheroids induce radial orientation of the surrounding collagen fiber network up to a distance of five times their radius. Across a panel of ~20 different human tumor cell lines, remote collagen orientation is correlated with local tumor cell migration behavior. Tumor induced collagen orientation requires contractility but is remarkably resistant to depletion of collagen-binding integrins. Microvascular endothelial cells undergo directional migration towards tumor spheroids once they are within the tumor-oriented collagen fiber network. Laser ablation experiments indicate that an intact physical connection of the oriented network with the tumor spheroid is required for mechanical sensing by the endothelial cells. Together our findings indicate that, in conjunction with described activities of soluble angiogenic factors, remote physical manipulation of the ECM network by the tumor can help to steer angiogenesis. PMID:26931404

  19. Nitric Oxide Mediates Bleomycin-Induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

    PubMed Central

    Iyer, Anand Krishnan V.; Ramesh, Vani; Castro, Carlos A.; Kaushik, Vivek; Kulkarni, Yogesh M.; Wright, Clayton A.; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-01-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis. PMID:25919965

  20. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF.

    PubMed

    Iyer, Anand Krishnan V; Ramesh, Vani; Castro, Carlos A; Kaushik, Vivek; Kulkarni, Yogesh M; Wright, Clayton A; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-11-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.

  1. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  2. Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis.

    PubMed

    Liu, Ling-Zhi; Ding, Min; Zheng, Jenny Z; Zhu, Yingxue; Fenderson, Bruce A; Li, Bingyun; Yu, Jing J; Jiang, Bing-Hua

    2015-07-01

    Powder mixtures of tungsten carbide and metallic cobalt (WC-Co) are widely used in various products. Nanoparticles are engineered structures with at least one dimension of 100 nm or smaller. WC-Co is known to be associated with lung injury and diseases. Angiogenesis is a key process during vasculature, carcinogenesis, recovery of injury, and inflammatory diseases. However, the cellular effects of WC-Co nanoparticles on angiogenesis remain to be elucidated. In this study, we investigated angiogenic response and relative mechanisms after exposure to WC-Co nanoparticles. Our results showed that WC-Co nanoparticles at 5 μg/cm(2) induced ROS production which activated AKT and ERK1/2 signaling pathways in lung epithelial cells by reactive oxygen species (ROS) staining and immunoblotting; WC-Co treatment also increased transcriptional activation of AP-1, NF-κB, and VEGF by reporter assay. Further studies demonstrated that ROS are upstream molecules of AKT and ERK signaling pathways; the activation of AP-1, NF-κB, and VEGF was through ROS generation, AKT and ERK1/2 activation. In addition, WC-Co nanoparticles affected the cells to induce angiogenesis by chicken chorioallantoic membrane (CAM) assay. These results illustrate that exposure to WC-Co nanoparticles induces angiogenic response by activating ROS, AKT, and ERK1/2 signaling pathways and the downstream molecules and elucidate the potential molecular mechanisms during this process. This information may be useful for preventing potential damage from nanoparticle exposure in the future.

  3. Peritoneal dialysis fluid-induced angiogenesis in rat mesentery is increased by lactate in the presence or absence of glucose.

    PubMed

    Albrektsson, Ann; Bazargani, Farhan; Wieslander, Anders; Braide, Magnus

    2006-01-01

    Angiogenesis may be an important mechanism behind the functional deterioration of the peritoneum leading to ultrafiltration failure in peritoneal dialysis. The present study was designed to compare the angiogenic properties of lactate-, bicarbonate-, and pyruvate-buffered fluids, evaluated separately with and without glucose. Five different fluids (lactate and bicarbonate with and without 2.5% glucose and pyruvate without glucose) were studied for 5 weeks of twice-daily injections in rats. The respective buffers (40 mmol/l) were adjusted to pH 7.2, and sodium, chloride, calcium, and magnesium were present at standard concentrations. The mesenteric window model, based on observation of the translucent peritoneal sections of the small intestine mesentery, was used for immunohistochemical imaging of microvessels (RECA-1 antigen) and macrophages (ED1 and ED2 antigens). All fluids induced angiogenesis as compared with untreated controls. The lactate-buffered fluids induced larger vascularized zones than did their bicarbonate- and pyruvate-buffered counterparts. Angiogenesis was accompanied by a local recruitment of ED1 macrophages from blood. Addition of glucose to the lactate- and bicarbonate-buffered fluids did not seem to alter their pro-angiogenic properties. In conclusion, intraperitoneal exposure to lactate buffer, compared with bicarbonate, stimulates angiogenesis in the presence or absence of glucose.

  4. Macrophage colony-stimulating factor induces indirect angiogenesis in vivo.

    PubMed

    Phillips, G D; Aukerman, S L; Whitehead, R A; Knighton, D R

    1993-01-01

    The cytokine macrophage colony-stimulating factor was implanted in the rabbit cornea over a wide dose range (1 ng to 100 microg) to assay its angiogenic activity in vivo. Neovascularization occurred in a dose-dependent manner, and maximum angiogenesis occurred only with 100 microg. Histologic analysis revealed that the corneas were free of inflammation at the lower doses, but had slight inflammation at 50 and 100 microg. Nonspecific esterase staining of frozen sections and transmission electron microscopy revealed that the inflammatory cells were predominantly macrophages, with very few neutrophils present. This association of capillary formation with inflammation suggests an indirect mechanism of angiogenesis. The lack of neutrophils within the inflammatory cell infiltrate demonstrates that indirect angiogenesis can proceed without the local presence of neutrophils. This distinguishes macrophage colony-stimulating factor from other indirect-acting angiogenesis factors that have been identified to date.

  5. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    SciTech Connect

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan; Deng, Pengchi; Lv, Lei; Wu, Dan; Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan; Cen, Xiaobo

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  6. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2S availability

    PubMed Central

    Terzuoli, E; Monti, M; Vellecco, V; Bucci, M; Cirino, G; Ziche, M; Morbidelli, L

    2015-01-01

    Background and Purpose Hydrogen sulfide (H2S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2S availability. Experimental Approach HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. Key Results Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP) channels, the molecular target that mediates part of the vascular functions of H2S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2S response to H2S and KATP activation. Conclusions and Implications Zofenoprilat induced a constant production of H2S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced. PMID:25631232

  7. Ethanol enhances tumor angiogenesis in vitro induced by low-dose arsenic in colon cancer cells through hypoxia-inducible factor 1 alpha pathway.

    PubMed

    Wang, Lei; Son, Young-Ok; Ding, Songze; Wang, Xin; Hitron, John Andrew; Budhraja, Amit; Lee, Jeong-Chae; Lin, Qinchen; Poyil, Pratheeshkumar; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-12-01

    Health effects due to environmental exposure to arsenic are a major global health concern. Arsenic has been known to induce carcinogenesis and enhance tumor development via complex and unclear mechanism. Ethanol is also a well-established risk factor for many malignancies. However, little is known about the effects of coexposure to arsenic and ethanol in tumor development. In this study, we investigate the signaling and angiogenic effect of coexposure of arsenic and ethanol on different colon cancer cell lines. Results show that ethanol markedly enhanced arsenic-induced tumor angiogenesis in vitro. These responses are related to intracellular reactive oxygen species (ROS) generation, NADPH oxidase activation, and upregulation of PI3K/Akt and hypoxia-inducible factor 1 alpha (HIF-1α) signaling. We have also found that ethanol increases the arsenic-induced expression and secretion of angiogenic signaling molecules such as vascular endothelial growth factor, which further confirmed the above observation. Antioxidant enzymes inhibited arsenic/ethanol-induced tumor angiogenesis, demonstrating that the responsive signaling pathways of coexposure to arsenic and ethanol are related to ROS generation. We conclude that ethanol is able to enhance arsenic-induced tumor angiogenesis in colorectal cancer cells via the HIF-1α pathway. These results indicate that alcohol consumption should be taken into consideration in the investigation of arsenic-induced carcinogenesis in arsenic-exposed populations.

  8. Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis

    PubMed Central

    Chang, Hyun-Kyung; Kim, Pyung-Hwan; Cho, Hyun-Min; Yum, Soo-Young; Choi, Young-Jin; Son, YeonSung; Lee, DaBin; Kang, InSung; Kang, Kyung-Sun; Jang, Goo; Cho, Je-Yoel

    2016-01-01

    Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3–5 minutes). Thus, continuous treatment with HGF is required to obtain an effective therapeutic response. To overcome these limitations, we produced genome-edited MSCs that secreted HGF upon drug-specific induction. The inducible HGF expression cassette was integrated into a safe harbor site in an MSC chromosome using the TALEN system, resulting in the production of TetOn-HGF/human umbilical cord blood-derived (hUCB)-MSCs. Functional assessment of the TetOn-HGF/hUCB-MSCs showed that they had enhanced mobility upon the induction of HGF expression. Moreover, long-term exposure by doxycycline (Dox)-treated TetOn-HGF/hUCB-MSCs enhanced the anti-apoptotic responses of genome-edited MSCs subjected to oxidative stress and improved the tube-formation ability. Furthermore, TetOn-HGF/hUCB-MSCs encapsulated by arginine-glycine-aspartic acid (RGD)-alginate microgel induced to express HGF improved in vivo angiogenesis in a mouse hindlimb ischemia model. This study showed that the inducible HGF-expressing hUCB-MSCs are competent to continuously express and secrete HGF in a controlled manner. Thus, the MSCs that express HGF in an inducible manner are a useful therapeutic modality for the treatment of vascular diseases requiring angiogenesis. PMID:27434585

  9. Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis.

    PubMed

    Chang, Hyun-Kyung; Kim, Pyung-Hwan; Cho, Hyun-Min; Yum, Soo-Young; Choi, Young-Jin; Son, YeonSung; Lee, DaBin; Kang, InSung; Kang, Kyung-Sun; Jang, Goo; Cho, Je-Yoel

    2016-09-01

    Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3-5 minutes). Thus, continuous treatment with HGF is required to obtain an effective therapeutic response. To overcome these limitations, we produced genome-edited MSCs that secreted HGF upon drug-specific induction. The inducible HGF expression cassette was integrated into a safe harbor site in an MSC chromosome using the TALEN system, resulting in the production of TetOn-HGF/human umbilical cord blood-derived (hUCB)-MSCs. Functional assessment of the TetOn-HGF/hUCB-MSCs showed that they had enhanced mobility upon the induction of HGF expression. Moreover, long-term exposure by doxycycline (Dox)-treated TetOn-HGF/hUCB-MSCs enhanced the anti-apoptotic responses of genome-edited MSCs subjected to oxidative stress and improved the tube-formation ability. Furthermore, TetOn-HGF/hUCB-MSCs encapsulated by arginine-glycine-aspartic acid (RGD)-alginate microgel induced to express HGF improved in vivo angiogenesis in a mouse hindlimb ischemia model. This study showed that the inducible HGF-expressing hUCB-MSCs are competent to continuously express and secrete HGF in a controlled manner. Thus, the MSCs that express HGF in an inducible manner are a useful therapeutic modality for the treatment of vascular diseases requiring angiogenesis.

  10. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John H.; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100 mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios towards males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  11. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways.

    PubMed

    Guo, Junhong; Linetsky, Mikhail; Yu, Annabelle O; Zhang, Liang; Howell, Scott J; Folkwein, Heather J; Wang, Hua; Salomon, Robert G

    2016-12-19

    Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF

  12. Cardamonin Regulates miR-21 Expression and Suppresses Angiogenesis Induced by Vascular Endothelial Growth Factor

    PubMed Central

    Jiang, Fu-Sheng; Tian, Sha-Sha; Lu, Jin-Jian; Ding, Xing-Hong; Qian, Chao-Dong; Ding, Bin; Ding, Zhi-Shan; Jin, Bo

    2015-01-01

    Cardamonin has promising potential in cancer prevention and therapy by interacting with proteins and modifying the expressions and activities, including factors of cell survival, proliferation, and angiogenesis. In our precious study, we have demonstrated that cardamonin suppressed vascular endothelial growth factor- (VEGF-) induced angiogenesis as evaluated in the mouse aortic ring assay. It is also known that microRNAs (miRNAs) play important roles in angiogenesis. Herein, we hypothesized whether antiangiogenesis effect of cardamonin in human umbilical vein endothelial cells (HUVECs) triggered by VEGF was associated with miRNAs. We found that cardamonin reduced the miR-21 expression induced by VEGF in HUVECs. Treatment with miR-21 mimics abolished the effects of cardamonin on VEGF-induced cell proliferation, migration, and angiogenesis in HUVECs. However, treatment with miR-21 inhibitors presented the opposite effects, indicating the vital role of miR-21 in this process. Our study provides a new insight of the preliminary mechanism of anti-VEGF-induced angiogenesis by cardamonin in HUVECs. PMID:26266258

  13. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    PubMed

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  14. Chronic morphine treatment inhibits LPS-induced angiogenesis: implications in wound healing.

    PubMed

    Martin, Josephine L; Charboneau, Richard; Barke, Roderick A; Roy, Sabita

    2010-01-01

    Delayed wound healing is a chronic problem in opioid drug abusers. We investigated the role chronic morphine plays on later stages of wound healing events using an angiogenesis model. Our results show that morphine treatment resulted in a significant decrease in inflammation induced angiogenesis. To delineate the mechanisms involved we investigate the role of hypoxia inducible factor 1 alpha (HIF-1 alpha), a potent inducer of angiogenic growth factor. Morphine treatment resulted in a significant decrease in the expression and nuclear translocation of HIF-1 alpha with a concurrent suppression in vascular endothelial growth factor (VEGF) synthesis. Cells of the innate immune system play a dominant role in the angiogenic process. Morphine treatment inhibited early recruitment of both neutrophils and monocytes towards an inflammatory signal with a significant decrease in the monocyte chemoattractant MCP-1. Taken together, our studies show that morphine regulates the wound repair process on multiple levels. Morphine acts both directly and indirectly in suppressing angiogenesis.

  15. Activation of VEGF and FGF induced angiogenesis under influence of low level laser radiation in vitro

    NASA Astrophysics Data System (ADS)

    Gasparyan, Levon; Brill, Grigory; Makela, Anu

    2006-02-01

    One of the feasible explanations for long-term treatment effects of laser therapy of diseases connected with tissue ischemia and altered blood circulation is activation of angiogenesis after low level laser irradiation. The aim of the current study was to investigate if laser irradiation can enhance vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (FGF) induced angiogenesis in vitro. The study was conducted on rat thoracic aortal rings. Samples of group 1 served as control, samples of groups 2 and 3 were incubated with VEGF or FGF, group 4 samples were irradiated with laser (660 nm, 20 mW) during 10 min, samples of groups 5 and 6 were incubated with VEGF or FGF accordingly and received 10 min of laser irradiation. In the control group no noticeable angiogenesis occurred. The application of VEGF activated angiogenesis: the area covered by new vessels was 1,3+/-0,24 mm2 and the maximal length of vessels was 0,93+/-0,11 mm. Laser light irradiation (group 4) activated angiogenesis (1,9+/-0,29 mm2 and 0,75+/-0,10 mm). The combined influence of laser light and VEGF on angiogenesis (group 5) was significantly stronger (p <0,001), than each of the factors separately (6,98+/-0,88 mm2 and 1,7+/-0,23 mm). Application of FGF also activated angiogenesis: the area covered by new vessels was 2,76+/-0,22 mm2 and the maximal length of vessels was 1,19+/-0,12 mm. Combined influence of laser light and FGF on angiogenesis (group 6) was again significantly stronger (p <0,001), than each of the factors separately (5,43+/-0,28 mm2 and 1,99+/-0,10 mm). Studies show that laser irradiation can intensify effects of growth factors in vitro.

  16. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    SciTech Connect

    Baek, Yi-Yong; Lee, Dong-Keon; So, Ju-Hoon; Kim, Cheol-Hee; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Won, Moo-Ho; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  17. Intramuscular Injection of Angiogenic Gene with Bubble Liposomes Followed by Ultrasound Exposure to Improve Angiogenesis

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Matsuo, Keiko; Endo-Takahashi, Yoko; Suzuki, Kentaro; Matsuki, Yuuki; Takagi, Norio; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2011-09-01

    Ultrasound (US) in combination with microbubbles has recently engendered much attention as a safe method of gene delivery. Previously, we have developed polyethyleneglycol (PEG)-modified liposomes entrapping echo-contrast gas. We have called the liposomes "Bubble liposomes" (BLs). In this study, to assess the feasibility and the effectiveness of BLs for angiogenic gene delivery in clinical use, we tried to deliver bFGF (an angiogenic factor) expressing plasmid DNA into a mouse hindlimb ischemia model by the combination of BLs and US exposure. After femoral artery ligation, the hindlimb of ischemic mice were treated with BLs and US-mediated intramuscular gene transfer of bFGF expressing plasmid DNA. After the treatment, blood flow was determined over 2 weeks using laser doppler blood flow meter. As a result, the blood flow in the treated groups with BLs and US-mediated the gene transfer was quickly measured, and compared to other treatment groups (non-treated, bFGF alone, or bFGF+US). Furthermore, the number of CD31 positive cells was higher in the treatment groups with BLs and US-mediated the gene transfer than in other treatment groups. These results suggest that intramuscular injection of bFGF as an angiogenic gene with Bubble liposomes followed by ultrasound exposure improved angiogenesis in the ischemic muscle. Thus, gene transfer into the ischemic muscle by the combination of BLs and US exposure is an effective means of angiogenic gene therapy.

  18. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis.

    PubMed

    Low-Marchelli, Janine M; Ardi, Veronica C; Vizcarra, Edward A; van Rooijen, Nico; Quigley, James P; Yang, Jing

    2013-01-15

    The transcription factor Twist1 induces epithelial-mesenchymal transition and extracellular matrix degradation to promote tumor metastasis. Although Twist1 also plays a role in embryonic vascular development and tumor angiogenesis, the molecular mechanisms that underlie these processes are not as well understood. Here, we report a novel function for Twist1 in modifying the tumor microenvironment to promote progression. We found that expression of Twist1 in human mammary epithelial cells potently promoted angiogenesis. Surprisingly, Twist1 expression did not increase the secretion of the common proangiogenic factors VEGF and basic fibroblast growth factor but rather induced expression of the macrophage chemoattractant CCL2. Attenuation of endogenous Twist1 in vivo blocked macrophage recruitment and angiogenesis, whereas exogenous CCL2 rescued the ability of tumor cells lacking Twist1 to attract macrophages and promote angiogenesis. Macrophage recruitment also was essential for the ability of Twist1-expressing cells to elicit a strong angiogenic response. Together, our findings show that how Twist1 recruits stromal macrophages through CCL2 induction to promote angiogenesis and tumor progression. As Twist1 expression has been associated with poor survival in many human cancers, this finding suggests that anti-CCL2 therapy may offer a rational strategy to treat Twist1-positive metastatic cancers.

  19. Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis

    PubMed Central

    Haddad, Oualid; Guyot, Erwan; Marinval, Nicolas; Chevalier, Fabien; Maillard, Loïc; Gadi, Latifa; Laguillier-Morizot, Christelle; Oudar, Olivier; Sutton, Angela; Charnaux, Nathalie; Hlawaty, Hanna

    2015-01-01

    Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4), in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC) migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expression. Silencing EXT2 or HPSE leads to an increased expression of SDC-4, providing the evidence that EXT2 and HPSE regulate the SDC-4 expression. Altogether, these data indicate that EXT2, HPSE, and SDC-4 are involved in the proangiogenic effects of LMWF, suggesting that the HS metabolism changes linked to LMWF-induced angiogenesis offer the opportunity for new therapeutic strategies of ischemic diseases. PMID:26516869

  20. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing.

    PubMed

    Dvorak, H F; Harvey, V S; Estrella, P; Brown, L F; McDonagh, J; Dvorak, A M

    1987-12-01

    Fibrin deposition is a consistent early event in solid tumors and healing wounds and precedes new blood vessel ingrowth in both. We now demonstrate that fibrin gels of themselves induce an angiogenic response in the absence of tumor cells or platelets. Angiogenesis was enhanced when certain chemoattractants or mitogens were included in the fibrin gel. Newly devised, inert plastic chambers with one porous surface were filled with varying contents and were implanted in the subcutaneous space of guinea pigs. Chambers filled with cross-linked homologous fibrin or plasma induced an angiogenic response within 4 days. Vessels entered chambers through the surface pores and flared out radially; angiogenesis was quantitated by point counting. Vessels were functional and matured along a gradient that proceeded from distal (least mature) to proximal. The intensity of the angiogenic response was enhanced when zymosan activated serum, an N-formylmethionine tripeptide, or platelet-derived growth factor was included in the fibrin matrix. Prior aldehyde fixation or boiling of fibrin-filled chambers inhibited angiogenesis, as did high concentrations of hyaluronic acid. Chambers filled with type I collagen or agarose did not induce new blood vessel formation, but addition of collagen did not reduce fibrin's capacity to initiate angiogenesis. The novel assay introduced here offers several advantages that should facilitate the study of angiogenesis. These include reproducibility, low background, objective and quantitative scoring, and the capacity to evaluate native molecules in animals of several species. Taken together, our findings strongly implicate fibrin or related proteins in the pathogenesis of angiogenesis and offer a new approach for elucidating the underlying molecular mechanisms.

  1. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    PubMed Central

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137

  2. Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training.

    PubMed

    Amaral, S L; Papanek, P E; Greene, A S

    2001-09-01

    Results from our laboratory have suggested a pathway involving angiotensin II type 1 (AT(1)) receptors and vascular endothelial growth factor (VEGF) in angiogenesis induced by electrical stimulation. The present study investigated if similar mechanisms underlie the angiogenesis induced by short-term exercise training. Seven days before training and throughout the training period, male Sprague-Dawley rats received either captopril or losartan in their drinking water. Rats underwent a 3-day treadmill training protocol. The tibialis anterior and gastrocnemius muscles were harvested under anesthesia and lightly fixed in formalin (vessel density) or frozen in liquid nitrogen (VEGF expression). In controls, treadmill training resulted in a significant increase in vessel density in all muscles studied. However, the angiogenesis induced by exercise was completely blocked by either losartan or captopril. Western blot analysis showed that VEGF expression was increased in the exercised control group, and both losartan and captopril blocked this increase. The role of VEGF was directly confirmed using a VEGF-neutralizing antibody. These results confirm the role of angiotensin II and VEGF in angiogenesis induced by exercise.

  3. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  4. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis.

    PubMed

    Wang, Li-Jing; Zhao, Yuan; Han, Bing; Ma, Yu-Guang; Zhang, Jie; Yang, Ding-Ming; Mao, Jian-Wen; Tang, Fu-Tian; Li, Wei-Dong; Yang, Yang; Wang, Rui; Geng, Jian-Guo

    2008-03-01

    Slit is a secreted protein known to function through the Roundabout (Robo) receptor as a repellent for axon guidance and neuronal migration, and as an inhibitor in leukocyte chemotaxis. We have previously shown that Slit2 is also secreted by a variety of human cancer cells whereby it acts as a chemoattractant to vascular endothelial cells for tumor angiogenesis. We used a blocking antibody to investigate the role of Slit-Robo signaling in tumor angiogenesis during oral carcinogenesis. In this report we undertook a multistage model of 7,12-dimethyl-1,2-benzanthracene-induced squamous cell carcinoma in the hamster buccal pouch. R5, a monoclonal antibody against the first immunoglobulin domain of Robo1, was used to study whether R5 blocks the Slit-Robo interaction and furthermore inhibits tumor angiogenesis and growth in our model. In addition, the expression of Slit2, von Willebrand factor, and vascular endothelial growth factor were examined using human tissue of oral cheek mucosa with oral squamous cell carcinoma. Our data showed that Slit2 was expressed minimally in normal and hyperplastic mucosa, moderately in dysplastic mucosa, and highly in neoplastic mucosa obtained from hamster buccal pouch. We also found that increased Slit2 expression was associated with higher tumor angiogenesis, as reflected by increased vascular endothelial growth factor expression and microvessel density. A similar Slit2 expression profile was found in human tissue. Importantly, interruption of the Slit2-Robo interaction using R5 inhibited tumor angiogenesis and growth in our in vivo model, which indicates that Slit2-mediated tumor angiogenesis is a critical process underlying the carcinogenesis of chemical-induced squamous cell carcinoma. Therefore, targeting Slit-Robo signaling may offer a novel antiangiogenesis approach for oral cancer therapy.

  5. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    PubMed

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  6. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    SciTech Connect

    He, Yan-qing; Li, Yan; Wang, Xiao-yu; He, Xiao-dong; Jun, Li; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Ju; Wang, Li-jing; Yang, Xuesong

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  7. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles

    PubMed Central

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C.; Langer, Robert

    2016-01-01

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  8. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential

    PubMed Central

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S.; Bielenberg, Diane R.; D’Amato, Robert J.

    2015-01-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.—Adini, I., Adini, A., Bazinet, L., Watnick, R. S., Bielenberg, D. R., and D’Amato, R. J. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential. PMID:25406462

  9. Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer

    PubMed Central

    Nangia-Makker, Pratima; Wang, Yi; Raz, Tirza; Tait, Larry; Balan, Vitaly; Hogan, Victor; Raz, Avraham

    2012-01-01

    Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly responsible for tumor growth, angiogenesis and apoptosis resistance in mouse models. A functional polymorphism in galectin-3 gene, determining its susceptibility to cleavage by matrix metalloproteinases (MMPs)-2/-9 is related to racial disparity in breast cancer incidence in Asian and Caucasian women. The purpose of our study is to evaluate (i) if cleavage of galectin-3 could be related to angiogenesis during the progression of human breast cancer, (ii) the role of cleaved galectin-3 in induction of angiogenesis and (iii) determination of the galectin-3 domain responsible for induction of angiogenic response. Galectin-3 null breast cancer cells BT-459 were transfected with either cleavable full-length galectin-3 or its fragmented peptides. Chemotaxis, chemoinvasion, heterotypic aggregation, epithelial-endothelial cell interactions and angiogenesis were compared to noncleavable galectin-3. BT-549-H64 cells harboring cleavable galectin-3 exhibited increased chemotaxis, invasion and interactions with endothelial cells resulting in angiogenesis and 3D morphogenesis compared to BT-549-P64 cells harboring noncleavable galectin-3. BT-549-H64 cells induced increased migration and phosphorylation of focal adhesion kinase in migrating endothelial cells. Endothelial cells cocultured with BT-549 cells transfected with galectin-3 peptides indicate that amino acids 1–62 and 33–250 stimulate migration and morphogenesis of endothelial cells. Immunohistochemical analysis of blood vessel density and galectin-3 cleavage in a breast cancer progression tissue array support the in vitro findings. We conclude that the cleavage of the N terminus of galectin-3 followed by its release in the tumor microenvironment in part leads to breast cancer angiogenesis and progression. PMID:20162566

  10. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo.

    PubMed

    Zimmerer, Rüdiger M; Matthiesen, Peter; Kreher, Fritjof; Kampmann, Andreas; Spalthoff, Simon; Jehn, Philipp; Bittermann, Gido; Gellrich, Nils-Claudius; Tavassol, Frank

    2016-03-01

    Tumor angiogenesis is essential for tumor growth and metastasis, and is regulated by a complex network of various types of cells, chemokines, and stimulating factors. In contrast to sprouting angiogenesis, tumor angiogenesis is also influenced by hypoxia, inflammation, and the attraction of bone-marrow-derived cells. Recently, cancer stem cells have been reported to mimic vascularization by differentiating into endothelial cells and inducing vessel formation. In this study, the influence of cancer stem cells on initial angiogenesis was evaluated for the metastatic melanoma cell line D10. Following flow cytometry, CD133+ and CD133- cells were isolated using magnetic cell separation and different cell fractions were transferred to porcine gelatin sponges, which were implanted into the dorsal skinfold chamber of immunocompromised mice. Angiogenesis was analyzed based on microvessel density over a 10-day period using in vivo fluorescence microscopy, and the results were verified using immunohistology. CD133+ D10 cells showed a significant induction of early angiogenesis in vivo, contrary to CD133- D10 cells, unsorted D10 cells, and negative control. Neovascularization was confirmed by visualizing endothelial cells by immunohistology using an anti-CD31 antibody. Because CD133+ cells are rare in clinical specimens and hardly amenable to functional assays, the D10 cell line provides a suitable model to study the angiogenic potential of putative cancer stem cells and the leukocyte-endothelial cell interaction in the dorsal skinfold chamber in vivo. This cancer stem cell model might be useful in the development and evaluation of therapeutic agents targeting tumors.

  11. Inhibition of hyperglycemia-induced angiogenesis and breast cancer tumor growth by systemic injection of microRNA-467 antagonist.

    PubMed

    Krukovets, Irene; Legerski, Matthew; Sul, Pavel; Stenina-Adognravi, Olga

    2015-09-01

    Abnormal angiogenesis in multiple tissues is a key characteristic of the vascular complications of diabetes. However, angiogenesis may be increased in one tissue but decreased in another in the same patient at the same time point in the disease. The mechanisms of aberrant angiogenesis in diabetes are not understood. There are no selective therapeutic approaches to target increased neovascularization without affecting physiologic angiogenesis and angiogenesis in ischemic tissues. We recently reported a novel miRNA-dependent pathway that up-regulates angiogenesis in response to hyperglycemia in a cell- and tissue-specific manner. The goal of the work described herein was to test whether systemic administration of an antagonist of miR-467 would prevent hyperglycemia-induced local angiogenesis in a tissue-specific manner. We examined the effect of the antagonist on hyperglycemia-induced tumor growth and angiogenesis and on skin wound healing in mouse models of diabetes. Our data demonstrated that the systemic injection of the antagonist prevented hyperglycemia-induced angiogenesis and growth of mouse and human breast cancer tumors, where the miR-467 pathway was active in hyperglycemia. In tissues where the miR-467-dependent mechanism was not activated by hyperglycemia, there was no effect of the antagonist: the systemic injection did not affect skin wound healing or the growth of prostate tumors. The data show that systemic administration of the miR-467 antagonist could be a breakthrough approach in the treatment and prevention of diabetes-associated breast cancer in a tissue-specific manner without affecting physiologic angiogenesis and angiogenesis in ischemic tissues.

  12. LOX-1 plays an important role in ischemia-induced angiogenesis of limbs.

    PubMed

    Shiraki, Takeru; Aoyama, Takuma; Yokoyama, Chiharu; Hayakawa, Yuka; Tanaka, Toshiki; Nishigaki, Kazuhiko; Sawamura, Tatsuya; Minatoguchi, Shinya

    2014-01-01

    LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic

  13. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases.

  14. Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma

    PubMed Central

    Gorantla, Bharathi; Bhoopathi, Praveen; Chetty, Chandramu; Gogineni, Venkateswara Rao; Sailaja, GS; Gondi, Christopher S.; Rao, Jasti S.

    2012-01-01

    Despite existing aggressive treatment modalities, the prognosis for advanced stage neuroblastoma remains poor with significant long-term illness in disease survivors. Advance stage disease features are associated with tumor vascularity, and as such, angiogenesis inhibitors may prove useful along with current therapies. The matricellular protein, secreted protein acidic and rich in cysteine (SPARC), is known to inhibit proliferation and migration of endothelial cells stimulated by growth factors. Here, we sought to determine the effect of SPARC on neuroblastoma tumor cell-induced angiogenesis and to decipher the molecular mechanisms involved in angiogenesis inhibition. Conditioned medium from SPARC-overexpressed neuroblastoma cells (pSPARC-CM) inhibited endothelial tube formation, cell proliferation, induced programmed cell death and suppressed expression of pro-angiogenic molecules such as VEGF, FGF, PDGF, and MMP-9 in endothelial cells. Further analyses revealed that pSPARC-CM-suppressed expression of growth factors was mediated by inhibition of the Notch signaling pathway, and cells cultured on conditioned medium from tumor cells that overexpress both Notch intracellular domain (NICD-CM) and SPARC resumed the pSPARC-CM-suppressed capillary tube formation and growth factor expression in vitro. Further, SPARC overexpression in neuroblastoma cells inhibited neo-vascularization in vivo in a mouse dorsal air sac model. Furthermore, SPARC overexpression-induced endothelial cell death was observed by co-localization studies with TUNEL assay and an endothelial marker, CD31, in xenograft tumor sections from SPARC-overexpressed mice. Our data collectively suggest that SPARC overexpression induces endothelial cell apoptosis and inhibits angiogenesis both in vitro and in vivo. PMID:22956186

  15. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis.

    PubMed

    Hu, Zhiwei; Brooks, Samira A; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Prudhomme, Kalan R; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Lowe, Leroy; Jensen, Lasse; Bisson, William H; Kleinstreuer, Nicole

    2015-06-01

    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.

  16. A Model for Breast Cancer-Induced Angiogenesis

    DTIC Science & Technology

    1996-09-01

    Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase...Jensen, H. M., Chen, I., DeVault, M. R., and Lewis , A. E. Angio- Cancer Res. Treat., 11: 241-248, 1988. genesis induced by "normal" human breast

  17. A Model for Breast Cancer-Induced Angiogenesis

    DTIC Science & Technology

    1999-09-01

    M ., Roesel, J. L ., Benz, rally) regulated. For instance, our data show that PD-ECGF C., Mueller, H., Matter, A., Zuber, M ., Luescher, K., Litschgi, M ...Harris, A. L ., and Bicknell, R. 2. Heffelfimger, S. C., Yassin, R., Miller, M . A., and Lower, E. Vascu- Thymidine phosphorylase is angiogenic and promotes... Gullino , P. M . Neovascularization induced by breast precancerous? Arch. Pathol. Lab, Med., 110: 171-173, 1985. intraocular xenografts of normal

  18. Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    PubMed Central

    Han, Ihn; Jung, Ji Hoon; Lee, Eun-Ok; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-01-01

    Background We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells. PMID:20808805

  19. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation.

    PubMed

    Fantozzi, Anna; Gruber, Dorothea C; Pisarsky, Laura; Heck, Chantal; Kunita, Akiko; Yilmaz, Mahmut; Meyer-Schaller, Nathalie; Cornille, Karen; Hopfer, Ulrike; Bentires-Alj, Mohamed; Christofori, Gerhard

    2014-03-01

    An epithelial-mesenchymal transition (EMT) underlies malignant tumor progression and metastatic spread by enabling cancer cells to depart from the primary tumor, invade surrounding tissue, and disseminate to distant organs. EMT also enriches for cancer stem cells (CSC) and increases the capacity of cancer cells to initiate and propagate tumors upon transplantation into immune-deficient mice, a major hallmark of CSCs. However, the molecular mechanisms promoting the tumorigenicity of cancer cells undergoing an EMT and of CSCs have remained widely elusive. We here report that EMT confers efficient tumorigenicity to murine breast cancer cells by the upregulated expression of the proangiogenic factor VEGF-A and by increased tumor angiogenesis. On the basis of these data, we propose a novel interpretation of the features of CSCs with EMT-induced, VEGF-A-mediated angiogenesis as the connecting mechanism between cancer cell stemness and tumor initiation.

  20. Tumour angiogenesis.

    PubMed Central

    Arnold, F.

    1985-01-01

    Tumours induce the growth of host blood vessels to support their proliferation. This process of angiogenesis is evoked by specific chemical signals. Recognition of these angiogenic factors has led to experimental methods for cancer diagnosis and for inhibiting malignant growth by specifically blocking neovascularisation. The clinical potential of these techniques is discussed. PMID:2413796

  1. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice

    PubMed Central

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G.; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I.

    2003-01-01

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 ± 21 versus 47 ± 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation. PMID:12805564

  2. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice.

    PubMed

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I

    2003-07-08

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.

  3. Suppression of Akt-HIF-1α signaling axis by diacetyl atractylodiol inhibits hypoxia-induced angiogenesis

    PubMed Central

    Choi, Sik-Won; Lee, Kwang-Sik; Lee, Jin Hwan; Kang, Hyeon Jung; Lee, Mi Ja; Kim, Hyun Young; Park, Kie-In; Kim, Sun-Lim; Shin, Hye Kyoung; Seo, Woo Duck

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α is a key regulator associated with tumorigenesis, angiogenesis, and metastasis. HIF-1α regulation under hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. Here, we demonstrate that diacetyl atractylodiol (DAA) from Atractylodes japonica (A. japonica) is a potent HIF-1α inhibitor that inhibits the Akt signaling pathway. DAA dose-dependently inhibited hypoxia-induced HIF-1α and downregulated Akt signaling without affecting the stability of HIF-1α protein. Furthermore, DAA prevented hypoxia-mediated angiogenesis based on in vitro tube formation and in vivo chorioallantoic membrane (CAM) assays. Therefore, DAA might be useful for treatment of hypoxia-related tumorigenesis, including angiogenesis. [BMB Reports 2016; 49(9): 508-513] PMID:27439603

  4. Role of Jagged1-Hey1 Signal in Angiotensin II-induced Impairment of Myocardial Angiogenesis

    PubMed Central

    Guan, Ai-Li; He, Tao; Shao, Yi-Bing; Chi, Yi-Fan; Dai, Hong-Yan; Wang, Yan; Xu, Li; Yang, Xuan; Ding, Hua-Min; Cai, Shang-Lang

    2017-01-01

    Background: Angiotensin II (Ang II) is a major contributor to the development of heart failure. However, the molecular and cellular mechanisms that underlie this process remain elusive. Inadequate angiogenesis in the myocardium leads to a transition from cardiac hypertrophy to dysfunction, and our previous study showed that Ang II significantly impaired the angiogenesis response. The current study was designed to examine the role of Jagged1-Notch signaling in the effect of Ang II during impaired angiogenesis and cardiac hypertrophy. Methods: Ang II was subcutaneously infused into 8-week-old male C57BL/6 mice at a dose of 200 ng·kg−1·min−1 for 2 weeks using Alzet micro-osmotic pumps. N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine tert-butyl ester (DAPT), a γ-secretase inhibitor, was injected subcutaneously during Ang II infusion at a dose of 10.0 mg·kg−1·d−1. Forty mice were divided into four groups (n = 10 per group): control group; Ang II group, treated with Ang II; DAPT group, treated with DAPT; and Ang II + DAPT group, treated with both Ang II and DAPT. At the end of experiments, myocardial (left ventricle [LV]) tissue from each experimental group was evaluated using immunohistochemistry, Western blotting, and real-time polymerase chain reaction. Data were analyzed using one-way analysis of variance test followed by the least significant difference method or independent samples t-test. Results: Ang II treatment significantly induced cardiac hypertrophy and impaired the angiogenesis response compared to controls, as shown by hematoxylin and eosin (HE) staining and immunohistochemistry for CD31, a vascular marker (P < 0.05 for both). Meanwhile, Jagged1 protein was significantly increased, but gene expression for both Jag1 and Hey1 was decreased in the LV following Ang II treatment, compared to that in controls (relative ratio for Jag1 gene: 0.45 ± 0.13 vs. 0.84 ± 0.15; relative ratio for Hey1 gene: 0.51 ± 0.08 vs. 0.91 ± 0.09; P < 0

  5. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis.

    PubMed Central

    Coughlin, C M; Salhany, K E; Wysocka, M; Aruga, E; Kurzawa, H; Chang, A E; Hunter, C A; Fox, J C; Trinchieri, G; Lee, W M

    1998-01-01

    The antitumor effect and mechanisms activated by murine IL-12 and IL-18, cytokines that induce IFN-gamma production, were studied using engineered SCK murine mammary carcinoma cells. In syngeneic A/J mice, SCK cells expressing mIL-12 or mIL-18 were less tumorigenic and formed tumors more slowly than control cells. Neither SCK.12 nor SCK.18 cells protected significantly against tumorigenesis by distant SCK cells. However, inoculation of the two cell types together synergistically protected 70% of mice from concurrently injected distant SCK cells and 30% of mice from SCK cells established 3 d earlier. Antibody neutralization studies revealed that the antitumor effects of secreted mIL-12 and mIL-18 required IFN-gamma. Interestingly, half the survivors of SCK.12 and/or SCK.18 cells developed protective immunity suggesting that anti-SCK immunity is unlikely to be responsible for protection. Instead, angiogenesis inhibition, assayed by Matrigel implants, appeared to be a property of both SCK.12 and SCK.18 cells and the two cell types together produced significantly greater systemic inhibition of angiogenesis. This suggests that inhibition of tumor angiogenesis is an important part of the systemic antitumor effect produced by mIL-12 and mIL-18. PMID:9502787

  6. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis

    PubMed Central

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook

    2017-01-01

    Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell–cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis. PMID:28209985

  7. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis.

    PubMed

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook

    2017-02-17

    Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell-cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis.

  8. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy.

    PubMed

    Wei, Yanhong; Gong, Junsong; Xu, Zhenhua; Duh, Elia J

    2016-10-01

    Revascularization of ischemic tissue is a highly desirable outcome in multiple diseases, including cardiovascular diseases and ischemic retinopathies. Oxidative stress and inflammation are both known to play a role in suppressing reparative angiogenesis in ischemic disease models including oxygen-induced retinopathy (OIR), but the regulatory molecules governing these pathophysiologic processes in retinal ischemia are largely unknown. Nrf2 is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis in the retina and other tissue beds. Using Nrf2-deficient mice, we investigated the effects of Nrf2 in regulating revascularization and modulating the retinal tissue milieu during ischemia. Strikingly, Nrf2's beneficial effect on reparative angiogenesis only became manifested in the later phase of ischemia in OIR, from postnatal day 14 (P14) to P17. This was temporally associated with a reduction in both oxidative stress and inflammatory mediators in wild-type compared to Nrf2(-/-) mice. Nrf2(-/-) retinas exhibited an increase in VEGF but also induction of anti-angiogenic Dll4/Notch signaling. NADPH oxidase (NOX), and especially NOX2, is a major pathogenic molecule and a particularly important contributor to oxidative stress in multiple retinal disease processes. Nrf2(-/-) mice exhibited a significant exacerbation of NOX2 induction in OIR that manifested in the later phases of ischemia. Pharmacologic inhibition of NADPH oxidase abrogated the adverse effect of Nrf2 deficiency on reparative angiogenesis. Taken together, this suggests that Nrf2 is an important regulator of the retinal milieu during tissue ischemia, and that the Nrf2/NOX2 balance may play a critical role in determining the fate of ischemic revascularization.

  9. Dual roles of protein tyrosine phosphatase kappa in coordinating angiogenesis induced by pro-angiogenic factors

    PubMed Central

    Sun, Ping-Hui; Chen, Gang; Mason, Malcolm; Jiang, Wen G.; Ye, Lin

    2017-01-01

    A potential role may be played by receptor-type protein tyrosine phosphatase kappa (PTPRK) in angiogenesis due to its critical function in coordinating intracellular signal transduction from various receptors reliant on tyrosine phosphorylation. In the present study, we investigated the involvement of PTPRK in the cellular functions of vascular endothelial cells (HECV) and its role in angiogenesis using in vitro assays and a PTPRK knockdown vascular endothelial cell model. PTPRK knockdown in HECV cells (HECVPTPRKkd) resulted in a decrease of cell proliferation and cell-matrix adhesion; however, increased cell spreading and motility were seen. Reduced focal adhesion kinase (FAK) and paxillin protein levels were seen in the PTPRK knockdown cells which may contribute to the inhibitory effect on adhesion. HECVPTPRKkd cells were more responsive to the treatment of fibroblast growth factor (FGF) in their migration compared with the untreated control and cells treated with VEGF. Moreover, elevated c-Src and Akt1 were seen in the PTPRK knockdown cells. The FGF-promoted cell migration was remarkably suppressed by an addition of PLCγ inhibitor compared with other small inhibitors. Knockdown of PTPRK suppressed the ability of HECV cells to form tubules and also impaired the tubule formation that was induced by FGF and conditioned medium of cancer cells. Taken together, it suggests that PTPRK plays dual roles in coordinating angiogenesis. It plays a positive role in cell proliferation, adhesion and tubule formation, but suppresses cell migration, in particular, the FGF-promoted migration. PTPRK bears potential to be targeted for the prevention of tumour associated angiogenesis. PMID:28259897

  10. Kallistatin protects against bleomycin-induced idiopathic pulmonary fibrosis by inhibiting angiogenesis and inflammation

    PubMed Central

    Huang, Xiaoping; Wang, Xiao; Xie, Xiaolan; Zeng, Shulan; Li, Zhaofa; Xu, Xianxiang; Yang, Huiyong; Qiu, Fei; Lin, Junsheng; Diao, Yong

    2017-01-01

    Aberrant angiogenesis and vascular remodeling are the main features of idiopathic pulmonary fibrosis. Kallistatin is an anti-angiogenic peptide with known effects on endothelial cells. This study aimed to demonstrate that kallistatin has beneficial effects on bleomycin (BLM)-induced pulmonary fibrosis in a rat model by inhibiting angiogenesis. Twenty-five rats were randomly divided into five experimental groups: (A) Saline only (SA)-as the negative control, (B) BLM only (BLM)-as the model group, (C) BLM and 0.1 mg/kg kallistatin (L-Kal), (D) BLM and 0.5 mg/kg kallistatin (M-Kal), and (E) BLM and 2.5 mg/kg kallistatin (H-Kal). Fibrillar collagen was quantified by Masson’s trichrome and hematoxylin-eosin staining. Transforming growth factor-β1 (TGF-β1), α-smooth-muscle-actin (α-SMA) and microvascular density (MVD) were measured by immunohistochemistry. Vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), and tumor necrosis factor-α (TNF-α) were assayed by Western immunoblotting or ELISA. Daily administration of kallistatin attenuated fibrosis in BLM-induced pulmonary fibrosis, as shown by histology. During inflammation from BLM-induced pulmonary fibrosis, kallistatin reduced the number of inflammatory cells infiltrating the bronchoalveolar lavage fluid. Kallistatin also inhibited VEGF expression and phosphorylation of VEGFR2 (Flk-1). In vitro, kallistatin blocked tube formation by inhibiting Flk-1 and GSK-3β phosphorylation. The results demonstrated that continuous administration of kallistatin attenuated BLM-induced pulmonary fibrosis and improved survival of BLM rats. Reducing pulmonary fibrosis was achieved by partial inhibition of pulmonary inflammation and angiogenesis. PMID:28386328

  11. VAP-1-mediated M2 macrophage infiltration underlies IL-1β- but not VEGF-A-induced lymph- and angiogenesis.

    PubMed

    Nakao, Shintaro; Noda, Kousuke; Zandi, Souska; Sun, Dawei; Taher, Mahdi; Schering, Alexander; Xie, Fang; Mashima, Yukihiko; Hafezi-Moghadam, Ali

    2011-04-01

    Vascular adhesion protein-1 (VAP-1) contributes to inflammatory and angiogenic diseases, including cancer and age-related macular degeneration. It is expressed in blood vessels and contributes to inflammatory leukocyte recruitment. The cytokines IL-1β and vascular endothelial growth factor A (VEGF-A) modulate angiogenesis, lymphangiogenesis, and leukocyte infiltration. The lymphatic endothelium expresses intercellular adhesion molecule-1 and vascular adhesion molecule-1, which facilitate leukocyte transmigration into the lymphatic vessels. However, whether lymphatics express VAP-1 and whether they contribute to cytokine-dependent lymph- and angiogenesis are unknown. We investigated the role of VAP-1 in IL-1β- and VEGF-A-induced lymph- and angiogenesis using the established corneal micropocket assay. IL-1β increased VAP-1 expression in the inflamed cornea. Our in vivo molecular imaging revealed significantly higher VAP-1 expression in neovasculature than in the preexisting vessels. VAP-1 was expressed in blood but not lymphatic vessels in vivo. IL-1β-induced M2 macrophage infiltration and lymph- and angiogenesis were blocked by VAP-1 inhibition. In contrast, VEGF-A-induced lymph- and angiogenesis were unaffected by VAP-1 inhibition. Our results indicate a key role for VAP-1 in lymph- and angiogenesis-related macrophage recruitment. VAP-1 might become a new target for treatment of inflammatory lymph- and angiogenic diseases, including cancer.

  12. Eriocalyxin B, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling

    PubMed Central

    Zhou, Xunian; Yue, Grace Gar-Lee; Liu, Minghua; Zuo, Zhili; Lee, Julia Kin-Ming; Li, Mingyue; Tsui, Stephen Kwok-Wing; Fung, Kwok-Pui; Sun, Handong; Pu, Jianxin; Lau, Clara Bik-San

    2016-01-01

    Eriocalyxin B (EriB), a natural ent-kaurane diterpenoid isolated from the plant Isodon eriocalyx var. laxiflora, has emerged as a promising anticancer agent. The effects of EriB on angiogenesis were explored in the present study. Here we demonstrated that the subintestinal vein formation was significantly inhibited by EriB treatment (10, 15 μM) in zebrafish embryos, which was resulted from the alteration of various angiogenic genes as shown in transcriptome profiling. In human umbilical vein endothelial cells, EriB treatment (50, 100 nM) could significantly block vascular endothelial growth factors (VEGF)-induced cell proliferation, tube formation, cell migration and cell invasion. Furthermore, EriB also caused G1 phase cell cycle arrest which was correlated with the down-regulation of the cyclin D1 and CDK4 leading to the inhibition of phosphorylated retinoblastoma protein expression. Investigation of the signal transduction revealed that EriB inhibited VEGF-induced phosphorylation of VEGF receptor-2 via the interaction with the ATP-binding sites according to the molecular docking simulations. The suppression of VEGFR-2 downstream signal transduction cascades was also observed. EriB was showed to inhibit new blood vessel formation in Matrigel plug model and mouse 4T1 breast tumor model. EriB (5 mg/kg/day) treatment was able to decrease tumor vascularization and suppress tumor growth and angiogenesis. Taken together, our findings suggested that EriB is a novel inhibitor of angiogenesis through modulating VEGFR-2 signaling pathway, which could be developed as a promising anti-angiogenic agent for treatment of angiogenesis-related human diseases, such as cancer. PMID:27756875

  13. Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis

    PubMed Central

    Lu, Ying; Yu, Shan-Shan; Zong, Ming; Fan, Sha-Sha; Lu, Tian-Bao; Gong, Ru-Han; Sun, Li-Shan; Fan, Lie-Ying

    2017-01-01

    The higher level of Glucose-6-phosphate isomerase (G6PI) has been found in both synovial tissue and synovial fluid of rheumatoid arthritis (RA) patients, while the function of G6PI in RA remains unclear. Herein we found the enrichment of G6PI in microvascular endothelial cells of synovial tissue in RA patients, where a 3% O2 hypoxia environment has been identified. In order to determine the correlation between the high G6PI level and the low oxygen concentration in RA, a hypoxia condition (~3% O2) in vitro was applied to mimic the RA environment in vivo. Hypoxia promoted cellular proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and induced cell migration and angiogenic tube formation of human dermal microvascular endothelial cells (HDMECs), which were accompanied with the increased expression of G6PI and HIF-1α. Through application of G6PI loss-of-function assays, we confirmed the requirement of G6PI expression for those hypoxia-induced phenotype in RA. In addition, we demonstrated for the first time that G6PI plays key roles in regulating VEGF secretion from RASFs to regulate the hypoxia-induced angiogenesis in RA. Taken together, we demonstrated a novel pathway regulating hypoxia-induced angiogenesis in RA mediated by G6PI. PMID:28067317

  14. Platelet activating factor produced in vitro by Kaposi's sarcoma cells induces and sustains in vivo angiogenesis.

    PubMed Central

    Bussolino, F; Arese, M; Montrucchio, G; Barra, L; Primo, L; Benelli, R; Sanavio, F; Aglietta, M; Ghigo, D; Rola-Pleszczynski, M R

    1995-01-01

    Imbalance in the network of soluble mediators may play a pivotal role in the pathogenesis of Kaposi's sarcoma (KS). In this study, we demonstrated that KS cells grown in vitro produced and in part released platelet activating factor (PAF), a powerful lipid mediator of inflammation and cell-to-cell communication. IL-1, TNF, and thrombin enhanced the synthesis of PAF. PAF receptor mRNA and specific, high affinity binding site for PAF were present in KS cells. Nanomolar concentration of PAF stimulated the chemotaxis and chemokinesis of KS cells, endothelial cells, and vascular smooth muscle cells. The migration response to PAF was inhibited by WEB 2170, a hetrazepinoic PAF receptor antagonist. Because neoangiogenesis is essential for the growth and progression of KS and since PAF can activate vascular endothelial cells, we examined the potential role of PAF as an instrumental mediator of angiogenesis associated with KS. Conditioned medium (CM) from KS cells (KS-CM) or KS cells themselves induced angiogenesis and macrophage recruitment in a murine model in which Matrigel was injected subcutaneously. These effects were inhibited by treating mice with WEB 2170. Synthetic PAF or natural PAF extracted from plasma of patients with classical KS also induced angiogenesis, which in turn was inhibited by WEB 2170. The action of PAF was amplified by expression of other angiogenic factors and chemokines: these included basic and acidic fibroblast growth factor, placental growth factor, vascular endothelial growth factor and its specific receptor flk-1, hepatocyte growth factor, KC, and macrophage inflammatory protein-2. Treatment with WEB 2170 abolished the expression of the transcripts of these molecules within Matrigel containing KS-CM. These results indicate that PAF may cooperate with other angiogenic molecules and chemokines in inducing vascular development in KS. Images PMID:7543496

  15. Treatment with Sildenafil and Donepezil Improves Angiogenesis in Experimentally Induced Critical Limb Ischemia

    PubMed Central

    Constantinescu, Ioana M.; Bolfa, Pompei; Mironiuc, Aurel I.

    2017-01-01

    Objectives. In this study, we aimed to demonstrate the role of sildenafil (an antagonist of phosphodiesterase type 5 (PDE-5)) and donepezil (a specific and reversible inhibitor of acetylcholinesterase (Ach)) in increasing ischemia-induced angiogenesis. Method. Critical limb ischemia was induced by ligation of the common femoral artery followed by ligation of the common iliac artery. The operated animals were divided into 3 groups: receiving sildenafil, receiving donepezil, and surgery alone; the contralateral lower limb was used as a negative control. The results were controlled based on clinical score and Doppler ultrasound. Gastrocnemius muscle samples were taken from all animals, both from the ischemic and nonischemic limb and were used for histopathological and immunohistochemical examination for the evaluation of the number of nuclei/field, endothelial cells (CD31), dividing cells (Ki-67), and vascular endothelial growth factor (VEGFR-3). Results. An increasing tendency of the number of nuclei/field with time was observed both in the case of sildenafil and donepezil treatment. The formation of new capillaries (the angiogenesis process) was more strongly influenced by donepezil treatment compared to sildenafil or no treatment. This treatment significantly influenced the capillary/fiber ratio, which was increased compared to untreated ligated animals. Sildenafil treatment led to a gradual increase in the number of dividing cells, which was significantly compared to the negative control group and compared to the ligation control group. The same effect (increase in the number of Ki-67 positive cells) was more obvious in the case of donepezil treatment. Conclusion. Donepezil treatment has a better effect in ligation-induced ischemia compared to sildenafil, promoting angiogenesis in the first place, and also arteriogenesis. PMID:28243607

  16. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    PubMed Central

    Cartland, Siân P.; Genner, Scott W.; Zahoor, Amna; Kavurma, Mary M.

    2016-01-01

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people. PMID:27918462

  17. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  18. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb.

    PubMed

    Silvestre, Jean-Sébastien; Tamarat, Radia; Senbonmatsu, Takaaki; Icchiki, Toshihiro; Ebrahimian, Teni; Iglarz, Marc; Besnard, Sandrine; Duriez, Micheline; Inagami, Tadashi; Lévy, Bernard I

    2002-05-31

    This study examined the potential role of angiotensin type 2 (AT(2)) receptor on angiogenesis in a model of surgically induced hindlimb ischemia. Ischemia was produced by femoral artery ligature in both wild-type and AT(2) gene-deleted mice (Agtr2(-)/Y). After 28 days, angiogenesis was quantitated by microangiography, capillary density measurement, and laser Doppler perfusion imaging. Protein levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), Bax, and Bcl-2 were determined by Western blot analysis in hindlimbs. The AT(2) mRNA level (assessed by semiquantitative RT-PCR) was increased in the ischemic hindlimb of wild-type mice. Angiographic vessel density and laser Doppler perfusion data showed significant improvement in ischemic/nonischemic leg ratio, 1.9- and 1.7-fold, respectively, in Agtr2(-)/Y mice compared with controls. In ischemic leg of Agtr2(-)/Y mice, revascularization was associated with an increase in the antiapoptotic protein content, Bcl-2 (211% of basal), and a decrease (60% of basal) in the number of cell death, determined by TUNEL method. Angiotensin II treatment (0.3 mg/kg per day) raised angiogenic score, blood perfusion, and both VEGF and eNOS protein content in ischemic leg of wild-type control but did not modulate the enhanced angiogenic response observed in untreated Agtr2(-)/Y mice. Finally, immunohistochemistry analysis revealed that VEGF was mainly localized to myocyte, whereas eNOS-positive staining was mainly observed in the capillary of ischemic leg of both wild-type and AT(2)-deficient mice. This study demonstrates for the first time that the AT(2) receptor subtype may negatively modulate ischemia-induced angiogenesis through an activation of the apoptotic process.

  19. High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries.

    PubMed

    Silvennoinen, Mika; Rinnankoski-Tuikka, Rita; Vuento, Mikael; Hulmi, Juha J; Torvinen, Sira; Lehti, Maarit; Kivelä, Riikka; Kainulainen, Heikki

    2013-04-01

    High-fat diet (HFD) increases fatty acid oxidation in skeletal muscles. We hypothesized that this leads to increased oxygen demand and thus to increased capillarization. We determined the effects of high-fat diet on capillarization and angiogenic factors in skeletal muscles of mice that were either active or sedentary. Fifty-eight C57BL/6 J mice were divided into four groups: low-fat diet sedentary (LFS), low-fat diet active (LFA), high-fat diet sedentary (HFS), and high-fat diet active (HFA). The mice in active groups were housed in cages with running wheels and the sedentary mice were housed in similar cages without running wheels. After 19 weeks HFS, LFA and HFA had higher capillary density and capillary-to-fiber-ratio in quadriceps femoris muscles than LFS. Capillarization was similar in HFS and HFA. To reveal possible mechanisms of HFD induced angiogenesis, we measured protein and mRNA levels of angiogenic factors VEGF-A, HIF-1α, PGC-1α and ERRα. VEGF-A protein levels were higher in muscles of HFS, LFA and HFA compared to LFS. However, no significant differences were observed between HFA and HFS. Protein levels of HIF-1α, PGC-1α, and ERRα were similar in all groups. However, the mRNA expression of HIF-1α and VEGF-A was up-regulated in capillaries but not in muscle fibers of HFS. The sedentary and active mice groups had similar mRNA expression levels of angiogenesis regulators studied. We conclude that high-fat feeding induces angiogenesis in skeletal muscle and up-regulates the gene expression of HIF-1α and VEGF-A in capillaries.

  20. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    SciTech Connect

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  1. Low-dose exposure to bisphenol A in combination with fructose increases expression of genes regulating angiogenesis and vascular tone in juvenile Fischer 344 rat cardiac tissue

    PubMed Central

    Klint, Helén; Karimullina, Elina; Rönn, Monika; Lind, Lars; Lind, P. Monica

    2017-01-01

    Objectives Epidemiological studies report associations between exposure to the high-volume chemical and endocrine disruptor bisphenol A (BPA) and cardiovascular disorders, but there is a lack of experimental studies addressing the mechanisms of action of BPA on the cardiovascular system. In the present study, effects on markers for cardiovascular function of exposure to BPA and fructose in vivo in rat cardiac tissues, and of BPA exposure in human cardiomyocytes in vitro, were investigated. Materials Juvenile female Fischer 344 rats were exposed to 5, 50, and 500 μg BPA/kg bodyweight/day in their drinking water from 5 to 15 weeks of age, in combination with 5% fructose. Further, cultured human cardiomyocytes were exposed to 10 nM BPA to 1 × 104 nM BPA for six hours. Expression of markers for cardiovascular function and BPA target receptors was investigated using qRT-PCR. Results Exposure to 5 μg BPA/kg bodyweight/day plus fructose increased mRNA expression of Vegf, Vegfr2, eNos, and Ace1 in rat heart. Exposure of human cardiomyocytes to 1 × 104 nM BPA increased mRNA expression of eNOS and ACE1, as well as IL-8 and NFκβ known to regulate inflammatory response. Conclusions:. Low-dose exposure of juvenile rats to BPA and fructose induced up-regulation of expression of genes controlling angiogenesis and vascular tone in cardiac tissues. The observed effects of BPA in rat heart were in line with our present and previous studies of BPA in human endothelial cells and cardiomyocytes. These findings may aid in understanding the mechanisms of the association between BPA exposure and cardiovascular disorders reported in epidemiological studies. PMID:27622962

  2. Elevated Slit2 Activity Impairs VEGF-induced Angiogenesis and Tumor Neovascularization in EphA2-deficient Endothelium

    PubMed Central

    Youngblood, Victoria; Wang, Shan; Song, Wenqiang; Walter, Debra; Hwang, Yoonha; Chen, Jin; Brantley-Sieders, Dana M.

    2015-01-01

    Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate pro-angiogenic molecules while simultaneously suppressing angiostatic pathways in order to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit pro- and anti-angiogenic signals is a key step in developing new, molecularly targeted anti-angiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for vascular endothelial growth factor (VEGF)-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. PMID:25504371

  3. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    PubMed

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally.

  4. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo.

    PubMed

    Pelton, Kristine; Coticchia, Christine M; Curatolo, Adam S; Schaffner, Carl P; Zurakowski, David; Solomon, Keith R; Moses, Marsha A

    2014-07-01

    Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo.

  5. Effectiveness of 2-methoxyestradiol in alleviating angiogenesis induced by intracranial venous hypertension.

    PubMed

    Zou, Xiang; Zhou, Liangfu; Zhu, Wei; Mao, Ying; Chen, Liang

    2016-09-01

    OBJECT Intracranial dural arteriovenous fistulas (DAVFs) are complex intracranial vascular malformations that can lead to hemorrhage. The authors recently found that chronic local hypoperfusion seems to be the main cause of angiogenesis in the dura mater, which leads to the formation of DAVFs. As a natural derivative of estradiol, 2-methoxyestradiol (2-ME) has an antiangiogenic effect and can be used safely in patients with advanced carcinoid tumors. This study was conducted to examine the antiangiogenic effects of 2-ME on a rat DAVF model. METHODS Male Sprague-Dawley rats (n = 72) were used in the experiments. Intracranial venous hypertension was induced for modeling, and 2-ME was used in the early or late stage for treatment. The effects were examined by immunohistochemistry, Western blot analysis, and quantitative real-time polymerase chain reaction assays. RESULTS 2-Methoxyestradiol significantly reduced angiogenesis in the dura in early- and late-intervention treatment groups, as proven by the results of immunohistochemical staining, Western blotting, real-time polymerase chain reaction assays, and microvessel density counts. The antiangiogenic effect even lasted for up to 2 weeks after 2-ME cessation. CONCLUSIONS These data collectively suggest that 2-ME can reduce the angiogenic effect caused by venous hypertension in a rat DAVF model, mainly by suppressing the inhibitor of differentiation 1 (ID-1) and hypoxia-inducible factor 1α (HIF-1α) pathways.

  6. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  7. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis

    PubMed Central

    1994-01-01

    Tumor necrosis factor (TNF) alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Therefore, it was suggested that the angiogenic properties of this agent might be consequent to the production of secondary mediators. Since TNF-alpha stimulates the synthesis of platelet-activating factor (PAF) by monocytes and endothelial cells, we investigated the possible involvement of PAF in the angiogenic effect of TNF-alpha. Angiogenesis was studied in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model the angiogenesis induced by TNF-alpha was shown to be inhibited by WEB 2170, a specific PAF receptor antagonist. Moreover, in mice injected with TNF-alpha, PAF was detected within the Matrigel, 6 and 24 h after TNF-alpha injection. The synthesis of PAF within the Matrigel was concomitant with the early migration of endothelial cells and infiltration of monocytes. No infiltration of lymphocytes or polymorphonuclear leukocytes was observed. Synthetic PAF as well as PAF extracted and purified from mice challenged with TNF-alpha induced a rapid angiogenic response, inhibited by WEB 2170. These results suggest that the angiogenic effect of TNF-alpha is, at least in part, mediated by PAF synthesized from monocytes and/or endothelial cells infiltrating the Matrigel plug. PMID:7516414

  8. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  9. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis

    PubMed Central

    Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole

    2015-01-01

    One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137

  10. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  11. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    PubMed

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers.

  12. Cancer angiogenesis induced by Kaposi sarcoma-associated herpesvirus is mediated by EZH2.

    PubMed

    He, Meilan; Zhang, Wei; Bakken, Thomas; Schutten, Melissa; Toth, Zsolt; Jung, Jae U; Gill, Parkash; Cannon, Mark; Gao, Shou-Jiang

    2012-07-15

    EZH2 is a component of the epigenetic regulator PRC2 that suppresses gene expression. Elevated expression of EZH2 is common in human cancers and is associated with tumor progression and poor prognosis. In this study, we show that EZH2 elevation is associated with epigenetic modifications of Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus that promotes the development of Kaposi sarcoma and other malignancies that occur in patients with chronic HIV infections. KSHV induction of EZH2 expression was essential for KSHV-induced angiogenesis. High expression of EZH2 was observed in Kaposi sarcoma tumors. In cell culture, latent KSHV infection upregulated the expression of EZH2 in human endothelial cells through the expression of vFLIP and LANA, two KSHV-latent genes that activate the NF-κB pathway. KSHV-mediated upregulation of EZH2 was required for the induction of Ephrin-B2, an essential proangiogenic factor that drives endothelial cell tubule formation. Taken together, our findings indicate that KSHV regulates the host epigenetic modifier EZH2 to promote angiogenesis.

  13. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis

    PubMed Central

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  14. Effects of Benzo[a]pyrene Exposure on Human Hepatocellular Carcinoma Cell Angiogenesis, Metastasis, and NF-κB Signaling

    PubMed Central

    Ba, Qian; Li, Junyang; Huang, Chao; Qiu, Hongling; Li, Jingquan; Chu, Ruiai; Zhang, Wei; Xie, Dong

    2014-01-01

    Background Benzo[a]pyrene (B[a]P) is a common environmental and foodborne pollutant. Although the carcinogenicity of high-dose B[a]P has been extensively reported, the effects of long-term B[a]P exposure at lower environmental doses on cancer development are less understood. Objectives We investigated the impact of B[a]P on human hepatocellular carcinoma (HCC) progression at various levels of exposure and identified a potential intervention target. Methods We used a model based on human HCC cells exposed to various concentrations of B[a]P (i.e., 0.01, 1, or 100 nM) for 1 month to examine the effects of B[a]P on cell growth, migration, invasion, and angiogenicity. A bioluminescent murine model was established to assess tumor metastasis in vivo. Results Chronic B[a]P exposure did not alter HCC cell growth but promoted cell migration and invasion both in vitro and in vivo. There was an negative association between B[a]P exposure and the survival of tumor-bearing mice. In addition, B[a]P-treated HCC cells recruited vascular endothelial cells and promoted tumor angiogenesis, possibly through elevating vascular endothelial growth factor secretion. Furthermore, the NF-κB pathway may be an adverse outcome pathway associated with the cumulative effects of B[a]P on HCC metastasis. Conclusions These findings a) indicate that B[a]P has effects on HCC progression; b) identify a possible adverse outcome pathway; and c) contribute to a better understanding of the adverse effects of chronic exposure of B[a]P to human health. Citation Ba Q, Li J, Huang C, Qiu H, Li J, Chu R, Zhang W, Xie D, Wu Y, Wang H. 2015. Effects of benzo[a]pyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-κB signaling. Environ Health Perspect 123:246–254; http://dx.doi.org/10.1289/ehp.1408524 PMID:25325763

  15. Pien Tze Huang Inhibits Hypoxia-Induced Angiogenesis via HIF-1α/VEGF-A Pathway in Colorectal Cancer

    PubMed Central

    Chen, Hongwei; Feng, Jianyu; Zhang, Yuchen; Shen, Aling; Chen, Youqin; Lin, Jiumao; Lin, Wei; Sferra, Thomas J.

    2015-01-01

    Hypoxia-induced angiogenesis plays an important role in the development and metastasis of solid tumors and is highly regulated by HIF-1α/VEGF-A pathway. Therefore, inhibiting tumor angiogenesis via suppression of HIF-1α/VEGF-A signaling represents a promising strategy for anticancer treatment. As a traditional Chinese medicine formula, Pien Tze Huang (PZH) has long been used as a folk remedy for cancer in China and Southeast Asia. Previously, we reported that PZH inhibits colorectal cancer (CRC) growth both in vivo and in vitro. To elucidate the antitumor mechanisms of PZH, in the present study we used human umbilical vein endothelial cells (HUVEC) and colorectal carcinoma HCT-8 cells to evaluate the effects of PZH on hypoxia-induced angiogenesis and investigated the underlying molecular mechanisms. We found that PZH could inhibit hypoxia-induced migration and tube formation of HUVEC cells in a dose-dependent manner, although the low concentrations of PZH had no effect on HUVEC viability. Moreover, PZH inhibited hypoxia-induced activation of HIF-1α signaling and the expression of VEGF-A and/or VEGFR2 in both HCT-8 and HUVEC cells. Collectively, our findings suggest that PZH can inhibit hypoxia-induced tumor angiogenesis via suppression of HIF-1α/VEGF-A pathway. PMID:25649293

  16. Pien Tze Huang Inhibits Hypoxia-Induced Angiogenesis via HIF-1 α /VEGF-A Pathway in Colorectal Cancer.

    PubMed

    Chen, Hongwei; Feng, Jianyu; Zhang, Yuchen; Shen, Aling; Chen, Youqin; Lin, Jiumao; Lin, Wei; Sferra, Thomas J; Peng, Jun

    2015-01-01

    Hypoxia-induced angiogenesis plays an important role in the development and metastasis of solid tumors and is highly regulated by HIF-1α/VEGF-A pathway. Therefore, inhibiting tumor angiogenesis via suppression of HIF-1α/VEGF-A signaling represents a promising strategy for anticancer treatment. As a traditional Chinese medicine formula, Pien Tze Huang (PZH) has long been used as a folk remedy for cancer in China and Southeast Asia. Previously, we reported that PZH inhibits colorectal cancer (CRC) growth both in vivo and in vitro. To elucidate the antitumor mechanisms of PZH, in the present study we used human umbilical vein endothelial cells (HUVEC) and colorectal carcinoma HCT-8 cells to evaluate the effects of PZH on hypoxia-induced angiogenesis and investigated the underlying molecular mechanisms. We found that PZH could inhibit hypoxia-induced migration and tube formation of HUVEC cells in a dose-dependent manner, although the low concentrations of PZH had no effect on HUVEC viability. Moreover, PZH inhibited hypoxia-induced activation of HIF-1α signaling and the expression of VEGF-A and/or VEGFR2 in both HCT-8 and HUVEC cells. Collectively, our findings suggest that PZH can inhibit hypoxia-induced tumor angiogenesis via suppression of HIF-1α/VEGF-A pathway.

  17. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1.

    PubMed

    Cui, Yi; Han, Zhongji; Hu, Yi; Song, Ge; Hao, Chanjuan; Xia, Hongfei; Ma, Xu

    2012-02-01

    Environmental exposure to inorganic arsenic compounds has been reported to have serious health effects on humans. Recent studies reported that arsenic targets endothelial cells lining blood vessels, and endothelial cell activation or dysfunction, may underlie the pathogenesis of arsenic-induced diseases and developmental toxicity. It has been reported that microRNAs (miRNAs) may act as an angiogenic switch by regulating related genes. The present study was designed to test the hypothesis that arsenite-regulated miRNAs play pivotal roles in arsenic-induced toxicity. Fertilized eggs were injected via the yolk sac with 100  nM sodium arsenite at Hamburger-Hamilton (HH) stages 6, 9, and 12, and harvested at HH stage 18. To identify the individual miRNAs and mRNAs that may regulate the genetic network, the expression profiles of chick embryos were analyzed by microarray analysis. Microarray analyses revealed that the expression of a set of miRNAs changed after arsenite administration, especially miRNA-9, 181b, 124, 10b, and 125b, which exhibited a massive decrease in expression. Integrative analyses of the microarray data revealed that several miRNAs, including miR-9 and miR-181b, might target several key genes involved in arsenic-induced developmental toxicity. A luciferase reporter assay confirmed neuropilin-1 (Nrp1) as a target of mir-9 and mir-181b. Data from the transwell migration assay and the tube-formation assay indicated that miR-9 and mir-181b inhibited the arsenic-induced EA.hy926 cell migration and tube formation by targeting NRP1. Our study demonstrates that the environmental toxin, sodium arsenite, induced angiogenesis by altering the expression of miRNAs and their cognate mRNA targets.

  18. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages

    PubMed Central

    Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; dos Santos, Sofia Nascimento; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger

    2014-01-01

    In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68+-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68+ cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways. PMID:24421272

  19. Angiogenesis and liver fibrosis

    PubMed Central

    Elpek, Gülsüm Özlem

    2015-01-01

    Recent data indicate that hepatic angiogenesis, regardless of the etiology, takes place in chronic liver diseases (CLDs) that are characterized by inflammation and progressive fibrosis. Because anti-angiogenic therapy has been found to be efficient in the prevention of fibrosis in experimental models of CLDs, it is suggested that blocking angiogenesis could be a promising therapeutic option in patients with advanced fibrosis. Consequently, efforts are being directed to revealing the mechanisms involved in angiogenesis during the progression of liver fibrosis. Literature evidences indicate that hepatic angiogenesis and fibrosis are closely related in both clinical and experimental conditions. Hypoxia is a major inducer of angiogenesis together with inflammation and hepatic stellate cells. These profibrogenic cells stand at the intersection between inflammation, angiogenesis and fibrosis and play also a pivotal role in angiogenesis. This review mainly focuses to give a clear view on the relevant features that communicate angiogenesis with progression of fibrosis in CLDs towards the-end point of cirrhosis that may be translated into future therapies. The pathogenesis of hepatic angiogenesis associated with portal hypertension, viral hepatitis, non-alcoholic fatty liver disease and alcoholic liver disease are also discussed to emphasize the various mechanisms involved in angiogenesis during liver fibrogenesis. PMID:25848465

  20. Hypercholesterolemia Induces Angiogenesis and Accelerates Growth of Breast Tumors in Vivo

    PubMed Central

    Pelton, Kristine; Coticchia, Christine M.; Curatolo, Adam S.; Schaffner, Carl P.; Zurakowski, David; Solomon, Keith R.; Moses, Marsha A.

    2015-01-01

    Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo. PMID:24952430

  1. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1.

    PubMed

    Tong, Xin; Mirzoeva, Salida; Veliceasa, Dorina; Bridgeman, Bryan B; Fitchev, Philip; Cornwell, Mona L; Crawford, Susan E; Pelling, Jill C; Volpert, Olga V

    2014-11-30

    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis.

  2. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia

    PubMed Central

    Farooqui, M; Li, Y; Rogers, T; Poonawala, T; Griffin, R J; Song, C W; Gupta, K

    2007-01-01

    Morphine and its congener opioids are the main therapy for severe pain in cancer. However, chronic morphine treatment stimulates angiogenesis and tumour growth in mice. We examined if celecoxib (a cyclooxygenase-2 (COX-2) inhibitor) prevents morphine-induced tumour growth without compromising analgesia. The effect of chronic treatment with celecoxib (by gavage) and/or morphine (subcutaneously), or PBS on tumour prostaglandin E2 (PGE2), COX-2, angiogenesis, tumour growth, metastasis, pain behaviour and survival was determined in a highly invasive SCK breast cancer model in A/J mice. Two weeks of chronic morphine treatment at clinically relevant doses stimulates COX-2 and PGE2 (4.5-fold compared to vehicle alone) and angiogenesis in breast tumours in mice. This is accompanied by increased tumour weight (∼35%) and increased metastasis and reduced survival. Co-administration of celecoxib prevents these morphine-induced effects. In addition, morphine and celecoxib together provided better analgesia than either agent alone. Celecoxib prevents morphine-induced stimulation of COX-2, PGE2, angiogenesis, tumour growth, metastasis and mortality without compromising analgesia in a murine breast cancer model. In fact, the combination provided significantly better analgesia than with morphine or celecoxib alone. Clinical trials of this combination for analgesia in chronic and severe pain in cancer are warranted. PMID:17971769

  3. Fetal kidney stem cells ameliorate cisplatin induced acute renal failure and promote renal angiogenesis

    PubMed Central

    Gupta, Ashwani Kumar; Jadhav, Sachin H; Tripathy, Naresh Kumar; Nityanand, Soniya

    2015-01-01

    AIM: To investigate whether fetal kidney stem cells (fKSC) ameliorate cisplatin induced acute renal failure (ARF) in rats and promote renal angiogenesis. METHODS: The fKSC were isolated from rat fetuses of gestation day 16 and expanded in vitro up to 3rd passage. They were characterized for the expression of mesenchymal and renal progenitor markers by flow cytometry and immunocytochemistry, respectively. The in vitro differentiation of fKSC towards epithelial lineage was evaluated by the treatment with specific induction medium and their angiogenic potential by matrigel induced tube formation assay. To study the effect of fKSC in ARF, fKSC labeled with PKH26 were infused in rats with cisplatin induced ARF and, the blood and renal tissues of the rats were collected at different time points. Blood biochemical parameters were studied to evaluate renal function. Renal tissues were evaluated for renal architecture, renal cell proliferation and angiogenesis by immunohistochemistry, renal cell apoptosis by terminal deoxynucleotidyl transferase nick-end labeling assay and early expression of angiogenic molecules viz. vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1α and endothelial nitric oxide synthase (eNOS) by western blot. RESULTS: The fKSC expressed mesenchymal markers viz. CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz. Wt1, Pax2 and Six2. They exhibited a potential to form CD31 and Von Willebrand factor expressing capillary-like structures and could be differentiated into cytokeratin (CK)18 and CK19 positive epithelial cells. Administration of fKSC in rats with ARF as compared to administration of saline alone, resulted in a significant improvement in renal function and histology on day 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P < 0.05) and on day 7 (0.83 ± 0.16 vs 2.00 ± 0.25, P < 0.05). The infused PKH26 labeled fKSC were observed to engraft in damaged renal tubules and showed increased proliferation and reduced

  4. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α

    NASA Astrophysics Data System (ADS)

    Leibovich, S. Joseph; Polverini, Peter J.; Shepard, H. Michael; Wiseman, David M.; Shively, Vera; Nuseir, Nureddin

    1987-10-01

    Macrophages are important in the induction of new blood vessel growth during wound repair, inflammation and tumour growth1-4. We show here that tumour necrosis factor-α (TNF-α), a secretory product of activated macrophages that is believed to mediate tumour cytotoxicity5-9, is a potent inducer of new blood vessel growth (angiogenesis). In vivo, TNF-α induces capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membrane at very low doses. In vitro, TNF-α stimulates chemotaxis of bovine adrenal capillary endothelial cells and induces cultures of these cells grown on type-1 collagen gels to form capillary-tube-like structures. The angiogenic activity produced by activated murine peritoneal macrophages is completely neutralized by a polyclonal antibody to TNF-α, suggesting immunological features are common to TNF-α and the protein responsible for macrophage-derived angiogenic activity. In inflammation and wound repair, TNF-α could augment repair by stimulating new blood vessel growth; in tumours, TNF-α might both stimulate tumour development by promoting vessel growth and participate in tumour destruction by direct cytotoxicity10-12.

  5. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  6. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha.

    PubMed

    Leibovich, S J; Polverini, P J; Shepard, H M; Wiseman, D M; Shively, V; Nuseir, N

    Macrophages are important in the induction of new blood vessel growth during wound repair, inflammation and tumour growth. We show here that tumour necrosis factor-alpha (TNF-alpha), a secretory product of activated macrophages that is believed to mediate tumour cytotoxicity, is a potent inducer of new blood vessel growth (angiogenesis). In vivo, TNF-alpha induces capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membrane at very low doses. In vitro, TNF-alpha stimulates chemotaxis of bovine adrenal capillary endothelial cells and induces cultures of these cells grown on type-1 collagen gels to form capillary-tube-like structures. The angiogenic activity produced by activated murine peritoneal macrophages is completely neutralized by a polyclonal antibody to TNF-alpha, suggesting immunological features are common to TNF-alpha and the protein responsible for macrophage-derived angiogenic activity. In inflammation and wound repair, TNF-alpha could augment repair by stimulating new blood vessel growth; in tumours, TNF-alpha might both stimulate tumour development by promoting vessel growth and participate in tumour destruction by direct cytotoxicity.

  7. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    SciTech Connect

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  8. Synthetic stigmasterol derivatives inhibit capillary tube formation, herpetic corneal neovascularization and tumor induced angiogenesis: Antiangiogenic stigmasterol derivatives.

    PubMed

    Michelini, Flavia M; Lombardi, María Gabriela; Bueno, Carlos A; Berra, Alejandro; Sales, María Elena; Alché, Laura E

    2016-11-01

    Angiogenesis plays a critical role in initiating and promoting several diseases, such as cancer and herpetic stromal keratitis (HSK). Herein, we studied the inhibitory effect of two synthetic stigmasterol derivatives on capillary tube-like structures and on cell migration in human umbilical vein endothelial cells (HUVEC): (22S,23S)-22,23-dihydroxystigmast-4-en-3-one (compound 1) and (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one (compound 2). We also studied their effect on VEGF expression in IL-6 stimulated macrophages and in LMM3 breast cancer cells. Furthermore, we investigated the antiangiogenic activity of the compounds on corneal neovascularization in the murine model of HSK and in an experimental model of tumor-induced angiogenesis in mice. Both compounds inhibited capillary tube-like formation, but only compound 1 restrained cell migration. Compound 1, unlike compound 2, was able to reduce VEGF expression. Only compound 1 not only reduced the incidence and severity of corneal neovascularization, when administered at the onset of HSK, but it also restrained the development of neovascular response induced by tumor cells in mice skin. Our results show that compound 1 inhibits angiogenesis in vitro and in vivo. Therefore, compound 1 would be a promising drug in the treatment of those diseases where angiogenesis represents one of the main pathogenic events.

  9. R-(-)-{beta}-O-methylsynephrine, a natural product, inhibits VEGF-induced angiogenesis in vitro and in vivo

    SciTech Connect

    Kim, Nam Hee; Pham, Ngoc Bich; Quinn, Ronald J.; Kwon, Ho Jeong

    2010-08-13

    Research highlights: {yields} R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is a natural compound isolated from a plant of the Rutaceae family. {yields} OMe-Syn possesses lead-like physicochemical properties, conferring good solubility. {yields} OMe-Syn effectively inhibited VEGF-induced angiogenesis in vitro and in vivo. {yields} OMe-Syn could be a novel basis for a small molecule targeting angiogenesis. -- Abstract: R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.

  10. Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease.

    PubMed

    Schellinger, Isabel N; Cordasic, Nada; Panesar, Julian; Buchholz, Björn; Jacobi, Johannes; Hartner, Andrea; Klanke, Bernd; Jakubiczka-Smorag, Joanna; Burzlaff, Nicolai; Heinze, Eva; Warnecke, Christina; Raaz, Uwe; Willam, Carsten; Tsao, Philip S; Eckardt, Kai-Uwe; Amann, Kerstin; Hilgers, Karl F

    2017-03-01

    Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.

  11. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  12. Role of B61, the Ligand for the Eck Receptor Tyrosine Kinase, in TNF- α-Induced Angiogenesis

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Shao, Haining; Marks, Rory M.; Polverini, Peter J.; Dixit, Vishva M.

    1995-04-01

    B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-α (TNF-α) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-α but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.

  13. One-day treatment of small molecule 8-bromo-cyclic AMP analogue induces cell-based VEGF production for in vitro angiogenesis and osteoblastic differentiation.

    PubMed

    Lo, Kevin W-H; Kan, Ho Man; Gagnon, Keith A; Laurencin, Cato T

    2016-10-01

    Small molecule-based regenerative engineering is emerging as a promising strategy for regenerating bone tissue. Small molecule cAMP analogues have been proposed as novel biofactors for bone repair and regeneration and, while promising, the effect that these small molecules have on angiogenesis, a critical requirement for successful bone regeneration, is still unclear. Our previous research demonstrated that the small molecule cAMP analogue 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) was able to promote initial osteoblast adhesion on a polymeric scaffold via cAMP signalling cascades. Here, we report that 8-Br-cAMP is capable of inducing in vitro cell-based VEGF production for angiogenesis promotion. We first demonstrated that treating osteoblast-like MC3T3-E1 cells with 8-Br-cAMP for 1 day significantly increased VEGF production and secretion. We then demonstrated that 8-Br-cAMP-induced cell-secreted VEGF is biologically active and may promote angiogenesis, as evidenced by increased human umbilical vein endothelial cells (HUVECs) migration and tubule formation. In addition, treatment of MC3T3-E1 cells with 8-Br-cAMP for as short as a single day resulted in enhanced ALP activity as well as matrix mineralization, demonstrating in vitro osteoblastic differentiation. A short-term 8-Br-cAMP treatment also addresses the concern of non-specific cytotoxicity, as our data indicate that a 1-day 8-Br-cAMP treatment scheme supports cellular proliferation of MC3T3-E1 cells as well as HUVECs. While the major concern associated with small molecule drugs is the risk of non-specific cytotoxicity, the short exposure treatment outlined in this paper provides a very promising strategy to mitigate the risk associated with small molecules. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  15. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  16. BRN-103, a novel nicotinamide derivative, inhibits VEGF-induced angiogenesis and proliferation in human umbilical vein endothelial cells.

    PubMed

    Choi, Hye-Eun; Yoo, Min-Sang; Choi, Jung-Hye; Lee, Jae Yeol; Kim, Je Hak; Kim, Ji Han; Lee, Joon Kwang; Kim, Gyu Il; Park, Yong; Chi, Yong Ha; Paik, Soo Heui; Lee, Joo Han; Lee, Kyung-Tae

    2011-11-01

    Anti-angiogenesis is regarded as an effective strategy for cancer treatment, and vascular endothelial growth factor (VEGF) plays a key role in the regulations of angiogenesis and vasculogenesis. In the present study, the authors synthesized five novel nicotinamide derivatives which structurally mimic the receptor tyrosine kinase inhibitor sunitinib and evaluated their anti-angiogenic effects. Transwell migration assays revealed that 2-(1-benzylpiperidin-4-yl) amino-N-(3-chlorophenyl) nicotinamide (BRN-103), among the five derivatives most potently inhibited VEGF-induced human umbilical vein endothelial cells (HUVECs). In addition, BRN-103 dose-dependently inhibited VEGF-induced migration, proliferation, and capillary-like tube formation of HUVECs and vessel sprouting from mouse aortic rings. To understand the molecular mechanisms responsible for these activities, the authors examined the effect of BRN-103 on VEGF signaling pathways in HUVECs. BRN-103 was found to suppress the VEGF-induced phosphorylation of VEGF receptor 2 (VEGR2) and the activations of AKT and eNOS. Taken together, these results suggest that BRN-103 inhibits VEGF-mediated angiogenesis signaling in human endothelial cells.

  17. Estradiol triggers sonic-hedgehog-induced angiogenesis during peripheral nerve regeneration by downregulating hedgehog-interacting protein.

    PubMed

    Sekiguchi, Haruki; Ii, Masaaki; Jujo, Kentaro; Renault, Marie-Ange; Thorne, Tina; Clarke, Trevor; Ito, Aiko; Tanaka, Toshikazu; Klyachko, Ekaterina; Tabata, Yasuhiko; Hagiwara, Nobuhisa; Losordo, Douglas

    2012-04-01

    Both estradiol (E2) and Sonic Hedgehog (Shh) contribute to angiogenesis and nerve regeneration. Here, we investigated whether E2 improves the recovery of injured nerves by downregulating the Shh inhibitor hedgehog-interacting protein (HIP) and increasing Shh-induced angiogenesis. Mice were treated with local injections of E2 or placebo one week before nerve-crush injury; 28 days after injury, nerve conduction velocity, exercise duration, and vascularity were significantly greater in E2-treated mice than in placebo-treated mice. E2 treatment was also associated with higher mRNA levels of Shh, the Shh receptor Patched-1, and the Shh transcriptional target Gli1, but with lower levels of HIP. The E2-induced enhancement of nerve vascularity was abolished by the Shh inhibitor cyclopamine, and the effect of E2 treatment on Shh, Gli1, and HIP mRNA expression was abolished by the E2 inhibitor ICI. Gli-luciferase activity in human umbilical-vein endothelial cells (HUVECs) increased more after treatment with E2 and Shh than after treatment with E2 alone, and E2 treatment reduced HIP expression in HUVECs and Schwann cells without altering Shh expression. Collectively, these findings suggest that E2 improves nerve recovery, at least in part, by reducing HIP expression, which subsequently leads to an increase in Shh signaling and Shh-induced angiogenesis.

  18. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  19. Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression.

    PubMed

    Lin, Yiming; McKinnon, Kelly E; Ha, Shin Woo; Beck, George R

    2015-09-01

    Recent studies in both rodents and humans suggest that elevated serum phosphorus, in the context of normal renal function, potentiates, or exacerbates pathologies associates with cardiovascular disease, bone metabolism, and cancer. Our recent microarray studies identified the potent stimulation of pro-angiogenic genes such as forkhead box protein C2 (FOXC2), osteopontin, and Vegfα, among others in response to elevated inorganic phosphate (Pi). Increased angiogenesis and neovascularization are important events in tumor growth and the progression to malignancy and FOXC2 has recently been identified as a potential transcriptional regulator of these processes. In this study we addressed the possibility that a high Pi environment would increase the angiogenic potential of cancer cells through a mechanism requiring FOXC2. Our studies utilized lung and breast cancer cell lines in combination with the human umbilical vascular endothelial cell (HUVEC) vessel formation model to better understand the mechanism(s) by which a high Pi environment might alter cancer progression. Exposure of cancer cells to elevated Pi stimulated expression of FOXC2 and conditioned medium from the Pi-stimulated cancer cells stimulated migration and tube formation in the HUVEC model. Mechanistically, we define the requirement of FOXC2 for Pi-induced osteopontin (OPN) expression and secretion from cancer cells as necessary for the angiogenic response. These studies reveal for the first time that cancer cells grown in a high Pi environment promote migration of endothelial cells and tube formation and in so doing identify a novel potential therapeutic target to reduce tumor progression.

  20. VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis and wound healing in vitro

    PubMed Central

    Reddy, Chetan Lakshmana; Yosef, Nejla; Ubogu, Eroboghene E.

    2013-01-01

    Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel™-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110% increase in cell proliferation relative to basal conditions (~51% without heparin). 2.62 pM VEGF-A165 induced a 3-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ~1.3-fold increased average rate of endothelial wound healing 4–18 hours after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 hours following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury. PMID:23712256

  1. Grape seed proanthocyanidins inhibit colon cancer-induced angiogenesis through suppressing the expression of VEGF and Ang1.

    PubMed

    Huang, Shuangsheng; Yang, Ninggang; Liu, Yuanyuan; Gao, Jing; Huang, Tao; Hu, Lamei; Zhao, Jin; Li, Yongquan; Li, Caili; Zhang, Xiaosu

    2012-12-01

    Tumor cells trigger angiogenesis through overexpression of various angiogenic factors including vascular endothelial growth factor (VEGF) and angiopoietin 1 (Ang1). Therefore, inhibition of the expression of both VEGF and Ang1, the initial step of tumor angiogenesis, is a promising strategy for cancer chemoprevention and therapy. Grape seed proanthocyanidins (GSPs) are widely consumed dietary supplements that have antitumor activity. Due to their polymeric structure, GSPs are poorly absorbed along the gastrointestinal tract and can reach the colon at high concentrations, allowing these chemicals to act as chemopreventive agents for colon cancer. In the present study, we found that GSPs inhibited colon tumor-induced angiogenesis and, thus, the growth of colon tumor xenografts on the chick chorioallantoic membranes. The mechanisms of their action were related to inhibiting the expression of both VEGF and Ang1 through scavenging reactive oxygen species. Previous studies have demonstrated that the chemopreventive effects of GSPs on colon cancer are associated with their growth inhibitory and apoptosis-inducing effects. Our results demonstrate another mechanism by which GSPs inhibit colon tumor growth, which will be helpful for developing GSPs as a pharmacologically safe angiopreventive agent against colorectal cancer.

  2. Gene Transfer of Prolyl Hydroxylase Domain 2 Inhibits Hypoxia-inducible Angiogenesis in a Model of Choroidal Neovascularization.

    PubMed

    Takei, Anna; Ekström, Malena; Mammadzada, Parviz; Aronsson, Monica; Yu, Ma; Kvanta, Anders; André, Helder

    2017-02-10

    Cellular responses to hypoxia are mediated by the hypoxia-inducible factors (HIF). In normoxia, HIF-α proteins are regulated by a family of dioxygenases, through prolyl and asparagyl hydroxylation, culminating in proteasomal degradation and transcriptional inactivation. In hypoxia, the dioxygenases become inactive and allow formation of HIF transcription factor, responsible for upregulation of hypoxia genes. In ocular neoangiogenic diseases, such as neovascular age-related macular degeneration (nAMD), hypoxia seems pivotal. Here, we investigate the effects of HIF regulatory proteins on the hypoxia pathway in retinal pigment epithelium (RPE) cells, critically involved in nAMD pathogenesis. Our data indicates that, in ARPE-19 cells, prolyl hydroxylase domain (PHD)2 is the most potent negative-regulator of the HIF pathway. The negative effects of PHD2 on the hypoxia pathway were associated with decreased HIF-1α protein levels, and concomitant decrease in angiogenic factors. ARPE-19 cells stably expressing PHD2 impaired angiogenesis in vitro by wound healing, tubulogenesis, and sprouting assays, as well as in vivo by iris-induced angiogenesis. Gene transfer of PHD2 in vivo resulted in mitigation of HIF-mediated angiogenesis in a mouse model of nAMD. These results may have implications for the clinical treatment of nAMD patients, particularly regarding the use of gene therapy to negatively regulate neoangiogenesis.

  3. Gene Transfer of Prolyl Hydroxylase Domain 2 Inhibits Hypoxia-inducible Angiogenesis in a Model of Choroidal Neovascularization

    PubMed Central

    Takei, Anna; Ekström, Malena; Mammadzada, Parviz; Aronsson, Monica; Yu, Ma; Kvanta, Anders; André, Helder

    2017-01-01

    Cellular responses to hypoxia are mediated by the hypoxia-inducible factors (HIF). In normoxia, HIF-α proteins are regulated by a family of dioxygenases, through prolyl and asparagyl hydroxylation, culminating in proteasomal degradation and transcriptional inactivation. In hypoxia, the dioxygenases become inactive and allow formation of HIF transcription factor, responsible for upregulation of hypoxia genes. In ocular neoangiogenic diseases, such as neovascular age-related macular degeneration (nAMD), hypoxia seems pivotal. Here, we investigate the effects of HIF regulatory proteins on the hypoxia pathway in retinal pigment epithelium (RPE) cells, critically involved in nAMD pathogenesis. Our data indicates that, in ARPE-19 cells, prolyl hydroxylase domain (PHD)2 is the most potent negative-regulator of the HIF pathway. The negative effects of PHD2 on the hypoxia pathway were associated with decreased HIF-1α protein levels, and concomitant decrease in angiogenic factors. ARPE-19 cells stably expressing PHD2 impaired angiogenesis in vitro by wound healing, tubulogenesis, and sprouting assays, as well as in vivo by iris-induced angiogenesis. Gene transfer of PHD2 in vivo resulted in mitigation of HIF-mediated angiogenesis in a mouse model of nAMD. These results may have implications for the clinical treatment of nAMD patients, particularly regarding the use of gene therapy to negatively regulate neoangiogenesis. PMID:28186209

  4. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    SciTech Connect

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  5. CCN1 Promotes VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis.

    PubMed

    Chen, Cheng-Yu; Su, Chen-Ming; Hsu, Chin-Jung; Huang, Chien-Chung; Wang, Shih-Wei; Liu, Shih-Chia; Chen, Wei-Cheng; Fuh, Lih-Jyh; Tang, Chih-Hsin

    2017-01-01

    Angiogenesis is the formation of new capillaries from preexisting vasculature. The perpetuation of angiogenesis plays a critical role in the pathogenesis of various disease states including rheumatoid arthritis (RA). Cysteine-rich 61 (Cyr61 or CCN1) is an important proinflammatory cytokine in RA. Here, we investigated the role of CCN1 in angiogenesis associated with vascular endothelial growth factor (VEGF) production and osteoblasts. We found higher expression of CCN1 and VEGF in synovial fluid from RA patients compared with healthy controls. CCN1 induced VEGF expression in osteoblasts and increased endothelial progenitor cells (EPCs) angiogenesis by inhibiting miR-126 via the protein kinase C-alpha (PKC-α) signaling pathway. CCN1 knockdown inhibited angiogenesis in both in vitro and in vivo models. Inhibition of CCN1 expression with lentiviral vectors expressing short hairpin RNA (shRNA) ameliorated articular swelling, cartilage erosion, and angiogenesis in the ankle joint of mice with collagen-induced arthritis (CIA). Our study is the first to describe how CCN1 promotes VEGF expression in osteoblasts and increased EPCs angiogenesis in RA disease. CCN1 may serve as a potential target for RA treatment. © 2016 American Society for Bone and Mineral Research.

  6. Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody

    PubMed Central

    Camaré, Caroline; Trayssac, Magali; Garmy-Susini, Barbara; Mucher, Elodie; Sabbadini, Roger; Salvayre, Robert; Negre-Salvayre, Anne

    2015-01-01

    BACKGROUND AND PURPOSE Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known. Thus, we investigated whether S1P is involved in the oxLDL-induced angiogenesis and whether an anti-S1P monoclonal antibody can prevent this effect. EXPERIMENTAL APPROACH Angiogenesis was assessed by capillary tube formation by human microvascular endothelial cells (HMEC-1) cultured on Matrigel and in vivo by the Matrigel plug assay in C57BL/6 mice. KEY RESULTS Human oxLDL exhibited a biphasic angiogenic effect on HMEC-1; low concentrations were angiogenic, higher concentrations were cytotoxic. The angiogenic response to oxLDL was blocked by the sphingosine kinase (SPHK) inhibitor, dimethylsphingosine, by SPHK1-siRNA and by an anti-S1P monoclonal antibody. Moreover, inhibition of oxLDL uptake and subsequent redox signalling by anti-CD36 and anti-LOX-1 receptor antibodies and by N-acetylcysteine, respectively, blocked SPHK1 activation and tube formation. In vivo, in the Matrigel plug assay, low concentrations of human oxLDL or murine oxVLDL also triggered angiogenesis, which was prevented by i.p. injection of the anti-S1P antibody. CONCLUSION AND IMPLICATIONS These data highlight the role of S1P in angiogenesis induced by oxLDL both in HMEC-1 cultured on Matrigel and in vivo in the Matrigel plug model in mice, and demonstrate that the anti-S1P antibody effectively blocks the angiogenic effect of oxLDL. PMID:25176316

  7. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1.

    PubMed

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L; Li, Jun

    2016-03-02

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals.

  8. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1

    PubMed Central

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L.; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  9. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2.

    PubMed

    Liu, Hongtao; Yu, Shujie; Zhang, Hua; Xu, Jian

    2012-01-01

    Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO), a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE) attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae) and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO(-)) generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO(-)dependent and autophagy-induced VEGFR2 degradation, which may represent

  10. Changes in angiogenesis and hypoxia-inducible factor-1α protein expression in relapsed/refractory indolent non-Hodgkin lymphomas.

    PubMed

    Minoia, Carla; Quero, Carmela; Asselti, Mariaconsilia; Galise, Ida; Marzano, Alessia L; Iacobazzi, Angela; Rana, Antonio; Merchionne, Francesca; Serratì, Simona; De Tullio, Giacoma; Quintana, Giovanni; Casiello, Michela; Maiorano, Eugenio; Simone, Giovanni; Zito, Francesco A; Iacopino, Pasquale; Guarini, Attilio

    2013-12-01

    Angiogenesis is involved in the pathogenesis and progression of non-Hodgkin lymphomas (NHL), and hypoxia-inducible factor-1α (HIF-1α, also termed HIF1A) might contribute to this process. Currently, there is no direct evidence that the clinical progression of indolent NHL is associated with angiogenesis, and the expression of HIF-1α at recurrence is unknown. Matched lymph node biopsies at diagnosis and recurrence of relapsed/refractory indolent NHL patients were analysed by immunohistochemical and morphometric analysis. We observed an increased vascular network and HIF-1α protein expression in the second biopsy, providing direct evidence that angiogenesis is an essential process for disease progression.

  11. Paris saponin II inhibits human ovarian cancer cell-induced angiogenesis by modulating NF-κB signaling.

    PubMed

    Yang, Mei; Zou, Juan; Zhu, Hongmei; Liu, Shanling; Wang, He; Bai, Peng; Xiao, Xue

    2015-05-01

    The clinical applications of Rhizoma paridis in traditional Chinese medicine are well known. However, the therapeutic potential of Rhizoma paridis and its active component such as Paris saponin I (polyphyllin D) and Paris saponin II (PSII) (formosanin C) in cancer treatments have not yet been fully explored. Recent studies have demonstrated that PSII and chemoagents exhibit comparable inhibitory affects against human ovarian cancer cell growth. Since NF-κB, a ubiquitous transcription factor that plays an important role in cancer biology, is often associated with gynecological cancers, in the present study, we evaluated the possibility that PSII modulates NF-κB activity and VEGF-mediated angiogenesis and elucidated the molecular mechanisms underlying such effects. We assessed the effects of PSII on NF-κB activity in SKOV3 tumor cells and on tumor cell induced-angiogenesis using standardized angiogenesis in vitro, ex vivo and in vivo assays, western blot analysis and kinase assay. We also assessed the effect of the super-engineered repressor of IĸBα and its effect, in combination with PSII treatment on tumor growth and angiogenesis in xenograft athymic mouse models of ovarian cancer (SKOV3 and SKOV3/mutant IĸBα cells) using color Doppler ultrasound and traditional immunohistochemistry. We showed that PSII suppressed NF-κB activation as a result of the reduction in IKKβ kinase activity on its substrate IκBα and the expression of IKKβ. Compromising NF-κB activation reduced the expression of NF-κB-downstream targets such as VEGF, Bcl-2 and Bcl-xL. Such inhibitory effects at molecular levels appear to compromise tumor growth and angiogenesis. Most importantly, the combination of PSII treatment and constitutive repression of IĸBα activity exhibited marked inhibitory effects against human ovarian cancer cell growth in a xenograft mouse model of ovarian cancer. For the first time, we provide evidence showing that PSII potently inhibits angiogenesis

  12. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    SciTech Connect

    Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying; Yue, Patrick Ying-Kit; Wong, Ricky Ngok-Shun

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  13. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    PubMed

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  14. BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS

    PubMed Central

    Huang, Mingcheng; Qiu, Qian; Xiao, Youjun; Zeng, Shan; Zhan, Mingying; Shi, Maohua; Zou, Yaoyao; Ye, Yujin; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-01-01

    The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In this study, we observed that treatment with JQ1, a specific BET inhibitor, suppressed in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis in a Matrigel plug and oxygen-induced retinopathy neovascularization. JQ1 attenuated the VEGF-induced decrease in TEER in HUVECs and prevented Evans blue dye leakage in the VEGF-induced Miles assay in athymic Balb/c nude mice. BET inhibition with JQ1 or shRNA for Brd2 or Brd4 suppressed VEGF-induced migration, proliferation, and stress fiber formation of HUVECs. Furthermore, BET inhibition suppressed phosphorylation of VEGFR2 and PAK1, as well as eNOS activation in VEGF-stimulated HUVECs. Inhibition with VEGFR2 and PAK1 also reduced migration and proliferation, and attenuated the VEGF-induced decrease in TEER. Thus, our observations suggest the important role of BET bromodomain in regulating VEGF-induced angiogenesis. Strategies that target the BET bromodomain may provide a new therapeutic approach for angiogenesis-related diseases. PMID:27044328

  15. Pathological hypertrophy reverses β2-adrenergic receptor-induced angiogenesis in mouse heart

    PubMed Central

    Xu, Qi; Jennings, Nicole L; Sim, Kenneth; Chang, Lisa; Gao, Xiao-Ming; Kiriazis, Helen; Lee, Ying Ying; Nguyen, My-Nhan; Woodcock, Elizabeth A; Zhang, You-Yi; El-Osta, Assam; Dart, Anthony M; Du, Xiao-Jun

    2015-01-01

    β-adrenergic activation and angiogenesis are pivotal for myocardial function but the link between both events remains unclear. The aim of this study was to explore the cardiac angiogenesis profile in a mouse model with cardiomyocyte-restricted overexpression of β2-adrenoceptors (β2-TG), and the effect of cardiac pressure overload. β2-TG mice had heightened cardiac angiogenesis, which was essential for maintenance of the hypercontractile phenotype seen in this model. Relative to controls, cardiomyocytes of β2-TGs showed upregulated expression of vascular endothelial growth factor (VEGF), heightened phosphorylation of cAMP-responsive-element-binding protein (CREB), and increased recruitment of phospho-CREB, CREB-binding protein (CBP), and p300 to the VEGF promoter. However, when hearts were subjected to pressure overload by transverse aortic constriction (TAC), angiogenic signaling in β2-TGs was inhibited within 1 week after TAC. β2-TG hearts, but not controls, exposed to pressure overload for 1–2 weeks showed significant increases from baseline in phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKIIδ) and protein expression of p53, reduction in CREB phosphorylation, and reduced abundance of phospho-CREB, p300 and CBP recruited to the CREB-responsive element (CRE) site of VEGF promoter. These changes were associated with reduction in both VEGF expression and capillary density. While non-TG mice with TAC developed compensatory hypertrophy, (2-TGs exhibited exaggerated hypertrophic growth at week-1 post-TAC, followed by LV dilatation and reduced fractional shortening measured by serial echocardiography. In conclusion, angiogenesis was enhanced by the cardiomyocyte (2AR/CREB/VEGF signaling pathway. Pressure overload rapidly inhibited this signaling, likely as a consequence of activated CaMKII and p53, leading to impaired angiogenesis and functional decompensation. PMID:25780088

  16. PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL.

    PubMed

    Zhang, Hao; Wei, Tengteng; Jiang, Xia; Li, Zhimin; Cui, Huazhu; Pan, Jiajun; Zhuang, Wei; Sun, Teng; Liu, Zhiwei; Zhang, Zhongming; Dong, Hongyan

    2016-01-01

    Pigment epithelial-derived factor (PEDF) is a potent anti-angiogenic factor whose effects are partially mediated through the induction of endothelial cell apoptosis. However, the underlying mechanism for PEDF and the functional PEDF peptides 34-mer and 44-mer to inhibit angiogenesis in the heart has not been fully established. In the present study, by constructing adult Sprague-Dawley rat models of acute myocardial infarction (AMI) and in vitro myocardial angiogenesis, we showed that PEDF and 34-mer markedly inhibits angiogenesis by selectively inducing tip cells apoptosis rather than quiescent cells. Peptide 44-mer on the other hand exhibits no such effects. Next, we identified Fas death pathway as essential downstream regulators of PEDF and 34-mer activities in inhibiting angiogenesis. By using peroxisome proliferator-activated receptor γ (PPAR-γ) siRNA and PPAR-γ inhibitor, GW9662, we found the effects of PEDF and 34-mer were extensively blocked. These data suggest that PEDF and 34-mer inhibit angiogenesis via inducing tip cells apoptosis at least by means of up-regulating PPAR-γ to increase surface FasL in the ischemic heart, which might be a novel mechanism to understanding cardiac angiogenesis after AMI.

  17. PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway.

    PubMed

    Alfranca, Arántzazu; López-Oliva, Juan Manuel; Genís, Laura; López-Maderuelo, Dolores; Mirones, Isabel; Salvado, Dolores; Quesada, Antonio J; Arroyo, Alicia G; Redondo, Juan Miguel

    2008-08-15

    The development of a new vascular network is essential for the onset and progression of many pathophysiologic processes. Cyclooxygenase-2 displays a proangiogenic activity in in vitro and in vivo models, mediated principally through its metabolite prostaglandin E(2) (PGE(2)). Here, we provide evidence for a novel signaling route through which PGE(2) activates the Alk5-Smad3 pathway in endothelial cells. PGE(2) induces Alk5-dependent Smad3 nuclear translocation and DNA binding, and the activation of this pathway involves the release of active TGFbeta from its latent form through a process mediated by the metalloproteinase MT1-MMP, whose membrane clustering is promoted by PGE(2). MT1-MMP-dependent transforming growth factor beta (TGFbeta) signaling through Alk5 is also required for PGE(2)-induced endothelial cord formation in vitro, and Alk5 kinase activity is required for PGE(2)-induced neovascularization in vivo. These findings identify a novel signaling pathway linking PGE(2) and TGFbeta, 2 effectors involved in tumor growth and angiogenesis, and reveal potential targets for the treatment of angiogenesis-related disorders.

  18. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    PubMed

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.

  19. 5-Methoxyleoligin, a Lignan from Edelweiss, Stimulates CYP26B1-Dependent Angiogenesis In Vitro and Induces Arteriogenesis in Infarcted Rat Hearts In Vivo

    PubMed Central

    Messner, Barbara; Kern, Johann; Wiedemann, Dominik; Schwaiger, Stefan; Türkcan, Adrian; Ploner, Christian; Trockenbacher, Alexander; Aumayr, Klaus; Bonaros, Nikolaos; Laufer, Günther; Stuppner, Hermann; Untergasser, Gerold; Bernhard, David

    2013-01-01

    Background Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail. Methods and Results 5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI). Conclusion The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI. PMID:23554885

  20. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118

    PubMed Central

    Doeppner, Thorsten R.; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M.; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-01-01

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia. PMID:26388611

  1. The syndecan-4/protein kinase Cα pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo.

    PubMed

    Corti, Federico; Finetti, Federica; Ziche, Marina; Simons, Michael

    2013-05-03

    Prostaglandin E2 (PGE2) is regarded as the main mediator of inflammatory symptoms. In addition, it also plays an important role in tumor growth and angiogenesis. In this study, we examined the mechanism of PGE2-induced angiogenic response. We show that in the absence of proteoglycan syndecan-4 (Sdc4), PGE2-induced ERK activation is decreased significantly, as is endothelial cell migration and cord formation in a two-dimensional Matrigel assay. In vivo, PGE2-induced angiogenesis is reduced dramatically in Sdc4(-/-) mice. The mechanism was traced to Sdc4-dependent activation of protein kinase Cα (PKCα). Transduction of an Sdc4 S183E mutant (a cytoplasmic domain mutation that blocks Sdc4-dependent PKCα activation) into Sdc4(-/-) endothelial cells was not able to rescue the loss of PGE2-induced ERK activation, whereas a transduction with full-length Sdc4 resulted in full rescue. Furthermore, PGE2-induced angiogenesis was also reduced in PKCα(-/-) mice. Taken together, these results demonstrate that PGE2-induced activation of angiogenesis is mediated via syndecan-4-dependent activation of PKCα.

  2. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane

    PubMed Central

    1990-01-01

    Application of TGF beta 1 (10-100 ng) to the chicken chorioallantoic membrane (CAM) for 72 h resulted in a dose-dependent, gross angiogenic response. The vascular effects induced by TGF beta 1 were qualitatively different than those induced by maximal doses of basic FGF (bFGF) (500 ng). While TGF beta 1 induced the formation of large blood vessels by 72 h, bFGF induced primarily small blood vessels. Histologic analysis revealed that TGF beta 1 stimulated pleiotropic cellular responses in the CAM. Increases in fibroblast and epithelial cell density in the area of TGF beta 1 delivery were observed as early as 4 h after TGF beta 1 treatment. By 8 h, these cell types also demonstrated altered morphology and marked inhibition of proliferation as evidenced by 3H- thymidine labeling. Thus, the TGF beta 1-stimulated accumulation of these cell types was the result of cellular chemotaxis from peripheral areas into the area of TGF beta 1 delivery. Microscopic angiogenesis in the form of capillary sprouts and increased endothelial cell density first became evident at 16 h. By 24 h, capillary cords appeared within the mesenchyme of the CAM, extending towards the point of TGF beta 1 delivery. 3H-thymidine labeling revealed that the growth of these capillary cords was due to endothelial cell proliferation. Finally, perivascular mononuclear inflammation did not become evident until 48 h of treatment, and its presence correlated spatially and temporally with the gross and histological remodelling of newly formed capillary cords into larger blood vessels. In summary, these data suggest that, in the chicken CAM, TGF beta 1 initiates a sequence of cellular responses that results in growth inhibition, cellular accumulation through migration, and microvascular angiogenesis. PMID:1696268

  3. The effect of deferoxamine on angiogenesis and bone repair in steroid-induced osteonecrosis of rabbit femoral heads.

    PubMed

    Li, Jia; Fan, Lihong; Yu, Zefeng; Dang, Xiaoqian; Wang, Kunzheng

    2015-02-01

    In this study, we examined whether local deferoxamine (DFO) administration can promote angiogenesis and bone repair in steroid-induced osteonecrosis of the femoral head (ONFH). Steroid-induced ONFH was induced in 65 mature male New Zealand white rabbits by methylprednisolone in combination with lipopolysaccharide. Six weeks later, the rabbits received no treatment (model group, N = 15), bilateral core decompression (CD group, N = 20) or CD in combination with local DFO administration (DFO group, N = 20). Six weeks after the surgery, vascularization in the femoral head was evaluated by ink artery infusion angiography and immunohistochemical staining for von Willebrand Factor (vWF). Bone repair was assessed by histologic analysis and micro-computed tomography (micro-CT). Immunohistochemical staining was performed to analyze the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN). Ink artery infusion angiography and microvessel analysis by immuohistochemical staining for vWF showed more blood vessels in the DFO group than other groups. The expression of HIF-1α, VEGF, BMP-2, and OCN, indicated by immunohistochemical staining, was higher in the DFO group compared with other groups. Micro-CT scanning results indicated that the DFO group had larger volume of newly formed bone than the CD group. This work indicated that local DFO administration improved angiogenesis and bone repair of early stage ONFH in rabbit model, and it may offer an efficient, economic, and simple therapy for early stage ONFH.

  4. Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations

    NASA Astrophysics Data System (ADS)

    Terragni, F.; Carretero, M.; Capasso, V.; Bonilla, L. L.

    2016-02-01

    A recent conceptual model of tumor-driven angiogenesis including branching, elongation, and anastomosis of blood vessels captures some of the intrinsic multiscale structures of this complex system, yet allowing one to extract a deterministic integro-partial-differential description of the vessel tip density [Phys. Rev. E 90, 062716 (2014), 10.1103/PhysRevE.90.062716]. Here we solve the stochastic model, show that ensemble averages over many realizations correspond to the deterministic equations, and fit the anastomosis rate coefficient so that the total number of vessel tips evolves similarly in the deterministic and ensemble-averaged stochastic descriptions.

  5. Adrenomedullin promotes angiogenesis in epithelial ovarian cancer through upregulating hypoxia-inducible factor-1α and vascular endothelial growth factor

    PubMed Central

    Zhang, Yi; Xu, Yang; Ma, Jian; Pang, Xiaoyan; Dong, Mei

    2017-01-01

    Adrenomedullin (ADM) is a multi-functional peptide related to many kinds of tumors. This study was aimed to investigate the role of ADM on angiogenesis in epithelial ovarian cancer (EOC) and its possible mechanism. The expressions of ADM, vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α) and CD34 were examined by immunohistochemistry staining. The relationship among ADM, HIF-1α, VEGF and micro-vessel density (MVD) was assessed in 56 EOC tissues. CAOV3 cells were stably transfected with pcDNA-ADM (plasmid overexpressing ADM gene) or pRNA-shADM (small interfering RNA for ADM gene). Real-time PCR and western blot analysis were performed to detect the expressions of HIF-1α and VEGF. The MTT, transwell migration assay and in vitro tube formation analysis were used to evaluate the proliferation, migration, and tube formation ability of human umbilical vein endothelial cells (HUVECs) which were pretreated with ADM or ADM receptor antagonist ADM22-52. Our findings showed that ADM expression was positively correlated with the expressions of HIF-1α, VEGF or MVD in EOC. ADM upregulated expression of HIF-1α and VEGF in CAOV3 cells. ADM promoted HUVECs proliferation, migration and tube formation. In conclusion, ADM was an upstream molecule of HIF-1α/VEGF and it promoted angiogenesis through upregulating HIF-1α/VEGF in EOC. PMID:28091613

  6. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis

    PubMed Central

    Smits, Michiel; Nilsson, Jonas; Mir, Shahryar E.; van der Stoop, Petra M.; Hulleman, Esther; Niers, Johanna M.; de Witt Hamer, Phillip C.; Marquez, Victor E.; Cloos, Jacqueline; Krichevsky, Anna M.; Noske, David P.; Tannous, Bakhos A.; Würdinger, Thomas

    2010-01-01

    Background: Glioblastoma (GBM) is a malignant brain tumor with dismal prognosis. GBM patients have a median survival of less than 2 years. GBM is characterized by fast cell proliferation, infiltrative migration, and by the induction of angiogenesis. MicroRNAs and polycomb group (PcG) proteins have emerged as important regulators of gene expression. Methods: Here we determined that miR-101 is down-regulated in GBM, resulting in overexpression of the miR-101 target PcG protein EZH2, a histone methyltransferase affecting gene expression profiles in an epigenetic manner. Results: Inhibition of EZH2 in vitro by pre-miR-101, EZH2 siRNA, or small molecule DZNep, attenuated GBM cell growth, migration/invasion, and GBM-induced endothelial tubule formation. In addition, for each biological process we identified ontology-associated transcripts that significantly correlate with EZH2 expression. Inhibition of EZH2 in vivo by systemic DZNep administration in a U87-Fluc-mCherry GBM xenograft mouse imaging model resulted in reduced tumor growth. Conclusion: Our results indicate that EZH2 has a versatile function in GBM progression and that its overexpression is at least partly due to decreased miR-101 expression. Inhibition of EZH2 may be a potential therapeutic strategy to target GBM proliferation, migration, and angiogenesis. PMID:21321380

  7. Demonstration of inhibitory effect of oral shark cartilage on basic fibroblast growth factor-induced angiogenesis in the rabbit cornea.

    PubMed

    González, R P; Soares, F S; Farias, R F; Pessoa, C; Leyva, A; de Barros Viana, G S; Moraes, M O

    2001-02-01

    Several angiogenic inhibitors have been obtained from shark cartilage, some of these are currently in clinical trials for assessment of safety and therapeutic efficacy in humans. Still, shark cartilage taken orally is commonly used in alternative and complimentary medicine for various ailments including serious diseases such as cancer. However, only few studies of oral shark cartilage have demonstrated pharmacological effects in experimental animals or patients, to indicate safe doses with sufficient bioavailability. In the present study we demonstrated the antiangiogenic properties of oral shark cartilage in the rabbit cornea model. Slow-release, polymethylmetacrylate pellets containing basic fibroblast growth factor (bFGF) were surgically implanted in the rabbit cornea to stimulate neovascularization scored by stereo microscopy. Powdered shark cartilage (PSC; commercial product) was tested orally along with a water-soluble fraction (WSF) of this cartilage product which was tested by local application. Animals were treated with oral dosages of 100 mg/kg PSC or 200 mg/kg thalidomide as positive control. Pellets containing WSF (50, 100 or 200 microg/pellet) or bFGF-inhibitor pentosan polysulfate were implanted adjacent to the bFGF pellet. Oral shark cartilage inhibited bFGF-induced angiogenesis, as did oral thalidomide, in this in vivo model. WSF and pentosan polysulfate was shown to block neovascularization in the cornea when applied locally. This study demonstrates that in the rabbit, oral shark cartilage appears to produce systemic levels of angiogenesis inhibitors that can exert their effect at the cornea.

  8. Migration-inducing gene 7 promotes tumorigenesis and angiogenesis and independently predicts poor prognosis of epithelial ovarian cancer.

    PubMed

    Huang, Bihui; Yin, Mingzhu; Li, Xia; Cao, Guosheng; Qi, Jin; Lou, Ge; Sheng, Shijie; Kou, Junping; Chen, Kang; Yu, Boyang

    2016-05-10

    Epithelial ovarian carcinomas (EOC) cause more mortality than any other cancer of the female reproductive system. New therapeutic approaches to reduce EOC mortality have been largely unsuccessful due to the poor understanding of the mechanisms underlying EOC proliferation and metastasis. Progress in EOC treatment is further hampered by a lack of reliable prognostic biomarkers for early risk assessment. In this study, we identify that Migration-Inducting Gene 7 (MIG-7) is specifically induced in human EOC tissues but not normal ovaries or ovarian cyst. Ovarian MIG-7 expression strongly correlated with EOC progression. Elevated MIG-7 level at the time of primary cytoreductive surgery was a strong and independent predictor of poor survival of EOC patients. Cell and murine xenograft models showed that MIG-7 was required for EOC proliferation and invasion, and MIG-7 enhanced EOC-associated angiogenesis by promoting the expression of vascular endothelial growth factor. Inhibiting MIG-7 by RNA interference in grafted EOC cells retarded tumor growth, angiogenesis and improved host survival, and suppressing MIG-7 expression with a small molecule inhibitor D-39 identified from the medicinal plant Liriope muscari mitigated EOC growth and invasion and specifically abrogated the expression of vascular endothelial growth factor. Our data not only reveal a critical function of MIG-7 in EOC growth and metastasis and support MIG-7 as an independent prognostic biomarker for EOC, but also demonstrate that therapeutic targeting of MIG-7 is likely beneficial in the treatment of EOC.

  9. The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme

    PubMed Central

    Torraca, Vincenzo; Tulotta, Claudia; Snaar-Jagalska, B. Ewa; Meijer, Annemarie H.

    2017-01-01

    CXC chemokine receptor 4 plays a critical role in chemotaxis and leukocyte differentiation. Furthermore, there is increasing evidence that links this receptor to angiogenesis. Using the well-established zebrafish-Mycobacterium marinum model for tuberculosis, angiogenesis was recently found to be important for the development of cellular aggregates called granulomas that contain the mycobacteria and are the hallmark of tuberculosis disease. Here, we found that initiation of the granuloma-associated proangiogenic programme requires CXCR4 signalling. The nascent granulomas in cxcr4b-deficient zebrafish embryos were poorly vascularised, which in turn also delayed bacterial growth. Suppressed infection expansion in cxcr4b mutants could not be attributed to an overall deficient recruitment of leukocytes or to different intramacrophage bacterial growth rate, as cxcr4b mutants displayed similar microbicidal capabilities against initial mycobacterial infection and the cellular composition of granulomatous lesions was similar to wildtype siblings. Expression of vegfaa was upregulated to a similar extent in cxcr4b mutants and wildtypes, suggesting that the granuloma vascularisation phenotype of cxcr4b mutants is independent of vascular endothelial growth factor. PMID:28332618

  10. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: an in vitro and in ovo approach.

    PubMed

    Lin, Chiu-Mei; Shyu, Kou-Gi; Wang, Bao-Wei; Chang, Hang; Chen, Yen-Hsu; Chiu, Jen-Hwey

    2010-06-09

    Chrysin, 5,7-dihydroxyflavone, possesses many biologic properties. This study aimed to investigate the effects and molecular mechanisms of chrysin on IL-6-induced angiogenesis in vitro and in ovo. Chicken chorioallantoic membrane assay, an in ovo angiogenesis assay, showed chrysin significantly suppressed IL-6-induced neovascularization. Furthermore, chrysin significantly suppressed human umbilical vein endothelial cell (HUVECs) migration and tube formation. The signaling pathway involved in chrysin-related antiangiogenesis was also investigated. The data indicated that chrysin is able to down-regulate the expression of glycoprotein 130 (gp130), soluble IL-6 receptor (IL-6R), phosphorylated JAK1 and STAT3, and VEGF in HUVECs. The IL-6-induced binding of STAT3 was significantly suppressed by chrysin. Moreover, chrysin did not further suppress VEGF expression with STAT3 knocked down. Taken together, the results show that chrysin suppresses IL-6-induced angiogenesis through modulation of the sIL-6R/gp130/JAK1/STAT3/VEGF signaling pathway. Chrysin may provide new therapeutic potential for IL-6-induced pathological angiogenesis.

  11. Effects of Tetrahydrocurcumin on Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in Cervical Cancer Cell-Induced Angiogenesis in Nude Mice

    PubMed Central

    Yoysungnoen, Bhornprom; Patumraj, Suthiluk; Changtam, Chatchawan

    2015-01-01

    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future. PMID:25789317

  12. Effects of tetrahydrocurcumin on hypoxia-inducible factor-1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice.

    PubMed

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Patumraj, Suthiluk; Changtam, Chatchawan

    2015-01-01

    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future.

  13. How phototherapy affects angiogenesis

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  14. Blockade of the intermediate-conductance Ca(2+)-activated K+ channel inhibits the angiogenesis induced by epidermal growth factor in the treatment of corneal alkali burn.

    PubMed

    Yang, Huike; Li, Xiaodong; Ma, Jing; Lv, Xiaohong; Zhao, Shu; Lang, Wen; Zhang, Yafang

    2013-05-01

    Epidermal growth factor (EGF) is used to treat alkali-burned corneas. However, EGF-induced corneal angiogenesis, which is currently untreatable, is a side effect of this therapy. We therefore explored the role of the intermediate-conductance Ca(2+)-activated K(+) channel (KCa3.1) in EGF-induced angiogenesis and tested whether KCa3.1 blockade can suppress EGF-induced corneal angiogenesis. The proliferation, migration and tube formation of HUVECs (human umbilical vein endothelial cells) in response to EGF, the MEK inhibitor PD98059 and the KCa3.1 inhibitor TRAM-34 were analyzed in vitro via MTT, cell counting, scratch and tube formation assays. The protein and mRNA levels of KCa3.1, phosphorylated-ERK (P-ERK), total-ERK (T-ERK), cyclin-dependent kinase 4 (CDK4), vimentin and MMP-2 were assessed via western blotting and RT-PCR. KCa3.1 and vimentin expression were also detected through immunofluorescence staining. Flow cytometry was performed to examine the cell cycle. Further, an in vivo murine alkali-burned cornea model was developed and treated with EGF and TRAM-34 eye drops to analyze the effect of these treatments on corneal healing and angiogenesis. The corneas were also analyzed by histological staining. The in vitro results showed that EGF induces the upregulation of KCa3.1 and P-ERK in HUVECs and that this upregulation is suppressed by PD98059. EGF stimulates proliferation, migration and tube formation in HUVECs, and this effect can be suppressed by TRAM-34. TRAM-34 also arrests HUVECs in the G1 phase of the cell cycle and downregulates CDK4, vimentin and MMP-2 in these cells. The in vivo results indicated that TRAM-34 suppresses EGF-induced corneal angiogenesis without affecting EGF-induced corneal wound healing. In summary, the upregulation of KCa3.1 may be crucial for EGF-induced angiogenesis through the MAPK/ERK signaling pathway. Thus, KCa3.1 may be a potential target for the treatment of EGF-induced corneal angiogenesis.

  15. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.

  16. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    SciTech Connect

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  17. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  18. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    SciTech Connect

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  19. Sense p16 and Antisense uPAR Bicistronic Construct Inhibits Angiogenesis and Induces Glioma Cell Death

    PubMed Central

    Nalabothula, Narasimharao; Lakka, Sajani S.; Dinh, Dzung H.; Gujrati, Meena; Olivero, William C.; Rao, Jasti S.

    2006-01-01

    High-grade gliomas comprise the most malignant type of primary brain tumor and are relatively frequent in adults. Recent studies have indicated that the loss of p16, an inhibitor of CDK4, promotes the acquisition of malignant characteristics in gliomas. A correlation between overexpression of urokinase-type plasminogen activator receptor (uPAR) and glioblastoma invasion has also been established. Moreover, uPAR/integrin binding has been shown to initiate or potentiate integrin signaling through focal adhesion kinase and/or src kinases. Our previous studies demonstrated that downregulation of uPAR expression and restoration of p16 regress glioma growth in nude mice and downregulate αvβ3 integrin receptor expression. Here, we show the effect of a bicistronic construct on αvβ5 integrin receptor expression, angiogenesis and the biochemical pathway that causes glioma cell death. The U251 glioblastoma and a glioblastoma xenograft cell line transduced with a recombinant replication-defective adenovirus vector containing the cDNA of wild-type p16 and antisense RNA of uPAR significantly inhibited human mammary epithelial cell capillary formation and vascular endothelial growth factor (VEGF) expression. Inactivation of anti-apoptotic molecules such as Akt, PARP, activation of caspases and accumulation of heteroduplex chromosomal DNA in pre-G1 phase of the cell cycle was demonstrated by western blotting, caspase activity assay and FACS analysis. Nuclear DNA fragmentation upon induction of apoptosis was scored using the TUNEL assay. Significant downregulation of αvβ5 integrin receptor expression was also confirmed by FACS analysis, immunoprecipitation and RT-PCR. Taken together, the results demonstrate that the sense p16 and anti-sense uPAR bicistronic construct significantly inhibits angiogenesis, induces apoptosis by deregulation of the PI3K/Akt pathway and downregulates αvβ5 integrin receptor expression. PMID:17273768

  20. Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6.

    PubMed

    Xu, Xiaofang; Ge, Shengfang; Jia, Renbing; Zhou, Yixiong; Song, Xin; Zhang, He; Fan, Xianqun

    2015-06-01

    Previous findings showed that miR-181b is upregulated under hypoxic conditions in retinoblastoma cells. Since hypoxia is a common feature of retinoblastoma that affects tumor progression as well as tumor therapy, in the present study, we investigated the regulatory mechanism of miR-181b under hypoxic conditions, and examined the role of miR-181b in retinoblastoma responses to hypoxia (chemoresistance and angiogenesis) and possible downstream genes. The level of hypoxia-inducible factor-1α (HIF-1α) and miR-181b was detected to examine the link between them. Tube formation and cell cytotoxicity assays were used to clarify the effects of miR-181b on hypoxic responses of retinoblastoma cells. Bioinformatics analysis was performed to predict potential targets of miR-181b and western blotting was used to verify these targets. The results showed a significantly increased expression of HIF-1α in hypoxia-treated retinoblastoma cells. Downregulation of HIF-1α using a small-interfering RNA (siRNA) knockdown technology did not decrease the expression of miR-181b. Through gain- and loss-of-function studies, miR-181b was demonstrated to significantly stimulate the ability of capillary tube formation of endothelial cells. Programmed cell death-10 (PDCD10) and GATA binding protein 6 (GATA6) were identified as the target genes of miR‑181b. To the best of our knowledge, results of the present study provide the first evidence that miR-181b was upregulated by hypoxia in retinoblastoma in an HIF-1α-independent manner. miR-181b increased tumor angiogenesis of retinoblastoma cells. Additionally, miR-181b exerts its angiogenic function, at least in part, by inhibiting PDCD10 and GATA6. Thus, it is a new potentially useful therapeutic target for retinoblastoma.

  1. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    SciTech Connect

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi; Kwon, Ho Jeong

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effect of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.

  2. Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of Akt molecule.

    PubMed

    Tang, Feng-Yao; Nguyen, Nhan; Meydani, Mohsen

    2003-10-10

    Studies have indicated that the consumption of green tea is associated with a reduced risk of developing certain forms of cancer and angiogenesis. The mechanism of inhibition of angiogenesis by green tea or its catechins, however, has not been well-established. Vascular endothelial (VE)-cadherin, an adhesive molecule located at the site of intercellular contact, is involved in cell-cell recognition during vascular morphogenesis. The extracellular domain of VE-cadherin mediates initial cell adhesion, whereas the cytosolic tail binding with beta-catenin is required for interaction with the cytoskeleton and junctional strength. Therefore, the cadherin-catenin adhesion system is implicated in cell recognition, differentiation, growth and migration of capillary endothelium. Using tube formation of human microvascular endothelial cells (HMVEC) in culture as an in vitro model of angiogenesis, we reported that vascular endothelial growth factor (VEGF)-induced tube formation is inhibited by anti-VE-cadherin antibody and dose-dependently by green tea catechins. We also demonstrated here that inhibition of tube formation by epigallocatechin gallate (EGCG), one of the green tea catechins, is in part mediated through suppression of VE-cadherin tyrosine phosphorylation and inhibition of Akt activation during VEGF-induced tube formation. These findings indicate that VE-cadherin and Akt, known downstream proteins in VEGFR-2-mediated cascade, are the new-targeted proteins by which green tea catechins inhibit angiogenesis.

  3. Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia.

    PubMed

    Wang, Lin; Bhatta, Anil; Toque, Haroldo A; Rojas, Modesto; Yao, Lin; Xu, Zhimin; Patel, Chintan; Caldwell, Ruth B; Caldwell, R William

    2015-03-01

    Hypoxia-induced arginase elevation plays an essential role in several vascular diseases but influence of arginase on hypoxia-mediated angiogenesis is completely unknown. In this study, in vitro network formation in bovine aortic endothelial cells (BAEC) was examined after exposure to hypoxia for 24h with or without arginase inhibition. Arginase activity, protein levels of the two arginase isoforms, eNOS, and VEGF as well as production of NO and ROS were examined to determine the involvement of arginase in hypoxia-mediated angiogenesis. Hypoxia elevated arginase activity and arginase 2 expression but reduced active p-eNOS(Ser1177) and NO levels in BAEC. In addition, both VEGF protein levels and endothelial elongation and network formation were reduced with continued hypoxia, whereas ROS levels increased and NO levels decreased. Arginase inhibition limited ROS, restored NO formation and VEGF expression, and prevented the reduction of angiogenesis. These results suggest a fundamental role of arginase activity in regulating angiogenic function.

  4. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    PubMed

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  5. CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue.

    PubMed

    Shi, Yubin; Reitmaier, Birgit; Regenbogen, Johannes; Slowey, R Michael; Opalenik, Susan R; Wolf, Eckhard; Goppelt, Andreas; Davidson, Jeffrey M

    2005-01-01

    Cardiac ankyrin repeat protein (CARP) was identified by subtractive hybridization as one of a group of genes that are rapidly modulated by acute wounding of mouse skin. Quantitative RT-PCR showed that CARP was strongly induced during the first day after wounding (157.1-fold), and the high level persisted for up to 14 days. Immunohistochemistry and in situ hybridization revealed that CARP was expressed in skeletal muscle, vessel wall, hair follicle, inflammatory cells, and epidermis in the wound area. To examine the effects of CARP on wound healing, we developed an adenoviral CARP vector to treat subcutaneously implanted sponges in either rats or Flk-1(LacZ) knock-in mice. Four days after infection, CARP-infected sponges in rats showed a remarkable increase in the vascular component in granulation tissue as compared to Ad-LacZ controls. This result was confirmed by CD34 immunostaining. By 7 days post-infection of sponge implants in Flk-1(LacZ) knock-in mice, granulation tissue showed many more LacZ-positive cells in Ad-CARP-infected sponges than in virus controls. Ad-CARP treatment also induced neovascularization and increased blood perfusion in rabbit excisional wounds in and ischemic rat wounds. These findings indicate that CARP could play a unique role in therapeutic angiogenesis during wound healing.

  6. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    PubMed Central

    Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245

  7. Exenatide suppresses 1,2-dimethylhydrazine-induced colon cancer in diabetic mice: Effect on tumor angiogenesis and cell proliferation.

    PubMed

    Tawfik, Mona K; Mohamed, Magda I

    2016-08-01

    Colon cancer is the third leading cause of cancer mortality worldwide, which results from interactions of different factors. It is frequently a pathological consequence of persistent inflammation. Diabetes affects several cancers and is positively correlated with the incidence of colon cancer. This study aimed to study the effect of exenatide in ameliorating inflammation, angiogenesis and cell proliferation in 1,2-dimethyl hydrazine (DMH) induced colorectal carcinoma in diabetic mice. Mice were randomly allocated into six groups, 8 mice each. Group 1: vehicle control group. Group 2: diabetic control group. Group 3: DMH control group: diabetic mice treated with DMH (20mg/kg/week,s.c.) for 15 week. Group 4: DMH-cisplatin group: mice received cisplatin (4mg/kg/week, i.p.). Groups 5 & 6: DMH-exenatide (10 and 20μg/kg) group: mice received exenatide (10 or 20μg/kg/day,s.c.), respectively. The present results highlighted an increase in angiogenic markers and cell proliferation in the DMH-diabetic group in comparison with the control group with greater expression of endothelial marker (CD34) and Ki-67 in colon tissue. Monotherapy with cisplatin or exenatide (10 and 20μg/kg) downregulated these markers to different extents. The current results provided evidence that exenatide represents a promising chemopreventive effect against DMH-induced colon carcinogenesis in diabetic mice, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  8. Clinical biomarkers of angiogenesis inhibition

    PubMed Central

    Brown, Aaron P.; Citrin, Deborah E.; Camphausen, Kevin A.

    2009-01-01

    Introduction An expanding understanding of the importance of angiogenesis in oncology and the development of numerous angiogenesis inhibitors are driving the search for biomarkers of angiogenesis. We review currently available candidate biomarkers and surrogate markers of anti-angiogenic agent effect. Discussion A number of invasive, minimally invasive, and non-invasive tools are described with their potential benefits and limitations. Diverse markers can evaluate tumor tissue or biological fluids, or specialized imaging modalities. Conclusions The inclusion of these markers into clinical trials may provide insight into appropriate dosing for desired biological effects, appropriate timing of additional therapy, prediction of individual response to an agent, insight into the interaction of chemotherapy and radiation following exposure to these agents, and perhaps most importantly, a better understanding of the complex nature of angiogenesis in human tumors. While many markers have potential for clinical use, it is not yet clear which marker or combination of markers will prove most useful. PMID:18414993

  9. Angiogenesis Induced by Signal Transducer and Activator of Transcription 5A (STAT5A) Is Dependent on Autocrine Activity of Proliferin*

    PubMed Central

    Yang, Xinhai; Qiao, Dianhua; Meyer, Kristy; Pier, Thomas; Keles, Sunduz; Friedl, Andreas

    2012-01-01

    Multiple secreted factors induce the formation of new blood vessels (angiogenesis). The signal transduction events that orchestrate the numerous cellular activities required for angiogenesis remain incompletely understood. We have shown previously that STAT5 plays a pivotal role in angiogenesis induced by FGF2 and FGF8b. To delineate the signaling pathway downstream of STAT5, we expressed constitutively active (CA) or dominant-negative (DN) mutant STAT5A in mouse brain endothelial cells (EC). We found that the conditioned medium from CA-STAT5A but not from dominant-negative STAT5A overexpressing EC is sufficient to induce EC invasion and tube formation, indicating that STAT5A regulates the secretion of autocrine proangiogenic factors. Conversely, CA-STAT5A-induced conditioned medium had no effect on EC proliferation. Using a comparative genome-wide transcription array screen, we identified the prolactin family member proliferin (PLF1 and PLF4) as a candidate autocrine factor. The CA-STAT5A-dependent transcription and secretion of PLF by EC was confirmed by quantitative RT-PCR and Western blotting, respectively. CA-STAT5A binds to the PLF1 promoter region, suggesting a direct transcriptional regulation. Knockdown of PLF expression by shRNA or by blocking of PLF activity with neutralizing antibodies removed the CA-STAT5A-dependent proangiogenic activity from the conditioned medium of EC. Similarly, the ability of concentrated conditioned medium from CA-STAT5A transfected EC to induce angiogenesis in Matrigel plugs in vivo was abolished when PLF was depleted from the medium. These observations demonstrate a FGF/STAT5/PLF signaling cascade in EC and implicate PLF as autocrine regulator of EC invasion and tube formation. PMID:22199350

  10. Dickkopf‑related protein 1 induces angiogenesis by upregulating vascular endothelial growth factor in the synovial fibroblasts of patients with temporomandibular joint disorders.

    PubMed

    Jiang, Sheng-Jun; Li, Wei; Li, Ying-Jie; Fang, Wei; Long, Xing

    2015-10-01

    Angiogenesis has an important role in the progression of temporomandibular joint disorders (TMD). The aim of the present study was to explore the association between dickkopf‑related protein 1 (DKK‑1) and angiogenesis in TMD. The expression levels of DKK‑1 and vascular endothelial growth factor (VEGF) were quantified by an ELISA assay of the synovial fluid from patients with TMD. The correlation between DKK‑1 and VEGF was analyzed by Pearson correlation test. Synovial fibroblasts were isolated from patients with TMD and were subsequently treated with recombinant human DKK‑1, anti‑DKK‑1 antibody, hypoxia inducible factor‑1α (HIF‑1α), or small interfering RNA (siRNA). The expression levels of DKK‑1, HIF‑1α, and VEGF were subsequently quantified. The present study also investigated the effects of DKK‑1 on the migration of human umbilical vein endothelial cells (HUVEC). Increased expression levels of DKK‑1 were concordant with increased expression levels of VEGF in the synovial fluid from patients with TMD. In the synovial fibroblasts, DKK‑1 increased the expression levels of VEGF, and promoted HIF‑1α nuclear localization. In addition, DKK‑1 induced HUVEC migration, and HIF‑1α siRNA inhibited DKK‑1‑induced cell migration. The results of the present study indicate that DKK‑1 is associated with angiogenesis in the synovial fluid of patients with TMD. Furthermore, HIF‑1α may be associated with DKK‑1‑induced HUVEC activation.

  11. Synergistic effects of methylnaltrexone with 5-fluorouracil and bevacizumab on inhibition of vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Singleton, Patrick A; Garcia, Joe G N; Moss, Jonathan

    2008-06-01

    Many patients with cancer receive combinations of drug treatments that include 5-fluorouracil (5-FU) and bevacizumab. Therapeutic doses of 5-FU are often associated with unwanted side effects, and bevacizumab is costly. Therefore, we explored potential agents that can reduce the therapeutic concentration of these drugs. Our data indicate that methylnaltrexone (MNTX), a peripheral antagonist of the mu-opioid receptor, exerts a synergistic effect with 5-FU and bevacizumab on inhibition of vascular endothelial growth factor (VEGF)-induced human pulmonary microvascular endothelial cell (EC) proliferation and migration, two key components in cancer-associated angiogenesis. MNTX inhibited EC proliferation with an IC(50) of approximately 100 nmol/L. Adding 100 nmol/L MNTX to EC shifted the IC(50) of 5-FU from approximately 5 micromol/L to approximately 7 nmol/L. Further, adding 50 ng/mL MNTX shifted the IC(50) of bevacizumab on inhibition of EC migration from approximately 25 to approximately 6 ng/mL. These synergistic effects were not observed with naltrexone, a tertiary mu-opioid receptor antagonist. On a mechanistic level, we observed that treatment of human EC with MNTX, but not naltrexone, increased receptor protein tyrosine phosphatase mu activity, which was independent of mu-opioid receptor expression. Silencing receptor protein tyrosine phosphatase mu expression (small interfering RNA) in human EC inhibited both synergy between MNTX and bevacizumab or 5-FU and increased VEGF-induced tyrosine phosphorylation of Src and p190 RhoGAP with enhanced activation of Akt and the actin cytoskeletal regulatory protein, RhoA, whereas silencing Src, Akt, or RhoA blocked VEGF-induced angiogenic events. Therefore, addition of MNTX could potentially lower the therapeutic doses of 5-FU and bevacizumab, which could improve index.

  12. Quantitative Shotgun Proteomics of HD Induced Corneal Injury and Angiogenesis (Briefing Charts)

    DTIC Science & Technology

    2010-03-10

    Thermo-Finnigan LTQ XL High Performance Linear Ion Trap - Collision Induced Dissociation (CID) for generating peptide fragmentation - Pulsed Q...Quantitation CID Sequence Analysis Ratio 114:117 1.05:1.00 Quantitative Proteomics with Pulsed Q Dissociation and Collision Induced Dissociation Clearance... Dissociation (PQD) for generating more fragments and extending the low mass range Separate Layers / Lyse cells Digest Proteins Label with iTRAQ and

  13. Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene

    DTIC Science & Technology

    2006-05-01

    Dickkopf homolog 1 ( DKK1 ) Signal transduction -8.0 0.0002 NM_002852 Pentaxin-related gene, rapidly induced by IL-1 beta (PTX3) Immune response -9.2...Dickkopf homologue 1 ( DKK1 ) Signal transduction 8.0 0.0002 NM_002852 Pentaxin-related gene, rapidly induced by IL-1 h (PTX3) Immune response 9.2 0.0142

  14. Comparison of the effects of bevacizumab and ranibizumab injection on corneal angiogenesis in an alkali burn induced model

    PubMed Central

    Dursun, Ayhan; Arici, Mustafa Kemal; Dursun, Feyza; Ozec, Ayse Vural; Toker, Mustafa Ilker; Erdogan, Haydar; Topalkara, Aysen

    2012-01-01

    AIM To investigate the effects of bevacizumab and ranibizumab on corneal neovascularization in an alkali burn-induced model of corneal angiogenesis. METHODS Fifteen Wistar albino rats were divided randomly into 3 groups after chemical cauterization of the cornea. The first group received a single dose of 0.1mL saline solution as a control group whereas second and third groups received a single dose of 2.5mg bevacizumab or 1mg ranibizumab by subconjunctival injection, respectively. After three weeks, the rat corneas were evaluated by biomicroscopy and corneal photographs were taken. The percentage of neovascularization area, length of the longest new vessel, corneal edema and corneal opacity scores were assessed. RESULTS The analysis of digital photographs showed that the percentage of neovascularization area to the total corneal area, the length of the longest new vessel, corneal edema and opacity scores were significantly lower in both study groups compared to the control group (P<0.05). Additionally, the percentage of corneal neovascularization area, the length of the longest new vessel and corneal opacity score were less with bevacizumab than ranibizumab. CONCLUSION Subconjunctival bevacizumab and ranibizumab treatments may be effective methods in reducing corneal neovascularization. Furthermore, bevacizumab is more effective than ranibizumab in the inhibition of corneal neovascularization. PMID:22937503

  15. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    NASA Astrophysics Data System (ADS)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  16. [Advance in prevention and treatment of ischemia cardio-cerebrovascular disease through increased therapeutic angiogenesis induced by traditional Chinese medicine].

    PubMed

    Guo, Hao; Li, Lei; Hou, Jin-Cai; Liu, Jian-Xun

    2015-01-01

    Remaining organic and functional damage of ischemia cardio-cerebrovascular disease is always a main trouble puzzling the clinicians. After the discovery of endothelial progenitor cells (EPCs), researchers realize that postnatal angiogenesis is an important biological process, which play a key role to repair the ischemia tissue and improve the function. So a new concept which names therapeutic angiogenesis supply a new treament way for the ischemia cardio-cerebrovascular disease. Traditional Chinese medicine (TCM) has accumulated rich experience on treating the ischemia disease, studies found that many Chinese medicine prescriptions and effective ingredients can increase the therapeutic angiogenesis, howerer the mechanisms were not the same, they mainly manifest in regular the secretion of angiogenic factors, increase the proliferation and differentiation etc. In this paper, we review recent studies, summary the Chinese medicine prescriptions and effective ingredients which can increase the therapeutic angiogenesis, and analyze the differernt pathway. We view to provide reference for the later researchers.

  17. Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-Forming Endothelial Cells through Inactivation of Survival Signal ERK1/2.

    PubMed

    Kunimasa, Kazuhiro; Ahn, Mok-Ryeon; Kobayashi, Tomomi; Eguchi, Ryoji; Kumazawa, Shigenori; Fujimori, Yoshihiro; Nakano, Takashi; Nakayama, Tsutomu; Kaji, Kazuhiko; Ohta, Toshiro

    2011-01-01

    We recently reported that propolis suppresses tumor-induced angiogenesis through tube formation inhibition and apoptosis induction in endothelial cells. However, molecular mechanisms underlying such angiogenesis suppression by propolis have not been fully elucidated. The aim of this study was to investigate the effects of ethanol extract of Brazilian propolis (EEBP) on two major survival signals, extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, and to elucidate whether changes in these signals were actually involved in antiangiogenic effects of the propolis. Detection by western blotting revealed that EEBP suppressed phosphorylation of ERK1/2, but not that of Akt. Pharmacological inhibition by U0126 demonstrated that ERK1/2 inactivation alone was enough to inhibit tube formation and induce apoptosis. It was also shown that EEBP and U0126 similarly induced activation of caspase-3 and cleavage of poly ADP-ribose polymerase (PARP) and lamin A/C, all of which are molecular markers of apoptosis. These results indicate that inhibition of survival signal ERK1/2, and subsequent induction of apoptosis, is a critical mechanism of angiogenesis suppression by EEBP.

  18. Over-Expression of PDGFR-β Promotes PDGF-Induced Proliferation, Migration, and Angiogenesis of EPCs through PI3K/Akt Signaling Pathway

    PubMed Central

    Li, Wei; Zhao, Xiaohui; Yu, Yang; Zhu, Jinkun; Qin, Zhexue; Wang, Qiang; Wang, Kui; Lu, Wei; Liu, Jie; Huang, Lan

    2012-01-01

    The proliferation, migration, and angiogenesis of endothelial progenitor cells (EPCs) play critical roles in postnatal neovascularization and re-endothelialization following vascular injury. Here we evaluated whether the over-expression of platelet-derived growth factor receptor-β (PDGFR-β) can enhance the PDGF-BB-stimulated biological functions of EPCs through the PDGFR-β/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. We first confirmed the expression of endogenous PDGFR-β and its plasma membrane localization in spleen-derived EPCs. We then demonstrated that the PDGFR-β over-expression in EPCs enhanced the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. Using AG1295 (a PDGFR kinase inhibitor), LY294002 (a PI3K inhibitor), and sc-221226 (an Akt inhibitor), we further showed that the PI3K/Akt signaling pathway participates in the PDGF-BB-induced proliferation, migration, and angiogenesis of EPCs. In addition, the PI3K/Akt signaling pathway is required for PDGFR-β over-expression to enhance these PDGF-BB-induced phenotypes. PMID:22355314

  19. The dineolignan from Saururus chinensis, manassantin B, inhibits tumor-induced angiogenesis via downregulation of matrix metalloproteinases 9 in human endothelial cells.

    PubMed

    Liu, Zhaojie; Lu, Hong; Liu, Rong; Chen, Bin; Wang, Shan; Ma, Junchao; Fu, Jianjiang

    2014-08-01

    Manassantin B (MB) is a neolignan isolated from Saururus chinensis that exhibits a range of activities, including anti-inflammatory, antiseptic and antitumor activity. MB was recently found to affect cell adhesion and expression of several adhesion molecules. Based on the important roles of these adhesion molecules in angiogenesis, we evaluated a possible role for MB in tumor-induced angiogenesis in endothelial cells (ECs). In the present study, we found that MB blocked tumor-induced tube formation of ECs and significantly inhibited the invasion of ECs through the reconstituted basement membrane. MB suppressed the activity of matrix metalloproteinases (MMPs) and downregulated the expression of matrix metalloproteinases 9. Western blotting showed reduction of RUNX2 activation by MB. RUNX2 transcription factor assay and chromatin immunoprecipitation assay showed that the interaction between RUNX2 and target sequences in the matrix metalloproteinases 9 promoters was inhibited by MB. Our findings suggested that the inhibitory effects of MB on tumor-induced angiogenesis were caused by matrix metalloproteinases 9 inhibition, which was associated with the downregulation of RUNX2 transcriptional activity.

  20. Suppression of NHE1 by small interfering RNA inhibits HIF-1α-induced angiogenesis in vitro via modulation of calpain activity.

    PubMed

    Mo, Xian-Gang; Chen, Qing-Wei; Li, Xing-Sheng; Zheng, Min-Ming; Ke, Da-Zhi; Deng, Wei; Li, Gui-Qiong; Jiang, Jin; Wu, Zhi-Qin; Wang, Li; Wang, Peng; Yang, Yan; Cao, Guang-Yi

    2011-03-01

    Hypoxia-inducible factor-1 (HIF-1) orchestrates angiogenesis under hypoxic conditions mainly due to increased expression of such target genes as vascular endothelial growth factor (VEGF). Na+/H+exchanger-1 (NHE1), a potential HIF target gene product, plays a pivotal role in proliferation, survival, migration, adhesion and so on. However, it is unknown whether NHE1 is involved in HIF-1α-induced angiogenesis. This present study demonstrated that the expression of NHE1 was much higher in human umbilical vein endothelial cells (HUVECs) infected with adenovirus encoding HIF-1α (rAd-HIF) than with vacuum adenovirus (vAd). HIF-1α also increased the expression of VEGF, the expression and activity of calpains, and the intracellular pH. Moreover, small interfering RNA targeting NHE1 (NHE1 siRNA) dramatically decreased the expression of NHE1 and thus lowered the intracellular pH, and it also attenuated the protein expression of calpain-2 but not calpain-1, resulting in the lower calpain activity. Furthermore, HIF-1α enhanced the proliferation, migration and Matrigel tube formation, which were inhibited by NHE1 siRNA. Finally, the inhibitory effect of NHE1 siRNA was reversed by VEGF and the reversibility of the later was abrogated by the calpain inhibitor ALLM. In conclusion, the findings have revealed that NHE1 might participate in HIF-1-induced angiogenesis due, at least in part, to the alteration of the calpain activity, suggesting that NHE1 as well as calpains might represent a potential target of controlling angiogenesis in response to the hypoxic stress under various pathological conditions.

  1. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis

    PubMed Central

    Hofer, Erhard; Schweighofer, Bernhard

    2010-01-01

    Summary New vessel formation during development and in the adult is triggered by concerted signals of largely endothelial-specific receptors for ligands of the VEGF, angiopoietin and ephrin families. The signals and genes induced by these receptors operate in the context of additional signals transduced by non-endothelial specific growth factor receptors, inflammatory cytokine receptors as well as adhesion molecules. We summarize here available data on characteristic signaling of the VEGF receptor-2 and the current state of knowledge regarding the additional different receptor tyrosine kinases of the VEGF, Tie and Ephrin receptor families. Furthermore, the potential cross-talk with signals induced by other growth factors and inflammatory cytokines as well as the modulation by VE-cadherin is discussed. PMID:17334501

  2. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging.

    PubMed

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-03-04

    We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression.

  3. Uncoupled angiogenesis and osteogenesis in nicotine-compromised bone healing.

    PubMed

    Ma, Li; Zheng, Li Wu; Sham, Mai Har; Cheung, Lim Kwong

    2010-06-01

    Nicotine is the main chemical component responsible for tobacco addiction. This study aimed to evaluate the influence of nicotine on angiogenesis and osteogenesis and the associated expression of angiogenic and osteogenic mediators during bone healing. Forty-eight adult New Zealand White rabbits were randomly assigned to a nicotine group and a control group. Nicotine pellets (1.5 g, 60-day time release) or placebo pellets were implanted in the neck subcutaneous tissue. The nicotine or placebo exposure time for all the animals was 7 weeks. Unilateral mandibular distraction osteogenesis was performed. Eight animals in each group were euthanized on day 5, day 11 of active distraction, and week 1 of consolidation, respectively. The mandibular samples were subjected to radiographic, histologic, immunohistochemical, and real-time reverse-transcriptase polymerase chain reaction examinations. Nicotine exposure upregulated the expression of hypoxia inducible factor 1alpha and vascular endothelial growth factor and enhanced angiogenesis but inhibited the expression of bone morphogenetic protein 2 and impaired bone healing. The results indicate that nicotine decouples angiogenesis and osteogenesis in this rabbit model of distraction osteogenesis, and the enhanced angiogenesis cannot compensate for the adverse effects of nicotine on bone healing.

  4. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer.

    PubMed

    Ji, Hui; Li, Yuan; Jiang, Fei; Wang, Xingxing; Zhang, Jianping; Shen, Jian; Yang, Xiaojun

    2014-12-01

    Prostate cancer is the most common cause of cancer-related deaths in men. Current practices for treatment of prostate cancer are less than satisfactory because of metastasis and recurrence, which are primarily attributed to angiogenesis. Hence, anti-angiogenesis treatment is becoming a promising new approach for prostate cancer therapy. In addition to treating acute promyelocytic leukemia, arsenic trioxide (As2 O3 ) suppresses other solid tumors, including prostate cancer. However, the effects of As2 O3 on angiogenesis in prostate cancer cells, and the underlying molecular mechanisms remain unclear. In the present study, As2 O3 attenuated angiogenic ability through microRNA-155 (miR-155)-mediated inhibition of transforming growth factor beta (TGF-β)/SMAD signal pathway in human prostate cancer PC-3 and LNCaP cells in vitro and in vivo. Briefly, As2 O3 inhibited the activations/expressions of both TGFβ-induced and endogenous SMAD2/3. Furthermore, As2 O3 improved the expression of miR-155 via DNA-demethylation. MiR-155, which targeted the SMAD2-3'UTR, decreased the expression and function of SMAD2. Knockdown of miR-155 abolished the As2 O3 -induced inhibitions of the TGF-β/SMAD2 signaling, the vascular endothelial growth factor secretion and angiogenesis. Through understanding a novel mechanism whereby As2 O3 inhibits angiogenic potential of prostate cancer cells, our study would help in the development of As2 O3 as a potential chemopreventive agent when used alone or in combination with other current anticancer drugs.

  5. The soluble guanylyl cyclase inhibitor NS-2028 reduces vascular endothelial growth factor-induced angiogenesis and permeability.

    PubMed

    Morbidelli, Lucia; Pyriochou, Anastasia; Filippi, Sandra; Vasileiadis, Ioannis; Roussos, Charis; Zhou, Zongmin; Loutrari, Heleni; Waltenberger, Johannes; Stössel, Anne; Giannis, Athanassios; Ziche, Marina; Papapetropoulos, Andreas

    2010-03-01

    Nitric oxide (NO) is known to promote vascular endothelial growth factor (VEGF)-stimulated permeability and angiogenesis. However, effector molecules that operate downstream of NO in this pathway remain poorly characterized. Herein, we determined the effect of soluble guanylyl cyclase (sGC) inhibition on VEGF responses in vitro and in vivo. Treatment of endothelial cells (EC) with VEGF stimulated eNOS phosphorylation and cGMP accumulation; pretreatment with the sGC inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one (NS-2028) blunted cGMP levels without affecting VEGF-receptor phosphorylation. Incubation of cells with NS-2028 blocked the mitogenic effects of VEGF. In addition, cells in which sGC was inhibited exhibited no migration and sprouting in response to VEGF. To study the mechanisms through which NS-2028 inhibits EC migration, we determined the effects of alterations in cGMP levels on p38 MAPK. Initially, we observed that inhibition of sGC attenuated VEGF-stimulated activation of p38. In contrast, the addition of 8-Br-cGMP to EC stimulated p38 phosphorylation. The addition of cGMP elevating agents (BAY 41-2272, DETA NO and YC-1) enhanced EC migration. To test whether sGC also mediated the angiogenic effects of VEGF in vivo, we used the rabbit cornea assay. Animals receiving NS-2028 orally displayed a reduced angiogenic response to VEGF. As increased vascular permeability occurs prior to new blood vessel formation, we determined the effect of NS-2028 in vascular leakage. Using a modified Miles assay, we observed that NS-2028 attenuated VEGF-induced permeability. Overall, we provide evidence that sGC mediates the angiogenic and permeability-promoting activities of VEGF, indicating the significance of sGC as a downstream effector of VEGF-triggered responses.

  6. A Role for p38 MAPK in Head and Neck Cancer Cell Growth and Tumor-Induced Angiogenesis and Lymphangiogenesis

    PubMed Central

    Leelahavanichkul, Kantima; Amornphimoltham, Panomwat; Molinolo, Alfredo A.; Basile, John R.; Koontongkaew, Sittichai; Gutkind, J. Silvio

    2014-01-01

    We have recently gained a remarkable understanding of the mutational landscape of head and neck squamous cell carcinoma (HNSCC). However, the nature of the dysregulated signaling networks contributing to HNSCC progression is still poorly defined. Here, we have focused on the role of the family of mitogen activated kinases (MAPKs), extracellular regulated kinase (ERK), c-Jun terminal kinase (JNK) and p38 MAPK in HNSCC. Immunohistochemical analysis of a large collection of human HNSCC tissues revealed that the levels of the phosphorylated active form of ERK1/2 and JNK were elevated in less than 33% and 16% of the cases, respectively. Strikingly, however, high levels of active phospho-p38 were observed in most (79%) of hundreds of tissues analyzed. We explored the biological role of p38 in HNSCC cell lines using three independent approaches: treatment with a specific p38 inhibitor, SB-203580; a retro-inhibition strategy consisting in the use of SB-203580 combined with the expression of an inhibitor-insensitive mutant form of p38α; and short-hairpin RNAs (shRNAs) targeting p38α. We found that specific blockade of p38 signaling significantly inhibited the proliferation of HNSCC cells both in vitro and in vivo. Indeed, we observed that p38 inhibition in HNSCC cancer cells reduces cancer growth in tumor xenografts and a remarkable decrease in intratumoral blood and lymphatic vessels. We conclude that p38α functions as a positive regulator of HNSCC in the context of the tumor microenvironment, controlling cancer cell growth as well as tumor-induced angiogenesis and lymphangiogenesis. PMID:24216180

  7. Bevacizumab-Induced Inhibition of Angiogenesis Promotes a More Homogeneous Intratumoral Distribution of Paclitaxel, Improving the Antitumor Response.

    PubMed

    Cesca, Marta; Morosi, Lavinia; Berndt, Alexander; Fuso Nerini, Ilaria; Frapolli, Roberta; Richter, Petra; Decio, Alessandra; Dirsch, Olaf; Micotti, Edoardo; Giordano, Silvia; D'Incalci, Maurizio; Davoli, Enrico; Zucchetti, Massimo; Giavazzi, Raffaella

    2016-01-01

    The antitumor activity of angiogenesis inhibitors is reinforced in combination with chemotherapy. It is debated whether this potentiation is related to a better drug delivery to the tumor due to the antiangiogenic effects on tumor vessel phenotype and functionality. We addressed this question by combining bevacizumab with paclitaxel on A2780-1A9 ovarian carcinoma and HT-29 colon carcinoma transplanted ectopically in the subcutis of nude mice and on A2780-1A9 and IGROV1 ovarian carcinoma transplanted orthotopically in the bursa of the mouse ovary. Paclitaxel concentrations together with its distribution by MALDI mass spectrometry imaging (MALDI MSI) were measured to determine the drug in different areas of the tumor, which was immunostained to depict vessel morphology and tumor proliferation. Bevacizumab modified the vessel bed, assessed by CD31 staining and dynamic contrast enhanced MRI (DCE-MRI), and potentiated the antitumor activity of paclitaxel in all the models. Although tumor paclitaxel concentrations were lower after bevacizumab, the drug distributed more homogeneously, particularly in vascularized, non-necrotic areas, and was cleared more slowly than controls. This happened specifically in tumor tissue, as there was no change in paclitaxel pharmacokinetics or drug distribution in normal tissues. In addition, the drug concentration and distribution were not influenced by the site of tumor growth, as A2780-1A9 and IGROV1 growing in the ovary gave results similar to the tumor growing subcutaneously. We suggest that the changes in the tumor microenvironment architecture induced by bevacizumab, together with the better distribution of paclitaxel, may explain the significant antitumor potentiation by the combination.

  8. Salinity-Induced Anti-Angiogenesis Activities and Structural Changes of the Polysaccharides from Cultured Cordyceps Militaris

    PubMed Central

    Zeng, Yangyang; Han, Zhangrun; Qiu, Peiju; Zhou, Zijing; Tang, Yang; Zhao, Yue; Zheng, Sha; Xu, Chenchen; Zhang, Xiuli; Yin, Pinghe; Jiang, Xiaolu; Lu, Hong; Yu, Guangli; Zhang, Lijuan

    2014-01-01

    Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the 13C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable 34S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future. PMID:25203294

  9. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  10. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    SciTech Connect

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  11. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  12. The ROS-mediated activation of STAT-3/VEGF signaling is involved in the 27-hydroxycholesterol-induced angiogenesis in human breast cancer cells.

    PubMed

    Zhu, Dongmei; Shen, Zhaoxia; Liu, Jiao; Chen, Juan; Liu, Yun; Hu, Chunyan; Li, Zhong; Li, Yuan

    2016-12-15

    Breast cancer (BC) is the leading cause of cancer-related mortality among females worldwide, and angiogenesis plays a crucial role in BC progression. 27-Hydroxycholesterol (27HC) is an endogenous selective estrogen receptor modulator, which promotes the growth and metastasis of BC. Here, we further found that, 27HC improved the angiogenic ability of BC in a VEGF-dependent manner. For the molecular mechanisms, on one hand, as an estrogen-like factor, 27HC enhanced the expression of VEGF by the classical ERα/VEGF signaling in ER-positive BC cells; on the other hand, in both ER-positive and ER-negative BC cells, 27HC enhanced the generation of ROS, which in turn activated the STAT-3/VEGF signaling in an ER independent manner. Either blocking the generation of ROS or knockdown of STAT-3 attenuated the 27HC-induced autocrine of VEGF and angiogenesis. These findings not only suggested a mechanism whereby 27HC enhanced the angiogenesis, but also helped to recognize the 27HC as a novel potential harmful factor in BC, especially in the menopause patients.

  13. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells

    PubMed Central

    Legeay, Samuel; Clere, Nicolas; Hilairet, Grégory; Do, Quoc-Tuan; Bernard, Philippe; Quignard, Jean-François; Apaire-Marchais, Véronique; Lapied, Bruno; Faure, Sébastien

    2016-01-01

    The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation. PMID:27345502

  14. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats

    PubMed Central

    Qi, Xin; Zhang, Jieyuan; Yuan, Hong; Xu, Zhengliang; Li, Qing; Niu, Xin; Hu, Bin; Wang, Yang; Li, Xiaolin

    2016-01-01

    Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by

  15. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  16. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions.

  17. Functional Role of Inorganic Trace Elements in in Angiogenesis Part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb)

    PubMed Central

    Saghiri, M. A.; Orangi, J.; Asatourian, A.; Sorenson, C.M.; Sheibani, N.

    2016-01-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital to developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I and part II of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005-April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of Mercury on cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. PMID:26638864

  18. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

    PubMed Central

    Jiao, Demin; Wang, Jian; Lu, Wei; Tang, Xiali; Chen, Jun; Mou, Hao; Chen, Qing-yong

    2016-01-01

    The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways. PMID:27525306

  19. Tumor-conditioned Gr-1(+)CD11b(+) myeloid cells induce angiogenesis through the synergistic action of CCL2 and CXCL16 in vitro.

    PubMed

    Han, Eun Chun; Lee, Jungwhoi; Ryu, Seung-Wook; Choi, Chulhee

    2014-01-24

    Gr-1(+)CD11b(+) cells can suppress innate and adaptive immunity, and the functional immunosuppressive characteristics of these cells can be modulated by the tumor microenvironment. Since Gr-1(+)CD11(+) cells are also involved in tumor-associated angiogenesis, we hypothesized that the angiogenic nature of Gr-1(+)CD11b(+) cells could be regulated by the tumor milieu. To address this hypothesis, we imitated a tumor microenvironment by exposing Gr-1(+)CD11b(+) cells isolated from spleen of 4T1 mammary carcinoma-bearing mice to tumor-conditioned medium. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells significantly induced capillary-like tube formation and migration of human umbilical vein endothelial cells (HUVECs) compared to naive Gr-1(+)CD11b(+) cells. Incubation of Gr-1(+)CD11b(+) cells with tumor-conditioned medium induced production of pro-angiogenic chemokines CCL2 and CXCL16. Pretreatment with an anti-CCL2 antibody, but not an anti-CXCL16 antibody, suppressed the angiogenic effects of tumor-conditioned Gr-1(+)CD11b(+) cells on HUVECs. Simultaneous neutralization of CCL2 and CXCL16 significantly inhibited tube formation and migration of HUVECs compared to the sole neutralization against CCL2. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells induced phosphorylation of ERK1/2 in HUVECs, and inhibition of the ERK pathway blocked angiogenic effects. ERK pathway activity was partially abrogated by neutralization of CCL2 and more suppressed by simultaneous neutralization of CCL2 and CXCL16. These results collectively indicate that CCL2 and CXCL16 chemokines produced by tumor-conditioned Gr-1(+)CD11b(+) myeloid cells synergistically induce angiogenesis in vitro by stimulating the ERK1/2 signaling pathway. Thus, regulation of Gr-1(+)CD11b(+) cells in the tumor microenvironment may contribute to angiogenesis through the secretion of pro-angiogenic chemokines.

  20. Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium.

    PubMed

    Kim, Donghern; Dai, Jin; Park, Youn-Hee; Fai, Leonard Yenwong; Wang, Lei; Pratheeshkumar, Poyil; Son, Young-Ok; Kondo, Kazuya; Xu, Mei; Luo, Jia; Shi, Xianglin; Zhang, Zhuo

    2016-07-29

    Hexavalent chromium (Cr(VI))-containing compounds are well established environmental carcinogens. Most mechanistic investigations of Cr(VI)-induced carcinogenesis focus on oxidative stress and various cellular responses, leading to malignant cell transformation or the first stage of metal-induced carcinogenesis. The development of malignantly transformed cells into tumors that require angiogenesis is the second stage. This study focuses on the second stage, in particular, the role of EGF receptor (EGFR) signaling in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. Our preliminary studies have shown that EGFR is constitutively activated in Cr(VI)-transformed cells, in lung tissue from Cr(VI)-exposed animals, and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. Using in vitro and in vivo models, the present study has investigated the role of EGFR in angiogenesis of Cr(VI)-transformed cells. The results show that Cr(VI)-transformed cells are angiogenic. Hypoxia-inducible factor-1α, pro-angiogenic protein matrix metalloproteinase 1, and VEGF are all highly expressed in Cr(VI)-transformed cells, in lung tissue from animals exposed to Cr(VI), and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. p38 MAPK is also activated in Cr(VI)-transformed cells and in human lung tumor tissue. Inhibition of EGFR reduces p38 MAPK, resulting in decreased expression of hypoxia-inducible factor-1α, metalloproteinase 1, and VEGF, leading to suppressions of angiogenesis and tumorigenesis. Overall, the present study has demonstrated that EGFR plays an important role in angiogenesis and tumorigenesis of Cr(VI)-transformed cells.

  1. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial–mesenchymal transition-induced angiogenesis

    PubMed Central

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial–mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further

  2. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis.

    PubMed

    Gee, Eric; Milkiewicz, Malgorzata; Haas, Tara L

    2010-01-01

    Increased capillary shear stress induces angiogenesis in skeletal muscle, but the signaling mechanisms underlying this response are not known. We hypothesize that shear stress-dependent activation of vascular endothelial growth factor receptor 2 (VEGFR2) causes p38 and ERK1/2 phosphorylation, which contribute to shear stress-induced angiogenesis. Skeletal muscle microvascular endothelial cells were sheared (12 dynes/cm(2), 0.5-24 h). VEGFR2-Y1214 phosphorylation increased in response to elevated shear stress and VEGF stimulation. p38 and ERK1/2 phosphorylation increased at 2 h of shear stress but only p38 remained phosphorylated at 6 and 24 h of shear stress. VEGFR2 inhibition abrogated p38, but not ERK1/2 phosphorylation. VEGF production was increased in response to shear stress at 6 h, and this increased production was abolished by p38 inhibition. Male Sprague-Dawley rats were administered prazosin (50 mg/L drinking water, 1, 2, 4, or 7 days) to induce chronically elevated capillary shear stress in skeletal muscle. In some experiments, mini-osmotic pumps were used to dispense p38 inhibitor SB203580 or its inactive analog SB202474, to the extensor digitorum longus (EDL) of control and prazosin-treated rats. Immunostaining and Western blotting showed increases in p38 phosphorylation in capillaries from rats treated with prazosin for 2 days but returned to basal levels at 4 and 7 days. p38 inhibition abolished the increase in capillary to muscle fiber ratio seen after 7 days of prazosin treatment. Our data suggest that p38 activation is necessary for shear stress-dependent angiogenesis.

  3. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    PubMed

    Connolly, Mary; Marrelli, Alessandra; Blades, Mark; McCormick, Jennifer; Maderna, Paola; Godson, Catherine; Mullan, Ronan; FitzGerald, Oliver; Bresnihan, Barry; Pitzalis, Costantino; Veale, Douglas J; Fearon, Ursula

    2010-06-01

    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  4. Influence of Exposure to Chronic Persistent Low-Dose Ionizing Radiation on the Tumor Biology of Clear-Cell Renal-Cell Carcinoma. An Immunohistochemical and Morphometric Study of Angiogenesis and Vascular Related Factors.

    PubMed

    Ruiz-Saurí, Amparo; Valencia-Villa, Gerardo; Romanenko, Alina; Pérez, Jesús; García, Raúl; García, Heydi; Benavent, José; Sancho-Tello, María; Carda, Carmen; Llombart-Bosch, Antonio

    2016-10-01

    Increased angiogenesis is related to boosted growth and malignancy in carcinomas. "Chronic Persistent Low-Dose Ionizing Radiation" (CPLDIR) exposure increases incidence and aggressive behavior of clear-cell renal-cell carcinoma (CCRCC). The aim was to study the biology of angiogenesis, including microvessel density (MVD), in human clear-cell renal-cell carcinomas (CCRCC) originating from a radio-contaminated geographical area (Ukraine) and to compare with similar tumors diagnosed in non-contaminated regions of Europe (Spain, Valencia) and Latin America (Colombia, Barranquilla). MVD was comparatively examined in 124 patients diagnosed with CCRCC from three geographical areas by means of digital micro-imaging and computerized analysis. Additionally, 50 adult normal kidneys were used for controls (autopsy kidneys from Valencia and Barranquilla). Furthermore, an immunohistochemical study of several vascular related growth factors was undertaken using a similar methodology. MVD as well as VEFG are the most discriminating factors associated with an aggressive behavior of CCRCC. Their expression increased in proportion to the level of exposure to chronic low-dose ionizing radiation in Ukrainian patients in the 25 years since the Chernobyl accident substantiated by comparison with the two control groups of renal carcinomas present in non-irradiated areas (Spain and Colombia). No major biological differences relating to angiogenesis appear to exist between the CCRCC diagnosed in two distant geographical areas of the world. HIF-1α expression was similar in all groups, with no statistical significance. Present findings demonstrate the existence of a significant relationship between MVD and VEGF in CCRCC: an increased expression of VEGF is associated with a high level of angiogenesis.

  5. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss.

    PubMed

    Zhao, Qiang; Shen, Xing; Zhang, Wei; Zhu, Guochun; Qi, Jin; Deng, Lianfu

    2012-03-01

    Postmenopausal osteoporosis is characterized by a reduction in the numbers of sinusoidal and arterial capillaries in the bone marrow and reduced bone perfusion suggesting a role of vascular component in the pathogenesis of osteoporosis. Previous studies have shown that bone formation and angiogenesis are positively coupled through activation of the hypoxia inducible factor (HIF1α) signaling pathway. Therefore, we hypothesized that mice with increased angiogenesis and osteogenesis due to activation of the HIF signaling pathway in osteoblasts, via osteoblast specific disruption of HIF degrading protein von Hippel-Lindau (VHL) (ΔVhl), are protected from ovariectomy induced bone loss. ΔVhl mice and control littermates were ovariectomized or sham operated and four weeks later bone quality was evaluated along with blood vessel formation. Trabecular and cortical bone volume was strikingly increased in ΔVhl mice along with blood vessel formation as compared to control littermates. In control mice, ovariectomy significantly decreased bone mineral density, deteriorated bone microarchitecture, and decreased mechanical strength compared to the sham operated control mice. This was accompanied with a significant decrease in blood vessel volume and expressions of HIF1α, HIF2α, and VEGF proteins at the distal femur in ovariectomized control mice. In contrast, ovariectomy in ΔVhl mice had absolutely no effect on either the blood vessel formation or the bone structural and mechanical quality parameters. These data indicate that activation of HIF signaling pathway in osteoblasts may prevent estrogen deficiency-induced bone loss and decrease in blood vessels in bone marrow.

  6. Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin

    PubMed Central

    Ud-Din, Sara; Sebastian, Anil; Giddings, Pamela; Colthurst, James; Whiteside, Sigrid; Morris, Julie; Nuccitelli, Richard; Pullar, Christine; Baguneid, Mo; Bayat, Ardeshir

    2015-01-01

    Angiogenesis is critical for wound healing. Insufficient angiogenesis can result in impaired wound healing and chronic wound formation. Electrical stimulation (ES) has been shown to enhance angiogenesis. We previously showed that ES enhanced angiogenesis in acute wounds at one time point (day 14). The aim of this study was to further evaluate the role of ES in affecting angiogenesis during the acute phase of cutaneous wound healing over multiple time points. We compared the angiogenic response to wounding in 40 healthy volunteers (divided into two groups and randomised), treated with ES (post-ES) and compared them to secondary intention wound healing (control). Biopsy time points monitored were days 0, 3, 7, 10, 14. Objective non-invasive measures and H&E analysis were performed in addition to immunohistochemistry (IHC) and Western blotting (WB). Wound volume was significantly reduced on D7, 10 and 14 post-ES (p = 0.003, p = 0.002, p<0.001 respectively), surface area was reduced on days 10 (p = 0.001) and 14 (p<0.001) and wound diameter reduced on days 10 (p = 0.009) and 14 (p = 0.002). Blood flow increased significantly post-ES on D10 (p = 0.002) and 14 (p = 0.001). Angiogenic markers were up-regulated following ES application; protein analysis by IHC showed an increase (p<0.05) in VEGF-A expression by ES treatment on days 7, 10 and 14 (39%, 27% and 35% respectively) and PLGF expression on days 3 and 7 (40% on both days), compared to normal healing. Similarly, WB demonstrated an increase (p<0.05) in PLGF on days 7 and 14 (51% and 35% respectively). WB studies showed a significant increase of 30% (p>0.05) on day 14 in VEGF-A expression post-ES compared to controls. Furthermore, organisation of granulation tissue was improved on day 14 post-ES. This randomised controlled trial has shown that ES enhanced wound healing by reduced wound dimensions and increased VEGF-A and PLGF expression in acute cutaneous wounds, which further substantiates the role of ES in up

  7. Dietary proteins and angiogenesis.

    PubMed

    Medina, Miguel Ángel; Quesada, Ana R

    2014-01-17

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  8. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    SciTech Connect

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  9. PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis

    PubMed Central

    Benameur, Tarek; Tual-Chalot, Simon; Andriantsitohaina, Ramaroson; Martínez, María Carmen

    2010-01-01

    Background Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. Methodology/Principal Findings We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms. Conclusions/Significance Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization. PMID:20811625

  10. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism

    SciTech Connect

    Meng Dan; Wang Xin; Chang Qingshan; Hitron, Andrew; Zhang Zhuo; Xu Mei; Chen Gang; Luo Jia; Jiang Binghua; Fang Jing; Shi Xianglin

    2010-05-01

    Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.

  11. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis

    PubMed Central

    Liu, Xiaolin; Li, Qing; Niu, Xin; Hu, Bin; Chen, Shengbao; Song, Wenqi; Ding, Jian; Zhang, Changqing; Wang, Yang

    2017-01-01

    Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro. iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on

  12. Vasohibin prevents arterial neointimal formation through angiogenesis inhibition

    SciTech Connect

    Yamashita, Hiroshi; Abe, Mayumi; Watanabe, Kazuhide; Shimizu, Kazue; Moriya, Takuya; Sato, Akira; Satomi, Susumu; Ohta, Hideki; Sonoda, Hikaru; Sato, Yasufumi . E-mail: y-sato@idac.tohoku.ac.jp

    2006-07-07

    Vasohibin is a VEGF-inducible angiogenesis inhibitor in vascular endothelium. Here we examined the presence of vasohibin in human arterial wall, and found it in endothelium of adventitial microvessels in atherosclerotic lesion. Adventitial angiogenesis is involved in the progression of neointimal formation. Even in the presence of endogenous angiogenesis inhibitors, pathological angiogenesis persists. However, the supplementation of exogenous angiogenesis inhibitors can prevent pathological angiogenesis. We evaluated the potential role of vasohibin in neointimal formation. Adenovirus-mediated human vasohibin gene transfer in mouse liver resulted in the release of vasohibin in plasma and exhibited anti-angiogenic effects at remote sites. This gene transfer inhibited adventitial angiogenesis, macrophage infiltration, and neointimal formation after cuff placement on mouse femoral artery. Vasohibin exhibited no direct effect on migration and proliferation of smooth muscle cells. Thus, vasohibin has an activity to prevent neointimal formation by inhibiting adventitial angiogenesis.

  13. [Angiogenesis and radiotherapy (vessels, anaemia, oxygen and radiosensitivity)].

    PubMed

    Lartigau, Eric

    2007-07-01

    Oxygen plays a direct role in cell death after exposure to ionizing radiations and tumour hypoxia, favoured by anaemia, is a factor of poor treatment response. Tumour phenotype is directly influenced by tissue oxygenation, inducing tumour cells adaptation to the environment and potential resistance to treatment. The correction of tumour hypoxia can increase treatment response. It is however difficult to directly correlate pO2 and vascularisation. Vessels from angiogenesis get endothelial cells but have lost the functions of normal vessels (receptors, muscles...). The role of angiogenesis has been demonstrated on initial tumour growth and on metastatic potential and regulation. Many pre clinical studies have demonstrated the benefit of combining anti angiogenic compounds and cytotoxic agents (chemotherapy drugs and ionizing radiations). Clinical studies are on going and new evaluation models of treatment response will be necessary.

  14. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    PubMed

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis.

  15. Human Apurinic/Apyrimidinic Endonuclease siRNA Inhibits the Angiogenesis Induced by X-Ray Irradiation in Lung Cancer Cells

    PubMed Central

    Gu, Xianqing; Cun, Yanping; Li, Mengxia; Qing, Yi; Jin, Feng; Zhong, Zhaoyang; Dai, Nan; Qian, Chengyuan; Sui, Jiangdong; Wang, Dong

    2013-01-01

    Objective: Radiotherapy is an important and effective treatment method for non-small cell lung cancer (NSCLC). Nonetheless, radiotherapy can alter the expression of proangiogenic molecules and induce angiogenesis. Human apurinic/apyrimidinic endonuclease (APE1) is a multifunctional protein, which has DNA repair and redox function. Our previous studies indicated APE1 is also a crucial angiogenic regulator. Thus, we investigated the effect of APE1 on radiation-induced angiogenesis in lung cancer and its underlying mechanism. Methods: Tumor specimens of 136 patients with NSCLC were obtained from 2003 to 2008. The APE1 and vascular endothelial growth factor (VEGF) expression, as well as microvessel density (MVD) were observed with immunohistochemistry in tumor samples. Human lung adenocarcinoma A549 cells were treated with Ad5/F35-APE1 siRNA and/or irradiation, and then the cells were used for APE1 analysis by Western blot and VEGF analysis by RT-PCR and ELISA. To elucidate the underline mechanism of APE1 on VEGF expression, HIF-1α protein level was determined by Western blot, and the DNA binding activity of HIF-1α was detected by EMSA. Transwell migration assay and capillary-like structure assay were used to observe the migration and capillary-like structure formation ability of human umbilical veins endothelial cells (HUVECs) that were co-cultured with Ad5/F35-APE1 siRNA and (or) irradiation treated A549 cells culture medium. Results: The high expression rates of APE1 and VEGF in NSCLC were 77.94% and 66.18%, respectively. The expressions of APE1 was significantly correlated with VEGF and MVD (r=0.369, r=0.387). APE1 and VEGF high expression were significantly associated with reduced disease free survival (DFS) time. The high expressions of APE1 and VEGF on A549 cells were concurrently induced by X-ray irradiation in a dose-dependent manner. Silencing of APE1 by Ad5/F35-APE1 siRNA significantly decreased DNA binding activity of HIF-1α and suppressed the expression

  16. Aloe-emodin suppresses hypoxia-induced retinal angiogenesis via inhibition of HIF-1α/VEGF pathway.

    PubMed

    Wu, Jianming; Ke, Xiao; Wang, Wei; Zhang, Hongcheng; Ma, Na; Fu, Wei; Zhao, Manxi; Gao, Xiaoping; Hao, Xiaofeng; Zhang, Zhirong

    2016-01-01

    Background: Aloe-emodin (AE) has been reported to possess the antiangiogenic effect on laser induced choroidal neovascularization. AE inhibits the vessel formation in the zebrafish embryos. However, it is still unclear whether AE can alleviate neovascularization. Here, we investigated the inhibitory effect of AE on the hypoxia-induced retinal neovascularization and the possible mechanisms. Methods: We established a vascular endothelial growth factor (VEGF) secretion model under chemical induced hypoxia by exposure of 150 µM CoCl2 to the ARPE-19 cells, then treated the cells with different concentrations of AE (0.2, 1.0 and 5.0 µg/mL) or a special hypoxia-inducible factor 1α (HIF-1α) inhibitor [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole, YC-1, 1.0 µg/mL]. The cellular supernatants were collected 48 h later to measure the VEGFA concentrations by human VEGFA enzyme-linked immunosorbent assay (ELISA) kits, the mRNA expressions of VEGFA, HIF-1α and prolyl hydroxylase-2 (PHD-2) by quantitative reverse transcription-PCR (qRT-PCR) and the protein expressions of HIF-1α and PHD-2 by Western blots. For in vivo study, the rat pups with oxygen-induced retinopathy were treated with Conbercept ophthalmic injection (1.0 mg/kg) or AE (5.0 and 10.0 mg/kg) for five days, then the retinal avascular areas were assessed via visualization of the retinal vasculature with ADPase and hematoxylin & eosin (H&E) stains. Results: AE inhibits the VEGFA secretion of ARPE-19 cells under hypoxia condition, decreases the mRNA expressions of VEGFA and PHD-2 and the protein expressions of VEGFA, HIF-1α and PHD-2 in vitro and prevents hypoxia-induced retinal neovascularization in vivo.Conclusions: AE ameliorates retinal neovascularization throuth inhibition of the HIF-1α/VEGF signaling pathway. AE may be developed as a potential drug for the prevention and treatment of diabetic retinopathy.

  17. Aloe-emodin suppresses hypoxia-induced retinal angiogenesis via inhibition of HIF-1α/VEGF pathway

    PubMed Central

    Wu, Jianming; Ke, Xiao; Wang, Wei; Zhang, Hongcheng; Ma, Na; Fu, Wei; Zhao, Manxi; Gao, Xiaoping; Hao, Xiaofeng; Zhang, Zhirong

    2016-01-01

    Background: Aloe-emodin (AE) has been reported to possess the antiangiogenic effect on laser induced choroidal neovascularization. AE inhibits the vessel formation in the zebrafish embryos. However, it is still unclear whether AE can alleviate neovascularization. Here, we investigated the inhibitory effect of AE on the hypoxia-induced retinal neovascularization and the possible mechanisms. Methods: We established a vascular endothelial growth factor (VEGF) secretion model under chemical induced hypoxia by exposure of 150 µM CoCl2 to the ARPE-19 cells, then treated the cells with different concentrations of AE (0.2, 1.0 and 5.0 µg/mL) or a special hypoxia-inducible factor 1α (HIF-1α) inhibitor [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole, YC-1, 1.0 µg/mL]. The cellular supernatants were collected 48 h later to measure the VEGFA concentrations by human VEGFA enzyme-linked immunosorbent assay (ELISA) kits, the mRNA expressions of VEGFA, HIF-1α and prolyl hydroxylase-2 (PHD-2) by quantitative reverse transcription-PCR (qRT-PCR) and the protein expressions of HIF-1α and PHD-2 by Western blots. For in vivo study, the rat pups with oxygen-induced retinopathy were treated with Conbercept ophthalmic injection (1.0 mg/kg) or AE (5.0 and 10.0 mg/kg) for five days, then the retinal avascular areas were assessed via visualization of the retinal vasculature with ADPase and hematoxylin & eosin (H&E) stains. Results: AE inhibits the VEGFA secretion of ARPE-19 cells under hypoxia condition, decreases the mRNA expressions of VEGFA and PHD-2 and the protein expressions of VEGFA, HIF-1α and PHD-2 in vitro and prevents hypoxia-induced retinal neovascularization in vivo. Conclusions: AE ameliorates retinal neovascularization throuth inhibition of the HIF-1α/VEGF signaling pathway. AE may be developed as a potential drug for the prevention and treatment of diabetic retinopathy. PMID:27877088

  18. Vascular Hyperpermeability, Angiogenesis, and Stroma Generation

    PubMed Central

    Nagy, Janice A.; Dvorak, Ann M.; Dvorak, Harold F.

    2012-01-01

    It has been known for more than half a century that the tumor microvasculature is hyperpermeable to plasma proteins. However, the identity of the leaky vessels and the consequences of vascular hyperpermeability have received little attention. This article places tumor vascular hyperpermeability in a broader context, relating it to (1) the low-level “basal” permeability of the normal vasculature; (2) the “acute,” short-term hyperpermeability induced by vascular permeability factor/vascular endothelial growth factor (VPF/VEGF-A) and other vascular permeabilizing agents; and (3) the “chronic” hyperpermeability associated with longer-term exposure to agents such as VPF/VEGF-A that accompanies many types of pathological angiogenesis. Leakage of plasma protein-rich fluids is important because it activates the clotting system, depositing an extravascular fibrin gel provisional matrix that serves as the first step in stroma generation. PMID:22355795

  19. Disparate effects of simvastatin on angiogenesis during hypoxia and inflammation

    PubMed Central

    Zhu, Xiang-Yang; Daghini, Elena; Chade, Alejandro R.; Lavi, Ronit; Napoli, Claudio; Lerman, Amir; Lerman, Lilach O.

    2008-01-01

    Aims Studies have shown that some of statin's pleiotropic effects were achieved by either promotion or inhibition of angiogenesis, depending on the underlying disease. This study tested the hypothesis that the angiogenic potential of simvastatin is related to the microenvironmental conditions. Main methods Human umbilical vein endothelial cells (HUVEC) were studied after exposure to hypoxia or the inflammatory factors tumor necrosis factor (TNF)-α, with or without co-incubation with simvastatin (1μmol/L) and mevalonate. HUVEC angiogenesis was evaluated by tube formation, migration, and proliferation assays. Hypoxia inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), Akt, endothelium nitric oxide synthase (e-NOS), and oxidative stress were evaluated. Key findings HUVEC angiogenesis increased during hypoxia (tube length 14.7±0.5 vs. 7.8±0.6 mm, p<0.05) and further enhanced by simvastatin (19.3±1.1 mm, p<0.05 vs. hypoxia alone), which downregulated the expression of the HIF-1 inhibitor PHD2 and upregulated HIF-1α, VEGF, and Akt, without changing oxidative stress or eNOS. Incubation with TNF-α promoted HUVEC angiogenesis (7.4±0.2 vs. 6.5±0.2 mm, p<0.05) with increased oxidative stress. However, simvastatin inhibited this promotion (2.5±0.3 mm, p<0.001 vs. TNF-α alone) by decreasing oxidative stress, VEGF, Akt, and eNOS. Significance We conclude that at the same dosage, simvastatin can either promote or inhibit angiogenesis, possibly by activating upstream regulators of HIF-1α in hypoxia, but conversely interfering with angiogenic signaling downstream to inflammation. These opposing angiogenic effects should be considered in the therapeutic strategies with statins. PMID:18976673

  20. Expression of nerve growth factor and hypoxia inducible factor-1α and its correlation with angiogenesis in non-small cell lung cancer.

    PubMed

    Lu, Qing-li; Liu, Jian; Zhu, Xiao-li; Xu, Wen-jia

    2014-06-01

    In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The results showed that the expression levels of NGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P<0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P<0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P<0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.

  1. Slit-Robo signaling in ocular angiogenesis.

    PubMed

    Chen, Haoyu; Zhang, Mingzhi; Tang, Shibo; London, Nyall R; Li, Dean Y; Zhang, Kang

    2010-01-01

    Slit-Robo signaling was firstly discovered as a major repellent pathway at the midline of the central nervous system. Intense investigation found that this pathway also plays an important role in other biological process including angiogenesis. Robo4 is the vascular endothelial cell specific member of Robo family. It was found that Slit-Robo signaling can inhibit endothelial cell migration, tube formation and vascular permeability. Slit-Robo signaling also plays an important role in embryonic and tumor angiogenesis. In animal model of ocular angiogenesis, addition of Slit inhibited laser induced choroidal neovascularization, oxygen induced retinopathy and VEGF induced retinal permeability in a Robo4 dependent manner. Recent data demonstrates that Robo1 and Robo4 form a heterodimer in endothelial cells, The role of this heterodimer in counteracting VEGF signaling is unknown. Further investigation is required to better understand Slit-Robo signaling and develop novel therapy for angiogenesis.

  2. Cadmium exposure induces hematuria in Korean adults

    SciTech Connect

    Han, Seung Seok; Kim, Myounghee; Lee, Su Mi; Lee, Jung Pyo; Kim, Sejoong; Joo, Kwon Wook; Lim, Chun Soo; Kim, Yon Su; Kim, Dong Ki

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  3. Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis.

    PubMed

    Mendonça, Ricardo José; Maurício, Vanessa Beatriz; Teixeira, Larissa de Bortolli; Lachat, João José; Coutinho-Netto, Joaquim

    2010-05-01

    Increases in vascular permeability and angiogenesis are crucial events to wound repair, tumoral growth and revascularization of tissues submitted to ischemia. An increased vascular permeability allows a variety of cytokines and growth factors to reach the damaged tissue. Nevertheless, the angiogenesis supply tissues with a wide variety of nutrients and is also important to metabolites clearance. It has been suggested that the natural latex from Hevea brasiliensis showed wound healing properties and angiogenic activity. Thus, the purpose of this work was to characterize its angiogenic activity and its effects on vascular permeability and wound healing. The serum fraction of the latex was separated from the rubber with reduction of the pH. The activity of the dialyzed serum fraction on the vascular permeability injected in subcutaneous tissue was assayed according Mile's method. The angiogenic activity was determined using a chick embryo chorioallantoic membrane assay and its effects on the wound-healing process was determined by the rabbit ear dermal ulcer model. The serum fraction showed evident angiogenic effect and it was effective in enhancing vascular permeability. In dermal ulcers, this material significantly accelerated wound healing. Moreover, the serum fraction boiled and treated with proteases lost these activities. These results are in accordance with the enhancement of wound healing observed in clinical trials carried out with a biomembrane prepared with the same natural latex.

  4. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma

    PubMed Central

    Kayamori, Kou; Katsube, Ken-ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs. PMID:27124156

  5. Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway

    PubMed Central

    Yu, Zengyang; Zhang, Tianyu; Gong, Chenyuan; Sheng, Yuchen; Lu, Bin; Zhou, Lingyu; Ji, Lili; Wang, Zhengtao

    2016-01-01

    Erianin is a natural compound found in Dendrobium chrysotoxum Lindl. Diabetic retinopathy (DR) is a serious and common microvascular complication of diabetes. This study aims to investigate the inhibitory mechanism of erianin on retinal neoangiogenesis and its contribution to the amelioration of DR. Erianin blocked high glucose (HG)-induced tube formation and migration in choroid-retinal endothelial RF/6A cells. Erianin inhibited HG-induced vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor 1-alpha (HIF-1α) translocation into nucleus and ERK1/2 activation in RF/6A and microglia BV-2 cells. MEK1/2 inhibitor U0126 blocked HG-induced HIF-1α and ERK1/2 activation in both above two cells. In addition, erianin abrogated VEGF-induced angiogenesis in vitro and in vivo, and also inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and its downstream cRaf-MEK1/2-ERK1/2 and PI3K-AKT signaling pathways in RF/6A cells. Furthermore, erianin reduced the increased retinal vessels, VEGF expression and microglia activation in streptozotocin (STZ)-induced hyperglycemic and oxygen-induced retinopathy (OIR) mice. In conclusion, our results demonstrate that erianin inhibits retinal neoangiogenesis by abrogating HG-induced VEGF expression by blocking ERK1/2-mediated HIF-1α activation in retinal endothelial and microglial cells, and further suppressing VEGF-induced activation of VEGFR2 and its downstream signals in retinal endothelial cells. PMID:27678303

  6. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    PubMed

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy.

  7. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species.

    PubMed

    Alcayaga-Miranda, Francisca; González, Paz L; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-07-12

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies.

  8. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species

    PubMed Central

    Alcayaga-Miranda, Francisca; González, Paz L.; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-01-01

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies. PMID:27286448

  9. Sphere formation of adipose stem cell engineered by poly-2-hydroxyethyl methacrylate induces in vitro angiogenesis through fibroblast growth factor 2.

    PubMed

    Kim, Jong-Ho; Lim, I-Rang; Joo, Hyung Joon; Choi, Seung-Cheol; Choi, Ji-Hyun; Cui, Long-Hui; Im, Lisa; Hong, Soon Jun; Lim, Do-Sun

    A number of researchers have been reporting a wide range of in vitro and in vivo studies of cell engraftment to enhance angiogenesis using stem cells. Despite these efforts, studies involving three-dimensional (3D) culture method that mimics in vivo environment have not reached its peak yet. In this study, we investigated the change and effects on cellular angiogenic growth factors through sphere formation of adipose stem cell (ASC) which is engineered by poly-2-hydroxyethyl methacrylate (Poly-HEMA). First of all, we successfully induced sphere formation of ASC (sph-ASC) on Poly-HEMA coated plates. sph-ASC represented significantly higher expression levels of anti-apoptotic and hypoxic factors compared to monolayer adherent ASC (adh-ASC). Interestingly, sph-ASC showed higher mRNA levels of the following genes; CD31, CD144, vWF, IGF-2, MCP-1, PDGF-A, VEGF-A, VEGF-C, and FGF-2. In addition, mRNA expressions of angiogenic growth factor receptors such as Flk1, FGFR1, FGFR2, and Tie2 were elevated in sph-ASC. In protein level, Cytokine/Chemokines antibody array revealed a significant increase of FGF-2 in sph-ASC (3.17-fold) compared to adh-ASC. To investigate the effects of FGF-2 on sph-ASC, Matrigel angiogenic invasion assay showed significant reduced level of FGF-2 in FGF-2 siRNA transfected sph-ASC (2.27-fold) compared to negative control siRNA transfected sph-ASC. These findings suggest that Poly-HEMA coated plates induce sphere formation of ASC which has significantly higher expression of FGF-2, and plays a critical role as a major regulating growth factor of in vitro angiogenesis.

  10. Piperine, a dietary phytochemical, inhibits angiogenesis

    PubMed Central

    Doucette, Carolyn D.; Hilchie, Ashley L.; Liwski, Robert; Hoskin, David W.

    2012-01-01

    Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induced angiogenic activity by rat aorta explants and breast cancer cell-induced angiogenesis in chick embryos. Although piperine binds to and activates the cation channel transient receptor potential vanilloid 1 (TRPV1), its effects on endothelial cells did not involve TRPV1 since the antiproliferative effect of piperine was not affected by TRPV1-selective antagonists, nor did HUVECs express detectable TRPV1 mRNA. Importantly, piperine inhibited phosphorylation of Ser 473 and Thr 308 residues of Akt (protein kinase B), which is a key regulator of endothelial cell function and angiogenesis. Consistent with Akt inhibition as the basis of piperine’s action on HUVECs, inhibition of the phosphoinositide-3 kinase/Akt signaling pathway with LY-294002 also inhibited HUVEC proliferation and collagen-induced angiogenesis. Taken together, these data support the further investigation of piperine as an angiogenesis inhibitor for use in cancer treatment. PMID:22902327

  11. Prenatal music exposure induces long-term neural effects.

    PubMed

    Partanen, Eino; Kujala, Teija; Tervaniemi, Mari; Huotilainen, Minna

    2013-01-01

    We investigated the neural correlates induced by prenatal exposure to melodies using brains' event-related potentials (ERPs). During the last trimester of pregnancy, the mothers in the learning group played the 'Twinkle twinkle little star'-melody 5 times per week. After birth and again at the age of 4 months, we played the infants a modified melody in which some of the notes were changed while ERPs to unchanged and changed notes were recorded. The ERPs were also recorded from a control group, who received no prenatal stimulation. Both at birth and at the age of 4 months, infants in the learning group had stronger ERPs to the unchanged notes than the control group. Furthermore, the ERP amplitudes to the changed and unchanged notes at birth were correlated with the amount of prenatal exposure. Our results show that extensive prenatal exposure to a melody induces neural representations that last for several months.

  12. Prenatal Music Exposure Induces Long-Term Neural Effects

    PubMed Central

    Partanen, Eino; Kujala, Teija; Tervaniemi, Mari; Huotilainen, Minna

    2013-01-01

    We investigated the neural correlates induced by prenatal exposure to melodies using brains' event-related potentials (ERPs). During the last trimester of pregnancy, the mothers in the learning group played the ‘Twinkle twinkle little star’ -melody 5 times per week. After birth and again at the age of 4 months, we played the infants a modified melody in which some of the notes were changed while ERPs to unchanged and changed notes were recorded. The ERPs were also recorded from a control group, who received no prenatal stimulation. Both at birth and at the age of 4 months, infants in the learning group had stronger ERPs to the unchanged notes than the control group. Furthermore, the ERP amplitudes to the changed and unchanged notes at birth were correlated with the amount of prenatal exposure. Our results show that extensive prenatal exposure to a melody induces neural representations that last for several months. PMID:24205353

  13. [Evaluation of rounded atelectasis induced by exposure to asbestos].

    PubMed

    Kishimoto, Takumi; Gemba, Kenichi; Fujimoto, Nobukazu; Nishi, Hideyuki; Ozaki, Shinji

    2008-09-01

    We encountered 19 patients of rounded atelectasis induced by exposure to asbestos from 2000 to 2007. All patients were men whose ages arranged from 60 to 89 years with a mean of 74.2 years. Twenty rounded atelectasis were present in the right lung and 5 in the left lung. Five patients had 2 rounded atelectasis. In 21 rounded atelectasis were found in Segment 10 and while other 2 found in S1 and each in S5 and 9. Eleven patients were diagnosed with no symptoms through medical examinations. Other 8 patients complained of dyspnea, chest pain and cough. Thirteen patients complicated with benign asbestos pleurisy and only 3 patients accompanied asbestosis. Eighteen patients (95%) displayed pleural plaques and 15 patients with calcified plaques. Ten patients had been exposed to asbestos in the shipyards and 4 in construction works and other 5 patients had also exposed by occupational exposure to asbestos. The mean period of exposure to asbestos was 26.6 years and the mean latency periods from the first asbestos exposure to the diagnosis of rounded atelectasis were 51.6 years. An autopsied patient had 18,100 asbestos bodies per 1 g of dry lung tissue which meant the heavy asbestos exposure. High incidence of pleural plaques and long period of latency from the first exposure to the appearance of rounded atelectasis in this study suggested that rounded atelectasis might appear less high-dose exposure to asbestos than former patients who were reported 6 years ago.

  14. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Prevents Steroid-Associated Osteonecrosis of the Femoral Head in Rabbits by Promoting Angiogenesis and Inhibiting Apoptosis

    PubMed Central

    Fan, Lihong; Li, Jia; Yu, Zefeng; Dang, Xiaoqian; Wang, Kunzheng

    2014-01-01

    The purpose of this study was to investigate the preventive effect of ethyl 3,4-dihydroxybenzoate(EDHB) on steroid-associated femoral head osteonecrosis(ONFH) in a rabbit model. New Zealand white rabbits were randomly divided into two groups (prevention group and model group), each containing 24 rabbits. Osteonecrosis was induced by lipopolysaccharide(LPS) combined with methylprednisolone(MPS). The prevention group received an intraperitoneal injection of EDHB at 50 mg/kg body weight every other day starting three days before establishing rabbit models of osteonecrosis, for a total of nine doses. Osteonecrosis was verified by haematoxylin-eosin (HE) staining. The expression of HIF-1α and VEGF was analyzed by immunohistochemistry. Angiogenesis, apoptosis and microstructural parameters were also analyzed. The rabbit models of osteonecrosis were successfully established and observed by HE staining. Histopathological observations indicated that EDHB reduced the rate of empty lacunae and the incidence of osteonecrosis. Immunohistochemical staining for HIF-1α and VEGF suggested that EDHB therapy inhibited degradation of HIF-1α and promoted expression of VEGF. Ink artery infusion angiography and microvessel density analysis revealed that there were more microvessels in the prevention group than in the model group. The TUNEL apoptosis assay suggested that EDHB intervention could reduce the number of apoptotic cells in avascular osteonecrosis of the femoral head. Micro-CT scanning indicated that the treatment group had better microstructural parameters than the model group. EDHB prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis of bone cells and hematopoietic tissue. PMID:25244080

  15. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

    PubMed

    Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A

    2017-03-01

    Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro, the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo, adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

  16. Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway

    PubMed Central

    Pozzobon, Tommaso; Facchinello, Nicola; Bossi, Fleur; Capitani, Nagaja; Benagiano, Marisa; Di Benedetto, Giulietta; Zennaro, Cristina; West, Nicole; Codolo, Gaia; Bernardini, Marialina; Baldari, Cosima Tatiana; D’Elios, Mario Milco; Pellegrini, Luca; Argenton, Francesco; de Bernard, Marina

    2016-01-01

    Over 10 million people every year become infected by Treponema pallidum and develop syphilis, a disease with broad symptomatology that, due to the difficulty to eradicate the pathogen from the highly vascularized secondary sites of infection, is still treated with injections of penicillin. Unlike most other bacterial pathogens, T. pallidum infection produces indeed a strong angiogenic response whose mechanism of activation, however, remains unknown. Here, we report that one of the major antigen of T. pallidum, the TpF1 protein, has growth factor-like activity on primary cultures of human endothelial cells and activates specific T cells able to promote tissue factor production. The growth factor-like activity is mediated by the secretion of IL-8 but not of VEGF, two known angiogenic factors. The pathogen’s factor signals IL-8 secretion through the activation of the CREB/NF-κB signalling pathway. These findings are recapitulated in an animal model, zebrafish, where we observed that TpF1 injection stimulates angiogenesis and IL-8, but not VEGF, secretion. This study suggests that the angiogenic response observed during secondary syphilis is triggered by TpF1 and that pharmacological therapies directed to inhibit IL-8 response in patients should be explored to treat this disease. PMID:26728351

  17. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  18. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc.

  19. Exposure of Mice to Topical Bovine Thrombin Induces Systemic Autoimmunity

    PubMed Central

    Schoenecker, Jonathan G.; Johnson, Rachel K.; Lesher, Aaron P.; Day, Jarrod D.; Love, Stephanie D.; Hoffman, Maureane R.; Ortel, Thomas L.; Parker, William; Lawson, Jeffrey H.

    2001-01-01

    Bovine thrombin is used as an aid to hemostasis in medical and surgical procedures. At least 500,000 Americans are exposed to this therapeutic annually and reports suggest that exposure is associated with the development of autoreactive antibodies. To determine whether bovine thrombin can induce pathological autoimmunity we exposed nonautoimmune-prone galactose-α1-3-galactose-deficient mice to the two bovine thrombin preparations currently approved for use in the United States. We found that, like humans exposed to bovine thrombin, mice developed an immune response against the therapeutic and the xenogeneic carbohydrate galactose-α1-3-galactose, and some mice developed autoantibodies against clotting factors. Further, unexpectedly, a single exposure to this therapeutic also induced autoimmunity with features characteristic of systemic lupus erythematosus including antibodies against nuclear antigens, native DNA, double-stranded DNA, and cardiolipin. High levels of these autoantibodies correlated with glomerulonephritis in all mice evaluated. This autoimmune syndrome was detected in mice 15 weeks after a secondary exposure to bovine thrombin and female mice were found to develop the syndrome at a significantly greater frequency than males. Thus, these studies indicate that exposure to bovine thrombin preparations can induce a pathological systemic autoimmune syndrome with lupus-like serology. PMID:11696457

  20. PHD2 in tumour angiogenesis

    PubMed Central

    Chan, D A; Giaccia, A J

    2010-01-01

    Originally identified as the enzymes responsible for catalysing the oxidation of specific, conserved proline residues within hypoxia-inducible factor-1α (HIF-1α), the additional roles for the prolyl hydroxylase domain (PHD) proteins have remained elusive. Of the four identified PHD enzymes, PHD2 is considered to be the key oxygen sensor, as knockdown of PHD2 results in elevated HIF protein. Several recent studies have highlighted the importance of PHD2 in tumourigenesis. However, there is conflicting evidence as to the exact role of PHD2 in tumour angiogenesis. The divergence seems to be because of the contribution of stromal-derived PHD2, and in particular the involvement of endothelial cells, vs tumour-derived PHD2. This review summarises our current understanding of PHD2 and tumour angiogenesis, focusing on the influences of PHD2 on vascular normalisation and neovascularisation. PMID:20461086

  1. Cannabidiol inhibits angiogenesis by multiple mechanisms

    PubMed Central

    Solinas, M; Massi, P; Cantelmo, AR; Cattaneo, MG; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, LM; Noonan, DM; Albini, A; Parolaro, D

    2012-01-01

    BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. PMID:22624859

  2. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  3. Platelets and angiogenesis in malignancy.

    PubMed

    Sierko, Ewa; Wojtukiewicz, Marek Z

    2004-02-01

    There is increasing evidence that platelets play an important role in the process of tumor angiogenesis. Thrombocytosis is a frequent finding in cancer patients (10-57%). Although the mechanisms underlying thrombocytosis are not yet fully elucidated, tumor-derived factors with thrombopoietin-like activity and growth factors, platelet-derived microparticles, and factors secreted from bone marrow endothelial cells, as well as growth factors released by megakaryocytes (acting via an autocrine loop), are postulated to influence this process. The progression of cancer is associated with hypercoagulability, which results from direct influences of tumor cells and diverse indirect mechanisms. Activated platelets serve as procoagulant surfaces amplifying the coagulation reactions. It is well known that hemostatic proteins are involved in different steps of the angiogenic process. Furthermore, platelets adhering to endothelium facilitate adhesion of mononuclear cells (which exert various proangiogenic activities) to endothelial cells and their transmigration to the extravascular space. It was also documented that platelets induce angiogenesis in vivo. Platelets are a rich source of proangiogenic factors. They also store and release angiogenesis inhibitors. In addition, platelets express surface growth factor receptors, which may regulate the process of angiogenesis. Platelets also contribute directly to the process of basement membrane and extracellular matrix proteolysis by releasing proteinases, or indirectly via inducing endothelial cells and tumor cells to release proteolytic enzymes, as well as through the proteolytic activities of platelet-derived growth factors. The multidirectional activities of platelets in the process of new blood vessel formation during tumor development and metastasis formation may create the possibility of introducing antiplatelet agents for antiangiogenic therapy in cancer patients. Thus far experimental studies employing inhibitors of

  4. Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish

    PubMed Central

    Chen, Jiangfei; Huang, Changjiang; Truong, Lisa; La Du, Jane; Tilton, Susan C.; Waters, Katrina M.; Lin, Kuanfei; Tanguay, Robert L; Dong, Qiaoxiang

    2012-01-01

    Trimethyltin chloride (TMT) is an organotin contaminant, widely detected in aqueous environments, posing potential human and environmental risks. In this study, we utilized the zebrafish model to investigate the impact of transient TMT exposure on developmental progression, angiogenesis, and cardiovascular development. Embryos were waterborne exposed to a wide TMT concentration range from 8 to 96 hours post fertilization (hpf). The TMT concentration that led to mortality in 50% of the embryos (LC50) at 96 hpf was 8.2 μM; malformations in 50% of the embryos (EC50) was 2.8 μM. The predominant response observed in surviving embryos was pericardial edema. Additionally, using the Tg (fli1a: EGFP) y1 transgenic zebrafish line to non-invasively monitor vascular development, TMT exposure led to distinct disarrangements in the vascular system. The most susceptible developmental stage to TMT exposure was between 48–72 hpf. High density whole genome microarrays were used to identify the early transcriptional changes following TMT exposure from 48 to 60 hpf or 72 hpf. In total, 459 transcripts were differentially expressed at least 2-fold (P < 0.05) by TMT compared to control. Using Ingenuity Pathway Analysis (IPA) tools, it was revealed that the transcripts misregulated by TMT exposure were clustered in numerous categories including metabolic and cardiovascular disease, cellular function, cell death, molecular transport, and physiological development. In situ localization of highly elevated transcripts revealed intense staining of ADP-ribosylation factors arf3 and arf5 in the head, trunk, and tail regions. When arf5 expression was blocked by morpholinos, the zebrafish did not display the prototypical TMT-induced vascular deficits, indicating that the induction of arf5 was necessary for TMT-induced vascular toxicity. PMID:23000284

  5. Exposure to diesel exhaust particulates induces cardiac dysfunction and remodeling

    PubMed Central

    Bradley, Jessica M.; Cryar, Kipp A.; El Hajj, Milad C.; El Hajj, Elia C.

    2013-01-01

    Chronic exposure to diesel exhaust particulates (DEP) increases the risk of cardiovascular disease in urban residents, predisposing them to the development of several cardiovascular stresses, including myocardial infarctions, arrhythmias, thrombosis, and heart failure. DEP contain a high level of polycyclic aromatic hydrocarbons, which activate the aryl hydrocarbon receptor (AHR). We hypothesize that exposure to DEP elicits ventricular remodeling through the activation of the AHR pathway, leading to ventricular dilation and dysfunction. Male Sprague-Dawley rats were exposed by nose-only nebulization to DEP (SRM 2975, 0.2 mg/ml) or vehicle for 20 min/day × 5 wk. DEP exposure resulted in eccentric left ventricular dilation (8% increased left ventricular internal diameter at diastole and 23% decreased left ventricular posterior wall thickness at diastole vs. vehicle), as shown by echocardiograph assessment. Histological analysis using Picrosirius red staining revealed that DEP reduced cardiac interstitial collagen (23% decrease vs. vehicle). Further assessment of cardiac function using a pressure-volume catheter indicated impaired diastolic function (85% increased end-diastolic pressure and 19% decreased Tau vs. vehicle) and contractility (57 and 48% decreased end-systolic pressure-volume relationship and maximum change in pressure over time vs. end-diastolic volume compared with vehicle, respectively) in the DEP-exposed animals. Exposure to DEP significantly increased cardiac expression of AHR (19% increase vs. vehicle). In addition, DEP significantly decreased the cardiac expression of hypoxia inducible factor-1α, the competitive pathway to the AHR, and vascular endothelial growth factor, a downstream mediator of hypoxia inducible factor-1α (26 and 47% decrease vs. vehicle, respectively). These findings indicate that exposure to DEP induced left ventricular dilation by loss of collagen through an AHR-dependent mechanism. PMID:23887904

  6. Prenatal exposure to nitrofen induces Fryns phenotype in mice.

    PubMed

    Acosta, J M; Chai, Y; Meara, J G; Bringas, P; Anderson, K D; Warburton, D

    2001-06-01

    Prenatal exposure to nitrofen is known to cause multiple malformations in mice. The reported malformations include lung hypoplasia, diaphragmatic hernia, cardiovascular defects, skeletal malformations, cleft palate, and renal abnormalities. The authors present detailed findings of craniofacial defects after prenatal exposure to nitrofen, and propose that together with the previously reported malformations, nitrofen exposure induces a Fryns phenotype in mice. Fryns syndrome is a rare human genetic syndrome that is an autosomal recessive disorder characterized by lung hypoplasia, diaphragmatic hernia, craniofacial malformations, skeletal malformations, cardiovascular malformations, and genitourinary malformations. Timed-pregnant Swiss Webster mice were gavage-fed 25 mg of nitrofen on day 8 of gestation. Control animals received olive oil. Osteogenesis and chondrogenesis were studied in fetuses recovered on day 17 after Alcian blue-Alizarin red staining. Approximately 26% of the nitrofen-exposed embryos had severe craniofacial defects, and there was generalized delay in chondrogenesis and osteogenesis throughout the skeleton. No such defects were noted in the control group. The authors propose that prenatal exposure to nitrofen induces a Fryns phenotype in mice, and thus speculate that nitrofen may target similar molecular mechanisms to those that lead to Fryns syndrome.

  7. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation.

    PubMed

    Zaafar, Dalia K; Zaitone, Sawsan A; Moustafa, Yasser M

    2014-01-01

    Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv-v): metformin (100 or 200 mg/kg) and (vi-vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  8. Environmental arsenic exposure and microbiota in induced sputum.

    PubMed

    White, Allison G; Watts, George S; Lu, Zhenqiang; Meza-Montenegro, Maria M; Lutz, Eric A; Harber, Philip; Burgess, Jefferey L

    2014-02-21

    Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  9. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review.

    PubMed

    Song, Dongmei; Fang, Guoqiang; Greenberg, Harly; Liu, Shu Fang

    2015-12-01

    Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis.

  10. Galectins in tumor angiogenesis

    PubMed Central

    Griffioen, Arjan W.

    2014-01-01

    The expansion of solid tumors depends on the continuous ingrowth of new blood vessels out of pre-existing capillaries. Consequently, tumor neovascularization or tumor angiogenesis is considered a hallmark of cancer and an attractive target for cancer therapy. Tumor angiogenesis is mainly carried out by endothelial cells (EC), i.e., the cells lining the luminal vessel wall. These cells have to take on different functional activities in order to successfully make new tumor blood vessels. In the last decade it has become apparent that galectins are important regulators of tumor angiogenesis. In the present review we summarize the current knowledge regarding the role galectins in tumor angiogenesis focussing on the endothelial galectins, i.e., gal-1/-3/-8/-9. PMID:25405165

  11. MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway.

    PubMed

    Chen, Qing-yong; Jiao, De-min; Wu, Yu-quan; Chen, Jun; Wang, Jian; Tang, Xia-li; Mou, Hao; Hu, Hui-zhen; Song, Jia; Yan, Jie; Wu, Li-jun; Chen, Jianyan; Wang, Zhiwei

    2016-04-05

    MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression. Moreover, we demonstrate that miR-206 directly targets c-Met and inhibits its downstream PI3k/Akt/mTOR signaling pathway. In contrast, miR-206 inhibitors promote the expression of c-Met and activate the PI3k/Akt/mTOR signaling, and this effect could be attenuated by the PI3K inhibitor. Moreover, c-Met overexpression assay further confirms the significant inhibitory effect of miR-206 on HGF-induced EMT, cell migration and invasion. Notably, we also find that miR-206 effectively inhibits HGF-induced tube formation and migration of human umbilical vein endothelial cells (HUVECs), and the mechanism is also related to inhibition of PI3k/Akt/mTOR signaling. Finally, we reveal the inhibitory effect of miR-206 on EMT and angiogenesis in xenograft tumor mice model. Taken together, miR-206 inhibits HGF-induced EMT and angiogenesis in lung cancer by suppressing c-Met/PI3k/Akt/mTOR signaling. Therefore, miR-206 might be a potential target for the therapeutic strategy against EMT and angiogenesis of lung cancer.

  12. MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence

    PubMed Central

    Ramalinga, Malathi; Roy, Arpita; Srivastava, Anvesha; Bhattarai, Asmita; Harish, Varsha; Suy, Simeng; Collins, Sean; Kumar, Deepak

    2015-01-01

    Among a number of non-coding RNAs, role of microRNAs (miRNAs) in cancer cell proliferation, cancer initiation, development and metastasis have been extensively studied and miRNA based therapeutic approaches are being pursued. Prostate cancer (PCa) is a major health concern and several deregulated miRNAs have been described in PCa. miR-212 is differentially modulated in multiple cancers however its function remains elusive. In this study, we found that miR-212 is downregulated in PCa tissues when compared with benign adjacent regions (n = 40). Also, we observed reduced levels of circulatory miR-212 in serum from PCa patients (n = 40) when compared with healthy controls (n = 32). Elucidating the functional role of miR-212, we demonstrate that miR-212 negatively modulates starvation induced autophagy in PCa cells by targeting sirtuin 1 (SIRT1). Overexpression of miR-212 also leads to inhibition of angiogenesis and cellular senescence. In conclusion, our study indicates a functional role of miR-212 in PCa and suggests the development of miR-212 based therapies. PMID:26439987

  13. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo.

    PubMed

    Drogat, Benjamin; Auguste, Patrick; Nguyen, Duc Thang; Bouchecareilh, Marion; Pineau, Raphael; Nalbantoglu, Josephine; Kaufman, Randal J; Chevet, Eric; Bikfalvi, Andréas; Moenner, Michel

    2007-07-15

    In solid tumors, cancer cells subjected to ischemic conditions trigger distinct signaling pathways contributing to angiogenic stimulation and tumor development. Characteristic features of tumor ischemia include hypoxia and glucose deprivation, leading to the activation of hypoxia-inducible factor-1-dependent signaling pathways and to complex signaling events known as the unfolded protein response. Here, we show that the activation of the endoplasmic reticulum stress sensor IRE1 is a common determinant linking hypoxia- and hypoglycemia-dependent responses to the up-regulation of vascular endothelial growth factor-A (VEGF-A). Tumor cells expressing a dominant-negative IRE1 transgene as well as Ire1alpha-null mouse embryonic fibroblasts were unable to trigger VEGF-A up-regulation upon either oxygen or glucose deprivation. These data correlated with a reduction of tumor angiogenesis and growth in vivo. Our results therefore suggest an essential role for IRE1-dependent signaling pathways in response to ischemia and identify this protein as a potential therapeutic target to control both the angiogenic switch and tumor development.

  14. Anti-tumor effect of cimetidine via inhibiting angiogenesis factors in N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse and rat bladder carcinogenesis.

    PubMed

    Chihara, Yoshitomo; Fujimoto, Kiyohide; Miyake, Makito; Hiasa, Yoshio; Hirao, Yoshihiko

    2009-07-01

    The aim of this study was to assess the anti-tumor effect and mechanisms of cimetidine in N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis model. Sixty-three male BALB/c mice and 67 male Wister rats were treated with BBN and cimetidine to examine the anti-tumor effect of cimetidine. Immunohistochemistry (IHC) of vascular endothelial growth factor (VEGF), platelet-derived endothelial growth factor (PDECGF), and E-selectin were examined to compare their expression in the tumor tissues. In mice, the tumor growth was reduced by cimetidine (p=0.011). The expression of PDECGF was reduced in the cimetidine-treated group (p=0.016). In rats, treatment of cimetidine reduced tumor growth (p=0.0001). Moreover, the expression of VEGF and PDECGF was reduced (p=0.02 and <0.001, respectively). The expression of E-selectin did not correlate with the tumor growth in either mice or rats. In mice, long-term cimetidine treatment proved very effective for inhibiting the tumor growth, but in rats, BBN after treatment with cimetidine showed the least tumor growth-inhibitory effect. In conclusion, cimetidine may have an inhibitory effect on tumor growth in bladder carcinogenesis via reducing the expression of angiogenesis factors including VEGF and PDECGF.

  15. Angiogenesis is inhibitory for mammalian digit regeneration

    PubMed Central

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  16. Angiogenesis is inhibitory for mammalian digit regeneration.

    PubMed

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D; Leininger, Eric; Han, Manjong; Muneoka, Ken

    2014-06-01

    The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti-angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551-559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium-derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration.

  17. Statin-induced myopathy in the rat: relationship between systemic exposure, muscle exposure and myopathy.

    PubMed

    Sidaway, J; Wang, Y; Marsden, A M; Orton, T C; Westwood, F R; Azuma, C T; Scott, R C

    2009-01-01

    Rare instances of myopathy are associated with all statins, but cerivastatin was withdrawn from clinical use due to a greater incidence of myopathy. The mechanism of statin-induced myopathy with respect to tissue disposition was investigated by measuring the systemic, hepatic, and skeletal muscle exposure of cerivastatin, rosuvastatin, and simvastatin in rats before and after muscle damage. The development of myopathy was not associated with the accumulation of statins in skeletal muscle. For each statin exposure was equivalent in muscles irrespective of their fibre-type sensitivity to myopathy. The low amount of each statin in skeletal muscle relative to the liver does not support a significant role for transporters in the disposition of statins in skeletal muscle. Finally, the concentration of cerivastatin necessary to cause necrosis in skeletal muscle was considerably lower than rosuvastatin or simvastatin, supporting the concept cerivastatin is intrinsically more myotoxic than other statins.

  18. Enhanced angiogenesis in grafted skins by gene transfer of human hepatocyte growth factor using laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Terakawa, Mitsuhiro; Sato, Shunichi; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Okano, Hideyuki; Obara, Minoru

    2007-02-01

    We delivered a therapeutic gene, hepatocyte growth factor (HGF), to skin grafts of rats using laser-induced stress waves (LISWs) with the objective of enhancing their adhesion. The density and uniformity of neovascularities were enhanced significantly in the grafted skins that were transfected using LISWs, suggesting the efficacy of this method to improve the outcome of skin transplantation.

  19. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  20. Evening primrose oil and celecoxib inhibited pathological angiogenesis, inflammation, and oxidative stress in adjuvant-induced arthritis: novel role of angiopoietin-1.

    PubMed

    El-Sayed, R M; Moustafa, Y M; El-Azab, M F

    2014-10-01

    Rheumatoid arthritis is a chronic inflammatory disease characterized by overproduction of inflammatory mediators along with undermined oxidative defensive mechanisms. Pathological angiogenesis was found to play a critical role in the progression of this disease. The current study was carried out to evaluate the anti-angiogenic, anti-inflammatory, and anti-oxidant effects of evening primrose oil (EPO), rich in gamma linolenic acid (GLA), either alone or in combination with aspirin or celecoxib, on adjuvant-induced arthritis. Arthritis was induced by subcutaneous injection of complete Freund's adjuvant (CFA) in the right hind paw of male albino rats. All treatments were administered orally from day 0 (EPO, 5 g/kg b.w.) or day 4 (celecoxib, 5 mg/kg; aspirin, 150 mg/kg) till day 27 after CFA injection. In the arthritic group, the results revealed significant decrease in the body weight and increase in ankle circumference, plasma angiopoietin-1 (ANG-1) and tumor necrosis factor-alpha (TNF-α) levels. Anti-oxidant status was suppressed as manifested by significant decline in reduced glutathione content along with decreased enzymatic activity of superoxide dismutase and increased lipid peroxidation. Oral administration of EPO exerted normalization of body weight, ANG-1, and TNF-α levels with restoration of activity as shown by reduced malondialdehyde levels. Moreover, histopathological examination demonstrated that EPO significantly reduced the synovial hyperplasia and inflammatory cells invasion in joint tissues, an effect that was enhanced by combination with aspirin or celecoxib. The joint use of GLA-rich natural oils, which possess anti-angiogenic, anti-inflammatory, and anti-oxidant activities, with traditional analgesics represents a promising strategy to restrain the progression of rheumatoid arthritis.

  1. Heat Stress and Hormetin-Induced Hormesis in Human Cells: Effects on Aging, Wound Healing, Angiogenesis, and Differentiation

    PubMed Central

    Rattan, Suresh I. S.; Fernandes, Ricardo A.; Demirovic, Dino; Dymek, Barbara; Lima, Cristovao F.

    2009-01-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of cellular aging. Mild stress-induced hormesis can be an effective way for reducing the accumulation of molecular damage, and thus slowing down aging from within. We have shown that repeated mild heat stress (RMHS) has anti-aging effects on growth and various other cellular and biochemical characteristics of normal human skin fibroblasts and keratinocytes undergoing aging in vitro. RMHS given to human cells increased the basal levels of various chaperones, reduced the accumulation of damaged proteins, stimulated proteasomal activities, increased the cellular resistance to other stresses, enhanced the levels of various antioxidant enzymes, enhanced the activity and amounts of sodium-potassium pump, and increased the phosphorylation-mediated activities of various stress kinases. We have now observed novel hormetic effects of mild heat stress on improving the wound healing capacity of skin fibroblasts and on enhancing the angiogenic ability of endothelial cells. We have also tested potential hormetins, such as curcumin and rosmarinic acid in bringing about their beneficial effects in human cells by inducing stress response pathways involving heat shock proteins and hemeoxygenase HO-1. These data further support the view that mild stress-induced hormesis can be applied for the modulation, intervention and prevention of aging and age-related impairments. PMID:19343114

  2. [The advance of model of action in low-dose chronic benzene exposure induced hematotoxicity].

    PubMed

    Gao, Chen; Zhang, Zhengbao; Chen, Liping; Chen, Wen

    2015-09-01

    Benzene is classified as Group 1 carcinogen by IARC. It has been found that benzene induces hematotoxicity even in low dose exposure. The identification of key events during benzene induced hematotoxicty leads to adjustment of occupational exposure limits of benzene. In this review, we focus on the exposure, metabolism, target organs, key epigenetic changes, toxicty effects and end points of low-dose chronic benzene exposure induced hematotoxicity and finally discuss the perspectives on the future study of this area.

  3. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis.

    PubMed

    Del Galdo, Sabrina; Vettel, Christiane; Heringdorf, Dagmar Meyer Zu; Wieland, Thomas

    2013-12-01

    Sphingosine-1-phosphate (S1P) is a multifunctional phospholipid inducing a variety of cellular responses in endothelial cells (EC). S1P responses are mediated by five G protein coupled receptors of which three types (S1P1R-S1P3R) have been described to be of importance in vascular endothelial cells (EC). Whereas the S1P1R regulates endothelial barrier function by coupling to Gαi and the monomeric GTPase Rac1, the signaling pathways involved in the S1P-induced regulation of angiogenesis are ill defined. We therefore studied the sprouting of human umbilical vein EC (HUVEC) in vitro and analyzed the activation of the RhoGTPases RhoA and RhoC. Physiological relevant concentrations of S1P (100-300nM) induce a moderate activation of RhoA and RhoC. Inhibition or siRNA-mediated depletion of the S1P2R preferentially decreased the activation of RhoC. Both manipulations caused an increase of sprouting in a spheroid based in vitro sprouting assay. Interestingly, a similar increase in sprouting was detected after effective siRNA-mediated knockdown of RhoC. In contrast, the depletion of RhoA had no influence on sprouting. Furthermore, suppression of the activity of G proteins of the Gα12/13 subfamily by adenoviral overexpression of the regulator of G protein signaling domain of LSC as well as siRNA-mediated knockdown of the Rho specific guanine nucleotide exchange factor leukemia associated RhoGEF (LARG) inhibited the S1P-induced activation of RhoC and concomitantly increased sprouting of HUVEC with similar efficacy. We conclude that the angiogenic sprouting of EC is suppressed via the S1P2R subtype. Thus, the increase in basal sprouting can be attributed to blocking of the inhibitory action of autocrine S1P stimulating the S1P2R. This inhibitory pathway involves the activation of RhoC via Gα12/13 and LARG, while the simultaneously occurring activation of RhoA is apparently dispensable here.

  4. PET Imaging of Angiogenesis

    PubMed Central

    Niu, Gang; Chen, Xiaoyuan

    2009-01-01

    Synopsis Angiogenesis is a highly-controlled process that is dependent on the intricate balance of both promoting and inhibiting factors, involved in various physiological and pathological processes. A comprehensive understanding of the molecular mechanisms that regulate angiogenesis has resulted in the design of new and more effective therapeutic strategies. Due to insufficient sensitivity to detect therapeutic effects by using standard clinical endpoints or by looking for physiological improvement, a multitude of imaging techniques have been developed to assess tissue vasculature on the structural, functional and molecular level. Imaging is expected to provide a novel approach to noninvasively monitor angiogenesis, to optimize the dose of new antiangiogenic agents and to assess the efficacy of therapies directed at modulation of the angiogenic process. All these methods have been successfully used preclinically and will hopefully aid in antiangiogenic drug development in animal studies. In this review article, the application of PET in angiogenesis imaging at both functional and molecular level will be discussed. For PET imaging of angiogenesis related molecular markers, we emphasize integrin αvβ3, VEGF/VEGFR, and MMPs. PMID:20046926

  5. Abnormal cardiovascular responses induced by localized high power microwave exposure

    SciTech Connect

    Lu, S.-T; Brown, D.O.; Johnson, C.E.; Mathur, S.P. ); Elson, E.C. )

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in the neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.

  6. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer.

    PubMed

    Lin, Ling; Chen, Yong-Song; Yao, Yan-Dan; Chen, Jing-Qi; Chen, Jia-Ning; Huang, Song-Yin; Zeng, Yun-Jie; Yao, He-Rui; Zeng, Si-Hai; Fu, Yong-Shui; Song, Er-Wei

    2015-10-27

    The infiltration of tumor-associated macrophages (TAMs) is associated with extensive angiogenesis, which contributes to a poor prognosis in breast cancer. However, anti-angiogenic therapy with VEGF-specific monotherapy has been unsuccessful in treating breast cancer, and the molecular mechanisms associated with chemoresistance remain unclear. Here, we investigated whether CCL18, a chemokine produced by TAMs, can stimulate angiogenesis in breast cancer, as well as the underlying mechanisms. Double immunohistochemical staining for CCL18 and CD34/CD31/vWF was performed in 80 breast cancer samples to study the correlation between CCL18+ TAMs and microvascular density (MVD). Cocultures of TAMs with human umbilical vein endothelial cells (HUVECs) were used to model the inflammatory microenvironment, and CCL18-induced angiogenesis was evaluated both in vitro and in vivo. We demonstrated that CCL18+ TAM infiltration positively associated with MVD in breast cancer samples, which was correlated with tumor metastasis and poor prognosis. We confirmed, both in vitro and in vivo, that CCL18 and VEGF synergistically promoted endothelial cell migration and angiogenesis. Conversely, blocking CCL18 or VEGF with neutralizing antibodies synergistically inhibited the promigratory effects of TAMs. Silencing PITPNM3, a putative CCL18 receptor, on the surface of HUVECs abrogated CCL18-mediated promigration and the enhancement of HUVEC tube formation, independently of VEGFR signaling. Moreover, CCL18 exposure induced the endothelial-mesenchymal transformation and activated ERK and Akt/GSK-3β/Snail signaling in HUVECs, thereby contributing to its pro-angiogenic effects. In conclusion, our findings suggest that CCL18 released from TAMs promotes angiogenesis and tumor progression in breast cancer; thus, CCL18 may serve as a novel target for anti-angiogenic therapies.

  7. SRF in angiogenesis

    PubMed Central

    Franco, Claudio A

    2009-01-01

    Cell cytoskeleton proteins are fundamental to cell shape, cell adhesion and cell motility, and therefore play an important role during angiogenesis. One of the major regulators of cytoskeletal protein expression is serum response factor (SRF), a MADS-box transcription factor that regulates multiple genes implicated in cell growth, migration, cytoskeletal organization, energy metabolism and myogenesis. Recent data have demonstrated a crucial role of SRF downstream of VEGF and FGF signalling during sprouting angiogenesis, regulating endothelial cell (EC) migration, actin polymerisation, tip cell morphology, EC junction assembly and vascular integrity. Here, we review the role of SRF in the regulation of angiogenesis and EC function, integrate SRF function into a broader mechanism regulating branching morphogenesis, and discuss future directions and perspectives of SRF in EC biology. PMID:19287204

  8. Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis.

    PubMed

    Zhang, Xiong; Qi, Dong-Dong; Zhang, Ting-Ting; Chen, Qing-Xin; Wang, Guang-Zhi; Sui, Guang-Yu; Hao, Xue-Wei; Sun, Shouli; Song, Xue; Chen, Ying-Li

    2015-03-01

    The T42 peptide, generated from two active fragments of tumstatin, has been shown to have anti‑tumor activity. The adenoviral vector is the most frequently used vector in research and clinical trials for gene therapy. In the present study, the anti‑tumor activity of the T42 peptide and quadruple T42 (4xT42) peptide adenoviral vectors were elucidated for the first time, to the best of our knowledge. Human embryonic kidney 293 cells were infected with plasmid adenovirus (pAd)‑enhanced green fluorescent protein (EGFP)‑T42 or pAd‑EGFP‑4xT42 and the expression of the T42 and 4xT42 genes was confirmed by the identification of GFP expression and reverse transcription polymerase chain reaction experiments. The anti‑cancer effects of pAd‑EGFP‑T42 and pAd‑EGFP‑4xT42 on breast cancer cells in vivo and in vitro were subsequently investigated. The results indicated that the packaging of the recombinant adenoviruses with the viral titer was successful, following purification at 5x109 plaque forming units/ml. The results also revealed that the recombinant adenoviruses promoted apoptosis in MCF‑7 breast cancer cells and inhibited cancer growth. Through the analysis of caspase‑3, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein expression, it was demonstrated that the T42/4xT42 peptide may induce apoptosis via the mitochondrial pathway. In addition, mouse xenograft experiments confirmed that the T42 peptide inhibited tumor growth and reduced angiogenesis in vivo. In conclusion, the results of the present study indicated that the T42 and 4xT42 peptide genes, transfected by a recombinant adenovirus, may provide a potential novel strategy for the treatment of breast cancer.

  9. Scube regulates synovial angiogenesis-related signaling.

    PubMed

    Yang, Min; Guo, Mingyang; Hu, Yonghe; Jiang, Yong

    2013-11-01

    Angiogenesis is particularly driven in the synovial microenvironment of Rheumatoid arthritis (RA), and considered as the fundamental cause for the persistent injury and chronic damage. Therefore, exploring the pathomechanism of synovial angiogenesis may provide promising prospects for vascular-targeting treatment of RA. The noval family of Scube proteins is confirmed to overlap significantly in structure characterized by epidermal growth factor (EGF)-like domains and CUB (complement subcomponents C1r/C1s, Uegf, bone morphogenetic protein-1) domain. As secreted glycoprotein and peripheral membrane protein, Scube increases its serum level in response to stimuli of inflammation and hypoxia. In rheumatoid angiogenesis-related signaling system defined by hedgehog (Hh), transforming growth factor (TGF)β and bone morphogenetic protein 2 (BMP2), Scube1 and 2 antagonize BMP2 signaling, suppressing BMP2-induced phospho-Smad1/5/8 level in vivo. Scube3 functions as an endogenous TGFβ receptor ligand, increasing Smad2/3 phosphorylation, and thus upregulates target genes involved in angiogenesis. Via obligate assistance of Scube1 and 3, Scube2 plays a center role to recruit dually lipid-modified Hh transferred from Dispatched A (DispA), increasing Hh secretion by promoting its solubility. These findings support the hypothesis that Scube may regulate synovial angiogenesis may be the ideal vascular targets for anti-rheumatic treatment of RA.

  10. Endothelial p53 Deletion Improves Angiogenesis and Prevents Cardiac Fibrosis and Heart Failure Induced by Pressure Overload in Mice

    PubMed Central

    Gogiraju, Rajinikanth; Xu, Xingbo; Bochenek, Magdalena L.; Steinbrecher, Julia H.; Lehnart, Stephan E.; Wenzel, Philip; Kessel, Michael; Zeisberg, Elisabeth M.; Dobbelstein, Matthias; Schäfer, Katrin

    2015-01-01

    Background Cardiac dysfunction developing in response to chronic pressure overload is associated with apoptotic cell death and myocardial vessel rarefaction. We examined whether deletion of tumor suppressor p53 in endothelial cells may prevent the transition from cardiac hypertrophy to heart failure. Methods and Results Mice with endothelial‐specific deletion of p53 (End.p53‐KO) were generated by crossing p53fl/fl mice with mice expressing Cre recombinase under control of an inducible Tie2 promoter. Cardiac hypertrophy was induced by transverse aortic constriction. Serial echocardiography measurements revealed improved cardiac function in End.p53‐KO mice that also exhibited better survival. Cardiac hypertrophy was associated with increased p53 levels in End.p53‐WT controls, whereas banded hearts of End.p53‐KO mice exhibited lower numbers of apoptotic endothelial and non‐endothelial cells and altered mRNA levels of genes regulating cell cycle progression (p21), apoptosis (Puma), or proliferation (Pcna). A higher cardiac capillary density and improved myocardial perfusion was observed, and pharmacological inhibition or genetic deletion of p53 also promoted endothelial sprouting in vitro and new vessel formation following hindlimb ischemia in vivo. Hearts of End.p53‐KO mice exhibited markedly less fibrosis compared with End.p53‐WT controls, and lower mRNA levels of p53‐regulated genes involved in extracellular matrix production and turnover (eg, Bmp‐7, Ctgf, or Pai‐1), or of transcription factors involved in controlling mesenchymal differentiation were observed. Conclusions Our analyses reveal that accumulation of p53 in endothelial cells contributes to blood vessel rarefaction and fibrosis during chronic cardiac pressure overload and suggest that endothelial cells may be a therapeutic target for preserving cardiac function during hypertrophy. PMID:25713289

  11. Angiogenesis and airway reactivity in asthmatic Brown Norway rats.

    PubMed

    Wagner, Elizabeth M; Jenkins, John; Schmieder, Anne; Eldridge, Lindsey; Zhang, Qiong; Moldobaeva, Aigul; Zhang, Huiying; Allen, John S; Yang, Xiaoxia; Mitzner, Wayne; Keupp, Jochen; Caruthers, Shelton D; Wickline, Samuel A; Lanza, Gregory M

    2015-01-01

    Expanded and aberrant bronchial vascularity, a prominent feature of the chronic asthmatic airway, might explain persistent airway wall edema and sustained leukocyte recruitment. Since it is well established that there are causal relationships between exposure to house dust mite (HDM) and the development of asthma, determining the effects of HDM in rats, mammals with a bronchial vasculature similar to humans, provides an opportunity to study the effects of bronchial angiogenesis on airway function directly. We studied rats exposed bi-weekly to HDM (Der p 1; 50 μg/challenge by intranasal aspiration, 1, 2, 3 weeks) and measured the time course of appearance of increased blood vessels within the airway wall. Results demonstrated that within 3 weeks of HDM exposure, the number of vessels counted within airway walls of bronchial airways (0.5-3 mm perimeter) increased significantly. These vascular changes were accompanied by increased airway responsiveness to methacholine. A shorter exposure regimen (2 weeks of bi-weekly exposure) was insufficient to cause a significant increase in functional vessels or reactivity. Yet, 19F/1H MR imaging at 3T following αvβ3-targeted perfluorocarbon nanoparticle infusion revealed a significant increase in 19F signal in rat airways after 2 weeks of bi-weekly HDM, suggesting earlier activation of the process of neovascularization. Although many antigen-induced mouse models exist, mice lack a bronchial vasculature and consequently lack the requisite human parallels to study bronchial edema. Overall, our results provide an important new model to study the impact of bronchial angiogenesis on chronic inflammation and airways hyperreactivity.

  12. From angiogenesis to neuropathology

    NASA Astrophysics Data System (ADS)

    Greenberg, David A.; Jin, Kunlin

    2005-12-01

    Angiogenesis - the growth of new blood vessels - is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

  13. ER Stress and Angiogenesis.

    PubMed

    Binet, François; Sapieha, Przemyslaw

    2015-10-06

    Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.

  14. REGULATION OF VASCULOGENESIS AND ANGIOGENESIS

    EPA Science Inventory

    Regulation of vasculogenesis and angiogenesis.
    B.D. Abbott
    Reproductive Toxicology Division, Environmental Protection Agency, Research Triangle Park, North Carolina, USA
    Vasculogenesis and angiogenesis are regulated by a complex, interactive family of receptors and lig...

  15. Effect of Blocking of Neuropeptide Y Y2 Receptor on Tumor Angiogenesis and Progression in Normal and Diet-Induced Obese C57BL/6 Mice

    PubMed Central

    Alasvand, Masoud; Rashidi, Bahman; Javanmard, S. H.; Akhavan, Maziar Mohammad; Khazaei, Majid

    2015-01-01

    Background: Obesity is a risk factor for some types of cancers. Angiogenesis is a necessary step in the multistage progression of tumors such as melanoma. Previous studies reported that neuropeptide Y (NPY) regulates angiogenesis by activating the Y2 receptor on endothelial cells. The present study examined the effects of the NPY Y2 receptor antagonist on tumor weight, angiogenesis and serum levels of vascular endothelial growth factor (VEGF), VEGF receptor-1 (VEGF-R1), and nitric oxide (NO). Methods: Twenty four male C57BL/6 mice were divided into control and obese groups. The control group was fed a normal diet whereas the obese group was fed a high fat diet. After 16 weeks, 2 × 106 B16F10 melanoma cells were injected subcutaneously into all animals. Half of the control and the obese animals received 1 µM, 100 µL/kg NPY Y2 receptor antagonist (BIIE 0246) intraperitoneally. After two weeks, the animals were sacrificed, and angiogenic factors and tumor weights and angiogenesis were analyzed. Results: Tumor weight in the obese mice was higher than in the control (p<0.05). Treatment with BIIE 0246 reduced tumor weight in the obese animals (p<0.05), without effect on control group (p>0.05). Administration of an NPY Y2 receptor antagonist decreased tumor angiogenesis (evaluated as capillary density/mm2) and serum VEGF concentration in the obese group without altering serum VEGF-R1 and NO concentrations. Conclusions: Blockade of the NPY Y2 receptor suppressed tumor growth in obese mice by affecting tumor angiogenesis. Thus, it seems that NPY and its Y2 receptor antagonist might be new targets in melanoma tumor therapy. PMID:26153206

  16. FACS-purified myoblasts producing controlled VEGF levels induce safe and stable angiogenesis in chronic hind limb ischemia.

    PubMed

    Wolff, Thomas; Mujagic, Edin; Gianni-Barrera, Roberto; Fueglistaler, Philipp; Helmrich, Uta; Misteli, Heidi; Gurke, Lorenz; Heberer, Michael; Banfi, Andrea

    2012-01-01

    We recently developed a method to control the in vivo distribution of vascular endothelial growth factor (VEGF) by high throughput Fluorescence-Activated Cell Sorting (FACS) purification of transduced progenitors such that they homogeneously express specific VEGF levels. Here we investigated the long-term safety of this method in chronic hind limb ischemia in nude rats. Primary myoblasts were transduced to co-express rat VEGF-A(164) (rVEGF) and truncated ratCD8a, the latter serving as a FACS-quantifiable surface marker. Based on the CD8 fluorescence of a reference clonal population, which expressed the desired VEGF level, cells producing similar VEGF levels were sorted from the primary population, which contained cells with very heterogeneous VEGF levels. One week after ischemia induction, 12 × 10(6) cells were implanted in the thigh muscles. Unsorted myoblasts caused angioma-like structures, whereas purified cells only induced normal capillaries that were stable after 3 months. Vessel density was doubled in engrafted areas, but only approximately 0.1% of muscle volume showed cell engraftment, explaining why no increase in total blood flow was observed. In conclusion, the use of FACS-purified myoblasts granted the cell-by-cell control of VEGF expression levels, which ensured long-term safety in a model of chronic ischemia. Based on these results, the total number of implanted cells required to achieve efficacy will need to be determined before a clinical application.

  17. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  18. Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects.

    PubMed

    Fracchiolla, Nicola Stefano; Todoerti, Katia; Bertazzi, Pier Alberto; Servida, Federica; Corradini, Paolo; Carniti, Cristiana; Colombi, Antonio; Cecilia Pesatori, Angela; Neri, Antonino; Deliliers, Giorgio Lambertenghi

    2011-04-28

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic diseases, diabetes, infertility, cancers and immunotoxicity. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 257 differentially modulated probe sets, identifying 221 well characterized genes. A large part of these resulted associated to cell adhesion and/or angiogenesis and to transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems. Our data support a role of dioxin in the neoplastic transformation of hemopoietic stem cells and in immune modulation processes after in vivo exposure, as indicated by the epidemiologic data in dioxin accidentally exposed populations, providing a molecular basis for it. In addition, TCDD alters genes associated to glucidic and lipidic metabolisms, to GABAergic transmission or involved in male and female fertility, thus providing a possible explanation of the diabetogenic, dyslipidemic, neurologic and fertility effects induced by TCDD in vivo exposure.

  19. Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum.

    PubMed

    Margetts, Peter J; Kolb, Martin; Yu, Lisa; Hoff, Catherine M; Holmes, Clifford J; Anthony, Daniel C; Gauldie, Jack

    2002-06-01

    Peritonitis, a common complication of peritoneal dialysis, is followed by acute changes in the function of the peritoneum. The role of inflammatory cytokines in these processes is not clearly identified. We used adenoviral-mediated gene transfer to transiently overexpress interleukin (IL)-1 beta (AdIL-1 beta) or tumor necrosis factor (TNF)-alpha (AdTNF-alpha) in the rat peritoneum then used a modified equilibrium test to study the histological and functional changes. Overexpression of IL-1 beta or TNF-alpha led to an acute inflammatory response. Both inflammatory cytokines induced an early expression of the angiogenic cytokine, vascular endothelial growth factor, along with increased expression of the profibrotic cytokine, transforming growth factor-beta1, along with fibronectin expression and collagen deposition in peritoneal tissues. Both inflammatory cytokines induced angiogenesis, increased solute permeability, and ultrafiltration dysfunction at earlier time points. Changes in structure and function seen in AdTNF-alpha-treated animals returned to normal by 21 days after infection, whereas AdIL-1 beta-treated animals had persistently increased vasculature with submesothelial thickening and fibrosis. This was associated with up-regulation TIMP-1. TNF-alpha or IL-1 beta both induce acute changes in the peritoneum that mimic those seen in peritoneal dialysis patients who experience an episode of peritonitis. These functional changes were associated with early angiogenesis that resolved rapidly after exposure to TNF-alpha. IL-1 beta exposure, however, led to a different response with sustained vascularization and fibrosis. IL-1 beta inhibition may be a therapeutic goal in acute peritonitis to prevent peritoneal damage.

  20. Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense.

    PubMed

    Westra, Edze R; van Houte, Stineke; Oyesiku-Blakemore, Sam; Makin, Ben; Broniewski, Jenny M; Best, Alex; Bondy-Denomy, Joseph; Davidson, Alan; Boots, Mike; Buckling, Angus

    2015-04-20

    In the face of infectious disease, organisms evolved a range of defense mechanisms, with a clear distinction between those that are constitutive (always active) and those that are inducible (elicited by parasites). Both defense strategies have evolved from each other, but we lack an understanding of the conditions that favor one strategy over the other. While it is hard to generalize about their degree of protection, it is possible to make generalizations about their associated fitness costs, which are commonly detected. By definition, constitutive defenses are always "on," and are therefore associated with a fixed cost, independent of parasite exposure. Inducible defenses, on the other hand, may lack costs in the absence of parasites but become costly when defense is elicited through processes such as immunopathology. Bacteria can evolve constitutive defense against phage by modification/masking of surface receptors, which is often associated with reduced fitness in the absence of phage. Bacteria can also evolve inducible defense using the CRISPR-Cas (clustered regularly interspaced short palindromic repeat, CRISPR associated) immune system, which is typically elicited upon infection. CRISPR-Cas functions by integrating phage sequences into CRISPR loci on the host genome. Upon re-infection, CRISPR transcripts guide cleavage of phage genomes. In nature, both mechanisms are important. Using a general theoretical model and experimental evolution, we tease apart the mechanism that drives their evolution and show that infection risk determines the relative investment in the two arms of defense.

  1. Rescue of hypertension-related impairment of angiogenesis by therapeutic ultrasound

    PubMed Central

    Lu, Zhao-Yang; Li, Rui-Lin; Zhou, Hong-Sheng; Huang, Jing-Juan; Qi, Jia; Su, Zhi-Xiao; Zhang, Lan; Li, Yue; Shi, Yi-Qin; Hao, Chang-Ning; Duan, Jun-Li

    2016-01-01

    We examined the hypothesis that therapeutic ultrasound (TUS) treatment would rescue the hypertension-related inhibition of ischemia-induced angiogenesis. TUS protects against endothelial dysfunction, but it is little known that the effect of TUS treatment on angiogenesis inhibited by hypertension. 20-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly allocated to 4 groups: SHR; TUS treated SHR (SHR-TUS); WKY and TUS treated WKY (WKY-TUS). After undergoing excision of the left femoral artery, the ischemic skeletal muscles were treated with extracorporeal TUS for 9 minutes of daily exposure (frequency of 1 MHz, intensity of 0.3 W/cm2) for 14 consecutive days. We found that TUS normalized the blood perfusion in SHR-TUS accompanied by elevated capillary density. Similar results were found in the protein expression of angiogenic factors. TUS treatment also enhanced peripheral capillary density in WKY rats and restored the capillary rarefaction in hypertension by elevating the protein levels of endothelial nitric oxide synthase (eNOS), hypoxic inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and phosphorylated Akt (p-Akt) in vivo. Our data demonstrated that TUS treatment ameliorated hypertension-related inhibition of ischemia-induced angiogenesis, at least in part, via an NO-dependent manner. PMID:27508029

  2. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay.

    PubMed

    Handel, Marina; Hammer, Timo R; Nooeaid, Patcharakamon; Boccaccini, Aldo R; Hoefer, Dirk

    2013-12-01

    Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass(®) was investigated given its potential for applications in bone engineering. Since native Bioglass(®) shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass(®)-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass(®)-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass(®) and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass(®), with hASC could be a promising approach for future tissue engineering applications.

  3. The Harvard angiogenesis story.

    PubMed

    Miller, Joan W

    2014-01-01

    I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.

  4. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.

  5. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    PubMed

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development.

  6. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  7. KSHV-Mediated Angiogenesis in Tumor Progression

    PubMed Central

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  8. Hexachlorobenzene promotes angiogenesis in vivo, in a breast cancer model and neovasculogenesis in vitro, in the human microvascular endothelial cell line HMEC-1.

    PubMed

    Pontillo, Carolina; Español, Alejandro; Chiappini, Florencia; Miret, Noelia; Cocca, Claudia; Alvarez, Laura; Kleiman de Pisarev, Diana; Sales, María Elena; Randi, Andrea Silvana

    2015-11-19

    Exposure to environmental pollutants may alter proangiogenic ability and promotes tumor growth. Hexachlorobenzene (HCB) is an organochlorine pesticide found in maternal milk and in lipid foods, and a weak ligand of the aryl hydrocarbon receptor (AhR). HCB induces migration and invasion in human breast cancer cells, as well as tumor growth and metastasis in vivo. In this study, we examined HCB action on angiogenesis in mammary carcinogenesis. HCB stimulates angiogenesis and increases vascular endothelial growth factor (VEGF) expression in a xenograft model with the human breast cancer cell line MDA-MB-231. Human microvascular endothelial cells HMEC-1 exposed to HCB (0.005, 0.05, 0.5 and 5μM) showed an increase in cyclooxygenase-2 (COX-2) and VEGF protein expression involving AhR. In addition, we found that HCB enhances VEGF-Receptor 2 (VEGFR2) expression, and activates its downstream pathways p38 and ERK1/2. HCB induces cell migration and neovasculogenesis in a dose-dependent manner. Cells pretreatment with AhR, COX-2 and VEGFR2 selective inhibitors, suppressed these effects. In conclusion, our results show that HCB promotes angiogenesis in vivo and in vitro. HCB-induced cell migration and tubulogenesis are mediated by AhR, COX-2 and VEGFR2 in HMEC-1. These findings may help to understand the association among HCB exposure, angiogenesis and mammary carcinogenesis.

  9. Angiogenesis: a curse or cure?

    PubMed

    Gupta, K; Zhang, J

    2005-04-01

    Angiogenesis, the growth of new blood vessels is essential during fetal development, female reproductive cycle, and tissue repair. In contrast, uncontrolled angiogenesis promotes the neoplastic disease and retinopathies, while inadequate angiogenesis can lead to coronary artery disease. A balance between pro-angiogenic and antiangiogenic growth factors and cytokines tightly controls angiogenesis. Considerable progress has been made in identifying these molecular components to develop angiogenesis based treatments. One of the most specific and critical regulators of angiogenesis is vascular endothelial growth factor (VEGF), which regulates endothelial proliferation, permeability, and survival. Several VEGF based treatments including anti-VEGF and anti-VEGF receptor antibodies/agents are in clinical trials along with several other antiangiogenic treatments. While bevacizumab (anti-VEGF antibody) has been approved for clinical use in colorectal cancer, the side effects of antiangiogenic treatment still remain a challenge. The pros and cons of angiogenesis based treatment are discussed.

  10. Jaceosidin, a natural flavone, promotes angiogenesis via activation of VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathways in endothelial cells.

    PubMed

    Lee, Tae Hoon; Jung, Hana; Park, Keun Hyung; Bang, Myun Ho; Baek, Nam-In; Kim, Jiyoung

    2014-10-01

    Angiogenesis, the growth of new blood vessels from pre-existing vasculature, plays an important role in physiological and pathological processes such as embryonic development wound healing and revascularization of tissues after exposure to ischemia. We investigated the effects of jaceosidin, a main constituent of medicinal herbs of the genus Artemisia, on angiogenesis and signaling pathways in endothelial cells. Jaceosidin stimulated proliferation, migration and tubulogenesis of ECs as well as ex vivo sprouting from aorta rings, which are phenomena typical of angiogenesis. Jaceosidin activated vascular endothelial growth factor receptor 2 (VEGFR2, FLk-1/KDR) and angiogenic signaling molecules such as focal adhesion kinase, phosphatidylinositol 3-kinase, and its downstream target, the serine-threonine kinase AKTWe also demonstrated that jaceosidin activated the NF-κB-driven expression of a luciferase reporter gene and NF-κB binding to DNA. Jaceosidin-induced proliferation and migration of human umbilical vascular endothelial cells were strongly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002 and NF-κB inhibitor BAY11-7082, indicating that the PI3K/AKT/NF-κB signaling pathway is involved in jaceosidin-induced angiogenesis. Our results suggest that jaceosidin stimulates angiogenesis by activating the VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathway and that it may be useful in developing angiogenic agents to promote the growth of collateral blood vessels in ischemic tissues.

  11. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    PubMed Central

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  12. Different cell responses induced by exposure to maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M. Concepción

    2013-11-01

    Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible

  13. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    PubMed

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  14. Cigarette smoke extracts induce overexpression of the proto-oncogenic gene interleukin-13 receptor α2 through activation of the PKA-CREB signaling pathway to trigger malignant transformation of lung vascular endothelial cells and angiogenesis.

    PubMed

    Meng, Mei; Liao, Huaidong; Zhang, Bin; Pan, Yanyan; Kong, Ying; Liu, Wenming; Yang, Ping; Huo, Zihe; Cao, Zhifei; Zhou, Quansheng

    2017-02-01

    Cigarette smoking is a major cause of lung cancer. Tumor-associated endothelial cells (TAECs) play important roles in tumor angiogenesis and metastasis. However, whether cigarette smoking can trigger genesis of lung TAECs has not been reported yet. In the current study, we used lung endothelial cell (EC) lines as a model to study the pathological effect of cigarette smoke extracts (CSEs) on human lung ECs, and found that a lower dose of 4% CSEs obviously caused abnormal morphological changes in ECs, increased the permeability of endothelial monolayer, while a higher concentration of 8% CSEs caused EC apoptosis. Strikingly, CSEs induced a 117-fold overexpression of a pro-tumorigenic interleukin-13 receptor α2 gene (IL-13Rα2, also named as CT-19) through activation of the protein kinase A (PKA) and cAMP response element-binding protein (CREB) signaling pathway. A PKA specific inhibitor H89 completely abolished CSEs-induced IL-13Rα2 overexpression. The overexpression of IL-13Rα2 in lung ECs significantly increased the tumorigenic, migratory, and angiogenic capabilities of the cells, suggesting that IL-13Rα2 promotes genesis of lung TAECs. Together, our data show that CSEs activate the PKA, CREB, and IL-13Rα2 axis in lung ECs, and IL-13Rα2 promotes the malignant transformation of lung ECs and genesis of TAECs with robust angiogenic and oncogenic capabilities. Our study provides new insight into the mechanism of CSEs-triggered lung cancer angiogenesis and tumorigenesis, suggesting that the PKA-CREB-IL-13Rα2 axis is a potential target for novel anti-lung tumor angiogenesis and anti-lung cancer drug discovery.

  15. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing.

    PubMed

    Velazquez, Omaida C

    2007-06-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo but also for repair of wounded tissue in the adult. An imbalance in angiogenesis (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound-healing disorders. This review focuses on the central role of the growth of new blood vessels in ischemic and diabetic wound healing and defines the most current nomenclature that describes the neovascularization process in wounds. There are now two well-defined, distinct, yet interrelated processes for the formation of postnatal new blood vessels, angiogenesis, and vasculogenesis. Reviewed are recent new data on vasculogenesis that promise to advance the field of wound healing.

  16. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading.

    PubMed

    Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D; Lanza, Gregory M; Silva, Matthew J

    2014-09-01

    Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αv β3 integrin-targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF-loaded limbs was increased compared with non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF- and LBF-loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αv β3 integrin-mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research.

  17. Antagonizing the αvβ3 Integrin Inhibits Angiogenesis and Impairs Woven but Not Lamellar Bone Formation Induced by Mechanical Loading

    PubMed Central

    Tomlinson, Ryan E.; Schmieder, Anne H.; Quirk, James D.; Lanza, Gregory M.; Silva, Matthew J.

    2015-01-01

    Angiogenesis and osteogenesis are critically linked, though the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αvβ3 integrin targeted nanoparticles or vehicle was injected intravenously following mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF loaded limbs was increased compared to non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF and LBF loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αvβ3 integrin mediated angiogenesis is critical for recovering fracture resistance following bone injury, but is not required for bone modeling after modest mechanical strain. PMID:24644077

  18. EPCs enhance angiogenesis in renal regeneration

    PubMed Central

    Li, Miaozhong; Alkhawaji, Ali; Chen, Chuan; Liu, Xiaolin; Jiang, Junqun; Zhang, Jianse; Wang, Zhibin; Li, Ting; Zhang, Weiwen; Mei, Jin

    2016-01-01

    Decellularized renal scaffolds have previously been used for renal regeneration following partial nephrectomy, in which angiogenesis played a key role. In this study, rats underwent partial nephrectomy and repaired with decellularized renal scaffolds. Subsequently, the labeled EPCs were intravenously injected into rats in EPCs group, and the control group received an equal amount of phosphate-buffer saline (PBS). We chose 1, 2 and 4 weeks post operation as time point. Average microvascular density (aMVD) analyses revealed higher angiogenesis in EPCs group compared with the control group. The expression of angiogenic growth factors including vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and hypoxia-inducible factors 1-alpha (HIF-1α), was generally higher in the EPCs group in all weeks (1, 2 and 4), and peaked in week 2. EPCs were observed to home into renal injury site, promoting angiogenesis across the renal parenchyma-scaffold interface to be potentially used as bridges for EPCs to migrate into the implanted scaffolds. Administration of exogenous EPCs promotes angiogenesis and vasculogenesis in decellularized renal scaffolds-mediated renal regeneration, providing adequate microenvironment for kidney recovery post renal injury. PMID:27384488

  19. The impact of high-salt exposure on cardiovascular development in the early chick embryo.

    PubMed

    Wang, Guang; Zhang, Nuan; Wei, Yi-Fan; Jin, Yi-Mei; Zhang, Shi-Yao; Cheng, Xin; Ma, Zheng-Lai; Zhao, Shu-Zhu; Chen, You-Peng; Chuai, Manli; Hocher, Berthold; Yang, Xuesong

    2015-11-01

    In this study, we show that high-salt exposure dramatically increases chick mortality during embryo development. As embryonic mortality at early stages mainly results from defects in cardiovascular development, we focused on heart formation and angiogenesis. We found that high-salt exposure enhanced the risk of abnormal heart tube looping and blood congestion in the heart chamber. In the presence of high salt, both ventricular cell proliferation and apoptosis increased. The high osmolarity induced by high salt in the ventricular cardiomyocytes resulted in incomplete differentiation, which might be due to reduced expression of Nkx2.5 and GATA4. Blood vessel density and diameter were suppressed by exposure to high salt in both the yolk sac membrane (YSM) and chorioallantoic membrane models. In addition, high-salt-induced suppression of angiogenesis occurred even at the vasculogenesis stage, as blood island formation was also inhibited by high-salt exposure. At the same time, cell proliferation was repressed and cell apoptosis was enhanced by high-salt exposure in YSM tissue. Moreover, the reduction in expression of HIF2 and FGF2 genes might cause high-salt-suppressed angiogenesis. Interestingly, we show that high-salt exposure causes excess generation of reactive oxygen species (ROS) in the heart and YSM tissues, which could be partially rescued through the addition of antioxidants. In total, our study suggests that excess generation of ROS might play an important role in high-salt-induced defects in heart and angiogenesis.

  20. Role of human pulp fibroblasts in angiogenesis.

    PubMed

    Tran-Hung, L; Mathieu, S; About, I

    2006-09-01

    After pulp amputation, complete pulp healing requires not only reparative dentin production but also fibroblast proliferation, nerve fiber growth, and neoangiogenesis. This study was designed to investigate the role of pulp fibroblasts in angiogenesis. Human pulp fibroblasts from third molars co-cultured with human umbilical vein endothelial cells induced the organization of endothelial cells and the formation of tubular structures corresponding to capillaries in vivo. The direct contact between both cells was not necessary to induce angiogenesis, and the observed effect was due to soluble factors. This was confirmed with neutralizing antibodies against FGF-2 and VEGF, which decreased the angiogenic effects of these soluble factors. Immunohistochemistry showed that both FGF-2 and VEGF were expressed in human dental pulp fibroblasts, and this expression increased after injury. These results suggest that the pulp fibroblasts secrete angiogenic factors, which are necessary for complete pulp healing, particularly at the pulp injury site.

  1. Notch in Pathological Angiogenesis and Lymphangiogenesis

    DTIC Science & Technology

    2012-05-01

    agent known as Notch1 decoy (hN1DFc). Activation or inactivation of Notch changes the gene profile of LEC and changes their in vitro behavior. An...induced transcripts for direct targets such as Hey1 and Hey2 (data not shown), as well as the LEC gene VEGFR-3 (Figure 2a). Interestingly, Notch...activity may interfere with tumor (lymph)angiogenesis by disrupting expression and activity of EC genes . To that end, we have created a treatment

  2. Early life exposure to air pollution induces adult cardiac dysfunction

    PubMed Central

    Gorr, Matthew W.; Velten, Markus; Nelin, Timothy D.; Youtz, Dane J.; Sun, Qinghua

    2014-01-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m3 from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (−9,203 ± 235 μl/s FA, −7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  3. [Molecular basics of angiogenesis].

    PubMed

    Skóra, Jan; Biegus, Jan; Pupka, Artur; Barć, Piotr; Sikora, Julita; Szyber, Piotr

    2006-01-01

    In the article we present the latest knowledge about angiogenesis. We have divided the paper into three main parts, in which the involvement of the extracellular matrix, cells, and cytokines/growth factors in the growth of new blood vessels is described. In brief, the extracellular compartment plays a crucial role in the formation of new vasculature. Degradation of matrix is a very important and precisely controlled process performed mostly by a family of proteins called matrix metallproteinases (MMPs). The extracellular compartment, through the special transmembrane proteins integrins, transmit a wide variety of signals into the cells and thus influence such cell behavior as proliferation, invasion, shape, migration, and maturation. Many products of matrix degradation are potent (mostly negative) regulators of angiogenesis; this self-limiting system prevents excessive proteolysis of the matrix components. The cells involved in the process are endothelial progenitor cells (EPCs), which are derived from bone marrow. The major surface antigens of the cells are CD34+, CD133+, and VEGFR2+. It has been demonstrated that EPCs are responsible for maintaining the functional integrity of endothelium. The number of EPCs in peripheral blood samples inversely correlates with cardiovascular risk factors. In the last section of the article the role of cytokines/growth factors is described. VEGF, as a key regulator of the initial steps of angiogenesis, controls the mobilization and incorporation of EPCs into the site of ischemia. The most important cytokine that facilitates the mobilization of EPCs from bone marrow is SDF-1, which is the strongest chemoattractant for EPCs. Ang-1, on the other hand, controls new blood vessel maturation and stabilization.

  4. Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats

    DTIC Science & Technology

    2012-01-01

    with noise. The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss ( NIHL ) using inhalation...The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss ( NIHL ) using inhalation exposure to...susceptibility to noise-induced hearing loss ( NIHL ). Once these objectives were met using a continuous noise exposure paradigm, an additional study

  5. Novel biomarkers of perchlorate exposure in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  6. Standardization of a method to study angiogenesis in a mouse model.

    PubMed

    Feder, David; Perrazo, Fabio F; Pereira, Edimar C; Forsait, Silvana; Feder, Cecília K R; Junqueira, Paulo E B; Junqueira, Virginia B C; Azzalis, Ligia A; Fonseca, Fernando L A

    2013-01-01

    In the adult organism, angiogenesis is restricted to a few physiological conditions. On the other hand, uncontrolled angiogenesis have often been associated to angiogenesis-dependent pathologies. A variety of animal models have been described to provide more quantitative analysis of in vivo angiogenesis and to characterize pro- and antiangiogenic molecules. However, it is still necessary to establish a quantitative, reproducible and specific method for studies of angiogenesis factors and inhibitors. This work aimed to standardize a method for the study of angiogenesis and to investigate the effects of thalidomide on angiogenesis. Sponges of 0.5 x 0.5 x 0.5 cm were implanted in the back of mice groups, control and experimental (thalidomide 200 mg/K/day by gavage). After seven days, the sponges were removed. The dosage of hemoglobin in sponge and in circulation was performed and the ratio between the values was tested using nonparametric Mann-Whitney test. Results have shown that sponge-induced angiogenesis quantitated by ratio between hemoglobin content in serum and in sponge is a helpful model for in vivo studies on angiogenesis. Moreover, it was observed that sponge-induced angiogenesis can be suppressed by thalidomide, corroborating to the validity of the standardized method.

  7. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments

    PubMed Central

    Das, Soumen; Singh, Sanjay; Dowding, Janet M.; Oommen, Saji; Kumar, Amit; Sayle, Thi X. T.; Saraf, Shashank; Patra, Chitta Ranjan; Vlahakis, Nicholas E.; Sayle, Dean C.; Self, William T.; Seal, Sudipta

    2012-01-01

    Angiogenesis is the formation of new blood vessels from existing blood vessels and is critical for many physiological and pathophysiological processes. In this study we have shown the unique property of cerium oxide nanoparticle (CNPs) to induce angiogenesis, observed using both in vitro and in vivo model systems. In particular, CNPs trigger angiogenesis by modulating the intracellular oxygen environment and stabilizing hypoxia inducing factor 1α endogenously. Furthermore, correlations between angiogenesis induction and CNPs physicochemical properties including: surface Ce3+/Ce4+ ratio, surface charge, size, and shape were also explored. High surface area and increased Ce3+/Ce4+ ratio make CNPs more catalytically active towards regulating intracellular oxygen, which in turn led to more robust induction of angiogenesis. Atomistic simulation was also used, in partnership with in vitro and in vivo experimentation, to reveal that the surface reactivity of CNPs and facile oxygen transport promotes pro-angiogenesis. PMID:22858004

  8. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease

    PubMed Central

    Xi, Shengyan; Yue, Lifeng; Shi, Mengmeng; Peng, Ying; Xu, Yangxinzi; Wang, Xinrong; Li, Qian; Kang, Zhijun; Li, Hanjing; Wang, Yanhui

    2016-01-01

    Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren) and Flos Carthami (Honghua) are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP) in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4). Mice were randomly divided into seven groups: (1) blank, (2) model, (3) control (colchicine, 0.1 mg/kg), (4) THHP (5.53, 2.67, and 1.33 g/kg), and (5) Tao Hong Siwu Decoction (THSWD) (8.50 g/kg). Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF) were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR), Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways. PMID:27293456

  9. Statins and angiogenesis: Is it about connections?

    SciTech Connect

    Khaidakov, Magomed; Wang, Wenze; Khan, Junaid A.; Kang, Bum-Yong; Hermonat, Paul L.; Mehta, Jawahar L.

    2009-09-25

    Statins, inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, have been shown to induce both angiogenic and angiostatic responses. We attempted to resolve this controversy by studying the effects of two different statins, rosuvastatin and simvastatin, in two different assay systems. In the matrigel angiogenesis assay, both statins enhanced tube formation by human umbilical vein endothelial cells (HUVECs, p < 0.01 vs. control). In the ex vivo mouse aortic ring sprouting assay, both statins virtually abolished new vessel formation (p < 0.01). As a basic difference between the two models of angiogenesis is dispersed state of endothelial cells vs. compact monolayer, we analyzed influence of statins on endothelial junction proteins. RT-PCR analysis and cytoimmunostaining of HUVECs treated with simvastatin revealed increased expression of VE-cadherin (p < 0.05). The blockade of VE-cadherin with a specific antibody reversed simvastatin-induced tube formation (p < 0.002). These data suggest that statins through VE-cadherin stimulation modulate cell-cell adhesion and diminish the ability of cells to proliferate and migrate. The observations of reduced angiogenesis in the intact vessel may relate to anti-atherosclerotic and anti-cancer effects of statins, and provide a feasible explanation for conflicting data under different experimental conditions.

  10. [Adverse cutaneous reactions induced by exposure to woods].

    PubMed

    Chomiczewska-Skóra, Dorota

    2013-01-01

    Various adverse cutaneous reactions may occur as a result of exposure to wood dust or solid woods. These include allergic contact dermatitis, irritant contact dermatitis and, more rarely, contact urticaria, photoallergic and phototoxic reactions. Also cases of erythema multiforme-like reactions have been reported. Contact dermatitis, both allergic and irritant, is most frequently provoked by exotic woods, e.g. wood of the Dalbergia spp., Machaerium scleroxylon or Tectona grandis. Cutaneous reactions are usually associated with manual or machine woodworking, in occupational setting or as a hobby. As a result of exposure to wood dust, airborne contact dermatitis is often diagnosed. Cases of allergic contact dermatitis due to solid woods of finished articles as jewelry or musical instruments have also been reported. The aim of the paper is to present various adverse skin reactions related to exposure to woods, their causal factors and sources of exposure, based on the review of literature.

  11. Lipid peroxidation induced by maternal cadmium exposure in mouse pups

    SciTech Connect

    Baohui Xu |; Yapin Jin; Zhaoliang Feng; Zhaofa Xu; Matsushita, Toshio

    1993-11-01

    Cadmium as an environmental pollutant has received considerable attention and its toxic effects have been studied extensively in human and adult animals. Moreover, an International Task Group on Metal Accumulation (1973) has established that although it is in a limited quantity cadmium can be transported across placenta and excreted through milk in animals. Likewise, it can pass through placenta in humans. Furthermore, the fact is that women in the cadmium-polluted areas are continuously exposed to cadmium during gestation and lactation. Even if they are removed from the exposure, the body burden of cadmium probably remains high because of the very long biological half-time of cadmium which is estimated to be between 17.6 and 33 years. Thus, it is possible that fetuses and pups may be exposed to cadmium during maternal gestation and lactation. Although placenta affords some protection from cadmium exposure, cadmium exposure prior to day 10-11 when placenta forms may be deleterious. Cadmium exposure during pregnancy and its effects on offsprings, which were mainly focused on litter size, pup survival, pup growth and cadmium contents in pups following maternal cadmium exposure have been reported. Lipid peroxide has been considered as a sensitive toxicological index for environmental pollutants. The inhibited antioxidant enzymes and enhanced lipid peroxidation due to cadmium exposure have been demonstrated both in humans and animals. Therefore, the present study was designed to evaluate the toxic effects of maternal cadmium exposure on mouse pups using both the indices used in the previous studies and determinations of lipid peroxide concentrations in various pup organs. In conclusion, data from the present study indicate that the detection of LPO concentration in selected pup tissues is a sensitive index for evaluating the effects of maternal cadmium exposure on mouse pups. 16 refs., 4 tabs.

  12. A novel method to assess human population exposure induced by a wireless cellular network.

    PubMed

    Varsier, Nadège; Plets, David; Corre, Yoann; Vermeeren, Günter; Joseph, Wout; Aerts, Sam; Martens, Luc; Wiart, Joe

    2015-09-01

    This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc.

  13. Angiogenesis and Endometriosis

    PubMed Central

    Rocha, Ana Luiza L.; Reis, Fernando M.; Taylor, Robert N.

    2013-01-01

    A comprehensive review was performed to survey the role of angiogenesis in the pathogenesis of endometriosis. This is a multifactorial disease in which the development and maintenance of endometriotic implants depend on their invasive capacity and angiogenic potential. The peritoneal fluid of patients with endometriosis is a complex suspension carrying inflammatory cytokines, growth factors, steroid hormones, proangiogenic factors, macrophages, and endometrial and red blood cells. These cells and their signaling products concur to promote the spreading of new blood vessels at the endometriotic lesions and surroundings, which contributes to the endometriotic implant survival. Experimental studies of several antiangiogenic agents demonstrated the regression of endometriotic lesions by reducing their blood supply. Further studies are necessary before these novel agents can be introduced into clinical practice, in particular the establishment of the safety of anti-angiogenic medications in women who are seeking to become pregnant. PMID:23766765

  14. OZONE-INDUCED RESPIRATORY SYMPTOMS: EXPOSURE-RESPONSE MODELS AND ASSOCIATION WITH LUNG FUNCTION

    EPA Science Inventory

    Ozone-induced respiratory symptoms are known to be functions of concentration, minute ventilation, and duration of exposure. The purposes of this study were to identify an exposure-response model for symptoms, to determine whether response was related to age, and to assess the re...

  15. Chronic exposure to ELF fields may induce depression

    SciTech Connect

    Wilson, B.W.

    1988-01-01

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.

  16. Metal induced inhalation exposure in urban population: A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Widziewicz, Kamila; Loska, Krzysztof

    2016-03-01

    The paper was aimed at assessing the health risk in the populations of three Silesian cities: Bielsko-Biała, Częstochowa and Katowice exposed to the inhalation intake of cadmium, nickel and arsenic present in airborne particulate matter. In order to establish how the exposure parameters affects risk a probabilistic risk assessment framework was used. The risk model was based on the results of the annual measurements of As, Cd and Ni concentrations in PM2.5 and the sets of data on the concentrations of those elements in PM10 collected by the Voivodship Inspectorate of Environmental Protection over 2012-2013 period. The risk was calculated as an incremental lifetime risk of cancer (ILCR) in particular age groups (infants, children, adults) following Monte Carlo approach. With the aim of depicting the effect the variability of exposure parameters exerts on the risk, the initial parameters of the risk model: metals concentrations, its infiltration into indoor environment, exposure duration, exposure frequency, lung deposition efficiency, daily lung ventilation and body weight were modeled as random variables. The distribution of inhalation cancer risk due to exposure to ambient metals concentrations was LN (1.80 × 10-6 ± 2.89 × 10-6) and LN (6.17 × 10-7 ± 1.08 × 10-6) for PM2.5 and PM10-bound metals respectively and did not exceed the permissible limit of the acceptable risk. The highest probability of contracting cancer was observed for Katowice residents exposed to PM2.5 - LN (2.01 × 10-6 ± 3.24 × 10-6). Across the tested age groups adults were approximately one order of magnitude at higher risk compared to infants. Sensitivity analysis showed that exposure duration (ED) and body weight (BW) were the two variables, which contributed the most to the ILCR.

  17. Global microRNA depletion suppresses tumor angiogenesis

    PubMed Central

    Chen, Sidi; Xue, Yuan; Wu, Xuebing; Le, Cong; Bhutkar, Arjun; Bell, Eric L.; Zhang, Feng; Langer, Robert; Sharp, Phillip A.

    2014-01-01

    MicroRNAs delicately regulate the balance of angiogenesis. Here we show that depletion of all microRNAs suppresses tumor angiogenesis. We generated microRNA-deficient tumors by knocking out Dicer1. These tumors are highly hypoxic but poorly vascularized, suggestive of deficient angiogenesis signaling. Expression profiling revealed that angiogenesis genes were significantly down-regulated as a result of the microRNA deficiency. Factor inhibiting hypoxia-inducible factor 1 (HIF-1), FIH1, is derepressed under these conditions and suppresses HIF transcription. Knocking out FIH1 using CRISPR/Cas9-mediated genome engineering reversed the phenotypes of microRNA-deficient cells in HIF transcriptional activity, VEGF production, tumor hypoxia, and tumor angiogenesis. Using multiplexed CRISPR/Cas9, we deleted regions in FIH1 3′ untranslated regions (UTRs) that contain microRNA-binding sites, which derepresses FIH1 protein and represses hypoxia response. These data suggest that microRNAs promote tumor responses to hypoxia and angiogenesis by repressing FIH1. PMID:24788094

  18. MicroRNA 329 Suppresses Angiogenesis by Targeting CD146

    PubMed Central

    Wang, Ping; Luo, Yongting; Duan, Hongxia; Xing, Shu; Zhang, Jianlin; Lu, Di; Feng, Jing; Yang, Dongling; Song, Lina

    2013-01-01

    CD146, an endothelial biomarker, has been shown to be aberrantly upregulated during pathological angiogenesis and functions as a coreceptor for vascular endothelial growth factor receptor 2 (VEGFR-2) to promote disease progression. However, the regulatory mechanisms of CD146 expression during angiogenesis remain unclear. Using a microRNA screening approach, we identified a novel negative regulator of angiogenesis, microRNA 329 (miR-329), that directly targeted CD146 and inhibited CD146-mediated angiogenesis in vitro and in vivo. Endogenous miR-329 expression was downregulated by VEGF and tumor necrosis factor alpha (TNF-α), resulting in the elevation of CD146 in endothelial cells. Upregulation of CD146 facilitated an endothelial response to VEGF-induced SRC kinase family (SKF)/p38 mitogen-activated protein kinase (MAPK)/NF-κB activation and consequently promoted endothelial cell migration and tube formation. Our animal experiments showed that treatment with miR-329 repressed excessive CD146 expression on blood vessels and significantly attenuated neovascularization in a mouse model of pathological angiogenesis. Our findings provide the first evidence that CD146 expression in angiogenesis is regulated by miR-329 and suggest that miR-329 could present a potential therapeutic tool for the treatment of angiogenic diseases. PMID:23878390

  19. Autophagy triggered by magnolol derivative negatively regulates angiogenesis

    PubMed Central

    Kumar, S; Guru, S K; Pathania, A S; Kumar, A; Bhushan, S; Malik, F

    2013-01-01

    Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer. PMID:24176847

  20. Peri, pre and postnatal morphine exposure: exposure-induced effects and sex differences in the behavioural consequences in rat offspring.

    PubMed

    Timár, Julia; Sobor, Melinda; Király, Kornél P; Gyarmati, Susanna; Riba, Pál; Al-Khrasani, Mahmoud; Fürst, Susanna

    2010-02-01

    This study investigated the behavioural consequences of peri, pre and postnatal morphine (MO) exposure in rats. From gestational day 1 dams were treated with either saline or MO subcutaneously once a day (5 mg/kg on the first 2 days, 10 mg/kg subsequently). Spontaneous locomotor activity in a new environment (habituation) and antinociceptive effects of MO were measured separately in male and female pups after weaning and also in late adolescence or adulthood. The rewarding effect of MO was assessed by conditioned place preference in adult animals. Both exposure-induced and sex differences were observed. A significant delay in habituation to a new environment and decreased sensitivity to the antinociceptive effect of MO were found in male offspring of MO-treated dams. In contrast, the place preference induced by MO was enhanced in the MO-exposed adult animals and this effect was more marked in females. Prenatal exposure to MO resulted in more marked changes than the postnatal exposure through maternal milk. The results indicate that a medium MO dose administered once-daily results in long-term consequences in offspring and may make them more vulnerable to MO abuse in adulthood.

  1. Shape effect of carbon nanovectors on angiogenesis.

    PubMed

    Chaudhuri, Padmaparna; Harfouche, Rania; Soni, Shivani; Hentschel, Dirk M; Sengupta, Shiladitya

    2010-01-26

    Physically diverse carbon nanostructures are increasingly being studied for potential applications in cancer chemotherapy. However, limited knowledge exists on the effect of their shape in tuning the biological outcomes when used as nanovectors for drug delivery. In this study, we evaluated the effect of doxorubicin-conjugated single walled carbon nanotubes (CNT-Dox) and doxorubicin-conjugated spherical polyhydroxylated fullerenes or fullerenols (Ful-Dox) on angiogenesis. We report that CNTs exert a pro-angiogenic effect in vitro and in vivo. In contrast, the fullerenols or doxorubicin-conjugated fullerenols exerted a dramatically opposite antiangiogenic activity in zebrafish and murine tumor angiogenesis models. Dissecting the angiogenic phenotype into discrete cellular steps revealed that fullerenols inhibited endothelial cell proliferation, while CNTs attenuated the cytotoxic effect of doxorubicin on the endothelial cells. Interestingly, CNT promoted endothelial tubulogenesis, a late step during angiogenesis. Further, mechanistic studies revealed that CNTs, but not fullerenols, induced integrin clustering and activated focal adhesion kinase and downstream phosphoinositide-3-kinase (PI3K) signaling in endothelial cells, which can explain the distinct angiogenic outcomes. The results of the study highlight the function of physical parameters of nanoparticles in determining their activity in biological settings.

  2. Soy and breast cancer: focus on angiogenesis.

    PubMed

    Varinska, Lenka; Gal, Peter; Mojzisova, Gabriela; Mirossay, Ladislav; Mojzis, Jan

    2015-05-22

    Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.

  3. Disorders Induced by Direct Occupational Exposure to Noise: Systematic Review

    PubMed Central

    Domingo-Pueyo, Andrea; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2016-01-01

    Background: To review the available scientific literature about the effects on health by occupational exposure to noise. Materials and Methods: A systematic review of the retrieved scientific literature from the databases MEDLINE (via PubMed), ISI-Web of Knowledge (Institute for Scientific Information), Cochrane Library Plus, SCOPUS, and SciELO (collection of scientific journals) was conducted. The following terms were used as descriptors and were searched in free text: “Noise, Occupational,” “Occupational Exposure,” and “Occupational Disease.” The following limits were considered: “Humans,” “Adult (more than 18 years),” and “Comparative Studies.” Results: A total of 281 references were retrieved, and after applying inclusion/exclusion criteria, 25 articles were selected. Of these selected articles, 19 studies provided information about hearing disturbance, four on cardiovascular disorders, one regarding respiratory alteration, and one on other disorders. Conclusions: It can be interpreted that the exposure to noise causes alterations in humans with different relevant outcomes, and therefore appropriate security measures in the work environment must be employed to minimize such an exposure and thereby to reduce the number of associated disorders. PMID:27762251

  4. MT1-MMP: universal or particular player in angiogenesis?

    PubMed

    Genís, Laura; Gálvez, Beatriz G; Gonzalo, Pilar; Arroyo, Alicia G

    2006-03-01

    Tumorigenesis involves not only tumor cells that become transformed but also the peritumoral stroma which reacts inducing inflammatory and angiogenic responses. Angiogenesis, the formation of new capillaries from preexisting vessels, is an absolute requirement for tumor growth and metastasis, and it can be induced and modulated by a wide variety of soluble factors. During angiogenesis, quiescent endothelial cells are activated and they initiate migration by degrading the basement membranes through the action of specific proteases, in particular of matrix metalloproteinases (MMPs). Among these, the membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified as a key player during the angiogenic response. In this review, we will summarize the role of MT1-MMP in angiogenesis and the regulatory mechanisms of this protease in endothelial cells. Since our recent findings have suggested that MT1-MMP is not universally required for angiogenesis, we hypothesize that the regulation and participation of MT1-MMP in angiogenesis may depend on the nature of the angiogenic stimulus. Experiments aimed at testing this hypothesis have shown that similarly to the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12, lipopolysaccharide (LPS) seems to induce the formation of capillary tubes by human or mouse endothelial cells (ECs) in an MT1-MMP-independent manner. The implications of these findings in the potential use of MT1-MMP inhibitors in cancer therapy are discussed.

  5. Interleukin-6 Stimulates Defective Angiogenesis.

    PubMed

    Gopinathan, Ganga; Milagre, Carla; Pearce, Oliver M T; Reynolds, Louise E; Hodivala-Dilke, Kairbaan; Leinster, David A; Zhong, Haihong; Hollingsworth, Robert E; Thompson, Richard; Whiteford, James R; Balkwill, Frances

    2015-08-01

    The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.

  6. Natural products against cancer angiogenesis.

    PubMed

    Khalid, El Bairi; Ayman, El-Meghawry El-Kenawy; Rahman, Heshu; Abdelkarim, Guaadaoui; Najda, Agnieszka

    2016-11-01

    The process of angiogenesis is quite well-known nowadays. Some medicines and extracts affecting this process are already used routinely in supporting the conventional treatment of many diseases that are considered angiogenic such as cancer. However, we must be aware that the area of currently used drugs of this type is much narrower than the theoretical possibilities existing in therapeutic angiogenesis. Plant substances are a large and diverse group of compounds that are found naturally in fruits, vegetables, spices, and medicinal plants. They also have different anticancer properties. The aim of this literature review article is to present the current state of knowledge concerning the molecular targets of tumor angiogenesis and the active substances (polyphenols, alkaloids, phytohormones, carbohydrates, and terpenes) derived from natural sources, whose activity against cancer angiogenesis has been confirmed.

  7. Human Arterial Ring Angiogenesis Assay.

    PubMed

    Seano, Giorgio; Primo, Luca

    2016-01-01

    In this chapter we describe a model of human angiogenesis where artery explants from umbilical cords are embedded in gel matrices and subsequently produce capillary-like structures. The human arterial ring (hAR) assay is an innovative system that enables three-dimensional (3D) and live studies of human angiogenesis. This ex vivo model has the advantage of recapitulating several steps of angiogenesis, including endothelial sprouting, migration, and differentiation into capillaries. Furthermore, it can be exploited for (1) identification of new genes regulating sprouting angiogenesis, (2) screening for pro- or anti-angiogenic drugs, (3) identification of biomarkers to monitor the efficacy of anti-angiogenic regimens, and (4) dynamic analysis of tumor microenvironmental effects on vessel formation.

  8. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism.

    PubMed

    Tyler, Christina R; Solomon, Benjamin R; Ulibarri, Adam L; Allan, Andrea M

    2014-09-01

    Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic-pituitary-adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism.

  9. Vanadium exposure-induced neurobehavioral alterations among Chinese workers.

    PubMed

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2013-05-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the simple reaction time, digit span, benton visual retention and pursuit aiming were also poorer among exposed workers as compared to unexposed control workers (p<0.05). Some of these poor performances in tests were also significantly related to workers' exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium.

  10. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  11. Radionuclide imaging of tumor angiogenesis.

    PubMed

    Dijkgraaf, Ingrid; Boerman, Otto C

    2009-12-01

    Angiogenesis is a multistep process regulated by pro- and antiangiogenic factors. In order to grow and metastasize, tumors need a constant supply of oxygen and nutrients. For growth beyond 1-2 mm in size, tumors are dependent on angiogenesis. Inhibition of angiogenesis is a new cancer treatment strategy that is now widely investigated clinically. Researchers have begun to search for objective measures that indicate pharmacologic responses to antiangiogenic drugs. Therefore, there is a great interest in techniques to visualize angiogenesis in growing tumors noninvasively. Several markers have been described that are preferentially expressed on newly formed blood vessels in tumors (alpha(v)beta(3) integrin, vascular endothelial growth factor, and its receptor, prostate-specific membrane antigen) and in the extracellular matrix surrounding newly formed blood vessels (extra domain B of fibronectin, Tenascin-C, matrix metalloproteinases, and Robo-4). Several ligands targeting these markers have been tested as a radiotracer for imaging angiogenesis in tumors. The potential of some of these tracers, such as radiolabeled cyclic RGD peptides and radiolabeled anti-PSMA antibodies, has already been tested in cancer patients, while for markers such as Robo-4, the ligand has not yet been identified. In this review, an overview on the currently used nuclear imaging probes for noninvasive visualization of tumor angiogenesis is given.

  12. Perlecan and Tumor Angiogenesis

    PubMed Central

    Jiang, Xinnong; Couchman, John R.

    2003-01-01

    Perlecan is a major heparan sulfate proteoglycan (HSPG) of basement membranes (BMs) and connective tissues. The core protein of perlecan is divided into five domains based on sequence homology to other known proteins. Commonly, the N-terminal domain I of mammalian perlecan is substituted with three HS chains that can bind a number of matrix molecules, cytokines, and growth factors. Perlecan is essential for metazoan life, as shown by genetic manipulations of nematodes, insects, and mice. There are also known human mutations that can be lethal. In vertebrates, new functions of perlecan emerged with the acquisition of a closed vascular system and skeletal connective tissues. Many of perlecan's functions may be related to the binding and presentation of growth factors to high-affinity tyrosine kinase (TK) receptors. Data are accumulating, as discussed here, that similar growth factor-mediated processes may have unwanted promoting effects on tumor cell proliferation and tumor angiogenesis. Understanding of these attributes at the molecular level may offer opportunities for therapeutic intervention. PMID:14566013

  13. Fcγ Receptor-induced Soluble Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Production Inhibits Angiogenesis and Enhances Efficacy of Anti-tumor Antibodies*

    PubMed Central

    Justiniano, Steven E.; Elavazhagan, Saranya; Fatehchand, Kavin; Shah, Prexy; Mehta, Payal; Roda, Julie M.; Mo, Xiaokui; Cheney, Carolyn; Hertlein, Erin; Eubank, Timothy D.; Marsh, Clay; Muthusamy, Natarajan; Butchar, Jonathan P.; Byrd, John C.; Tridandapani, Susheela

    2013-01-01

    Monocytes/macrophages are potent mediators of antitumor antibody therapy, where they engage target cells via Fcγ receptors (FcγR). Binding of these cells to opsonized tumor targets elicits cytokine production, phagocytosis, and antibody-mediated cellular cytotoxicity. Here we show for the first time that activation of monocyte FcγR results in the secretion of soluble vascular endothelial growth factor receptor-1 (VEGFR-1/sFlt-1), which serves to antagonize VEGF-mediated angiogenesis and tumor growth. Consistent with this, using a murine solid tumor model of antibody therapy, we show that sFlt-1 is involved in restricting tumor growth. Analyzing the mechanism of induction of sFlt-1, we found that the Erk and PI3K pathways were required for transcription, and NF-κB was required for translation. Upon closer examination of the role of NF-κB, we found that a microRNA, miR181a, negatively regulates FcγR-mediated sFlt-1 production and that NF-κB serves to antagonize this microRNA. Taken together, these results demonstrate a novel and biologically important function of monocytes and macrophages during antibody therapy. PMID:23902770

  14. Fcγ receptor-induced soluble vascular endothelial growth factor receptor-1 (VEGFR-1) production inhibits angiogenesis and enhances efficacy of anti-tumor antibodies.

    PubMed

    Justiniano, Steven E; Elavazhagan, Saranya; Fatehchand, Kavin; Shah, Prexy; Mehta, Payal; Roda, Julie M; Mo, Xiaokui; Cheney, Carolyn; Hertlein, Erin; Eubank, Timothy D; Marsh, Clay; Muthusamy, Natarajan; Butchar, Jonathan P; Byrd, John C; Tridandapani, Susheela

    2013-09-13

    Monocytes/macrophages are potent mediators of antitumor antibody therapy, where they engage target cells via Fcγ receptors (FcγR). Binding of these cells to opsonized tumor targets elicits cytokine production, phagocytosis, and antibody-mediated cellular cytotoxicity. Here we show for the first time that activation of monocyte FcγR results in the secretion of soluble vascular endothelial growth factor receptor-1 (VEGFR-1/sFlt-1), which serves to antagonize VEGF-mediated angiogenesis and tumor growth. Consistent with this, using a murine solid tumor model of antibody therapy, we show that sFlt-1 is involved in restricting tumor growth. Analyzing the mechanism of induction of sFlt-1, we found that the Erk and PI3K pathways were required for transcription, and NF-κB was required for translation. Upon closer examination of the role of NF-κB, we found that a microRNA, miR181a, negatively regulates FcγR-mediated sFlt-1 production and that NF-κB serves to antagonize this microRNA. Taken together, these results demonstrate a novel and biologically important function of monocytes and macrophages during antibody therapy.

  15. Angiogenesis & Vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of Bone Marrow Derived Progenitor Cell Mobilization and Homing

    PubMed Central

    Velazquez, Omaida C.

    2009-01-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo, but also for repair of wounded tissue in the adult. An imbalance in ‘Angiogenesis’ (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound healing disorders. In this review, we will focus on the central role of the growth of new blood vessels in ischemic and diabetic wound healing. We define the most current nomenclature that describes the neovascularization process in wounds. There are now two well defined, distinct, yet interrelated processes for the formation of post-natal new blood vessels, angiogenesis and vasculogenesis. We review recent new data on vasculogenesis that promises to advance the field of wound healing. PMID:17544023

  16. [Emoxipin as an inhibitor of angiogenesis].

    PubMed

    Sologub, A A; Akberova, S I; Ziangirova, G G

    1992-12-01

    The effect of emoxypin on angiogenesis in rabbit cornea in aseptic inflammation induced by intracorneal implantation of a piece of quartz and on the development of the vessels of the chick embryo yolk sac was studied. 1% emoxypin pipetted thrice a day for 10-14 days inhibited corneal neovascularization and reduced the formation of new blood vessels. We observed an inhibitory effect on the development of vascular bed of the embryo yolk sac on incubation hour 64-72. The drug affected neither general growth of the embryos no the number of somites.

  17. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  18. Cognitive deficits induced by 56Fe radiation exposure

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  19. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  20. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    PubMed

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  1. Simvastatin inhibits tumor angiogenesis in HER2-overexpressing human colorectal cancer.

    PubMed

    Li, Gang; Zheng, Junhua; Xu, Bin; Ling, Jie; Qiu, Wei; Wang, Yongbing

    2017-01-01

    Overexpression of the HER2 oncogene contributes to tumor angiogenesis, which is an essential hallmark of cancer. Simvastatin has been reported to exhibit antitumor activities in several cancers; however, its roles and molecular mechanismsin the regulation of colorectal angiogenesis remain to be clarified. Here, we show that colon cancer cells express high levels of VEGF, total HER2 and phosphorylated HER2, and simvastatin apparently decreased their expression in HER2-overexpressing colon cancer cells. Simvastatin pretreatment reduced endothelial tube formation in vitro and microvessel density in vivo. Furthermore, simvastatin markedly inhibited tumor angiogenesis even in the presence of heregulin (HRG)-β1 (a HER2 co-activator) pretreatment in HER2+ tumor cells. Mechanistic investigation showed that simvastatin significantly abrogated HER2-induced tumor angiogenesis by inhibiting VEGF secretion. Together, these results provide a novel mechanism underlying the simvastatin-induced inhibition of tumor angiogenesis through regulating HER2/VEGF axis.

  2. Social Preference Deficits in Juvenile Zebrafish Induced by Early Chronic Exposure to Sodium Valproate.

    PubMed

    Liu, Xiuyun; Zhang, Yinglan; Lin, Jia; Xia, Qiaoxi; Guo, Ning; Li, Qiang

    2016-01-01

    Prenatal exposure to sodium valproate (VPA), a widely used anti-epileptic drug, is related to a series of dysfunctions, such as deficits in language and communication. Clinical and animal studies have indicated that the effects of VPA are related to the concentration and to the exposure window, while the neurobehavioral effects of VPA have received limited research attention. In the current study, to analyze the neurobehavioral effects of VPA, zebrafish at 24 h post-fertilization (hpf) were treated with early chronic exposure to 20 μM VPA for 7 h per day for 6 days or with early acute exposure to 100 μM VPA for 7 h. A battery of behavioral screenings was conducted at 1 month of age to investigate social preference, locomotor activity, anxiety, and behavioral response to light change. A social preference deficit was only observed in animals with chronic VPA exposure. Acute VPA exposure induced a change in the locomotor activity, while chronic VPA exposure did not affect locomotor activity. Neither exposure procedure influenced anxiety or the behavioral response to light change. These results suggested that VPA has the potential to affect some behaviors in zebrafish, such as social behavior and the locomotor activity, and that the effects were closely related to the concentration and the exposure window. Additionally, social preference seemed to be independent from other simple behaviors.

  3. Silencing of hypoxia inducible factor-1α by RNA interference inhibits growth of SK-NEP-1 Wilms tumour cells in vitro, and suppresses tumourigenesis and angiogenesis in vivo.

    PubMed

    Shi, Bo; Li, Ying; Wang, Xiuli; Yang, Yi; Li, Dan; Liu, Xin; Yang, Xianghong

    2016-06-01

    Wilms tumour is the most common tumour of the pediatric kidney. Elevation of hypoxia-inducible factor 1α (HIF-1α) has been detected in 93% to 100% of human Wilms tumour specimens, suggesting a potential value of HIF-1α as a therapeutic target for Wilms tumour. In the present study, a stable HIF-1α-silenced Wilms tumour cell strain was established by introducing HIF-1α short-hairpin RNA (shRNA) into SK-NEP-1 cells. Silencing of HIF-1α significantly reduced single-cell growth capacity, suppressed proliferation and arrested cell cycle of SK-NEP-1 cells. In addition, reduction of HIF-1α expression induced apoptosis in SK-NEP-1 cells, which was accompanied by increased levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and Bax as well as downregulation of Bcl-2 in the cells. Furthermore, when inoculated subcutaneously in nude mice, HIF-1α-silenced SK-NEP-1 cells displayed retarded tumour growth and impaired tumour angiogenesis. In summary, the findings of this study suggest that HIF-1α plays a critical role in the development of Wilms tumour, and it may serve as a candidate target of gene therapy for Wilms tumour.

  4. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light.

    PubMed

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2016-03-11

    Bright nocturnal light has been shown to suppress melatonin secretion. However, bright light exposure during the day might reduce light-induced melatonin suppression at night. The human circadian system is sensitive to short wavelength light. This study evaluated the preventive effect of different wavelengths of daytime light on light-induced melatonin suppression at night. Twelve male subjects were exposed to various light conditions (dim, white, and bluish white light) between the hours of 09:00 and 10:30 (daytime light conditions). They were then exposed to light (300lx) again between 01:00 and 02:30 (night-time light exposure). Subjects provided saliva samples before (00:55) and after night-time light exposure (02:30). A two-tailed paired t-test yielded significant decrements in melatonin concentrations after night-time light exposure under daytime dim and white light conditions. No significant differences were found in melatonin concentrations between pre- and post-night-time light exposure with bluish-white light. Present findings suggest that daytime blue light exposure has an acute preventive impact on light-induced melatonin suppression in individuals with a general life rhythm (sleep/wake schedule). These findings may be useful for implementing artificial light environments for humans in, for example, hospitals and underground shopping malls to reduce health risks.

  5. Epo is involved in angiogenesis in human glioma.

    PubMed

    Nico, Beatrice; Annese, Tiziana; Guidolin, Diego; Finato, Nicoletta; Crivellato, Enrico; Ribatti, Domenico

    2011-03-01

    In this study, the extent of angiogenesis, evaluated as microvascular density, and the immunoreactivity of tumor cells to erythropoietin (Epo) and of endothelial cells to Epo receptor (EpoR) have been correlated in human glioma specimens, and the effect of anti-Epo antibody on glioma-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane (CAM) has been investigated. Results show that: (1) Epo/EpoR expression correlates with angiogenesis, (2) in the CAM assay, tumor bioptic specimens induce a strong angiogenic response, comparable to that induced by VEGF, and (3) an anti-Epo antibody co-administered with tumor bioptic specimens significantly inhibits the angiogenic response. These findings suggest the presence of a loop in the Epo/EpoR system, i.e. Epo is secreted by glioma tumor cells and it affects glioma vascular endothelial cells via its receptor and promotes angiogenesis in a paracrine manner. Moreover, as demonstrated by in vivo experiments, Epo is responsible for the strong angiogenic response induced by human glioma bioptic specimens, because an anti-Epo antibody is able to significantly inhibit this response.

  6. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    SciTech Connect

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  7. Proposed iso standard determination of occupational noise exposure and estimation of noise-induced hearing impairment

    SciTech Connect

    Von Gierke, H.E.

    1986-01-01

    Research on the relationship between noise exposure and noise-induced hearing loss has been very intense over the last 30 years, and steady progress has been made in spite of many remaining questions and unresolved problems regarding the mechanisms. For the time being, avoidance of excessive noise exposure is the only way to prevent noise-induced hearing loss; this is the reason why governments, industry, workers and their representatives have been looking for scientific exposure criteria and guidelines to prevent hazardous noise exposure as part of comprehensive hearing conservation programs. Although it was clear from the beginning that noise-induced hearing loss in a population with exactly defined noise exposure would exhibit a statistical distribution due to differences in biological susceptibility, the epidemiological statistical data were not available to describe quantitatively the difference between the percentage of people with impaired hearing in a noise-exposed group and the percentage of people in a non-noise-exposed group, i.e., the risk of noise-induced hearing impairment.

  8. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    PubMed Central

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum (Henry); Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  9. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice.

    PubMed

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-08-04

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  10. Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis.

    PubMed

    Girolamo, Francesco; Coppola, Cristiana; Ribatti, Domenico; Trojano, Maria

    2014-07-22

    Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood-brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.

  11. Tumour angiogenesis regulation by the miR-200 family

    PubMed Central

    Pecot, Chad V.; Ivan, Cristina; Lu, Chunhua; Wu, Sherry; Han, Hee-Dong; Shah, Maitri Y.; Rodriguez-Aguayo, Cristian; Bottsford-Miller, Justin; Liu, Yuexin; Kim, Sang Bae; Unruh, Anna; Gonzalez-Villasana, Vianey; Huang, Li; Zand, Behrouz; Moreno-Smith, Myrthala; Mangala, Lingegowda S.; Taylor, Morgan; Dalton, Heather J.; Sehgal, Vasudha; Wen, Yunfei; Kang, Yu; Baggerly, Keith A.; Lee, Ju-Seog; Ram, Prahlad T.; Ravoori, Murali K.; Kundra, Vikas; Zhang, Xinna; Ali-Fehmi, Rouba; Gonzalez-Angulo, Ana-Maria; Massion, Pierre P.; Calin, George A.; Lopez-Berestein, Gabriel; Zhang, Wei; Sood, Anil K.

    2013-01-01

    The miR-200 family is well known to inhibit the epithelial–mesenchymal transition, suggesting it may therapeutically inhibit metastatic biology. However, conflicting reports regarding the role of miR-200 in suppressing or promoting metastasis in different cancer types have left unanswered questions. Here we demonstrate a difference in clinical outcome based on miR-200's role in blocking tumour angiogenesis. We demonstrate that miR-200 inhibits angiogenesis through direct and indirect mechanisms by targeting interleukin-8 and CXCL1 secreted by the tumour endothelial and cancer cells. Using several experimental models, we demonstrate the therapeutic potential of miR-200 delivery in ovarian, lung, renal and basal-like breast cancers by inhibiting angiogenesis. Delivery of miR-200 members into the tumour endothelium resulted in marked reductions in metastasis and angiogenesis, and induced vascular normalization. The role of miR-200 in blocking cancer angiogenesis in a cancer-dependent context defines its utility as a potential therapeutic agent. PMID:24018975

  12. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis.

    PubMed Central

    Brown, N S; Bicknell, R

    1998-01-01

    Angiogenesis is the term used to describe the formation of new blood vessels from the existing vasculature. In order to attract new vessels, a tissue must release an endothelial-cell chemoattractant. 2-Deoxy-D-ribose is produced in vivo by the catalytic action of thymidine phosphorylase (TP) on thymidine and has recently been identified as an endothelial-cell chemoattractant and angiogenesis-inducing factor. TP, previously known only for its role in nucleotide salvage, is now known to be angiogenic. TP expression is elevated in many solid tumours and in chronically inflamed tissues, both known areas of active angiogenesis. There is evidence that TP is also involved in physiological angiogenesis such as endometrial angiogenesis during the menstrual cycle. The majority of known endothelial-cell chemoattractants are polypeptides that bind to endothelial-cell-surface receptors. In contrast, 2-deoxy-D-ribose appears to lack a cell-surface receptor. Glucose is another sugar that acts as an endothelial-cell chemoattractant. The migratory activity of glucose is blocked by ouabain. It is possible that 2-deoxy-D-ribose and glucose stimulate endothelial-cell migration via a similar mechanistic pathway. PMID:9693094

  13. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  14. Module-based multiscale simulation of angiogenesis in skeletal muscle

    PubMed Central

    2011-01-01

    Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529

  15. The somite-secreted factor Maeg promotes zebrafish embryonic angiogenesis

    PubMed Central

    Qi, Jialing; Qin, Yinyin; Shi, Yunwei; Zhang, Jie; Gong, Jie; Dong, Zhangji; Liu, Xiaoyu; Sun, Chen; Chai, Renjie; Le Noble, Ferdinand; Liu, Dong

    2016-01-01

    MAM and EGF containing gene (MAEG), also called Epidermal Growth Factor-like domain multiple 6 (EGFL6), belongs to the epidermal growth factor repeat superfamily. The role of Maeg in zebrafish angiogenesis remains unclear. It was demonstrated that maeg was dynamically expressed in zebrafish developing somite during a time window encompassing many key steps in embryonic angiogenesis. Maeg loss-of-function embryos showed reduced endothelial cell number and filopodia extensions of intersegmental vessels (ISVs). Maeg gain-of-function induced ectopic sprouting evolving into a hyperbranched and functional perfused vasculature. Mechanistically we demonstrate that Maeg promotes angiogenesis dependent on RGD domain and stimulates activation of Akt and Erk signaling in vivo. Loss of Maeg or Itgb1, augmented expression of Notch receptors, and inhibiting Notch signaling or Dll4 partially rescued angiogenic phenotypes suggesting that Notch acts downstream of Itgb1. We conclude that Maeg acts as a positive regulator of angiogenic cell behavior and formation of functional vessels. PMID:27780917

  16. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells

    PubMed Central

    Martino, Julieta; Holmes, Amie L.; Xie, Hong; Wise, Sandra S.; Wise, John Pierce

    2015-01-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  17. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes.

    PubMed

    Bolt, Alicia M; Douglas, Randi M; Klimecki, Walter T

    2010-11-30

    Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCLs), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCLs that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 μM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic.

  18. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    PubMed

    Sun, Bao-Fei; Wang, Qing-Qing; Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  19. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  20. Language exposure induced neuroplasticity in the bilingual brain: a follow-up fMRI study.

    PubMed

    Tu, Liu; Wang, Junjing; Abutalebi, Jubin; Jiang, Bo; Pan, Ximin; Li, Meng; Gao, Wei; Yang, Yuchen; Liang, Bishan; Lu, Zhi; Huang, Ruiwang

    2015-03-01

    Although several studies have shown that language exposure crucially influence the cerebral representation of bilinguals, the effects of short-term change of language exposure in daily life upon language control areas in bilinguals are less known. To explore this issue, we employed follow-up fMRI to investigate whether differential exposure induces neuroplastic changes in the language control network in high-proficient Cantonese (L1)-Mandarin (L2) early bilinguals. The same 10 subjects underwent twice BOLD-fMRI scans while performing a silent narration task which corresponded to two different language exposure conditions, CON-1 (L1/L2 usage percentage, 50%:50%) and CON-2 (L1/L2 usage percentage, 90%:10%). We report a strong effect of language exposure in areas related to language control for the less exposed language. Interestingly, these significant effects were present after only a 30-day period of differential language exposure. In detail, we reached the following results: (1) the interaction effect of language and language exposure condition was found significantly in the left pars opercularis (BA 44) and marginally in the left MFG (BA 9); (2) in CON-2, increases of activation values in L2 were found significantly in bilateral BA 46 and BA 9, in the left BA44, and marginally in the left caudate; and (3) in CON-2, we found a significant negative correlation between language exposure to L2 and the BOLD activation value specifically in the left ACC. These findings strongly support the hypothesis that even short periods of differential exposure to a given language may induce significant neuroplastic changes in areas responsible for language control. The language which a bilingual is less exposed to and is also less used will be in need of increased mental control as shown by the increased activity of language control areas.

  1. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2009-09-01

    an anti- oxidant agent and/or an NMDA receptor antagonist will reduce neurotoxicity resulting from chronic exposure to DU. This hypothesis is based...DU-induced oxidative stress. As prescribed by the Statement of Work, efforts continued in year 2 on Tasks 1 (drug therapies to reverse DU-induced...SUBJECT TERMS depleted uranium, glutamate release, military disease, hippocampus, oxidative stress, neuroprotectant drugs 16. SECURITY

  2. Coupling of Neurogenesis and Angiogenesis After Ischemic Stroke

    PubMed Central

    Ruan, Linhui; Wang, Brian; ZhuGe, Qichuan; Jin, Kunlin

    2015-01-01

    Stroke is a leading cause of mortality and severe long-term disability worldwide. Development of effective treatment or new therapeutic strategies for ischemic stroke patients is therefore crucial. Ischemic stroke promotes neurogenesis by several growth factors including FGF-2, IGF-1, BDNF, VEGF and chemokines including SDF-1, MCP-1. Stroke-induced angiogenesis is similarly regulated by many factors most notably, eNOS and CSE, VEGF/VEGFR2, and Ang-1/Tie2. Important findings in the last decade have revealed that neurogenesis is not the stand-alone consideration in the fight for full functional recovery from stroke. Angiogenesis has been also shown to be critical in improving post-stroke neurological functional recovery. More than that, recent evidence has shown a highly possible interplay or dependence between stroke-induced neurogenesis and angiogenesis. Moving forward, elucidating the underlying mechanisms of this coupling between stroke-induced neurogenesis and angiogenesis will be of great importance, which will provide the basis for neurorestorative therapy. PMID:25736182

  3. Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust.

    PubMed

    Määttä, Juha; Lehto, Maili; Leino, Marina; Tillander, Sari; Haapakoski, Rita; Majuri, Marja-Leena; Wolff, Henrik; Rautio, Sari; Welling, Irma; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai; Alenius, Harri

    2006-09-01

    Repeated airway exposure to wood dust has long been known to cause adverse respiratory effects such as asthma and chronic bronchitis and impairment of lung function. However, the mechanisms underlying the inflammatory responses of the airways after wood dust exposure are poorly known. We used a mouse model to elucidate the mechanisms of particle-induced inflammatory responses to fine wood dust particles. BALB/c mice were exposed to intranasally administered fine (more than 99% of the particles had a particle size of < or = 5 microm, with virtually identical size distribution) birch or oak dusts twice a week for 3 weeks. PBS, LPS, and titanium dioxide were used as controls. Intranasal instillation of birch or oak dusts elicited influx of inflammatory cells to the lungs in mice. Enhancement of lymphocytes and neutrophils was seen after oak dust exposure, whereas eosinophil infiltration was higher after birch dust exposure. Infiltration of inflammatory cells was associated with an increase in the mRNA levels of several cytokines, chemokines, and chemokine receptors in lung tissue. Oak dust appeared to be a more potent inducer of these inflammatory mediators than birch dust. The results from our in vivo mouse model show that repeated airway exposure to wood dust can elicit lung inflammation, which is accompanied by induction of several proinflammatory cytokines and chemokines. Oak and birch dusts exhibited quantitative and qualitative differences in the elicitation of pulmonary inflammation, suggesting that the inflammatory responses induced by the wood species may rise via different cellular mechanisms.

  4. Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis.

    PubMed

    Morthorst, Jane E; Korsgaard, Bodil; Bjerregaard, Poul

    2016-02-01

    Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization.

  5. Piracetam prevents memory deficit induced by postnatal propofol exposure in mice.

    PubMed

    Wang, Yuan-Lin; Li, Feng; Chen, Xin

    2016-05-15

    Postnatal propofol exposure impairs hippocampal synaptic development and memory. However, the effective agent to alleviate the impairments was not verified. In this study, piracetam, a positive allosteric modulator of AMPA receptor was administered following a seven-day propofol regime. Two months after propofol administration, hippocampal long-term potentiation (LTP) and long-term memory decreased, while intraperitoneal injection of piracetam at doses of 100mg/kg and 50mg/kg following last propofol exposure reversed the impairments of memory and LTP. Mechanically, piracetam reversed propofol exposure-induced decrease of BDNF and phosphorylation of mTor. Similar as piracetam, BDNF supplementary also ameliorated propofol-induced abnormalities of synaptic plasticity-related protein expressions, hippocampal LTP and long-term memory. These results suggest that piracetam prevents detrimental effects of propofol, likely via activating BDNF synthesis.

  6. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    PubMed

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control.

  7. Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology

    EPA Science Inventory

    ATS 2013 Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology Urmila P Kodavanti, Debora Andrews, Mette C Schaldweiler, Jaime M Cyphert, Darol E Dodd, and Stephen H Gavett NHEERL, U.S. EPA, Research Triangle Park, NC; NIEH...

  8. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  9. Environmental Enrichment Ameliorates Neonatal Sevoflurane Exposure-Induced Cognitive and Synaptic Plasticity Impairments.

    PubMed

    Ji, Mu-huo; Wang, Xing-ming; Sun, Xiao-ru; Zhang, Hui; Ju, Ling-sha; Qiu, Li-li; Yang, Jiao-jiao; Jia, Min; Wu, Jing; Yang, Jianjun

    2015-11-01

    Early exposure to sevoflurane, an inhalation anesthetic, induces neurodegeneration in the developing brain and subsequent long-term neurobehavioral abnormalities. Here, we investigated whether an enriched environment could mitigate neonatal sevoflurane exposure-induced long-term cognitive and synaptic plasticity impairments. Male C57BL/6 mice were exposed to 3 % sevoflurane 2 h daily for 3 days from postnatal day 6 (P6) to P8. The exposed mice were randomly allocated to an enriched environment for 2 h daily between P8 and P42 or to a standard environment. Their behavior and cognition were assessed using open field (P35) and fear conditioning tests (P41-P42). Hematoxylin-eosin staining was used to study morphological changes in pyramidal neurons of hippocampal CA1 and CA3 regions. Synaptic plasticity alternations were assessed using western blotting, Golgi staining, and electrophysiological recording. We found that sevoflurane-exposed mice housed in a standard environment exhibited a reduced freezing response in the contextual test, decreased number of dendritic spines on pyramidal neurons and synaptic plasticity-related proteins in the hippocampus, and impaired long-term potentiation. However, in an enriched environment, some of these abnormities induced by repeated sevoflurane exposure. In conclusion, neonatal sevoflurane exposure-induced cognitive and synaptic plasticity impairments are ameliorated by an enriched environment.

  10. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  11. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  12. Effect of low-level NO/sub 2/ chronic exposure on elastase-induced emphysema

    SciTech Connect

    Lafuma, C.; Harf, A.; Lange, F.; Bozzi, L.; Poncy, J.L.; Bignon, J.

    1987-06-01

    The effect of chronic exposure to 2 ppm nitrogen dioxide (NO/sub 2/) for 8 hr a day, 5 days a week, for 8 weeks was assessed in normal and emphysematous hamsters by measuring (1) lung morphometry (mean linear intercept (Lm) and internal surface area (ISA)), (2) lung mechanics (lung volume, compliance and coefficient of static deflation, pressure-volume curve fitted to an exponential equation), and (3) serum elastolytic activity and protease inhibitor capacity. Emphysema was induced by a single intratracheal injection of 6 IU porcine pancreatic elastase. Four groups of animals were used: control, NO/sub 2/-exposed, elastase-treated, and NO/sub 2/-exposed postelastase. Results show that NO/sub 2/ exposure alone induced mild emphysematous lesions whose degree of severity was of the same order as that of the lesions induced by 6 IU elastase. Exposure to 2 ppm NO/sub 2/ enhanced elastase-induced emphysema. By contrast, study of lung mechanics revealed no difference between the control and NO/sub 2/-exposed groups or between the elastase-treated animals exposed to NO/sub 2/ and those not so exposed. Lastly, results suggest that chronic exposure to 2 ppm NO/sub 2/ may cause individuals with inherited or acquired emphysematous lesions to develop more severe emphysema.

  13. Shed syndecan-2 inhibits angiogenesis

    PubMed Central

    De Rossi, Giulia; Evans, Alun R.; Kay, Emma; Woodfin, Abigail; McKay, Tristan R.; Nourshargh, Sussan; Whiteford, James R.

    2014-01-01

    ABSTRACT Angiogenesis is essential for the development of a normal vasculature, tissue repair and reproduction, and also has roles in the progression of diseases such as cancer and rheumatoid arthritis. The heparan sulphate proteoglycan syndecan-2 is expressed on mesenchymal cells in the vasculature and, like the other members of its family, can be shed from the cell surface resulting in the release of its extracellular core protein. The purpose of this study was to establish whether shed syndecan-2 affects angiogenesis. We demonstrate that shed syndecan-2 regulates angiogenesis by inhibiting endothelial cell migration in human and rodent models and, as a result, reduces tumour growth. Furthermore, our findings show that these effects are mediated by the protein tyrosine phosphatase receptor CD148 (also known as PTPRJ) and this interaction corresponds with a decrease in active β1 integrin. Collectively, these data demonstrate an unexplored pathway for the regulation of new blood vessel formation and identify syndecan-2 as a therapeutic target in pathologies characterised by angiogenesis. PMID:25179601

  14. Differential immunotoxicity induced by two different windows of developmental trichloroethylene exposure.

    PubMed

    Gilbert, Kathleen M; Woodruff, William; Blossom, Sarah J

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4(+) T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4(+) T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4(+) T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4(+) T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences.

  15. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  16. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    PubMed

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P<0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P<0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  17. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P < 0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P < 0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  18. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  19. Angiogenesis in the Infarcted Myocardium

    PubMed Central

    Cochain, Clement; Channon, Keith M.

    2013-01-01

    Abstract Significance: Proangiogenic therapy appeared a promising strategy for the treatment of patients with acute myocardial infarction (MI), as de novo formation of microvessels, has the potential to salvage ischemic myocardium at early stages after MI, and is also essential to prevent the transition to heart failure through the control of cardiomyocyte hypertrophy and contractility. Recent Advances: Exciting preclinical studies evaluating proangiogenic therapies for MI have prompted the initiation of numerous clinical trials based on protein or gene transfer delivery of growth factors and administration of stem/progenitor cells, mainly from bone marrow origin. Nonetheless, these clinical trials showed mixed results in patients with acute MI. Critical Issues: Even though methodological caveats, such as way of delivery for angiogenic growth factors (e.g., protein vs. gene transfer) and stem/progenitor cells or isolation/culture procedure for regenerative cells might partially explain the failure of such trials, it appears that delivery of a single growth factor or cell type does not support angiogenesis sufficiently to promote cardiac repair. Future Directions: Optimization of proangiogenic therapies might include stimulation of both angiogenesis and vessel maturation and/or the use of additional sources of stem/progenitor cells, such as cardiac progenitor cells. Experimental unraveling of the mechanisms of angiogenesis, vessel maturation, and endothelial cell/cardiomyocyte cross talk in the ischemic heart, analysis of emerging pathways, as well as a better understanding of how cardiovascular risk factors impact endogenous and therapeutically stimulated angiogenesis, would undoubtedly pave the way for the development of novel and hopefully efficient angiogenesis targeting therapeutics for the treatment of acute MI. Antioxid. Redox Signal. 18, 1100–1113. PMID:22870932

  20. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    PubMed

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  1. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    PubMed

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function.

  2. The temporary threshold shift of vibratory sensation induced by composite-band vibration exposure.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    Eight healthy subjects were exposed to three 1/3 octave-band vibrations (63, 200, and 500 Hz) by hand clasping a vibrated handle in a soundproof and thermoregulated room. The vibratory sensation threshold at 125 Hz was measured before and after the vibration exposure at an exposed fingertip. According to a preceding study, we first determined the relationship between the acceleration of the vibration and the temporary threshold shift of vibratory sensation immediately after the vibratory exposure (TTSv,0) induced by 1/3 octave-band vibration. We then measured TTSv after the exposure to a composite vibration composed of two 1/3 octave-band vibrations that might induce an equal magnitude of TTSv,0 on the basis of the above relationship. The TTSv,0 induced by the composite vibration was not larger than the TTSv,0 induced by the component vibrations. This result suggests that the component of the vibration inducing the largest TTSv,0 determines the TTSv,0 by broad-band random vibration.

  3. Mechanoregulation of Angiogenesis in Wound Healing.

    PubMed

    Lancerotto, Luca; Orgill, Dennis P

    2014-10-01

    Significance: Mechanical forces are important regulators of cell and tissue function. Endothelial cells proliferate in response to tissue stretch and the mechanical properties of the environment direct capillary sprouting and growth. As the vascular network is a key factor in physiology and disease, control of the vascularity by means of mechanical forces could lead to the development of innovative therapeutic strategies. Recent Advances: Increased understanding of mechanobiology has stimulated translational research and allowed the development and optimization of clinical devices that exploit mechanical forces for the treatment of diseases, in particular in the field of wound healing. Stretching in distraction osteogenesis and tissue expansion induces neogenesis of well-vascularized tissues. In micro-deformational wound therapy, micro-mechanical distortions of the wound bed stimulate cell proliferation and angiogenesis by stretching resident cells to improve healing of difficult wounds. Relief from tension antagonizes proliferation and angiogenesis in primarily closed wounds allowing for better scar quality. Critical Issues: The integration of mechanobiology into traditional cell biology and pathophysiology in general is not yet complete and further research is needed to fill existing gaps, in particular in the complexity of in vivo conditions. Future Directions: Still largely unexplored approaches based on mechanical perturbation of the micro-/macro-environment can be devised to overcome the limits of current strategies in a broad spectrum of clinical conditions.

  4. Resveratrol Attenuates Diabetic Nephropathy via Modulating Angiogenesis

    PubMed Central

    Zhang, Min; Zhang, Liying; Chen, Jing; Gu, Yong; Hao, Chuan-Ming

    2013-01-01

    Angiogenesis plays an important role in the pathogenesis of diabetic nephropathy (DN). In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with antiangiogenic activity in DN. In a type 1 diabetic rat model, resveratrol treatment blunted the increases of urine albumin excretion, kidney weight and creatinine clearance rate. The increases of glomerular diameter, mesangium accumulation, glomerular basement membrane thickness and renal fibrosis in diabetic rats were also reduced by resveratrol treatment. In the diabetic kidney, increased expression of vascular endothelial growth factor (VEGF), Flk-1 and angiopoietin 2, and reduced expression of Tie-2 were observed. These changes in angiogenic hormones and associated receptors were attenuated by resveratrol treatment. No changes in angiopoietin 1 expression were detected among each group of rats. Resveratrol also significantly downregulated high glucose-induced VEGF and Flk-1 expressions in cultured mouse glomerular podocytes and endothelial cells, respectively. These effects were attenuated by knocking-down silent information regulator 1 (Sirt1) expression. In contrast, upregulation of Sirt1 in cultured endothelial cells reduced Flk-1 expression. Increased permeability and cellular junction disruption of cultured endothelial cells caused by VEGF were also inhibited by resveratrol pretreatment. Taken together, the present study demonstrated that resveratrol may attenuate DN via modulating angiogenesis. PMID:24312656

  5. Angiogenesis and mineralization during distraction osteogenesis.

    PubMed Central

    Choi, In Ho; Chung, Chin Youb; Cho, Tae-Joon; Yoo, Won Joon

    2002-01-01

    Distraction osteogenesis is currently a standard method of bone lengthening. It is a viable method for the treatment of short extremities as well as extensive bone defects, because large amounts of bone can be regenerated in the distraction gap. Mechanical stimulation by distraction induces biological responses of skeletal regeneration that is accomplished by a cascade of biologic processes that may include differentiation of pluripotential tissue, angiogenesis, mineralization, and remodeling. There are complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly vascular endothelial cells that may be pivotal members of a complex interactive communication network in bone. Regenerate bone forms by three modes of ossification, which include intramembranous, enchondral, and transchondroid ossifications, although intramembraneous bone formation is the predominant mechanism of ossification. In this review we discussed the coupling between angiogenesis and mineralization, the biological and mechanical factors affecting them, the cellular and molecular events occurring during distraction osteogenesis, and the emerging modalities to accelerate regenerate bone healing and remodeling. PMID:12172035

  6. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis

    PubMed Central

    Huang, Haizhi; Chen, Allen Y.; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O.; Chen, Yi Charlie

    2015-01-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks. PMID:26113875

  7. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis.

    PubMed

    Huang, Haizhi; Chen, Allen Y; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O; Chen, Yi Charlie

    2015-05-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.

  8. Effects of acute low-level microwaves on pentobarbital-induced hypothermia depend on exposure orientation

    SciTech Connect

    Lai, H.; Horita, A.; Chou, C.K.; Guy, A.W.

    1984-01-01

    Two series of experiments were performed to study the effects of acute exposure (45 min) to 2,450-MHz circularly polarized, pulsed microwaves (1 mW/cm2, 2-mus pulses, 500 pps, specific absorption rate (SAR) 0.6 W/kg) on the actions of pentobarbital in the rat. In the first experiment, rats were irradiated with microwaves and then immediately injected with pentobarbital. Microwave exposure did not significantly affect the extent of the pentobarbital-induced fall in colonic temperature. However, the rate of recovery from the hypothermia was significantly slower in the microwave-irradiated rats and they also took a significantly longer time to regain their righting reflex. In a second experiment, rats were first anesthetized with pentobarbital and then exposed to microwaves with their heads either pointing toward the source of microwaves (anterior exposure) or pointing away (posterior exposure). Microwave radiation significantly retarded the pentobarbital-induced fall in colonic temperature regardless of the orientation of exposure. However, the recovery from hypothermia was significantly faster in posterior-exposed animals compared to those of the anterior-exposed and sham-irradiated animals. Furthermore, the posterior-exposed rats took a significantly shorter time to regain their righting reflex than both the anterior-exposed and sham-irradiated animals.

  9. Transmitted mutational events induced in mouse germ cells following acrylamide or glycidamide exposure.

    PubMed

    Favor, Jack; Shelby, Michael D

    2005-02-07

    An increase in the germ line mutation rate in humans will result in an increase in the incidence of genetically determined diseases in subsequent generations. Thus, it is important to identify those agents that are mutagenic in mammalian germ cells. Acrylamide is water soluble, absorbed and distributed in the body, chemically reactive with nucleophilic sites, and there are known sources of human exposure. Here we review all seven published studies that assessed the effectiveness of acrylamide or its active metabolite, glycidamide, in inducing transmitted reciprocal translocations or gene mutations in the mouse. Major conclusions were (a) acrylamide is mutagenic in spermatozoa and spermatid stages of the male germ line; (b) in these spermatogenic stages acrylamide is mainly or exclusively a clastogen; (c) per unit dose, i.p. exposure is more effective than dermal exposure; and (d) per unit dose, glycidamide is more effective than acrylamide. Since stem cell spermatogonia persist and may accumulate mutations throughout the reproductive life of males, assessment of induced mutations in this germ cell stage is critical for the assessment of genetic risk associated with exposure to a mutagen. The two specific-locus mutation experiments which studied the stem cell spermatogonial stage yielded conflicting results. This discrepancy should be resolved. Finally, it is noted that no experiments have studied the mutagenic potential of acrylamide to increase the frequency of transmitted mutational events following exposure in the female germ line.

  10. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  11. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    PubMed Central

    Waterhouse, Uta; Roper, Vic E.; Brennan, Katharine A.

    2016-01-01

    ABSTRACT Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin) at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg) at one of three neurodevelopmental time periods [gestation days (GD) 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND) 60] and included: prepulse inhibition (PPI), latent inhibition (LI) and delayed non-matching to sample (DNMTS). Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously) were administered, and animals were re-tested in the same tasks (PND 110). Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11) resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI) and selective (LI) improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI) and induced a global enhancement of sensorimotor gating (PPI). PMID:27483346

  12. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells.

    PubMed

    Brieño-Enríquez, Miguel A; García-López, Jesús; Cárdenas, David B; Guibert, Sylvain; Cleroux, Elouan; Děd, Lukas; Hourcade, Juan de Dios; Pěknicová, Jana; Weber, Michael; Del Mazo, Jesús

    2015-01-01

    In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.

  13. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  14. Bisphenol A exposure at an environmentally relevant dose induces meiotic abnormalities in adult male rats.

    PubMed

    Liu, Chuan; Duan, Weixia; Zhang, Lei; Xu, Shangcheng; Li, Renyan; Chen, Chunhai; He, Mindi; Lu, Yonghui; Wu, Hongjuan; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Whether environmental exposure to bisphenol A (BPA) may induce reproductive disorders is still controversial but certain studies have reported that BPA may cause meiotic abnormalities in C. elegans and female mice. However, little is known about the effect of BPA on meiosis in adult males. To determine whether BPA exposure at an environmentally relevant dose could induce meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 20 μg/kg body weight (bw)/day for 60 consecutive days. We found that BPA significantly increased the proportion of stage VII seminiferous epithelium and decreased the proportion of stage VIII. Consequently, spermiation was inhibited and spermatogenesis was disrupted. Further investigation revealed that BPA exposure delayed meiosis initiation in the early meiotic stage and induced the accumulation of chromosomal abnormalities and meiotic DNA double-strand breaks (DSBs) in the late meiotic stage. The latter event subsequently activated the phosphatidylinositol 3-kinase-related protein kinase (ATM). Our results suggest that long-term exposure to BPA may lead to continuous meiotic abnormalities and ultimately put mammalian reproductive health at risk.

  15. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  16. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.

  17. Chronic exposure to water-pipe smoke induces cardiovascular dysfunction in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Ali, Badreldin H

    2017-02-01

    Water-pipe tobacco smoking is becoming prevalent in all over the world including Western countries. There are limited data on the cardiovascular effects of water-pipe smoke (WPS), in particular following chronic exposure. Here, we assessed the chronic cardiovascular effects of nose-only WPS exposure in C57BL/6 mice. The duration of the session was 30 minutes/day, 5 days/week for 6 consecutive months. Control mice were exposed to air. WPS significantly increased systolic blood pressure. The relative heart weight and plasma concentrations of troponin-I and B-type natriuretic peptide were increased in mice exposed to WPS. Arterial blood gas analysis showed that WPS caused a significant decrease in [Formula: see text] and an increase in [Formula: see text] WPS significantly shortened the thrombotic occlusion time in pial arterioles and venules and increased the number of circulating platelet. Cardiac lipid peroxidation, measured as thiobarbituric acid-reactive substances, was significantly increased, while superoxide dismutase activity, total nitric oxide activity, and glutathione concentration were reduced by WPS exposure. Likewise, immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome c by cardiomyocytes of WPS-exposed mice. Moreover, hearts of WPS-exposed mice showed the presence of focal interstitial fibrosis. WPS exposure significantly increased heart DNA damage assessed by Comet assay. We conclude that chronic nose-only exposure to WPS impairs cardiovascular homeostasis. Our findings provide evidence that long-term exposure to WPS is harmful to the cardiovascular system and supports interventions to control the spread of WPS, particularly amid youths.NEW & NOTEWORTHY No data are available on the chronic cardiovascular effects of water-pipe smoke (WPS). Our findings provide experimental evidence that chronic exposure to WPS increased blood pressure, relative heart weight, troponin I, and

  18. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg(2+) (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl2) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg(2+) concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg(2+) caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl2 exposure (especially in the 16μg/L Hg(2+) group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish.

  19. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  20. Zebrafish (Danio rerio) embryo as a platform for the identification of novel angiogenesis inhibitors of retinal vascular diseases.

    PubMed

    Rezzola, Sara; Paganini, Giuseppe; Semeraro, Francesco; Presta, Marco; Tobia, Chiara

    2016-07-01

    Pathological angiogenesis of the retina is a main cause of blindness. Therapeutic approaches targeting vascular endothelial growth factor, a main angiogenesis inducer in retinal vascular diseases, show significant limitations. Thus, experimental models of retinal neovascularization remain crucial for investigating novel anti-angiogenic strategies and bringing them to patients. Recent observations have shown that eye neovascularization in zebrafish (Danio rerio) embryo may represent a novel target for the identification of angiogenesis inhibitors. This review highlights the use of zebrafish embryo as an innovative model system for the screening of anti-angiogenic molecules to be employed for the treatment of angiogenesis-dependent eye diseases.

  1. Involvement of {gamma}-secretase in postnatal angiogenesis

    SciTech Connect

    Hayashi, Hiroki; Nakagami, Hironori Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.

  2. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    PubMed

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

  3. The temporal basis of angiogenesis

    PubMed Central

    Chakravartula, Shilpa

    2017-01-01

    The process of new blood vessel growth (angiogenesis) is highly dynamic, involving complex coordination of multiple cell types. Though the process must carefully unfold over time to generate functional, well-adapted branching networks, we seldom hear about the time-based properties of angiogenesis, despite timing being central to other areas of biology. Here, we present a novel, time-based formulation of endothelial cell behaviour during angiogenesis and discuss a flurry of our recent, integrated in silico/in vivo studies, put in context to the wider literature, which demonstrate that tissue conditions can locally adapt the timing of collective cell behaviours/decisions to grow different vascular network architectures. A growing array of seemingly unrelated ‘temporal regulators’ have recently been uncovered, including tissue derived factors (e.g. semaphorins or the high levels of VEGF found in cancer) and cellular processes (e.g. asymmetric cell division or filopodia extension) that act to alter the speed of cellular decisions to migrate. We will argue that ‘temporal adaptation’ provides a novel account of organ/disease-specific vascular morphology and reveals ‘timing’ as a new target for therapeutics. We therefore propose and explain a conceptual shift towards a ‘temporal adaptation’ perspective in vascular biology, and indeed other areas of biology where timing remains elusive. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348255

  4. Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.

    PubMed

    Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco

    2016-03-01

    The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system.

  5. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  6. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.

    PubMed

    Bodas, Manish; Van Westphal, Colin; Carpenter-Thompson, Rhett; K Mohanty, Dillip; Vij, Neeraj

    2016-08-01

    Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential

  7. Microwave-induced post-exposure hyperthermia: Involvement of endogenous opioids and serotonin

    SciTech Connect

    Lai, H.; Chou, C.K.; Guy, A.W.; Horita, A.

    1984-08-01

    Acute exposure to pulsed microwaves (2450 MHz, 1 mW/ cm/sup 2/, SAR 0.6 W/kg, 2-..mu..s pulses, 500 pulses/s) induces a transient post-exposure hyperthermia in the rat. The hyperthermia was attenuated by treatment with either the narcotic antagonist naltrexone or one of the serotonin antagonists cinanserin, cyproheptadine, or metergoline. It was not affected, however, by treatment with the peripheral serotonin antagonist xylamidine nor the dopamine antagonist haloperidol. It thus appears that both endogenous opioids and central serotonin are involved. It is proposed that pulsed microwaves activate endogenous opioid systems, and that they in turn activate a serotonergic mechanism that induces the rise in body temperature.

  8. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  9. Ethanol exposure induces a delay in the reacquisition of function during head regeneration in Schmidtea mediterranea.

    PubMed

    Lowe, Jesse R; Mahool, Tyler D; Staehle, Mary M

    2015-01-01

    Prenatal exposure to ethanol affects neurodevelopmental processes, leading to a variety of physical and cognitive impairments collectively termed Fetal Alcohol Spectrum Disorders (FASD). The molecular level ethanol-induced alterations that underlie FASD are poorly understood and are difficult to study in mammals. Ethanol exposure has been shown to affect regulation and differentiation of embryonic stem cells in vitro, suggesting that in vivo effects such as FASD could arise from similar alterations of stem cells. In this study, we hypothesize that ethanol exposure affects head regeneration and neuroregeneration in the Schmidtea mediterranea planarian. S. mediterranea freshwater flatworms have remarkable regenerative abilities arising from an abundant population of pluripotent adult somatic stem cells known as neoblasts. Here, we evaluated the mobility-normalized photophobic behavior of ethanol-exposed planaria as an indicator of cognitive function in intact and head-regenerating worms. Our studies show that exposure to 1% ethanol induces a delay in the reacquisition of behavior during head regeneration that cannot be attributed to the effect of ethanol on intact worms. This suggests that the S. mediterranea planarian could provide insight into conserved neurodevelopmental processes that are affected by ethanol and that lead to FASD in humans.

  10. The changes of heavy metal and metallothionein distribution in testis induced by cadmium exposure.

    PubMed

    Kusakabe, Takahiko; Nakajima, Katsuyuki; Suzuki, Keiji; Nakazato, Kyoumi; Takada, Hisashi; Satoh, Takahiro; Oikawa, Masakazu; Kobayashi, Kenji; Koyama, Hiroshi; Arakawa, Kazuo; Nagamine, Takeaki

    2008-02-01

    Cadmium (Cd) is known to cause various disorders in the testis, and metallothionein (MT) is known as a protein, which has a detoxification function for heavy metals. However, the changes of Fe, Cu, and Zn distribution in the testis induced by Cd exposure have not been well examined. Moreover, only a few studies have been reported on the localization of MT after Cd exposure. In this study, we have investigated the changes of Fe, Cu, and Zn distribution in Cd-exposed testis by a newly developed in air micro-Particle Induced X-ray Emission (PIXE) method. Also, we examined the distribution of MT expression in testis. In the testis of Cd-treated rats with significant increases of lipid peroxidation, the sertoli cell tight junction was damaged by Cd exposure, resulting from disintegration of the blood testis barrier (BTB). Evaluation by in air micro-PIXE method revealed that Cd and Fe distribution were increased in the interstitial tissues and seminiferous tubules. The histological findings indicated that the testicular tissue damage was advanced, which may have been caused by Fe flowing into seminiferous tubules followed by disintegration of the BTB. As a result, Fe was considered to enhance the tissue damage caused by Cd exposure. MT was detected in spermatogonia, spermatocytes, and Sertoli's cells in the testis of Cd-treated rats, but was not detected in interstitial tissues. These results suggested that MT was induced by Cd in spermatogonia, spermatocytes, and Sertoli's cells, and was involved in the resistance to tissue damage induced by Cd.

  11. Increased metallothionein content in rat liver induced by x irradiation and exposure to high oxygen tension

    SciTech Connect

    Shiraishi, N.; Aono, K.; Utsumi, K.

    1983-08-01

    X irradiation and exposure to high oxygen tension are known to induce lipid peroxidation. The effects of these stresses on hepatic content of metallothionein, which may be involved in the regulation of zinc and copper metabolism, have been studied. The amount of metallothionein in rat liver was increased 11-fold by a high dose of X irradiation (1000 R). Increased metallothionein content (about 15 times) was also observed in liver of rats exposed to high oxygen tension for 3 days.

  12. Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model.

    PubMed

    Tulotta, C; He, S; van der Ent, W; Chen, L; Groenewoud, A; Spaink, H P; Snaar-Jagalska, B E

    2016-01-01

    Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients.

  13. Exposure of mouse to high gravitation forces induces long-term potentiation in the hippocampus.

    PubMed

    Ishii, Masamitsu; Tomizawa, Kazuhito; Matsushita, Masayuki; Matsui, Hideki

    2004-06-01

    The central nervous system is highly plastic and has been shown to undergo both transient and chronic adaptive changes in response to environmental influences. The purpose of this study was to investigate the effect of hypergravic field on long-term potentiation (LTP) in the mouse hippocampus. Exposure of mice to 4G fields for 48 h had no effect on input-output coupling during extracellular stimulation of Schaffer collaterals and paired pulse facilitation, suggesting that the hypergravic exposure had no detrimental effect on basal neurotransmission in the hippocampus. However, the exposure to 4G fields for 48 h significantly induced LTP compared with the control mouse hippocampus. In contrast, no significant changes of late-phase LTP (L-LTP) were found in the hippocampi of mice exposed to the hypergravic field. Exposure of mice to 4G fields for 48 h enhanced AMPA receptor phosphorylation but not cyclic AMP-responsive element binding protein (CREB) phosphorylation. These results suggest that exposure to hyperdynamic fields influences the synaptic plasticity in the hippocampus.

  14. Similar Metabolic Changes Induced by HIPVs Exposure as Herbivore in Ammopiptanthus mongolicus

    PubMed Central

    Sun, Jingru; Zhang, Xiao; Cao, Chuanjian; Mei, Xindi; Wang, Ningning; Yan, Suli; Zong, Shixiang; Luo, Youqing; Yang, Haijun; Shen, Yingbai

    2014-01-01

    Herbivore-induced plant volatiles (HIPVs) are important compounds to prim neighboring undamaged plants; however, the mechanism for this priming process remains unclear. To reveal metabolic changes in plants exposed to HIPVs, metabolism of leaves and roots of Ammopiptanthus mongolicus seedlings exposed to HIPVs released from conspecific plants infested with larvae of Orgyia ericae were analyzed together with control and infested seedlings using nuclear magnetic resonance (NMR)-based metabolic technology and multi variate data analysis. Results presented showed that HIPVs exposure led to similar but specific metabolic changes compared with those induced by infestation in both leaves and roots. Furthermore, both HIPVs exposure and herbivore attack resulted in metabolic changes involving a series of primary and secondary metabolites in both leaves and roots. Taken together, these results suggested that priming of yet-damaged plants may be achieved by reconfiguring metabolic pathways in leaves and roots to make similar concentrations for all metabolites as those in seedlings infested. Therefore, we propose that improved readiness of defense induction of primed plants toward subsequent herbivore attack may be based on the similar metabolic profiling induced by HIPVs exposure as those caused by herbivore. PMID:24748156

  15. Role of angiogenesis in chronic lymphocytic leukemia.

    PubMed

    Letilovic, Tomislav; Vrhovac, Radovan; Verstovsek, Srdan; Jaksic, Branimir; Ferrajoli, Alessandra

    2006-09-01

    Angiogenesis is a physiologic process of new blood vessels formation mediated by various cytokines called angiogenic and angiostatic factors. Although its potential pathophysiologic role in solid tumors has been extensively studied for more than 3 decades, enhancement of angiogenesis in chronic lymphocytic leukemia (CLL) and other malignant hematological disorders has been recognized more recently. An increased level of angiogenesis has been documented by various experimental methods both in bone marrow and lymph nodes of patients with CLL. Although the role of angiogenesis in the pathophysiology of this disease remains to be fully elucidated, experimental data suggest that several angiogenic factors play a role in the disease progression. Biologic markers of angiogenesis were also shown to be of prognostic relevance in CLL. The current findings provide the rationale for investigating antiangiogenic agents in CLL. In the current review angiogenesis in CLL is discussed and its potential diagnostic and therapeutic applications.

  16. DNA damage-inducible genes as biomarkers for exposures to environmental agents.

    PubMed Central

    Johnson, N F; Carpenter, T R; Jaramillo, R J; Liberati, T A

    1997-01-01

    A biodosimetric approach to determine alpha-particle dose to the respiratory tract epithelium from known exposures to radon has been developed in the rat. Cytotoxicity assays have been used to obtain dose-conversion factors for cumulative exposures typical of those encountered by underground uranium miners. However, this approach is not sensitive enough to derive dose-conversion factors for indoor radon exposures. The expression of DNA damage-inducible genes is being investigated as a biomarker of exposure to radon progeny. Exposure of cultures of A549 cells to alpha particles resulted in an increase in the protein levels of the DNA damage-inducible genes, p53, Cip1, and Gadd45. These protein changes were associated with a transient arrest of cells passing through the cell cycle. This arrest was typified by an increase in the number of cells in the G1 and G2 phases and a decrease in the number of cells in the S phase. The effect of inhaled alpha particles (radon progeny) in rats was examined in the epithelial cells of the lateral well of the anterior nasal cavity. Exposures to radon progeny resulted in a significant increase in the number of cells in the G1 phase and a decrease in the number of cells in the S phase. These cell-cycle changes were concomitant with an increase in the number of cells containing DNA strand breaks. These results suggest a commonality between cell-cycle events in vitro and in vivo following exposure to ionizing radiation. In addition to ionizing radiation, A549 cells were exposed to 4-nitroquinoline-1-oxide, methyl methanesulphonate, crocidolite asbestos, and glass microfiber. These studies showed that physical and chemical agents induce different expression patterns of p53, Cip1, and Gadd153 proteins and they could be used to discriminate between toxic and nontoxic materials such as asbestos and glass microfiber. The measurement of gene expression in A549 cells may provide a means to identify a broad spectrum of physical and chemical

  17. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures.

    PubMed

    Proctor, Deborah M; Suh, Mina; Campleman, Sharan L; Thompson, Chad M

    2014-11-05

    Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m(3)), for which clear exposure-response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose-response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of particulate chromium in the bifurcations of the lung resulting in exceedance of clearance mechanisms and cellular absorption of Cr(VI). Once inside the cell, reduction of Cr(VI) results in oxidative stress and the formation of Cr ligands. Subsequent protein and DNA damage lead to tissue irritation, inflammation, and cytotoxicity. These effects, concomitant with increased cell proliferation, result in changes to DNA sequences and/or methylation status

  18. DNA damage-inducible genes as biomarkers for exposures to environmental agents.

    PubMed

    Johnson, N F; Carpenter, T R; Jaramillo, R J; Liberati, T A

    1997-06-01

    A biodosimetric approach to determine alpha-particle dose to the respiratory tract epithelium from known exposures to radon has been developed in the rat. Cytotoxicity assays have been used to obtain dose-conversion factors for cumulative exposures typical of those encountered by underground uranium miners. However, this approach is not sensitive enough to derive dose-conversion factors for indoor radon exposures. The expression of DNA damage-inducible genes is being investigated as a biomarker of exposure to radon progeny. Exposure of cultures of A549 cells to alpha particles resulted in an increase in the protein levels of the DNA damage-inducible genes, p53, Cip1, and Gadd45. These protein changes were associated with a transient arrest of cells passing through the cell cycle. This arrest was typified by an increase in the number of cells in the G1 and G2 phases and a decrease in the number of cells in the S phase. The effect of inhaled alpha particles (radon progeny) in rats was examined in the epithelial cells of the lateral well of the anterior nasal cavity. Exposures to radon progeny resulted in a significant increase in the number of cells in the G1 phase and a decrease in the number of cells in the S phase. These cell-cycle changes were concomitant with an increase in the number of cells containing DNA strand breaks. These results suggest a commonality between cell-cycle events in vitro and in vivo following exposure to ionizing radiation. In addition to ionizing radiation, A549 cells were exposed to 4-nitroquinoline-1-oxide, methyl methanesulphonate, crocidolite asbestos, and glass microfiber. These studies showed that physical and chemical agents induce different expression patterns of p53, Cip1, and Gadd153 proteins and they could be used to discriminate between toxic and nontoxic materials such as asbestos and glass microfiber. The measurement of gene expression in A549 cells may provide a means to identify a broad spectrum of physical and chemical

  19. Sustained (rh)VEGF(165) release from a sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosis.

    PubMed

    Mittermayr, Rainer; Morton, Tatjana; Hofmann, Martina; Helgerson, Sam; van Griensven, Martijn; Redl, Heinz

    2008-01-01

    This study investigated (1) the release of recombinant human vascular endothelial growth factor ([rh]VEGF(165)) from an in vitro fibrin matrix, (2) the effects of (rh)VEGF(165) released from an in vivo fibrin matrix on ischemic flap necrosis in the rat dorsal skin flap model, and (3) the effects of (rh)VEGF(165) released from an in vivo fibrin matrix on VEGF-R2 expression in transgenic VEGF-R2/luc mice. In vitro fibrin matrices were spiked with (rh)VEGF(165) and demonstrated (rh)VEGF(165) release over 88 hours with 66% recovery. Ischemic dorsal flaps were treated with a fibrin sealant (FS), FS spiked with (rh)VEGF(165), or left untreated. Flaps treated with FS spiked with (rh)VEGF(165) showed greater viability than controls as measured by planimetric analysis. Immunohistochemical analyses revealed stronger neovascularization than that exhibited by controls. Transgenic mice implanted with FS spiked with (rh)VEGF(165) had significant increases in VEGF-R2 expression relative to controls at days 5-13 after implantation. Conclusions drawn from this work are that (1) (rh)VEGF(165) is released from an in vitro fibrin matrix at clinically appropriate times, (2) (rh)VEGF(165) increases the viability of tissue flaps in vivo, and (3) (rh)VEGF(165) induces the expression of VEGF-R2 expression. This work demonstrates the clinical ability of sprayed FS to locally deliver growth factors to ischemic tissue of patients.

  20. Early immunological response to German cockroach frass exposure induces a Th2/Th17 environment.

    PubMed

    Page, Kristen; Zhou, Ping; Ledford, John R; Day, Scottie B; Lutfi, Riad; Dienger, Krista; Lewkowich, Ian P

    2011-01-01

    Cockroach exposure is a major risk factor for the development of asthma; however, the early immune events induced by cockroach leading to the Th2 response are not fully understood. Exposure of naïve mice to German cockroach (GC) feces (frass) was sufficient to induce dendritic cell (DC) recruiting and activating chemokines C-C motif ligand 20, granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor and macrophage inflammatory protein-1α into the airways. This corresponded with an increase in myeloid DCs (mDCs) in the airways as well as increased expression of CD80 and CD86 on the mDCs. Plasmacytoid DCs in the lung were unchanged. Levels of IL-5, IL-17A and IL-6 cytokines in whole lung cultures were significantly increased 18 h following GC frass exposure demonstrating the early development of a mixed Th2/Th17 response. In addition, GC frass stimulated the production of IL-23, IL-6 and IL-12p70 from bone marrow-derived mDCs. Adoptive transfer of GC frass-pulsed mDCs induced airway reactivity, airway inflammation as well as eosinophilia and induced a strong Th2/Th17 response in the lung. MyD88-deficient bone marrow-derived mDCs did not respond to GC frass treatment, suggesting a functional Toll-like receptor pathway was important to induce the Th2/Th17 response. Together, our data show that GC frass activated the innate immune response to augment DC recruitment and activation of mDCs which promoted robust T cell-skewing cytokines and ultimately drive the development of airway inflammation.

  1. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  2. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol.

    PubMed

    Rinker, Jennifer A; Hutchison, Mary Anne; Chen, Scott A; Thorsell, Annika; Heilig, Markus; Riley, Anthony L

    2011-07-01

    The majority of smokers begin their habit during adolescence, which often precedes experimentation with alcohol. Interestingly, very little preclinical work has been done examining how exposure to nicotine during periadolescence impacts the affective properties of alcohol in adulthood. Understanding how periadolescent nicotine exposure influences the aversive effects of alcohol might help to explain why it becomes more acceptable to this preexposed population. Thus, Experiment 1 exposed male Sprague Dawley rats to either saline or nicotine (0.4mg/kg, IP) from postnatal days 34 to 43 (periadolescence) and then examined changes in the aversive effects of alcohol (0, 0.56, 1.0 and 1.8g/kg, IP) in adulthood using the conditioned taste aversion (CTA) design. Changes in blood alcohol concentration (BAC) as well as alcohol-induced hypothermia and locomotor suppression were also assessed. To determine if changes seen were specific to nicotine exposure during periadolescence, the procedures were replicated in adults (Experiment 2). Preexposure to nicotine during periadolescence attenuated the acquisition of the alcohol-induced CTAs (at 1.0g/kg) and the hypothermic effects of alcohol (1.0g/kg). Adult nicotine preexposure produced similar attenuation in alcohol's aversive (at 1.8g/kg) and hypothermic (1.8g/kg) effects. Neither adolescent nor adult nicotine preexposure altered BACs or alcohol-induced locomotor suppression. These results suggest that nicotine may alter the aversive and physiological effects of alcohol, regardless of the age at which exposure occurs, possibly increasing its overall reinforcing value and making it more likely to be consumed.

  3. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke.

    PubMed

    Conklin, Daniel J; Haberzettl, Petra; Prough, Russell A; Bhatnagar, Aruni

    2009-05-01

    Exposure to tobacco smoke impairs endothelium-dependent arterial dilation. Reactive constituents of cigarette smoke are metabolized and detoxified by glutathione-S-transferases (GSTs). Although polymorphisms in GST genes are associated with the risk of cancer in smokers, the role of these enzymes in regulating the cardiovascular effects of smoking has not been studied. The P isoform of GST (GSTP), which catalyzes the conjugation of electrophilic molecules in cigarette smoke such as acrolein, was expressed in high abundance in the mouse lung and aorta. Exposure to tobacco smoke for 3 days (5 h/day) decreased total plasma protein. These changes were exaggerated in GSTP(-/-) mice. Aortic rings isolated from tobacco smoke-exposed GSTP(-/-) mice showed greater attenuation of ACh-evoked relaxation than those from GSTP(+/+) mice. The lung, plasma, and aorta of mice exposed to tobacco smoke or acrolein (for 5 h) accumulated more acrolein-adducted proteins than those tissues of mice exposed to air, indicating that exposure to tobacco smoke results in the systemic delivery of acrolein. Relative to GSTP(+/+) mice, modification of some proteins by acrolein was increased in the aorta of GSTP(-/-) mice. Aortic rings prepared from GSTP(-/-) mice that inhaled acrolein (1 ppm, 5 h/day for 3 days) or those exposed to acrolein in an organ bath showed diminished ACh-induced arterial relaxation more strongly than GSTP(+/+) mice. Acrolein-induced endothelial dysfunction was prevented by pretreatment of the aorta with N-acetylcysteine. These results indicate that GSTP protects against the endothelial dysfunction induced by tobacco smoke exposure and that this protection may be related to the detoxification of acrolein or other related cigarette smoke constituents.

  4. Development of a one-step embryonic stem cell-based assay for the screening of sprouting angiogenesis

    PubMed Central

    Hermant, Bastien; Desroches-Castan, Agnès; Dubessay, Marie-Laure; Prandini, Marie-Hélène; Huber, Philippe; Vittet, Daniel

    2007-01-01

    Background Angiogenesis assays are important tools for the identification of regulatory molecules and the potential development of therapeutic strategies to modulate neovascularization. Although numerous in vitro angiogenesis models have been developed in the past, they exhibit limitations since they do not recapitulate the entire angiogenic process or correspond to multi-step procedures that are not easy to use. Convenient, reliable, easily quantifiable and physiologically relevant assays are still needed for pharmacological screenings of angiogenesis. Results Here, we have optimized an angiogenesis model based on ES cell differentiation for screening experiments. We have established conditions leading to angiogenic sprouting of embryoid bodies during ES cell differentiation in type I three-dimensional collagen gels. Immunostaining experiments carried out during these cultures showed the formation of numerous buds comprising CD31 positive cells, after 11 days of culture of ES cells. Moreover, this one-step model has been validated in response to activators and inhibitors of angiogenesis. Sprouting was specifically stimulated in the presence of VEGF and FGF2. Alternatively, endothelial sprouting induced by angiogenic activators was inhibited by angiogenesis inhibitors such as angiostatin, TGFβ and PF4. Sprouting angiogenesis can be easily quantified by image analysis after immunostaining of endothelial cells with CD31 pan-endothelial marker. Conclusion Taken together, these data clearly validate that this one-step ES differentiation model constitutes a simple and versatile angiogenesis system that should facilitate, in future investigations, the screening of both activators and inhibitors of angiogenesis. PMID:17437635

  5. Endothelial α3β1-Integrin Represses Pathological Angiogenesis and Sustains Endothelial-VEGF

    PubMed Central

    da Silva, Rita Graça; Tavora, Bernardo; Robinson, Stephen D.; Reynolds, Louise E.; Szekeres, Charles; Lamar, John; Batista, Sílvia; Kostourou, Vassiliki; Germain, Mitchel A.; Reynolds, Andrew R.; Jones, Dylan T.; Watson, Alan R.; Jones, Janet L.; Harris, Adrian; Hart, Ian R.; Iruela-Arispe, M. Luisa; DiPersio, C. Michael; Kreidberg, Jordan A.; Hodivala-Dilke, Kairbaan M.

    2010-01-01

    Integrin α3β1 is a major receptor for laminin. The expression levels of laminins-8 and -10 in the basement membrane surrounding blood vessels are known to change during tumor angiogenesis. Although some studies have suggested that certain ligands of α3β1 can affect angiogenesis either positively or negatively, either a direct in vivo role for α3β1 in this process or its mechanism of action in endothelial cells during angiogenesis is still unknown. Because the global genetic ablation of α3-integrin results in an early lethal phenotype, we have generated conditional-knockout mice where α3 is deleted specifically in endothelial cells (ec-α3−/−). Here we show that ec-α3−/− mice are viable, fertile, and display enhanced tumor growth, elevated tumor angiogenesis, augmented hypoxia-induced retinal angiogenesis, and increased vascular endothelial growth factor (VEGF)-mediated neovascularization ex vivo and in vivo. Furthermore, our data provide a novel method by which an integrin may regulate angiogenesis. We show that α3β1 is a positive regulator of endothelial-VEGF and that, surprisingly, the VEGF produced by endothelial cells can actually repress VEGF-receptor 2 (Flk-1) expression. These data, therefore, identify directly that endothelial α3β1 negatively regulates pathological angiogenesis and implicate an unexpected role for low levels of endothelial-VEGF as an activator of neovascularization. PMID:20639457

  6. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure

    PubMed Central

    Yoshioka, Yasuo; Kuroda, Etsushi; Hirai, Toshiro; Tsutsumi, Yasuo; Ishii, Ken J.

    2017-01-01

    Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of

  7. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis

    PubMed Central

    Riabov, Vladimir; Gudima, Alexandru; Wang, Nan; Mickley, Amanda; Orekhov, Alexander; Kzhyshkowska, Julia

    2014-01-01

    Tumor angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumor cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumor endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM) into tumor sites. Tumor-associated macrophages (TAM) sense hypoxia in avascular areas of tumors, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC) and macrophages. In some tumors, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix (ECM) degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include basic fibroblast growth factor (bFGF), thymidine phosphorylase (TP), urokinase-type plasminogen activator (uPA), and adrenomedullin (ADM). The same factors used by macrophages for the induction of angiogenesis [like vascular endothelial growth factor A (VEGF-A) and MMP9] support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumor lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP) that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39, and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumor models. YKL-40-neutralizing monoclonal antibody blocks tumor angiogenesis and progression. The role of YKL-39 and SI

  8. A mathematical model of tumour angiogenesis: growth, regression and regrowth.

    PubMed

    Vilanova, Guillermo; Colominas, Ignasi; Gomez, Hector

    2017-01-01

    Cancerous tumours have the ability to recruit new blood vessels through a process called angiogenesis. By stimulating vascular growth, tumours get connected to the circulatory system, receive nutrients and open a way to colonize distant organs. Tumour-induced vascular networks become unstable in the absence of tumour angiogenic factors (TAFs). They may undergo alternating stages of growth, regression and regrowth. Following a phase-field methodology, we propose a model of tumour angiogenesis that reproduces the aforementioned features and highlights the importance of vascular regression and regrowth. In contrast with previous theories which focus on vessel remodelling due to the absence of flow, we model an alternative regression mechanism based on the dependency of tumour-induced vascular networks on TAFs. The model captures capillaries at full scale, the plastic dynamics of tumour-induced vessel networks at long time scales, and shows the key role played by filopodia during angiogenesis. The predictions of our model are in agreement with in vivo experiments and may prove useful for the design of antiangiogenic therapies.

  9. Hyperactivity induced by prenatal BrdU exposure across several experimental conditions.

    PubMed

    Kuwagata, Makiko; Ogawa, Tetsuo; Muneoka, Katsumasa; Shioda, Seiji

    2011-12-01

    Behavioral results are sometimes not reproducible even in the positive controls of developmental neurotoxicity (DNT) tests. Effects of several factors on the results should be considered. In the present paper, we examined the effects of strain-, gender-, and test-condition differences on BrdU-induced hyperactivity. The results showed that BrdU-induced hyperactivity was reproducible in two rat strains (SD and F344 rats), rodent species (rat and mouse), and both sexes. When the level of background sound in a test room was increased, the hyperactivity was persistent, resulting in no effect of background sound on BrdU-induced hyperactivity. Thus, we have demonstrated that the BrdU-animal model is a useful positive control via prenatal exposure to validate the entire DNT test process.

  10. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  11. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  12. Human color vision deficits induced by accidental laser exposure and potential for long-term recovery

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Lund, Brian J.; Brown, Jeremiah, Jr.; Stuck, Bruce E.; Loveday, J.

    2003-06-01

    Purpose: To evaluate long term deficits in human color discrimination induced by accidental laser macular damage and assess potential for recovery of color vision deficits. Methods: Nine laser accident cases (Q-switched Neodymium) presenting initially with confined or vitreous macular hemorrhage were evaluated with the Farnsworth-Munsell 100 Hue test within 2 days to 3 months post exposure. Both total as well as partial errors in the blue/yellow (B/Y) and red/green (R/G) regions were assessed. Independent assessment of axis orientation and complexity were obtained via a Fourier series expansion of error scores. Comparisons of both total and partial B/Y and R/G errors were made with age matched normal subjects, idiopathic and juvenile onset macular holes. Confocal Scanning Laser Ophthalmoscopy and Optical Coherence Tomography characterized the presence of retinal traction, intraretinal scar, macular thickness and macular hole formation. Results: Comparison of exposed and non-exposed age matched individuals were significant (P<.001) for both total and partial errors. In four cases where macular injury ranged from mild scar to macular hole, color discrimination errors achieved normal levels in 1 to 12 months post exposure. A mild tritan axis, dominant B/Y ("blue/yellow") errors, and retinal traction were observed in a macular hole case. At 12 months post exposure, traction about the hole disappeared, and total and partial errors were normal. Where damage involved a greater degree of scarring, retinal traction and multiple injury sites, long term recovery of total and partial error recovery was retarded with complex axis makeup. Single exposures in the paramacula produced tritan axes, while multiple exposures within and external to the macula increased total and partial R/G ("red/green") error scores. Total errors increased when paramacular hole enlargement induced macular traction. Such hole formation produced significant increases in total errors, complex axis

  13. Genotoxicity Induced by Foetal and Infant Exposure to Magnetic Fields and Modulation of Ionising Radiation Effects

    PubMed Central

    Udroiu, Ion; Antoccia, Antonio; Tanzarella, Caterina; Giuliani, Livio; Pacchierotti, Francesca; Cordelli, Eugenia; Eleuteri, Patrizia; Villani, Paola; Sgura, Antonella

    2015-01-01

    Background Few studies have investigated the toxicity and genotoxicity of extremely low frequency magnetic fields (ELF-MF) during prenatal and neonatal development. These phases of life are characterized by cell proliferation and differentiation, which might make them sensitive to environmental stressors. Although in vitro evidences suggest that ELF-MF may modify the effects of ionizing radiation, no research has been conducted so far in vivo on the genotoxic effects of ELF-MF combined with X-rays. Aim and methods Aim of this study was to investigate in somatic and germ cells the effects of chronic ELF-MF exposure from mid gestation until weaning, and any possible modulation produced by ELF-MF exposure on ionizing radiation-induced damage. Mice were exposed to 50 Hz, 65 μT magnetic field, 24 hours/day, for a total of 30 days, starting from 12 days post-conception. Another group was irradiated with 1 Gy X-rays immediately before ELF-MF exposure, other groups were only X-irradiated or sham-exposed. Micronucleus test on blood erythrocytes was performed at multiple times from 1 to 140 days after birth. Additionally, 42 days after birth, genotoxic and cytotoxic effects on male germ cells were assessed by comet assay and flow cytometric analysis. Results ELF-MF exposure had no teratogenic effect and did not affect survival, growth and development. The micronucleus test indicated that ELF-MF induced a slight genotoxic damage only after the maximum exposure time and that this effect faded away in the months following the end of exposure. ELF-MF had no effects on ionizing radiation (IR)-induced genotoxicity in erythrocytes. Differently, ELF–MF appeared to modulate the response of male germ cells to X-rays with an impact on proliferation/differentiation processes. These results point to the importance of tissue specificity and development on the impact of ELF-MF on the early stages of life and indicate the need of further research on the molecular mechanisms underlying

  14. Prenatal nicotine exposure changes natural and drug-induced reinforcement in adolescent male rats.

    PubMed

    Franke, Ryan M; Park, Minjung; Belluzzi, James D; Leslie, Frances M

    2008-06-01

    Clinical studies have demonstrated an increased incidence of substance misuse and obesity in adolescents whose mothers smoked during pregnancy. Although dopamine systems that mediate natural and drug-induced reinforcement have been shown in animal studies to be altered by gestational nicotine treatment, it is not clear whether there are concomitant changes in reinforcement sensitivity. To test whether prenatal nicotine exposure influences sensitivity to natural and drug rewards, timed pregnant rats were implanted with osmotic minipumps delivering saline or nicotine (3 mg/kg/day) from gestational day 4 to 18. Male offspring were tested as adolescents, on postnatal day 32, for operant responding maintained by sucrose pellets or i.v. cocaine (200 or 500 mug/kg per injection). Cocaine-induced stereotypy and c-fos mRNA expression in cortex and striatum were also examined. Complex changes in reward circuitry were observed in the offspring of nicotine-exposed dams. Nicotine-exposed adolescents did not self-administer the low dose of cocaine, but, at the higher dose, exhibited significantly greater cocaine intake and c-fos mRNA expression in nucleus accumbens than did controls. In contrast, control animals showed significantly greater drug-induced stereotypy at both cocaine doses. Operant responding maintained by sucrose was also influenced by gestational nicotine exposure. At a fixed ratio (FR) 1 schedule, although the number of pellets eaten by the two experimental groups was equivalent, more pellets were left uneaten by nicotine-exposed offspring. At FR2 and FR5 schedules, the responding maintained by sucrose pellets was lower in nicotine-exposed offspring. These findings suggest that nicotine exposure during gestation may induce changes in both natural and drug reward pathways.

  15. Potential of dietary nitrate in angiogenesis.

    PubMed

    Rammos, Christos; Luedike, Peter; Hendgen-Cotta, Ulrike; Rassaf, Tienush

    2015-10-26

    Endothelial dysfunction with impaired bioavailability of nitric oxide (NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of microRNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system.

  16. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  17. Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones.

    PubMed

    Fleshner, Monika; Campisi, Jay; Amiri, Leila; Diamond, David M

    2004-10-01

    Heat-shock proteins (Hsp) play an important role in stress physiology. Exposure to a variety of stressors will induce intracellular Hsp72, and this induction is believed to be beneficial for cell survival. In contrast, Hsp72 released during stress (extracellular Hsp72; eHsp72) activates pro-inflammatory responses. Clearly, physical stressors such as heat, cold, H(2)O(2), intense exercise and tail shock will induce both intra- and extracellular Hsp72. The current study tested whether a psychological stressor, cat exposure, would also trigger this response. In addition, the potential role of adrenal hormones in the Hsp72 response was examined. Adult, male Sprague Dawley rats were either adrenalectomized (ADX) or sham operated. Ten days post-recovery, rats were exposed to either a cat with no physical contact or control procedures (n = 5-6/group) for 2 h. Levels of intracellular Hsp72 were measured in the brain (frontal cortex, hippocampus, hypothalamus, dorsal vagal complex) and pituitary (ELISA). Levels of eHsp72 (ELISA) and corticosterone (RIA) were measured from serum obtained at the end of the 2-h stress period. Rats that were exposed to a cat had elevated intracellular Hsp72 in hypothalamus and dorsal vagal complex, and elevated eHsp72 and corticosterone in serum. Both the intra- and extracellular Hsp72 responses were blocked or attenuated by ADX. This study demonstrates that cat exposure can stimulate the Hsp72 response and that adrenal hormones contribute to this response.

  18. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.

  19. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.

  20. Wood dust exposure induces cell transformation through EGFR-mediated OGG1 inhibition.