Science.gov

Sample records for exposure induces angiogenesis

  1. Diesel exhaust exposure induces angiogenesis

    PubMed Central

    Xu, Xiaohua; Kherada, Nisharahmed; Hong, Xinru; Quan, Chunli; Zheng, Ling; Wang, Aixia; Wold, Loren; Lippmann, Morton; Chen, Lung Chi; Rajagopalan, Sanjay; Sun, Qinghua

    2009-01-01

    Our aim was to test the hypothesis that exposure to whole diesel exhaust (WDE) would enhance angiogenesis/vasculogenesis. Male apolipoprotein E-deficient mice, with either scaffold implantation subcutaneously or hindlimb ischemia, were exposed to either WDE (containing diesel exhaust particle [DEP] at a concentration of about 1 mg/m3) or filtered air 6 hours/day, 5 days/week in a whole body exposure chamber for 2, 5, or 8 weeks, respectively. WDE exposure significantly increased total cell counts in the scaffolds, aortic, and perivascular fat tissues. Macrophage infiltration was enhanced and CD31 expression increased in the scaffolds, which was coupled by increased α-smooth muscle actin (α-SMA) expression. WDE exposure led to increased CD31 expression, while decreasing endothelial nitric oxide synthase in the aortic wall. The vessel volume measured by micro-CT was increased in ischemic and non-ischemic hindlimbs in response to WDE exposure. DEP exposure induced capillary-like tube formation in endothelial cells in vitro, and caused capillary sprouting from aortic rings ex vivo. In addition, WDE exposure significantly increased mRNA expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α, while decreasing prolylhydroxylase (PHD) 2 expression. WDE exposure increases inflammatory cell infiltration, enhances the vessel volume/flow, and increases capillary tube formation and sprouting, thereby inducing angiogenesis and vasculogenesis. The angiogenic effects may occur through increasing HIF-1α and VEGF while decreasing PHD2 expression. PMID:19683567

  2. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. PMID:26177723

  3. Neuropeptide Y-induced angiogenesis in aging.

    PubMed

    Kitlinska, Joanna; Lee, Edward W; Movafagh, Sharareh; Pons, Jennifer; Zukowska, Zofia

    2002-01-01

    Age-related changes in NPY-driven angiogenesis were investigated using Matrigel and aortic sprouting assays in young (2 months.) and aged (18 months.) mice. In both assays, NPY-induced vessel growth decreased significantly with age. In parallel, aged mice showed reduced expression (RT-PCR) of Y2 receptors and the NPY converting enzyme, dipeptidyl peptidase IV (DPPIV), in spleens. Aging of human microvascular endothelial cells in vitro led to a loss of their mitogenic responses to NPY accompanied by a lack of NPY receptor mRNAs. Thus, NPY-dependent angiogenesis is impaired with age, which is associated with a decreased expression of endothelial NPY receptors (Y2) and DPPIV.

  4. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (P<.01). The culture of rat aorta treated with safrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  5. Right ventricular angiogenesis is an early adaptive response to chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Kolb, Todd M.; Peabody, Jacelyn; Baddoura, Philip; Fallica, Jon; Mock, Jason R.; Singer, Benjamin D.; D’Alessio, Franco R.; Damarla, Mahendra; Damico, Rachel L.; Hassoun, Paul M.

    2015-01-01

    Objective Myocardial angiogenesis is presumed to play a role in right ventricular (RV) adaptation to pulmonary hypertension (PH), though definitive evidence and functional correlations are lacking. We aimed to use definitive methods to correlate RV angiogenesis, hypertrophy, and function in a murine PH model. Methods Mice were exposed to chronic hypoxia for 21 days to induce PH (CH-PH) and RV remodeling. We used unbiased stereology and flow cytometry to quantify angiogenesis and myocyte hypertrophy, and pressure-volume loops to measure RV function. Results Within 7 days, RV-specific increases in total capillary length (10576±2574 cm vs. 6822±1379 cm; P = 0.02), surface area (10±3.3 cm2 vs. 4.9±1.5 cm2; P = 0.01), and volume (0.0013±0.0005 cm3 vs. 0.0006±0.0001 cm3; P = 0.02) were observed, and RV endothelial cell proliferation increased nearly 10-fold. Continued exposure led to progressive RV hypertrophy without additional angiogenesis. RV function was preserved, but activation of hypoxia-dependent gene expression was observed in both ventricles after 21 days. Conclusions Early RV remodeling in CH-PH is associated with RV angiogenesis and preserved RV function. Continued CH-PH is associated with RV hypertrophy but not angiogenesis, leading to biventricular activation of hypoxia-dependent gene expression. PMID:26352923

  6. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    PubMed Central

    Liu, D; Pearlman, E; Diaconu, E; Guo, K; Mori, H; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the "molecular saboteurs" to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755562

  7. 20-HETE contributes to ischemia-induced angiogenesis.

    PubMed

    Chen, Li; Joseph, Gregory; Zhang, Frank F; Nguyen, Huyen; Jiang, Houli; Gotlinger, Katherine H; Falck, John R; Yang, Jing; Schwartzman, Michal L; Guo, Austin M

    2016-08-01

    Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo. PMID:27084395

  8. Characterization of a chemoattractant for endothelium induced by angiogenesis effectors.

    PubMed

    Raju, K S; Alessandri, G; Gullino, P M

    1984-04-01

    The mechanism of neovascularization was further explored by the use of chemically defined angiogenesis effectors. The vascularization of the rabbit cornea was selected as an experimental approach that permits comparison of one cornea treated by the angiogenesis effector with the contralateral cornea of the same subject treated by the same molecule deprived of angiogenic capacity. Under these conditions, we observed that neovascularization was initiated by the appearance of a chemoattractant for the bovine capillary endothelium only in the cornea treated by the angiogenesis effector. The chemoattractant was purified about 150-fold by a single-step procedure, using gelatin:Sepharose affinity chromatography. Chemoattraction resulted from the combined effect of a chemotactic factor(s) and an activating factor(s). The association of the two enhanced 5- to 8-fold the motility of the capillary endothelium in a concentration-dependent manner with optimum at 0.2 mg/ml. The activating factor(s) does not have chemotactic capacity, but without it, chemotaxis is reduced to about one half. The chemotactic complex was present in the cornea regardless of the nature of the angiogenesis effector used as the triggering device. Heat and proteases eliminated chemotaxis and destroyed the chemotactic complex. Thus, neovascularization may be triggered by effectors able to induce in the cornea proteins, normally not present, that influence angiogenesis via mobilization of capillary endothelium. PMID:6200213

  9. Hybrid modeling of tumor-induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Capasso, V.; Alvaro, M.; Carretero, M.

    2014-12-01

    When modeling of tumor-driven angiogenesis, a major source of analytical and computational complexity is the strong coupling between the kinetic parameters of the relevant stochastic branching-and-growth of the capillary network, and the family of interacting underlying fields. To reduce this complexity, we take advantage of the system intrinsic multiscale structure: we describe the stochastic dynamics of the cells at the vessel tip at their natural mesoscale, whereas we describe the deterministic dynamics of the underlying fields at a larger macroscale. Here, we set up a conceptual stochastic model including branching, elongation, and anastomosis of vessels and derive a mean field approximation for their densities. This leads to a deterministic integropartial differential system that describes the formation of the stochastic vessel network. We discuss the proper capillary injecting boundary conditions and include the results of relevant numerical simulations.

  10. Loss of phospholipase D2 impairs VEGF-induced angiogenesis

    PubMed Central

    Lee, Chang Sup; Ghim, Jaewang; Song, Parkyong; Suh, Pann-Ghill; Ryu, Sung Ho

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells. [BMB Reports 2016; 49(3): 191-196] PMID:26818087

  11. Ischemia-induced Angiogenesis is Attenuated in Aged Rats.

    PubMed

    Tang, Yaohui; Wang, Liuqing; Wang, Jixian; Lin, Xiaojie; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2016-08-01

    To study whether focal angiogenesis is induced in aged rodents after permanent distal middle cerebral artery occlusion (MCAO), young adult (3-month-old) and aged (24-month-old) Fisher 344 rats underwent MCAO and sacrificed up to two months after MCAO. Immunohistochemistry and synchrotron radiation microangiography were performed to examine the number of newly formed blood vessels in both young adult and aged rats post-ischemia. We found that the number of capillaries and small arteries in aged brain was the same as young adult brain. In addition, we found that after MCAO, the number of blood vessels in the peri-infarct region of ipsilateral hemisphere in aged ischemic rats was significantly increased compared to the aged sham rats (p<0.05). We also confirmed that ischemia-induced focal angiogenesis occurred in young adult rat brain while the blood vessel density in young adult ischemic brain was significantly higher than that in the aged ischemic brain (p<0.05). Our data suggests that focal angiogenesis in aged rat brain can be induced in response to ischemic brain injury, and that aging impedes brain repairing and remodeling after ischemic stroke, possible due to the limited response of angiogenesis. PMID:27493831

  12. Fucoidan inhibits angiogenesis induced by multiple myeloma cells.

    PubMed

    Liu, Fen; Luo, Guoping; Xiao, Qing; Chen, Liping; Luo, Xiaohua; Lv, Jinglong; Chen, Lixue

    2016-10-01

    Multiple myeloma (MM) remains an incurable hematological neoplasms. Our previous studies showed that Fucoidan possessed anti-myeloma effect by inducing apoptosis and inhibiting invasion of myeloma cells. In this study, we evaluated the effect of Fucoidan on angiogenesis induced by human myeloma cells and elucidated its possible mechanisms. Multiple myeloma cells were treated with Fucoidan at different concentrations, then the conditioned medium (CM) was collected. The levels of VEGF in the CM were tested by ELISA. The results showed that Fucoidan significantly decreased VEGF secretion by RPMI-8226 and U266 cells. The tube formation assay and migration test on human umbilical vein endothelial cells (HUVECs) were used to examine the effect of Fucoidan on angiogenesis induced by human myeloma cells. The results showed that Fucoidan decreased HUVECs formed tube structures and inhibited HUVECs migration, and suppressed the angiogenic ability of multiple myeloma RPMI-8226 and U266 cells in a dose-dependent manner. The study also showed that Fucoidan downregulated the expression of several kinds of proteins, which may be correlated with the reduction of angiogenesis induced by myeloma cells. Moreover, results were compared from normoxic and hypoxic conditions, they showed that Fucoidan had anti-angiogenic activity. Furthermore, in a multiple myeloma xenograft mouse model, it indicated that Fucoidan negatively affected tumor growth and angiogenesis in vivo. In conclusion, our results demonstrate that Fucoidan was able to interfere with angiogenesis of multiple myeloma cells both in vitro and in vivo and may have a substantial potential in the treatment of MM.

  13. Enriched environment induces angiogenesis and improves neural function outcomes in rat stroke model.

    PubMed

    Yu, Kewei; Wu, Yi; Zhang, Qi; Xie, Hongyu; Liu, Gang; Guo, Zhenzhen; Li, Fang; Jia, Jie; Kuang, Shenyi; Hu, Ruiping

    2014-12-15

    Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury has neuroprotective benefits in animal models, including enhancing functional recovery after ischemic stroke. However, the mechanism underlying this effect remains unclear. To clarify this critical issue, the current study investigated the effects of EE on the improvement of damaged neural function and the induction of angiogenesis. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Neurological status scores were used to evaluate neural function on postoperative days 2, 7, and 14. A beam-walking task was used to test the recovery of motor behavior on postoperative days 2, 5, 10, and 15. We also used a Morris water maze task to examine whether EE protected learning and memory performance. The specific marker of angiogenesis of CD31 was examined by western blot. Angiogenesis around the peri-infarction region was assayed by laser scanning confocal microscopy (LSCM) after 14 days of EE exposure starting 24h after ischemia. Neurological status scores of animals in the EE group were significantly higher than those in the standard housing condition (SC) control group from the seventh day after ischemic. EE accelerated the recovery of motor coordination and integration and also improved learning and memory performance after cerebral ischemia. Furthermore, EE increased CD31 levels and promoted angiogenesis of cortex in the peri-infarction region compared to the SC group. Neural function outcomes are positively correlated with post-ischemia angiogenesis. These findings suggest that EE plays an important role in the recovery of damaged neural function via regulation of angiogenesis after ischemia. PMID:25455300

  14. Aspartame induces angiogenesis in vitro and in vivo models.

    PubMed

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.

  15. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  16. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin

    PubMed Central

    Li, Xing-qi; Ouyang, Zhi-gang; Zhang, Sheng-hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-su

    2014-01-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  17. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles.

    PubMed

    Kang, Kyeongah; Lim, Dae-Hyoun; Choi, In-Hong; Kang, Taegyeong; Lee, Kangtaek; Moon, Eun-Yi; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2011-09-10

    Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials due to their antibacterial properties. In this study, we examined the effects of polyvinylpyrrolidone (PVP)-coated AgNPs (average size 2.3nm) on angiogenesis in both an in vivo model and an in vitro endothelial cell line, SVEC4-10. Increased angiogenesis was detected around the injection site of AgNP-containing Matrigel in vivo. AgNPs also increased the infiltration of endothelial cells and the hemoglobin (Hb) content in AgNP-Matrigel plugs implanted into mice. AgNPs induced endothelial cell tube formation on growth factor-reduced Matrigel, production of reactive oxygen species (ROS), and production of angiogenic factors, such as vascular endothelial growth factor (VEGF) and nitric oxide (NO), in SVEC4-10 cells. In addition, AgNPs promoted the activation of FAK, Akt, ERK1/2, and p38, which are all involved in VEGF receptor (VEGFR)-mediated signaling. Finally, AgNP-treated tumors caused angiogenesis around tumors in B16F10 melanomas after they were injected into mice, and the Hb concentration in the tumors increased in a concentration-dependent manner with AgNP treatment. Thus, our study suggests that exposure to AgNPs can cause angiogenesis through the production of angiogenic factors.

  18. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    PubMed Central

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  19. Investigating the effect of excess caffeine exposure on placental angiogenesis using chicken 'functional' placental blood vessel network.

    PubMed

    Ma, Zheng-Lai; Wang, Guang; Lu, Wen-Hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-02-01

    It is now known that over-consumption of caffeine by pregnant mothers could have detrimental effects on normal fetal development. However, it remains obscure how caffeine's harmful effect impacts directly or indirectly on the developing embryo/fetus through damaging placenta development. In this study, we demonstrated the morphological similarities between the yolk sac and chorioallantoic membranes (CAM) of chick embryos and the villi of the mammalian placenta. Using the chick yolk sac and the CAM as a model, we found that 5-15 µmol per egg of caffeine exposure inhibited angiogenesis. Under the same condition, cell proliferation in extraembryonic mesoderm was reduced while apoptosis was enhanced. Semi-quantitative RT-PCR analysis revealed that caffeine treatment down-regulated VEGF, VEGFR2, PIGF, IGF2 and NRP1 expression, but up-regulated Ang1 and Ang2 expression. We performed in situ hybridization to show VE-cadherin expression and as to demonstrate the blood vessels in the CAM and yolk sac membranes. This distribution of the VE-cadherin(+) blood vessels was determined to be reduced after caffeine treatment. Furthermore, MDA activity was induced after caffeine exposure, but GSH-PX activity was inhibited after caffeine exposure; SOD activity was unchanged as compared with the control. In summary, our results suggest that caffeine exposure could negatively impact on angiogenesis in the chick yolk sac and CAM by targeting angiogenesis-related genes. Some of these genes are also involved in regulating excess ROS generation. The results implied that the negative impact of caffeine on fetal development was partly attributed to impaired placental angiogenesis.

  20. Chronic Arsenic Exposure and Angiogenesis in Human Bronchial Epithelial Cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway

    PubMed Central

    He, Jun; Wang, Min; Jiang, Yue; Chen, Qiudan; Xu, Shaohua; Xu, Qing; Jiang, Bing-Hua

    2014-01-01

    Background: Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. Objectives: We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. Methods: We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. Results: We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. Conclusion: The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. Citation: He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255–261; http://dx.doi.org/10.1289/ehp.1307545 PMID:24413338

  1. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF.

    PubMed

    Iyer, Anand Krishnan V; Ramesh, Vani; Castro, Carlos A; Kaushik, Vivek; Kulkarni, Yogesh M; Wright, Clayton A; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-11-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.

  2. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  3. Secretome from mesenchymal stem cells induces angiogenesis via Cyr61.

    PubMed

    Estrada, Rosendo; Li, Na; Sarojini, Harshini; An, Jin; Lee, Menq-Jer; Wang, Eugenia

    2009-06-01

    It is well known that bone marrow-derived mesenchymal stem cells (MSCs) are involved in wound healing and regeneration responses. In this study, we globally profiled the proteome of MSCs to investigate critical factor(s) that may promote wound healing. Cysteine-rich protein 61 (Cyr61) was found to be abundantly present in MSCs. The presence of Cyr61 was confirmed by immunofluorescence staining and immunoblot analysis. Moreover, we showed that Cyr61 is present in the culture medium (secretome) of MSCs. The secretome of MSCs stimulates angiogenic response in vitro, and neovascularization in vivo. Depletion of Cyr61 completely abrogates the angiogenic-inducing capability of the MSC secretome. Importantly, addition of recombinant Cyr61 polypeptides restores the angiogenic activity of Cyr61-depleted secretome. Collectively, these data demonstrate that Cyr61 polypeptide in MSC secretome contributes to the angiogenesis-promoting activity, a key event needed for regeneration and repair of injured tissues. J. Cell. Physiol. 219: 563-571, 2009. (c) 2009 Wiley-Liss, Inc.

  4. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    PubMed

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  5. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    SciTech Connect

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan; Deng, Pengchi; Lv, Lei; Wu, Dan; Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan; Cen, Xiaobo

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  6. Enhanced angiogenesis, hypoxia and neutrophil recruitment during Myc-induced liver tumorigenesis in zebrafish

    PubMed Central

    Zhao, Ye; Huang, Xiaoqian; Ding, Tony Weixi; Gong, Zhiyuan

    2016-01-01

    Angiogenesis, hypoxia and immune cells are important components in tumor microenvironment affecting tumor growth. Here we employed a zebrafish liver tumor model to investigate the effect of Myc expression on angiogenesis, hypoxia and tumor-infiltrated neutrophils during the tumor initiation stage. We found that induced Myc expression in the liver caused a dramatic increase of liver size with neoplastic features. The tumorigenic liver was accompanied by enhanced angiogenesis and inhibition of angiogenesis by an inhibitor (SU5416 or sunitinib) hindered the tumorigenic growth, suggesting an essential role of angiogenesis in tumorigenic growth of liver tumor in this zebrafish model. Myc induction also caused hypoxia, which could be further enhanced by hypoxia activator, ML228, to lead to a further enlargement of tumorigenic liver. Furthermore, Myc overexpression incurred an increase of liver-infiltrated neutrophils and the increase could be suppressed by angiogenesis inhibitors or by morpholino knockdown inhibition of neutrophil differentiation, leading to a suppression of growth of tumorigenic livers. Finally, the enhanced angiogenesis, hypoxia and tumor-infiltrated neutrophils by Myc overexpression were validated by RT-qPCR examination of expression of relevant biomarker genes. In sum, the current study demonstrated that the Myc-induced liver tumor model in zebrafish provides an excellent platform for study of tumor microenvironment. PMID:27549025

  7. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2S availability

    PubMed Central

    Terzuoli, E; Monti, M; Vellecco, V; Bucci, M; Cirino, G; Ziche, M; Morbidelli, L

    2015-01-01

    Background and Purpose Hydrogen sulfide (H2S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2S availability. Experimental Approach HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. Key Results Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP) channels, the molecular target that mediates part of the vascular functions of H2S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2S response to H2S and KATP activation. Conclusions and Implications Zofenoprilat induced a constant production of H2S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced. PMID:25631232

  8. Emodin inhibits HMGB1-induced tumor angiogenesis in human osteosarcoma by regulating SIRT1

    PubMed Central

    Qu, Wei; Wang, Yufei; Wu, Qining; Liu, Jijun; Hao, Dingjun

    2015-01-01

    The anti-cancer effects of emodin, including inhibition of proliferation, invasion, metastasis and angiogenesis, were confirmed by various previous studies. However, the specific mechanisms were not clear. In this study, we investigated emodin’s anti-angiogenesis effect and focused on the mechanisms in human osteosarcoma (OS). OS cells were implanted to nude mice to form OS xenografts. Immunofluorescence assay was used to assess vWF expression in tumor tissue. MTT assay was employed to screen proper emodin concentrations unrelated with proliferation inhibition. siRNA technique was utilized to silence SIRT1 expression in OS cells. Expression levels of SIRT1 and VEGF were investigated by real-time PCR and western blotting. H4-k16Ac expression which indicated the deacetylation activity of SIRT1 was also detected by western blotting. As in results, HMGB1 treatment exacerbated OS angiogenesis both in vivo and in vitro. Emodin administration attenuated angiogenesis in both OS and HMGB1 treated OS in vivo and in vitro. After emodin treatment, the expression level and deacetylation activity of SIRT1 were dramatically enhanced. HMGB1-induced angiogenesis was more striking in SIRT1 silenced OS cells. SIRT1 silencing also impaired the anti-angiogenesis effect of emodin in OS cells. In conclusion: SIRT expression and deacetylation activity elevation are involved in emodin’s anti-angiogenesis effect in human OS. PMID:26628989

  9. Photoperiod-induced differential expression of angiogenesis genes in testes of adult Peromyscus leucopus.

    PubMed

    Pyter, Leah M; Hotchkiss, Andrew K; Nelson, Randy J

    2005-02-01

    Non-pathological angiogenesis in adults is rare and is largely thought to be restricted to wound healing and female reproductive cycles. Adult male rodents, however, display seasonal angiogenesis to support seasonal changes in reproductive tissue morphology. Non-tropical rodents use photoperiod (day length) to determine the time of year. During short days, the reproductive system undergoes involution and mating behaviours stop, adaptations which presumably allow energy resources to be shifted to processes necessary for winter survival. We compared the patterns of gene expression involved in angiogenesis in testes of white-footed mice (Peromyscus leucopus) following 7, 14, 21 or 34 weeks of long or short day lengths. Short days decreased body mass, reproductive tract mass and seminiferous tubule diameter. Potential genes involved in seasonal angiogenesis were screened by hybridizing testicular RNA from each group to angiogenesis-specific microarrays. Genes that were > or =6-fold different between long- and short-day testes (i.e. hypoxia-inducible factor 1alpha(Hif1alpha), plasminogen activator inhibitor 1 (Serpine1), transforming growth factor beta receptor 3 (Tgfbetar3) and tumour necrosis factor (Tnf )) were sequenced and expression differences were compared throughout gonadal regression and recrudescence using quantitative RT-PCR. Our results suggest that short days trigger expression of Hif1alpha, Serpine1, and Tgfbetar3 to inhibit angiogenesis or promote apoptosis during testicular regression, and also trigger expression of Tnf to promote angiogenesis during testicular recrudescence.

  10. Lanthanide Hydroxide Nanoparticles Induce Angiogenesis via ROS-Sensitive Signaling.

    PubMed

    Zhao, Haishan; Osborne, Olivia J; Lin, Sijie; Ji, Zhaoxia; Damoiseux, Robert; Wang, Yuqiang; Nel, André E; Lin, Shuo

    2016-08-01

    Recent studies suggest that the nanorods consisting of europium hydroxide could promote angiogenesis. In this study, it is sought to determine if additional types of nanoparticles are capable of enhancing angiogenesis and in addition, understand the underlying mechanisms. For this reason, a method is employed that combines a high throughput in vitro cell based screen coupled with an in vivo validation using vascular specific green fluorescent protein reporter transgenic zebrafish for examining proangiogenesis activity. After screening multiple types of nanoparticles, it is discovered that four of them, Eu(III) (OH)3 rods (Eu rods), Eu(III) (OH)3 spheres (Eu spheres), Tb(III) (OH)3 rods (Tb rods), and Tb(III) (OH)3 spheres (Tb spheres), are the most effective in promoting angiogenesis. It is also showed that ionic forms of europium nitrate [Eu(NO3 )3 ] (Eu) and terbium nitrate [Tb(NO3 )3 ] (Tb), the two lanthanide elements for these four nanoparticles, are also capable of enhancing angiogenesis. However, this effect is further enhanced by nanoparticle synthesis. Finally, it is demonstrated that reactive oxygen species H2 O2 is a key factor in the process of proangiogenesis by lanthanide elemental nanoparticles. PMID:27383397

  11. Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis.

    PubMed

    Chang, Hyun-Kyung; Kim, Pyung-Hwan; Cho, Hyun-Min; Yum, Soo-Young; Choi, Young-Jin; Son, YeonSung; Lee, DaBin; Kang, InSung; Kang, Kyung-Sun; Jang, Goo; Cho, Je-Yoel

    2016-09-01

    Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3-5 minutes). Thus, continuous treatment with HGF is required to obtain an effective therapeutic response. To overcome these limitations, we produced genome-edited MSCs that secreted HGF upon drug-specific induction. The inducible HGF expression cassette was integrated into a safe harbor site in an MSC chromosome using the TALEN system, resulting in the production of TetOn-HGF/human umbilical cord blood-derived (hUCB)-MSCs. Functional assessment of the TetOn-HGF/hUCB-MSCs showed that they had enhanced mobility upon the induction of HGF expression. Moreover, long-term exposure by doxycycline (Dox)-treated TetOn-HGF/hUCB-MSCs enhanced the anti-apoptotic responses of genome-edited MSCs subjected to oxidative stress and improved the tube-formation ability. Furthermore, TetOn-HGF/hUCB-MSCs encapsulated by arginine-glycine-aspartic acid (RGD)-alginate microgel induced to express HGF improved in vivo angiogenesis in a mouse hindlimb ischemia model. This study showed that the inducible HGF-expressing hUCB-MSCs are competent to continuously express and secrete HGF in a controlled manner. Thus, the MSCs that express HGF in an inducible manner are a useful therapeutic modality for the treatment of vascular diseases requiring angiogenesis.

  12. Functional interaction between CTGF and FPRL1 regulates VEGF-A-induced angiogenesis.

    PubMed

    Lee, Mi-Sook; Ghim, Jaewang; Kim, Sun-Jin; Yun, Young Sung; Yoo, Seung-Ah; Suh, Pann-Ghill; Kim, Wan-Uk; Ryu, Sung Ho

    2015-07-01

    Vascular endothelial growth factor-A (VEGF-A) is a master regulator of angiogenesis that controls several angiogenic processes in endothelial cells. However, the detailed mechanisms of VEGF-A responsible for pleiotropic functions and crosstalk with other signaling pathways have not been fully understood. Here, we found that VEGF-A utilizes the connective tissue growth factor (CTGF)/formyl peptide receptor-like 1 (FPRL1) axis as one of its mediators in angiogenesis. Using a proteomic approach, we found increased secretion of a matricellular protein, CTGF, from VEGF-A-treated human umbilical vein endothelial cells (HUVECs). Then, we studied the effect of CTGF binding to FPRL1 in VEGF-A-induced angiogenesis. CTGF directly binds to FPRL1 through a linker region and activates the downstream signals of FPRL1, such as increase in extracellular signal-regulated kinase (ERK) phosphorylation and intracellular Ca(2+) concentration. We found that linker region-induced FPRL1 activation promotes the migration and network formation of HUVECs, while disruption of FPRL1 inhibits VEGF-A-induced HUVEC migration and network formation. In addition, similar results were observed by the chorioallantoic membrane (CAM) assay based evaluation of angiogenesis in vivo. To summarize, our data reveal a novel working model for VEGF-A-induced angiogenesis via the VEGF-A/CTGF/FPRL1 axis that might prolong and enhance the signals initiated from VEGF-A.

  13. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback

    PubMed Central

    Furin, Christoff G.; von Hippel, Frank A.; Postlethwait, John H.; Buck, C. Loren; Cresko, William A.; O’Hara, Todd M.

    2015-01-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100 mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios towards males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  14. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback.

    PubMed

    Furin, Christoff G; von Hippel, Frank A; Postlethwait, John H; Buck, C Loren; Cresko, William A; O'Hara, Todd M

    2015-08-01

    Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios toward males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms. PMID:25865142

  15. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    SciTech Connect

    Baek, Yi-Yong; Lee, Dong-Keon; So, Ju-Hoon; Kim, Cheol-Hee; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Won, Moo-Ho; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  16. Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis

    PubMed Central

    Haddad, Oualid; Guyot, Erwan; Marinval, Nicolas; Chevalier, Fabien; Maillard, Loïc; Gadi, Latifa; Laguillier-Morizot, Christelle; Oudar, Olivier; Sutton, Angela; Charnaux, Nathalie; Hlawaty, Hanna

    2015-01-01

    Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4), in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC) migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expression. Silencing EXT2 or HPSE leads to an increased expression of SDC-4, providing the evidence that EXT2 and HPSE regulate the SDC-4 expression. Altogether, these data indicate that EXT2, HPSE, and SDC-4 are involved in the proangiogenic effects of LMWF, suggesting that the HS metabolism changes linked to LMWF-induced angiogenesis offer the opportunity for new therapeutic strategies of ischemic diseases. PMID:26516869

  17. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle.

    PubMed

    Chinsomboon, Jessica; Ruas, Jorge; Gupta, Rana K; Thom, Robyn; Shoag, Jonathan; Rowe, Glenn C; Sawada, Naoki; Raghuram, Srilatha; Arany, Zoltan

    2009-12-15

    Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPARgamma coactivator (PGC)-1alpha is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1alpha mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1alpha in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1alpha from an alternate promoter. The induction of PGC-1alpha depended on beta-adrenergic signaling. beta-adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1alpha. The orphan nuclear receptor ERRalpha mediated the induction of VEGF by PGC-1alpha, and mice lacking ERRalpha also failed to increase vascular density after exercise. These data demonstrate that beta-adrenergic stimulation of a PGC-1alpha/ERRalpha/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.

  18. Inhibitory Effect of Endostar on Specific Angiogenesis Induced by Human Hepatocellular Carcinoma

    PubMed Central

    Ye, Qing; Qin, Shukui; Liu, Yanhong; Feng, Jundong; Wu, Qiong; Qu, Wenshu; Yin, Xiaojin

    2015-01-01

    To investigate the effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma, this research systematically elucidated the inhibitory effect on HepG2-induced angiogenesis by endostar from 50 ng/mL to 50000 ng/mL. We employed fluorescence quantitative Boyden chamber analysis, wound-healing assay, flow cytometry examination using a coculture system, quantitative analysis of tube formation, and in vivo Matrigel plug assay induced by HCC conditioned media (HCM) and HepG2 compared with normal hepatocyte conditioned media (NCM) and L02. Then, we found that endostar as a tumor angiogenesis inhibitor could potently inhibit human umbilical vein endothelial cell (HUVEC) migration in response to HCM after four- to six-hour action, inhibit HCM-induced HUVEC migration to the lesion part in a dose-dependent manner between 50 ng/mL and 5000 ng/mL at 24 hours, and reduce HUVEC proliferation in a dose-dependent fashion. Endostar inhibited HepG2-induced tube formation of HUVECs which peaked at 50 ng/mL. In vivo Matrigel plug formation was also significantly reduced by endostar in HepG2 inducing system rather than in L02 inducing system. It could be concluded that, at cell level, endostar inhibited the angiogenesis-related biological behaviors of HUVEC in response to HCC, including migration, adhesion proliferation, and tube formation. At animal level, endostar inhibited the angiogenesis in response to HCC in Matrigel matrix. PMID:25983751

  19. KR-31831, benzopyran derivative, inhibits VEGF-induced angiogenesis of HUVECs through suppressing KDR expression.

    PubMed

    Park, Shi-Young; Seo, Eun-Hee; Song, Hyun Seok; Jung, Seung-Youn; Lee, Young-Kyoung; Yi, Kyu-Yang; Yoo, Sung-Eun; Kim, Yung-Jin

    2008-06-01

    Angiogenesis is important in the development and progression of cancer, therefore the therapeutic approach based on anti-angiogenesis may represent a promising therapeutic option. KR-31831 is a novel anti-ischemic agent. Previously, we reported the anti-angiogenic activity of KR-31831. In the present study we investigated the molecular mechanisms underlying anti-angiogenic activity of KR-31831. We show that KR-31831 inhibits vascular endothelial growth factor (VEGF)-induced proliferation and tube formation via release of intracellular Ca2+ and phosphorylation of extra-cellular regulated kinase 1/2 (Erk 1/2) in human umbilical vein endothelial cells (HUVECs). Moreover, the expression of VEGF receptor 2 (VEGFR2, known as Flk-1 or KDR) was reduced by the treatment of KR-31831. These results suggest that KR-31831 may have inhibitory effects on tumor angiogenesis through down-regulation of KDR expression.

  20. Endometrial stem cells repair injured endometrium and induce angiogenesis via AKT and ERK pathways.

    PubMed

    Zhang, Yanling; Lin, Xiaona; Dai, Yongdong; Hu, Xiaoxiao; Zhu, Haiyan; Jiang, Yinshen; Zhang, Songying

    2016-11-01

    Intrauterine adhesions are common acquired endometrial syndromes secondary to endometrial injury, with limited effective therapies. Recently, several studies have reported that bone marrow stem cells (BMSCs) could repair injured endometrium in animal experiments. However, the role of stem cells in endometrial injury repair and its therapeutic mechanisms remain unclear. Here, we established mouse endometrial injury model and examined the benefit of human endometrial mesenchymal stem cells derived from menstrual blood (MenSCs) in restoration of injured endometrium. Injured endometrium exhibited significantly accelerated restoration at Day 7 after MenSCs transplantation, with increased endometrial thickness and microvessel density. Moreover, the fertility of mice with injured endometrium was improved, with higher conception rate (53.57% vs 14.29%, P = 0.014) and larger embryo number (3.1 ± 0.6 vs 0.9 ± 0.7, P = 0.030) in MenSCs group than control group, while no difference was found in undamaged horns between two groups. Conditioned medium from MenSCs (MenSCs-CM) could decrease H2O2-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and promote proliferation, migration and angiogenesis. Angiogenesis effect of MenSCs-CM was also confirmed in Matrigel plug assay in mice. Furthermore, we discovered that MenSCs-CM could activate AKT and ERK pathways and induce the overexpression of eNOS, VEGFA, VEGFR1, VEGFR2 and TIE2 in HUVECs, which are critical in MenSCs-CM-induced angiogenesis. Angiogenesis induced by MenSCs-CM could be reversed by inhibitors of AKT and/or ERK. Taken together, we concluded that MenSCs could restore injured endometrium and improve the fertility of the endometrial injury mice, which was partially attributed to angiogenesis induced by MenSCs. PMID:27486270

  1. Interleukin-19 induces angiogenesis in the absence of hypoxia by direct and indirect immune mechanisms.

    PubMed

    Kako, Farah; Gabunia, Khatuna; Ray, Mitali; Kelemen, Sheri E; England, Ross N; Kako, Bashar; Scalia, Rosario G; Autieri, Michael V

    2016-06-01

    Neovascularization and inflammation are independent biological processes but are linked in response to injury. The role of inflammation-dampening cytokines in the regulation of angiogenesis remains to be clarified. The purpose of this work was to test the hypothesis that IL-19 can induce angiogenesis in the absence of tissue hypoxia and to identify potential mechanisms. Using the aortic ring model of angiogenesis, we found significantly reduced sprouting capacity in aortic rings from IL-19(-/-) compared with wild-type mice. Using an in vivo assay, we found that IL-19(-/-) mice respond to vascular endothelial growth factor (VEGF) significantly less than wild-type mice and demonstrate decreased capillary formation in Matrigel plugs. IL-19 signals through the IL-20 receptor complex, and IL-19 induces IL-20 receptor subunit expression in aortic rings and cultured human vascular smooth muscle cells, but not endothelial cells, in a peroxisome proliferator-activated receptor-γ-dependent mechanism. IL-19 activates STAT3, and IL-19 angiogenic activity in aortic rings is STAT3-dependent. Using a quantitative RT-PCR screening assay, we determined that IL-19 has direct proangiogenic effects on aortic rings by inducing angiogenic gene expression. M2 macrophages participate in angiogenesis, and IL-19 has indirect angiogenic effects, as IL-19-stimulated bone marrow-derived macrophages secrete proangiogenic factors that induce greater sprouting of aortic rings than unstimulated controls. Using a quantitative RT-PCR screen, we determined that IL-19 induces expression of angiogenic cytokines in bone marrow-derived macrophages. Together, these data suggest that IL-19 can promote angiogenesis in the absence of hypoxia by at least two distinct mechanisms: 1) direct effects on vascular cells and 2) indirect effects by stimulation of macrophages. PMID:27053520

  2. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    PubMed

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  3. Redox signaling in vascular angiogenesis.

    PubMed

    Maulik, Nilanjana; Das, Dipak K

    2002-10-15

    Angiogenesis is thought to be regulated by several growth factors (EGF, TGF-alpha, beta-FGF, VEGF). Induction of these angiogenic factors is triggered by various stresses. For instance, tissue hypoxia exerts its pro-angiogenic action through various angiogenic factors, the most notable being vascular endothelial growth factor, which has been mainly associated with initiating the process of angiogenesis through the recruitment and proliferation of endothelial cells. Recently, reactive oxygen species (ROS) have been found to stimulate angiogenic response in the ischemic reperfused hearts. Short exposure to hypoxia/reoxygenation, either directly or indirectly, produces ROS that induce oxidative stress which is associated with angiogenesis or neovascularization. ROS can cause tissue injury in one hand and promote tissue repair in another hand by promoting angiogenesis. It thus appears that after causing injury to the cells, ROS promptly initiate the tissue repair process by triggering angiogenic response.

  4. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential

    PubMed Central

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S.; Bielenberg, Diane R.; D’Amato, Robert J.

    2015-01-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.—Adini, I., Adini, A., Bazinet, L., Watnick, R. S., Bielenberg, D. R., and D’Amato, R. J. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential. PMID:25406462

  5. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    SciTech Connect

    He, Yan-qing; Li, Yan; Wang, Xiao-yu; He, Xiao-dong; Jun, Li; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Ju; Wang, Li-jing; Yang, Xuesong

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  6. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo.

    PubMed

    Zimmerer, Rüdiger M; Matthiesen, Peter; Kreher, Fritjof; Kampmann, Andreas; Spalthoff, Simon; Jehn, Philipp; Bittermann, Gido; Gellrich, Nils-Claudius; Tavassol, Frank

    2016-03-01

    Tumor angiogenesis is essential for tumor growth and metastasis, and is regulated by a complex network of various types of cells, chemokines, and stimulating factors. In contrast to sprouting angiogenesis, tumor angiogenesis is also influenced by hypoxia, inflammation, and the attraction of bone-marrow-derived cells. Recently, cancer stem cells have been reported to mimic vascularization by differentiating into endothelial cells and inducing vessel formation. In this study, the influence of cancer stem cells on initial angiogenesis was evaluated for the metastatic melanoma cell line D10. Following flow cytometry, CD133+ and CD133- cells were isolated using magnetic cell separation and different cell fractions were transferred to porcine gelatin sponges, which were implanted into the dorsal skinfold chamber of immunocompromised mice. Angiogenesis was analyzed based on microvessel density over a 10-day period using in vivo fluorescence microscopy, and the results were verified using immunohistology. CD133+ D10 cells showed a significant induction of early angiogenesis in vivo, contrary to CD133- D10 cells, unsorted D10 cells, and negative control. Neovascularization was confirmed by visualizing endothelial cells by immunohistology using an anti-CD31 antibody. Because CD133+ cells are rare in clinical specimens and hardly amenable to functional assays, the D10 cell line provides a suitable model to study the angiogenic potential of putative cancer stem cells and the leukocyte-endothelial cell interaction in the dorsal skinfold chamber in vivo. This cancer stem cell model might be useful in the development and evaluation of therapeutic agents targeting tumors.

  7. Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer

    PubMed Central

    Nangia-Makker, Pratima; Wang, Yi; Raz, Tirza; Tait, Larry; Balan, Vitaly; Hogan, Victor; Raz, Avraham

    2012-01-01

    Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly responsible for tumor growth, angiogenesis and apoptosis resistance in mouse models. A functional polymorphism in galectin-3 gene, determining its susceptibility to cleavage by matrix metalloproteinases (MMPs)-2/-9 is related to racial disparity in breast cancer incidence in Asian and Caucasian women. The purpose of our study is to evaluate (i) if cleavage of galectin-3 could be related to angiogenesis during the progression of human breast cancer, (ii) the role of cleaved galectin-3 in induction of angiogenesis and (iii) determination of the galectin-3 domain responsible for induction of angiogenic response. Galectin-3 null breast cancer cells BT-459 were transfected with either cleavable full-length galectin-3 or its fragmented peptides. Chemotaxis, chemoinvasion, heterotypic aggregation, epithelial-endothelial cell interactions and angiogenesis were compared to noncleavable galectin-3. BT-549-H64 cells harboring cleavable galectin-3 exhibited increased chemotaxis, invasion and interactions with endothelial cells resulting in angiogenesis and 3D morphogenesis compared to BT-549-P64 cells harboring noncleavable galectin-3. BT-549-H64 cells induced increased migration and phosphorylation of focal adhesion kinase in migrating endothelial cells. Endothelial cells cocultured with BT-549 cells transfected with galectin-3 peptides indicate that amino acids 1–62 and 33–250 stimulate migration and morphogenesis of endothelial cells. Immunohistochemical analysis of blood vessel density and galectin-3 cleavage in a breast cancer progression tissue array support the in vitro findings. We conclude that the cleavage of the N terminus of galectin-3 followed by its release in the tumor microenvironment in part leads to breast cancer angiogenesis and progression. PMID:20162566

  8. Crocetin, a carotenoid derivative, inhibits VEGF-induced angiogenesis via suppression of p38 phosphorylation.

    PubMed

    Umigai, Naofumi; Tanaka, Junji; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2012-05-01

    We evaluated the protective effects of crocetin against angiogenesis induced by vascular endothelial growth factor (VEGF). Crocetin, the aglycone of crocin carotenoids, is found in saffron crocus (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). The effects of crocetin on VEGF-induced angiogenesis were examined by in vitro tube formation assays and following 14-day co-culture of human umbilical vein endothelial cells (HUVECs) and fibroblasts. The anti-angiogenic mechanism of crocetin was evaluated by examining its effects on VEGF-induced proliferation and migration of human retinal microvascular endothelial cells (HRMECs) and phosphorylation of p38. Vascular endothelial (VE)-cadherin, zonula occludens (ZO-1) and occludin, which are adherens and tight junction proteins, respectively, play a major role in the control of vascular permeability. Therefore, we tested effects of crocetin on adhesion molecule dissociation induced by VEGF. Crocetin significantly suppressed VEGF-induced tube formation by HUVECs and migration of HRMECs. It also significantly inhibited phosphorylation of p38 and protected VE-cadherin expression. These findings indicate that crocetin suppresses the VEGF-induced angiogenesis by inhibiting migration and that the inhibition of phosphorylated-p38 and protection of VE-cadherin expression may be involved in its underlying mechanism of action. PMID:22475394

  9. Mutant hypoxia inducible factor-1α improves angiogenesis and tissue perfusion in ischemic rabbit skeletal muscle.

    PubMed

    Li, Mingyan; Liu, Cheng; Bin, Jianping; Wang, Yuegang; Chen, Jianwei; Xiu, Jiancheng; Pei, Jingxian; Lai, Yanxian; Chen, Dongdong; Fan, Caixia; Xie, Jiajia; Tao, Yu; Wu, Pingsheng

    2011-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It regulates genes involved in angiogenesis, but is inactivated rapidly by normoxia. Ad-HIF-1α-Trip was constructed by transforming Pro402, Pro564, and Asn803 in HIF-1α to alanine in order to delay degradation and create a constitutive transcriptional activator. In this study, we investigated whether Ad-HIF-1α-Trip could induce functional mature angiogenesis and the possible mechanisms involved. We found that Ad-HIF-1α-Trip increased the expression of multiple angiogenic genes in cultured HMVEC-Ls, including VEGF, PLGF, PAI-1, and PDGF. In a rabbit model of acute hind limb ischemia, Ad-HIF-1α-Trip improved tissue perfusion and collateral vessels, as measured by contrast-enhanced ultrasound (CEU), CT angiography, and vascular casting. Ad-HIF-1α-Trip also produced more histologically identifiable capillaries, which were verified by immunostaining, compared with controls. Interestingly, inhibition of CBP/p300 by curcumin prevented HIF-1α from inducing the expression of several angiogenic genes. The present study suggests that Ad-HIF-1α-Trip can induce mature angiogenesis and improve tissue perfusion in ischemic rabbit skeletal muscle. CBP/p300, which interacts with the transactivation domains of HIF-1α, is important for HIF-1α-induced transcription of angiogenic genes. PMID:20937289

  10. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation.

    PubMed

    Park, So Youn; Lee, Sung Won; Kim, Hye Young; Lee, Won Suk; Hong, Ki Whan; Kim, Chi Dae

    2015-04-01

    High-mobility group box protein 1 (HMGB1), a nonhistone nuclear protein and a cytokine mediator, is implicated in the pathogenesis of rheumatoid arthritis (RA). Extracellular HMGB1 binds to its receptors and triggers downstream signal cascade leading to the perpetuation of synovitis and local tissue invasion. Here, we investigated a novel role of HMGB1 in regulating hypoxia-inducible factor (HIF)-1α to mediate angiogenesis in RA synovium. HIF-1α mRNA levels and activities in synovial fibroblasts from RA patients were enhanced by HMGB1. Pharmacological inhibition of TLR4 and NF-kappaB activation blocked the HMGB1-dependent upregulation of HIF-1α mRNA expression and its activity, suggesting the involvement of transcriptional regulation. HMGB1 stimulated expression of vascular endothelial growth factor (VEGF), and inhibition of HIF-1α attenuated HMGB1-induced VEGF. Conditioned media derived from HMGB1-stimulated synovial fibroblasts enhanced tube formation in human microvascular endothelial cells by upregulating HIF-1α. In the joint tissues of mice with collagen-induced arthritis, treatment with anti-HMGB1 neutralizing antibody prevented blood vessel formation in association with decreased expression of HIF-1α. These observations support the idea that increased HMGB1 induces an extension of inflamed synovium by accelerating angiogenesis in RA through enhancement of HIF-1α activation. Therefore, inhibition of HMGB1 could prove beneficial for the treatment of angiogenesis in RA. PMID:25545169

  11. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways.

    PubMed

    Meyer, Norbert; Akdis, Cezmi A

    2013-02-01

    Asthma is a chronic inflammatory disease of the airways characterized by structural airway changes, which are known as airway remodeling, including smooth muscle hypertrophy, goblet cell hyperplasia, subepithelial fibrosis, and angiogenesis. Vascular remodeling in asthmatic lungs results from increased angiogenesis, which is mainly mediated by vascular endothelial growth factor (VEGF). VEGF is a key regulator of blood vessel growth in the airways of asthma patients by promoting proliferation and differentiation of endothelial cells and inducing vascular leakage and permeability. In addition, VEGF induces allergic inflammation, enhances allergic sensitization, and has a role in Th2 type inflammatory responses. Specific inhibitors of VEGF and blockers of its receptors might be useful to control chronic airway inflammation and vascular remodeling, and might be a new therapeutic approach for chronic inflammatory airway disease like asthma.

  12. ATP-sensitive potassium channel activation induces angiogenesis in vitro and in vivo.

    PubMed

    Umaru, Bukar; Pyriochou, Anastasia; Kotsikoris, Vasileios; Papapetropoulos, Andreas; Topouzis, Stavros

    2015-07-01

    Intense research is conducted to identify new molecular mechanisms of angiogenesis. Previous studies have shown that the angiogenic effects of hydrogen sulfide (H2S) depend on the activation of ATP-sensitive potassium channels (KATP) and that C-type natriuretic peptide (CNP), which can act through KATP, promotes endothelial cell growth. We therefore investigated whether direct KATP activation induces angiogenic responses and whether it is required for the endothelial responses to CNP or vascular endothelial growth factor (VEGF). Chick chorioallantoic membrane (CAM) angiogenesis was similarly enhanced by the direct KATP channel activator 2-nicotinamidoethyl acetate (SG-209) and by CNP or VEGF. The KATP inhibitors glibenclamide and 5-hydroxydecanoate (5-HD) reduced basal and abolished CNP-induced CAM angiogenesis. In vitro, the direct KATP openers nicorandil and SG-209 and the polypeptides VEGF and CNP increased proliferation and migration in bEnd.3 mouse endothelial cells. In addition, VEGF and CNP induced cord-like formation on Matrigel by human umbilical vein endothelial cells (HUVECs). All these in vitro endothelial responses were effectively abrogated by glibenclamide or 5-HD. In HUVECs, a small-interfering RNA-mediated decrease in the expression of the inwardly rectifying potassium channel (Kir) 6.1 subunit impaired cell migration and network morphogenesis in response to either SG-209 or CNP. We conclude that 1) direct pharmacologic activation of KATP induces angiogenic effects in vitro and in vivo, 2) angiogenic responses to CNP and VEGF depend on KATP activation and require the expression of the Kir6.1 KATP subunit, and 3) KATP activation may underpin angiogenesis to a variety of vasoactive stimuli, including H2S, VEGF, and CNP. PMID:25977483

  13. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma.

    PubMed

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yanfei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-07-30

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment.

  14. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis.

    PubMed

    Tzeng, Huey-En; Chen, Po-Chun; Lin, Kai-Wei; Lin, Chih-Yang; Tsai, Chun-Hao; Han, Shao-Min; Teng, Chieh-Lin; Hwang, Wen-Li; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-07-01

    Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.

  15. Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice.

    PubMed

    Peng, Jia; Hui, Kang; Hao, Chen; Peng, Zhao; Gao, Qian Xing; Jin, Qi; Lei, Guo; Min, Jiang; Qi, Zhou; Bo, Chen; Dong, Qian Nian; Bing, Zhou Han; Jia, Xu You; Fu, Deng Lian

    2016-07-01

    It is known that type 1 diabetes (T1D) reduces bone mass and increases the risk for fragility fractures, an effect that has been largely ascribed to decreased bone formation. However, the potential role of decreased angiogenesis as a factor in osteogenesis reduction has not been extensively studied. Furthermore, there is controversy surrounding the effect of T1D on bone resorption. This study characterized bone microstructure, bone strength, and bone turnover of streptozotocin (STZ)-induced diabetic mice (T1D mice) and explored the role of angiogenesis in the pathogenesis of T1D-induced osteoporosis. Results demonstrate that T1D deteriorated trabecular microarchitecture and led to reduced bone strength. Furthermore, T1D mice showed reduced osteoblast number/bone surface (N.Ob/BS), mineral apposition rate, mineral surface/BS, and bone formation rate/BS, suggesting attenuated bone formation. Decreased angiogenesis was shown by a reduced number of blood vessels in the femur and decreased expression of platelet endothelial cell adhesion molecule (CD31), nerve growth factor, hypoxia-inducible factor-1α, and vascular endothelial growth factor was observed. On the other hand, reduced bone resorption, an effect that could lead to impaired osteogenesis, was demonstrated by lower osteoclast number/BS and decreased tartrate-resistant acid phosphatase and cathepsin K mRNA levels. Reduced number of osteoblasts and decreased expression of receptor activator for nuclear factor-κB ligand could be responsible for compromised bone resorption in T1D mice. In conclusion, T1D mice display reduced bone formation and bone resorption, suggesting decreased bone turnover. Furthermore, this study points to impairments in angiogenesis as a pivotal cause of decreased bone formation. PMID:27028715

  16. Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    PubMed Central

    Han, Ihn; Jung, Ji Hoon; Lee, Eun-Ok; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-01-01

    Background We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells. PMID:20808805

  17. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth.

    PubMed

    Yu, Xiaolan; Sha, Jingfeng; Xiang, Shao; Qin, Sanhai; Conrad, Patricia; Ghosh, Santosh K; Weinberg, Aaron; Ye, Fengchun

    2016-08-01

    Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional "knock-down" of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS. PMID:27294705

  18. Role of Moesin in Advanced Glycation End Products-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Wang, Qian; Fan, Aihui; Yuan, Yongjun; Chen, Lixian; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2016-01-01

    Disorders of angiogenesis are related to microangiopathies during the development of diabetic vascular complications, but the effect of advanced glycation end products (AGEs) on angiogenesis and the mechanism has not been completely unveiled. We previous demonstrated that moesin belonging to the ezrin-radixin-moesin (ERM) protein family protein played a critical role in AGE-induced hyper-permeability in human umbilical vein endothelial cells (HUVECs). Here, we investigated the impact of moesin on AGE-induced HUVEC proliferation, migration, and tubulogenesis. Silencing of moesin decreased cell motility and tube formation but not cell proliferation. It also attenuated cellular F-actin reassembly. Further, phosphorylation of threonine at the 558 amino acid residue (Thr 558) in moesin suppressed AGE-induced HUVEC proliferation, migration, and tube formation, while the activating mutation of moesin at Thr 558 enhanced HUVEC angiogenesis. Further, the inhibition of either RhoA activity by adenovirus or ROCK activation with inhibitor Y27632 decreased AGE-induced moesin phosphorylation and subsequently suppressed HUVEC angiogenesis. These results indicate that the Thr 558 phosphorylation in moesin mediates endothelial angiogenesis. AGEs promoted HUVEC angiogenesis by inducing moesin phosphorylation via RhoA/ROCK pathway. PMID:26956714

  19. Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Vilanova, Guillermo; Colominas, Ignasi; Gomez, Hector

    2014-03-01

    The growth of new vascular networks from pre-existing capillaries (angiogenesis) plays a pivotal role in tumor development. Mathematical modeling of tumor-induced angiogenesis may help understand the underlying biology of the process and provide new hypotheses for experimentation. Here, we couple an existing deterministic continuum theory with a discrete random walk, proposing a new model that accounts for chemotactic and haptotactic cellular migration. We propose an efficient numerical method to approximate the solution of the model. The accuracy, stability and effectiveness of our algorithms permitted us to perform large-scale three-dimensional simulations which, in contrast to two-dimensional calculations, show a topological complexity similar to that found in experiments. Finally, we use our model and simulations to investigate the role of haptotaxis and chemotaxis in the mobility of tip endothelial cells and its influence in the final vascular patterns.

  20. The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA

    PubMed Central

    Ding, Xiangya; Shen, Chenyou; Hu, Minmin; Zhu, Ying; Qin, Di; Lu, Hongmei; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun

    2016-01-01

    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3’ untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies. PMID:27128969

  1. miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart

    PubMed Central

    Li, Na; Hwangbo, Cheol; Jaba, Irina M.; Zhang, Jiasheng; Papangeli, Irinna; Han, Jinah; Mikush, Nicole; Larrivée, Bruno; Eichmann, Anne; Chun, Hyung J.; Young, Lawrence H.; Tirziu, Daniela

    2016-01-01

    Myocardial hypertrophy is an adaptive response to hemodynamic demands. Although angiogenesis is critical to support the increase in heart mass with matching blood supply, it may also promote a hypertrophic response. Previously, we showed that cardiac angiogenesis induced by placental growth factor (PlGF), promotes myocardial hypertrophy through the paracrine action of endothelium-derived NO, which triggers the degradation of regulator of G protein signaling 4 (RGS4) to activate the Akt/mTORC1 pathways in cardiomyocytes. Here, we investigated whether miRNAs contribute to the development of hypertrophic response associated with myocardial angiogenesis. We show that miR-182 is upregulated concurrently with the development of hypertrophy in PlGF mice, but not when hypertrophy was blocked by concomitant expression of PlGF and RGS4, or by PlGF expression in eNOS−/− mice. Anti-miR-182 treatment inhibits the hypertrophic response and prevents the Akt/mTORC1 activation in PlGF mice and NO-treated cardiomyocytes. miR-182 reduces the expression of Bcat2, Foxo3 and Adcy6 to regulate the hypertrophic response in PlGF mice. Particularly, depletion of Bcat2, identified as a new miR-182 target, promotes AktSer473/p70-S6KThr389 phosphorylation and cardiomyocyte hypertrophy. LV pressure overload did not upregulate miR-182. Thus, miR-182 is a novel target of endothelial-cardiomyocyte crosstalk and plays an important role in the angiogenesis induced-hypertrophic response. PMID:26888314

  2. miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart.

    PubMed

    Li, Na; Hwangbo, Cheol; Jaba, Irina M; Zhang, Jiasheng; Papangeli, Irinna; Han, Jinah; Mikush, Nicole; Larrivée, Bruno; Eichmann, Anne; Chun, Hyung J; Young, Lawrence H; Tirziu, Daniela

    2016-01-01

    Myocardial hypertrophy is an adaptive response to hemodynamic demands. Although angiogenesis is critical to support the increase in heart mass with matching blood supply, it may also promote a hypertrophic response. Previously, we showed that cardiac angiogenesis induced by placental growth factor (PlGF), promotes myocardial hypertrophy through the paracrine action of endothelium-derived NO, which triggers the degradation of regulator of G protein signaling 4 (RGS4) to activate the Akt/mTORC1 pathways in cardiomyocytes. Here, we investigated whether miRNAs contribute to the development of hypertrophic response associated with myocardial angiogenesis. We show that miR-182 is upregulated concurrently with the development of hypertrophy in PlGF mice, but not when hypertrophy was blocked by concomitant expression of PlGF and RGS4, or by PlGF expression in eNOS(-/-) mice. Anti-miR-182 treatment inhibits the hypertrophic response and prevents the Akt/mTORC1 activation in PlGF mice and NO-treated cardiomyocytes. miR-182 reduces the expression of Bcat2, Foxo3 and Adcy6 to regulate the hypertrophic response in PlGF mice. Particularly, depletion of Bcat2, identified as a new miR-182 target, promotes Akt(Ser473)/p70-S6K(Thr389) phosphorylation and cardiomyocyte hypertrophy. LV pressure overload did not upregulate miR-182. Thus, miR-182 is a novel target of endothelial-cardiomyocyte crosstalk and plays an important role in the angiogenesis induced-hypertrophic response. PMID:26888314

  3. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling.

    PubMed

    Zhao, Kai; Song, Xiuming; Huang, Yujie; Yao, Jing; Zhou, Mi; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2014-08-15

    Wogonin has been shown to have anti-angiogenesis and anti-tumor effects. However, whether wogonin inhibits LPS-induced tumor angiogenesis is not well known. In this study, we investigated the effect of wogonin on inhibiting LPS-induced tumor angiogenesis and further probed the underlying mechanisms. ELISA results revealed that wogonin could suppress LPS-induced VEGF secretion from tumor cells. Transwell assay, tube formation assay, rat aortic ring assay and CAM model were used to evaluate the effect of wogonin on angiogenesis induced by MCF-7 cell (treated with LPS) in vitro and in vivo. The inhibitory effect of wogonin on angiogenesis in LPS-treated MCF-7 cells was then confirmed by the above in vitro and in vivo assays. The study of the molecular mechanism showed that wogonin could suppress PI3K/Akt signaling activation. Moreover, wogonin inhibited nuclear translocation of NF-κB and its binding to DNA. The result of real-time PCR and luciferase reporter assay suggested that VEGF expression was down-regulated by wogonin primarily at the transcriptional level. IGF-1 and p65 expression plasmid were used to activate PI3K/Akt and NF-κB pathways, and to observe the effect of wogonin on the simualtion of PI3K/Akt/NF-κB signaling. Taken together, the result suggested that wogonin was a potent inhibitor of tumor angiogenesis and provided a new insight into the mechanisms of wogonin against cancer.

  4. Targeting galectin-1-induced angiogenesis mitigates the severity of endometriosis.

    PubMed

    Bastón, Juan I; Barañao, Rosa I; Ricci, Analía G; Bilotas, Mariela A; Olivares, Carla N; Singla, José J; Gonzalez, Alejandro M; Stupirski, Juan C; Croci, Diego O; Rabinovich, Gabriel A; Meresman, Gabriela F

    2014-11-01

    Endometriosis is characterized by the presence of endometrial tissue outside the uterus that causes severe pelvic pain and infertility in women of reproductive age. Although not completely understood, the pathophysiology of the disease involves chronic dysregulation of inflammatory and vascular signalling. In the quest for novel therapeutic targets, we investigated the involvement of galectin-1 (Gal-1), an endogenous glycan-binding protein endowed with both immunosuppressive and pro-angiogenic activities, in the pathophysiology of endometriotic lesions. Here we show that Gal-1 is selectively expressed in stromal and endothelial cells of human endometriotic lesions. Using an experimental endometriosis model induced in wild-type and Gal-1-deficient (Lgals1(-/-) ) mice, we showed that this lectin orchestrates the formation of vascular networks in endometriotic lesions in vivo, facilitating their ectopic growth independently of vascular endothelial growth factor (VEGF) and the keratinocyte-derived CXC-motif (CXC-KC) chemokine. Targeting Gal-1 using a specific neutralizing mAb reduced the size and vascularized area of endometriotic lesions within the peritoneal compartment. These results underline the essential role of Gal-1 during endometriosis and validate this lectin as a possible target for the treatment of disease.

  5. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis.

    PubMed Central

    Coughlin, C M; Salhany, K E; Wysocka, M; Aruga, E; Kurzawa, H; Chang, A E; Hunter, C A; Fox, J C; Trinchieri, G; Lee, W M

    1998-01-01

    The antitumor effect and mechanisms activated by murine IL-12 and IL-18, cytokines that induce IFN-gamma production, were studied using engineered SCK murine mammary carcinoma cells. In syngeneic A/J mice, SCK cells expressing mIL-12 or mIL-18 were less tumorigenic and formed tumors more slowly than control cells. Neither SCK.12 nor SCK.18 cells protected significantly against tumorigenesis by distant SCK cells. However, inoculation of the two cell types together synergistically protected 70% of mice from concurrently injected distant SCK cells and 30% of mice from SCK cells established 3 d earlier. Antibody neutralization studies revealed that the antitumor effects of secreted mIL-12 and mIL-18 required IFN-gamma. Interestingly, half the survivors of SCK.12 and/or SCK.18 cells developed protective immunity suggesting that anti-SCK immunity is unlikely to be responsible for protection. Instead, angiogenesis inhibition, assayed by Matrigel implants, appeared to be a property of both SCK.12 and SCK.18 cells and the two cell types together produced significantly greater systemic inhibition of angiogenesis. This suggests that inhibition of tumor angiogenesis is an important part of the systemic antitumor effect produced by mIL-12 and mIL-18. PMID:9502787

  6. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31

    PubMed Central

    Kang, Ting; Jones, Tia M.; Naddell, Clayton; Bacanamwo, Methode; Calvert, John W.; Thompson, Winston E.; Bond, Vincent C.; Chen, Y. Eugene

    2016-01-01

    Cell secretion is an important mechanism for stem cell-based therapeutic angiogenesis, along with cell differentiation to vascular endothelial cells or smooth muscle cells. Cell-released microvesicles (MVs) have been recently implicated to play an essential role in intercellular communication. The purpose of this study was to explore the potential effects of stem cell-released MVs in proangiogenic therapy. We observed for the first time that MVs were released from adipose-derived stem cells (ASCs) and were able to increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs). Endothelial differentiation medium (EDM) preconditioning of ASCs upregulated the release of MVs and enhanced the angiogenic effect of the released MVs in vitro. RNA analysis revealed that microRNA was enriched in ASC-released MVs and that the level of microRNA-31 (miR-31) in MVs was notably elevated upon EDM-preconditioning of MV-donor ASCs. Further studies exhibited that miR-31 in MVs contributed to the migration and tube formation of HUVECs, microvessel outgrowth of mouse aortic rings, and vascular formation of mouse Matrigel plugs. Moreover, factor-inhibiting HIF-1, an antiangiogenic gene, was identified as the target of miR-31 in HUVECs. Our findings provide the first evidence that MVs from ASCs, particularly from EDM-preconditioned ASCs, promote angiogenesis and the delivery of miR-31 may contribute the proangiogenic effect. Significance This study provides the evidence that microvesicles (MVs) from adipose-derived stem cells (ASCs), particularly from endothelial differentiation medium (EDM)-preconditioned ASCs, promote angiogenesis. An underlying mechanism of the proangiogenesis may be the delivery of microRNA-31 via MVs from ASCs to vascular endothelial cells in which factor-inhibiting HIF-1 is targeted and suppressed. The study findings reveal the role of MVs in mediating ASC-induced angiogenesis and suggest a potential MV-based angiogenic therapy for

  7. The hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis

    PubMed Central

    2013-01-01

    Background Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant’s hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant’s roots in animal models of inflammation-induced angiogenesis. Methods We first performed phytochemical screening and high-performance liquid chromatography (HPLC) fingerprinting of the hexane fraction of Ardisia crispa roots ethanolic extract (ACRH) and its quinone-rich fraction (QRF). The anti-inflammatory properties of ACRH and QRF were tested using the Miles vascular permeability assay and the murine air pouch granuloma model following oral administration at various doses. Results Preliminary phytochemical screening of ACRH revealed the presence of flavonoids, triterpenes, and tannins. The QRF was separated from ACRH (38.38% w/w) by column chromatography, and was isolated to yield a benzoquinonoid compound. The ACRH and QRF were quantified by HPLC. The LD50 value of ACRH was 617.02 mg/kg. In the Miles vascular permeability assay, the lowest dose of ACRH (10 mg/kg) and all doses of QRF significantly reduced vascular endothelial growth factor (VEGF)-induced hyperpermeability, when compared with the vehicle control. In the murine air pouch granuloma model, ACRH and QRF both displayed significant and dose-dependent anti-inflammatory effects, without granuloma weight. ACRH and QRF significantly reduced the vascular index, but not granuloma tissue weight. Conclusions In conclusion, both ACRH and QRF showed potential anti-inflammatory properties in a model of inflammation-induced angiogenesis model, demonstrating their potential anti-angiogenic properties. PMID:23298265

  8. Thymidine phosphorylase induces angiogenesis in vivo and in vitro: an evaluation of possible mechanisms

    PubMed Central

    Sengupta, Shiladitya; Sellers, Lynda A; Matheson, Hugh B; Fan, Tai-Ping D

    2003-01-01

    Thymidine phosphorylase (TP) is elevated in the plasma of cancer patients, and has been implicated in pathophysiological angiogenesis. However, the downstream signals underlying this implication remain obscure. The purpose of the present study was to examine the effects of TP on the neovascularisation response in vitro and in vivo. Both TP and its catalytic product, 2-deoxy-D-ribose-1-phosphate, and downstream 2-deoxy-D-ribose (2-DDR) promoted endothelial tubulogenesis in vitro, and the regeneration of a wounded monolayer of endothelial cells without exerting any mitogenic effect. In vivo, both TP and 2-DDR promoted the development of functional vasculature into an avascular sponge. A TP inhibitor, 6-amino-5-chlorouracil, was able to partially reverse the effects of TP, but had no effect on the 2-DDR-induced angiogenesis. Enhanced monolayer regeneration was observed with TP-cDNA-transfected bladder carcinoma cells. The transfection of TP-cDNA, however, did not confer any proliferative advantage. The regeneration of TP overexpressing cells was associated with a time-dependent expression of the enzyme haeme-oxygenase (HO-1). The present study demonstrates that both TP and its ribose-sugar metabolites induce angiogenesis by mediating a cohesive interplay between carcinoma and endothelial cells. The induction of HO-1 in TP-transfected cells suggests that it could be a possible downstream signal for the angiogenic effects of TP. Furthermore, reducing sugars have been shown to induce oxidative stress, and ribose could be a possible cause for the upregulation of HO-1, which has been implicated in the release of angiogenic factors. Therefore, we postulate that 2-DDR could be mediating the angiogenic effects of TP possibly through an oxidative stress mechanism and additionally getting integrated in the endothelial metabolic machinery. PMID:12770927

  9. Platelet activating factor produced in vitro by Kaposi's sarcoma cells induces and sustains in vivo angiogenesis.

    PubMed Central

    Bussolino, F; Arese, M; Montrucchio, G; Barra, L; Primo, L; Benelli, R; Sanavio, F; Aglietta, M; Ghigo, D; Rola-Pleszczynski, M R

    1995-01-01

    Imbalance in the network of soluble mediators may play a pivotal role in the pathogenesis of Kaposi's sarcoma (KS). In this study, we demonstrated that KS cells grown in vitro produced and in part released platelet activating factor (PAF), a powerful lipid mediator of inflammation and cell-to-cell communication. IL-1, TNF, and thrombin enhanced the synthesis of PAF. PAF receptor mRNA and specific, high affinity binding site for PAF were present in KS cells. Nanomolar concentration of PAF stimulated the chemotaxis and chemokinesis of KS cells, endothelial cells, and vascular smooth muscle cells. The migration response to PAF was inhibited by WEB 2170, a hetrazepinoic PAF receptor antagonist. Because neoangiogenesis is essential for the growth and progression of KS and since PAF can activate vascular endothelial cells, we examined the potential role of PAF as an instrumental mediator of angiogenesis associated with KS. Conditioned medium (CM) from KS cells (KS-CM) or KS cells themselves induced angiogenesis and macrophage recruitment in a murine model in which Matrigel was injected subcutaneously. These effects were inhibited by treating mice with WEB 2170. Synthetic PAF or natural PAF extracted from plasma of patients with classical KS also induced angiogenesis, which in turn was inhibited by WEB 2170. The action of PAF was amplified by expression of other angiogenic factors and chemokines: these included basic and acidic fibroblast growth factor, placental growth factor, vascular endothelial growth factor and its specific receptor flk-1, hepatocyte growth factor, KC, and macrophage inflammatory protein-2. Treatment with WEB 2170 abolished the expression of the transcripts of these molecules within Matrigel containing KS-CM. These results indicate that PAF may cooperate with other angiogenic molecules and chemokines in inducing vascular development in KS. Images PMID:7543496

  10. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis

    PubMed Central

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2014-01-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatical crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation, and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was 2.4-fold increase than that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed than in the controls

  11. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  12. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  13. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    SciTech Connect

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  14. Elevated Slit2 Activity Impairs VEGF-induced Angiogenesis and Tumor Neovascularization in EphA2-deficient Endothelium

    PubMed Central

    Youngblood, Victoria; Wang, Shan; Song, Wenqiang; Walter, Debra; Hwang, Yoonha; Chen, Jin; Brantley-Sieders, Dana M.

    2015-01-01

    Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate pro-angiogenic molecules while simultaneously suppressing angiostatic pathways in order to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit pro- and anti-angiogenic signals is a key step in developing new, molecularly targeted anti-angiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for vascular endothelial growth factor (VEGF)-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. PMID:25504371

  15. Solena amplexicaulis induces cell cycle arrest, apoptosis and inhibits angiogenesis in hepatocarcinoma cells and HUVECs.

    PubMed

    Ren, Jie; Xu, Yuan Yuan; Jiang, He Fei; Yang, Meng; Huang, Qian Hui; Yang, Jie; Hu, Kun; Wei, Kun

    2014-01-01

    Solena amplexicaulis (Lam.) Gandhi (SA) has been used as a traditional medicine for the treatment of dysentery, multiple abscess, gastralgia, urethritis, and eczema in the minority area of China. This study was aimed to examine the cell proliferation inhibitory activity of the SA extract (SACE) and its mechanism of action in human hepatoma cell line (HepG2) and evaluate its anti-angiogenesis activity in human umbilical vein endothelial cell line (HUVEC). SACE could inhibit the growth of HepG2 cells in a dose- and time-dependent manner. FCM analysis showed that SACE could induce G2/M phase arrest, cell apoptosis, the mitochondrial membrane potential loss (ΔΨm) and increase the production of intracellular ROS of HepG2 cells. After treatment with SACE, topical morphological changes of apoptotic body formation, obvious increase of apoptosis-related protein expressions, such as Bax, cytochrome c, caspase-3, PARP-1, and decrease of Bcl-2, procaspase-9 protein expressions were observed at the same time. Moreover, SACE caused the significant inhibition of endothelial cell migration and tube formation in HUVEC cells. The results suggested that SACE could act as an angiogenesis inhibitor and induce cell apoptosis via a caspase-dependent mitochondrial pathway. Therefore, SACE could be a potent candidate for the prevention and treatment of liver cancer. PMID:25547924

  16. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    PubMed Central

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  17. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis

    PubMed Central

    1994-01-01

    Tumor necrosis factor (TNF) alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Therefore, it was suggested that the angiogenic properties of this agent might be consequent to the production of secondary mediators. Since TNF-alpha stimulates the synthesis of platelet-activating factor (PAF) by monocytes and endothelial cells, we investigated the possible involvement of PAF in the angiogenic effect of TNF-alpha. Angiogenesis was studied in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model the angiogenesis induced by TNF-alpha was shown to be inhibited by WEB 2170, a specific PAF receptor antagonist. Moreover, in mice injected with TNF-alpha, PAF was detected within the Matrigel, 6 and 24 h after TNF-alpha injection. The synthesis of PAF within the Matrigel was concomitant with the early migration of endothelial cells and infiltration of monocytes. No infiltration of lymphocytes or polymorphonuclear leukocytes was observed. Synthetic PAF as well as PAF extracted and purified from mice challenged with TNF-alpha induced a rapid angiogenic response, inhibited by WEB 2170. These results suggest that the angiogenic effect of TNF-alpha is, at least in part, mediated by PAF synthesized from monocytes and/or endothelial cells infiltrating the Matrigel plug. PMID:7516414

  18. Angiogenesis PET Tracer Uptake ((68)Ga-NODAGA-E[(cRGDyK)]₂) in Induced Myocardial Infarction in Minipigs.

    PubMed

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens; Brandt-Larsen, Malene; Madsen, Jacob; Emil Christensen, Thomas; Pharao Hammelev, Karsten; Hasbak, Philip; Kjær, Andreas

    2016-01-01

    Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ₃ integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. (68)Ga-NODAGA-E[c(RGDyK)]₂ (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ₃ integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by (82)Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment. PMID:27322329

  19. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK)]2) in Induced Myocardial Infarction in Minipigs

    PubMed Central

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens; Brandt-Larsen, Malene; Madsen, Jacob; Emil Christensen, Thomas; Pharao Hammelev, Karsten; Hasbak, Philip; Kjær, Andreas

    2016-01-01

    Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. 68Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment. PMID:27322329

  20. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  1. Compound C inhibits in vitro angiogenesis and ameliorates thrombin-induced endothelial barrier failure.

    PubMed

    Gündüz, Dursun; Klewer, Matthias; Bauer, Pascal; Tanislav, Christian; Sedding, Daniel; Rohrbach, Susanne; Schulz, Rainer; Aslam, Muhammad

    2015-12-01

    Compound C (comp. C) is a cell-permeable pyrrazolopyrimidine derivative and widely used as adenosine monophosphate-activated protein kinase (AMPK) inhibitor to characterise the role of AMPK in various physiological processes. However, its AMPK-independent effects have also been reported. In the present study we investigated the effects of moderate dose (1-10μM) comp. C on endothelial cell (EC) proliferation, in vitro angiogenesis, and endothelial barrier function. Comp. C was unable to inhibit AMPK phosphorylation (activation) induced by metformin and A-769662 in ECs even at concentration of 10μM. At lower concentration (1μM), comp. C inhibited and potentiated the inhibitory effects of metformin and A-769662 on EC proliferation, migration, tube formation, and sprouting without inducing apoptosis. However, at higher concentration (10μM), it strongly induced apoptosis as measured by enhanced caspase 3/7 activity. Moreover, comp. C antagonised thrombin-induced EC hyperpermeability accompanied by activation of Rac1 and strengthening of adherens junctions (AJs). This EC barrier protective effect was not affected by the presence of AMPK activators. The data of the present study demonstrate that long-term treatment of ECs with low concentration comp. C inhibits EC proliferation and angiogenesis without induction of apoptosis. While short-term incubation antagonises thrombin-induced EC hyperpermeability presumably via Rac1-dependent strengthening of AJs. Furthermore, higher concentration of comp. C (10μM or above) is toxic for ECs and warns that this agent should be used with caution to demonstrate the AMPK-mediated effects. PMID:26522925

  2. 7-Ketocholesterol Induces Inflammation and Angiogenesis In Vivo: A Novel Rat Model

    PubMed Central

    Amaral, Juan; Lee, Jung Wha; Chou, Joshua; Campos, Maria M.; Rodríguez, Ignacio R.

    2013-01-01

    Accumulation of 7-Ketocholesterol (7KCh) in lipid deposits has been implicated in a variety of chronic diseases including atherosclerosis, Alzheimer's disease and age-related macular degeneration. 7KCh is known to be pro-inflammatory and cytotoxic to various types of cultured cells but little is known about its effects in vivo. In this study we have investigated the effects of 7KCh in vivo by implanting biodegradable wafers into the anterior chamber of the rat eye. The wafers were prepared using a mixture of two biodegradable polymers with different amounts of 7KCh. The 7KCh-containing implants induced massive angiogenesis and inflammation. By contrast, no angiogenesis and very little inflammation were observed with cholesterol-containing implants. The neovessel growth was monitored by fluorescein angiography. Neovessels were observed 4 days post implantation and peaked between 7 to 10 days. The angiography and isolectin IB4 labeling demonstrated that the neovessels originated from the limbus and grew through the cornea. Immunolabeling with anti-CD68 suggested that the 7KCh-containing implants had extensive macrophage infiltration as well as other cell types. A significant increase in VEGF was also observed in 7KCh-containing implants by fluorescent immunolabeling and by immunoblot of the aqueous humor (AH). Direct measurement of VEGF, IL-1β and GRO/KC demonstrated a marked elevation of these factors in the AH of the 7KCh-implants. In summary this study demonstrates two important things: 1) 7KCh is pro-angiogenic and pro–inflammatory in vivo and 2) implants containing 7KCh may be used to create a novel angiogenesis model in rats. PMID:23409131

  3. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  4. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis.

    PubMed

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  5. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis

    PubMed Central

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  6. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    PubMed

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers.

  7. Inducible nitric oxide synthase-vascular endothelial growth factor axis: a potential target to inhibit tumor angiogenesis by dietary agents.

    PubMed

    Singh, Rana P; Agarwal, Rajesh

    2007-08-01

    Human solid tumors remain latent in the absence of angiogenesis since it is a critical process for their further growth and progression. Experimental evidence suggests that targeting tumor angiogenesis may be a novel strategy to check tumor growth and metastases. Recent studies suggest that several bioactive food components can suppress tumor growth by inhibiting angiogenesis. This suppression occurs because of a direct effect on the tumor, as well as a direct effect on vascular endothelial cells. These food components can target epigenetic processes and thereby suppress the pro-angiogenic tumor microenvironment. One likely epigenetic target is inducible nitric oxide synthase (iNOS). iNOS is known to regulate vascular endothelial growth factor (VEGF) expression, and thereby tumor angiogenesis. The ability of food components to influence the inducible form of cyclooxygenase, COX-2 may also contribute to their impact on tumor growth and angiogenesis. This review focuses on recent developments related to the angiogenic role of the iNOS-VEGF axis and how dietary components may target this axis. Overall, studies suggest that the anti-angiogenic potential of physiologically concentrations of relevant food components could be used as a practical approach for cancer prevention and intervention. PMID:17691907

  8. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis

    PubMed Central

    Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole

    2015-01-01

    One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137

  9. Effects of Benzo[a]pyrene Exposure on Human Hepatocellular Carcinoma Cell Angiogenesis, Metastasis, and NF-κB Signaling

    PubMed Central

    Ba, Qian; Li, Junyang; Huang, Chao; Qiu, Hongling; Li, Jingquan; Chu, Ruiai; Zhang, Wei; Xie, Dong

    2014-01-01

    Background Benzo[a]pyrene (B[a]P) is a common environmental and foodborne pollutant. Although the carcinogenicity of high-dose B[a]P has been extensively reported, the effects of long-term B[a]P exposure at lower environmental doses on cancer development are less understood. Objectives We investigated the impact of B[a]P on human hepatocellular carcinoma (HCC) progression at various levels of exposure and identified a potential intervention target. Methods We used a model based on human HCC cells exposed to various concentrations of B[a]P (i.e., 0.01, 1, or 100 nM) for 1 month to examine the effects of B[a]P on cell growth, migration, invasion, and angiogenicity. A bioluminescent murine model was established to assess tumor metastasis in vivo. Results Chronic B[a]P exposure did not alter HCC cell growth but promoted cell migration and invasion both in vitro and in vivo. There was an negative association between B[a]P exposure and the survival of tumor-bearing mice. In addition, B[a]P-treated HCC cells recruited vascular endothelial cells and promoted tumor angiogenesis, possibly through elevating vascular endothelial growth factor secretion. Furthermore, the NF-κB pathway may be an adverse outcome pathway associated with the cumulative effects of B[a]P on HCC metastasis. Conclusions These findings a) indicate that B[a]P has effects on HCC progression; b) identify a possible adverse outcome pathway; and c) contribute to a better understanding of the adverse effects of chronic exposure of B[a]P to human health. Citation Ba Q, Li J, Huang C, Qiu H, Li J, Chu R, Zhang W, Xie D, Wu Y, Wang H. 2015. Effects of benzo[a]pyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-κB signaling. Environ Health Perspect 123:246–254; http://dx.doi.org/10.1289/ehp.1408524 PMID:25325763

  10. Selective inhibition by magnosalin and magnoshinin, compounds from 'shin-i' (Flos magnoliae), of adjuvant-induced angiogenesis and granuloma formation in the mouse pouch.

    PubMed

    Kimura, M; Kobayashi, S; Luo, B; Kimura, I

    1990-01-01

    Inhibitory effects of magnosalin and magnoshinin, compounds from the crude drug 'Shin-i' (Flos magnoliae), on angiogenesis and pouch granuloma formation induced by an adjuvant containing croton oil were investigated. Magnosalin inhibited angiogenesis 2.4-fold (intra-pouch) and 9.7-fold (intraperitoneal) more strongly than granuloma formation. The inhibition of angiogenesis by magnosalin was 5-fold (intra-pouch) and 21-fold (intraperitoneal) weaker than that by hydrocortisone. In contrast, intraperitoneal magnoshinin inhibited granuloma formation 2.5-fold more strongly than angiogenesis. The regression coefficients of anti-angiogenesis vs. the inhibition of granuloma formation were 1.79 for magnosalin, 1.11 for hydrocortisone, and 0.61 for magnoshinin. These results show that the anti-chronic inflammatory effect of 'Shin-i' was caused by selective inhibition of angiogenesis by magnosalin and of granuloma formation by magnoshinin.

  11. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1.

    PubMed

    Tong, Xin; Mirzoeva, Salida; Veliceasa, Dorina; Bridgeman, Bryan B; Fitchev, Philip; Cornwell, Mona L; Crawford, Susan E; Pelling, Jill C; Volpert, Olga V

    2014-11-30

    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis. PMID:25526033

  12. Hydrogen peroxide formation and actin filament reorganization by Cdc42 are essential for ethanol-induced in vitro angiogenesis.

    PubMed

    Qian, Yong; Luo, Jia; Leonard, Stephen S; Harris, Gabriel K; Millecchia, Lyndell; Flynn, Daniel C; Shi, Xianglin

    2003-05-01

    This report focuses on the identification of the molecular mechanisms of ethanol-induced in vitro angiogenesis. The manipulation of angiogenesis is an important therapeutic approach for the treatment of cancer, cardiovascular diseases, and chronic inflammation. Our results showed that ethanol stimulation altered the integrity of actin filaments and increased the formation of lamellipodia and filopodia in SVEC4-10 cells. Further experiments demonstrated that ethanol stimulation increased cell migration and invasion and induced in vitro angiogenesis in SVEC4-10 cells. Mechanistically, ethanol stimulation activated Cdc42 and produced H(2)O(2) a reactive oxygen species intermediate in SVEC4-10 cells. Measuring the time course of Cdc42 activation and H(2)O(2) production upon ethanol stimulation revealed that the Cdc42 activation and the increase of H(2)O(2) lasted more than 3 h, which indicates the mechanisms of the long duration effects of ethanol on the cells. Furthermore, either overexpression of a constitutive dominant negative Cdc42 or inhibition of H(2)O(2) production abrogated the effects of ethanol on SVEC4-10 cells, indicating that both the activation of Cdc42 and the production of H(2)O(2) are essential for the actions of ethanol. Interestingly, we also found that overexpression of a constitutive dominant positive Cdc42 itself was sufficient to produce H(2)O(2) and to induce in vitro angiogenesis. Taken together, our results suggest that ethanol stimulation can induce H(2)O(2) production through the activation of Cdc42, which results in reorganizing actin filaments and increasing cell motility and in vitro angiogenesis. PMID:12598535

  13. A fibrin antibody binding to fibronectin induces potent inhibition of angiogenesis.

    PubMed

    El-Ayoubi, Fida; Amiral, Jean; Pascaud, Juliette; Charrin, Stéphanie; Tassel, Bénédicte; Uzan, Georges; Gurewich, Victor

    2015-01-01

    Antiserum from rabbits immunised with pure human fibrinogen was affinity purified on immobilised fibrin fragment E (FFE). This FFE antibody (Ab) induced significant growth inhibition of a human cancer xenograft in mice and suppression of tumour angiogenesis, leaving no formed vessels and only CD31-staining endothelial fragments in place. Tubule formation of HUVEC on MatrigelTM was also significantly inhibited by FFE Ab. Since MatrigelTM is fibrin-free, this effect implicated a different FFE Ab binding site than FFE. Flow cytometry of HUVEC showed that FFE Ab bound to HUVEC, but with a broad range of 55-98 %. Immunofluorescent staining of HUVEC explained this range, since FFE Ab was seen not to bind to human umbilical vein endothelial cells (HUVEC) directly but instead to a matrix protein variably adherent to HUVEC. This protein was identified as fibronectin (FN) by appearance, staining with FN Ab, and by a FN knockdown study. Neither HUVEC nor matrix reacted with fibrin D-dimer (DD) Ab. Immunofluorescent stains of HUVEC matrix with FFE and FN Ab's showed that these Ab's bound to the same epitopes on FN, as also seen on Western blots of purified FN. These findings indicate the presence of an antigenic determinant in fibrinogen/FFE that is homologous with an epitope(s) in FN recognised by FFE Ab, and critical for angiogenesis in this xenograft. The FN epitope(s) remains to be identified, but the present findings can be used for the selection of the appropriate clones from mice immunised with fibrinogen which can facilitate this identification, and which may also be of clinical use. PMID:25252851

  14. Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis.

    PubMed

    Cianchi, Fabio; Cortesini, Camillo; Fantappiè, Ornella; Messerini, Luca; Schiavone, Nicola; Vannacci, Alfredo; Nistri, Silvia; Sardi, Iacopo; Baroni, Gianna; Marzocca, Cosimo; Perna, Federico; Mazzanti, Roberto; Bechi, Paolo; Masini, Emanuela

    2003-03-01

    To investigate the potential involvement of the nitric oxide (NO) pathway in colorectal carcinogenesis, we correlated the expression and the activity of inducible nitric oxide synthase (iNOS) with the degree of tumor angiogenesis in human colorectal cancer. Tumor samples and adjacent normal mucosa were obtained from 46 surgical specimens. Immunohistochemical expression of iNOS, vascular endothelial growth factor (VEGF), and CD31 was analyzed on paraffin-embedded tissue sections. iNOS activity and cyclic GMP levels were assessed by specific biochemical assays. iNOS protein expression was determined by Western blot analysis. iNOS and VEGF mRNA levels were evaluated using Northern blot analysis. Both iNOS and VEGF expressions correlated significantly with intratumor microvessel density (r(s) = 0.31, P = 0.02 and r(s) = 0.67, P < 0.0001, respectively). A significant correlation was also found between iNOS and VEGF expression (P = 0.001). iNOS activity and cyclic GMP production were significantly higher in the cancer specimens than in the normal mucosa (P < 0.0001 and P < 0.0001, respectively), as well as in metastatic tumors than in nonmetastatic ones (P = 0.002 and P = 0.04, respectively). Western and Northern blot analyses confirmed the up-regulation of the iNOS protein and gene in the tumor specimens as compared with normal mucosa. NO seems to play a role in colorectal cancer growth by promoting tumor angiogenesis. PMID:12598314

  15. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  16. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    SciTech Connect

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  17. R-(-)-{beta}-O-methylsynephrine, a natural product, inhibits VEGF-induced angiogenesis in vitro and in vivo

    SciTech Connect

    Kim, Nam Hee; Pham, Ngoc Bich; Quinn, Ronald J.; Kwon, Ho Jeong

    2010-08-13

    Research highlights: {yields} R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is a natural compound isolated from a plant of the Rutaceae family. {yields} OMe-Syn possesses lead-like physicochemical properties, conferring good solubility. {yields} OMe-Syn effectively inhibited VEGF-induced angiogenesis in vitro and in vivo. {yields} OMe-Syn could be a novel basis for a small molecule targeting angiogenesis. -- Abstract: R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.

  18. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Rofstad, E K; Danielsen, T

    1999-01-01

    Tumour cells exposed to hypoxia have been shown to up-regulate the expression of vascular endothelial growth factor (VEGF). The purpose of the present work was to investigate whether hypoxia-induced VEGF up-regulation can result in increased metastatic efficiency of human melanoma cells. Two melanoma lines, one showing high (A-07) and the other showing low (D-12) VEGF secretion under aerobic conditions, were included in the study. Cell cultures were exposed to hypoxia (oxygen concentrations < 10 ppm) in vitro and metastatic efficiency, i.e. lung colonization efficiency, as well as transplantability and angiogenic potential were assessed in BALB/c-nu/nu mice. Both cell lines showed significantly increased VEGF secretion under hypoxic conditions as measured by enzyme-linked immunosorbent assay. The D-12 cells showed increased metastatic efficiency, transplantability and angiogenic potential following exposure to hypoxia. The metastatic efficiency increased with the duration of the hypoxia treatment and decreased with the time after reoxygenation. The A-07 cells on the other hand showed unchanged metastatic efficiency, transplantability and angiogenic potential following exposure to hypoxia. Both cell lines showed significantly decreased metastatic efficiency and angiogenic potential in mice treated with neutralizing antibody against VEGF. These results suggest that (a) VEGF is a limiting factor for the rate of angiogenesis in low but not in high VEGF-expressing melanomas under normoxic conditions and (b) transient hypoxia might promote the development of metastases in low VEGF-expressing melanomas by upregulating the expression of VEGF and hence enhancing the angiogenic potential of the tumour cells. © 1999 Cancer Research Campaign PMID:10468285

  19. Soliton driven angiogenesis

    PubMed Central

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-01-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562

  20. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  1. Soliton driven angiogenesis.

    PubMed

    Bonilla, L L; Carretero, M; Terragni, F; Birnir, B

    2016-01-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562

  2. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  3. Wogonin inhibits H2O2-induced angiogenesis via suppressing PI3K/Akt/NF-κB signaling pathway.

    PubMed

    Zhou, Mi; Song, Xiuming; Huang, Yujie; Wei, Libin; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2014-03-01

    Wogonin, a natural monoflavonoid extracted from Scutellariae radix, has been reported for its ability of inhibiting tumor angiogenesis. In this study, we assessed the effect of wogonin on angiogenesis induced by low level of H2O2 (10 μM) in human umbilical vein endothelial cells (HUVECs). Wogonin suppressed H2O2-induced migration and tube formation of HUVECs as well as microvessel sprouting from rat aortic rings in vitro. Meanwhile, wogonin suppressed vessel growth in chicken chorioallantoic membrane (CAM) model in vivo. Mechanistic studies showed that wogonin suppressed H2O2-activated PI3K/Akt pathway and reduced the expression of vascular endothelial growth factor (VEGF) up-regulated by H2O2 in both protein and mRNA levels. In addition, wogonin also inhibited nuclear translocation of NF-κB, and decreased the binding ability of NF-κB with exogenous consensus DNA oligonucleotide. Then we further investigated the effect of wogonin on over-activated PI3K/Akt pathway by insulin-like growth factor-1 (IGF-1) and H2O2. We found that wogonin suppressed phosphorylation of Akt, up-regulation of VEGF and angiogenesis in vitro which was further induced by IGF-1 and H2O2. Moreover, in NF-κB overexpressed HUVECs, wogonin could also reduce the expression of VEGF and inhibited the migration and tube formation. Taken together, these results suggested that wogonin was potential in inhibiting H2O2-induced angiogenesis in vitro and in vivo via suppressing PI3K/Akt pathway and NF-κB signaling.

  4. Oncolytic HSV-1 Infection of Tumors Induces Angiogenesis and Upregulates CYR61

    PubMed Central

    Kurozumi, Kazuhiko; Hardcastle, Jayson; Thakur, Roopa; Shroll, Joshua; Nowicki, Michal; Otsuki, Akihiro; Chiocca, E Antonio; Kaur, Balveen

    2009-01-01

    Oncolytic viral therapy is under evaluation for toxicity and efficacy in clinical trials relating to several different tumors. We report a significant increase in the angiogenic index of oncolytic virus (OV)-treated glioma-matrigel implants (2.83-fold, P < 0.02). In a rat intracranial glioma model, large tumors from OV-treated animals were significantly more angiogenic than the phosphate-buffered saline (PBS)-treated control tumors (OV: 101 ± 21.6; PBS: 19.8 ± 10; P = 0.0037). Transcript profiling of OV-treated tumors revealed dysregulation of several transcripts involved in glioma angiogenesis. OV-mediated induction of CYR61 gene expression (8.94-fold, P = 0.001) correlated significantly with the presence of OV in tumor tissue in vivo (R = 0.7, P < 0.001). Further, induction of CYR61 mRNA and protein were confirmed in multiple human cancer cell lines and primary human tumor-derived cells in vitro, and in tumor lysate and cerebrospinal fluid (CSF) in vivo. Finally, we show that treatment of glioma cells with Cilengitide, known to counter CYR61-induced integrin activation, significantly suppressed the proangiogenic effect of OV treatment of gliomas (P < 0.05). PMID:18545226

  5. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice

    PubMed Central

    Tirziu, Daniela; Chorianopoulos, Emmanuel; Moodie, Karen L.; Palac, Robert T.; Zhuang, Zhen W.; Tjwa, Marc; Roncal, Carmen; Eriksson, Ulf; Fu, Qiangwei; Elfenbein, Arye; Hall, Amy E.; Carmeliet, Peter; Moons, Lieve; Simons, Michael

    2007-01-01

    Although studies have suggested a role for angiogenesis in determining heart size during conditions demanding enhanced cardiac performance, the role of EC mass in determining the normal organ size is poorly understood. To explore the relationship between cardiac vasculature and normal heart size, we generated a transgenic mouse with a regulatable expression of the secreted angiogenic growth factor PR39 in cardiomyocytes. A significant change in adult mouse EC mass was apparent by 3 weeks following PR39 induction. Heart weight; cardiomyocyte size; vascular density normalization; upregulation of hypertrophy markers including atrial natriuretic factor, β-MHC, and GATA4; and activation of the Akt and MAP kinase pathways were observed at 6 weeks post-induction. Treatment of PR39-induced mice with the eNOS inhibitor l-NAME in the last 3 weeks of a 6-week stimulation period resulted in a significant suppression of heart growth and a reduction in hypertrophic marker expression. Injection of PR39 or another angiogenic growth factor, VEGF-B, into murine hearts during myocardial infarction led to induction of myocardial hypertrophy and restoration of myocardial function. Thus stimulation of vascular growth in normal adult mouse hearts leads to an increase in cardiac mass. PMID:17975666

  6. Quasi-induced exposure: methodology and insight.

    PubMed

    Stamatiadis, N; Deacon, J A

    1997-01-01

    Even though the numerator in accident rates can be accurately determined nowadays, the denominator of these rates is an item of discussion and debate within the highway safety community. A critical examination of an induced exposure technique, based on the non-responsible driver/vehicle of a two-vehicle accident (quasi-induced exposure), is presented here. Differences in exposure for a series of accident location and time combinations are investigated, the assumption of similarities between drivers of single-vehicle accidents and the responsible driver of multiple-vehicle accidents is refuted, and the use of the non-responsible driver as a measure of exposure is tested using vehicle classification data. The results of the analyses reveal the following: (1) accident exposure is different for different location and time combinations: (2) induced exposure estimates provide an accurate reflection of exposure to multiple-vehicle accidents; (3) induced exposure estimates are acceptable surrogates for vehicle miles of travel when estimates are made for conditions during which the mix of road users is fairly constant; and (4) the propensity for involvement in single-vehicle accidents is generally different than that in multiple-vehicle accidents for a given class of road users. We concluded that the quasi-induced exposure is a powerful technique for measuring relative exposure of drivers or vehicles when real exposure data are missing. PMID:9110039

  7. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-01

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  8. Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes

    PubMed Central

    Chien, Szu-Yu; Huang, Chun-Yin; Tsai, Chun-Hao; Wang, Shih-Wei

    2016-01-01

    Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis. PMID:26811540

  9. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis.

    PubMed

    Kim, Hye Young; Park, So Youn; Lee, Sung Won; Lee, Hye Rin; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2014-01-01

    High mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA) patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs) were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3-24 hr) by HMGB1, which was recovered by pretreatment with cilostazol (1-30 µM) or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day)-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.

  10. Inhibition of HMGB1-Induced Angiogenesis by Cilostazol via SIRT1 Activation in Synovial Fibroblasts from Rheumatoid Arthritis

    PubMed Central

    Lee, Sung Won; Lee, Hye Rin; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2014-01-01

    High mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA) patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs) were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3–24 hr) by HMGB1, which was recovered by pretreatment with cilostazol (1–30 µM) or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day)-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model. PMID:25126750

  11. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    SciTech Connect

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  12. Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling.

    PubMed

    Naghavi, Nadia; Hosseini, Farideh S; Sardarabadi, Mohammad; Kalani, Hadi

    2016-09-01

    In this paper, an adaptive model for tumor induced angiogenesis is developed that integrates generation and diffusion of a growth factor originated from hypoxic cells, adaptive sprouting from a parent vessel, blood flow and structural adaptation. The proposed adaptive sprout spacing model (ASS) determines position, time and number of sprouts which are activated from a parent vessel and also the developed vascular network is modified by a novel sprout branching prediction algorithm. This algorithm couples local vascular endothelial growth factor (VEGF) concentrations, stresses due to the blood flow and stochastic branching to the structural reactions of each vessel segment in response to mechanical and biochemical stimuli. The results provide predictions for the time-dependent development of the network structure, including the position and diameters of each segment and the resulting distributions of blood flow and VEGF. Considering time delays between sprout progressions and number of sprouts activated at different time durations provides information about micro-vessel density in the network. Resulting insights could be useful for motivating experimental investigations of vascular pattern in tumor induced angiogenesis and development of therapies targeting angiogenesis. PMID:27179697

  13. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.

    2007-10-01

    A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  14. Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling

    PubMed Central

    Rafiee, Parvaneh; Heidemann, Jan; Ogawa, Hitoshi; Johnson, Nathan A; Fisher, Pamela J; Li, Mona S; Otterson, Mary F; Johnson, Christopher P; Binion, David G

    2004-01-01

    The immunosuppressive agent cyclosporin A (CsA), a calcineurin inhibitor which blocks T cell activation has provided the pharmacologic foundation for organ transplantation. CsA exerts additional effects on non-immune cell populations and may adversely effect microvascular endothelial cells, contributing to chronic rejection, a long-term clinical complication and significant cause of mortality in solid-organ transplants, including patients with small bowel allografts. Growth of new blood vessels, or angiogenesis, is a critical homeostatic mechanism in organs and tissues, and regulates vascular populations in response to physiologic requirements. We hypothesized that CsA would inhibit the angiogenic capacity of human gut microvessels. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were used to evaluate CsA's effect on four in vitro measures of angiogenesis, including endothelial stress fiber assembly, migration, proliferation and tube formation, in response to the endothelial growth factor VEGF. We characterized the effect of CsA on intracellular signaling mechanisms following VEGF stimulation. CsA affected all VEGF induced angiogenic events assessed in HIMEC. CsA differentially inhibited signaling pathways which mediated distinct steps of the angiogenic process. CsA blocked VEGF induced nuclear translocation of the transcription factor NFAT, activation of p44/42 MAPK, and partially inhibited JNK and p38 MAPK. CsA differentially affected signaling cascades in a dose dependent fashion and completely blocked expression of COX-2, which was integrally linked to HIMEC angiogenesis. These data suggest that CsA inhibits the ability of microvascular endothelial cells to undergo angiogenesis, impairing vascular homeostatic mechanisms and contributing to the vasculopathy associated with chronic rejection. PMID:15175101

  15. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1.

    PubMed

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  16. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1

    PubMed Central

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L.; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  17. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential.

    PubMed

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S; Bielenberg, Diane R; D'Amato, Robert J

    2015-02-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.

  18. Hsp90 inhibitor celastrol reinstates growth plate angiogenesis in thiram-induced tibial dyschondroplasia.

    PubMed

    Nabi, Fazul; Shahzad, Muhammad; Liu, Jingying; Li, Kun; Han, Zhaoqing; Zhang, Ding; Iqbal, Muhammad Kashif; Li, Jiakui

    2016-01-01

    Tibial dyschondroplasia (TD) is an important long bone defect of broiler chickens that disturbs the proximal growth plate and is characterized by non-vascularized cartilage, a distended growth plate and lameness. Celastrol, a medicinal root extract from the plant Tripterygium wilfordii, is reported widely as a well-known heat-shock protein 90 (Hsp90) inhibitor. Recently, Hsp90 inhibition in chondrocyte differentiation and growth-plate vascularization were effective in restoring the morphology of the growth plate. The present study was aimed at investigating Hsp90 inhibition in TD using celastrol. The broiler chicks were divided into three groups; Control; TD induced (40 mg/kg thiram) and celastrol treatment. Hsp90, vascular endothelial growth factor and Flk-1 expressions were evaluated by quantitative real-time polymerase chain reaction and the protein levels of Hsp90 were measured by Western blot analysis. Antioxidant enzymes were determined to assess the liver damage caused by thiram and the protective effects of the medicine were evaluated by levels of serum biomarkers. The expression levels of Hsp90 and vascular endothelial growth factor mRNA transcripts were increased while Flk-1 receptor was decreased in TD-affected chicks. Celastrol therapy inhibited Hsp90 mRNA and protein levels and up-regulated the expressions of receptor Flk-1 in TD-affected tibial growth plates significantly (P < 0.05) in addition to rectifying the damaging effects of thiram on the liver by decreasing the levels of aspartate aminotransferase, alanine aminotransferase and malondialdehyde and correcting the oxidative imbalance. In conclusion, administering celastrol to dyschondroplastic chicks prevented un-vascularized growth plate, lameness and reinstated angiogenesis. Celastrol may be efficacious for the treatment of TD through the inhibition of Hsp90 expression and limiting the liver damage caused by thiram in broiler chickens.

  19. Paris saponin II inhibits human ovarian cancer cell-induced angiogenesis by modulating NF-κB signaling.

    PubMed

    Yang, Mei; Zou, Juan; Zhu, Hongmei; Liu, Shanling; Wang, He; Bai, Peng; Xiao, Xue

    2015-05-01

    The clinical applications of Rhizoma paridis in traditional Chinese medicine are well known. However, the therapeutic potential of Rhizoma paridis and its active component such as Paris saponin I (polyphyllin D) and Paris saponin II (PSII) (formosanin C) in cancer treatments have not yet been fully explored. Recent studies have demonstrated that PSII and chemoagents exhibit comparable inhibitory affects against human ovarian cancer cell growth. Since NF-κB, a ubiquitous transcription factor that plays an important role in cancer biology, is often associated with gynecological cancers, in the present study, we evaluated the possibility that PSII modulates NF-κB activity and VEGF-mediated angiogenesis and elucidated the molecular mechanisms underlying such effects. We assessed the effects of PSII on NF-κB activity in SKOV3 tumor cells and on tumor cell induced-angiogenesis using standardized angiogenesis in vitro, ex vivo and in vivo assays, western blot analysis and kinase assay. We also assessed the effect of the super-engineered repressor of IĸBα and its effect, in combination with PSII treatment on tumor growth and angiogenesis in xenograft athymic mouse models of ovarian cancer (SKOV3 and SKOV3/mutant IĸBα cells) using color Doppler ultrasound and traditional immunohistochemistry. We showed that PSII suppressed NF-κB activation as a result of the reduction in IKKβ kinase activity on its substrate IκBα and the expression of IKKβ. Compromising NF-κB activation reduced the expression of NF-κB-downstream targets such as VEGF, Bcl-2 and Bcl-xL. Such inhibitory effects at molecular levels appear to compromise tumor growth and angiogenesis. Most importantly, the combination of PSII treatment and constitutive repression of IĸBα activity exhibited marked inhibitory effects against human ovarian cancer cell growth in a xenograft mouse model of ovarian cancer. For the first time, we provide evidence showing that PSII potently inhibits angiogenesis

  20. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    SciTech Connect

    Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying; Yue, Patrick Ying-Kit; Wong, Ricky Ngok-Shun

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  1. Congenic strains reveal the effect of the renin gene on skeletal muscle angiogenesis induced by electrical stimulation.

    PubMed

    de Resende, Micheline M; Amaral, Sandra L; Moreno, Carol; Greene, Andrew S

    2008-03-14

    Previous studies have indicated the importance of angiotensin II (ANG II) in skeletal muscle angiogenesis. The present study explored the effect of regulation of the renin gene on angiogenesis induced by electrical stimulation with the use of physiological, pharmacological, and genetic manipulations of the renin-angiotensin system (RAS). Transfer of the entire chromosome 13, containing the physiologically regulated renin gene, from the normotensive inbred Brown Norway (BN) rat into the background of an inbred substrain of the Dahl salt-sensitive (SS/Mcwi) rat restored renin levels and the angiogenic response after electrical stimulation. This restored response was significantly attenuated when SS-13(BN)/Mcwi consomic rats were treated with lisinopril or high-salt diet. The role of ANG II on this effect was confirmed by the complete restoration of skeletal muscle angiogenesis in SS/Mcwi rats infused with subpressor doses of ANG II. Congenic strains derived from the SS-13(BN)/Mcwi consomic were used to further verify the role of the renin gene in this response. Microvessel density was markedly increased after stimulation in congenic strains that contained the renin gene from the BN rat (congenic lines A and D). This angiogenic response was suppressed in control strains that carried regions of the BN genome just above (congenic line C) or just below (congenic line B) the renin gene. The present study emphasizes the importance of maintaining normal renin regulation as well as ANG II levels during the angiogenesis process with a combination of physiological, genetic, and pharmacological manipulation of the RAS. PMID:18198281

  2. Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells.

    PubMed

    Wang, Yingyi; Yan, Wei; Lu, Xiaoming; Qian, Chunfa; Zhang, Junxia; Li, Ping; Shi, Lei; Zhao, Peng; Fu, Zhen; Pu, Peiyu; Kang, Chunshen; Jiang, Tao; Liu, Ning; You, Yongping

    2011-08-01

    Angiogenesis, a hallmark of tumor growth, is regulated by various angiogenic factors. Recent studies have shown that osteopontin (OPN) is a secreted, integrin-binding protein that contributes to glioma progression. However, its effect on the angiogenesis of gliomas is not fully understood. To elucidate the role of OPN in the process of glioma angiogenesis, endothelial progenitor cells (EPCs) were treated with conditioned media of human glioma SHG44 cells overexpressing OPN. Here, we identified that OPN secreted by glioma cells accelerated EPCs angiogenesis in vitro, including proliferation, migration, and tube formation. OPN also induced the activation of AKT and endothelial nitric oxide synthase (eNOS) and increased NO production without affecting the expression of VEGF, VEGFR-1, or VEGFR-2. Moreover, the avβ3 antibody, the PI3-K inhibitor LY294002 and the eNOS inhibitor NMA suppressed the OPN-mediated increase in NO production and angiogenesis in EPCs. Taken together, these results demonstrate that OPN directly stimulates angiogenesis via the avβ3/PI3-K/AKT/eNOS/NO signaling pathway and may play an important role in tumorigenesis by enhancing angiogenesis in gliomas.

  3. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    PubMed

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  4. BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS.

    PubMed

    Huang, Mingcheng; Qiu, Qian; Xiao, Youjun; Zeng, Shan; Zhan, Mingying; Shi, Maohua; Zou, Yaoyao; Ye, Yujin; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-01-01

    The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In this study, we observed that treatment with JQ1, a specific BET inhibitor, suppressed in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis in a Matrigel plug and oxygen-induced retinopathy neovascularization. JQ1 attenuated the VEGF-induced decrease in TEER in HUVECs and prevented Evans blue dye leakage in the VEGF-induced Miles assay in athymic Balb/c nude mice. BET inhibition with JQ1 or shRNA for Brd2 or Brd4 suppressed VEGF-induced migration, proliferation, and stress fiber formation of HUVECs. Furthermore, BET inhibition suppressed phosphorylation of VEGFR2 and PAK1, as well as eNOS activation in VEGF-stimulated HUVECs. Inhibition with VEGFR2 and PAK1 also reduced migration and proliferation, and attenuated the VEGF-induced decrease in TEER. Thus, our observations suggest the important role of BET bromodomain in regulating VEGF-induced angiogenesis. Strategies that target the BET bromodomain may provide a new therapeutic approach for angiogenesis-related diseases. PMID:27044328

  5. BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS

    PubMed Central

    Huang, Mingcheng; Qiu, Qian; Xiao, Youjun; Zeng, Shan; Zhan, Mingying; Shi, Maohua; Zou, Yaoyao; Ye, Yujin; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-01-01

    The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In this study, we observed that treatment with JQ1, a specific BET inhibitor, suppressed in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis in a Matrigel plug and oxygen-induced retinopathy neovascularization. JQ1 attenuated the VEGF-induced decrease in TEER in HUVECs and prevented Evans blue dye leakage in the VEGF-induced Miles assay in athymic Balb/c nude mice. BET inhibition with JQ1 or shRNA for Brd2 or Brd4 suppressed VEGF-induced migration, proliferation, and stress fiber formation of HUVECs. Furthermore, BET inhibition suppressed phosphorylation of VEGFR2 and PAK1, as well as eNOS activation in VEGF-stimulated HUVECs. Inhibition with VEGFR2 and PAK1 also reduced migration and proliferation, and attenuated the VEGF-induced decrease in TEER. Thus, our observations suggest the important role of BET bromodomain in regulating VEGF-induced angiogenesis. Strategies that target the BET bromodomain may provide a new therapeutic approach for angiogenesis-related diseases. PMID:27044328

  6. A novel compound, NP-184, inhibits the vascular endothelial growth factor induced angiogenesis.

    PubMed

    Lin, Kuan-Ting; Lien, Jin-Cherng; Chung, Ching-Hu; Kuo, Sheng-Chu; Huang, Tur-Fu

    2010-03-25

    Angiogenesis is observed in many diseases, such as tumor progression, diabetes and rheumatoid arthritis; it is a process that involves proliferation, migration, differentiation and tube formation of endothelial cells. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis by induction of these endothelial functions. Thus, inhibition of these critical angiogenic steps is a practical therapeutic strategy for those diseases. NP-184 is a substituted benzimidazole analogue which exhibits a potent anti-thrombotic activity. In this report, NP-184 inhibited the viability of human umbilical vascular endothelial cells (HUVEC) in a concentration-dependent manner, and caused cell apoptosis as examined by cell-cycle analysis and Annexin V staining with flow cytometry. NP-184 also concentration-dependently inhibited the HUVEC migration, tube formation on Matrigel, and rat aortic ring sprouting stimulated by VEGF. Regarding the intracellular signal transduction, NP-184 concentration-dependently interfered with the activation of AKT, ERK and the nuclear translocation of NF-kappaB. In vivo study showed that NP-184 dose-dependently reduced angiogenesis in Matrigel plug assay. These results indicate that NP-184 is a potential candidate for developing the treatment of angiogenesis related-diseases. PMID:20067787

  7. PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL.

    PubMed

    Zhang, Hao; Wei, Tengteng; Jiang, Xia; Li, Zhimin; Cui, Huazhu; Pan, Jiajun; Zhuang, Wei; Sun, Teng; Liu, Zhiwei; Zhang, Zhongming; Dong, Hongyan

    2016-01-01

    Pigment epithelial-derived factor (PEDF) is a potent anti-angiogenic factor whose effects are partially mediated through the induction of endothelial cell apoptosis. However, the underlying mechanism for PEDF and the functional PEDF peptides 34-mer and 44-mer to inhibit angiogenesis in the heart has not been fully established. In the present study, by constructing adult Sprague-Dawley rat models of acute myocardial infarction (AMI) and in vitro myocardial angiogenesis, we showed that PEDF and 34-mer markedly inhibits angiogenesis by selectively inducing tip cells apoptosis rather than quiescent cells. Peptide 44-mer on the other hand exhibits no such effects. Next, we identified Fas death pathway as essential downstream regulators of PEDF and 34-mer activities in inhibiting angiogenesis. By using peroxisome proliferator-activated receptor γ (PPAR-γ) siRNA and PPAR-γ inhibitor, GW9662, we found the effects of PEDF and 34-mer were extensively blocked. These data suggest that PEDF and 34-mer inhibit angiogenesis via inducing tip cells apoptosis at least by means of up-regulating PPAR-γ to increase surface FasL in the ischemic heart, which might be a novel mechanism to understanding cardiac angiogenesis after AMI. PMID:26519036

  8. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis.

    PubMed

    Clayton, Z E; Sadeghipour, S; Patel, S

    2015-10-15

    Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells.

  9. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells.

    PubMed

    Chu, Shu-Chen; Yu, Cheng-Chia; Hsu, Li-Sung; Chen, Kuo-Shuen; Su, Mei-Yu; Chen, Pei-Ni

    2014-12-01

    Metastasis is the most common cause of cancer-related death in patients, and epithelial-to-mesenchymal transition (EMT) is essential for cancer metastasis, which is a multistep complicated process that includes local invasion, intravasation, extravasation, and proliferation at distant sites. When cancer cells metastasize, angiogenesis is also required for metastatic dissemination, given that an increase in vascular density will allow easier access of tumor cells to circulation, and represents a rational target for therapeutic intervention. Berberine has several anti-inflammation and anticancer biologic effects. In this study, we provided molecular evidence that is associated with the antimetastatic effect of berberine by showing a nearly complete inhibition on invasion (P < 0.001) of highly metastatic SiHa cells via reduced transcriptional activities of matrix metalloproteinase-2 and urokinase-type plasminogen activator. Berberine reversed transforming growth factor-β1-induced EMT and caused upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and snail-1. Selective snail-1 inhibition by snail-1-specific small interfering RNA also showed increased E-cadherin expression in SiHa cells. Berberine also reduced tumor-induced angiogenesis in vitro and in vivo. Importantly, an in vivo BALB/c nude mice xenograft model and tail vein injection model showed that berberine treatment reduced tumor growth and lung metastasis by oral gavage, respectively. Taken together, these findings suggested that berberine could reduce metastasis and angiogenesis of cervical cancer cells, thereby constituting an adjuvant treatment of metastasis control.

  10. Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells

    PubMed Central

    Du, Xiaolong; Ou, Xuehai; Song, Tao; Zhang, Wentao; Cong, Fei; Zhang, Shihui

    2015-01-01

    Angiogenesis is critical to wound repair due to its role in providing oxygen and nutrients that are required to support the growth and function of reparative cells in damaged tissues. Adenosine receptors are claimed to be of paramount importance in driving wound angiogenesis by inducing VEGF. However, the underlying mechanisms for the regulation of adenosine receptors in VEGF as well as eNOS remain poorly understood. In the present study, we found that adenosine and the non-selective adenosine receptor agonists (NECA) induced tube formation in HMEC-1 in a dose-dependent manner. Adenosine or NECA (10 µmol/L) significantly augmented the number and length of the segments in comparison with the control. Simultaneously, VEGF and eNOS were significantly upregulated following the administration of 10 µmol/L NECA, while they were suppressed after A2B AR genetic silencing and pharmacological inhibition by MRS1754. In addition, VEGF expression and eNOS bioavailability elimination significantly reduced the formation of capillary-like structures. Furthermore, the activation of A2B AR by NECA significantly increased the intracellular cAMP levels and concomitant CREB phosphorylation, eventually leading to the production of VEGF in HMEC-1. However, the activated PKA-CREB pathway seemed to be invalidated in the induction of eNOS. Moreover, we found that the elicited PI3K/AKT signaling in response to the induction of NECA assisted in regulating eNOS but failed to impact on VEGF generation. In conclusion, the A2B AR activation-driven angiogenesis via cAMP-PKA-CREB mediated VEGF production and PI3K/AKT-dependent upregulation of eNOS in HMEC-1. PMID:25966978

  11. Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas

    PubMed Central

    Cortes-Santiago, Nahir; Hossain, Mohammad B.; Gabrusiewicz, Konrad; Fan, Xuejun; Gumin, Joy; Marini, Frank C.; Alonso, Marta M.; Lang, Frederick; Yung, W.K.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2016-01-01

    Glioblastoma recurrence after treatment with the anti–vascular endothelial growth factor (VEGF) agent bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. Our group has previously reported that Tie2-expressing monocytes (TEMs) are aberrantly present at the tumor/normal brain interface after anti-VEGF therapies and their significant role in the invasive outgrowth of these tumors. Here, we aimed to further understand the mechanisms leading to this pro-invasive tumor microenvironment. Examination of a U87MG xenogeneic glioma model and a GL261 murine syngeneic model showed increased tumor expression of angiopoietin 2 (Ang2), a natural ligand of Tie2, after anti-angiogenesis therapies targeting VEGF or VEGF receptor (VEGFR), as assessed by immunohistochemical analysis, immunofluorescence analysis, and enzyme-linked immunosorbent assays of tumor lysates. Migration and gelatinolytic assays showed that Ang2 acts as both a chemoattractant of TEMs and an enhancing signal for their tumor-remodeling properties. Accordingly, in vivo transduction of Ang2 into intracranial gliomas increased recruitment of TEMs into the tumor. To reduce invasive tumor outgrowth after anti-angiogenesis therapy, we targeted the Ang-Tie2 axis using a Tie2 decoy receptor. Using syngeneic models, we observed that overexpression of soluble Tie2 within the tumor prevented the recruitment of TEMs to the tumor and the development of invasion after anti-angiogenesis treatment. Taken together, these data indicate an active role for the Ang2-Tie2 pathway in invasive glioma recurrence after anti-angiogenesis treatment and provide a rationale for testing the combined targeting of VEGF and Ang-Tie2 pathways in patients with glioblastoma. PMID:26910374

  12. Flow-Induced Axial Vascularization: The Arteriovenous Loop in Angiogenesis and Tissue Engineering.

    PubMed

    Leibig, Nico; Wietbrock, Johanna O; Bigdeli, Amir K; Horch, Raymund E; Kremer, Thomas; Kneser, Ulrich; Schmidt, Volker J

    2016-10-01

    Fabrication of a viable vascular network providing oxygen supply is identified as one crucial limiting factor to generate more complex three-dimensional constructs. The arteriovenous loop model provides initial blood supply and has a high angioinductive potency, making it suitable for vascularization of larger, tissue-engineered constructs. Also because of its angiogenic capabilities the arteriovenous loop is recently also used as a model to evaluate angiogenesis in vivo. This review summarizes the history of the arteriovenous loop model in research and its technical and surgical aspects. Through modifications of the isolation chamber and its containing matrices, tissue generation can be enhanced. In addition, matrices can be used as release systems for local application of growth factors, such as vascular endothelial growth factor and basic fibroblast growth factor, to affect vascular network formation. A special focus in this review is set on the assessment of angiogenesis in the arteriovenous loop model. This model provides good conditions for assessment of angiogenesis with the initial cell-free environment of the isolation chamber, which is vascularized by the arteriovenous loop. Because of the angiogenic capabilities of the arteriovenous loop model, different attempts were performed to create functional tissue in the isolation chamber for potential clinical application. Arteriovenous loops in combination with autologous bone marrow aspirate were already used to reconstruct large bone defects in humans. PMID:27673517

  13. Flow-Induced Axial Vascularization: The Arteriovenous Loop in Angiogenesis and Tissue Engineering.

    PubMed

    Leibig, Nico; Wietbrock, Johanna O; Bigdeli, Amir K; Horch, Raymund E; Kremer, Thomas; Kneser, Ulrich; Schmidt, Volker J

    2016-10-01

    Fabrication of a viable vascular network providing oxygen supply is identified as one crucial limiting factor to generate more complex three-dimensional constructs. The arteriovenous loop model provides initial blood supply and has a high angioinductive potency, making it suitable for vascularization of larger, tissue-engineered constructs. Also because of its angiogenic capabilities the arteriovenous loop is recently also used as a model to evaluate angiogenesis in vivo. This review summarizes the history of the arteriovenous loop model in research and its technical and surgical aspects. Through modifications of the isolation chamber and its containing matrices, tissue generation can be enhanced. In addition, matrices can be used as release systems for local application of growth factors, such as vascular endothelial growth factor and basic fibroblast growth factor, to affect vascular network formation. A special focus in this review is set on the assessment of angiogenesis in the arteriovenous loop model. This model provides good conditions for assessment of angiogenesis with the initial cell-free environment of the isolation chamber, which is vascularized by the arteriovenous loop. Because of the angiogenic capabilities of the arteriovenous loop model, different attempts were performed to create functional tissue in the isolation chamber for potential clinical application. Arteriovenous loops in combination with autologous bone marrow aspirate were already used to reconstruct large bone defects in humans.

  14. αvβ3 Integrin Limits the Contribution of Neuropilin-1 to Vascular Endothelial Growth Factor-induced Angiogenesis*

    PubMed Central

    Robinson, Stephen D.; Reynolds, Louise E.; Kostourou, Vassiliki; Reynolds, Andrew R.; da Silva, Rita Graça; Tavora, Bernardo; Baker, Marianne; Marshall, John F.; Hodivala-Dilke, Kairbaan M.

    2009-01-01

    Both vascular endothelial growth factor receptors (VEGFR) and integrins are major regulators of VEGF-induced angiogenesis. Previous work has shown that β3 integrin can regulate negatively VEGFR2 expression. Here we show that β3 integrin can regulate negatively VEGF-mediated angiogenesis by limiting the interaction of the co-receptor NRP1 (neuropilin-1) with VEGFR2. In the presence of αvβ3 integrin, NRP1 contributed minimally to VEGF-induced angiogenic processes in vivo, ex vivo, and in vitro. Conversely, when β3 integrin expression is absent or low or its function is blocked with RGD-mimetic inhibitors, VEGF-mediated responses became NRP1-dependent. Indeed, combined inhibition of β3 integrin and NRP1 decreased VEGF-mediated angiogenic responses further than individual inhibition of these receptors. We also show that αvβ3 integrin can associate with NRP1 in a VEGF-dependent fashion. Our data suggest that β3 integrin may, in part, negatively regulate VEGF signaling by sequestering NRP1 and preventing it from interacting with VEGFR2. PMID:19837659

  15. Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression

    PubMed Central

    Reis, Marco; Czupalla, Cathrin J.; Ziegler, Nicole; Devraj, Kavi; Zinke, Jenny; Seidel, Sascha; Heck, Rosario; Thom, Sonja; Macas, Jadranka; Bockamp, Ernesto; Fruttiger, Marcus; Taketo, Makoto M.; Dimmeler, Stefanie; Plate, Karl H.

    2012-01-01

    Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood–brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin–Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy. PMID:22908324

  16. Gramicidin A blocks tumor growth and angiogenesis through inhibition of hypoxia-inducible factor in renal cell carcinoma.

    PubMed

    David, Justin M; Owens, Tori A; Inge, Landon J; Bremner, Ross M; Rajasekaran, Ayyappan K

    2014-04-01

    Ionophores are hydrophobic organic molecules that disrupt cellular transmembrane potential by permeabilizing membranes to specific ions. Gramicidin A is a channel-forming ionophore that forms a hydrophilic membrane pore that permits the rapid passage of monovalent cations. Previously, we found that gramicidin A induces cellular energy stress and cell death in renal cell carcinoma (RCC) cell lines. RCC is a therapy-resistant cancer that is characterized by constitutive activation of the transcription factor hypoxia-inducible factor (HIF). Here, we demonstrate that gramicidin A inhibits HIF in RCC cells. We found that gramicidin A destabilized HIF-1α and HIF-2α proteins in both normoxic and hypoxic conditions, which in turn diminished HIF transcriptional activity and the expression of various hypoxia-response genes. Mechanistic examination revealed that gramicidin A accelerates O(2)-dependent downregulation of HIF by upregulating the expression of the von Hippel-Lindau (VHL) tumor suppressor protein, which targets hydroxylated HIF for proteasomal degradation. Furthermore, gramicidin A reduced the growth of human RCC xenograft tumors without causing significant toxicity in mice. Gramicidin A-treated tumors also displayed physiologic and molecular features consistent with the inhibition of HIF-dependent angiogenesis. Taken together, these results demonstrate a new role for gramicidin A as a potent inhibitor of HIF that reduces tumor growth and angiogenesis in VHL-expressing RCC.

  17. 5-Methoxyleoligin, a Lignan from Edelweiss, Stimulates CYP26B1-Dependent Angiogenesis In Vitro and Induces Arteriogenesis in Infarcted Rat Hearts In Vivo

    PubMed Central

    Messner, Barbara; Kern, Johann; Wiedemann, Dominik; Schwaiger, Stefan; Türkcan, Adrian; Ploner, Christian; Trockenbacher, Alexander; Aumayr, Klaus; Bonaros, Nikolaos; Laufer, Günther; Stuppner, Hermann; Untergasser, Gerold; Bernhard, David

    2013-01-01

    Background Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail. Methods and Results 5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI). Conclusion The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI. PMID:23554885

  18. Angiogenesis Inhibitors

    MedlinePlus

    ... of anticancer agents that target the VEGF pathway. Nature Reviews Clinical Oncology 2009; 6(8):465–477. [ ... mechanisms involved in the toxicity of angiogenesis inhibition. Nature Reviews Cancer 2007; 7(6):475–485. [PubMed ...

  19. Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature.

    PubMed

    Thomas, Monzy; George, Nysia I; Patterson, Tucker A; Bowyer, John F

    2009-10-01

    An amphetamine (AMPH) regimen that does not produce a prominent blood-brain barrier breakdown was shown to significantly alter the expression of genes regulating vascular tone, immune function, and angiogenesis in vasculature associated with arachnoid and pia membranes of the forebrain. Adult-male Sprague-Dawley rats were given either saline injections during environmentally-induced hyperthermia (EIH) or four doses of AMPH with 2 h between each dose (5, 7.5, 10, and 10 mg/kg d-AMPH, s.c.) that produced hyperthermia. Rats were sacrificed either 3 h or 1 day after dosing, and total RNA and protein was isolated from the meninges, arachnoid and pia membranes, and associated vasculature (MAV) that surround the forebrain. Vip, eNos, Drd1a, and Edn1 (genes regulating vascular tone) were increased by either EIH or AMPH to varying degrees in MAV, indicating that EIH and AMPH produce differential responses to enhance vasodilatation. AMPH, and EIH to a lesser extent, elicited a significant inflammatory response at 3 h as indicated by an increased MAV expression of cytokines Il1b, Il6, Ccl-2, Cxcl1, and Cxcl2. Also, genes related to heat shock/stress and disruption of vascular homeostasis such as Icam1 and Hsp72 were also observed. The increased expression of Ctgf and Timp1 and the decreased expression of Akt1, Anpep, and Mmp2 and Tek (genes involved in stimulating angiogenesis) from AMPH exposure suggest that angiogenesis was arrested or disrupted in MAV to a greater extent by AMPH compared to EIH. Alterations in vascular-related gene expression in the parietal cortex and striatum after AMPH were less in magnitude than in MAV, indicating less of a disruption of vascular homeostasis in these two regions. Changes in the levels of insulin-like growth factor binding proteins Igfbp1, 2, and 5 in MAV, compared to those in striatum and parietal cortex, imply an interaction between these regions to regulate the levels of insulin-like growth factor after AMPH damage. Thus, the

  20. The effect of deferoxamine on angiogenesis and bone repair in steroid-induced osteonecrosis of rabbit femoral heads

    PubMed Central

    Li, Jia; Fan, Lihong; Yu, Zefeng; Dang, Xiaoqian

    2015-01-01

    In this study, we examined whether local deferoxamine (DFO) administration can promote angiogenesis and bone repair in steroid-induced osteonecrosis of the femoral head (ONFH). Steroid-induced ONFH was induced in 65 mature male New Zealand white rabbits by methylprednisolone in combination with lipopolysaccharide. Six weeks later, the rabbits received no treatment (model group, N = 15), bilateral core decompression (CD group, N = 20) or CD in combination with local DFO administration (DFO group, N = 20). Six weeks after the surgery, vascularization in the femoral head was evaluated by ink artery infusion angiography and immunohistochemical staining for von Willebrand Factor (vWF). Bone repair was assessed by histologic analysis and micro-computed tomography (micro-CT). Immunohistochemical staining was performed to analyze the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN). Ink artery infusion angiography and microvessel analysis by immuohistochemical staining for vWF showed more blood vessels in the DFO group than other groups. The expression of HIF-1α, VEGF, BMP-2, and OCN, indicated by immunohistochemical staining, was higher in the DFO group compared with other groups. Micro-CT scanning results indicated that the DFO group had larger volume of newly formed bone than the CD group. This work indicated that local DFO administration improved angiogenesis and bone repair of early stage ONFH in rabbit model, and it may offer an efficient, economic, and simple therapy for early stage ONFH. PMID:25294892

  1. Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations

    NASA Astrophysics Data System (ADS)

    Terragni, F.; Carretero, M.; Capasso, V.; Bonilla, L. L.

    2016-02-01

    A recent conceptual model of tumor-driven angiogenesis including branching, elongation, and anastomosis of blood vessels captures some of the intrinsic multiscale structures of this complex system, yet allowing one to extract a deterministic integro-partial-differential description of the vessel tip density [Phys. Rev. E 90, 062716 (2014), 10.1103/PhysRevE.90.062716]. Here we solve the stochastic model, show that ensemble averages over many realizations correspond to the deterministic equations, and fit the anastomosis rate coefficient so that the total number of vessel tips evolves similarly in the deterministic and ensemble-averaged stochastic descriptions.

  2. Migration-inducing gene 7 promotes tumorigenesis and angiogenesis and independently predicts poor prognosis of epithelial ovarian cancer

    PubMed Central

    Huang, Bihui; Yin, Mingzhu; Li, Xia; Cao, Guosheng; Qi, Jin; Lou, Ge; Sheng, Shijie; Kou, Junping; Chen, Kang; Yu, Boyang

    2016-01-01

    Epithelial ovarian carcinomas (EOC) cause more mortality than any other cancer of the female reproductive system. New therapeutic approaches to reduce EOC mortality have been largely unsuccessful due to the poor understanding of the mechanisms underlying EOC proliferation and metastasis. Progress in EOC treatment is further hampered by a lack of reliable prognostic biomarkers for early risk assessment. In this study, we identify that Migration-Inducting Gene 7 (MIG-7) is specifically induced in human EOC tissues but not normal ovaries or ovarian cyst. Ovarian MIG-7 expression strongly correlated with EOC progression. Elevated MIG-7 level at the time of primary cytoreductive surgery was a strong and independent predictor of poor survival of EOC patients. Cell and murine xenograft models showed that MIG-7 was required for EOC proliferation and invasion, and MIG-7 enhanced EOC-associated angiogenesis by promoting the expression of vascular endothelial growth factor. Inhibiting MIG-7 by RNA interference in grafted EOC cells retarded tumor growth, angiogenesis and improved host survival, and suppressing MIG-7 expression with a small molecule inhibitor D-39 identified from the medicinal plant Liriope muscari mitigated EOC growth and invasion and specifically abrogated the expression of vascular endothelial growth factor. Our data not only reveal a critical function of MIG-7 in EOC growth and metastasis and support MIG-7 as an independent prognostic biomarker for EOC, but also demonstrate that therapeutic targeting of MIG-7 is likely beneficial in the treatment of EOC. PMID:27050277

  3. Theaflavin-3, 3′-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not via MAPK pathways

    PubMed Central

    GAO, YING; RANKIN, GARY O.; TU, YOUYING; CHEN, YI CHARLIE

    2016-01-01

    Theaflavin-3, 3′-digallate (TF3) is a black tea poly-phenol produced from polymerization and oxidization of the green tea ployphenols epicatechin gallate and (−)-epigallocatechin-3-gallate (EGCG) during fermentation of fresh tea leaves. TF3 has been reported to have anticancer properties. However, the effect of TF3 on tumor angiogenesis and the underlying mechanisms are not clear. In the present study, TF3 was verified to inhibit tumor angiogenesis. Compared with EGCG, TF3 was more potent. TF3 inhibited human ovarian carcinoma OVCAR-3 cell-induced angiogenesis in human umbilical vein endothelial cell model and in chick chorioallantoic membrane model. TF3 reduced tumor angiogenesis by downregulating HIF-1α and VEGF. One of the mechanisms was TF3 inactivated Akt/mTOR/p70S6K/4E-BP1 pathway and Akt/c-Myc pathway. Besides, TF3 suppressed the cleavage of Notch-1, subsequently decreased the expression of c-Myc, HIF-1α and VEGF, and finally the impaired cancer cells induced angiogenesis. Nevertheless, TF3 did not have any influence on the MAPK pathways. Taken together, these findings suggest that TF3 might serve as a potential anti-angiogenic agent for cancer treatment. PMID:26648098

  4. VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Lee, Monica Y.; Araldi, Elisa; Landskroner-Eiger, Shira; Fernández-Fuertes, Marta; Sahraei, Mahnaz; Quiles del Rey, Maria; van Solingen, Coen; Yu, Jun; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    Rationale: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17–92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor–induced endothelial cell (EC) functions is unclear and its regulation is unknown. Objective: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17–92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17–92 cluster in the endothelium (miR-17–92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. Methods and Results: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17–92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17–92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17–92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17–92 cluster and is a crucial mediator of miR-17-92–induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17–92 is inhibited. Conclusions: Taken together, our results indicate that VEGF-induced miR-17–92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis. PMID:26472816

  5. Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane.

    PubMed

    Belle, Janeil; Ysasi, Alexandra; Bennett, Robert D; Filipovic, Nenad; Nejad, Mohammad Imani; Trumper, David L; Ackermann, Maximilian; Wagner, Willi; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2014-09-01

    Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p<0.01). The morphometric analysis of intravital microscopy and scanning electron microscopy (SEM) images demonstrated that the increase vessel density was a result of an increase in interbranch distance (p<0.01) and a decrease in bifurcation angles (p<0.01); there was no significant increase in conducting vessel number (p>0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM.

  6. Stretch-induced Intussuceptive and Sprouting Angiogenesis in the Chick Chorioallantoic Membrane

    PubMed Central

    Belle, Janeil; Ysasi, Alexandra; Bennett, Robert; Filipovic, Nenad; Nejad, Mohammad Imani; Trumper, David L.; Ackermann, Max; Wagner, Willi; Tsuda, Akira; Konerding, Moritz A.; Mentzer, Steven J.

    2014-01-01

    Vascular systems grow and remodel in response to not only metabolic needs, but mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3 days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p<0.01). Morphometric analysis of intravital microscopy and scanning electron microscopy (SEM) images demonstrated that the increase vessel density was a result of an increase in interbranch distance (p<0.01) and a decrease in bifurcation angles (p<0.01); there was no significant increase in conducting vessel number (p>0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM. PMID:24984292

  7. Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models

    PubMed Central

    Zhao, Qianqian; Wang, Zhaopeng; Wang, Zhaoxia; Wu, Licun; Zhang, Weidong

    2016-01-01

    Aspirin is known to have inhibitory effects on growth development in various types of tumor. In previous studies, it was observed to inhibit angiogenesis by downregulating the expression of vascular endothelial growth factor-A (VEGF-A). In the present study, murine H22 hepatocarcinoma and S180 sarcoma models were used to ascertain whether aspirin could inhibit angiogenesis and promote autophagy in tumors. Tumor-bearing mice were randomly divided into four groups with 10 mice per group: i) no treatment; ii) low-dose aspirin (100 mg/kg); iii) high-dose aspirin (400 mg/kg); iv) everolimus group (4 mg/kg). The effects of high-dose aspirin were validated through preliminary experiments. The drug treatment was administered every day for 14 days. The tumor size was measured every other day and then the tumor growth curve was plotted, and the tumor inhibitory rates were calculated. The expression levels of phosphorylated mammalian target of rapamycin (p-mTOR), hypoxia-inducible factor-1α (HIF-1α), VEGF-A, UNC-51-like kinase-1 (ULK1) and microtubule-associated protein 1 light chain 3A (LC3A) were detected by immunohistochemistry and western blot analysis, respectively. We observed that tumor growth delay was achieved in both H22 hepatocarcinoma and S180 sarcoma models following treatment with aspirin. The tumor growth inhibition rates induced by low and high-dose aspirin and everolimus were 19.6, 33.6 and 53.7% (P<0.05) in H22 hepatocarcinoma, and 25.7, 40.6 and 48.7% (P<0.05) in S180 sarcoma. The immunohistochemistry and western blot analysis data from the models revealed that the expression of p-mTOR, HIF-1α and VEGF-A was decreased, while the expression of ULK1 and LC3A was increased following treatment with aspirin and everolimus. The changes were more apparent in the high-dose aspirin and everolimus groups (P<0.01). The inhibitory action of aspirin and everolimus on tumor angiogenesis may be through inhibiting the expression of p-mTOR, HIF-1α and VEGF

  8. Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models

    PubMed Central

    Zhao, Qianqian; Wang, Zhaopeng; Wang, Zhaoxia; Wu, Licun; Zhang, Weidong

    2016-01-01

    Aspirin is known to have inhibitory effects on growth development in various types of tumor. In previous studies, it was observed to inhibit angiogenesis by downregulating the expression of vascular endothelial growth factor-A (VEGF-A). In the present study, murine H22 hepatocarcinoma and S180 sarcoma models were used to ascertain whether aspirin could inhibit angiogenesis and promote autophagy in tumors. Tumor-bearing mice were randomly divided into four groups with 10 mice per group: i) no treatment; ii) low-dose aspirin (100 mg/kg); iii) high-dose aspirin (400 mg/kg); iv) everolimus group (4 mg/kg). The effects of high-dose aspirin were validated through preliminary experiments. The drug treatment was administered every day for 14 days. The tumor size was measured every other day and then the tumor growth curve was plotted, and the tumor inhibitory rates were calculated. The expression levels of phosphorylated mammalian target of rapamycin (p-mTOR), hypoxia-inducible factor-1α (HIF-1α), VEGF-A, UNC-51-like kinase-1 (ULK1) and microtubule-associated protein 1 light chain 3A (LC3A) were detected by immunohistochemistry and western blot analysis, respectively. We observed that tumor growth delay was achieved in both H22 hepatocarcinoma and S180 sarcoma models following treatment with aspirin. The tumor growth inhibition rates induced by low and high-dose aspirin and everolimus were 19.6, 33.6 and 53.7% (P<0.05) in H22 hepatocarcinoma, and 25.7, 40.6 and 48.7% (P<0.05) in S180 sarcoma. The immunohistochemistry and western blot analysis data from the models revealed that the expression of p-mTOR, HIF-1α and VEGF-A was decreased, while the expression of ULK1 and LC3A was increased following treatment with aspirin and everolimus. The changes were more apparent in the high-dose aspirin and everolimus groups (P<0.01). The inhibitory action of aspirin and everolimus on tumor angiogenesis may be through inhibiting the expression of p-mTOR, HIF-1α and VEGF

  9. Effects of tetrahydrocurcumin on hypoxia-inducible factor-1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice.

    PubMed

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Patumraj, Suthiluk; Changtam, Chatchawan

    2015-01-01

    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future.

  10. Effects of Tetrahydrocurcumin on Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in Cervical Cancer Cell-Induced Angiogenesis in Nude Mice

    PubMed Central

    Yoysungnoen, Bhornprom; Patumraj, Suthiluk; Changtam, Chatchawan

    2015-01-01

    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future. PMID:25789317

  11. How phototherapy affects angiogenesis

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  12. Inhibitors of Angiogenesis.

    PubMed

    Büning, H; Hacker, U T

    2016-01-01

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented. PMID:27236560

  13. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    PubMed

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  14. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future. PMID:15084979

  15. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  16. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    SciTech Connect

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  17. Can angiogenesis induced by chronic electrical stimulation enhance latissimus dorsi muscle flap survival for application in cardiomyoplasty?

    PubMed

    Overgoor, Max L E; Carroll, Sean M; Papanicolau, George; Carroll, Camilla M A; Ustüner, Tuncay E T; Stremel, Richard W; Anderson, Gary L; Franken, Ralph J P M; Kon, Moshe; Barker, John H

    2003-01-01

    In cardiomyoplasty, the latissimus dorsi muscle is lifted on its primary neurovascular pedicle and wrapped around a failing heart. After 2 weeks, it is trained for 6 weeks using chronic electrical stimulation, which transforms the latissimus dorsi muscle into a fatigue-resistant muscle that can contract in synchrony with the beating heart without tiring. In over 600 cardiomyoplasty procedures performed clinically to date, the outcomes have varied. Given the data obtained in animal experiments, the authors believe these variable outcomes are attributable to distal latissimus dorsi muscle flap necrosis. The aim of the present study was to investigate whether the chronic electrical stimulation training used to transform the latissimus dorsi muscle into fatigue-resistant muscle could also be used to induce angiogenesis, increase perfusion, and thus protect the latissimus dorsi muscle flap from distal necrosis. After 14 days of chronic electrical stimulation (10 Hz, 330 microsec, 4 to 6 V continuous, 8 hours/day) of the right or left latissimus dorsi muscle (randomly selected) in 11 rats, both latissimus dorsi muscles were lifted on their thoracodorsal pedicles and returned to their anatomical beds. Four days later, the resulting amount of distal flap necrosis was measured. Also, at predetermined time intervals throughout the experiment, muscle surface blood perfusion was measured using scanning laser Doppler flowmetry. Finally, latissimus dorsi muscles were excised in four additional stimulated rats, to measure angiogenesis (capillary-to-fiber ratio), fiber type (oxidative or glycolytic), and fiber size using histologic specimens. The authors found that chronic electrical stimulation (1) significantly (p < 0.05) increased angiogenesis (mean capillary-to-fiber ratio) by 82 percent and blood perfusion by 36 percent; (2) did not reduce the amount of distal flap necrosis compared with nonchronic electrical stimulation controls (29 +/- 5.3 percent versus 26.6 +/- 5

  18. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients.

    PubMed

    Sudam Patil, Rushikesh; Umesh Shah, Sagar; Vinayak Shrikhande, Shailesh; Goel, Mahesh; Prabhakar Dikshit, Rajesh; Vivek Chiplunkar, Shubhada

    2016-08-15

    Despite conventional treatment modalities, gallbladder cancer (GBC) remains a highly lethal malignancy. Prognostic biomarkers and effective adjuvant immunotherapy for GBC are not available. In the recent past, immunotherapeutic approaches targeting tumor associated inflammation have gained importance but the mediators of inflammatory circuit remain unexplored in GBC patients. In the current prospective study, we investigated the role of IL17 producing TCRγδ(+) (Tγδ17), CD4(+) (Th17), CD8(+) (Tc17) and regulatory T cells (Tregs) in pathogenesis of GBC. Analysis by multi-color flow cytometry revealed that compared to healthy individuals (HI), Tγδ17, Th17 and Tc17 cells were increased in peripheral blood mononuclear cells (PBMCs) and tumor infiltrating lymphocytes (TIL) of GBC patients. Tregs were decreased in PBMCs but increased in TILs of GBC patients. The suppressive potential of Tregs from GBC patients and HI were comparable. Serum cytokines profile of GBC patients showed elevated levels of cytokines (IL6, IL23 and IL1β) required for polarization and/or stabilization of IL17 producing cells. We demonstrated that Tγδ17 cells migrate toward tumor bed using CXCL9-CXCR3 axis. IL17 secreted by Tγδ17 induced productions of vascular endothelial growth factor and other angiogenesis related factors in GBC cells. Tγδ17 cells promote vasculogenesis as studied by chick chorioallantoic membrane assay. Survival analysis showed that Tγδ17, Th17 and Treg cells in peripheral blood were associated with poor survival of GBC patients. Our findings suggest that Tγδ17 is a protumorigenic subtype of γδT cells which induces angiogenesis. Tγδ17 may be considered as a predictive biomarker in GBC thus opening avenues for targeted therapies.

  19. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics.

    PubMed

    Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit

    2013-10-01

    General trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, they have recently become the target of scrutiny over safety. The importance of trace elements in natural bone health is well documented. Ions, for example, lithium, zinc, magnesium, manganese, silicon, strontium, etc., have been shown to increase osteogenesis and neovascularization. Incorporation of dopants (trace metal ions) into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights the use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis.

  20. [Possibilities for inhibiting tumor-induced angiogenesis: results with multi-target tyrosine kinase inhibitors].

    PubMed

    Török, Szilvia; Döme, Balázs

    2012-03-01

    Functional blood vasculature is essential for tumor progression. The main signalization pathways that play a key role in the survival and growth of tumor vessels originate from the VEGF-, PDGF- and FGF tyrosine kinase receptors. In the past decade, significant results have been published on receptor tyrosine kinase inhibitors (RTKIs). In this paper, the mechanisms of action and the results so far available of experimental and clinical studies on multi-target antiangiogenic TKIs are discussed. On the one hand, notable achievements have been made recently and these drugs are already used in clinical practice in some patient populations. On the other hand, the optimal combination and dosage of these drugs, selection of the apropriate biomarker and better understanding of the conflicting role of PDGFR and FGFR signaling in angiogenesis remain future challenges. PMID:22403757

  1. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC.

    PubMed

    Cheng, Qijian; Zhou, Ling; Zhou, Jianping; Wan, Huanying; Li, Qingyun; Feng, Yun

    2016-09-01

    Angiotensin II (AngII) is a multifunctional bioactive peptide in the renin-angiotensin system (RAS). Angiotensin-converting enzyme 2 (ACE2) is a newly identified component of RAS. We previously reported that ACE2 overexpression may inhibit cell growth and vascular endothelial growth factor (VEGF) production in vitro and in vivo. In the present study, we investigated the effect of ACE2 on tumor-associated angiogen-esis after the development of acquired platinum resistance in non-small cell lung cancer (NSCLC). Four NSCLC cell lines, A549, LLC, A549-DDP and LLC-DDP, were used in vitro, while A549 and A549-DDP cells were used in vivo. A549-DDP and LLC-DDP cells were newly established at our institution as acquired platinum-resistant sublines by culturing the former parent cells in cisplatin (CDDP)-containing conditioned medium for 6 months. These platinum-resistant cells showed significantly higher angiotensin II type 1 receptor (AT1R), ACE and VEGF production and lower ACE2 expression than their corresponding parent cells. We showed that ACE2 overexpression inhibited the production of VEGF in vitro and in vivo compared to their corresponding parent cells. We also found that ACE2 overexpression reduced the expression of AT1R and ACE. Additionally, we confirmed that ACE2 overexpres-sion inhibited cell growth and VEGF production while simultaneously suppressing ACE and AT1R expression in human lung cancer xenografts. Our findings indicate that ACE2 overexpression may potentially suppress angiogenesis in NSCLC after the development of acquired platinum resistance. PMID:27460845

  2. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    SciTech Connect

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  3. BJ-1108, a 6-Amino-2,4,5-Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX Pathway.

    PubMed

    Banskota, Suhrid; Gautam, Jaya; Regmi, Sushil C; Gurung, Pallavi; Park, Myo-Hyeon; Kim, Seung Joo; Nam, Tae-Gyu; Jeong, Byeong-Seon; Kim, Jung-Ae

    2016-01-01

    5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gβγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38.

  4. BJ-1108, a 6-Amino-2,4,5-Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX Pathway

    PubMed Central

    Banskota, Suhrid; Gautam, Jaya; Regmi, Sushil C.; Gurung, Pallavi; Park, Myo-Hyeon; Kim, Seung Joo; Nam, Tae-gyu; Jeong, Byeong-Seon; Kim, Jung-Ae

    2016-01-01

    5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gβγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38. PMID:26824764

  5. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    SciTech Connect

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi; Kwon, Ho Jeong

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effect of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.

  6. Ceruloplasmin, copper ions, and angiogenesis.

    PubMed

    Raju, K S; Alessandri, G; Ziche, M; Gullino, P M

    1982-11-01

    The ability to induce new formation of capillaries in the cornea was tested for ceruloplasmin, the copper carrier of serum, for fragments of the ceruloplasmin molecule with and without copper, for heparin, and for glycyl-L-histidyl-L-lysine, bound or not bound to copper ions. Male or female 2- to 3-kg New Zealand White rabbits were used. These experiments were prompted by the previous observation of copper accumulation in the cornea during angiogenesis and by the inability of copper-deficient rabbits to mount an angiogenic response. The results showed that the three different molecules were all able to induce angiogenesis provided that they were bound to copper. Fragments of the ceruloplasmin molecule also induced angiogenesis but only when copper was bound to the peptides. The data are interpreted to indicate that copper ions are involved in the sequence of events leading to angiogenesis and that the carrier molecules may be of quite a different nature. PMID:6182332

  7. A Novel Angiogenesis Inhibitor Bevacizumab Induces Apoptosis in the Rat Endometriosis Model

    PubMed Central

    Soysal, D; Kızıldağ, S; Saatlı, B; Posacı, C; Soysal, S; Koyuncuoğlu, M; Doğan, ÖE

    2014-01-01

    Our aim was to investigate the effects of anti-vascular endothelial growth factor (anti-VEGF) antibody Bevacizumab on endometrial explants and on apoptotic gene expression levels in the rat endometriosis model. Endometriotic implants were surgically formed, and rats treated with (i) 1 mg/kg single subcutaneous injection of depot leuprolide acetate; (ii) 2.5 mg/kg of single intaperitoneal injection of bevacizumab; (iii) intraperitoneal injection of saline. Histopathologic scores and adhesion scores of endometriotic foci and levels of Bcl-2-associated X protein (Bax), Cytochrome c (Cyt-c), B-cell lymphoma/leukemia 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) mRNA gene expressions of endometriotic foci. Bevacizumab treatment decreased the endometriotic explant size compared with control. Bevacizumab-treated rats had lower total adhesion scores when compared with the control group. Semi-quantitative evaluation of the persistence of endometrial epithelial cells in the explants showed a lower score in gonadotropin-releasing hormone (GnRH) agonist-treated rats compared with control rats. In Bevacizumab increased expression of Bax 3.1-fold, Cyt-c 1.3-fold and decreased expression of Bcl-2 0.4-fold, Bcl-xl 0.8-fold compared with the control group. The GnRH agonist increased expression of Bax 3.0 fold, Cyt-c 1.3 fold and decreased expression of Bcl-2 0.4-fold, Bcl-xl 0.8-fold, compared with the control group. This study suggests that a novel angiogenesis inhibitor, anti-VEGF antibody bevacizumab is as effective as GnRH agonist in the regression of the endometriotic lesions in rat endometriosis model. One possible mechanism of this effect is the induction of apoptosis. PMID:25937801

  8. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases

    PubMed Central

    1989-01-01

    The role of basic fibroblast growth factor-(bFGF) induced proteinases in basement membrane (BM) invasion by bovine capillary endothelial (BCE) cells was studied using a quantitative in vitro assay previously described (Mignatti et al., 1986). 125I-iododeoxyuridine-labeled BCE cells were grown for 72 h on the human amnion BM, and cell invasion was determined by measuring the radioactivity associated with the tissue after removal of the noninvasive cell layer. BCE cells were noninvasive under normal conditions. Addition of human bFGF to either the BM or to the stromal aspect of the amnion induced BCE cell invasion with a dose- dependent response. This effect was maximal in the presence of 70 ng/ml bFGF, and was inhibited by anti-FGF antibody. Transforming growth factor beta, as well as plasmin inhibitors and anti-tissue type plasminogen activator antibody inhibited BCE cell invasion. The tissue inhibitor of metalloproteinases, 1-10 phenanthroline, anti-type IV and anti-interstitial collagenase antibodies had the same effect. On the contrary, anti-stromelysin antibody and Eglin, an inhibitor of elastase, were ineffective. The results obtained show that both the plasminogen activator-plasmin system and specific collagenases are involved in the invasive process occurring during angiogenesis. PMID:2465298

  9. Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis.

    PubMed

    Theodoropoulou, Sofia; Brodowska, Katarzyna; Kayama, Maki; Morizane, Yuki; Miller, Joan W; Gragoudas, Evangelos S; Vavvas, Demetrios G

    2013-01-01

    5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma. PMID:23300996

  10. Exenatide suppresses 1,2-dimethylhydrazine-induced colon cancer in diabetic mice: Effect on tumor angiogenesis and cell proliferation.

    PubMed

    Tawfik, Mona K; Mohamed, Magda I

    2016-08-01

    Colon cancer is the third leading cause of cancer mortality worldwide, which results from interactions of different factors. It is frequently a pathological consequence of persistent inflammation. Diabetes affects several cancers and is positively correlated with the incidence of colon cancer. This study aimed to study the effect of exenatide in ameliorating inflammation, angiogenesis and cell proliferation in 1,2-dimethyl hydrazine (DMH) induced colorectal carcinoma in diabetic mice. Mice were randomly allocated into six groups, 8 mice each. Group 1: vehicle control group. Group 2: diabetic control group. Group 3: DMH control group: diabetic mice treated with DMH (20mg/kg/week,s.c.) for 15 week. Group 4: DMH-cisplatin group: mice received cisplatin (4mg/kg/week, i.p.). Groups 5 & 6: DMH-exenatide (10 and 20μg/kg) group: mice received exenatide (10 or 20μg/kg/day,s.c.), respectively. The present results highlighted an increase in angiogenic markers and cell proliferation in the DMH-diabetic group in comparison with the control group with greater expression of endothelial marker (CD34) and Ki-67 in colon tissue. Monotherapy with cisplatin or exenatide (10 and 20μg/kg) downregulated these markers to different extents. The current results provided evidence that exenatide represents a promising chemopreventive effect against DMH-induced colon carcinogenesis in diabetic mice, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  11. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    NASA Astrophysics Data System (ADS)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  12. Sphingosine-1-Phosphate Induces the Migration and Angiogenesis of Epcs Through the Akt Signaling Pathway via Sphingosine-1-Phosphate Receptor 3/Platelet-Derived Growth Factor Receptor-β.

    PubMed

    Wang, Hang; Cai, Ke-Yin; Li, Wei; Huang, Hao

    2015-12-01

    Endothelial progenitor cells (EPCs) play a fundamental role in neoangiogenesis and tumor angiogenesis. Through the sphingosine-1-phosphate receptor 3 (S1PR3), sphingosine-1-phosphate (S1P) can stimulate the functional capacity of EPCs. Platelet-derived growth factor receptor-beta (PDGFR-β) contributes to the migration and angiogenesis of EPCs. This study aimed to investigate whether S1P induces the migration and angiogenesis of EPCs through the S1PR3/PDGFR-β/Akt signaling pathway. We used the Transwell system and the Chemicon In Vitro Angiogenesis Assay Kit with CAY10444 (an S1PR3 antagonist), AG1295 (a PDGFR kinase inhibitor) and sc-221226 (an Akt inhibitor) to examine the role of the S1PR3/PDGFR-β/Akt pathway in the S1Pinduced migration and angiogenesis of EPCs.

  13. Up-regulation of FGFBP1 signaling contributes to miR-146a-induced angiogenesis in human umbilical vein endothelial cells

    PubMed Central

    Zhu, Hua-yu; Bai, Wen-dong; Liu, Jia-qi; Zheng, Zhao; Guan, Hao; Zhou, Qin; Su, Lin-lin; Xie, Song-tao; Wang, Yun-chuan; Li, Jun; Li, Na; Zhang, Yi-jie; Wang, Hong-tao; Hu, Da-hai

    2016-01-01

    Recent microRNA expression profiling studies have documented an up-regulation of miR-146a in several angiogenesis models. However, the underlying molecular mechanism of miR-146a in the angiogenic activity of endothelial cells has not been clearly elucidated. The present study was aimed to evaluate whether miR-146a promotes angiogenesis in HUVECs by increasing FGFBP1 expression via directly targeting CREB3L1. miR-146a was over expressed in HUVECs via lentiviral-miR-146a. Expression profiling analysis found miR-146a over expression resulted in up-regulation of angiogenesis and cytokine activity associated genes including FGF2. Further a combination of bioinformatics and experimental analyses demonstrated the CREB3L1 as a bona fide functional target of miR-146a during angiogenesis. Moreover, CREB3L1 inhibited luciferase expression from FGFBP1 promoter containing only CRE elements. Furthermore, CREB3L1 inhibited FGFBP1 expression by binding to two CRE-like sites located at approximately −1780–1777 and −868–865 bp relative to the FGFBP1 transcription start site. Additionally, ectopic expression of CREB3L1 decreased miR-146a-induced FGF2 secretion. These findings indicate that the miR-146a-CREB3L1-FGFBP1 signaling axis plays an important role in the regulation of angiogenesis in HUVECs and provides a potential therapeutic target for anti-angiogenic therapeutics. PMID:27121396

  14. Lycopene Enriched Tomato Extract Inhibits Hypoxia, Angiogenesis, and Metastatic Markers in early Stage N-Nitrosodiethylamine Induced Hepatocellular Carcinoma.

    PubMed

    Bhatia, Nisha; Gupta, Prachi; Singh, Baljinder; Koul, Ashwani

    2015-01-01

    Targeting altered pathways during initial stage of hepatocellular carcinoma (HCC) development is viewed as an effective and promising strategy to control this disease. Present study investigated the potential effect of lycopene-enriched tomato extract (LycT) on hypoxia-induced factor (HIF)-1α, HOX, VEGF, CD31, matrix metalloproteinase (MMP)-2, MMP-9, and alpha fetoprotein (AFP)expression during initial stages of N-nitrosodiethylamine (NDEA) induced HCC. Female Balb/c mice (8-10 wk) were assigned to 4 groups: control, NDEA (200 mg NDEA i.p./kg body weight, cumulative), LycT (5 mg lycopene orally/kg body weight; 3 times a week), and LycT + NDEA. LycT treatment began 2 wk before NDEA administration and continued until the end of the 10 wk study. The onset of HCC by NDEA was associated with significant alteration in serum biochemical markers [alanine transaminases (ALT), aspartate transaminases (AST), and alkaline phosphatases (ALP), lactate dehydrogenase (LDH), urea, A/G ratio, and bilirubin] and in liver histopathology. LycT treatment significantly reduced the levels of these markers. LycT treatment to NDEA mice also led to significant reduction in protein levels of AFP, HIF-1α, VEGF, CD31, MMP-2, and MMP-9 in comparison with NDEA group alone. These parameters are important biomarkers of hypoxia, angiogenesis, and metastasis, which reflect the advanced disease stage. The study provides evidence that prophylactic dietary supplementation with LycT may counteract HCC progression and/or protect against disease onset. PMID:26474105

  15. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice.

    PubMed

    Lee, Hyunghee; Park, Dongmin; Yoon, Michung

    2013-03-01

    Adipose tissue growth and development are thought to be associated with angiogenesis and extracellular matrix remodeling. Because ginseng has been shown to inhibit angiogenesis and matrix metalloproteinase (MMP) activity, we hypothesized that adipose tissue growth and obesity can be regulated by Korean ginseng (Panax ginseng C.A. Meyer). Wild-type C57BL/6J mice were fed for 8 weeks with a low fat diet, a high fat diet (HFD), or HFD supplemented with 0.5% or 5% Korean red ginseng extract. We measured body weight, adipose tissue mass, food intake, MMP activity, and the expression of genes involved in angiogenesis and MMPs. Administering ginseng to HFD-induced obese mice produced reductions in body weight and adipose tissue mass compared with untreated counterparts. Ginseng treatment decreased blood vessel density and MMP activity in adipose tissues. Ginseng also reduced mRNA levels of angiogenic factors (e.g., VEGF-A and FGF-2) and MMPs (e.g., MMP-2 and MMP-9), whereas it increased mRNA levels of angiogenic inhibitors (e.g., TSP-1, TIMP-1, and TIMP-2) in adipose tissues. These results demonstrate that ginseng effectively reduces adipose tissue mass and prevents obesity in diet-induced obese mice and that this process may be mediated in part through the anti-angiogenic actions of ginseng.

  16. Extract of Meretrix meretrix Linnaeus induces angiogenesis in vitro and activates endothelial nitric oxide synthase

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Wei, Jianteng; Wang, Hui; Ding, Lili; Zhang, Yuyan; Lin, Xiukun

    2012-09-01

    Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine. The angiogentic activity of the extract of M. meretrix was investigated in this study, using human umbilical vein endothelial cells (HUVECs). Extract of M. meretrix Linnaeus (AFG-25) was prepared with acetone and ethanol precipitation, and further separated by Sephadex G-25 column. The results show that AFG-25 promoted proliferation, migration, and capillary-like tube formation in HUVECs, and in the presence of eNOS inhibitor NMA, the tube formation induced by AFG-25 is inhibited significantly. Moreover, AFG-25 could also promote the activation of endothelial nitric oxide synthase (eNOS) and the resultant elevation of nitric oxide (NO) production. The results suggested that M. meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.

  17. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors

    PubMed Central

    de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia

    2015-01-01

    Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538

  18. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  19. Angiogenesis induced by prenatal ischemia predisposes to periventricular hemorrhage during postnatal mechanical ventilation

    PubMed Central

    Tosun, Cigdem; Hong, Caron; Carusillo, Brianna; Ivanova, Svetlana; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    BACKGROUND Three risk factors are associated with hemorrhagic forms of encephalopathy of prematurity (EP): (i) prematurity, (ii) in utero ischemia (IUI) or perinatal ischemia, and (iii) mechanical ventilation. We hypothesized that IUI would induce an angiogenic response marked by activation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), the latter degrading vascular basement membrane and increasing vulnerability to raised intravenous pressure during positive pressure mechanical ventilation. METHODS We studied a rat model of hemorrhagic-EP characterized by periventricular hemorrhages in which a 20-min episode of IUI is induced at E19, pups are born naturally at E21–22, and on P0, are subjected to a 20-min episode of positive pressure mechanical ventilation. Tissues were studied by H&E staining, immunolabeling, immunoblot and zymography. RESULTS Mechanical ventilation of rat pups 2–3 days after 20-min IUI caused widespread hemorrhages in periventricular tissues. IUI resulted in upregulation of VEGF and MMP-9. Zymography confirmed significantly elevated gelatinase activity. MMP-9 activation was accompanied by severe loss of MMP-9 substrates, collagen IV and laminin, in microvessels in periventricular areas. CONCLUSION Our findings are consistent with the hypothesis that positive pressure mechanical ventilation of the newborn in the context of recent prenatal ischemia/hypoxia can predispose to periventricular hemorrhages. PMID:25665055

  20. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  1. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    SciTech Connect

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  2. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-01-01

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  3. Arsenic induces the expressions of angiogenesis-related factors through PI3K and MAPK pathways in SV-HUC-1 human uroepithelial cells.

    PubMed

    Wang, Fei; Liu, Shengnan; Xi, Shuhua; Yan, Ling; Wang, Huihui; Song, Yingli; Sun, Guifan

    2013-10-01

    Arsenic, a well-established human carcinogen, can cause various types of cancers, including bladder cancer. Angiogenesis is a key event for tumor initiation. In this study, several important angiogenesis related factors, including cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α), were up-regulated and PI3K/AKT and MAPK signal pathways were activated in human uroepithelial cell line (SV-HUC-1) treated with NaAsO2 (0, 1, 2, 4, 8 or 10μM) for 24h. Arsenite-induced HIF-1α, VEGF and COX-2 expressions were decreased by PI3K inhibitors. Blockage of the ERK1/2, p38 and JNK down-regulated the VEGF level, while ERK1/2 and p38 inhibitors were more effective than JNK in attenuating arsenite-induced COX-2 expression. HIF-1α expression was only decreased by ERK1/2 inhibitor. It was found that superoxide (O2(-)) generation was involved in arsenite-induced the activation of MAPK and PI3K pathways, which led to the HIF-1α, COX-2 and VEGF overexpressions. In conclusion, arsenite-induced COX-2, VEGF and HIF-1α expressions, mediated partially by reactive oxygen species (ROS), were regulated by MAPK and PI3K/AKT signaling pathways in human uroepithelial cells.

  4. Arsenic induces the expressions of angiogenesis-related factors through PI3K and MAPK pathways in SV-HUC-1 human uroepithelial cells.

    PubMed

    Wang, Fei; Liu, Shengnan; Xi, Shuhua; Yan, Ling; Wang, Huihui; Song, Yingli; Sun, Guifan

    2013-10-01

    Arsenic, a well-established human carcinogen, can cause various types of cancers, including bladder cancer. Angiogenesis is a key event for tumor initiation. In this study, several important angiogenesis related factors, including cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α), were up-regulated and PI3K/AKT and MAPK signal pathways were activated in human uroepithelial cell line (SV-HUC-1) treated with NaAsO2 (0, 1, 2, 4, 8 or 10μM) for 24h. Arsenite-induced HIF-1α, VEGF and COX-2 expressions were decreased by PI3K inhibitors. Blockage of the ERK1/2, p38 and JNK down-regulated the VEGF level, while ERK1/2 and p38 inhibitors were more effective than JNK in attenuating arsenite-induced COX-2 expression. HIF-1α expression was only decreased by ERK1/2 inhibitor. It was found that superoxide (O2(-)) generation was involved in arsenite-induced the activation of MAPK and PI3K pathways, which led to the HIF-1α, COX-2 and VEGF overexpressions. In conclusion, arsenite-induced COX-2, VEGF and HIF-1α expressions, mediated partially by reactive oxygen species (ROS), were regulated by MAPK and PI3K/AKT signaling pathways in human uroepithelial cells. PMID:23968725

  5. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1α: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma.

    PubMed

    Herzog, Julia; Ehrlich, Sandra M; Pfitzer, Lisa; Liebl, Johanna; Fröhlich, Thomas; Arnold, Georg J; Mikulits, Wolfgang; Haider, Christine; Vollmar, Angelika M; Zahler, Stefan

    2016-05-10

    We recently introduced CDK5 as target in HCC, regulating DNA damage response. Based on this and on our previous knowledge about vascular effects of CDK5, we investigated the role of CDK5 in angiogenesis in HCC, one of the most vascularized tumors. We put a special focus on the transcription factor HIF-1α, a master regulator of tumor angiogenesis.The interaction of CDK5 with HIF-1α was tested by Western blot, PCR, reporter gene assay, immunohistochemistry, kinase assay, co-immunoprecipitation, mass spectrometry, and mutation studies. In vivo, different murine HCC models, were either induced by diethylnitrosamine or subcutaneous injection of HUH7 or HepG2 cells. The correlation of vascular density and CDK5 was assessed by immunostaining of a microarray of liver tissues from HCC patients.Inhibition of CDK5 in endothelial or HCC cells reduced HIF-1α levels in vitro and in vivo, and transcription of HIF-1α target genes (VEGFA, VEGFR1, EphrinA1). Mass spectrometry and site directed mutagenesis revealed a stabilizing phosphorylation of HIF-1α at Ser687 by CDK5. Vascular density was decreased in murine HCC models by CDK5 inhibition.In conclusion, inhibiting CDK5 is a multi-modal systemic approach to treat HCC, hitting angiogenesis, as well as the tumor cells themselves. PMID:27027353

  6. The constitutive level of vascular endothelial growth factor (VEGF) is more important than hypoxia-induced VEGF up-regulation in the angiogenesis of human melanoma xenografts

    PubMed Central

    Danielsen, T; Rofstad, E K

    2000-01-01

    Angiogenesis of tumours might develop as a result of environmental conditions, such as hypoxia, and/or as a result of genetic alterations specific for tumour cells. The relative contributions of these mechanisms were investigated by comparing the in vivo expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) to the hypoxic fraction, the angiogenic potential and the vascular density of four human melanoma lines (A-07, D-12, R-18, U-25) grown intradermally in Balb/c nu/nu mice. VEGF expression, bFGF expression and expression of pimonidazole, a marker of hypoxic cells, were investigated by immunohistochemistry. An association between high VEGF and bFGF expression and high angiogenic potential was detected, suggesting an important role for VEGF/bFGF in the angiogenesis of melanomas. High VEGF/bFGF expression was also related to low hypoxic fraction and high vascular density. Thus, the constitutive, genetically determined level of VEGF was probably more important than hypoxia-induced upregulation in the angiogenesis of the melanoma xenografts. © 2000 Cancer Research Campaign PMID:10789719

  7. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1α: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma

    PubMed Central

    Herzog, Julia; Ehrlich, Sandra M.; Pfitzer, Lisa; Liebl, Johanna; Fröhlich, Thomas; Arnold, Georg J.; Mikulits, Wolfgang; Haider, Christine; Vollmar, Angelika M.; Zahler, Stefan

    2016-01-01

    We recently introduced CDK5 as target in HCC, regulating DNA damage response. Based on this and on our previous knowledge about vascular effects of CDK5, we investigated the role of CDK5 in angiogenesis in HCC, one of the most vascularized tumors. We put a special focus on the transcription factor HIF-1α, a master regulator of tumor angiogenesis. The interaction of CDK5 with HIF-1α was tested by Western blot, PCR, reporter gene assay, immunohistochemistry, kinase assay, co-immunoprecipitation, mass spectrometry, and mutation studies. In vivo, different murine HCC models, were either induced by diethylnitrosamine or subcutaneous injection of HUH7 or HepG2 cells. The correlation of vascular density and CDK5 was assessed by immunostaining of a microarray of liver tissues from HCC patients. Inhibition of CDK5 in endothelial or HCC cells reduced HIF-1α levels in vitro and in vivo, and transcription of HIF-1α target genes (VEGFA, VEGFR1, EphrinA1). Mass spectrometry and site directed mutagenesis revealed a stabilizing phosphorylation of HIF-1α at Ser687 by CDK5. Vascular density was decreased in murine HCC models by CDK5 inhibition. In conclusion, inhibiting CDK5 is a multi-modal systemic approach to treat HCC, hitting angiogenesis, as well as the tumor cells themselves. PMID:27027353

  8. Selenium Induces an Anti-tumor Effect Via Inhibiting Intratumoral Angiogenesis in a Mouse Model of Transplanted Canine Mammary Tumor Cells.

    PubMed

    Li, Wenyu; Guo, Mengyao; Liu, Yuzhu; Mu, Weiwei; Deng, Ganzhen; Li, Chengye; Qiu, Changwei

    2016-06-01

    Selenium (Se) has been widely reported to possess anti-tumor effects. Angiogenesis is the formation of new blood vessels and is required to supply oxygen, nutrients, and growth factors for tumor growth, progression, and metastasis. To explore whether the anti-tumor effect of Se was associated with angiogenesis in vivo, we studied the effects of sodium selenite (Sel) and methylseleninic acid (MSA) on tumors induced by canine mammary tumor cells (CMT1211) in mice; cyclophosphamide (CTX) served as a positive control. The results showed that the Se content was significantly increased in the Sel and MSA groups. Se significantly inhibited the tumor weights and volumes. Large necrotic areas and scattered and abnormal small necrotic areas were observed in the Se treatment group. Immunofluorescence double staining showed a reduction in the microvessel density (MVD) and increment in the vessel maturation index (VMI) compared with the untreated control group. As expected, the protein and mRNA levels of the angiogenesis factors angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) were decreased in the Se-treated tumors by IHC, as shown by western blotting and RT-QPCR. We also found that organic Se MSA provided stronger inhibition of tumor growth compared with inorganic sodium selenite (Sel). Altogether, our results indicated that Se exerted anti-tumor effects in vivo at least partially by inhibiting angiogenic factors. PMID:26507439

  9. Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro and in Zebrafish Embryos In Vivo via Activation of the ERK Signaling Pathway

    PubMed Central

    Wu, Fei; Song, Haibo; Zhang, Yuan; Zhang, Yuzhu; Mu, Qian; Jiang, Miao; Wang, Fang; Zhang, Wen; Li, Liang; Li, Huanjie; Wang, Yunshan; Zhang, Mingxiang; Li, Shiwu; Yang, Lijun; Meng, Yan; Tang, Dongqi

    2015-01-01

    As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway. PMID:26241478

  10. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells.

    PubMed

    Legeay, Samuel; Clere, Nicolas; Hilairet, Grégory; Do, Quoc-Tuan; Bernard, Philippe; Quignard, Jean-François; Apaire-Marchais, Véronique; Lapied, Bruno; Faure, Sébastien

    2016-01-01

    The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation. PMID:27345502

  11. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    PubMed

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.

  12. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells

    PubMed Central

    Legeay, Samuel; Clere, Nicolas; Hilairet, Grégory; Do, Quoc-Tuan; Bernard, Philippe; Quignard, Jean-François; Apaire-Marchais, Véronique; Lapied, Bruno; Faure, Sébastien

    2016-01-01

    The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation. PMID:27345502

  13. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    PubMed

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects. PMID:24497508

  14. VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate).

    PubMed

    Amsden, Brian G; Timbart, Laurianne; Marecak, Dale; Chapanian, Rafi; Tse, M Yat; Pang, Stephen C

    2010-07-14

    The purpose of this study was to examine the potential of low molecular weight poly(trimethylene carbonate) for localized vascular endothelial growth factor (VEGF) delivery. Poly(trimethylene carbonate) of various molecular weights was prepared by ring-opening polymerization initiated by 1-octanol. The resultant polymers were liquid at room temperature with low glass transition temperatures and viscosities at 37 degrees C that permitted their injection through an 18 (1/2) G 1.5'' needle. Particles consisting of VEGF co-lyophilized with trehalose were mixed into the polymers and the rate of release of VEGF was assessed in vitro. With a 1% particle loading, VEGF was released from the polymer at a rate of 20 ng/day over a period of 3 weeks. This release behavior was independent of the molecular weight of polymer used. Increasing the VEGF content in the lyophilized particles did not increase the VEGF release rate, an effect attributed to the solubility limit of VEGF in the solution formed upon dissolution of the particles. The VEGF released retained its bioactivity at greater than 95% of that of as-lyophilized VEGF, as assessed using a human aortic endothelial cell proliferation assay. This high bioactivity was supported by in vivo release experiments, wherein VEGF containing polymer implants induced the generation of significantly greater numbers of blood vessels towards the polymer implant than controls. The blood vessels did not remain stable and were reduced in number by three weeks, due to the unsustained and low concentration of VEGF released. This formulation approach, of using a low viscosity polymer delivery vehicle, is potentially useful for localized delivery of acid-sensitive proteins, such as VEGF. PMID:20381557

  15. Selective Activation of the Prostaglandin E2 Circuit in Chronic Injury-Induced Pathologic Angiogenesis

    PubMed Central

    Liclican, Elvira L.; Nguyen, Van; Sullivan, Aaron B.

    2010-01-01

    Purpose. Cyclooxygenase (COX)-derived prostaglandin E2 (PGE2) is a prevalent and established mediator of inflammation and pain in numerous tissues and diseases. Distribution and expression of the four PGE2 receptors (EP1-EP4) can dictate whether PGE2 exerts an anti-inflammatory or a proinflammatory and/or a proangiogenic effect. The role and mechanism of endogenous PGE2 in the cornea, and the regulation of EP expression during a dynamic and complex inflammatory/reparative response remain to be clearly defined. Methods. Chronic or acute self-resolving inflammation was induced in mice by corneal suture or epithelial abrasion, respectively. Reepithelialization was monitored by fluorescein staining and neovascularization quantified by CD31/PECAM-1 immunofluorescence. PGE2 formation was analyzed by lipidomics and polymorphonuclear leukocyte (PMN) infiltration quantified by myeloperoxidase activity. Expression of EPs and inflammatory/angiogenic mediators was assessed by real-time PCR and immunohistochemistry. Mice eyes were treated with PGE2 (100 ng topically, three times a day) for up to 7 days. Results. COX-2, EP-2, and EP-4 expression was upregulated with chronic inflammation that correlated with increased corneal PGE2 formation and marked neovascularization. In contrast, acute abrasion injury did not alter PGE2 or EP levels. PGE2 treatment amplified PMN infiltration and the angiogenic response to chronic inflammation but did not affect wound healing or PMN infiltration after epithelial abrasion. Exacerbated inflammatory neovascularization with PGE2 treatment was independent of the VEGF circuit but was associated with a significant induction of the eotaxin-CCR3 axis. Conclusions. These findings place the corneal PGE2 circuit as an endogenous mediator of inflammatory neovascularization rather than general inflammation and demonstrate that chronic inflammation selectively regulates this circuit at the level of biosynthetic enzyme and receptor expression. PMID:20610836

  16. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats.

    PubMed

    Qi, Xin; Zhang, Jieyuan; Yuan, Hong; Xu, Zhengliang; Li, Qing; Niu, Xin; Hu, Bin; Wang, Yang; Li, Xiaolin

    2016-01-01

    Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by

  17. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  18. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats

    PubMed Central

    Qi, Xin; Zhang, Jieyuan; Yuan, Hong; Xu, Zhengliang; Li, Qing; Niu, Xin; Hu, Bin; Wang, Yang; Li, Xiaolin

    2016-01-01

    Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by

  19. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions.

  20. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. PMID:26638864

  1. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer.

    PubMed

    Jiao, Demin; Wang, Jian; Lu, Wei; Tang, Xiali; Chen, Jun; Mou, Hao; Chen, Qing-Yong

    2016-01-01

    The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways. PMID:27525306

  2. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer

    PubMed Central

    Jiao, Demin; Wang, Jian; Lu, Wei; Tang, Xiali; Chen, Jun; Mou, Hao; Chen, Qing-yong

    2016-01-01

    The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways. PMID:27525306

  3. Acetyl-11-keto-β-boswellic acid reduces retinal angiogenesis in a mouse model of oxygen-induced retinopathy.

    PubMed

    Lulli, Matteo; Cammalleri, Maurizio; Fornaciari, Irene; Casini, Giovanni; Dal Monte, Massimo

    2015-06-01

    Retinal diseases characterized by pathologic retinal angiogenesis are the leading causes of blindness worldwide. Although therapies directed toward vascular endothelial growth factor (VEGF) represent a significant step forward in the treatment of proliferative retinopathies, further improvements are needed. In the last few years, an intense research activity has focused around the use of herbal and traditional natural medicines as an alternative for slowing down the progression of proliferative retinopathies. In the present study, we investigated the antiangiogenic effects of acetyl-11-keto-β-boswellic acid (AKBA), one of the active principles derived from the plant Boswellia serrata, used in Ayurvedic systems of medicine. We studied the antiangiogenic properties of AKBA using the mouse model of oxygen-induced retinopathy (OIR), which mimics the neovascular response seen in human retinopathy of prematurity. We first evaluated the effects of subcutaneously administered AKBA on the expression/activity of proteins which are known to play a role in the OIR model. In the retina, AKBA increased expression and activity of Src homology region 2 domain-containing phosphatase 1 and reduced the phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) as well as VEGF expression and VEGF receptor (VEGFR)-2 phosphorylation. Likely as a result of these effects, AKBA significantly reduced retinal neovascularization in OIR mice without affecting retinal cell survival and retinal function. Using retinal explants cultured in hypoxia and an activator of STAT3 phosphorylation, we showed that the AKBA-induced inhibition of VEGFR-2 phosphorylation is likely to be mediated by a mechanism depending on an SHP-1/STAT3/VEGF axis. In the OIR model, neovascularization results from the activation of retinal endothelial cells, therefore we evaluated whether AKBA affected the angiogenic response of human retinal microvascular endothelial cells (HRMECs

  4. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial–mesenchymal transition-induced angiogenesis

    PubMed Central

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial–mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further

  5. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.

    PubMed

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial-mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further

  6. Angiogenesis opens a way for Chinese medicine to treat stroke.

    PubMed

    Yang, A-li; Liang, Qing-hua; Cui, Han-jin; Zhou, Hua-jun; Luo, Jie-kun; Tang, Tao

    2013-11-01

    Based on the pathophysiology of the brain, advance in angiogenesis induced by stroke, and evidences of Chinese-medicine-mediated angiogenesis, the possibility to study the stroke-treating mechanism of Chinese medicine in angiogenesis was discussed. And regarding our previous work on angiogenesis modulated by qi-tonifying and stasis-eliminating therapy following intracerebral hemorrhage, we proposed some questions, which should be taken into account in the further work. PMID:24170630

  7. Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin

    PubMed Central

    Ud-Din, Sara; Sebastian, Anil; Giddings, Pamela; Colthurst, James; Whiteside, Sigrid; Morris, Julie; Nuccitelli, Richard; Pullar, Christine; Baguneid, Mo; Bayat, Ardeshir

    2015-01-01

    Angiogenesis is critical for wound healing. Insufficient angiogenesis can result in impaired wound healing and chronic wound formation. Electrical stimulation (ES) has been shown to enhance angiogenesis. We previously showed that ES enhanced angiogenesis in acute wounds at one time point (day 14). The aim of this study was to further evaluate the role of ES in affecting angiogenesis during the acute phase of cutaneous wound healing over multiple time points. We compared the angiogenic response to wounding in 40 healthy volunteers (divided into two groups and randomised), treated with ES (post-ES) and compared them to secondary intention wound healing (control). Biopsy time points monitored were days 0, 3, 7, 10, 14. Objective non-invasive measures and H&E analysis were performed in addition to immunohistochemistry (IHC) and Western blotting (WB). Wound volume was significantly reduced on D7, 10 and 14 post-ES (p = 0.003, p = 0.002, p<0.001 respectively), surface area was reduced on days 10 (p = 0.001) and 14 (p<0.001) and wound diameter reduced on days 10 (p = 0.009) and 14 (p = 0.002). Blood flow increased significantly post-ES on D10 (p = 0.002) and 14 (p = 0.001). Angiogenic markers were up-regulated following ES application; protein analysis by IHC showed an increase (p<0.05) in VEGF-A expression by ES treatment on days 7, 10 and 14 (39%, 27% and 35% respectively) and PLGF expression on days 3 and 7 (40% on both days), compared to normal healing. Similarly, WB demonstrated an increase (p<0.05) in PLGF on days 7 and 14 (51% and 35% respectively). WB studies showed a significant increase of 30% (p>0.05) on day 14 in VEGF-A expression post-ES compared to controls. Furthermore, organisation of granulation tissue was improved on day 14 post-ES. This randomised controlled trial has shown that ES enhanced wound healing by reduced wound dimensions and increased VEGF-A and PLGF expression in acute cutaneous wounds, which further substantiates the role of ES in up

  8. Therapeutic Angiogenesis Using Local Perivascular and Pericardial Delivery.

    PubMed

    Laham; Post; Sellke; Simons

    2000-08-01

    Therapeutic angiogenesis is a potential new treatment strategy that promises to grow new blood vessels to the ischemic myocardium in patients with ischemic heart disease. Despite its investigation in more than 550 patients with ischemic heart disease, the concept of clinical therapeutic angiogenesis remains a theoretic one with more questions than answers. This is due in part to a poor understanding of the fundamental mechanisms of adult collateralization and growth factor-induced angiogenesis, a poor understanding of the relative importance of large epicardial feeding collaterals versus intramyocardial neovascularization, and limited data concerning the best angiogenic cytokine, the best delivery modality, and the need for sustained exposure to that cytokine. This article discusses the available data on local perivascular delivery and pericardial delivery as they pertain to therapeutic angiogenesis. These delivery strategies have several characteristics that may make them ideal as adjuncts for coronary artery bypass surgery (local perivascular delivery) or in noninstrumented pericardium (pericardial delivery). They also have the theoretic advantage of affecting epicardial vessels and potentially promoting epicardial feeding collaterals.

  9. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    SciTech Connect

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  10. Silencing of Transient Receptor Potential Channel 4 Alleviates oxLDL-induced Angiogenesis in Human Coronary Artery Endothelial Cells by Inhibition of VEGF and NF-κB

    PubMed Central

    Qin, Wen; Xie, Wei; Xia, Ning; He, Qinglin; Sun, Tianwei

    2016-01-01

    Background Transient receptor potential channel 4 (TRPC4) plays central roles in endothelial cell function. The aim of this study was to investigate the silencing effects of TRPC4 on oxidized low-density lipoprotein (oxLDL)-induced angiogenesis in human coronary artery endothelial cells (HCAECs), as well as the underlying molecular mechanism involved in this process. Material/Methods HCAECs were transfected with small interfering RNA (siRNA) targeting TRPC4 (TRPC4-siRNA) or with a negative control (NC)-siRNA. The expression of TRPC4 was confirmed by real-time polymerase chain reaction (RT-PCR) and Western blotting. After the siRNA transfection, oxLDL was added to the medium. Cell proliferation, migration, and in vitro angiogenesis were determined by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), Transwell assay and scratch-wound assay, respectively, and tube formation on Matrigel. Expression of vascular endothelial growth factor (VEGF) and nuclear factor (NF)-κB p65 were assessed by Western blotting. Results Both the mRNA and protein levels of TRPC4 were significantly reduced by transfection with TRPC4-siRNA compared to the control group or NC-siRNA group (P<0.05). Silencing of TRPC4 significantly decreased the cell proliferation, migration, and tube formation (all P<0.05). Furthermore, the expression levels of VEGF and NF-κB p65 were markedly lowered by silencing of TRPC4 in HCAECs. Conclusions These results suggest that silencing of TRPC4 alleviates angiogenesis induced by oxLDL in HCAECs through inactivation of VEGF and NF-κB. Suppression of TRPC4 might be an alternative therapeutic strategy for atherosclerotic neovascularization. PMID:26999308

  11. Influence of Exposure to Chronic Persistent Low-Dose Ionizing Radiation on the Tumor Biology of Clear-Cell Renal-Cell Carcinoma. An Immunohistochemical and Morphometric Study of Angiogenesis and Vascular Related Factors.

    PubMed

    Ruiz-Saurí, Amparo; Valencia-Villa, Gerardo; Romanenko, Alina; Pérez, Jesús; García, Raúl; García, Heydi; Benavent, José; Sancho-Tello, María; Carda, Carmen; Llombart-Bosch, Antonio

    2016-10-01

    Increased angiogenesis is related to boosted growth and malignancy in carcinomas. "Chronic Persistent Low-Dose Ionizing Radiation" (CPLDIR) exposure increases incidence and aggressive behavior of clear-cell renal-cell carcinoma (CCRCC). The aim was to study the biology of angiogenesis, including microvessel density (MVD), in human clear-cell renal-cell carcinomas (CCRCC) originating from a radio-contaminated geographical area (Ukraine) and to compare with similar tumors diagnosed in non-contaminated regions of Europe (Spain, Valencia) and Latin America (Colombia, Barranquilla). MVD was comparatively examined in 124 patients diagnosed with CCRCC from three geographical areas by means of digital micro-imaging and computerized analysis. Additionally, 50 adult normal kidneys were used for controls (autopsy kidneys from Valencia and Barranquilla). Furthermore, an immunohistochemical study of several vascular related growth factors was undertaken using a similar methodology. MVD as well as VEFG are the most discriminating factors associated with an aggressive behavior of CCRCC. Their expression increased in proportion to the level of exposure to chronic low-dose ionizing radiation in Ukrainian patients in the 25 years since the Chernobyl accident substantiated by comparison with the two control groups of renal carcinomas present in non-irradiated areas (Spain and Colombia). No major biological differences relating to angiogenesis appear to exist between the CCRCC diagnosed in two distant geographical areas of the world. HIF-1α expression was similar in all groups, with no statistical significance. Present findings demonstrate the existence of a significant relationship between MVD and VEGF in CCRCC: an increased expression of VEGF is associated with a high level of angiogenesis. PMID:27156071

  12. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism

    SciTech Connect

    Meng Dan; Wang Xin; Chang Qingshan; Hitron, Andrew; Zhang Zhuo; Xu Mei; Chen Gang; Luo Jia; Jiang Binghua; Fang Jing; Shi Xianglin

    2010-05-01

    Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.

  13. Sound induced vertigo: superior canal dehiscence resulting from blast exposure.

    PubMed

    Mehlenbacher, Adam; Capehart, Bruce; Bass, Dale; Burke, James R

    2012-04-01

    Barotrauma is common in modern warfare. We present the first description of sound induced vertigo caused by superior canal dehiscence (SCD) precipitated by blast exposure. Patients who complain of balance or visual changes after military or terrorist blast exposure should be evaluated for SCD.

  14. Apurinic/apyrimidinic endonuclease 1 induced upregulation of fibroblast growth factor 2 and its receptor 3 induces angiogenesis in human osteosarcoma cells.

    PubMed

    Ren, Tao; Qing, Yi; Dai, Nan; Li, Mengxia; Qian, Chengyuan; Yang, Yuxin; Cheng, Yi; Li, Zheng; Zhang, Shiheng; Zhong, Zhaoyang; Wang, Dong

    2014-02-01

    Tumor angiogenesis contributes to inferior prognosis in osteosarcoma. Apurinic/apyrimidinic endonuclease 1 (APE1) and fibroblast growth factor 2 (FGF2) and its receptor 3 (FGFR3) signaling pathway plays an important role in the angiogenic process. In this study we observed that high expression of APE1, FGF2 and FGFR3, and microvessel density are positively correlated with poor prognosis of osteosarcoma patients. Furthermore, the Cox model showed that the tumor size, FGF2 and its receptor 3 (FGFR3), and microvessel density were adverse prognostic factors. Based on our clinical data, and the fact that APE1 is involved in tumor angiogenesis, we hypothesize that it is very likely that APE1 may indirectly promote angiogenesis by upregulating fibroblast FGF2 and FGFR3. Our preliminary data show small interfering RNA-mediated silence of APE1 experiments, which further supports this hypothesis. APE1-small interfering RNA significantly inhibited tumor angiogenesis by downregulating in vitro expression of FGF2 and FGFR3 in human umbilical vein endothelial cells in Matrigel tube formation assay, and further inhibited tumor growth in vivo in a mouse xenograft model. Thus, the proposed APE1-FGF2 and FGFR3 pathway may provide a novel mechanism for regulation of FGF2 and FGFR3 by APE1 in tumor angiogenesis. PMID:24329908

  15. Celecoxib Nanoparticles for Therapeutic Angiogenesis.

    PubMed

    Margulis, Katherine; Neofytou, Evgenios A; Beygui, Ramin E; Zare, Richard N

    2015-09-22

    Controllable induction of blood vessel formation (angiogenesis) presents an important therapeutic goal in ischemic diseases and is also beneficial in various normal physiological processes. In this study, we have shown that nanoparticles of celecoxib, a lipophilic nonsteroidal anti-inflammatory drug, effectively evoke therapeutic angiogenesis in animal models, in both normal and ischemic organs. Celecoxib is widely considered to inhibit angiogenesis, although a recent study suggests that it can instead promote blood vessel growth in cancer cell lines. The hydrophobic nature of this drug necessitates its administration in nanoparticulate form in order to elicit a perceivable pharmacological response. We developed a facile method for nanoparticle formation by solvent extraction from microemulsions in supercritical carbon dioxide. This method exploits a spontaneous formation of nanometric domains within the microemulsion system and their rapid conversion to nanoparticles by supercritical fluid. The resultant nanoparticles were administered subcutaneously to mice in a biocompatible hydrogel, and caused a 4-fold increase in blood vessel count in normally perfused skin compared with drug-free particles. They were at least as effective in inducing angiogenesis as nanoparticles of deferoxamine, a well-established neovascularization promoter. Next, we evaluated their effect on ischemic tissues in murine model of myocardial infarction. We found that celecoxib nanoparticles were able to induce a significant vascularization of ischemic myocardium and hamper the progression of heart failure, which points toward a new approach for treating ischemia.

  16. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells.

    PubMed

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. PMID:25447407

  17. Capsaicin-Induced Activation of p53-SMAR1 Auto-Regulatory Loop Down-Regulates VEGF in Non-Small Cell Lung Cancer to Restrain Angiogenesis

    PubMed Central

    Chakraborty, Samik; Mukherjee, Shravanti; Bhattacharjee, Pushpak; Guha, Deblina; Choudhuri, Tathagata; Chattopadhyay, Samit; Sa, Gaurisankar; Sen, Aparna; Das, Tanya

    2014-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Despite decades of research, the treatment options for lung cancer patients remain inadequate, either to offer a cure or even a substantial survival advantage owing to its intrinsic resistance to chemotherapy. Our results propose the effectiveness of capsaicin in down-regulating VEGF expression in non-small cell lung carcinoma (NSCLC) cells in hypoxic environment. Capsaicin-treatment re-activated p53-SMAR1 positive feed-back loop in these cells to persuade p53-mediated HIF-1α degradation and SMAR1-induced repression of Cox-2 expression that restrained HIF-1α nuclear localization. Such signal-modulations consequently down regulated VEGF expression to thwart endothelial cell migration and network formation, pre-requisites of angiogenesis in tumor micro-environment. The above results advocate the candidature of capsaicin in exclusively targeting angiogenesis by down-regulating VEGF in tumor cells to achieve more efficient and cogent therapy of resistant NSCLC. PMID:24926985

  18. Temperature and angiogenesis: the possible role of mechanical factors in capillary growth.

    PubMed

    Egginton, Stuart

    2002-08-01

    This review examines the effect of prolonged cold exposure on muscle capillary supply in mammals and fishes. In rats and hamsters, the response to a simulated onset of winter is to conserve the microcirculation and maintain a constant capillary to fibre ratio (C:F), implying either an unaltered vacular bed or angiogenesis matched by muscle hyperplasia, while chronic acclimation to low environmental temperature induces a variable degree of muscle atrophy, which in turn increases capillary density (CD). In striped bass and rainbow trout, cold-induced angiogenesis results in an increase in C:F, but also a cold-induced fibre hypertrophy that is accompanied by a powerful angiogenic response such that CD is much less sensitive to changes in fibre size. Endothelial cells can act as mechanotransducers such that angiogenesis may be initiated by changes in their physical environment. It is hypothesised that in mammals, the metabolic consequences of cold exposure increases the luminal shear stress, while in fishes the stimulus for angiogenesis is abluminal stretch following an increase in fibre size.

  19. Vascular endothelial growth factor-induced elimination of the type 1 interferon receptor is required for efficient angiogenesis.

    PubMed

    Zheng, Hui; Qian, Juan; Carbone, Christopher J; Leu, N Adrian; Baker, Darren P; Fuchs, Serge Y

    2011-10-01

    Angiogenesis is stimulated by vascular endothelial growth factor (VEGF) and antagonized by type 1 interferons, including IFN-α/β. On engaging their respective receptors (VEGFR2 and IFNAR), both stimuli activate protein kinase D2 (PKD2) and type 1 IFNs require PKD2 activation and recruitment to IFNAR1 to promote the phosphorylation-dependent ubiquitination, down-regulation, and degradation of the cognate receptor chain, IFNAR1. Data reveal that PKD2 activity is dispensable for VEGF-stimulated down-regulation of VEGFR2. Remarkably, VEGF treatment promotes the recruitment of PKD2 to IFNAR1 as well as ensuing phosphorylation, ubiquitination, and degradation of IFNAR1. In cells exposed to VEGF, phosphorylation-dependent degradation of IFNAR1 leads to an inhibition of type 1 IFN signaling and is required for efficient VEGF-stimulated angiogenesis. Importance of this mechanism for proangiogenic or antiangiogenic responses in cells exposed to counteracting stimuli and the potential medical significance of this regulation are discussed. PMID:21832278

  20. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma

    PubMed Central

    Kayamori, Kou; Katsube, Ken-ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs. PMID:27124156

  1. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis.

    PubMed

    Nijaguna, Mamatha Bangalore; Patil, Vikas; Urbach, Serge; Shwetha, Shivayogi D; Sravani, Kotha; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Marin, Philippe; Santosh, Vani; Somasundaram, Kumaravel

    2015-09-18

    Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

  2. Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway

    PubMed Central

    Yu, Zengyang; Zhang, Tianyu; Gong, Chenyuan; Sheng, Yuchen; Lu, Bin; Zhou, Lingyu; Ji, Lili; Wang, Zhengtao

    2016-01-01

    Erianin is a natural compound found in Dendrobium chrysotoxum Lindl. Diabetic retinopathy (DR) is a serious and common microvascular complication of diabetes. This study aims to investigate the inhibitory mechanism of erianin on retinal neoangiogenesis and its contribution to the amelioration of DR. Erianin blocked high glucose (HG)-induced tube formation and migration in choroid-retinal endothelial RF/6A cells. Erianin inhibited HG-induced vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor 1-alpha (HIF-1α) translocation into nucleus and ERK1/2 activation in RF/6A and microglia BV-2 cells. MEK1/2 inhibitor U0126 blocked HG-induced HIF-1α and ERK1/2 activation in both above two cells. In addition, erianin abrogated VEGF-induced angiogenesis in vitro and in vivo, and also inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and its downstream cRaf-MEK1/2-ERK1/2 and PI3K-AKT signaling pathways in RF/6A cells. Furthermore, erianin reduced the increased retinal vessels, VEGF expression and microglia activation in streptozotocin (STZ)-induced hyperglycemic and oxygen-induced retinopathy (OIR) mice. In conclusion, our results demonstrate that erianin inhibits retinal neoangiogenesis by abrogating HG-induced VEGF expression by blocking ERK1/2-mediated HIF-1α activation in retinal endothelial and microglial cells, and further suppressing VEGF-induced activation of VEGFR2 and its downstream signals in retinal endothelial cells. PMID:27678303

  3. Cadmium exposure induces hematuria in Korean adults

    SciTech Connect

    Han, Seung Seok; Kim, Myounghee; Lee, Su Mi; Lee, Jung Pyo; Kim, Sejoong; Joo, Kwon Wook; Lim, Chun Soo; Kim, Yon Su; Kim, Dong Ki

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  4. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase.

    PubMed

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  5. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase

    PubMed Central

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  6. In situ calcium mapping in the mouse retina via time-of-flight secondary ion mass spectrometry: modulation of retinal angiogenesis by calcium ion in development and oxygen-induced retinopathy.

    PubMed

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Dong Hun; Lee, Tae Geol; Moon, Dae Won; Kim, Kyu-Won

    2008-10-01

    Pathological angiogenesis in the eye is the most common cause of blindness in all age groups. In physiological and pathological cellular processes including angiogenesis, ion homeostasis is greatly affected. This study is to investigate the role of calcium ion in physiological and pathological angiogenesis in the retina, which is based on the results of ion mapping by time-of-flight secondary ion mass spectrometry (TOF-SIMS). We provided that calcium distribution is the most accordant to change with physiological vessel formation of development in the retina and pathological angiogenesis of oxygen-induced retinopathy (OIR), which is supported by ion mapping in retinal tissue using TOF-SIMS. In addition to anti-proliferative and anti-angiogenic activity of the calcium inhibitor on endothelial cells, retinal neovascularization of OIR was effectively inhibited by the calcium inhibitor. Calcium ion could play a crucial role in physiological and pathological angiogenesis in the retina. Moreover, TOF-SIMS could be a good method to simultaneously evaluate the changes of variable ions of the retina in biological processes.

  7. Carbamoylating Activity Associated with the Activation of the Antitumor Agent Laromustine Inhibits Angiogenesis by Inducing ASK1-Dependent Endothelial Cell Death

    PubMed Central

    Praggastis, Alexandra; Li, Yonghao; Zhou, Huanjiao Jenny; He, Yun; Ghazvinian, Roxanne; Cincotta, Dylan J.; Rice, Kevin P.; Min, Wang

    2014-01-01

    The anticancer agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine), upon decomposition in situ, yields methyl isocyanate and the chloroethylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE). 90CE has been shown to kill tumor cells via a proposed mechanism that involves interstrand DNA cross-linking. However, the role of methyl isocyanate in the antineoplastic function of laromustine has not been delineated. Herein, we show that 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine (101MDCE), an analog of laromustine that generates only methyl isocyanate, activates ASK1-JNK/p38 signaling in endothelial cells (EC). We have previously shown that ASK1 forms a complex with reduced thioredoxin (Trx1) in resting EC, and that the Cys residues in ASK1 and Trx1 are critical for their interaction. 101MDCE dissociated ASK1 from Trx1, but not from the phosphoserine-binding inhibitor 14-3-3, in whole cells and in cell lysates, consistent with the known ability of methyl isocyanate to carbamoylate free thiol groups of proteins. 101MDCE had no effect on the kinase activity of purified ASK1, JNK, or the catalytic activity of Trx1. However, 101MDCE, but not 90CE, significantly decreased the activity of Trx reductase-1 (TrxR1). We conclude that methyl isocyanate induces dissociation of ASK1 from Trx1 either directly by carbamoylating the critical Cys groups in the ASK1-Trx1 complex or indirectly by inhibiting TrxR1. Furthermore, 101MDCE (but not 90CE) induced EC death through a non-apoptotic (necroptotic) pathway leading to inhibition of angiogenesis in vitro. Our study has identified methyl isocyanates may contribute to the anticancer activity in part by interfering with tumor angiogenesis. PMID:25068797

  8. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    PubMed

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  9. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    PubMed

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy.

  10. Dietary Proteins and Angiogenesis

    PubMed Central

    Medina, Miguel Ángel; Quesada, Ana R.

    2014-01-01

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis. PMID:24445377

  11. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle.

    PubMed

    Geng, Tuoyu; Li, Ping; Okutsu, Mitsuharu; Yin, Xinhe; Kwek, Jyeyi; Zhang, Mei; Yan, Zhen

    2010-03-01

    Endurance exercise stimulates peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) expression in skeletal muscle, and forced expression of PGC-1alpha changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1alpha is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we showed that endurance exercise-induced expression of mitochondrial enzymes (cytochrome oxidase IV and cytochrome c) and increases of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31)-positive endothelial cells in skeletal muscle, but not IIb-to-IIa fiber-type transformation, were significantly attenuated in muscle-specific Pgc-1alpha knockout mice. Interestingly, voluntary running effectively restored the compromised mitochondrial integrity and superoxide dismutase 2 (SOD2) protein expression in skeletal muscle in Pgc-1alpha knockout mice. Thus, PGC-1alpha plays a functional role in endurance exercise-induced mitochondrial biogenesis and angiogenesis, but not IIb-to-IIa fiber-type transformation in mouse skeletal muscle, and the improvement of mitochondrial morphology and antioxidant defense in response to endurance exercise may occur independently of PGC-1alpha function. We conclude that PGC-1alpha is required for complete skeletal muscle adaptations induced by endurance exercise in mice. PMID:20032509

  12. Correlation of Hypoxia-Inducible Factor 1{alpha} with Angiogenesis in Liver Tumors After Transcatheter Arterial Embolization in an Animal Model

    SciTech Connect

    Liang Bin; Zheng Chuansheng Feng, Gan-Sheng; Wu Hanping; Wang Yong; Zhao Hui; Qian Jun; Liang Huimin

    2010-08-15

    This study sought to determine the expression of hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) and its relation to angiogenesis in liver tumors after transcatheter arterial embolization (TAE) in an animal model. A total of 20 New Zealand White rabbits were implanted with VX2 tumor in liver. TAE-treated group animals (n = 10) received TAE with polyvinyl alcohol particles. Control group animals (n = 10) received sham embolization with distilled water. Six hours or 3 days after TAE, animals were humanely killed, and tumor samples were collected. Immunohistochemical staining was performed to evaluate HIF-1{alpha} and vascular endothelial growth factor (VEGF) protein expression and microvessel density (MVD). Real-time polymerase chain reaction was performed to examine VEGF mRNA levels. The levels of HIF-1{alpha} protein were significantly higher in TAE-treated tumors than those in the control tumors (P = 0.001). HIF-1{alpha} protein was expressed in viable tumor cells that were located predominantly at the periphery of necrotic tumor regions. The levels of VEGF protein and mRNA, and mean MVD were significantly increased in TAE-treated tumors compared with the control tumors (P = 0.001, 0.000, and 0.001, respectively). HIF-1{alpha} protein level was significantly correlated with VEGF mRNA (r = 0.612, P = 0.004) and protein (r = 0.554, P = 0.011), and MVD (r = 0.683, P = 0.001). We conclude that HIF-1{alpha} is overexpressed in VX2 tumors treated with TAE as a result of intratumoral hypoxia generated by the procedure and involved in activation of the TAE-associated tumor angiogenesis. HIF-1{alpha} might represent a promising therapeutic target for antiangiogenesis in combination with TAE against liver tumors.

  13. HIV-1 Tat promotes Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3β signaling pathway.

    PubMed

    Zhou, Feng; Xue, Min; Qin, Di; Zhu, Xiaofei; Wang, Cong; Zhu, Jianzhong; Hao, Tingting; Cheng, Lin; Chen, Xiuying; Bai, Zhiqiang; Feng, Ninghan; Gao, Shou-Jiang; Lu, Chun

    2013-01-01

    Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is etiologically associated with KS, the most common AIDS-related malignancy. KS is characterized by vast angiogenesis and hyperproliferative spindle cells. We have previously reported that HIV-1 Tat can trigger KSHV reactivation and accelerate Kaposin A-induced tumorigenesis. Here, we explored Tat promotion of KSHV vIL-6-induced angiogenesis and tumorigenesis. Tat promotes vIL-6-induced cell proliferation, cellular transformation, vascular tube formation and VEGF production in culture. Tat enhances vIL-6-induced angiogenesis and tumorigenesis of fibroblasts and human endothelial cells in a chicken chorioallantoic membrane (CAM) model. In an allograft model, Tat promotes vIL-6-induced tumorigenesis and expression of CD31, CD34, SMA, VEGF, b-FGF, and cyclin D1. Mechanistic studies indicated Tat activates PI3K and AKT, and inactivates PTEN and GSK-3β in vIL-6 expressing cells. LY294002, a specific inhibitor of PI3K, effectively impaired Tat's promotion of vIL-6-induced tumorigenesis. Together, these results provide the first evidence that Tat might contribute to KS pathogenesis by synergizing with vIL-6, and identify PI3K/AKT pathway as a potential therapeutic target in AIDS-related KS patients.

  14. Prenatal music exposure induces long-term neural effects.

    PubMed

    Partanen, Eino; Kujala, Teija; Tervaniemi, Mari; Huotilainen, Minna

    2013-01-01

    We investigated the neural correlates induced by prenatal exposure to melodies using brains' event-related potentials (ERPs). During the last trimester of pregnancy, the mothers in the learning group played the 'Twinkle twinkle little star'-melody 5 times per week. After birth and again at the age of 4 months, we played the infants a modified melody in which some of the notes were changed while ERPs to unchanged and changed notes were recorded. The ERPs were also recorded from a control group, who received no prenatal stimulation. Both at birth and at the age of 4 months, infants in the learning group had stronger ERPs to the unchanged notes than the control group. Furthermore, the ERP amplitudes to the changed and unchanged notes at birth were correlated with the amount of prenatal exposure. Our results show that extensive prenatal exposure to a melody induces neural representations that last for several months. PMID:24205353

  15. Cell membrane potentials induced during exposure to EMP fields

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  16. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  17. High matrix metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in stroke-prone spontaneously hypertensive rats after cerebral infarction

    PubMed Central

    Hou, Huilian; Zhang, Guanjun; Wang, Hongyan; Gong, Huilin; Wang, Chunbao; Zhang, Xuebin

    2014-01-01

    Basement membrane degradation and blood-brain barrier damage appear after cerebral infarction, severely impacting neuronal and brain functioning; however, the underlying pathogenetic mechanisms remain poorly understood. In this study, we induced cerebral infarction in stroke-prone spontaneously hypertensive rats by intragastric administration of high-sodium water (1.3% NaCl) for 7 consecutive weeks. Immunohistochemical and immunofluorescence assays demonstrated that, compared with the non-infarcted contralateral hemisphere, stroke-prone spontaneously hypertensive rats on normal sodium intake and Wistar-Kyoto rats, matrix metalloproteinase-9 expression, the number of blood vessels with discontinuous collagen IV expression and microvessel density were significantly higher, and the number of continuous collagen IV-positive blood vessels was lower in the infarct border zones of stroke-prone spontaneously hypertensive rats given high-sodium water. Linear correlation analysis showed matrix metalloproteinase-9 expression was positively correlated with the number of discontinuously collagen IV-labeled blood vessels and microvessel density in cerebral infarcts of stroke-prone spontaneously hypertensive rats. These results suggest that matrix metalloproteinase-9 upregulation is associated with increased regional angiogenesis and degradation of collagen IV, the major component of the basal lamina, in stroke-prone spontaneously hypertensive rats with high-sodium water-induced focal cerebral infarction. PMID:25206775

  18. A neurotoxic alcohol exposure paradigm does not induce hepatic encephalopathy.

    PubMed

    Hashimoto, Joel G; Wiren, Kristine M; Wilhelm, Clare J

    2016-01-01

    Alcohol abuse is associated with neurological dysfunction, brain morphological deficits and frank neurotoxicity. Although these disruptions may be a secondary effect due to hepatic encephalopathy, no clear evidence of causality is available. This study examined whether a 72h period of alcohol intoxication known to induce physical dependence, followed by a single withdrawal, was sufficient to induce signs of hepatic encephalopathy in male and female mice. Animals were continuously intoxicated via alcohol vapor inhalation, a procedure previously shown to induce significant neurotoxicity in female mice. At peak synchronized withdrawal (8h following the end of alcohol exposure), blood samples were taken and levels of several liver-regulated markers and brain swelling were characterized. Glutathione levels were also determined in the medial frontal cortex (mFC) and hippocampus. Results revealed elevated levels of cholesterol, albumin, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and decreased levels of blood urea nitrogen and total bilirubin in alcohol-exposed male and female groups compared to controls. Brain water weight was not affected by alcohol exposure, though males tended to have slightly more water weight overall. Alcohol exposure led to reductions in tissue levels of glutathione in both the hippocampus and mFC which may indicate increased oxidative stress. Combined, these results suggest that hepatic encephalopathy does not appear to play a significant role in the neurotoxicity observed following alcohol exposure in this model. PMID:27268733

  19. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28.

  20. Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits.

    PubMed

    Vieira-Brock, Paula L; McFadden, Lisa M; Nielsen, Shannon M; Ellis, Jonathan D; Walters, Elliot T; Stout, Kristen A; McIntosh, J Michael; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2015-12-01

    Repeated methamphetamine (METH) administrations cause persistent dopaminergic deficits resembling aspects of Parkinson's disease. Many METH abusers smoke cigarettes and thus self-administer nicotine; yet few studies have investigated the effects of nicotine on METH-induced dopaminergic deficits. This interaction is of interest because preclinical studies demonstrate that nicotine can be neuroprotective, perhaps owing to effects involving α4β2 and α6β2 nicotinic acetylcholine receptors (nAChRs). This study revealed that oral nicotine exposure beginning in adolescence [postnatal day (PND) 40] through adulthood [PND 96] attenuated METH-induced striatal dopaminergic deficits when METH was administered at PND 89. This protection did not appear to be due to nicotine-induced alterations in METH pharmacokinetics. Short-term (i.e., 21-day) high-dose nicotine exposure also protected when administered from PND 40 to PND 61 (with METH at PND 54), but this protective effect did not persist. Short-term (i.e., 21-day) high-dose nicotine exposure did not protect when administered postadolescence (i.e., beginning at PND 61, with METH at PND 75). However, protection was engendered if the duration of nicotine exposure was extended to 39 days (with METH at PND 93). Autoradiographic analysis revealed that nicotine increased striatal α4β2 expression, as assessed using [(125)I]epibatidine. Both METH and nicotine decreased striatal α6β2 expression, as assessed using [(125)I]α-conotoxin MII. These findings indicate that nicotine protects against METH-induced striatal dopaminergic deficits, perhaps by affecting α4β2 and/or α6β2 expression, and that both age of onset and duration of nicotine exposure affect this protection.

  1. Cerebellar morphological alterations in rats induced by prenatal ozone exposure.

    PubMed

    Rivas-Manzano, P; Paz, C

    1999-11-26

    The present study analyzes the morphological aspects of the cerebellum of rats with prenatal exposure to ozone. A double blind histological and planimetric analysis was performed studying sagittal sections of the anterior cerebellar lobe at postnatal days 0, 12 and 60. Ozone exposed rats showed cerebellar necrotic signs at age 0, diminished area of the molecular layer with Purkinje cells with pale nucleoli and perinucleolar bodies at age 12, and Purkinje cells showing nuclei with unusual clumps of chromatin in the periphery at age 60. We conclude that exposure to high concentrations of ozone during gestation induces permanent cerebellar damage in rats.

  2. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation.

    PubMed

    Zaafar, Dalia K; Zaitone, Sawsan A; Moustafa, Yasser M

    2014-01-01

    Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv-v): metformin (100 or 200 mg/kg) and (vi-vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  3. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  4. Prolonged noise exposure-induced auditory threshold shifts in rats

    PubMed Central

    Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard

    2014-01-01

    Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503

  5. MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway

    PubMed Central

    Wu, Yu-quan; Chen, Jun; Wang, Jian; Tang, Xia-li; Mou, Hao; Hu, Hui-zhen; Song, Jia; Yan, Jie; Wu, Li-jun; Chen, Jianyan; Wang, Zhiwei

    2016-01-01

    MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression. Moreover, we demonstrate that miR-206 directly targets c-Met and inhibits its downstream PI3k/Akt/mTOR signaling pathway. In contrast, miR-206 inhibitors promote the expression of c-Met and activate the PI3k/Akt/mTOR signaling, and this effect could be attenuated by the PI3K inhibitor. Moreover, c-Met overexpression assay further confirms the significant inhibitory effect of miR-206 on HGF-induced EMT, cell migration and invasion. Notably, we also find that miR-206 effectively inhibits HGF-induced tube formation and migration of human umbilical vein endothelial cells (HUVECs), and the mechanism is also related to inhibition of PI3k/Akt/mTOR signaling. Finally, we reveal the inhibitory effect of miR-206 on EMT and angiogenesis in xenograft tumor mice model. Taken together, miR-206 inhibits HGF-induced EMT and angiogenesis in lung cancer by suppressing c-Met/PI3k/Akt/mTOR signaling. Therefore, miR-206 might be a potential target for the therapeutic strategy against EMT and angiogenesis of lung cancer. PMID:26919096

  6. Lead Exposure Induces Telomere Instability in Human Cells

    PubMed Central

    Pottier, Géraldine; Viau, Muriel; Ricoul, Michelle; Shim, Grace; Bellamy, Marion; Cuceu, Corina; Hempel, William M.; Sabatier, Laure

    2013-01-01

    Lead (Pb) is an important environmental contaminant due to its widespread use over many centuries. While it affects primarily every organ system of the body, the most pernicious effects of Pb are on the central nervous system leading to cognitive and behavioral modification. Despite decades of research, the mechanisms responsible for Pb toxicity remain poorly understood. Recent work has suggested that Pb exposure may have consequences on chromosomal integrity as it was shown that Pb exposure leads to the generation of γH2Ax foci, a well-established biomarker for DNA double stranded break (DSB formation). As the chromosomal localization of γH2Ax foci plays an important role in determining the molecular mechanism responsible for their formation, we examined the localization of Pb-induced foci with respect to telomeres. Indeed, short or dysfunctional telomeres (uncapped or damaged telomeres) may be recognized as DSB by the DNA repair machinery, leading to “telomere-Induced Foci” (TIFs). In the current study, we show that while Pb exposure did not increase intra-chromosomal foci, it significantly induced TIFs, leading in some cases, to chromosomal abnormalities including telomere loss. The evidence suggests that these chromosomal abnormalities are likely due to perturbation of telomere replication, in particular on the lagging DNA strand. We propose a mechanism by which Pb exposure leads to the loss of telomere maintenance. As numerous studies have demonstrated a role for telomere maintenance in brain development and tissue homeostasis, our results suggest a possible mechanism for lead-induced neurotoxicity. PMID:23840724

  7. Clock controls angiogenesis

    PubMed Central

    Jensen, Lasse Dahl; Cao, Yihai

    2013-01-01

    Circadian rhythms control multiple physiological and pathological processes, including embryonic development in mammals and development of various human diseases. We have recently, in a developing zebrafish embryonic model, discovered that the circadian oscillation controls developmental angiogenesis. Disruption of crucial circadian regulatory genes, including Bmal1 and Period2, results in marked impairment or enhancement of vascular development in zebrafish. At the molecular level, we show that the circadian regulator Bmal1 directly targets the promoter region of the vegf gene in zebrafish, leading to an elevated expression of VEGF. These findings can reasonably be extended to developmental angiogenesis in mammals and even pathological angiogenesis in humans. Thus, our findings, for the first time, shed new light on mechanisms that underlie circadian clock-regulated angiogenesis. PMID:23324349

  8. Adipose tissue angiogenesis assay.

    PubMed

    Rojas-Rodriguez, Raziel; Gealekman, Olga; Kruse, Maxwell E; Rosenthal, Brittany; Rao, Kishore; Min, Soyun; Bellve, Karl D; Lifshitz, Lawrence M; Corvera, Silvia

    2014-01-01

    Changes in adipose tissue mass must be accompanied by parallel changes in microcirculation. Investigating the mechanisms that regulate adipose tissue angiogenesis could lead to better understanding of adipose tissue function and reveal new potential therapeutic strategies. Angiogenesis is defined as the formation of new capillaries from existing microvessels. This process can be recapitulated in vitro, by incubation of tissue in extracellular matrix components in the presence of pro-angiogenic factors. Here, we describe a method to study angiogenesis from adipose tissue fragments obtained from mouse and human tissue. This assay can be used to define effects of diverse factors added in vitro, as well as the role of endogenously produced factors on angiogenesis. We also describe approaches to quantify angiogenic potential for the purpose of enabling comparisons between subjects, thus providing information on the role of physiological conditions of the donor on adipose tissue angiogenic potential.

  9. Environmental arsenic exposure and microbiota in induced sputum.

    PubMed

    White, Allison G; Watts, George S; Lu, Zhenqiang; Meza-Montenegro, Maria M; Lutz, Eric A; Harber, Philip; Burgess, Jefferey L

    2014-02-21

    Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  10. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    PubMed Central

    White, Allison G.; Watts, George S.; Lu, Zhenqiang; Meza-Montenegro, Maria M.; Lutz, Eric A.; Harber, Philip; Burgess, Jefferey L.

    2014-01-01

    Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota. PMID:24566055

  11. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review.

    PubMed

    Song, Dongmei; Fang, Guoqiang; Greenberg, Harly; Liu, Shu Fang

    2015-12-01

    Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis.

  12. The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling.

    PubMed

    Sun, Dongdong; Liu, Yanan; Yu, Qianqian; Zhou, Yanhui; Zhang, Rong; Chen, Xiaojia; Hong, An; Liu, Jie

    2013-01-01

    Anti-angiogenesis is an effective strategy for cancer treatment because uncontrolled tumor growth depends on tumor angiogenesis and sufficient blood supply. Thus, blocking angiogenesis could be a strategy to arrest tumor growth. The function and mechanism of luminescent ruthenium-modified selenium nanoparticles (Ru-SeNPs) in angiogenesis have not been elucidated to date. Here, we found that Ru-SeNPs significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration and tube formation. Ru-SeNPs was also tested in vivo in the chicken chorioallantoic membrane (CAM) assay and found to inhibit bFGF-treated CAMs development like suramin. Moreover, we showed that Ru-SeNPs inhibited the activations of FGFR1 and its downstream protein kinases, such ErK and AKT. Furthermore, by using fluorescence confocal microscopy and TEM imaging studies, we have demonstrated their cellular uptake and localization within the cytoplasm of HepG2 and HUVEC cells. These findings indicate that Ru-SeNPs inhibits angiogenesis and may be a viable drug candidate in anti-angiogenesis and anticancer therapies. PMID:23059005

  13. Molecular mechanism of manganese exposure-induced dopaminergic toxicity.

    PubMed

    Prabhakaran, K; Ghosh, D; Chapman, G D; Gunasekar, P G

    2008-07-01

    Manganese (Mn) is an essential mineral that is found in varying amounts in aerosols or dust. Exposure to atmospheric Mn at high concentration is a risk factor in humans that can manifest as neuronal degeneration resembling Parkinson's disease (PD). Since the underlying mechanism of Mn and dopamine (DA) interaction-induced cell death remains unclear, here, we showed that Mn exposure alone to mesencephalic cells for 24h induced minimal apoptotic cell death. However, cells pre-exposed to DA for 2h accelerated Mn-induced apoptosis. The vulnerability of Mn-induced apoptotic cell death to DA was determined by measuring lactate dehydrogenase (LDH) and Apoptag TUNEL staining (terminaldeoxynucleotidyl transferase DNA labeling). This was further confirmed by the cell viability assay to support our hypothesis that DA at the cellular level interacts with Mn and causes cells to be more susceptible. Pretreatment with nitric oxide blocker (7-nitroindazole, 7-NI), vitamin E or NF-kappaB inhibitor (SN50) significantly protected the cells from Mn and DA interaction-induced reactive oxygen species (ROS) and apoptosis. Western blot analysis showed that Mn in the presence of DA markedly induced induction of NOS (iNOS) expression. Pretreatment with 7-NI, SN50 or vitamin E significantly attenuated increased iNOS expression indicating that iNOS expression is regulated by ROS and the transcription factor NF-kappaB. Further, the generation of ROS as an early event in Mn and DA interaction is not controlled by NF-kappaB as SN50 pretreatment did not prevent ROS. These findings suggest that NF-kappaB induction and the activation of nitric oxide synthase through ROS represent a proximate mechanism for Mn-induced neurotoxicity.

  14. Evening primrose oil and celecoxib inhibited pathological angiogenesis, inflammation, and oxidative stress in adjuvant-induced arthritis: novel role of angiopoietin-1.

    PubMed

    El-Sayed, R M; Moustafa, Y M; El-Azab, M F

    2014-10-01

    Rheumatoid arthritis is a chronic inflammatory disease characterized by overproduction of inflammatory mediators along with undermined oxidative defensive mechanisms. Pathological angiogenesis was found to play a critical role in the progression of this disease. The current study was carried out to evaluate the anti-angiogenic, anti-inflammatory, and anti-oxidant effects of evening primrose oil (EPO), rich in gamma linolenic acid (GLA), either alone or in combination with aspirin or celecoxib, on adjuvant-induced arthritis. Arthritis was induced by subcutaneous injection of complete Freund's adjuvant (CFA) in the right hind paw of male albino rats. All treatments were administered orally from day 0 (EPO, 5 g/kg b.w.) or day 4 (celecoxib, 5 mg/kg; aspirin, 150 mg/kg) till day 27 after CFA injection. In the arthritic group, the results revealed significant decrease in the body weight and increase in ankle circumference, plasma angiopoietin-1 (ANG-1) and tumor necrosis factor-alpha (TNF-α) levels. Anti-oxidant status was suppressed as manifested by significant decline in reduced glutathione content along with decreased enzymatic activity of superoxide dismutase and increased lipid peroxidation. Oral administration of EPO exerted normalization of body weight, ANG-1, and TNF-α levels with restoration of activity as shown by reduced malondialdehyde levels. Moreover, histopathological examination demonstrated that EPO significantly reduced the synovial hyperplasia and inflammatory cells invasion in joint tissues, an effect that was enhanced by combination with aspirin or celecoxib. The joint use of GLA-rich natural oils, which possess anti-angiogenic, anti-inflammatory, and anti-oxidant activities, with traditional analgesics represents a promising strategy to restrain the progression of rheumatoid arthritis.

  15. Fertilization Induces a Transient Exposure of Phosphatidylserine in Mouse Eggs

    PubMed Central

    Curia, Claudio A.; Ernesto, Juan I.; Stein, Paula; Busso, Dolores; Schultz, Richard M.; Cuasnicu, Patricia S.; Cohen, Débora J.

    2013-01-01

    Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis. PMID:23951277

  16. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  17. Endothelial p53 Deletion Improves Angiogenesis and Prevents Cardiac Fibrosis and Heart Failure Induced by Pressure Overload in Mice

    PubMed Central

    Gogiraju, Rajinikanth; Xu, Xingbo; Bochenek, Magdalena L.; Steinbrecher, Julia H.; Lehnart, Stephan E.; Wenzel, Philip; Kessel, Michael; Zeisberg, Elisabeth M.; Dobbelstein, Matthias; Schäfer, Katrin

    2015-01-01

    Background Cardiac dysfunction developing in response to chronic pressure overload is associated with apoptotic cell death and myocardial vessel rarefaction. We examined whether deletion of tumor suppressor p53 in endothelial cells may prevent the transition from cardiac hypertrophy to heart failure. Methods and Results Mice with endothelial‐specific deletion of p53 (End.p53‐KO) were generated by crossing p53fl/fl mice with mice expressing Cre recombinase under control of an inducible Tie2 promoter. Cardiac hypertrophy was induced by transverse aortic constriction. Serial echocardiography measurements revealed improved cardiac function in End.p53‐KO mice that also exhibited better survival. Cardiac hypertrophy was associated with increased p53 levels in End.p53‐WT controls, whereas banded hearts of End.p53‐KO mice exhibited lower numbers of apoptotic endothelial and non‐endothelial cells and altered mRNA levels of genes regulating cell cycle progression (p21), apoptosis (Puma), or proliferation (Pcna). A higher cardiac capillary density and improved myocardial perfusion was observed, and pharmacological inhibition or genetic deletion of p53 also promoted endothelial sprouting in vitro and new vessel formation following hindlimb ischemia in vivo. Hearts of End.p53‐KO mice exhibited markedly less fibrosis compared with End.p53‐WT controls, and lower mRNA levels of p53‐regulated genes involved in extracellular matrix production and turnover (eg, Bmp‐7, Ctgf, or Pai‐1), or of transcription factors involved in controlling mesenchymal differentiation were observed. Conclusions Our analyses reveal that accumulation of p53 in endothelial cells contributes to blood vessel rarefaction and fibrosis during chronic cardiac pressure overload and suggest that endothelial cells may be a therapeutic target for preserving cardiac function during hypertrophy. PMID:25713289

  18. [The advance of model of action in low-dose chronic benzene exposure induced hematotoxicity].

    PubMed

    Gao, Chen; Zhang, Zhengbao; Chen, Liping; Chen, Wen

    2015-09-01

    Benzene is classified as Group 1 carcinogen by IARC. It has been found that benzene induces hematotoxicity even in low dose exposure. The identification of key events during benzene induced hematotoxicty leads to adjustment of occupational exposure limits of benzene. In this review, we focus on the exposure, metabolism, target organs, key epigenetic changes, toxicty effects and end points of low-dose chronic benzene exposure induced hematotoxicity and finally discuss the perspectives on the future study of this area.

  19. REGULATION OF VASCULOGENESIS AND ANGIOGENESIS

    EPA Science Inventory

    Regulation of vasculogenesis and angiogenesis.
    B.D. Abbott
    Reproductive Toxicology Division, Environmental Protection Agency, Research Triangle Park, North Carolina, USA
    Vasculogenesis and angiogenesis are regulated by a complex, interactive family of receptors and lig...

  20. From angiogenesis to neuropathology

    NASA Astrophysics Data System (ADS)

    Greenberg, David A.; Jin, Kunlin

    2005-12-01

    Angiogenesis - the growth of new blood vessels - is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

  1. ER Stress and Angiogenesis.

    PubMed

    Binet, François; Sapieha, Przemyslaw

    2015-10-01

    Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.

  2. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  3. Mammalian target of rapamycin inhibitors induce tumor cell apoptosis in vivo primarily by inhibiting VEGF expression and angiogenesis.

    PubMed

    Frost, Patrick; Berlanger, Eileen; Mysore, Veena; Hoang, Bao; Shi, Yijiang; Gera, Joseph; Lichtenstein, Alan

    2013-01-01

    We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES)-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  4. Respiratory morbidity induced by occupational inhalation exposure to formaldehyde.

    PubMed

    Neghab, Masoud; Soltanzadeh, Ahmad; Choobineh, Alireza

    2011-01-01

    The potential of formaldehyde to produce chronic respiratory tract disease remains a controversial issue. The main purpose of this study was to investigate the respiratory effects, if any, of long term occupational exposure to formaldehyde. This cross-sectional study was carried out at a local melamine-formaldehyde resin producing plant. The study population consisted of seventy exposed and 24 non-exposed (referent) employees. Using respiratory questionnaire, data on respiratory symptoms were gathered. Atmospheric concentrations of formaldehyde were measured at different contaminated areas of the plant. Similarly, the parameters of pulmonary function were measured at the beginning (preshift) and at the end (postshift) of the first working day of the week. The results showed that airborne concentrations of formaldehyde exceeded current permissible levels. Additionally, significant decrements in some preshift and postshift parameters of pulmonary function of exposed workers were noted. However, a relative recovery in lung functional capacity observed following temporary cessation of exposure (preshift values). Furthermore, exposed workers had higher prevalence rates of regular cough, wheezing, phlegm, shortness of breath, chest tightness and episodes of chest illness associated with cold. The findings of this study collectively indicate that exposure to formaldehyde may induce respiratory symptoms, acute partially reversible and chronic irreversible functional impairments of the lungs.

  5. Abnormal cardiovascular responses induced by localized high power microwave exposure

    SciTech Connect

    Lu, S.-T; Brown, D.O.; Johnson, C.E.; Mathur, S.P. ); Elson, E.C. )

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in the neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.

  6. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure.

    PubMed

    Zhang, Wei; Sheng, Nan; Wang, Minhui; Zhang, Hongxia; Dai, Jiayin

    2016-06-01

    Perfluoroalkyl acids (PFAAs) are a group of anthropogenic compounds that have been widely used in consumer products for over 50 years. One of the most dominant PFAAs is perfluorononanoate (PFNA), a compound detected ubiquitously in aquatic ecosystems. While PFNA is suspected of being an endocrine disruptor, the mechanisms behind PFNA-induced reproductive disorders are poorly understood. The aim of this study was to investigate the reproduction-related effects and possible mechanisms of PFNA on adult zebrafish (Danio rerio) following 180 days of exposure at different concentrations (0.01, 0.1, 1mg/L). PFNA concentration in the gonads of zebrafish was tested by HPLC-MS/MS after chronic exposure to study possible inconsistent accumulation between the genders. The results showed that the accumulation of PFNA in the male gonads was almost one-fold higher than that in the female gonads, indicating a possible higher PFAA gonad burden for male zebrafish. Significant reductions in the male gonadosomatic index (GSI) and female egg production were observed. In addition, the decreased 72h hatching rate displayed an evident dosage effect, indicating that maternal exposure to PFNA might impair offspring developmental success. To investigate how PFNA exposure affects the hypothalamic-pituitary-gonadal-liver axis (HPGL axis), the transcriptional levels of genes were measured by real-time PCR. The disrupted expression of genes, such as ERα, ERβ, FSHR, LHR, StAR, and 17βHSD, indicated the possible interference of PFNA on the HPGL axis function and sex hormone synthesis. Furthermore, testosterone (T) and estradiol (E2) levels in serum and VTG content in the liver were detected to clarify the influences of PFNA on sex hormone levels. Except for the increase in serum estrogen levels, as an estrogen analogue, PFNA also induced the synthesis of biomarker protein vitellogenin (VTG) in the adult male liver. The results of this study indicate that chronic exposure to PFNA can lead to

  7. 45S5-Bioglass®-Based 3D-Scaffolds Seeded with Human Adipose Tissue-Derived Stem Cells Induce In Vivo Vascularization in the CAM Angiogenesis Assay

    PubMed Central

    Handel, Marina; Hammer, Timo R.; Nooeaid, Patcharakamon; Boccaccini, Aldo R.

    2013-01-01

    Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass® was investigated given its potential for applications in bone engineering. Since native Bioglass® shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass®-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass®-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass® and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass®, with hASC could be a promising approach for future tissue engineering applications. PMID:23837884

  8. Rescue of hypertension-related impairment of angiogenesis by therapeutic ultrasound.

    PubMed

    Lu, Zhao-Yang; Li, Rui-Lin; Zhou, Hong-Sheng; Huang, Jing-Juan; Qi, Jia; Su, Zhi-Xiao; Zhang, Lan; Li, Yue; Shi, Yi-Qin; Hao, Chang-Ning; Duan, Jun-Li

    2016-01-01

    We examined the hypothesis that therapeutic ultrasound (TUS) treatment would rescue the hypertension-related inhibition of ischemia-induced angiogenesis. TUS protects against endothelial dysfunction, but it is little known that the effect of TUS treatment on angiogenesis inhibited by hypertension. 20-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly allocated to 4 groups: SHR; TUS treated SHR (SHR-TUS); WKY and TUS treated WKY (WKY-TUS). After undergoing excision of the left femoral artery, the ischemic skeletal muscles were treated with extracorporeal TUS for 9 minutes of daily exposure (frequency of 1 MHz, intensity of 0.3 W/cm(2)) for 14 consecutive days. We found that TUS normalized the blood perfusion in SHR-TUS accompanied by elevated capillary density. Similar results were found in the protein expression of angiogenic factors. TUS treatment also enhanced peripheral capillary density in WKY rats and restored the capillary rarefaction in hypertension by elevating the protein levels of endothelial nitric oxide synthase (eNOS), hypoxic inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and phosphorylated Akt (p-Akt) in vivo. Our data demonstrated that TUS treatment ameliorated hypertension-related inhibition of ischemia-induced angiogenesis, at least in part, via an NO-dependent manner. PMID:27508029

  9. Rescue of hypertension-related impairment of angiogenesis by therapeutic ultrasound

    PubMed Central

    Lu, Zhao-Yang; Li, Rui-Lin; Zhou, Hong-Sheng; Huang, Jing-Juan; Qi, Jia; Su, Zhi-Xiao; Zhang, Lan; Li, Yue; Shi, Yi-Qin; Hao, Chang-Ning; Duan, Jun-Li

    2016-01-01

    We examined the hypothesis that therapeutic ultrasound (TUS) treatment would rescue the hypertension-related inhibition of ischemia-induced angiogenesis. TUS protects against endothelial dysfunction, but it is little known that the effect of TUS treatment on angiogenesis inhibited by hypertension. 20-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly allocated to 4 groups: SHR; TUS treated SHR (SHR-TUS); WKY and TUS treated WKY (WKY-TUS). After undergoing excision of the left femoral artery, the ischemic skeletal muscles were treated with extracorporeal TUS for 9 minutes of daily exposure (frequency of 1 MHz, intensity of 0.3 W/cm2) for 14 consecutive days. We found that TUS normalized the blood perfusion in SHR-TUS accompanied by elevated capillary density. Similar results were found in the protein expression of angiogenic factors. TUS treatment also enhanced peripheral capillary density in WKY rats and restored the capillary rarefaction in hypertension by elevating the protein levels of endothelial nitric oxide synthase (eNOS), hypoxic inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and phosphorylated Akt (p-Akt) in vivo. Our data demonstrated that TUS treatment ameliorated hypertension-related inhibition of ischemia-induced angiogenesis, at least in part, via an NO-dependent manner. PMID:27508029

  10. Inhibitor of growth 4 suppresses colorectal cancer growth and invasion by inducing G1 arrest, inhibiting tumor angiogenesis and reversing epithelial-mesenchymal transition.

    PubMed

    Qu, Hui; Yin, Hong; Yan, Su; Tao, Min; Xie, Yufeng; Chen, Weichang

    2016-05-01

    Previous studies have found that inhibitor of growth 4 (ING4), a tumor suppressor, is reduced in human colorectal cancer (CRC), and is inversely correlated with clinical Dukes' stage, histological grade, lymph node metastasis and microvessel density (MVD). However, its underlying mechanism remains undetermined. In the present study, we analyzed ING4 expression in a panel of human CRC cells using low (LS174T and SW480) and high (LoVo and SW620) metastatic cell lines. We demonstrated that both the low and high metastatic CRC cells exhibited a lower level of ING4 compared to the level in normal human colorectal mucous epithelial FHC cells. Furthermore, ING4 expression in high metastatic CRC cells was less than that in low metastatic CRC cells. We then generated a lentivirus construct expressing ING4 and green fluorescent protein (GFP), established a ING4-stably transgenic LoVo CRC cell line, and investigated the effect of lentiviral-mediated ING4 expression on high metastatic LoVo CRC cells. Gain-of-function studies revealed that ING4 significantly inhibited LoVo CRC cell growth and invasion in vitro and induced cell cycle G1 phase arrest. Moreover, ING4 obviously suppressed LoVo CRC subcutaneously xenografted tumor growth and reduced tumor MVD in vivo in athymic BALB/c nude mice. Mechanistically, ING4 markedly upregulated P21 and E-cadherin but downregulated cyclin E, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), Snail1, N-cadherin and vimentin in the LoVo CRC cells. Our data provide compelling evidence that i) ING4 suppresses CRC growth possibly via induction of G1 phase arrest through upregulation of P21 cyclin-dependent kinase (CDK) inhibitor and downregulation of cyclin E as well as inhibition of tumor angiogenesis through reduction of IL-6, IL-8 and VEGF proangiogenic factors; ii) ING4 inhibits CRC invasion and metastasis probably via a switch from mesenchymal marker N-cadherin to epithelial marker E-cadherin through downregulation of

  11. Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects.

    PubMed

    Fracchiolla, Nicola Stefano; Todoerti, Katia; Bertazzi, Pier Alberto; Servida, Federica; Corradini, Paolo; Carniti, Cristiana; Colombi, Antonio; Cecilia Pesatori, Angela; Neri, Antonino; Deliliers, Giorgio Lambertenghi

    2011-04-28

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic diseases, diabetes, infertility, cancers and immunotoxicity. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 257 differentially modulated probe sets, identifying 221 well characterized genes. A large part of these resulted associated to cell adhesion and/or angiogenesis and to transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems. Our data support a role of dioxin in the neoplastic transformation of hemopoietic stem cells and in immune modulation processes after in vivo exposure, as indicated by the epidemiologic data in dioxin accidentally exposed populations, providing a molecular basis for it. In addition, TCDD alters genes associated to glucidic and lipidic metabolisms, to GABAergic transmission or involved in male and female fertility, thus providing a possible explanation of the diabetogenic, dyslipidemic, neurologic and fertility effects induced by TCDD in vivo exposure.

  12. The Harvard angiogenesis story.

    PubMed

    Miller, Joan W

    2014-01-01

    I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.

  13. Induction of angiogenesis by normal and malignant plasma cells.

    PubMed

    Hose, Dirk; Moreaux, Jérôme; Meissner, Tobias; Seckinger, Anja; Goldschmidt, Hartmut; Benner, Axel; Mahtouk, Karène; Hillengass, Jens; Rème, Thierry; De Vos, John; Hundemer, Michael; Condomines, Maud; Bertsch, Uta; Rossi, Jean-François; Jauch, Anna; Klein, Bernard; Möhler, Thomas

    2009-07-01

    Abundant bone marrow angiogenesis is present in almost all myeloma patients requiring therapy and correlated to treatment response and survival. We assessed the expression of 402 angiogenesis-associated genes by Affymetrix DNA microarrays in 466 samples, including CD138-purified myeloma cells (MMCs) from 300 previously untreated patients, in vivo microcirculation by dynamic contrast-enhanced magnetic resonance imaging, and in vitro angiogenesis (AngioKit-assay). Normal bone marrow plasma cells (BMPCs) express a median of 39 proangiogenic (eg, VEGFA, ADM, IGF-1) and 28 antiangiogenic genes (eg, TIMP1, TIMP2). Supernatants of BMPCs unlike those of memory B cells induce angiogenesis in vitro. MMCs do not show a significantly higher median number of expressed proangiogenic (45) or antiangiogenic (31) genes, but 97% of MMC samples aberrantly express at least one of the angiogenic factors HGF, IL-15, ANG, APRIL, CTGF, or TGFA. Supernatants of MMCs and human myeloma cell lines induce significantly higher in vitro angiogenesis compared with BMPCs. In conclusion, BMPCs express a surplus of proangiogenic over antiangiogenic genes transmitting to the ability to induce in vitro angiogenesis. Aberrant expression of proangiogenic and down-regulation of antiangiogenic genes by MMCs further increases the angiogenic stimulus, together leading to bone marrow angiogenesis at various degrees in all myeloma patients.

  14. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  15. KSHV-Mediated Angiogenesis in Tumor Progression

    PubMed Central

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  16. Endothelial FAK is required for tumour angiogenesis

    PubMed Central

    Tavora, Bernardo; Batista, Silvia; Reynolds, Louise E; Jadeja, Shalini; Robinson, Stephen; Kostourou, Vassiliki; Hart, Ian; Fruttiger, Marcus; Parsons, Maddy; Hodivala-Dilke, Kairbaan M

    2010-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a fundamental role in integrin and growth factor mediated signalling and is an important player in cell migration and proliferation, processes vital for angiogenesis. However, the role of FAK in adult pathological angiogenesis is unknown. We have generated endothelial-specific tamoxifen-inducible FAK knockout mice by crossing FAK-floxed (FAKfl/fl) mice with the platelet derived growth factor b (Pdgfb)-iCreER mice. Tamoxifen-treatment of Pdgfb-iCreER;FAKfl/fl mice results in FAK deletion in adult endothelial cells (ECs) without any adverse effects. Importantly however, endothelial FAK-deletion in adult mice inhibited tumour growth and reduced tumour angiogenesis. Furthermore, in in vivo angiogenic assays FAK deletion impairs vascular endothelial growth factor (VEGF)-induced neovascularization. In addition, in vitro deletion of FAK in ECs resulted in reduced VEGF-stimulated Akt phosphorylation and correlating reduced cellular proliferation as well as increased cell death. Our data suggest that FAK is required for adult pathological angiogenesis and validates FAK as a possible target for anti-angiogenic therapies. PMID:21154724

  17. Endothelial FAK is required for tumour angiogenesis.

    PubMed

    Tavora, Bernardo; Batista, Silvia; Reynolds, Louise E; Jadeja, Shalini; Robinson, Stephen; Kostourou, Vassiliki; Hart, Ian; Fruttiger, Marcus; Parsons, Maddy; Hodivala-Dilke, Kairbaan M

    2010-12-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a fundamental role in integrin and growth factor mediated signalling and is an important player in cell migration and proliferation, processes vital for angiogenesis. However, the role of FAK in adult pathological angiogenesis is unknown. We have generated endothelial-specific tamoxifen-inducible FAK knockout mice by crossing FAK-floxed (FAKfl/fl) mice with the platelet derived growth factor b (Pdgfb)-iCreER mice. Tamoxifen-treatment of Pdgfb-iCreER;FAKfl/fl mice results in FAK deletion in adult endothelial cells (ECs) without any adverse effects. Importantly however, endothelial FAK-deletion in adult mice inhibited tumour growth and reduced tumour angiogenesis. Furthermore, in in vivo angiogenic assays FAK deletion impairs vascular endothelial growth factor (VEGF)-induced neovascularization. In addition, in vitro deletion of FAK in ECs resulted in reduced VEGF-stimulated Akt phosphorylation and correlating reduced cellular proliferation as well as increased cell death. Our data suggest that FAK is required for adult pathological angiogenesis and validates FAK as a possible target for anti-angiogenic therapies.

  18. Hexachlorobenzene promotes angiogenesis in vivo, in a breast cancer model and neovasculogenesis in vitro, in the human microvascular endothelial cell line HMEC-1.

    PubMed

    Pontillo, Carolina; Español, Alejandro; Chiappini, Florencia; Miret, Noelia; Cocca, Claudia; Alvarez, Laura; Kleiman de Pisarev, Diana; Sales, María Elena; Randi, Andrea Silvana

    2015-11-19

    Exposure to environmental pollutants may alter proangiogenic ability and promotes tumor growth. Hexachlorobenzene (HCB) is an organochlorine pesticide found in maternal milk and in lipid foods, and a weak ligand of the aryl hydrocarbon receptor (AhR). HCB induces migration and invasion in human breast cancer cells, as well as tumor growth and metastasis in vivo. In this study, we examined HCB action on angiogenesis in mammary carcinogenesis. HCB stimulates angiogenesis and increases vascular endothelial growth factor (VEGF) expression in a xenograft model with the human breast cancer cell line MDA-MB-231. Human microvascular endothelial cells HMEC-1 exposed to HCB (0.005, 0.05, 0.5 and 5μM) showed an increase in cyclooxygenase-2 (COX-2) and VEGF protein expression involving AhR. In addition, we found that HCB enhances VEGF-Receptor 2 (VEGFR2) expression, and activates its downstream pathways p38 and ERK1/2. HCB induces cell migration and neovasculogenesis in a dose-dependent manner. Cells pretreatment with AhR, COX-2 and VEGFR2 selective inhibitors, suppressed these effects. In conclusion, our results show that HCB promotes angiogenesis in vivo and in vitro. HCB-induced cell migration and tubulogenesis are mediated by AhR, COX-2 and VEGFR2 in HMEC-1. These findings may help to understand the association among HCB exposure, angiogenesis and mammary carcinogenesis. PMID:26358519

  19. Angiogenesis: a curse or cure?

    PubMed

    Gupta, K; Zhang, J

    2005-04-01

    Angiogenesis, the growth of new blood vessels is essential during fetal development, female reproductive cycle, and tissue repair. In contrast, uncontrolled angiogenesis promotes the neoplastic disease and retinopathies, while inadequate angiogenesis can lead to coronary artery disease. A balance between pro-angiogenic and antiangiogenic growth factors and cytokines tightly controls angiogenesis. Considerable progress has been made in identifying these molecular components to develop angiogenesis based treatments. One of the most specific and critical regulators of angiogenesis is vascular endothelial growth factor (VEGF), which regulates endothelial proliferation, permeability, and survival. Several VEGF based treatments including anti-VEGF and anti-VEGF receptor antibodies/agents are in clinical trials along with several other antiangiogenic treatments. While bevacizumab (anti-VEGF antibody) has been approved for clinical use in colorectal cancer, the side effects of antiangiogenic treatment still remain a challenge. The pros and cons of angiogenesis based treatment are discussed.

  20. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.

  1. Abnormal cardiovascular responses induced by localized high power microwave exposure.

    PubMed

    Lu, S T; Brown, D O; Johnson, C E; Mathur, S P; Elson, E C

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz (10 microseconds, 2 W average) and 16 Hz (1 microsecond, 6.4 W average) pulse-modulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in the neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power (16 Hz pulses and 6.4 W CW) but not to the lower average power microwaves (0.5 Hz pulses and 2 W CW). Depression of pulse pressure, an indication of a decrease in stroke volume, and increased (tachycardia) or decreased (bradycardia) heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals. PMID:1388133

  2. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease. PMID:12929156

  3. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    PubMed

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development. PMID:26945730

  4. Blueberry inhibits invasion and angiogenesis in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters via suppression of TGF-β and NF-κB signaling pathways.

    PubMed

    Baba, Abdul Basit; Kowshik, Jaganathan; Krishnaraj, Jayaraman; Sophia, Josephraj; Dixit, Madhulika; Nagini, Siddavaram

    2016-09-01

    Aberrant activation of oncogenic signaling pathways plays a pivotal role in tumor initiation and progression. The purpose of the present study was to investigate the chemopreventive and therapeutic efficacy of blueberry in the hamster buccal pouch (HBP) carcinogenesis model based on its ability to target TGF-β, PI3K/Akt, MAPK and NF-κB signaling and its impact on invasion and angiogenesis. Squamous cell carcinomas were induced in the HBP by 7,12-dimethylbenz[a]anthracene (DMBA). The effect of blueberry on the oncogenic signaling pathways and downstream events was analyzed by quantitative real-time PCR and immunoblotting. Experiments with the ECV304 cell line were performed to explore the mechanism by which blueberry regulates angiogenesis. Blueberry supplementation inhibited the development and progression of HBP carcinomas by abrogating TGF-β and PI3K/Akt pathways. Although blueberry failed to influence MAPK, it suppressed NF-κB activation by preventing nuclear translocation of NF-κB p65. Blueberry also modulated the expression of the oncomiR miR-21 and the tumor suppressor let-7. Collectively, these changes induced a shift to an anti-invasive and anti-angiogenic phenotype as evidenced by downregulating matrix metalloproteinases and vascular endothelial growth factor. Blueberry also inhibited angiogenesis in ECV304 cells by suppressing migration and tube formation. The results of the present study suggest that targeting oncogenic signaling pathways that influence acquisition of cancer hallmarks is an effective strategy for chemointervention. Identification of modulatory effects on phosphorylation, intracellular localization of oncogenic transcription factors and microRNAs unraveled by the present study as key mechanisms of action of blueberry is critical from a therapeutic perspective. PMID:27371785

  5. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    PubMed Central

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula

    2016-01-01

    Background Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. Objective The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Methods Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. Results TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. Conclusion TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis. PMID:27096523

  6. Glycobiology of ocular angiogenesis.

    PubMed

    Markowska, Anna I; Cao, Zhiyi; Panjwani, Noorjahan

    2014-12-01

    Ocular neovascularization can affect almost all the tissues of the eye: the cornea, the iris, the retina, and the choroid. Pathological neovascularization is the underlying cause of vision loss in common ocular conditions such as diabetic retinopathy, retinopathy of prematurity and age-related macular neovascularization. Glycosylation is the most common covalent posttranslational modification of proteins in mammalian cells. A growing body of evidence demonstrates that glycosylation influences the process of angiogenesis and impacts activation, proliferation, and migration of endothelial cells as well as the interaction of angiogenic endothelial cells with other cell types necessary to form blood vessels. Recent studies have provided evidence that members of the galectin class of β-galactoside-binding proteins modulate angiogenesis by novel carbohydrate-based recognition systems involving interactions between glycans of angiogenic cell surface receptors and galectins. This review discusses the significance of glycosylation and the role of galectins in the pathogenesis of ocular neovascularization. PMID:25108228

  7. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing.

    PubMed

    Velazquez, Omaida C

    2007-06-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo but also for repair of wounded tissue in the adult. An imbalance in angiogenesis (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound-healing disorders. This review focuses on the central role of the growth of new blood vessels in ischemic and diabetic wound healing and defines the most current nomenclature that describes the neovascularization process in wounds. There are now two well-defined, distinct, yet interrelated processes for the formation of postnatal new blood vessels, angiogenesis, and vasculogenesis. Reviewed are recent new data on vasculogenesis that promise to advance the field of wound healing.

  8. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    PubMed Central

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  9. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice.

    PubMed

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M; Owen, Robert W; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50  μ g of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100  μ L of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  10. EphA2-Induced Angiogenesis in Ewing Sarcoma Cells Works through bFGF Production and Is Dependent on Caveolin-1

    PubMed Central

    Sáinz-Jaspeado, Miguel; Huertas-Martinez, Juan; Lagares-Tena, Laura; Martin Liberal, Juan; Mateo-Lozano, Silvia; de Alava, Enrique; de Torres, Carmen; Mora, Jaume; del Muro, Xavier Garcia; Tirado, Oscar M.

    2013-01-01

    Angiogenesis is the result of the combined activity of the tumor microenvironment and signaling molecules. The angiogenic switch is represented as an imbalance between pro- and anti-angiogenic factors and is a rate-limiting step in the development of tumors. Eph receptor tyrosine kinases and their membrane-anchored ligands, known as ephrins, constitute the largest receptor tyrosine kinase (RTK) subfamily and are considered a major family of pro-angiogenic RTKs. Ewing sarcoma (EWS) is a highly aggressive bone and soft tissue tumor affecting children and young adults. As other solid tumors, EWS are reliant on a functional vascular network for the delivery of nutrients and oxygen and for the removal of waste. Based on the biological roles of EphA2 in promoting angiogenesis, we explored the functional role of this receptor and its relationship with caveolin-1 (CAV1) in EWS angiogenesis. We demonstrated that lack of CAV1 results in a significant reduction in micro vascular density (MVD) on 3 different in vivo models. In vitro, this phenomenon correlated with inactivation of EphA2 receptor, lack of AKT response and downregulation of bFGF. We also demonstrated that secreted bFGF from EWS cells acted as chemoattractant for endothelial cells. Furthermore, interaction between EphA2 and CAV1 was necessary for the right localization and signaling of the receptor to produce bFGF through AKT and promote migration of endothelial cells. Finally, introduction of a dominant-negative form of EphA2 into EWS cells mostly reproduced the effects occurred by CAV1 silencing, strongly suggesting that the axis EphA2-CAV1 participates in the promotion of endothelial cell migration toward the tumors favoring EWS angiogenesis. PMID:23951165

  11. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI1

    PubMed Central

    Bäuerle, Tobias; Hilbig, Heidegard; Bartling, Sönke; Kiessling, Fabian; Kersten, Astrid; Schmitt-Gräff, Annette; Kauczor, Hans-Ulrich; Delorme, Stefan; Berger, Martin R

    2008-01-01

    The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT) and magnetic resonance imaging (MRI). After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15) were compared with sham-treated animals (n = 17). Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05). This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05). Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI. PMID:18472968

  12. Augmented anti-angiogenesis activity of polysulfated heparin-endostatin and polyethylene glycol-endostatin in alkali burn-induced corneal ulcers in rabbits

    PubMed Central

    LI, ZHAO-NA; YUAN, ZHONG-FANG; MU, GUO-YING; HU, MING; CAO, LI-JUN; ZHANG, YA-LI; GE, MING-XU

    2015-01-01

    Endostatin (ES) is an endogenous angiogenesis inhibitor that has the ability to inhibit tumor growth and metastasis. However, its clinical application is limited by a number of disadvantages, such as poor stability, short half-life and the requirement of high doses to maintain its efficacy. The chemical modification on ES may offer a solution to these disadvantages. The aim of the present study was to evaluate the effects of ES, polysulfated heparin-endostatin (PSH-ES) and polyethylene glycol-endostatin (PEG-ES) on the endothelial cell proliferation and angiogenesis associated with corneal neovascularization (CNV) and to determine their mechanisms of action. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) was used to study the effects of ES and its derivatives on endothelial cell proliferation in vitro, and rabbits were used to evaluate the effects of ES and its derivatives on CNV in vivo. In the evaluation of CNV, the expression of vascular endothelial growth factor in the cornea was measured via immunohistochemistry and microvessels were counted. ES and its derivatives significantly inhibited endothelial cell proliferation in vitro (P<0.05) and suppressed CNV in vivo. Among the compounds examined, ES most effectively inhibited endothelial cell proliferation in vitro (P<0.05); however, PSH-ES and PEG-ES most effectively inhibited CNV in vivo (P<0.05). These results indicate that PSH-ES and PEG-ES are candidate anti-angiogenesis drugs. PMID:26622410

  13. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading.

    PubMed

    Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D; Lanza, Gregory M; Silva, Matthew J

    2014-09-01

    Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αv β3 integrin-targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF-loaded limbs was increased compared with non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF- and LBF-loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αv β3 integrin-mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research. PMID:24644077

  14. Different cell responses induced by exposure to maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M. Concepción

    2013-11-01

    Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible

  15. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    PubMed

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  16. Angiogenesis in Inflammatory Bowel Disease

    PubMed Central

    Alkim, Canan; Alkim, Huseyin; Koksal, Ali Riza; Boga, Salih; Sen, Ilker

    2015-01-01

    Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature. PMID:26839731

  17. Assessment methods for angiogenesis and current approaches for its quantification

    PubMed Central

    AlMalki, Waleed Hassan; Shahid, Imran; Mehdi, Abeer Yousaf; Hafeez, Muhammad Hassan

    2014-01-01

    Angiogenesis is a physiological process which describes the development of new blood vessels from the existing vessels. It is a common and the most important process in the formation and development of blood vessels, so it is supportive in the healing of wounds and granulation of tissues. The different assays for the evaluation of angiogenesis have been described with distinct advantages and some limitations. In order to develop angiogenic and antiangiogenic techniques, continuous efforts have been resulted to give animal models for more quantitative analysis of angiogenesis. Most of the studies on angiogenic inducers and inhibitors rely on various models, both in vitro, in vivo and in ova, as indicators of efficacy. The angiogenesis assays are very much helpful to test efficacy of both pro- and anti- angiogenic agents. The development of non-invasive procedures for quantification of angiogenesis will facilitate this process significantly. The main objective of this review article is to focus on the novel and existing methods of angiogenesis and their quantification techniques. These findings will be helpful to establish the most convenient methods for the detection, quantification of angiogenesis and to develop a novel, well tolerated and cost effective anti-angiogenic treatment in the near future. PMID:24987169

  18. Perinatal nicotine exposure induces asthma in second generation offspring

    PubMed Central

    2012-01-01

    Background By altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARγ) agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARγ agonists would have any effect on this process are not known. Methods Time-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c.), once daily from day 6 of gestation to postnatal day (PND) 21. Following delivery, at PND21, generation 1 (F1) pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins), global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups. Results Consistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P < 0.01, nicotine versus control; P < 0.05, males versus females; and P > 0.05, F1 versus F2), but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P < 0.01, nicotine versus control; P < 0.0001, males versus females; P > 0.05, F1 versus F2); nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P < 0.01, nicotine versus control, and P

  19. Chronic cadmium exposure-induced renal anemia in ovariectomized rats.

    PubMed

    Hiratsuka, H; Katsuta, O; Toyota, N; Tsuchitani, M; Umemura, T; Marumo, F

    1996-04-01

    Cadmium (Cd) chloride was intravenously injected at doses of 0.05 and 0.5 mg/kg/day in ovariectomized rats for 50 weeks, and the chronic Cd exposure-induced nephrotoxicity and anemia were investigated. The rats treated with 0.05 mg/kg Cd showed no apparent hematological, urinary, and histopathological abnormalities. In the 0.5-mg/kg group, renal tubular disorders became marked at 16 weeks, and cortical fibrosis with glomerular dysfunction appeared at 50 weeks. Anemia occurred at 12 weeks in the 0.5-mg/kg group and became increasingly marked with time. The mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were decreased at 12 and 25 weeks; however, the decreases of MCV and MCH disappeared at 50 weeks. A slight decrease in mean corpuscular hemoglobin concentration was noted at 50 weeks. The blood chemistry from the same group revealed a decrease in plasma iron levels and an increase in total iron binding capacity throughout the administration period. The erythropoietin (EPO) level was increased as the hemoglobin level decreased at 12 weeks, whereas the EPO level was not elevated even when the hemoglobin level was decreased at 50 weeks. These findings showed that renal anemia also occurred in addition to the iron deficiency anemia at 50 weeks.

  20. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1α mediated by the PTEN/PI3K/Akt pathway.

    PubMed

    Park, J H; Lee, J Y; Shin, D H; Jang, K S; Kim, H J; Kong, Gu

    2011-11-10

    Mel-18 has been implicated in several processes in tumor progression, in which the Akt pathway is involved as an important key molecular event. However, the function of Mel-18 in human cancers has not been fully established yet. Here, we examined the effect of Mel-18 on tumor angiogenesis in human breast cancer, and found that Mel-18 was a novel regulator of HIF-1α. Mel-18 negatively regulated the HIF-1α expression and its target gene VEGF transcription during both normoxia and hypoxia. We demonstrated that Mel-18 regulated the HIF-1α expression and activity via the PI3K/Akt pathway. Loss of Mel-18 downregulated Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression, consequently activating the PI3K/Akt/MDM2 pathway, and leading to an increase of HIF-1α protein level. Mel-18 modulated the HIF-1α transcriptional activity via regulating the cytoplasmic retention of FOXO3a, a downstream effector of Akt, and recruitment of HIF-1α/CBP complex to the VEGF promoter. Furthermore, our data shows that Mel-18 blocked tumor angiogenesis both in vitro and in vivo. Mel-18 overexpression inhibited in vitro tube formation in human umbilical endothelial cells (HUVECs). Xenografts in NOD/SCID mice derived from stably Mel-18 knocked down MCF7 human breast cancer cells showed increased tumor volume, microvessel density, and phospho-Akt and HIF-1α expression levels. In conclusion, our findings provide that Mel-18 is a novel regulator of tumor angiogenesis through regulating HIF-1α and its target VEGF expressions mediated by the PTEN/PI3K/Akt pathway, suggesting a new tumor-suppressive role of Mel-18 in human breast cancer.

  1. Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2.

    PubMed

    Salvado, M Dolores; Alfranca, Arántzazu; Haeggström, Jesper Z; Redondo, Juan Miguel

    2012-04-01

    Prostanoids regulate angiogenesis in carcinoma and chronic inflammatory disease progression. Although prostanoid biosynthetic enzymes and signaling have been extensively analyzed in inflammation, little is known about how prostanoids mediate tumor-induced angiogenesis. Targeted cyclooxygenase (COX)-2 inhibition in tumor, stromal and endothelial cells is an attractive antiangiogenic strategy; however, the associated cardiovascular side effects have led to the development of a new generation of nonsteroidal anti-inflammatory drugs (NSAIDs) acting downstream of COX. These agents target terminal prostanoid synthases and prostanoid receptors, which may also include several peroxisome proliferator-activated receptors (PPARs). Here, we discuss the role of prostanoids as modulators of tumor angiogenesis and how prostanoid metabolism reflects complex cell-cell crosstalk that determines tumor growth. Finally, we discuss the potential of new NSAIDs for the treatment of angiogenesis-dependent tumor development.

  2. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments

    PubMed Central

    Das, Soumen; Singh, Sanjay; Dowding, Janet M.; Oommen, Saji; Kumar, Amit; Sayle, Thi X. T.; Saraf, Shashank; Patra, Chitta Ranjan; Vlahakis, Nicholas E.; Sayle, Dean C.; Self, William T.; Seal, Sudipta

    2012-01-01

    Angiogenesis is the formation of new blood vessels from existing blood vessels and is critical for many physiological and pathophysiological processes. In this study we have shown the unique property of cerium oxide nanoparticle (CNPs) to induce angiogenesis, observed using both in vitro and in vivo model systems. In particular, CNPs trigger angiogenesis by modulating the intracellular oxygen environment and stabilizing hypoxia inducing factor 1α endogenously. Furthermore, correlations between angiogenesis induction and CNPs physicochemical properties including: surface Ce3+/Ce4+ ratio, surface charge, size, and shape were also explored. High surface area and increased Ce3+/Ce4+ ratio make CNPs more catalytically active towards regulating intracellular oxygen, which in turn led to more robust induction of angiogenesis. Atomistic simulation was also used, in partnership with in vitro and in vivo experimentation, to reveal that the surface reactivity of CNPs and facile oxygen transport promotes pro-angiogenesis. PMID:22858004

  3. Early life exposure to air pollution induces adult cardiac dysfunction.

    PubMed

    Gorr, Matthew W; Velten, Markus; Nelin, Timothy D; Youtz, Dane J; Sun, Qinghua; Wold, Loren E

    2014-11-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m(3) from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (-9,203 ± 235 μl/s FA, -7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  4. Novel biomarkers of perchlorate exposure in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  5. Anti-endothelial cell IgG from patients with chronic arsenic poisoning induces endothelial proliferation and VEGF-dependent angiogenesis.

    PubMed

    Hong, Chien-Hui; Lee, Chih-Hung; Chang, Louis W; Chiou, Min-Hsi; Hsieh, Ming-Chu; Kao, Ying-Hsien; Yu, Hsin-Su

    2008-11-01

    An endemic peripheral vascular disorder due to chronic arsenic poisoning, named Blackfoot disease (BFD), occurs in Taiwan. BFD causes destruction of vascular endothelial cells, and an anti-endothelial cell IgG antibody was found in the sera of BFD patients. We studied the role of this IgG antibody (BFD-IgG) in modulating proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs) and found that a low concentration of BFD-IgG (200 microg/mL) stimulated endothelial cell growth and increased expressions of vascular cell adhesion molecule-1 (VCAM-1), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF). The apoptosis events appeared not altered by addition of BFD-IgG. An in vitro neoangiogenesis assay demonstrated that BFD-IgG promoted the formation of tube-like structures, which was completely abrogated by anti-VEGF neutralizing antibody and partially by NOS inhibitor, L-NAME. We conclude that BFD-IgG at 200 microg/mL results in cell proliferation and enhanced VEGF-dependent angiogenesis in vitro. Those results suggested that a low concentration of BFD-IgG plays a protective role in the pathogenesis or the progression of BFD.

  6. Lack of Effects of Recombinant Human Bone Morphogenetic Protein2 on Angiogenesis in Oral Squamous Cell Carcinoma Induced in the Syrian hamster Cheek Pouch.

    PubMed

    Zaid, Khaled Waleed; Nhar, Bander Mossa; Ghadeer Alanazi, Salman Mohammed; Murad, Rashad; Domani, Ahmad; Alhafi, Awadh Jamman

    2016-01-01

    Recombinant human bone morphogenetic protein2 (rhBMP2 ), a member of the TGF? family, has been used widely in recent years to regenerate defects of the maxillary and mandible bones. Such defects are sometimes caused by resection of oral squamous cell carcinoma (OSCC) yet the biologic effects of rhBMP2 on these carcinomas are not fully clear. The objective of this study was to determine histologically whether rhBMP2 produces adverse effects on angiogenesis during induction of OSCC, a biologic process critical for tumor formation in an experimental model in the buccal pouch of golden Syrian hamsters. Buccal cavities were exposed to painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks, then biopsies were taken. Division was into 2 groups: a study group of 10 hamsters receiving 0.25?g/ml of rhBMP2 in the 3rd and 6th weeks; and a control group of 10 hamsters which did not receive any additional treatment. VEGF expression and microvessel density were measured but no differences were noted between the two groups. According to this study, rhBMP2 does not stimulate angiogenesis during induction of OCSSs. PMID:27510004

  7. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease.

    PubMed

    Xi, Shengyan; Yue, Lifeng; Shi, Mengmeng; Peng, Ying; Xu, Yangxinzi; Wang, Xinrong; Li, Qian; Kang, Zhijun; Li, Hanjing; Wang, Yanhui

    2016-01-01

    Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren) and Flos Carthami (Honghua) are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP) in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4). Mice were randomly divided into seven groups: (1) blank, (2) model, (3) control (colchicine, 0.1 mg/kg), (4) THHP (5.53, 2.67, and 1.33 g/kg), and (5) Tao Hong Siwu Decoction (THSWD) (8.50 g/kg). Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF) were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR), Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways. PMID:27293456

  8. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity.

    PubMed

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-10-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg(-1) day(-1)), dalteparin (75 units kg(-1) day(-1)) or danaparoid (50 units kg(-1) day(-1)). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours.

  9. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease

    PubMed Central

    Xi, Shengyan; Yue, Lifeng; Shi, Mengmeng; Peng, Ying; Xu, Yangxinzi; Wang, Xinrong; Li, Qian; Kang, Zhijun; Li, Hanjing; Wang, Yanhui

    2016-01-01

    Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren) and Flos Carthami (Honghua) are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP) in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4). Mice were randomly divided into seven groups: (1) blank, (2) model, (3) control (colchicine, 0.1 mg/kg), (4) THHP (5.53, 2.67, and 1.33 g/kg), and (5) Tao Hong Siwu Decoction (THSWD) (8.50 g/kg). Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF) were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR), Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways. PMID:27293456

  10. Statins and angiogenesis: Is it about connections?

    SciTech Connect

    Khaidakov, Magomed; Wang, Wenze; Khan, Junaid A.; Kang, Bum-Yong; Hermonat, Paul L.; Mehta, Jawahar L.

    2009-09-25

    Statins, inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, have been shown to induce both angiogenic and angiostatic responses. We attempted to resolve this controversy by studying the effects of two different statins, rosuvastatin and simvastatin, in two different assay systems. In the matrigel angiogenesis assay, both statins enhanced tube formation by human umbilical vein endothelial cells (HUVECs, p < 0.01 vs. control). In the ex vivo mouse aortic ring sprouting assay, both statins virtually abolished new vessel formation (p < 0.01). As a basic difference between the two models of angiogenesis is dispersed state of endothelial cells vs. compact monolayer, we analyzed influence of statins on endothelial junction proteins. RT-PCR analysis and cytoimmunostaining of HUVECs treated with simvastatin revealed increased expression of VE-cadherin (p < 0.05). The blockade of VE-cadherin with a specific antibody reversed simvastatin-induced tube formation (p < 0.002). These data suggest that statins through VE-cadherin stimulation modulate cell-cell adhesion and diminish the ability of cells to proliferate and migrate. The observations of reduced angiogenesis in the intact vessel may relate to anti-atherosclerotic and anti-cancer effects of statins, and provide a feasible explanation for conflicting data under different experimental conditions.

  11. Tumor angiogenesis: insights and innovations.

    PubMed

    Nussenbaum, Fernando; Herman, Ira M

    2010-01-01

    Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases. PMID:20445741

  12. Tumor Angiogenesis: Insights and Innovations

    PubMed Central

    Nussenbaum, Fernando; Herman, Ira M.

    2010-01-01

    Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases. PMID:20445741

  13. Relationship between angiogenesis and inflammation in experimental arthritis.

    PubMed

    Clavel, Gaelle; Valvason, Chiara; Yamaoka, Kunio; Lemeiter, Delphine; Laroche, Liliane; Boissier, Marie-Christophe; Bessis, Natacha

    2006-09-01

    Background. Angiogenesis is involved in rheumatoid arthritis (RA) leading to leucocyte recruitment and inflammation in the synovium. Furthermore, synovial inflammation itself further potentiates endothelial proliferation and angiogenesis. In this study, we aimed at evaluating the reciprocical relationship between synovial inflammation and angiogenesis in a RA model, namely collagen-induced arthritis (CIA). Methods. CIA was induced by immunization of DBA/1 mice with collagen type II in adjuvant. Endothelial cells were detected using a GSL-1 lectin-specific immunohistochemical staining on knee joint sections. Angiogenesis, clinical scores and histological signs of arthritis were evaluated from the induction of CIA until the end of the experiment. Angiogenesis was quantified by counting both the isolated endothelial cells and vessels stained on each section. To evaluate the effect of increased angiogenesis on CIA, VEGF gene transfer was performed using an adeno-associated virus encoding VEGF (AAV-VEGF), by intra-muscular or intra-articular injection in mice with CIA. Results. We showed an increase in synovial angiogenesis from day 6 to day 55 after CIA induction, and, moreover, joint vascularization and clinical scores of arthritis were correlated (p < 0.0001, r = 0.61). Vascularization and histological scores were also correlated (p = 0.0006, r = 0.51). Systemic VEGF overexpression in mice with CIA was followed by an aggravation of arthritis as compared to AAV-lacZ control group (p < 0.0001). In contrast, there was no difference in clinical scores between control mice and mice injected within the knee with AAV-VEGF, even if joint vascularization was higher in this group than in all other groups (p = 0,05 versus non-injected group). Intra-articular AAV-VEGF injections induced more severe signs of histological inflammation and bone destruction than AAV-Lac Z or no injection. Conclusion. Angiogenesis and joint inflammation evolve in parallel during collagen-induced

  14. Immune cells and angiogenesis.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2009-09-01

    Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, through the production and release of a large spectrum of pro-angiogenic mediators. These may create the specific microenvironment that favours an increased rate of tissue vascularization. In this review, we will focus on the immune cell component of the angiogenic process in inflammation and tumour growth. As angiogenesis is the result of a net balance between the activities exerted by positive and negative regulators, we will also provide information on some antiangiogenic properties of immune cells that may be utilized for a potential pharmacological use as antiangiogenic agents in inflammation as well as in cancer.

  15. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development.

    PubMed

    Dong, Dezheng; Ni, Min; Li, Jianze; Xiong, Shigang; Ye, Wei; Virrey, Jenilyn J; Mao, Changhui; Ye, Risheng; Wang, Miao; Pen, Ligaya; Dubeau, Louis; Groshen, Susan; Hofman, Florence M; Lee, Amy S

    2008-01-15

    The unfolded protein response (UPR) is an evolutionarily conserved mechanism that activates both proapoptotic and survival pathways to allow eukaryotic cells to adapt to endoplasmic reticulum (ER) stress. Although the UPR has been implicated in tumorigenesis, its precise role in endogenous cancer remains unclear. A major UPR protective response is the induction of the ER chaperone GRP78/BiP, which is expressed at high levels in a variety of tumors and confers drug resistance in both proliferating and dormant cancer cells. To determine the physiologic role of GRP78 in in situ-generated tumor and the consequence of its suppression on normal organs, we used a genetic model of breast cancer in the Grp78 heterozygous mice where GRP78 expression level was reduced by about half, mimicking anti-GRP78 agents that achieve partial suppression of GRP78 expression. Here, we report that Grp78 heterozygosity has no effect on organ development or antibody production but prolongs the latency period and significantly impedes tumor growth. Our results reveal three major mechanisms mediated by GRP78 for cancer progression: enhancement of tumor cell proliferation, protection against apoptosis, and promotion of tumor angiogenesis. Importantly, although partial reduction of GRP78 in the Grp78 heterozygous mice substantially reduces the tumor microvessel density, it has no effect on vasculature of normal organs. Our findings establish that a key UPR target GRP78 is preferably required for pathophysiologic conditions, such as tumor proliferation, survival, and angiogenesis, underscoring its potential value as a novel therapeutic target for dual antitumor and antiangiogenesis activity.

  16. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis.

    PubMed

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-12-11

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors.

  17. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity

    PubMed Central

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-01-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg−1 day−1), dalteparin (75 units kg−1 day−1) or danaparoid (50 units kg−1 day−1). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours. PMID:16041398

  18. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity.

    PubMed

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-10-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg(-1) day(-1)), dalteparin (75 units kg(-1) day(-1)) or danaparoid (50 units kg(-1) day(-1)). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours. PMID:16041398

  19. L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model.

    PubMed

    Daschil, Nina; Kniewallner, Kathrin M; Obermair, Gerald J; Hutter-Paier, Birgit; Windisch, Manfred; Marksteiner, Josef; Humpel, Christian

    2015-03-01

    It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using (35)S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis. PMID:25619662

  20. Lipid peroxidation induced by maternal cadmium exposure in mouse pups

    SciTech Connect

    Baohui Xu |; Yapin Jin; Zhaoliang Feng; Zhaofa Xu; Matsushita, Toshio

    1993-11-01

    Cadmium as an environmental pollutant has received considerable attention and its toxic effects have been studied extensively in human and adult animals. Moreover, an International Task Group on Metal Accumulation (1973) has established that although it is in a limited quantity cadmium can be transported across placenta and excreted through milk in animals. Likewise, it can pass through placenta in humans. Furthermore, the fact is that women in the cadmium-polluted areas are continuously exposed to cadmium during gestation and lactation. Even if they are removed from the exposure, the body burden of cadmium probably remains high because of the very long biological half-time of cadmium which is estimated to be between 17.6 and 33 years. Thus, it is possible that fetuses and pups may be exposed to cadmium during maternal gestation and lactation. Although placenta affords some protection from cadmium exposure, cadmium exposure prior to day 10-11 when placenta forms may be deleterious. Cadmium exposure during pregnancy and its effects on offsprings, which were mainly focused on litter size, pup survival, pup growth and cadmium contents in pups following maternal cadmium exposure have been reported. Lipid peroxide has been considered as a sensitive toxicological index for environmental pollutants. The inhibited antioxidant enzymes and enhanced lipid peroxidation due to cadmium exposure have been demonstrated both in humans and animals. Therefore, the present study was designed to evaluate the toxic effects of maternal cadmium exposure on mouse pups using both the indices used in the previous studies and determinations of lipid peroxide concentrations in various pup organs. In conclusion, data from the present study indicate that the detection of LPO concentration in selected pup tissues is a sensitive index for evaluating the effects of maternal cadmium exposure on mouse pups. 16 refs., 4 tabs.

  1. Autophagy triggered by magnolol derivative negatively regulates angiogenesis

    PubMed Central

    Kumar, S; Guru, S K; Pathania, A S; Kumar, A; Bhushan, S; Malik, F

    2013-01-01

    Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer. PMID:24176847

  2. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    PubMed

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  3. A novel method to assess human population exposure induced by a wireless cellular network.

    PubMed

    Varsier, Nadège; Plets, David; Corre, Yoann; Vermeeren, Günter; Joseph, Wout; Aerts, Sam; Martens, Luc; Wiart, Joe

    2015-09-01

    This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc. PMID:26113174

  4. A novel method to assess human population exposure induced by a wireless cellular network.

    PubMed

    Varsier, Nadège; Plets, David; Corre, Yoann; Vermeeren, Günter; Joseph, Wout; Aerts, Sam; Martens, Luc; Wiart, Joe

    2015-09-01

    This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc.

  5. Anti-angiogenesis in neuroblastoma.

    PubMed

    Ribatti, Domenico

    2013-06-01

    The nature of the angiogenic balance in neuroblastoma is complex, and a spectrum of angiogenesis stimulators and inhibitors have been detected in neuroblastoma tumours. The complex relationships between angiogenic cascade and anti-angiogenic agents in the tumour vascular phase have indicated that anti-angiogenesis can be considered as a strategy for the adjuvant therapy of neuroblastoma. The major goal is to establish if inhibition of angiogenesis is a realistic therapeutic strategy for inhibiting tumour cell dissemination and the formation of metastasis in neuroblastoma.

  6. Soy and breast cancer: focus on angiogenesis.

    PubMed

    Varinska, Lenka; Gal, Peter; Mojzisova, Gabriela; Mirossay, Ladislav; Mojzis, Jan

    2015-05-22

    Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.

  7. Soy and Breast Cancer: Focus on Angiogenesis

    PubMed Central

    Varinska, Lenka; Gal, Peter; Mojzisova, Gabriela; Mirossay, Ladislav; Mojzis, Jan

    2015-01-01

    Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms. PMID:26006245

  8. OZONE-INDUCED RESPIRATORY SYMPTOMS: EXPOSURE-RESPONSE MODELS AND ASSOCIATION WITH LUNG FUNCTION

    EPA Science Inventory

    Ozone-induced respiratory symptoms are known to be functions of concentration, minute ventilation, and duration of exposure. The purposes of this study were to identify an exposure-response model for symptoms, to determine whether response was related to age, and to assess the re...

  9. A DYNAMIC NONLINEAR MODEL OF OZONE-INDUCED FEV1 RESPONSE UNDER CHANGING EXPOSURE CONDITIONS

    EPA Science Inventory

    A Dynamic Nonlinear Model of Ozone-induced FEV1 Response under Changing Exposure Conditions. 1WF McDonnell, 2PW Stewart, 3MV Smith. 1Human Studies Division, NHEERL, U.S. EPA, RTP, NC. 2University of North Carolina, Chapel Hill, NC. 3ASI, Durham, NC.

    Ozone exposure result...

  10. Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells.

    PubMed

    Rajesh, Mohanraj; Kolmakova, Antonina; Chatterjee, Subroto

    2005-10-14

    Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis associated with coronary heart disease, vascular complications in diabetes, inflammatory vascular diseases, and tumor metastasis. The mechanism of VEGF-driven angiogenesis involving glycosphingolipids such as lactosylceramide (LacCer), however, is not known. To demonstrate the involvement of LacCer in VEGF-induced angiogenesis, we used small interfering RNA (siRNA)-mediated silencing of LacCer synthase expression (GalT-V) in human umbilical vein endothelial cells. This gene silencing markedly inhibited VEGF-induced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression and angiogenesis. Second, we used D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of LacCer synthase and glucosylceramide synthase, that significantly mitigated VEGF-induced PECAM-1 expression and angiogenesis. Interestingly, these phenotypic changes were reversed by LacCer but not by structurally related compounds such as glucosylceramide, digalactosylceramide, and ceramide. In a human mesothelioma cell line (REN) that lacks the endogenous expression of PECAM-1, VEGF/LacCer failed to stimulate PECAM-1 expression and tube formation/angiogenesis. In REN cells expressing human PECAM-1 gene/protein, however, both VEGF and LacCer-induced PECAM-1 protein expression and tube formation/angiogenesis. In fact, VEGF-induced but not LacCer-induced angiogenesis was mitigated by SU-1498, a VEGF receptor tyrosine kinase inhibitor. Also, VEGF/LacCer-induced PECAM-1 expression and angiogenesis was mitigated by protein kinase C and phospholipase A2 inhibitors. These results indicate that LacCer generated in VEGF-treated endothelial cells may serve as an important signaling molecule for PECAM-1 expression and in angiogenesis. This finding and the reagents developed in our report may be useful as anti-angiogenic drugs for further studies in vitro and in vivo. PMID:16151023

  11. Interleukin-6 stimulates defective angiogenesis

    PubMed Central

    Gopinathan, Ganga; Milagre, Carla; Pearce, Oliver M.T.; Reynolds, Louise E.; Hodivala-Dilke, Kairbaan; Leinster, David A.; Zhong, Haihong; Hollingsworth, Robert E.; Thompson, Richard; Whiteford, James R.; Balkwill, Frances

    2015-01-01

    The cytokine interleukin-6 (IL-6) has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here we show that IL-6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL-6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared to VEGF-stimulated vessels. The mechanism of IL-6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as Angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL-6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies there was an association between levels of IL-6mRNA, Jagged1 and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL-6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease and stroke. PMID:26081809

  12. Chronic exposure to ELF fields may induce depression

    SciTech Connect

    Wilson, B.W.

    1988-01-01

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.

  13. Biological outcome and mapping of total factor cascades in response to HIF induction during regenerative angiogenesis

    PubMed Central

    Khatib, Abdel-Majid; Lahlil, Rachid; Hagedorn, Martin; Delomenie, Claudine; Christophe, Olivier; Denis, Cecile; Siegfried, Geraldine

    2016-01-01

    Hypoxia Inducible Factor (HIF) is the main transcription factor that mediates cell response to hypoxia. Howeverthe complex factor cascades induced by HIF during regenerative angiogenesis are currently incompletely mapped and the biological outcome mediated by chronic HIF induction during vessel regeneration are not well known. Here, we investigated the biological impact of HIF induction on vascular regeneration and identified the differentially regulated genes during regeneration, HIF induction and hypoxic regeneration. The use of the fin zebrafish regeneration model revealed that exposure to HIF inducer (cobalt chloride) prevents vessel differentiation by maintaining their vascular plexuses in an immature state. The regenerated fins are easily breakable, lacking completely endochondral ossification. Gene expression arrays combined to gene functional enrichment analysis revealed that regenerative process and HIF induction shared the regulation of common genes mainly involved in DNA replication and proteasome complex. HIF induction during regeneration affected the expression of exclusive genes involved in cell differentiation and communication, consistent with the observed immature vascular plexuses of the regenerated fins during HIF induction. The use of morpholino (MO) knockdown strategy revealed that the expression of some of these genes such as tubulin and col10a1 are required for fin regeneration. Taken together, this study revealed the impact of HIF induction on regenerative angiogenesis and provided a framework to develop a gene network leading to regenerative process during HIF expression. PMID:26933814

  14. Human Arterial Ring Angiogenesis Assay.

    PubMed

    Seano, Giorgio; Primo, Luca

    2016-01-01

    In this chapter we describe a model of human angiogenesis where artery explants from umbilical cords are embedded in gel matrices and subsequently produce capillary-like structures. The human arterial ring (hAR) assay is an innovative system that enables three-dimensional (3D) and live studies of human angiogenesis. This ex vivo model has the advantage of recapitulating several steps of angiogenesis, including endothelial sprouting, migration, and differentiation into capillaries. Furthermore, it can be exploited for (1) identification of new genes regulating sprouting angiogenesis, (2) screening for pro- or anti-angiogenic drugs, (3) identification of biomarkers to monitor the efficacy of anti-angiogenic regimens, and (4) dynamic analysis of tumor microenvironmental effects on vessel formation. PMID:27172955

  15. Metal induced inhalation exposure in urban population: A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Widziewicz, Kamila; Loska, Krzysztof

    2016-03-01

    The paper was aimed at assessing the health risk in the populations of three Silesian cities: Bielsko-Biała, Częstochowa and Katowice exposed to the inhalation intake of cadmium, nickel and arsenic present in airborne particulate matter. In order to establish how the exposure parameters affects risk a probabilistic risk assessment framework was used. The risk model was based on the results of the annual measurements of As, Cd and Ni concentrations in PM2.5 and the sets of data on the concentrations of those elements in PM10 collected by the Voivodship Inspectorate of Environmental Protection over 2012-2013 period. The risk was calculated as an incremental lifetime risk of cancer (ILCR) in particular age groups (infants, children, adults) following Monte Carlo approach. With the aim of depicting the effect the variability of exposure parameters exerts on the risk, the initial parameters of the risk model: metals concentrations, its infiltration into indoor environment, exposure duration, exposure frequency, lung deposition efficiency, daily lung ventilation and body weight were modeled as random variables. The distribution of inhalation cancer risk due to exposure to ambient metals concentrations was LN (1.80 × 10-6 ± 2.89 × 10-6) and LN (6.17 × 10-7 ± 1.08 × 10-6) for PM2.5 and PM10-bound metals respectively and did not exceed the permissible limit of the acceptable risk. The highest probability of contracting cancer was observed for Katowice residents exposed to PM2.5 - LN (2.01 × 10-6 ± 3.24 × 10-6). Across the tested age groups adults were approximately one order of magnitude at higher risk compared to infants. Sensitivity analysis showed that exposure duration (ED) and body weight (BW) were the two variables, which contributed the most to the ILCR.

  16. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  17. Nobiletin, a citrus polymethoxyflavonoid, suppresses multiple angiogenesis-related endothelial cell functions and angiogenesis in vivo.

    PubMed

    Kunimasa, Kazuhiro; Ikekita, Masahiko; Sato, Mayumi; Ohta, Toshiro; Yamori, Yukio; Ikeda, Megumi; Kuranuki, Sachi; Oikawa, Tsutomu

    2010-11-01

    Nobiletin is a citrus polymethoxyflavonoid that suppresses tumor growth and metastasis, both of which depend on angiogenesis. We recently identified nobiletin as a cell differentiation modulator. Because cell differentiation is a critical event in angiogenesis, it might be possible that nobiletin could exhibit antiangiogenic activity, resulting in suppression of these tumor malignant properties. To verify this possibility, we examined the antiangiogenic effects of nobiletin in vitro and in vivo. Nobiletin had concentration-dependent inhibitory effects on multiple functions of angiogenesis-related endothelial cells (EC); it suppressed the proliferation, migration and tube formation on matrigel of human umbilical vein EC (HUVEC) stimulated with endothelial cell growth supplement (ECGS), a mixture of acidic and basic fibroblast growth factors (FGFs). Gelatin zymography and northern blotting revealed that nobiletin suppressed pro-matrix metalloproteinase-2 (proMMP-2) production and MMP-2 mRNA expression in ECGS-stimulated HUVEC. Nobiletin also downregulated cell-associated plasminogen activator (PA) activity and urokinase-type PA mRNA expression. Furthermore, nobiletin inhibited angiogenic differentiation induced by vascular endothelial growth factor and FGF, an in vitro angiogenesis model. This inhibition was accompanied by downregulation of angiogenesis-related signaling molecules, such as extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase, and transcriptional factors (c-Jun and signal transducer and activator of transcription 3), and activation of the caspase pathway. In a chick embryo chorioallantoic membrane assay, nobiletin showed an antiangiogenic activity, the ID(50) value being 10μg (24.9nmol) per egg. These results indicate that nobiletin is a novel antiangiogenic compound that exhibits its activity through combined inhibition of multiple angiogenic EC functions.

  18. Extracellular Matrix Modulates Angiogenesis in Physiological and Pathological Conditions

    PubMed Central

    Neve, Anna; Cantatore, Francesco Paolo; Maruotti, Nicola; Corrado, Addolorata; Ribatti, Domenico

    2014-01-01

    Angiogenesis is a multistep process driven by a wide range of positive and negative regulatory factors. Extracellular matrix (ECM) plays a crucial role in the regulation of this process. The degradation of ECM, occurring in response to an angiogenic stimulus, leads to degradation or partial modification of matrix molecules, release of soluble factors, and exposure of cryptic sites with pro- and/or antiangiogenic activity. ECM molecules and fragments, resulting from proteolysis, can also act directly as inflammatory stimuli, and this can explain the exacerbated angiogenesis that drives and maintains several inflammatory diseases. In this review we have summarized some of the more recent literature data concerning the molecular control of ECM in angiogenesis in both physiological and pathological conditions. PMID:24949467

  19. Compensatory angiogenesis and tumor refractoriness.

    PubMed

    Gacche, R N

    2015-01-01

    Since the establishment of tumor angiogenesis as a therapeutic target, an excitement in developing the anti-angiogenic agents was resulted in tailoring a humanized monoclonal antibody (Bevacizumab) against vascular endothelial growth factor (VEGF): a key factor in recruiting angiogenesis. The past three decades' research in the area of angiogenesis also invented a series of novel and effective anti-angiogenic agents targeting the VEGF signaling axis. Despite the demonstrable clinical benefits of anti-angiogenic therapy, the preclinical and clinical data of the current therapeutic settings clearly indicate the transient efficacy, restoration of tumor progression and aggressive recurrence of tumor invasion after the withdrawal of anti-angiogenic therapy. Therefore, the impact of this therapeutic regime on improving overall survival of patients has been disappointing in clinic. The recent advances in pathophysiology of tumor angiogenesis and related molecular and cellular underpinnings attributed the conspiracy of compensatory angiogenic pathways in conferring evasive and intrinsic tumor resistance to anti-angiogenic agents. The understandings of how these pathways functionally cross-talk for sustaining tumor angiogenesis during VEGF blockade is essential and perhaps may act as a basic prerequisite for designing novel therapeutic strategies to combat the growing arrogance of tumors toward anti-angiogenic agents. The present review offers a discourse on major compensatory angiogenic pathways operating at cellular and molecular levels and their attributes with resistance to anti-angiogenic agents along with strategic opinions on future setting in targeting tumor angiogenesis. PMID:26029827

  20. Interleukin 32 promotes angiogenesis1

    PubMed Central

    Nold-Petry, Claudia A.; Rudloff, Ina; Baumer, Yvonne; Ruvo, Menotti; Marasco, Daniela; Botti, Paolo; Farkas, Laszlo; Cho, Steven X.; Zepp, Jarod A.; Azam, Tania; Dinkel, Hannah; Palmer, Brent E.; Boisvert, William A.; Cool, Carlyne D.; Taraseviciene-Stewart, Laima; Heinhuis, Bas; Joosten, Leo A. B.; Dinarello, Charles A.; Voelkel, Norbert F.; Nold, Marcel F.

    2013-01-01

    IL-32 is a multi-faceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and now reveal that IL-32 also possesses angiogenic properties. The hyperproliferative EC of human pulmonary arterial hypertension (PAH) and glioblastoma multiforme exhibited a markedly increased abundance of IL-32, and, significantly, the cytokine colocalized with integrin αVβ3. VEGF receptor blockade, which resulted in EC hyperproliferation, increased IL-32 threefold. siRNA-mediated silencing of IL-32 negated the 58% proliferation of EC that occurred within 24h in scrambled-transfected controls. Reduction of IL-32 neither affected apoptosis (insignificant changes in Bak-1, Bcl-2, Bcl-XL, LDH, annexin V, and propidium iodide) nor VEGF or TGF-β levels, but siIL-32-transfected adult and neonatal EC produced up to 61% less NO, IL-8, and MMP-9, and up to 3-fold more activin A and endostatin. In co-culture-based angiogenesis assays, IL-32γ dose-dependently increased tube formation up to 3-fold; an αVβ3 inhibitor prevented this activity, and reduced IL-32γ-induced IL-8 by 85%. In matrigel plugs loaded with IL-32γ, VEGF, or vehicle, and injected into live mice, we observed the anticipated VEGF-induced increase in neocapillarization (8-fold vs vehicle), but unexpectedly, IL-32γ was equally angiogenic. A second signal such as IFNγ was required to render cells responsive to exogenous IL-32γ; importantly, this was confirmed using a completely synthetic preparation of IL-32γ. In summary, we add angiogenic properties that are mediated by integrin αVβ3 but VEGF-independent, to the portfolio of IL-32, implicating a role for this versatile cytokine in PAH and neoplastic diseases. PMID:24337385

  1. Angiogenesis & Vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of Bone Marrow Derived Progenitor Cell Mobilization and Homing

    PubMed Central

    Velazquez, Omaida C.

    2009-01-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo, but also for repair of wounded tissue in the adult. An imbalance in ‘Angiogenesis’ (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound healing disorders. In this review, we will focus on the central role of the growth of new blood vessels in ischemic and diabetic wound healing. We define the most current nomenclature that describes the neovascularization process in wounds. There are now two well defined, distinct, yet interrelated processes for the formation of post-natal new blood vessels, angiogenesis and vasculogenesis. We review recent new data on vasculogenesis that promises to advance the field of wound healing. PMID:17544023

  2. Low-Molecular-Weight Fucoidan Induces Endothelial Cell Migration via the PI3K/AKT Pathway and Modulates the Transcription of Genes Involved in Angiogenesis

    PubMed Central

    Bouvard, Claire; Galy-Fauroux, Isabelle; Grelac, Françoise; Carpentier, Wassila; Lokajczyk, Anna; Gandrille, Sophie; Colliec-Jouault, Sylvia; Fischer, Anne-Marie; Helley, Dominique

    2015-01-01

    Low-molecular-weight fucoidan (LMWF) is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF’s mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair. PMID:26694425

  3. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function.

    PubMed

    Cai, Liying; Johnstone, Brian H; Cook, Todd G; Tan, Jian; Fishbein, Michael C; Chen, Peng-Sheng; March, Keith L

    2009-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  4. Effects of epinephrine on angiogenesis-related gene expressions in cultured rat cardiomyocytes

    PubMed Central

    Liu, Henry; Sangkum, Lisa; Liu, Geoffrey; Green, Michael; Li, Marilyn; Kaye, Alan

    2016-01-01

    Abstract Epinephrine is often used for the treatment of patients with heart failure, low cardiac output and cardiac arrest. It can acutely improve hemodynamic parameters; however, it does not seem to improve longer term clinical outcomes. Therefore, we hypothesized that epinephrine may induce unfavorable changes in gene expression of cardiomyocyte. Thus, we investigated effects of epinephrine exposure on the mediation or modulation of gene expression of cultured cardiomyocytes at a genome-wide scale. Our investigation revealed that exposure of cardiomyocytes to epinephrine in an in vitro environment can up-regulate the expression of angiopoietin-2 gene (+2.1 times), and down-regulate the gene expression of neuregulin 1 (−3.7 times), plasminogen activator inhibitor-1 (−2.4 times) and SPARC-related modular calcium-binding protein-2 (−4.5 times). These changes suggest that epinephrine exposure may induce inhibition of angiogenesis-related gene expressions in cultured rat cardiomyocytes. The precise clinical significance of these changes in gene expression, which was induced by epinephrine exposure, warrants further experimental and clinical investigations.

  5. Vanadium Exposure-Induced Neurobehavioral Alterations among Chinese Workers

    PubMed Central

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2014-01-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the Simple Reaction Time, Digit Span, Benton Visual Retention and Pursuit Aiming were also poorer among exposed workers as compared to unexposed control workers(p<0.05). Some of these poor performances in tests were also significantly related to workers’ exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium. PMID:23500660

  6. Influence of exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung

    SciTech Connect

    Rombout, P.J.A.; Dormans, J.A.M.A.; Marra, M.; van Esch, G.J.

    1986-12-01

    Experiments were performed to study the influence of concentration, exposure pattern, and length of exposure on the degree and extent of morphological alterations in the NO/sub 2//sup -/ exposed rat lung. Four weeks of continuous exposure to 20 mg NO/sub 2//m/sup 3/ consecutively revealed damage and loss of cilia, replacement of desquamated type I pneumocytes by type II pneumocytes resulting in a cuboidal epithelial lining, an influx of alveolar macrophages, and hypertrophy and hyperplasia of the bronchiolar epithelium. The animals recovered almost completely from the induced lesions within 8 days. Continuous exposure to 1, 2.5, or 5 mg/m/sup 3/ displayed minimal alterations in the 5 mg/m/sup 3/ group. The effects increased with exposure time. Intermittent or continuous exposure to 20 mg NO/sub 2//m/sup 3/ resulted in minor differences after 4 weeks. The onset of the lesions was delayed and the massive influx of alveolar macrophages in the continuously exposed animals failed to appear in the intermittently exposed animals. This work demonstrates that in subacute experiments: (1) Concentration plays a more important role in inducing pulmonary lesions than exposure time when the product of concentration and time is kept constant. This effect is stronger during intermittent exposure than during continuous exposure. (2) Continuous exposure seems to be a more important factor with regard to a macrophage response than intermittent exposure. (3) The rat lung has a large capacity to repair almost completely from damage caused by short-term NO/sub 2/ exposure.

  7. Increased angiogenesis in portal hypertensive rats: role of nitric oxide.

    PubMed

    Sumanovski, L T; Battegay, E; Stumm, M; van der Kooij, M; Sieber, C C

    1999-04-01

    Systemic and especially splanchnic arterial vasodilation accompany chronic portal hypertension. Different soluble mediators causing this vasodilation have been proposed, the strongest evidence being for nitric oxide (NO). No data exist if structural vascular changes may partly account for this vasodilatory state. Here, we developed a new in vivo quantitative angiogenesis assay in the abdominal cavity and determined if: 1) portal hypertensive rats show increased angiogenesis; and 2) angiogenesis is altered by inhibiting NO formation. Portal hypertension was induced by partial portal vein ligation (PVL). Sham-operated rats served as controls (CON). During the index operation (day 0), a teflon ring filled with collagen I (Vitrogen 100) was sutured in the mesenteric cavity. After 16 days, rings were explanted, embedded in paraffin, and ingrown vessels counted using a morphometry system. The role of NO was tested by adding an antagonist of NO formation (Nomega-nitro-L-arginine [NNA], 3.3 mg/kg/d) into the drinking water. The mean number of ingrown vessels per implant was significantly higher in PVL rats compared with CON rats, i.e., 1,453 +/- 187 versus 888 +/- 116, respectively (P <.05; N = 5 per group). NNA significantly (P <.01) inhibited angiogenesis in PVL (202 +/- 124; N = 5) and in CON (174 +/- 25; N = 6) rats, respectively. In contrast, the beta-adrenergic blocker, propranolol, did not prevent angiogenesis either in PVL or CON rats in a separate set of experiments (data not shown). The conclusions drawn from this study are that: 1) rats with portal hypertension show increased angiogenesis; and 2) inhibition of NO formation significantly prevents angiogenesis in both PVL and CON rats. Therefore, splanchnic vasodilation in chronic portal hypertension may also be a result of structural changes.

  8. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis.

    PubMed

    Teema, Asmaa M; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Neuroinflammation and angiogenesis have been involved in the pathogenesis of Parkinson's disease (PD). This study investigated the effect of ibuprofen or piroxicam on the motor response to l-dopa and development of dyskinesia in Parkinsonian rats focusing on the anti-angiogenic role of the two non-steroidal anti-inflammatory drugs (NSAIDs). Rats were divided into nine groups as follows: Group I: the vehicle group, Group II: rotenone group, rats were injected with nine doses of rotenone (1 mg/kg/48 h), group III&IV: rats received rotenone + ibuprofen (10 or 30 mg/kg), Group V-VI: rats received rotenone + piroxicam (1 or 3 mg/kg), Group VII: rats received rotenone + l-dopa/carbidopa (100/10 mg/kg), Group VIII-IX: rats received rotenone + l-dopa/carbidopa + ibuprofen (30 mg/kg) or piroxicam (3 mg/kg). In general, drugs were administered daily for ten weeks. Rotenone-treated rats showed motor dysfunction, lower striatal dopamine, lower staining for nigral tyrosine hydroxylase but higher level of striatal cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) compared to vehicle-treated rats (P < 0.05). Treatment with l-dopa showed wearing-off over the course of the experiment in addition to development of abnormal involuntary movements and upregulated striatal VEGF level. Treatment with ibuprofen or piroxicam in combination with l-dopa preserved the effect of l-dopa at the end of week 10, delayed the development of dyskinesia and decreased striatal COX-2 and VEGF levels. In conclusion, the current study suggests that ibuprofen and piroxicam are promising candidates for neuroprotection in PD and may have utility in conjunction with l-dopa in order to ensure the longevity of its action and to delay the development of dyskinesia.

  9. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis.

    PubMed

    Teema, Asmaa M; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Neuroinflammation and angiogenesis have been involved in the pathogenesis of Parkinson's disease (PD). This study investigated the effect of ibuprofen or piroxicam on the motor response to l-dopa and development of dyskinesia in Parkinsonian rats focusing on the anti-angiogenic role of the two non-steroidal anti-inflammatory drugs (NSAIDs). Rats were divided into nine groups as follows: Group I: the vehicle group, Group II: rotenone group, rats were injected with nine doses of rotenone (1 mg/kg/48 h), group III&IV: rats received rotenone + ibuprofen (10 or 30 mg/kg), Group V-VI: rats received rotenone + piroxicam (1 or 3 mg/kg), Group VII: rats received rotenone + l-dopa/carbidopa (100/10 mg/kg), Group VIII-IX: rats received rotenone + l-dopa/carbidopa + ibuprofen (30 mg/kg) or piroxicam (3 mg/kg). In general, drugs were administered daily for ten weeks. Rotenone-treated rats showed motor dysfunction, lower striatal dopamine, lower staining for nigral tyrosine hydroxylase but higher level of striatal cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) compared to vehicle-treated rats (P < 0.05). Treatment with l-dopa showed wearing-off over the course of the experiment in addition to development of abnormal involuntary movements and upregulated striatal VEGF level. Treatment with ibuprofen or piroxicam in combination with l-dopa preserved the effect of l-dopa at the end of week 10, delayed the development of dyskinesia and decreased striatal COX-2 and VEGF levels. In conclusion, the current study suggests that ibuprofen and piroxicam are promising candidates for neuroprotection in PD and may have utility in conjunction with l-dopa in order to ensure the longevity of its action and to delay the development of dyskinesia. PMID:27016022

  10. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation.

    PubMed

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  11. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation

    PubMed Central

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  12. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    SciTech Connect

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  13. Angiogenesis and experimental hepatic fibrosis.

    PubMed

    Lemos, Queli Teixeira; Andrade, Zilton A

    2010-08-01

    Angiogenesis is a basic change occurring during repair by granulation tissue. This process seems to precede fibrosis formation in most types of chronic liver disease. To examine its presence and significance in different types of hepatic insults, this paper sought to identify the presence, evolution and peculiarities of angiogenesis in the most common experimental models of hepatic fibrosis. The characterization of cells, vessels and extracellular matrix and the identification of factors associated with endothelium (factor VIII RA), vascular basement membrane, other components of the vascular walls (actin, elastin) and the presence of the vascular-endothelial growth factor were investigated. The models examined included Capillaria hepatica septal fibrosis, whole pig serum injections, carbon tetrachloride administration, main bile duct ligation and Schistosoma mansoni infection. The first four models were performed in rats, while the last used mice. All models studied exhibited prominent angiogenesis. The most evident relationship between angiogenesis and fibrosis occurred with the C. hepatica model due to circumstances to be discussed. Special attention was paid to the presence of pericytes and to their tendency to become detached from the vascular wall and be transformed into myofibroblasts, which is a sequence of events that explains the decisive role angiogenesis plays in fibrosis.

  14. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  15. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  16. Cognitive deficits induced by 56Fe radiation exposure

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  17. Cognitive deficits induced by 56Fe radiation exposure.

    PubMed

    Shukitt-Hale, B; Casadesus, G; Cantuti-Castelvetri, I; Rabin, B M; Joseph, J A

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  18. Susceptibility to ozone-induced inflammation. II. Separate loci control responses to acute and subacute exposures

    SciTech Connect

    Kleeberger, S.R.; Levitt, R.C.; Zhang, L.Y. )

    1993-01-01

    We demonstrated previously that inbred strains of mice are differentially susceptible to acute (3 h) and subacute (48 h) exposures to 2 parts per million (ppm) ozone (O3) and 0.30 ppm O3, respectively. Genetic studies with O3-resistant C3H/HeJ and O3-susceptible C57BL/6J strains have indicated that susceptibility to each of these O3 exposures is under Mendelian (single gene) control. In the present study, we hypothesized that the same gene controls susceptibility to the airway inflammatory responses to 2 ppm and 0.30 ppm O3 exposures. To test this hypothesis, airway inflammation was induced in 10 BXH and 16 BXD recombinant inbred (RI) strains of mice by acute as well as subacute O3 exposures. Airway inflammation was assessed by counting the number of polymorphonuclear leukocytes (PMNs) in bronchoalveolar lavage (BAL) returns obtained immediately after 48-h subacute exposure to 0.30 ppm O3, or 6 h after 3 h acute exposure to 2 ppm O3. Each RI strain was classified as susceptible or resistant to each exposure, based on a comparison of mean numbers of PMNs with those of the respective progenitor strains. For each RI set, a phenotypic strain distribution pattern (SDP) was thus derived for each exposure regimen, and the SDPs were then compared for concordance. Among the BXH RI strains, 4 of 10 responded discordantly to the two exposures: 3 were susceptible to acute exposure and resistant to subacute exposure, whereas 1 was conversely susceptible. Among the BXD RI strains, 4 of 16 were discordant: 1 was susceptible to acute exposure, and resistant to subacute exposure, whereas 3 were conversely susceptible.

  19. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis.

    PubMed Central

    Brown, N S; Bicknell, R

    1998-01-01

    Angiogenesis is the term used to describe the formation of new blood vessels from the existing vasculature. In order to attract new vessels, a tissue must release an endothelial-cell chemoattractant. 2-Deoxy-D-ribose is produced in vivo by the catalytic action of thymidine phosphorylase (TP) on thymidine and has recently been identified as an endothelial-cell chemoattractant and angiogenesis-inducing factor. TP, previously known only for its role in nucleotide salvage, is now known to be angiogenic. TP expression is elevated in many solid tumours and in chronically inflamed tissues, both known areas of active angiogenesis. There is evidence that TP is also involved in physiological angiogenesis such as endometrial angiogenesis during the menstrual cycle. The majority of known endothelial-cell chemoattractants are polypeptides that bind to endothelial-cell-surface receptors. In contrast, 2-deoxy-D-ribose appears to lack a cell-surface receptor. Glucose is another sugar that acts as an endothelial-cell chemoattractant. The migratory activity of glucose is blocked by ouabain. It is possible that 2-deoxy-D-ribose and glucose stimulate endothelial-cell migration via a similar mechanistic pathway. PMID:9693094

  20. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  1. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    PubMed Central

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum (Henry); Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  2. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury.

    PubMed

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum Henry; Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O₂ for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  3. Neonatal exposure to constant light prevents anhedonia-like behavior induced by constant light exposure in adulthood.

    PubMed

    Martynhak, Bruno J; Correia, Diego; Morais, Lívia H; Araujo, Paula; Andersen, Monica L; Lima, Marcelo M S; Louzada, Fernando M; Andreatini, Roberto

    2011-09-12

    Depressive episodes are associated with disturbances in circadian rhythms, and constant illumination has been reported to induce depressive-like behavior in rodents. Rats kept in constant darkness express the endogenous circadian rhythm, and most animals under constant light conditions lose circadian locomotor rhythmicity. Exposure to constant light in rats during lactation was reported to prevent this loss of circadian rhythm in adulthood. Thus, the aim of the present study was to verify whether exposure to constant light during lactation prevents anhedonia-like behavior induced by constant light in adult rats. In experiment 1, we replicated the anhedonia-like effects of constant light in adult male rats. We showed that this effect is reversed by imipramine treatment in the drinking water. In experiment 2, we subjected rats to constant darkness (neonatal-DD), constant light (neonatal-LL) or to normal light/dark cycle (neonatal-LD) during the neonatal phase and evaluated them after constant light exposure in adulthood. The group exposed to constant light during the neonatal phase did not reduce their sucrose preference and exhibited greater locomotor activity than the other groups. The neonatal-DD group exhibited decreased sucrose preference earlier than controls and had higher serum corticosterone concentrations. Prevention of arrhythymicity might protect neonatal-LL rats from anhedonia-like behavior induced by constant light, whereas constant darkness during the neonatal phase rendered the neonatal-DD group more susceptible to depressive-like behavior. These results corroborate with the literature data indicating that circadian disruption may contribute in mood disorders and that early life stress can influence stress responsivity in adulthood.

  4. Social Preference Deficits in Juvenile Zebrafish Induced by Early Chronic Exposure to Sodium Valproate

    PubMed Central

    Liu, Xiuyun; Zhang, Yinglan; Lin, Jia; Xia, Qiaoxi; Guo, Ning; Li, Qiang

    2016-01-01

    Prenatal exposure to sodium valproate (VPA), a widely used anti-epileptic drug, is related to a series of dysfunctions, such as deficits in language and communication. Clinical and animal studies have indicated that the effects of VPA are related to the concentration and to the exposure window, while the neurobehavioral effects of VPA have received limited research attention. In the current study, to analyze the neurobehavioral effects of VPA, zebrafish at 24 h post-fertilization (hpf) were treated with early chronic exposure to 20 μM VPA for 7 h per day for 6 days or with early acute exposure to 100 μM VPA for 7 h. A battery of behavioral screenings was conducted at 1 month of age to investigate social preference, locomotor activity, anxiety, and behavioral response to light change. A social preference deficit was only observed in animals with chronic VPA exposure. Acute VPA exposure induced a change in the locomotor activity, while chronic VPA exposure did not affect locomotor activity. Neither exposure procedure influenced anxiety or the behavioral response to light change. These results suggested that VPA has the potential to affect some behaviors in zebrafish, such as social behavior and the locomotor activity, and that the effects were closely related to the concentration and the exposure window. Additionally, social preference seemed to be independent from other simple behaviors. PMID:27812327

  5. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats.

    PubMed

    Han, Shui-Ping; Zhou, Dang-Xia; Lin, Pu; Qin, Zhen; An, Lu; Zheng, Lie-Rui; Lei, Li

    2015-03-01

    Formaldehyde, a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of autophagy in male reproductive injuries induced by formaldehyde exposure, by which we can further understand the molecular mechanism of spermatogenesis and develop new targets for prevention and treatment of male infertility. In this study, electron microscopy, Western blot, and RT-PCR analysis were used to detect autophagy in testicular tissues. Moreover, testicular weights, histopathology, and morphometry were used to evaluate the reproductive injuries of formaldehyde exposure. We found that formaldehyde exposure-induced autophagy in testicular tissues was dose dependent. Increasing autophagosomes in spermatogenetic cells was observed by electron microscopy in formaldehyde exposure group. In addition, RT-PCR and Western blot analysis showed the transcription levels of the LC3-II, as well as the conversion from LC3-I to LC3-II, an indicator of autophagy, significantly increased in testicular tissue of formaldehyde exposure group in a dose dependent manner when compared with those in control group. Furthermore, the alterations of autophage were basically consistent with the changes in testicular weight and morphologic findings. In summary, formaldehyde exposure triggered autophagy, and autophagy may be a scathing factor responsible for male reproductive impairment induced by formaldehyde.

  6. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light.

    PubMed

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2016-03-11

    Bright nocturnal light has been shown to suppress melatonin secretion. However, bright light exposure during the day might reduce light-induced melatonin suppression at night. The human circadian system is sensitive to short wavelength light. This study evaluated the preventive effect of different wavelengths of daytime light on light-induced melatonin suppression at night. Twelve male subjects were exposed to various light conditions (dim, white, and bluish white light) between the hours of 09:00 and 10:30 (daytime light conditions). They were then exposed to light (300lx) again between 01:00 and 02:30 (night-time light exposure). Subjects provided saliva samples before (00:55) and after night-time light exposure (02:30). A two-tailed paired t-test yielded significant decrements in melatonin concentrations after night-time light exposure under daytime dim and white light conditions. No significant differences were found in melatonin concentrations between pre- and post-night-time light exposure with bluish-white light. Present findings suggest that daytime blue light exposure has an acute preventive impact on light-induced melatonin suppression in individuals with a general life rhythm (sleep/wake schedule). These findings may be useful for implementing artificial light environments for humans in, for example, hospitals and underground shopping malls to reduce health risks.

  7. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light.

    PubMed

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2016-03-11

    Bright nocturnal light has been shown to suppress melatonin secretion. However, bright light exposure during the day might reduce light-induced melatonin suppression at night. The human circadian system is sensitive to short wavelength light. This study evaluated the preventive effect of different wavelengths of daytime light on light-induced melatonin suppression at night. Twelve male subjects were exposed to various light conditions (dim, white, and bluish white light) between the hours of 09:00 and 10:30 (daytime light conditions). They were then exposed to light (300lx) again between 01:00 and 02:30 (night-time light exposure). Subjects provided saliva samples before (00:55) and after night-time light exposure (02:30). A two-tailed paired t-test yielded significant decrements in melatonin concentrations after night-time light exposure under daytime dim and white light conditions. No significant differences were found in melatonin concentrations between pre- and post-night-time light exposure with bluish-white light. Present findings suggest that daytime blue light exposure has an acute preventive impact on light-induced melatonin suppression in individuals with a general life rhythm (sleep/wake schedule). These findings may be useful for implementing artificial light environments for humans in, for example, hospitals and underground shopping malls to reduce health risks. PMID:26777427

  8. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis.

    PubMed

    Masiero, Massimo; Simões, Filipa Costa; Han, Hee Dong; Snell, Cameron; Peterkin, Tessa; Bridges, Esther; Mangala, Lingegowda S; Wu, Sherry Yen-Yao; Pradeep, Sunila; Li, Demin; Han, Cheng; Dalton, Heather; Lopez-Berestein, Gabriel; Tuynman, Jurriaan B; Mortensen, Neil; Li, Ji-Liang; Patient, Roger; Sood, Anil K; Banham, Alison H; Harris, Adrian L; Buffa, Francesca M

    2013-08-12

    Limited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation. PMID:23871637

  9. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis.

    PubMed

    Masiero, Massimo; Simões, Filipa Costa; Han, Hee Dong; Snell, Cameron; Peterkin, Tessa; Bridges, Esther; Mangala, Lingegowda S; Wu, Sherry Yen-Yao; Pradeep, Sunila; Li, Demin; Han, Cheng; Dalton, Heather; Lopez-Berestein, Gabriel; Tuynman, Jurriaan B; Mortensen, Neil; Li, Ji-Liang; Patient, Roger; Sood, Anil K; Banham, Alison H; Harris, Adrian L; Buffa, Francesca M

    2013-08-12

    Limited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation.

  10. Proposed iso standard determination of occupational noise exposure and estimation of noise-induced hearing impairment

    SciTech Connect

    Von Gierke, H.E.

    1986-01-01

    Research on the relationship between noise exposure and noise-induced hearing loss has been very intense over the last 30 years, and steady progress has been made in spite of many remaining questions and unresolved problems regarding the mechanisms. For the time being, avoidance of excessive noise exposure is the only way to prevent noise-induced hearing loss; this is the reason why governments, industry, workers and their representatives have been looking for scientific exposure criteria and guidelines to prevent hazardous noise exposure as part of comprehensive hearing conservation programs. Although it was clear from the beginning that noise-induced hearing loss in a population with exactly defined noise exposure would exhibit a statistical distribution due to differences in biological susceptibility, the epidemiological statistical data were not available to describe quantitatively the difference between the percentage of people with impaired hearing in a noise-exposed group and the percentage of people in a non-noise-exposed group, i.e., the risk of noise-induced hearing impairment.

  11. Coupling of Neurogenesis and Angiogenesis After Ischemic Stroke

    PubMed Central

    Ruan, Linhui; Wang, Brian; ZhuGe, Qichuan; Jin, Kunlin

    2015-01-01

    Stroke is a leading cause of mortality and severe long-term disability worldwide. Development of effective treatment or new therapeutic strategies for ischemic stroke patients is therefore crucial. Ischemic stroke promotes neurogenesis by several growth factors including FGF-2, IGF-1, BDNF, VEGF and chemokines including SDF-1, MCP-1. Stroke-induced angiogenesis is similarly regulated by many factors most notably, eNOS and CSE, VEGF/VEGFR2, and Ang-1/Tie2. Important findings in the last decade have revealed that neurogenesis is not the stand-alone consideration in the fight for full functional recovery from stroke. Angiogenesis has been also shown to be critical in improving post-stroke neurological functional recovery. More than that, recent evidence has shown a highly possible interplay or dependence between stroke-induced neurogenesis and angiogenesis. Moving forward, elucidating the underlying mechanisms of this coupling between stroke-induced neurogenesis and angiogenesis will be of great importance, which will provide the basis for neurorestorative therapy. PMID:25736182

  12. Angiopoietin-4 Inhibits Angiogenesis and Reduces Interstitial Fluid Pressure1

    PubMed Central

    Junker, Nanna; Hansen, Anker J; Lund, Eva L; Kristjansen, Paul E G

    2006-01-01

    Abstract Angiopoietins (Ang) are involved in the remodeling, maturation, and stabilization of the vascular network. Ang-4 was discovered more recently; thus, its effect on angiogenesis and its interplay with other angiogenic factors have not been equivocally established. The role of Ang-4 in angiogenesis was tested in Matrigel chambers implanted into the subcutaneous space of nude mice. Ang-4 inhibited the angiogenic response of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and GLC19 tumor cells. In Matrigel chambers with Ang-4-transfected cells, the mean response was significantly lower than that of mock cells. Subcutaneous tumor interstitial fluid pressure (IFP) was significantly lower in Ang-4-transfected GLC19 tumors than in mock-transfected tumors. IFP reduction in Ang-4-transfected tumors was comparable to the reduction seen after bevacizumab treatment. In vitro, we examined the effect of recombinant Ang-4 on endothelial cell migration in Boyden chambers. Human umbilical vein endothelial cell (HUVEC) migration induced by bFGF and VEGF was inhibited by Ang-4 to control levels. In conclusion, we show that rhAng-4, as well as transfection with Ang-4, inhibits angiogenesis induced by GLC19 tumor cells and that Ang-4 expression reduces elevated tumor IFP. In addition, we demonstrate that rhAng-4 inhibits HUVEC migration and growth factor-induced angiogenesis. PMID:16790085

  13. Regulation of TB vaccine-induced airway luminal T cells by respiratory exposure to endotoxin.

    PubMed

    Chen, Xuerong; Xiu, Fangming; Horvath, Carly N; Damjanovic, Daniela; Thanthrige-Don, Niroshan; Jeyanathan, Mangalakumari; Xing, Zhou

    2012-01-01

    Tuberculosis (TB) vaccine-induced airway luminal T cells (ALT) have recently been shown to be critical to host defense against pulmonary TB. However, the mechanisms that maintain memory ALT remain poorly understood. In particular, whether respiratory mucosal exposure to environmental agents such as endotoxin may regulate the size of vaccine-induced ALT population is still unclear. Using a murine model of respiratory genetic TB vaccination and respiratory LPS exposure, we have addressed this issue in the current study. We have found that single or repeated LPS exposure increases the number of antigen-specific ALT which are capable of robust secondary responses to pulmonary mycobacterial challenge. To investigate the potential mechanisms by which LPS exposure modulates the ALT population, we have examined the role of ALT proliferation and peripheral T cell recruitment. We have found that LPS exposure-increased ALT is not dependent on increased ALT proliferation as respiratory LPS exposure does not significantly increase the rate of proliferation of ALT. But rather, we find it to be dependent upon the recruitment of peripheral T cells into the airway lumen as blockade of peripheral T cell supplies markedly reduces the initially increased ALT. Thus, our data suggest that environmental exposure to airborne agents such as endotoxin has a profound modulatory effect on TB vaccine-elicited T cells within the respiratory tract. Our study provides a new, M.tb antigen-independent mechanism by which the respiratory mucosal anti-TB memory T cells may be maintained.

  14. Sub-chronic exposure to second hand smoke induces airspace leukocyte infiltration and decreased lung elastance

    PubMed Central

    Hartney, John M.; Chu, HongWei; Pelanda, Roberta; Torres, Raul M.

    2012-01-01

    Exposure to second hand tobacco smoke is associated with the development and/or exacerbation of several different pulmonary diseases in humans. To better understand the possible effects of second hand smoke exposure in humans, we sub-chronically (4 weeks) exposed mice to a mixture of mainstream and sidestream tobacco smoke at concentrations similar to second hand smoke exposure in humans. The inflammatory response to smoke exposures was assessed at the end of this time by enumeration of pulmonary leukocyte infiltration together with measurements of lung elastance and pathology. This response was measured in both healthy wild type (C57BL/6) mice as well as mouse mutants deficient in the expression of Arhgef1 (Arhgef1−/−) that display constitutive pulmonary inflammation and decreased lung elastance reminiscent of emphysema. The results from this study show that sub-chronic second hand smoke exposure leads to significantly increased numbers of airspace leukocytes in both healthy and mutant animals. While sub-chronic cigarette smoke exposure is not sufficient to induce changes in lung architecture as measured by mean linear intercept, both groups exhibit a significant decrease in lung elastance. Together these data demonstrate that even sub-chronic exposure to second hand smoke is sufficient to induce pulmonary inflammation and decrease lung elastance in both healthy and diseased animals and in the absence of tissue destruction. PMID:22934051

  15. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  16. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification.

  17. Repeated Ketamine Exposure Induces an Enduring Resilient Phenotype in Adolescent and Adult Rats

    PubMed Central

    Parise, Eric M.; Alcantara, Lyonna F.; Warren, Brandon L.; Wright, Katherine N.; Hadad, Roey; Sial, Omar K.; Kroeck, Kyle G.; Iñiguez, Sergio D.; Bolaños-Guzmán, Carlos A.

    2013-01-01

    Background Major Depressive Disorder (MDD) afflicts up to 10% of adolescents. However, nearly 50% of those afflicted are considered non-responsive to available treatments. Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist has shown potential as a rapid-acting and long-lasting treatment for MDD in adults. Thus, the effectiveness and functional consequences of ketamine exposure during adolescence were explored. Methods Adolescent male rats (postnatal day [PD] 35) received two ketamine (0, 5, 10 or 20 mg/kg) injections, 4 hours apart, after exposure to day 1 of the forced swim test (FST). The next day, rats were re-exposed to the FST to assess ketamine-induced antidepressant-like responses. Separate groups were exposed to chronic unpredictable stress (CUS) to confirm findings from the FST. After these initial experiments, adolescent naïve rats were exposed to either 1 or 15 consecutive days (PD35–49) of ketamine (20 mg/kg) twice/daily. Ketamine's influence on behavioral reactivity to rewarding (i.e., sucrose preference) and aversive (i.e., elevated plus-maze, FST) circumstances was then assessed 2 months after treatment. To control for age-dependent effects, adult rats (PD75–89) were exposed to identical experimental conditions. Results Ketamine (20 mg/kg) reversed the CUS-induced depression-like behaviors in the FST. Repeated ketamine exposure resulted in anxiolytic- and antidepressant-like responses 2 months after drug exposure. None of the ketamine doses used were capable of inducing drug-seeking behaviors as measured by place preference conditioning. Conclusions Repeated ketamine exposure induces enduring resilient-like responses regardless of age of exposure. These findings point to ketamine, and its repeated exposure, as a potentially useful antidepressant during adolescence. PMID:23790225

  18. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    PubMed

    Sun, Bao-Fei; Wang, Qing-Qing; Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  19. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  20. Prenatal alcohol exposure inducing the apoptosis of mossy cells in hippocampus of SMS2-/- mice.

    PubMed

    Wang, Lai; Wu, Lin; Wang, Xiaoqing; Deng, Jiexin; Ma, Zhanyou; Fan, Wenjuan; He, Weiya; Deng, Jinbo

    2015-11-01

    In order to understand the mechanisms of alcohol-induced neuroapoptosis through the ceramide pathway, sphingomyelin synthase 2 knockout (SMS2-/-) mice were used to make the prenatal alcohol exposure model, and the role of ceramide regulation on alcohol-induced neuroapoptosis was studied in the offspring. Initially the levels of serum sphingomyelin (SM) were detected with enzymatic method in P0 pups after alcohol exposure in parents. Then the apoptosis of mossy cells in the offspring hippocampus was investigated after prenatal alcohol exposure with immunohistochemistry and TUNEL assay. Finally the expression of activated Caspase 8 and activated Caspase 3 in the offspring hippocampus was detected with Western blot analysis. Our results showed that SM levels were down-regulated in a dose-dependent manner (p<0.05) after prenatal alcohol exposure in wild-type (WT) and SMS2-/- pups. However, SM levels of serum in SMS2-/- pups were significantly lower than that in WT pups (p<0.01). Furthermore, we found that mossy cells were very sensitive to alcohol-induced neuroapoptosis. In both WT pups and SMS2-/- pups, the number of apoptotic mossy cells in the hippocampus increased after prenatal alcohol exposure in a dose dependent manner (p<0.05) and decreased with the growing age. Compared with WT pups, the number of apoptotic mossy cells in the hippocampus of SMS2-/- pups increased (p<0.05). Western blotting showed that the expression of activated Caspase 8 and activated Caspase 3 of hippocampal tissue in WT pups and SMS2-/- pups increases after prenatal alcohol exposure, consistent with results from TUNEL assay and immunocytochemistry. Our study suggests that mossy cells may be the easily attacked cells for fetal alcohol spectrum disorder (FASD), and ceramide is involved in the alcohol-induced neural apoptosis. The mechanism probably lies in the accumulated ceramide in SMS2 mice, and the increase of activated Caspase 8 and Caspase 3 promotes alcohol-induced neuroapoptosis.

  1. Stress-induced sensitization of cortical adrenergic receptors following a history of cannabinoid exposure

    PubMed Central

    Reyes, B.A.S.; Szot, P.; Sikkema, C.; Cathel, A. M.; Kirby, L.G.; Van Bockstaele, E.J.

    2014-01-01

    The cannabinoid receptor agonist, WIN 55,212-2, increases extracellular norepinephrine levels in the rat frontal cortex under basal conditions, likely via desensitization of inhibitory α2-adrenergic receptors located on norepinephrine terminals. Here, the effect of WIN 55,212-2 on stress-induced norepinephrine release was assessed in the medial prefrontal cortex (mPFC), in adult male Sprague-Dawley rats using in vivo microdialysis. Systemic administration of WIN 55,212-2 thirty minutes prior to stressor exposure prevented stress-induced cortical norepinephrine release induced by a single exposure to swim when compared to vehicle. To further probe cortical cannabinoid-adrenergic interactions, postsynaptic α2-adrenergic receptor (AR)-mediated responses were assessed in mPFC pyramidal neurons using electrophysiological analysis in an in vitro cortical slice preparation. We confirm prior studies showing that clonidine increases cortical pyramidal cell excitability and that this was unaffected by exposure to acute stress. WIN 55,212-2, via bath application, blocked postsynaptic α2-AR mediated responses in cortical neurons irrespective of exposure to stress. Interestingly, stress exposure prevented the desensitization of α2-AR mediated responses produced by a history of cannabinoid exposure. Together, these data indicate the stress-dependent nature of cannabinoid interactions via both pre- and postsynaptic ARs. In summary, microdialysis data indicate that cannabinoids restrain stress-induced cortical NE efflux. Electrophysiology data indicate that cannabinoids also restrain cortical cell excitability under basal conditions; however, stress interferes with these CB1-α2 AR interactions, potentially contributing to over-activation of pyramidal neurons in mPFC. Overall, cannabinoids are protective of the NE system and cortical excitability but stress can derail this protective effect, potentially contributing to stress-related psychopathology. These data add to the

  2. Critical Duration of Exposure for Developmental Chlorpyrifos-Induced Neurobehavioral Toxicity

    PubMed Central

    Sledge, Damiyon; Yen, Jerry; Morton, Terrell; Dishaw, Laura; Petro, Ann; Donerly, Susan; Linney, Elwood; Levin, Edward D.

    2011-01-01

    Developmental exposure of rats to the pesticide chlorpyrifos (CPF) causes persistent neurobehavioral impairment. In a parallel series of studies with zebrafish, we have also found persisting behavioral dysfunction after developmental CPF exposure. We have developed a battery of measures of zebrafish behavior, which are reliable and sensitive to toxicant-induced damage. This study determined the critical duration of developmental CPF exposure for causing persisting neurobehavioral effects. Tests of sensorimotor response (tap startle response and habituation), stress response (novel tank diving test) and learning (3-chamber tank spatial discrimination) were conducted with adult zebrafish after early developmental CPF exposure. The CPF exposure level was 100 ng/ml with durations of 0-1, 0-2, 0-3, 0-4 and 0-5 days after fertilization. Developmental CPF exposure had persisting behavioral effects in zebrafish tested as adults. In the tactile startle test, CPF exposed fish showed decreased habituation to startle and a trend toward increased overall startle response. In the novel tank exploration test, exposed fish showed decreased escape diving response and increased swimming activity. In the 3-chamber learning test, the 0-5 day CPF exposure group had a significantly lower learning rate. There was evidence for persisting declines in brain dopamine and norepinepherine levels after developmental CPF exposure. In all of the measures the clearest persistent effects were seen in fish exposed for the full duration of five days after fertilization. In a follow-up experiment there were some indications for persisting behavioral effects after exposure during only the later phase of this developmental window. This study demonstrated the selective long-term neurobehavioral alterations caused by exposure to CPF in zebrafish. The zebrafish model can facilitate the determination of the molecular mechanisms underlying long-term neurobehavioral impairment after developmental toxicant

  3. Shed syndecan-2 inhibits angiogenesis

    PubMed Central

    De Rossi, Giulia; Evans, Alun R.; Kay, Emma; Woodfin, Abigail; McKay, Tristan R.; Nourshargh, Sussan; Whiteford, James R.

    2014-01-01

    ABSTRACT Angiogenesis is essential for the development of a normal vasculature, tissue repair and reproduction, and also has roles in the progression of diseases such as cancer and rheumatoid arthritis. The heparan sulphate proteoglycan syndecan-2 is expressed on mesenchymal cells in the vasculature and, like the other members of its family, can be shed from the cell surface resulting in the release of its extracellular core protein. The purpose of this study was to establish whether shed syndecan-2 affects angiogenesis. We demonstrate that shed syndecan-2 regulates angiogenesis by inhibiting endothelial cell migration in human and rodent models and, as a result, reduces tumour growth. Furthermore, our findings show that these effects are mediated by the protein tyrosine phosphatase receptor CD148 (also known as PTPRJ) and this interaction corresponds with a decrease in active β1 integrin. Collectively, these data demonstrate an unexplored pathway for the regulation of new blood vessel formation and identify syndecan-2 as a therapeutic target in pathologies characterised by angiogenesis. PMID:25179601

  4. Evolution of color vision loss induced by occupational exposure to chemicals.

    PubMed

    Gobba, F; Cavalleri, A

    2000-10-01

    The evolution of occupationally induced color vision loss was studied in workers exposed to various chemicals. Exposure was evaluated by biological monitoring or personal air samplers, and color vision using the Lanthony D-15 desaturated panel (D-15 d). The effect of short-term interruption of exposure was studied in 39 Styrene (St) exposed workers: at a first examination a dose-related color vision loss was disclosed; a re-test performed after one month's interruption of exposure did not show any improvement of the effect. The evolution during longer periods was studied in another group of 30 St workers. Exposure and color vision were evaluated, then a follow-up was done 12 months later: the exposure was unmodified or slightly decreased in 20 subjects, and D-15 d outcomes remained unchanged, while St levels had increased and color vision loss progressed in the other 10. Similar results were obtained in 33 PCE exposed dry-cleaners: no change in color perception was observed in 14 workers whose exposure decreased, while in the other 19 a rise in PCE levels was followed by a significant color vision worsening. In 21 Hg exposed workers whose mean urinary excretion of Hg was threefold the BEI proposed by ACGIH, a dose-related impairment in color perception was observed. 12 months after a marked reduction of exposure, an almost complete recovery of the impairment was observed. Our data show that an increase in exposure can induce a worsening in color vision loss. A short interruption in exposure did not reduce the effect. A more prolonged reduction of dose reversed color vision loss in Hg exposed workers, while in solvent-exposed individuals the progression deserves further evaluation. D-15 d proved a useful test for studies on the evolution of color perception in workers exposed to eye-toxic chemicals.

  5. Language exposure induced neuroplasticity in the bilingual brain: a follow-up fMRI study.

    PubMed

    Tu, Liu; Wang, Junjing; Abutalebi, Jubin; Jiang, Bo; Pan, Ximin; Li, Meng; Gao, Wei; Yang, Yuchen; Liang, Bishan; Lu, Zhi; Huang, Ruiwang

    2015-03-01

    Although several studies have shown that language exposure crucially influence the cerebral representation of bilinguals, the effects of short-term change of language exposure in daily life upon language control areas in bilinguals are less known. To explore this issue, we employed follow-up fMRI to investigate whether differential exposure induces neuroplastic changes in the language control network in high-proficient Cantonese (L1)-Mandarin (L2) early bilinguals. The same 10 subjects underwent twice BOLD-fMRI scans while performing a silent narration task which corresponded to two different language exposure conditions, CON-1 (L1/L2 usage percentage, 50%:50%) and CON-2 (L1/L2 usage percentage, 90%:10%). We report a strong effect of language exposure in areas related to language control for the less exposed language. Interestingly, these significant effects were present after only a 30-day period of differential language exposure. In detail, we reached the following results: (1) the interaction effect of language and language exposure condition was found significantly in the left pars opercularis (BA 44) and marginally in the left MFG (BA 9); (2) in CON-2, increases of activation values in L2 were found significantly in bilateral BA 46 and BA 9, in the left BA44, and marginally in the left caudate; and (3) in CON-2, we found a significant negative correlation between language exposure to L2 and the BOLD activation value specifically in the left ACC. These findings strongly support the hypothesis that even short periods of differential exposure to a given language may induce significant neuroplastic changes in areas responsible for language control. The language which a bilingual is less exposed to and is also less used will be in need of increased mental control as shown by the increased activity of language control areas.

  6. Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo.

    PubMed

    Xiao, Wenkai; Jiang, Yajie; Men, Qiuxu; Yuan, Ling; Huang, Zebo; Liu, Ting; Li, Wenhua; Liu, Xin

    2015-01-01

    Tetrandrine, a bisbenzylisoquinoline alkaloid, is known to inhibit tumor cell proliferation and induce apoptosis in cancer models in vitro and in vivo. In the present study, tetrandrine significantly inhibited the proliferation of mouse endothelial cells (EOMA cell) and induced G1/S arrest in EOMA cells, in which the expressions of cyclin D and cyclin E and CDKs were downregulated. Tetrandrine treatment also caused intracellular accumulation of reactive oxygen species (ROS). Pretreatment with NAC, which is a ROS inhibitor, blocked G1/S cell arrest and cyclin regulation induced by tetrandrine, implying that ROS generation plays an important role in tetrandrine-induced cell cycle arrest. Furthermore, a decreased phospho-Akt protein level after tetrandrine treatment was reversible with the removal of the intracellular ROS by NAC. Notably, overexpression of Akt decreased tetrandrine-induced G1/S arrest. Finally, we verified the antiangiogenic effects of tetrandrine in vivo in a liver cancer xenograft model in nude mice. In conclusion, tetrandrine inhibits EOMA cell growth through the ROS/Akt pathway, and it could be a promising compound for cancer therapy as an inhibitor of tumor vascular growth. PMID:25355542

  7. Translational control of PML contributes to TNFα-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs

    PubMed Central

    Hsu, K-S; Guan, B-J; Cheng, X; Guan, D; Lam, M; Hatzoglou, M; Kao, H-Y

    2016-01-01

    The tumor suppressor protein promyelocytic leukemia (PML) is a key regulator of inflammatory responses and tumorigenesis and functions through the assembly of subnuclear structures known as PML nuclear bodies (NBs). The inflammation-related cytokine tumor necrosis factor-α (TNFα) is known to induce PML protein accumulation and PML NB formation that mediate TNFα-induced cell death in cancer cells and inhibition of migration and capillary tube formation in endothelial cells (ECs). In this study, we uncover a novel mechanism of PML gene regulation in which the p38 MAPK and its downstream kinase MAP kinase-activated protein kinase 1 (MNK1) mediate TNFα-induced PML protein accumulation and PML NB formation. The mechanism includes the presence of an internal ribosome entry site (IRES) found within the well-conserved 100 nucleotides upstream of the PML initiation codon. The activity of the PML IRES is induced by TNFα in a manner that involves MNK1 activation. It is proposed that the p38–MNK1–PML network regulates TNFα-induced apoptosis in breast cancer cells and TNFα-mediated inhibition of migration and capillary tube formation in ECs. PMID:26383972

  8. Mechanoregulation of Angiogenesis in Wound Healing

    PubMed Central

    Lancerotto, Luca; Orgill, Dennis P.

    2014-01-01

    Significance: Mechanical forces are important regulators of cell and tissue function. Endothelial cells proliferate in response to tissue stretch and the mechanical properties of the environment direct capillary sprouting and growth. As the vascular network is a key factor in physiology and disease, control of the vascularity by means of mechanical forces could lead to the development of innovative therapeutic strategies. Recent Advances: Increased understanding of mechanobiology has stimulated translational research and allowed the development and optimization of clinical devices that exploit mechanical forces for the treatment of diseases, in particular in the field of wound healing. Stretching in distraction osteogenesis and tissue expansion induces neogenesis of well-vascularized tissues. In micro-deformational wound therapy, micro-mechanical distortions of the wound bed stimulate cell proliferation and angiogenesis by stretching resident cells to improve healing of difficult wounds. Relief from tension antagonizes proliferation and angiogenesis in primarily closed wounds allowing for better scar quality. Critical Issues: The integration of mechanobiology into traditional cell biology and pathophysiology in general is not yet complete and further research is needed to fill existing gaps, in particular in the complexity of in vivo conditions. Future Directions: Still largely unexplored approaches based on mechanical perturbation of the micro-/macro-environment can be devised to overcome the limits of current strategies in a broad spectrum of clinical conditions. PMID:25302137

  9. Angiogenesis and mineralization during distraction osteogenesis.

    PubMed Central

    Choi, In Ho; Chung, Chin Youb; Cho, Tae-Joon; Yoo, Won Joon

    2002-01-01

    Distraction osteogenesis is currently a standard method of bone lengthening. It is a viable method for the treatment of short extremities as well as extensive bone defects, because large amounts of bone can be regenerated in the distraction gap. Mechanical stimulation by distraction induces biological responses of skeletal regeneration that is accomplished by a cascade of biologic processes that may include differentiation of pluripotential tissue, angiogenesis, mineralization, and remodeling. There are complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly vascular endothelial cells that may be pivotal members of a complex interactive communication network in bone. Regenerate bone forms by three modes of ossification, which include intramembranous, enchondral, and transchondroid ossifications, although intramembraneous bone formation is the predominant mechanism of ossification. In this review we discussed the coupling between angiogenesis and mineralization, the biological and mechanical factors affecting them, the cellular and molecular events occurring during distraction osteogenesis, and the emerging modalities to accelerate regenerate bone healing and remodeling. PMID:12172035

  10. Atherosclerosis and Vascular Aging as Modifiers of Tumor Progression, Angiogenesis, and Responsiveness to Therapy

    PubMed Central

    Klement, Halka; St. Croix, Brad; Milsom, Chloe; May, Linda; Guo, Qing; Yu, Joanne L.; Klement, Petr; Rak, Janusz

    2007-01-01

    It is rarely considered that age-related common vascular co-morbidities may affect therapeutic outcomes of antiangiogenic therapy in cancer. Indeed, the accepted model of human disease consists of 4- to 8-week-old (young) tumor-bearing, but otherwise healthy, experimental mice, yet human cancers are diagnosed and treated in later decades of life when atherosclerosis and vascular diseases are highly prevalent. Here we present evidence that tumor growth and angiogenesis are profoundly altered in mice affected by natural aging and with genetically induced atherosclerosis (in ApoE−/− mice). Thus, transplantable tumors (Lewis lung carcinoma and B16F1) grew at higher rates in young (4 to 8 weeks old) ApoE+/+ and ApoE−/− nonatherosclerotic syngeneic recipients than in their old (12 to 18 months old) or atherosclerotic (old/ApoE−/−) counterparts. These age-related changes were paralleled by reduced tumor vascularity, lower expression of tumor endothelial marker 1, increased acute tumor hypoxia, depletion of circulating CD45−/VEGFR+ cells, and impaired endothelial sprouting ex vivo. Exposure of tumor-bearing mice to metronomic therapy with cyclophosphamide exerted antimitotic effects on tumors in young hosts, but this effect was reduced in atherosclerotic mice. Collectively, our results suggest that vascular aging and disease may affect tumor progression, angiogenesis, and responses to therapy. PMID:17823292

  11. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    PubMed

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control.

  12. Effect of low-level NO/sub 2/ chronic exposure on elastase-induced emphysema

    SciTech Connect

    Lafuma, C.; Harf, A.; Lange, F.; Bozzi, L.; Poncy, J.L.; Bignon, J.

    1987-06-01

    The effect of chronic exposure to 2 ppm nitrogen dioxide (NO/sub 2/) for 8 hr a day, 5 days a week, for 8 weeks was assessed in normal and emphysematous hamsters by measuring (1) lung morphometry (mean linear intercept (Lm) and internal surface area (ISA)), (2) lung mechanics (lung volume, compliance and coefficient of static deflation, pressure-volume curve fitted to an exponential equation), and (3) serum elastolytic activity and protease inhibitor capacity. Emphysema was induced by a single intratracheal injection of 6 IU porcine pancreatic elastase. Four groups of animals were used: control, NO/sub 2/-exposed, elastase-treated, and NO/sub 2/-exposed postelastase. Results show that NO/sub 2/ exposure alone induced mild emphysematous lesions whose degree of severity was of the same order as that of the lesions induced by 6 IU elastase. Exposure to 2 ppm NO/sub 2/ enhanced elastase-induced emphysema. By contrast, study of lung mechanics revealed no difference between the control and NO/sub 2/-exposed groups or between the elastase-treated animals exposed to NO/sub 2/ and those not so exposed. Lastly, results suggest that chronic exposure to 2 ppm NO/sub 2/ may cause individuals with inherited or acquired emphysematous lesions to develop more severe emphysema.

  13. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  14. Environmental Enrichment Ameliorates Neonatal Sevoflurane Exposure-Induced Cognitive and Synaptic Plasticity Impairments.

    PubMed

    Ji, Mu-huo; Wang, Xing-ming; Sun, Xiao-ru; Zhang, Hui; Ju, Ling-sha; Qiu, Li-li; Yang, Jiao-jiao; Jia, Min; Wu, Jing; Yang, Jianjun

    2015-11-01

    Early exposure to sevoflurane, an inhalation anesthetic, induces neurodegeneration in the developing brain and subsequent long-term neurobehavioral abnormalities. Here, we investigated whether an enriched environment could mitigate neonatal sevoflurane exposure-induced long-term cognitive and synaptic plasticity impairments. Male C57BL/6 mice were exposed to 3 % sevoflurane 2 h daily for 3 days from postnatal day 6 (P6) to P8. The exposed mice were randomly allocated to an enriched environment for 2 h daily between P8 and P42 or to a standard environment. Their behavior and cognition were assessed using open field (P35) and fear conditioning tests (P41-P42). Hematoxylin-eosin staining was used to study morphological changes in pyramidal neurons of hippocampal CA1 and CA3 regions. Synaptic plasticity alternations were assessed using western blotting, Golgi staining, and electrophysiological recording. We found that sevoflurane-exposed mice housed in a standard environment exhibited a reduced freezing response in the contextual test, decreased number of dendritic spines on pyramidal neurons and synaptic plasticity-related proteins in the hippocampus, and impaired long-term potentiation. However, in an enriched environment, some of these abnormities induced by repeated sevoflurane exposure. In conclusion, neonatal sevoflurane exposure-induced cognitive and synaptic plasticity impairments are ameliorated by an enriched environment.

  15. Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology

    EPA Science Inventory

    ATS 2013 Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology Urmila P Kodavanti, Debora Andrews, Mette C Schaldweiler, Jaime M Cyphert, Darol E Dodd, and Stephen H Gavett NHEERL, U.S. EPA, Research Triangle Park, NC; NIEH...

  16. Environmental Enrichment Ameliorates Neonatal Sevoflurane Exposure-Induced Cognitive and Synaptic Plasticity Impairments.

    PubMed

    Ji, Mu-huo; Wang, Xing-ming; Sun, Xiao-ru; Zhang, Hui; Ju, Ling-sha; Qiu, Li-li; Yang, Jiao-jiao; Jia, Min; Wu, Jing; Yang, Jianjun

    2015-11-01

    Early exposure to sevoflurane, an inhalation anesthetic, induces neurodegeneration in the developing brain and subsequent long-term neurobehavioral abnormalities. Here, we investigated whether an enriched environment could mitigate neonatal sevoflurane exposure-induced long-term cognitive and synaptic plasticity impairments. Male C57BL/6 mice were exposed to 3 % sevoflurane 2 h daily for 3 days from postnatal day 6 (P6) to P8. The exposed mice were randomly allocated to an enriched environment for 2 h daily between P8 and P42 or to a standard environment. Their behavior and cognition were assessed using open field (P35) and fear conditioning tests (P41-P42). Hematoxylin-eosin staining was used to study morphological changes in pyramidal neurons of hippocampal CA1 and CA3 regions. Synaptic plasticity alternations were assessed using western blotting, Golgi staining, and electrophysiological recording. We found that sevoflurane-exposed mice housed in a standard environment exhibited a reduced freezing response in the contextual test, decreased number of dendritic spines on pyramidal neurons and synaptic plasticity-related proteins in the hippocampus, and impaired long-term potentiation. However, in an enriched environment, some of these abnormities induced by repeated sevoflurane exposure. In conclusion, neonatal sevoflurane exposure-induced cognitive and synaptic plasticity impairments are ameliorated by an enriched environment. PMID:26227794

  17. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  18. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  19. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  20. The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents

    PubMed Central

    Li, Dake; Fang, Qi; Yu, Hongbo

    2016-01-01

    Purpose Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours’ dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. Methods In vivo ERG recording in adult and developing rodents after light manipulations. Results We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour’s dark exposure, but after that decreased continuously and finally attained steady state after 1 day’s dark exposure. After 3 repetitive, 10 minutes’ light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. Conclusions This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system. PMID:27517462

  1. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    PubMed

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P<0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P<0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  2. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P < 0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P < 0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  3. Choriodecidual Infection Downregulates Angiogenesis and Morphogenesis Pathways in Fetal Lungs from Macaca Nemestrina

    PubMed Central

    McAdams, Ryan M.; Vanderhoeven, Jeroen; Beyer, Richard P.; Bammler, Theo K.; Farin, Federico M.; Liggitt, H. Denny; Kapur, Raj P.; Gravett, Michael G.; Rubens, Craig E.; Adams Waldorf, Kristina M.

    2012-01-01

    Background Intrauterine exposure to amniotic fluid (AF) cytokines is thought to predispose to bronchopulmonary dysplasia (BPD). We evaluated the effects of GBS exposure on RNA expression in fetal lung tissue to determine early molecular pathways associated with fetal lung injury that may progress to BPD. Methods Ten chronically catheterized pregnant monkeys (Macaca nemestrina) at 118–125 days gestation (term = 172 days) received choriodecidual inoculation of either: 1) Group B Streptococcus (n = 5) or 2) saline (n = 5). Cesarean section and fetal necropsy was performed in the first week after GBS or saline inoculation regardless of labor. RNA was extracted from fetal lungs and profiled by microarray. Results were analyzed using single gene, Gene Set, and Ingenuity Pathway Analysis. Validation was by RT-PCR and immunohistochemistry. Results Despite uterine quiescence in most cases, fetal lung injury occurred in four GBS cases (intra-alveolar neutrophils, interstitial thickening) and one control (peri-mortem hemorrhage). Significant elevations of AF cytokines (TNF-α, IL-8, IL-1β, IL-6) were detected in GBS versus controls (p<0.05). Lung injury was not directly caused by GBS, because GBS was undetectable by culture and PCR in the AF and fetal lungs. A total of 335 genes were differentially expressed greater than 1.5 fold (p<0.05) with GBS exposure associated with a striking upregulation of genes in innate and adaptive immunity and downregulation of pathways for angiogenesis, morphogenesis, and cellular growth and development. Conclusions A transient choriodecidual infection may induce fetal lung injury with profound alterations in the genetic program of the fetal lung before signs of preterm labor. Our results provide a window for the first time into early molecular pathways disrupting fetal lung angiogenesis and morphogenesis before preterm labor occurs, which may set the stage for BPD. A strategy to prevent BPD should target the fetus in utero to

  4. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure.

    PubMed

    Razvi, Shehla S; Richards, Jeremy B; Malik, Farhan; Cromar, Kevin R; Price, Roger E; Bell, Cynthia S; Weng, Tingting; Atkins, Constance L; Spencer, Chantal Y; Cockerill, Katherine J; Alexander, Amy L; Blackburn, Michael R; Alcorn, Joseph L; Haque, Ikram U; Johnston, Richard A

    2015-11-15

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  5. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    PubMed

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-01

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  6. Involvement of {gamma}-secretase in postnatal angiogenesis

    SciTech Connect

    Hayashi, Hiroki; Nakagami, Hironori Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.

  7. Involvement of gamma-secretase in postnatal angiogenesis.

    PubMed

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC. PMID:17888873

  8. Exposure-response relationship for vibration-induced white finger among forestry workers.

    PubMed

    Bovenzi, M; Franzinelli, A; Mancini, R; Cannava, M G; Maiorano, M; Ceccarelli, F

    1996-02-01

    The relation between the occurrence of white finger and vibration exposure was investigated in a group of 222 forestry workers using chain saws. The forestry workers and 195 controls never exposed to hand-transmitted vibration were interviewed by occupational health physicians. The diagnosis of vibration-induced white finger (VWF) was made on the basis of subjective symptoms of finger blanching and the results of a cold test with plethysmographic measurement of finger systolic blood pressure. Vibration was measured on a representative sample of AV and non-AV chain saws. Daily vibration exposure was assessed in terms of 8 h energy-equivalent frequency-weighted acceleration [A(8)]. A lifetime vibration dose was estimated for each of the forestry workers. The overall prevalence of VWF among the forestry workers was 23.4%. Raynaud's phenomenon was discovered in 2.6% of the controls. In the forestry workers, the risk of VWF showed positive increments with each increment of vibration dose, suggesting a monotonic dose-response relationship. The responsiveness to cold in the digital arteries of the forestry workers was also found to increase with increasing vibration dose. The estimated relation between VWF and vibration exposure showed that the expected occurrence of VWF increased in approximately linear proportion to either A(8) (with exposure duration unchanged) or the number of years of exposure (with equivalent acceleration unchanged). In this study of VWF among forestry workers the estimated exposure-response relation showed that if the magnitude of vibration acceleration is doubled, the total duration of exposure should be halved to produce an equivalent effect. On the basis of the assessment of vibration exposure, the estimated risk for VWF in the study population was found to be lower than that predicted by the International Standard ISO 5349. The results of this study tend to support the vibration exposure levels currently under discussion within the European

  9. Effects of acute low-level microwaves on pentobarbital-induced hypothermia depend on exposure orientation

    SciTech Connect

    Lai, H.; Horita, A.; Chou, C.K.; Guy, A.W.

    1984-01-01

    Two series of experiments were performed to study the effects of acute exposure (45 min) to 2,450-MHz circularly polarized, pulsed microwaves (1 mW/cm2, 2-mus pulses, 500 pps, specific absorption rate (SAR) 0.6 W/kg) on the actions of pentobarbital in the rat. In the first experiment, rats were irradiated with microwaves and then immediately injected with pentobarbital. Microwave exposure did not significantly affect the extent of the pentobarbital-induced fall in colonic temperature. However, the rate of recovery from the hypothermia was significantly slower in the microwave-irradiated rats and they also took a significantly longer time to regain their righting reflex. In a second experiment, rats were first anesthetized with pentobarbital and then exposed to microwaves with their heads either pointing toward the source of microwaves (anterior exposure) or pointing away (posterior exposure). Microwave radiation significantly retarded the pentobarbital-induced fall in colonic temperature regardless of the orientation of exposure. However, the recovery from hypothermia was significantly faster in posterior-exposed animals compared to those of the anterior-exposed and sham-irradiated animals. Furthermore, the posterior-exposed rats took a significantly shorter time to regain their righting reflex than both the anterior-exposed and sham-irradiated animals.

  10. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  11. Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice.

    PubMed

    Wei, Ruifen; Luo, Guangying; Sun, Zilong; Wang, Shaolin; Wang, Jundong

    2016-06-01

    Previous studies have indicated that fluoride (F) can affect testicular toxicity in humans and rodents. However, the mechanism underlying F-induced testicular toxicity is not well understood. This study was conducted to evaluate the sperm quality, testicular histomorphology and inflammatory response in mice followed F exposure. Healthy male mice were randomly divided into four groups with sodium fluoride (NaF) at 0, 25, 50, 100 mg/L in the drinking water for 180 days. At the end of the exposure, significantly increased percentage of spermatozoa abnormality was found in mice exposed to 50 and 100 mg/L NaF. Disorganized spermatogenic cells, vacuoles in seminiferous tubules and loss and shedding of sperm cells were also observed in the NaF treated group. In addition, chronic F exposure increased testicular interleukin-17(IL-17), interleukin-17 receptor C (IL-17RC), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in transcriptional levels, as well as IL-17 and TNF-α levels in translational levels. Interestingly, we observed that F treated group elevated testicular inducible nitric oxide synthase (iNOS) mRNA level and nitric oxide (NO) concentration. Taken together, these results indicated that testicular inflammatory response could contribute to chronic F exposure induced testicular toxicity in mice.

  12. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    PubMed Central

    Waterhouse, Uta; Roper, Vic E.; Brennan, Katharine A.

    2016-01-01

    ABSTRACT Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin) at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg) at one of three neurodevelopmental time periods [gestation days (GD) 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND) 60] and included: prepulse inhibition (PPI), latent inhibition (LI) and delayed non-matching to sample (DNMTS). Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously) were administered, and animals were re-tested in the same tasks (PND 110). Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11) resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI) and selective (LI) improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI) and induced a global enhancement of sensorimotor gating (PPI). PMID:27483346

  13. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure.

    PubMed

    Jiang, Cuiping; Xu, Xiaoxiao; Yu, Liping; Xu, Jinghong; Zhang, Jiping

    2015-09-01

    The accurate processing of sound temporal information is crucial to human speech perception and other species-specific communication. During postnatal development, the auditory cortex shows environmental and experience-dependent plasticity. However, how the postnatal environment affects cortical processing of sound temporal information is not fully understood. The aim of the present study was to determine whether postnatal noise exposure impairs neural temporal resolution in the auditory cortex, and, if so, whether environmental enrichment can rescue this degraded neural temporal acuity. Using the neural gap detection threshold determined in anesthetized rats as an index of temporal acuity, we found that exposure of juvenile rats to moderate-level noise induced much higher neural gap detection thresholds in adulthood than exposure of adult rats to the same noise. Environmental enrichment did not affect cortical neural gap detection thresholds in normally developing rats. However, rearing of rats with early noise exposure in an enriched environment promoted recovery from the noise-induced degraded neural temporal resolution. In addition, the tonal stimuli in the enriched environment contributed to only a portion of the recovery. These results provide evidence for noise-induced developmental impairment in neural gap detection thresholds in the auditory cortex, and suggest a therapeutic potential for environmental enrichment as a non-invasive approach to rescue developmentally degraded auditory temporal processing.

  14. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  15. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    PubMed

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.

  16. In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin.

    PubMed

    Valacchi, Giuseppe; Pagnin, Elisa; Corbacho, Ana M; Olano, Estibaliz; Davis, Paul A; Packer, Lester; Cross, Carroll E

    2004-03-01

    Lung and skin are the organs directly exposed to environmental pollution. Ozone (O(3)) is a toxic, oxidant air pollutant, and exposure has been shown to induce antioxidant depletion as well as oxidation of lipids and proteins within the outermost skin layer (stratum corneum) and the lung respiratory tract lining fluids (RTLFs). To further define skin and lung responses to O(3) exposure, SKH-1 hairless mice were exposed to either 0.8 ppm of O(3) (a level occasionally reached in very polluted areas) or ambient air 6 h/day for 6 consecutive days. O(3) exposure resulted in the depletion of alpha-tocopherol in lung and plasma and induction in both skin and lung of heme oxygenase 1, cyclooxygenase 2, and proliferating cell nuclear antigen. O(3)-exposed animals showed a similar extent of upregulation of COX-2 and PCNA in lung and skin, whereas HO-1 was more responsive in skin than in lung (7-fold induction vs. 2-fold induction). In addition to these measures of response to oxidative stress, O(3) exposure led to the activation of nuclear factor kappaB measured as IkappaBalpha phosphorylation in both tissues. We conclude that in this model, O(3) at high pollutant levels is able to affect both lung and skin biology, inducing depletion of alpha-tocopherol and inducing stress-related responses in both skin epidermis and respiratory tract epithelium.

  17. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.

  18. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  19. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    SciTech Connect

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.

  20. Nitrogen dioxide exposure attenuates cigarette smoke-induced cytokine production in mice.

    PubMed

    Brandsma, Corry-Anke; Hylkema, Machteld N; Luinge, Marjan A; Geerlings, Marie; Klok, Pieter A; Cassee, Flemming R; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib A M

    2008-01-01

    Cigarette smoke is the most important cause for the development of chronic obstructive pulmonary disease (COPD). Since only a minority of smokers and some nonsmokers develop COPD, other factors must be involved as well. NO2 is an important air pollutant associated with respiratory symptoms in humans and emphysema development in animal models. We hypothesized that combined exposure to NO2 and cigarette smoke will enhance pulmonary inflammation and emphysema development. Mice were exposed to 20 ppm NO2 for 17 h/day, to 24 puffs of cigarette smoke 2 times per day, to their combination, or to control air for 5 days/wk during 4 wk. Following the last NO2 exposure and within 24 h after the last smoke exposure the mice were sacrificed. Lungs were removed and analyzed for several inflammatory parameters and emphysema. Cigarette smoke exposure increased eosinophil numbers and levels of tumor necrosis factor (TNF)-alpha, KC, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6. NO2 exposure increased goblet cells, eosinophils, and the levels of IL-6, while it decreased the levels of IL-10. Four weeks of NO2, cigarette smoke, or their combination was not sufficient to induce significant emphysema, nor did it lead to increased numbers of lymphocytes, neutrophils, or macrophages in lung tissue. Instead, NO2 exposure attenuated the smoke-induced increases in levels of TNF-alpha, KC, and MCP-1. These dampening effects of NO2 may be due to modulating effects of NO2 on cytokine production by macrophages and epithelial cells, which have been reported earlier. The next step is to translate these findings of combined, controlled exposure in animals to the human situation.

  1. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis.

    PubMed

    Piccolo, Enza; Tinari, Nicola; Semeraro, Daniela; Traini, Sara; Fichera, Imma; Cumashi, Albana; La Sorda, Rossana; Spinella, Francesca; Bagnato, Anna; Lattanzio, Rossano; D'Egidio, Maurizia; Di Risio, Annalisa; Stampolidis, Pavlos; Piantelli, Mauro; Natoli, Clara; Ullrich, Axel; Iacobelli, Stefano

    2013-01-01

    Elevated serum or tissue levels of lectin galactoside-binding soluble 3 binding protein (LGALS3BP) have been associated with short survival and development of metastasis in a variety of human cancers. However, the role of LGALS3BP, particularly in the context of tumor-host relationships, is still missing. Here, we show that LGALS3BP knockdown in MDA-MB-231 human breast cancer cells leads to a decreased adhesion to fibronectin, a reduced transendothelial migration and, more importantly, a reduced expression of vascular endothelial growth factor (VEGF). Production of VEGF, that was restored by exposure of silenced cells to recombinant LGALS3BP, required an intact PI3k/Akt signaling. Furthermore, we show that LGALS3BP was able to directly stimulate HUVEC tubulogenesis in a VEGF-independent, galectin-3-dependent manner. Immunohistochemical analysis of human breast cancer tissues revealed a correlation among LGALS3BP expression, VEGF expression, and blood vessel density. We propose that in addition to its prometastatic role, LGALS3BP secreted by breast cancer cells functions critically as a pro-angiogenic factor through a dual mechanism, i.e by induction of tumor VEGF and stimulation of endothelial cell tubulogenesis.

  2. Tumour Angiogenesis and Angiogenic Inhibitors: A Review

    PubMed Central

    Yadav, Lalita; Puri, Naveen; Satpute, Pranali; Sharma, Vandana

    2015-01-01

    Angiogenesis is a complex process depending on the coordination of many regulators and there by activating angiogenic switch. Recent advances in understanding of angiogenic mechanism have lead to the development of several anti-angiogenic and anti-metastatic agents that use the strategy of regulation of angiogenic switch. Antiangiogenic therapy is a form of treatment not cure for cancer and represents a highly effective strategy for destroying tumour because vascular supply is the fundamental requirement for growth of tumour. Because of the quiescent nature of normal adult vasculature, angiogenic inhibitors are expected to confer a degree of specificity when compared to nonspecific modalities of chemo and radiotherapy, so it has the advantage of less toxicities, does not induce drug resistance and deliver a relatively non toxic, long term treatment of tumour. PMID:26266204

  3. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration

    PubMed Central

    Marshall, Simon Alex; Geil, Chelsea Rhea; Nixon, Kimberly

    2016-01-01

    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity. PMID:27240410

  4. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce

    2006-11-01

    One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer. PMID:17112237

  5. Effect of cadmium chloride exposure during the induction of collagen induced arthritis.

    PubMed

    Ansari, Md Meraj; Neha; Khan, Haider A

    2015-08-01

    The precise cause of autoimmune diseases such as rheumatoid arthritis remains uncertain. Collagen induced arthritis (CIA) in animals is the most commonly used model of human rheumatoid arthritis (RA). Exposure of humans and animals to toxic metals is widespread. Cadmium is one of the most prevalent nephrotoxic heavy metal, but it may cause other systemic toxicity as well. Cadmium may cause adverse health effects by impairment of the immune systems and induction of reactive oxygen species. Since rheumatoid arthritis pathogenesis involve immune system disorder and chronic inflammation, the present study has been designed to find out the effect of cadmium chloride exposure on clinical manifestation of development of collagen induced rheumatoid arthritis. Arthritis was induced in rats by intradermal injection of emulsion of type II collagen in Complete Freund's Adjuvant. Rats were treated with cadmium chloride dissolved in drinking water at concentrations of 5ppm and 50ppm for 21 days from day of immunization. The effects of cadmium in the rats were assessed by biochemical parameters (articular elastase, articular nitrite, lipid peroxidation, reduced glutathione, catalase and superoxide dismutase) histopathological analysis and immunohistochemical expression of pro-inflammatory cytokines in rat joint tissue. Histopathological changes further confirmed the biochemical and immunohistochemical results. Our results suggest that exposure to cadmium chloride during the induction phase of collagen induced arthritis abrogate disease development at lower dose whereas exacerbates at higher dose in Wistar rats. PMID:26070417

  6. Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy.

    PubMed

    Hu, Nan; Yang, Lifang; Dong, Maolong; Ren, Jun; Zhang, Yingmei

    2015-10-01

    Second hand smoke is an independent risk factor for cardiovascular disease. Adiponectin (APN), an adipose-derived adipokine, has been shown to offer cardioprotective effect through an AMPK-dependent manner. This study was designed to evaluate the impact of adiponectin deficiency on second hand smoke-induced cardiac pathology and underlying mechanisms using a mouse model of side-stream smoke exposure. Adult wild-type (WT) and adiponectin knockout (APNKO) mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined using western blot. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining was used to evaluate reactive oxygen species (ROS) generation. Masson trichrome staining was employed to measure interstitial fibrosis. Our data revealed that adiponectin deficiency provoked smoke exposure-induced cardiomyopathy (compromised fractional shortening, disrupted cardiomyocyte function and intracellular Ca2+ homeostasis, apoptosis and ROS generation). In addition, these detrimental effects of side-stream smoke were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by adiponectin deficiency. Blocking autophagolysosome formation using bafilomycin A1 (BafA1) negated the cardioprotective effect of rapamycin against smoke extract. Induction of autophagy using rapamycin and AMPKα activation using AICAR rescued against smoke extract-induced myopathic anomalies in APNKO mice. Our data suggest that adiponectin serves as an indispensable cardioprotective factor against side-stream smoke exposure-induced myopathic changes possibly through facilitating autophagolysosome formation. PMID:26276084

  7. Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model.

    PubMed

    Tulotta, C; He, S; van der Ent, W; Chen, L; Groenewoud, A; Spaink, H P; Snaar-Jagalska, B E

    2016-01-01

    Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients. PMID:27165357

  8. Digital music exposure reliably induces temporary threshold shift (TTS) in normal hearing human subjects

    PubMed Central

    Le Prell, C. G.; Dell, S.; Hensley, B.; Hall, J. W.; Campbell, K. C. M.; Antonelli, P. J.; Green, G. E.; Miller, J. M.; Guire, K.

    2012-01-01

    Objectives One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is availability of an established clinical paradigm with real world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal hearing human subjects. Design Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93–95 (n=10), 98–100 (n=11), or 100–102 (n=12) dBA in-ear exposure level for a period of four hours. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured prior to and after music exposure. Post-music tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and one week later. Results Changes in thresholds after the lowest level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a “notch” configuration, with the largest changes observed at 4 kHz (mean=6.3±3.9dB; range=0–13 dB). Recovery was largely complete within the first 4 hours post-exposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1-week post-exposure. Conclusions These data provide insight into the variability of TTS induced by music player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function following digital music player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be

  9. Band gap states of copper phthalocyanine thin films induced by nitrogen exposure

    SciTech Connect

    Sueyoshi, Tomoki; Kakuta, Haruya; Ono, Masaki; Sakamoto, Kazuyuki; Kera, Satoshi; Ueno, Nobuo

    2010-03-01

    The impact of 1 atm N{sub 2} gas exposure on the electronic states of copper phthalocyanine thin films was investigated using ultrahigh-sensitivity ultraviolet photoelectron spectroscopy. The highest occupied molecular orbital band of the film showed a drastic reversible change in the bandwidth and band shape as well as in the energy position upon repeated cycles of N{sub 2} exposure and subsequent annealing. Furthermore, two types of gap-state densities with Gaussian and exponential distributions appeared after the exposure and disappeared due to the annealing. These changes are ascribed to a weak disorder in the molecular packing structure induced by N{sub 2} diffusion into the film.

  10. Sustained (rh)VEGF(165) release from a sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosis.

    PubMed

    Mittermayr, Rainer; Morton, Tatjana; Hofmann, Martina; Helgerson, Sam; van Griensven, Martijn; Redl, Heinz

    2008-01-01

    This study investigated (1) the release of recombinant human vascular endothelial growth factor ([rh]VEGF(165)) from an in vitro fibrin matrix, (2) the effects of (rh)VEGF(165) released from an in vivo fibrin matrix on ischemic flap necrosis in the rat dorsal skin flap model, and (3) the effects of (rh)VEGF(165) released from an in vivo fibrin matrix on VEGF-R2 expression in transgenic VEGF-R2/luc mice. In vitro fibrin matrices were spiked with (rh)VEGF(165) and demonstrated (rh)VEGF(165) release over 88 hours with 66% recovery. Ischemic dorsal flaps were treated with a fibrin sealant (FS), FS spiked with (rh)VEGF(165), or left untreated. Flaps treated with FS spiked with (rh)VEGF(165) showed greater viability than controls as measured by planimetric analysis. Immunohistochemical analyses revealed stronger neovascularization than that exhibited by controls. Transgenic mice implanted with FS spiked with (rh)VEGF(165) had significant increases in VEGF-R2 expression relative to controls at days 5-13 after implantation. Conclusions drawn from this work are that (1) (rh)VEGF(165) is released from an in vitro fibrin matrix at clinically appropriate times, (2) (rh)VEGF(165) increases the viability of tissue flaps in vivo, and (3) (rh)VEGF(165) induces the expression of VEGF-R2 expression. This work demonstrates the clinical ability of sprayed FS to locally deliver growth factors to ischemic tissue of patients.

  11. The effects of radiation on angiogenesis.

    PubMed

    Grabham, Peter; Sharma, Preety

    2013-01-01

    The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation - charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis. PMID:24160185

  12. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    PubMed

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

  13. Protein kinase C activation induces phosphatidylserine exposure on red blood cells.

    PubMed

    de Jong, Kitty; Rettig, Michael P; Low, Philip S; Kuypers, Frans A

    2002-10-15

    We have shown previously that red blood cells (RBCs) can be induced to influx Ca(2+) when treated with lipid mediators, such as lysophosphatidic acid and prostaglandin E(2), that are released during clot formation. Since calcium loading of RBCs can lead to both protein kinase C (PKC) activation and phosphatidylserine (PS) exposure, we decided to investigate the possible linkage between PKC activation and membrane PS scrambling using phorbol 12-myristate-13-acetate (PMA), a commonly used activator of PKC. Treatment of RBCs with PMA in a calcium-containing buffer caused immediate PS exposure in an RBC subpopulation. The size of the subpopulation did not change upon further incubation, indicating that not all RBCs are equally susceptible to this treatment. Using a fluorescent indicator, we found a subpopulation of RBCs with elevated intracellular calcium levels. In the absence of extracellular calcium, no PS exposure was found. However, we did find cells with high levels of calcium that did not expose PS, and a variable percentage of PS-exposing cells that did not show elevated calcium concentrations. Inhibition of PKC with either calphostin C, a blocker of the PMA binding site, or chelerythrine chloride, an inhibitor of the active site, diminished the level of formation of PS-exposing cells. However, the inhibitors had different effects on calcium internalization, indicating that a high calcium concentration alone was not responsible for inducing PS exposure in the absence of PKC activity. Moreover, PKC inhibition could prevent PS exposure induced by calcium and ionophore treatment of RBCs. We conclude that PKC is implicated in the mechanism of membrane phospholipid scrambling.

  14. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. PMID:24794047

  15. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction.

  16. Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.

    PubMed

    Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco

    2016-03-01

    The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system.

  17. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice