Weeks, James L
2006-06-01
The Mine Safety and Health Administration (MSHA) proposes to issue citations for non-compliance with the exposure limit for respirable coal mine dust when measured exposure exceeds the exposure limit with a "high degree of confidence." This criterion threshold value (CTV) is derived from the sampling and analytical error of the measurement method. This policy is based on a combination of statistical and legal reasoning: the one-tailed 95% confidence limit of the sampling method, the apparent principle of due process and a standard of proof analogous to "beyond a reasonable doubt." This policy raises the effective exposure limit, it is contrary to the precautionary principle, it is not a fair sharing of the burden of uncertainty, and it employs an inappropriate standard of proof. Its own advisory committee and NIOSH have advised against this policy. For longwall mining sections, it results in a failure to issue citations for approximately 36% of the measured values that exceed the statutory exposure limit. Citations for non-compliance with the respirable dust standard should be issued for any measure exposure that exceeds the exposure limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Cadwallader
The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclearmore » endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.« less
Multimedia data from two probability-based exposure studies were investigated in terms of how censoring of non-detects affected estimation of population parameters and associations. Appropriate methods for handling censored below-detection-limit (BDL) values in this context were...
NASA Astrophysics Data System (ADS)
Barboni, T.; Santoni, P.-A.
2013-11-01
Prescribed burning represents a serious threat to the personnel fighting fires because of smoke inhalation. This study aims to increase the knowledge about foresters exposure to the prescribed burning smoke by focusing on exposure to volatile organic compounds (VOCs). We initially assessed the methodology for smoke sampling. Then, we identified potentially dangerous molecules among the VOCs identified at 4 prescribed burning sites located around Corsica. The values measured were very high, exceeding the exposure limits, particularly for benzene, phenol, and furfural, whose concentrations were above short-term exposure limit (STEL) values. In conclusion, obvious but necessary recommendations were made for the protection of the personnel involved in fighting fires on a professional basis.
[Revised maximum admissible intensity (MAI) values for infrasonic noise in work environment].
Pawlaczyk-Łuszczyńska, M; Augustyńska, D; Kaczmarska-Kozłowska, A; Sliwińska-Kowalska, M; Kameduła, M
2001-01-01
A short review of infrasound sources is presented. The measuring methods and occupational exposure limits for infrasonic noise (infrasound) are described. The amended Polish regulations on maximum admissible intensity (MAI) values for infrasonic noise in work environment and proposals of exposure limits for workers at particular risk (i.e. pregnant women and juveniles) are discussed.
Eypert-Blaison, Céline; Moulut, Jean-Claude; Lecaque, Thierry; Marc, Florian; Kauffer, Edmond
2011-05-01
Sampling the respirable fraction to measure exposure to crystalline silica is most often carried out using cyclones. However, low flow rates (<4 l min(-1)) and continuing improvement in workplace hygiene means less and less material is sampled for analysis, resulting in increased analytical uncertainty. Use of the CIP 10-R sampler, working at a flow rate of 10 l min(-1), is one attempt to solve current analytical difficulties. To check the ability of the analysis of quartz sampled on foams, known amounts of quartz associated with a matrix have been injected into foams. The results obtained show that the proposed protocol, with prior acid attack and ashing of the foams, satisfies the recommendations of EN 482 Standard [CEN. (2006) Workplace atmospheres-general requirements for the performance of procedures for the measurements of chemical agents. Brussels, Belgium: EN 482 Comité Européen de normalization (CEN).], namely an expanded uncertainty of <50% for quartz weights between 0.1 and 0.5 times the 8-h exposure limit value and <30% for quartz weights between 0.5 and 2 times the 8-h exposure limit value, assuming an exposure limit value equal to 0.1 mg m(-3). Results obtained show that the 101 reflection line allows a quartz quantity of the order of 25 μg to be satisfactorily measured, which corresponds to a 10th of the exposure limit value, assuming an exposure limit value of 0.05 mg m(-3). In this case, the 100 and 112 reflection lines with expanded uncertainties of ~50% would also probably lead to satisfactory quantification. Particular recommendations are also proposed for the preparation of calibration curves to improve the method.
Radiofrequency Exposures of Workers on Low-Power FM Radio Transmitters.
Valic, Blaž; Kos, Bor; Gajšek, Peter
2017-05-01
Low-power radio transmitters are one of the most common radio frequency sources and the exposure limit values (ELVs) for occupational exposure may be exceeded close to them. Therefore, a detailed analysis and assessment of occupational exposure in their vicinity is presented in the paper. For 20 different exposure scenarios, electric field strength and specific absorption rate (SAR) values were computed to determine whether the action levels (ALs) and ELVs of the European directive 2013/35/EU are exceeded for different 500 W radio transmitters. The results show that the ALs are very conservative for such exposure situations. Even when the ALs are greatly exceeded, the SAR values are not necessarily above the limit. However, in some situations, the ELVs were also exceeded. The local 10 g averaged value of the SAR can be exceeded if the worker is grounded (in direct contact with the steel structure), while the whole body ELVs can be exceeded for exposures at distances of <1 m from the transmitting dipole array antennas. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Whole-body vibration exposure in sport: four relevant cases.
Tarabini, Marco; Saggin, Bortolino; Scaccabarozzi, Diego
2015-01-01
This study investigates the whole-body vibration exposure in kite surfing, alpine skiing, snowboarding and cycling. The vibration exposure was experimentally evaluated following the ISO 2631 guidelines. Results evidenced that the most critical axis is the vertical one. The weighted vibration levels are always larger than 2.5 m/s(2) and the vibration dose values are larger than 25 m/s(1.75). The exposure limit values of the EU directive are reached after 8-37 min depending on the sport. The vibration magnitude is influenced by the athletes' speed, by their skill level and sometimes by the equipment. The large vibration values suggest that the practice of sport activities may be a confounding factor in the aetiology of vibration-related diseases. The vibration exposure in some sports is expected to be large, but has never been quantified in the literature. Results of experiments performed in cycling, alpine and water sports outlined vibration levels exceeding the EU standard limit values.
Li, Zijian; Jennings, Aaron A.
2017-01-01
Worldwide jurisdictions are making efforts to regulate pesticide standard values in residential soil, drinking water, air, and agricultural commodity to lower the risk of pesticide impacts on human health. Because human may exposure to pesticides from many ways, such as ingestion, inhalation, and dermal contact, it is important to examine pesticide standards by considering all major exposure pathways. Analysis of implied maximum dose limits for commonly historical and current used pesticides was adopted in this study to examine whether worldwide pesticide standard values are enough to prevent human health impact or not. Studies show that only U.S. has regulated pesticides standard in the air. Only 4% of the total number of implied maximum dose limits is based on three major exposures. For Chlorpyrifos, at least 77.5% of the total implied maximum dose limits are above the acceptable daily intake. It also shows that most jurisdictions haven't provided pesticide standards in all major exposures yet, and some of the standards are not good enough to protect human health. PMID:29546224
Work environments and exposure to hazardous substances in korean tire manufacturing.
Lee, Naroo; Lee, Byung-Kyu; Jeong, Sijeong; Yi, Gwang Yong; Shin, Jungah
2012-06-01
The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Workers were exposed to rubber fume that exceeded 0.6 mg/m(3), the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to 28.1℃ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was 2.7℃ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.
[Verified maximum admissible intensity (MAI) values for the ultrasonic noise in work environment].
Pawlaczyk-Łuszcyńska, M; Koton, J; Augustyńska, D; Sliwińska-Kowalska, M; Kameduła, M
2001-01-01
The measurement methods and occupational exposure limits for ultrasonic noise (airborne ultrasound) are described. Typical sources of ultrasonic noise and sound pressure levels measured at workplaces are discussed. The verified Polish regulations on maximum admissible intensity (MAI) values for ultrasonic noise in the work environment and proposals of exposure limits for workers at particular risk (i.e. pregnant women and juveniles) are presented.
Stam, Rianne
2014-01-01
Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933
28 CFR Appendix A to Part 79 - FVC and FEV-1 Lower Limits of Normal Values
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false FVC and FEV-1 Lower Limits of Normal... RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. A Appendix A to Part 79—FVC and FEV-1 Lower Limits of Normal Values Table 1—Caucasian Males FVC Lower Limit of Normal Values, Hankinson, et al. (1999...
Health hazards of ultrafine metal and metal oxide powders
NASA Technical Reports Server (NTRS)
Boylen, G. W., Jr.; Chamberlin, R. I.; Viles, F. J.
1969-01-01
Study reveals that suggested threshold limit values are from two to fifty times lower than current recommended threshold limit values. Proposed safe limits of exposure to the ultrafine dusts are based on known toxic potential of various materials as determined in particle size ranges.
Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R
2016-04-01
The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.
Taxell, Piia; Santonen, Tiina
2017-08-01
Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Enault, Jérôme; Robert, Samuel; Schlosser, Olivier; de Thé, Catherine; Loret, Jean-François
2015-11-01
This study collated 254,441 analytical results from drinking water quality monitoring in order to compare levels of exposure of the French adult population from drinking water with that from total diet for 37 pesticides, 11 mineral elements, 11 polycyclic aromatic hydrocarbons (PAH), 6 non dioxin-like polychlorobiphenyls (NDL PCB), 5 ether polybromodiphenyl ethers (BDE), 2 perfluorinated compounds. It also compares levels of exposure from drinking water with that from inhalation of indoor air for 9 volatile organic compounds (VOC) and 3 phthalates. The vast majority of the water analysis results showed values below the limits of quantification and this comparison was primarily made on the basis of a highly pessimistic scenario consisting in considering the data below the limits of quantification as being equal to the limits of quantification. With this conservative scenario, it can be seen that tap water makes a minor but potentially non-negligible contribution for a few micropollutants, by comparison with diet and air. It also shows that exposure through drinking water remains below the toxicity reference values for these substances. Apart from a few extreme values reflecting exceptional local situations, the concentrations measured for the minority of positive samples (below the 95th percentile value) suggest a very low risk for human health. Lower limits of quantification would however be of use in better estimating the safety margin with regard to the toxicity reference values, in particular for BDE, PAH and NDL PCB. Copyright © 2015 Elsevier GmbH. All rights reserved.
Stephenson, D J; Lillquist, D R
2001-04-01
Occupational hygienists perform air sampling to characterize airborne contaminant emissions, assess occupational exposures, and establish allowable workplace airborne exposure concentrations. To perform these air sampling applications, occupational hygienists often compare an airborne exposure concentration to a corresponding American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) or an Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL). To perform such comparisons, one must understand the physiological assumptions used to establish these occupational exposure limits, the relationship between a workplace airborne exposure concentration and its associated TLV or PEL, and the effect of temperature and pressure on the performance of an accurate compliance evaluation. This article illustrates the correct procedure for performing compliance evaluations using airborne exposure concentrations expressed in both parts per million and milligrams per cubic meter. In so doing, a brief discussion is given on the physiological assumptions used to establish TLVs and PELs. It is further shown how an accurate compliance evaluation is fundamentally based on comparison of a measured work site exposure dose (derived from the sampling site exposure concentration estimate) to an estimated acceptable exposure dose (derived from the occupational exposure limit concentration). In addition, this article correctly illustrates the effect that atmospheric temperature and pressure have on airborne exposure concentrations and the eventual performance of a compliance evaluation. This article also reveals that under fairly moderate conditions of temperature and pressure, 30 degrees C and 670 torr, a misunderstanding of how varying atmospheric conditions affect concentration values can lead to a 15 percent error in assessing compliance.
EU Directive 2004/40: field measurements of a 1.5 T clinical MR scanner.
Riches, S F; Collins, D J; Scuffham, J W; Leach, M O
2007-06-01
The European Union (EU) Physical Agents (EMF) Directive [1] must be incorporated into UK law in 2008. The directive, which applies to employees working in MRI, sets legal exposure limits for two of the three types of EMF exposure employed in MRI; time-varying gradient fields and radiofrequency (RF) fields. Limits on the static field are currently not included but may be added at a later date. Conservative action values have been set for all three types of exposure including the static field. The absolute exposure limits will exclude staff from the scanner bore and adjacent areas during scanning, impacting on many clinical activities such as anaesthetic monitoring during sedated scans, paediatric scanning and interventional MRI. When the legislation comes into force, NHS Trusts, scanner companies and academic institutions will be required to show compliance with the law. We present results of initial measurements performed on a 1.5 T clinical MRI scanner. For the static field, the proposed action value is exceeded at 40 cm from the scanner bore and would be exceeded when positioning a patient for scanning. For the RF field, the action values were only exceeded within the bore at distances of 40 cm from the scanner ends during a very RF intensive sequence; MRI employees are unlikely to be in the bore during an acquisition. For the time-varying gradient fields the action values were exceeded 52 cm out from the mouth of the bore during two clinical sequences, and estimated current densities show the exposure limit to be exceeded at 40 cm for frequencies above 333 Hz. Limiting employees to distances greater than these from the scanner during acquisition will have a severe impact on the future use and development of MRI.
Stam, Rianne
2014-06-01
Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Exposure-related health effects of silver and silver compounds: a review.
Drake, Pamela L; Hazelwood, Kyle J
2005-10-01
A critical review of studies examining exposures to the various forms of silver was conducted to determine if some silver species are more toxic than others. The impetus behind conducting this review is that several occupational exposure limits and guidelines exist for silver, but the values for each depend on the form of silver as well as the individual agency making the recommendations. For instance, the American Conference of Governmental Industrial Hygienists has established separate threshold limit values for metallic silver (0.1 mg/m3) and soluble compounds of silver (0.01 mg/m3). On the other hand, the permissible exposure limit (PEL) recommended by the Occupational Safety and Health Administration and the Mine Safety and Health Administration and the recommended exposure limit set by the National Institute for Occupational Safety and Health is 0.01 mg/m3 for all forms of silver. The adverse effects of chronic exposure to silver are a permanent bluish-gray discoloration of the skin (argyria) or eyes (argyrosis). Most studies discuss cases of argyria and argyrosis that have resulted primarily from exposure to the soluble forms of silver. Besides argyria and argyrosis, exposure to soluble silver compounds may produce other toxic effects, including liver and kidney damage, irritation of the eyes, skin, respiratory, and intestinal tract, and changes in blood cells. Metallic silver appears to pose minimal risk to health. The current occupational exposure limits do not reflect the apparent difference in toxicities between soluble and metallic silver; thus, many researchers have recommended that separate PELs be established.
Fantuzzi, G; Aggazzotti, G; Righi, E; Predieri, G; Giacobazzi, P; Kanitz, S; Barbone, F; Sansebastiano, G; Ricci, C; Leoni, V; Fabiani, L; Triassi, M
2007-01-01
This study investigated the exposure to organohalogens compounds in drinking water from 9 Italian towns (Udine, Genova, Parma, Modena, Siena, Roma, L'Aquila, Napoli and Catania). Overall, 1199 samples collected from 72 waterworks were analyzed. THMs, trichloroethylene and tetrachloroethylene were evaluated using the head-space gas chromatographic technique (detection limit of 0.01 microg/l; chlorite and chlorate analysis was performed by ion chromatography (detection limit of 20 microg/l). THMs were evidenced in 925 samples (77%) (median value: 1.12 micro/l; range: 0.01-54 mciro/l) and 7 were higher than the THMs Italian limit of 30 microg/l. Chlorite and chlorate levels were higher than the detection limit in 45% for chlorite and in 34% for chlorate samples; median values were 221 microg/l and 76 microg/l, respectively. Chlorite values were higher than the chlorite Italian limit (700 microg/l) in 35 samples (8.7%). Trichloroethylene and tetrachloroethylene were measured in 29% and 44% of the investigated samples and showed values lower than the Italian limit (highest levels of 6 microg/l and 9 microg/l, respectively). The low levels detected of THMs, trichloroethylene and tetrachloroethylene have no potentials effects on human health, whereas, the levels of chlorite and chlorates should be further evaluated and their potential effects for the populations using these drinking waters, better understood.
Huizer, Daan; Huijbregts, Mark A J; van Rooij, Joost G M; Ragas, Ad M J
2014-08-01
The coherence between occupational exposure limits (OELs) and their corresponding biological limit values (BLVs) was evaluated for 2-propanol and acetone. A generic human PBPK model was used to predict internal concentrations after inhalation exposure at the level of the OEL. The fraction of workers with predicted internal concentrations lower than the BLV, i.e. the 'false negatives', was taken as a measure for incoherence. The impact of variability and uncertainty in input parameters was separated by means of nested Monte Carlo simulation. Depending on the exposure scenario considered, the median fraction of the population for which the limit values were incoherent ranged from 2% to 45%. Parameter importance analysis showed that body weight was the main factor contributing to interindividual variability in blood and urine concentrations and that the metabolic parameters Vmax and Km were the most important sources of uncertainty. This study demonstrates that the OELs and BLVs for 2-propanol and acetone are not fully coherent, i.e. enforcement of BLVs may result in OELs being violated. In order to assess the acceptability of this "incoherence", a maximum population fraction at risk of exceeding the OEL should be specified as well as a minimum level of certainty in predicting this fraction. Copyright © 2014 Elsevier Inc. All rights reserved.
Occupational exposure limits for carcinogens--variant approaches by different countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, W.A.
1989-09-01
The differences in treatment of occupational exposure limits for carcinogens by 24 countries is described along with a discussion of the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLV) treatment, the similar treatment of the new Occupational Safety and Health Administration (OSHA) standard, and the treatment by provinces of Canada. The unique listing by the Federal Republic of Germany of so-called technical guiding concentrations of a group of carcinogens is discussed with the note that Austria used this same system. Publications on justification for establishing occupational exposure limits for certain carcinogens are discussed also.
Vibration safety limits for magnetic resonance elastography.
Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J
2008-02-21
Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.
Vibration safety limits for magnetic resonance elastography
Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J
2010-01-01
Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure, and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast, and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values, and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans. PMID:18263949
Campo, Laura; Rossella, Federica; Mercadante, Rosa; Fustinoni, Silvia
2016-04-01
To assess exposure to benzene (BEN) and other aromatic compounds (toluene, ethylbenzene, m+p-xylene, o-xylene) (BTEX), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE) in petrol station workers using air sampling and biological monitoring and to propose biological equivalents to occupational limit values. Eighty-nine petrol station workers and 90 control subjects were investigated. Personal exposure to airborne BTEX and ethers was assessed during a mid-week shift; urine samples were collected at the beginning of the work week, prior to and at the end of air sampling. Petrol station workers had median airborne exposures to benzene and MTBE of 59 and 408 µg m(-3), respectively, with urinary benzene (BEN-U) and MTBE (MTBE-U) of 339 and 780 ng l(-1), respectively. Concentrations in petrol station workers were higher than in control subjects. There were significant positive correlations between airborne exposure and the corresponding biological marker, with Pearson's correlation coefficient (r) values of 0.437 and 0.865 for benzene and MTBE, respectively. There was also a strong correlation between airborne benzene and urinary MTBE (r = 0.835). Multiple linear regression analysis showed that the urinary levels of benzene were influenced by personal airborne exposure, urinary creatinine, and tobacco smoking [determination coefficient (R(2)) 0.572], while MTBE-U was influenced only by personal exposure (R(2) = 0.741). BEN-U and MTBE-U are sensitive and specific biomarkers of low occupational exposures. We propose using BEN-U as biomarker of exposure to benzene in nonsmokers and suggest 1457 ng l(-1) in end shift urine samples as biological exposure equivalent to the EU occupational limit value of 1 p.p.m.; for both smokers and nonsmokers, MTBE-U may be proposed as a surrogate biomarker of benzene exposure, with a biological exposure equivalent of 22 µg l(-1) in end shift samples. For MTBE exposure, we suggest the use of MTBE-U with a biological exposure equivalent of 22 µg l(-1) corresponding to the occupational limit value of 50 p.p.m. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Outdoor characterization of radio frequency electromagnetic fields in a Spanish birth cohort
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvente, I.; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Av. Madreid s/n, Granada 18071; Fernández, M.F.
There is considerable public concern in many countries about the possible adverse effects of exposure to non-ionizing radiation electromagnetic fields, especially in vulnerable populations such as children. The aim of this study was to characterize environmental exposure profiles within the frequency range 100 kHz–6 GHz in the immediate surrounds of the dwellings of 123 families from the INMA-Granada birth cohort in Southern Spain, using spot measurements. The arithmetic mean root mean-square electric field (E{sub RMS}) and power density (S{sub RMS}) values were, respectively, 195.79 mV/m (42.3% of data were above this mean) and 799.01 µW/m{sup 2} (30% of values weremore » above this mean); median values were 148.80 mV/m and 285.94 µW/m{sup 2}, respectively. Exposure levels below the quantification limit were assigned a value of 0.01 V/m. Incident field strength levels varied widely among different areas or towns/villages, demonstrating spatial variability in the distribution of exposure values related to the surface area population size and also among seasons. Although recorded values were well below International Commission for Non-Ionizing Radiation Protection reference levels, there is a particular need to characterize incident field strength levels in vulnerable populations (e.g., children) because of their chronic and ever-increasing exposure. The effects of incident field strength have not been fully elucidated; however, it may be appropriate to apply the precautionary principle in order to reduce exposure in susceptible groups. - Highlights: • Spot measurements were performed in the immediate surrounds of children's dwellings. • Mean root mean-square electric field and power density values were calculated. • Most recorded values were far below international standard guideline limits. • Data demonstrate spatial variability in the distribution of exposure levels. • While adverse effects are proven, application of the precautionary principle may be appropriate.« less
Campo, Laura; Vimercati, L; Carrus, A; Bisceglia, Lucia; Pesatori, Angela Cecilia; Bertazzi, P A; Assennato, G; Fustinoni, Silvia
2012-01-01
Polycyclic aromatic hydrocarbons (PAHs) exposure in the coke industry poses a risk for workers' health as well as for subjects living in the plant vicinity. To assess PAHs exposure in coke-oven workers (CW) at the Taranto plant, Apulia, and in subjects from the general population living near (NC) and far away (FC) from the plant. Exposure was assessed by personal air sampling and urinary 1-hydroxypyrene (1-OHP) measured in 100 CW 18 NC and 15 FC. Median airborne benzo[a]pyrene (BaP) levels were 152, 1.5, and 3.6 ng/m3 in CW NC, and FC, respectively. In CW, median 1-OHP increased from 1.45 to 1.96 microg/g creatinine (crt) during the work shift (p > 0.05); in NC and FC, 1-OHP levels were 0.56 and 0.53 microg/g crt. No significant differences between NC and FC for both air and urinary indices were found. BaP exposure in CW exceeded the recently proposed German acceptable (70 ng/m3) and tolerable (700 ng/m3) risk-based limit values in 82 and 11% of subjects, respectively. In NC and FC, BaP exposure exceeded the European target value for ambient air (1 ng/m3) in 67 and 60% of subjects, respectively. Biomonitoring showed that 21% of CW had 1-OHP levels higher than the proposed biological limit value for the coke-oven industry (4.4 microg/g crt), while 93% of FC, and 88% of NC, had 1-OHP levels exceeding the Italian reference value (0.3 microg/g crt). Among non-smokers, a linear regression between 1-OHP and BaP (Pearson value r = 0.65, p < 0.05) allowed us to estimate levels of 1.2 and 1.9 microg/g crt for 1-OHP end-of-shift corresponding to acceptable and tolerable limit values. Although lower than in the past, PAHs exposure in the coke plant still poses a health risk for workers and the general population and requires further efforts to improve workplace conditions.
Probabilistic exposure assessment to face and oral care cosmetic products by the French population.
Bernard, A; Dornic, N; Roudot, Ac; Ficheux, As
2018-01-01
Cosmetic exposure data for face and mouth are limited in Europe. The aim of the study was to assess the exposure to face cosmetics using recent French consumption data (Ficheux et al., 2016b, 2015). Exposure was assessed using a probabilistic method for thirty one face products from four lines of products: cleanser, care, make-up and make-up remover products and two oral care products. Probabilistic exposure was assessed for different subpopulation according to sex and age in adults and children. Pregnant women were also studied. The levels of exposure to moisturizing cream, lip balm, mascara, eyeliner, cream foundation, toothpaste and mouthwash were higher than the values currently used by the Scientific Committee on Consumer Safety (SCCS). Exposure values found for eye shadow, lipstick, lotion and milk (make-up remover) were lower than SCCS values. These new French exposure values will be useful for safety assessors and for safety agencies in order to protect the general population and the at risk populations. Copyright © 2017. Published by Elsevier Ltd.
Marquart, Hans; Warren, Nicholas D; Laitinen, Juha; van Hemmen, Joop J
2006-07-01
Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with information on possible determinants of exposure. These data and information, together with some non-RISKOFDERM data were used to derive default values for potential dermal exposure of the hands for so-called 'TGD exposure scenarios'. TGD exposure scenarios have similar values for some very important determinant(s) of dermal exposure, such as amount of substance used. They form narrower bands within the so-called 'RISKOFDERM scenarios', which cluster exposure situations according to the same purpose of use of the products. The RISKOFDERM scenarios in turn are narrower bands within the so-called Dermal Exposure Operation units (DEO units) that were defined in the RISKOFDERM project to cluster situations with similar exposure processes and exposure routes. Default values for both reasonable worst case situations and typical situations were derived, both for single datasets and, where possible, for combined datasets that fit the same TGD exposure scenario. The following reasonable worst case potential hand exposures were derived from combined datasets: (i) loading and filling of large containers (or mixers) with large amounts (many litres) of liquids: 11,500 mg per scenario (14 mg cm(-2) per scenario with surface of the hands assumed to be 820 cm(2)); (ii) careful mixing of small quantities (tens of grams in <1l): 4.1 mg per scenario (0.005 mg cm(-2) per scenario); (iii) spreading of (viscous) liquids with a comb on a large surface area: 130 mg per scenario (0.16 mg cm(-2) per scenario); (iv) brushing and rolling of (relatively viscous) liquid products on surfaces: 6500 mg per scenario (8 mg cm(-2) per scenario) and (v) spraying large amounts of liquids (paints, cleaning products) on large areas: 12,000 mg per scenario (14 mg cm(-2) per scenario). These default values are considered useful for estimating exposure for similar substances in similar situations with low uncertainty. Several other default values based on single datasets can also be used, but lead to estimates with a higher uncertainty, due to their more limited basis. Sufficient analogy in all described parameters of the scenario, including duration, is needed to enable proper use of the default values. The default values lead to similar estimates as the RISKOFDERM dermal exposure model that was based on the same datasets, but uses very different parameters. Both approaches are preferred over older general models, such as EASE, that are not based on data from actual dermal exposure situations.
Airborne exposure limits for chemical and biological warfare agents: is everything set and clear?
Sabelnikov, Alex; Zhukov, Vladimir; Kempf, C Ruth
2006-08-01
Emergency response strategies (guidelines) for biological, chemical, nuclear, or radiological terrorist events should be based on scientifically established exposure limits for all the agents or materials involved. In the case of a radiological terrorist event, emergency response guidelines (ERG) have been worked out. In the case of a terrorist event with the use of chemical warfare (CW) agents the situation is not that clear, though the new guidelines and clean-up values are being generated based on re-evaluation of toxicological and risk data. For biological warfare (BW) agents, such guidelines do not yet exist. In this paper the current status of airborne exposure limits (AELs) for chemical and biological warfare (CBW) agents are reviewed. Particular emphasis is put on BW agents that lack such data. An efficient, temporary solution to bridge the gap in experimental infectious data and to set provisional AELs for BW agents is suggested. It is based on mathematically generated risks of infection for BW agents grouped by their alleged ID50 values in three categories: with low, intermediate and high ID50 values.
Pira, E; Piolatto, P G
2012-01-01
The building industry entails the exposure to Respirable Crystalline Silica (RCS), though there is a large variability among different sectors. The environmental values reported for the current conditions seem to be relatively low. For example the mean exposure estimated by IOM for all industrial sectors in the EU is 0.07 mg/m3. There are few studies in the building sector which show similar values. This is obviously not representative of past exposure. Moreover, the problems of sampling and analysis techniques are still at issue. The well known effect of RCS exposure is silicosis. The carcinogenicity of RCS is still under debate, especially regarding the question of whether RCS is carcinogenic "per se" or whether the risk of developing lung cancer is mediated by silicosis. Although the IARC includes RCS in the Group I (human carcinogen), the reference should be the CLP regulation, of which carcinogen definition criteria allow to state that today there are not sufficient data to classify RCS as a carcinogen and that it seems more appropriate to include RCS in different STOT.RE categories. This is valid for building industry as well as for the other industrial sectors. In Italy the recommended exposure limit is the ACGIH value of 0.025 mg/m3. At EU level it is still debated which is the best choice, based on cost/benefits evaluation, among the following limit values: 0.2, 0.1 and 0.05 respectively. The authors obviously believe that the most protective value should be adopted.
Study of electromagnetic radiation pollution in an Indian city.
Dhami, A K
2012-11-01
Electromagnetic radiation emitted by cell phone towers is a form of environmental pollution and is a new health hazard, especially to children and patients. The present studies were taken to estimate the microwave/RF pollution by measuring radiation power densities near schools and hospitals of Chandigarh city in India. The cell phone radiations were measured using a handheld portable power density meter TES 593 and specific absorption rates were estimated from the measured values. These values of electromagnetic radiation in the environment were compared with the levels at which biological system of humans and animals starts getting affected. The values were also compared with the international exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The highest measured power density was 11.48 mW/m(2) which is 1,148% of the biological limit. The results indicated that the exposure levels in the city were below the ICNIRP limit, but much above the biological limit.
Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon
2018-04-01
Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Evaluation of human exposure to single electromagnetic pulses of arbitrary shape.
Jelínek, Lukás; Pekárek, Ludĕk
2006-03-01
Transient current density J(t) induced in the body of a person exposed to a single magnetic pulse of arbitrary shape or to a magnetic jump is filtered by a convolution integral containing in its kernel the frequency and phase dependence of the basic limit value adopted in a way similar to that used for reference values in the International Commission on Non-lonising Radiation Protection statement. From the obtained time-dependent dimensionless impact function W(J)(t) can immediately be determined whether the exposure to the analysed single event complies with the basic limit. For very slowly varying field, the integral kernel is extended to include the softened ICNIRP basic limit for frequencies lower than 4 Hz.
Braz, Leandro Gobbo; Braz, José Reinaldo Cerqueira; Cavalcante, Guilherme Aparecido Silva; Souza, Kátina Meneghetti; Lucio, Lorena Mendes de Carvalho; Braz, Mariana Gobbo
Occupational exposure to waste anesthetic gases in operating room (OR) without active scavenging system has been associated with adverse health effects. Thus, this study aimed to compare the trace concentrations of the inhaled anesthetics isoflurane and sevoflurane in OR with and without central scavenging system. Waste concentrations of isoflurane and sevoflurane were measured by infrared analyzer at different locations (near the respiratory area of the assistant nurse and anesthesiologist and near the anesthesia station) and at two times (30 and 120minutes after the start of surgery) in both OR types. All isoflurane and sevoflurane concentrations in unscavenged OR were higher than the US recommended limit (2 parts per million), regardless of the location and time evaluated. In scavenged OR, the average concentrations of isoflurane were within the limit of exposure, except for the measurements near the anesthesia station, regardless of the measurement times. For sevoflurane, concentrations exceeded the limit value at all measurement locations and at both times. The exposure to both anesthetics exceeded the international limit in unscavenged OR. In scavenged OR, the concentrations of sevoflurane, and to a lesser extent those of isoflurane, exceeded the recommended limit value. Thus, the OR scavenging system analyzed in the present study decreased the anesthetic concentrations, although not to the internationally recommended values. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
van Broekhuizen, Pieter; van Broekhuizen, Fleur; Cornelissen, Ralf; Reijnders, Lucas
2012-03-01
Nano reference values (NRVs) for occupational use of nanomaterials were tested as provisional substitute for Occupational Exposure Limits (OELs). NRVs can be used as provisional limit values until Health-Based OELs or derived no-effect levels (DNEL) become available. NRVs were defined for 8 h periods (time weighted average) and for short-term exposure periods (15 min-time weighted average). To assess the usefulness of these NRVs, airborne number concentrations of nanoparticles (NPs) in the workplace environment were measured during paint manufacturing, electroplating, light equipment manufacturing, non-reflective glass production, production of pigment concentrates and car refinishing. Activities monitored were handling of solid engineered NPs (ENP), abrasion, spraying and heating during occupational use of nanomaterials (containing ENPs) and machining nanosurfaces. The measured concentrations are often presumed to contain ENPs as well as process-generated NPs (PGNP). The PGNP are found to be a significant source for potential exposure and cannot be ignored in risk assessment. Levels of NPs identified in workplace air were up to several millions of nanoparticles/cm3. Conventional components in paint manufacturing like CaCO3 and talc may contain a substantial amount of nanosized particulates giving rise to airborne nanoparticle concentrations. It is argued that risk assessments carried out for e.g. paint manufacturing processes using conventional non-nano components should take into account potential nanoparticle emissions as well. The concentrations measured were compared with particle-based NRVs and with mass-based values that have also been proposed for workers protection. It is concluded that NRVs can be used for risk management for handling or processing of nanomaterials at workplaces provided that the scope of NRVs is not limited to ENPs only, but extended to the exposure to process-generated NPs as well.
Korpinen, Leena H; Elovaara, Jarmo A; Kuisti, Harri A
2011-01-01
The aim of the study was to investigate the occupational exposure to electric fields, average current densities, and average total contact currents at 400 kV substation tasks from different service platforms (main transformer inspection, maintenance of operating device of disconnector, maintenance of operating device of circuit breaker). The average values are calculated over measured periods (about 2.5 min). In many work tasks, the maximum electric field strengths exceeded the action values proposed in the EU Directive 2004/40/EC, but the average electric fields (0.2-24.5 kV/m) were at least 40% lower than the maximum values. The average current densities were 0.1-2.3 mA/m² and the average total contact currents 2.0-143.2 µA, that is, clearly less than the limit values of the EU Directive. The average values of the currents in head and contact currents were 16-68% lower than the maximum values when we compared the average value from all cases in the same substation. In the future it is important to pay attention to the fact that the action and limit values of the EU Directive differ significantly. It is also important to take into account that generally, the workers' exposure to the electric fields, current densities, and total contact currents are obviously lower if we use the average values from a certain measured time period (e.g., 2.5 min) than in the case where exposure is defined with only the help of the maximum values. © 2010 Wiley-Liss, Inc.
Birk, Thomas; Guldner, Karlheinz; Mundt, Kenneth A; Dahmann, Dirk; Adams, Robert C; Parsons, William
2010-09-01
A time-dependent quantitative exposure assessment of silica exposure among nearly 18,000 German porcelain workers was conducted. Results will be used to evaluate exposure-response disease risks. Over 8000 historical industrial hygiene (IH) measurements with original sampling and analysis protocols from 1954-2006 were obtained from the German Berufs- genossenschaft der keramischen-und Glas-Industrie (BGGK) and used to construct a job exposure matrix (JEM). Early measurements from different devices were converted to modern gravimetric equivalent values. Conversion factors were derived from parallel historical measurements and new side-by-side measurements using historical and modern devices in laboratory dust tunnels and active workplace locations. Exposure values were summarized and smoothed using LOESS regression; estimates for early years were derived using backward extrapolation techniques. Employee work histories were merged with JEM values to determine cumulative crystalline silica exposures for cohort members. Average silica concentrations were derived for six primary similar exposure groups (SEGs) for 1938-2006. Over 40% of the cohort accumulated <0.5 mg; just over one-third accumulated >1 mg/m(3)-years. Nearly 5000 workers had cumulative crystalline silica estimates >1.5 mg/m(3)-years. Similar numbers of men and women fell into each cumulative exposure category, except for 1113 women and 1567 men in the highest category. Over half of those hired before 1960 accumulated >3 mg/m(3)-years crystalline silica compared with 4.9% of those hired after 1960. Among those ever working in the materials preparation area, half accumulated >3 mg/m(3)-year compared with 12% of those never working in this area. Quantitative respirable silica exposures were estimated for each member of this cohort, including employment periods for which sampling used now obsolete technologies. Although individual cumulative exposure estimates ranged from background to about 40 mg/m(3)-years, many of these estimates reflect long-term exposures near modern exposure limit values, allowing direct evaluation of lung cancer and silicosis risks near these limits without extrapolation. This quantitative exposure assessment is the largest to date in the porcelain industry.
[Microbial exposure in collection of residential garbage--results of field studies].
Neumann, H D; Balfanz, J
1999-01-01
Since 1995 the communal accident insurance carrier of the county Wetfalen-Lippe conducts investigations into the exposure to biological agents related to refuse collection. Total fungal exposure during refuse collection turned out to range from 10,000 up to 750,000 colony forming units per cubic meter. Most of the measurement values exceeded the limit of 50,000. During hot periods in the summertime, the concentration of Aspergillus fumigatus increased up to 90,000 cfu/m3. The mean values of the bacterial concentrations ranged from 15,000 up to 50,000 cfu/m3, the endotoxin concentration from 12 up to 59 EU/m3. In the driver's cabin fungal exposure sometimes exceeded 10,000 cfu/m3 especially in autumn and winter. Maximum values were 5,000 cfu/m3 for bacteria and 15 EU/m3 for endotoxins. High values were measured irrespective of the kind of refuse.
Accorsi, Antonio; Valenti, Simona; Barbieri, Anna; Raffi, Giovanni Battista; Violante, Francesco Saverio
2003-03-01
Assessment of individual exposures to sevoflurane plus nitrous oxide (N(2)O) by biological monitoring of unmodified analytes in post-shift urine of exposed personnel. Anaesthetics in urine and breathing area were monitored in 124 subjects in 11 operating theatres. Passive samplers were collected after 2.5-7 h of exposure, at the same time as post-shift urinary samples, to evaluate the individual time-weighted average (TWA) exposures to sevoflurane and N(2)O. A static headspace sampler coupled with a gas chromatograph mass spectrometer was used for analytical determinations (sensitivity sufficient to reveal biological/environmental exposures of 0.1 microg/l(urine) and 50 ppb for sevoflurane, and 1 microg/l(urine) and 80 ppb for N(2)O). Median (range) post-shift urinary and environmental values were 1.2 microg/l(urine) (0.1-5.0) and 0.4 ppm (0.05-3.0) for sevoflurane ( n=107) and 10.9 microg/l(urine) (0.5-74.9) and 8.6 ppm (0.2-123.4) for N(2)O ( n=121) (all low-exposure range). At log-log regression, urinary levels closely correlated with environmental data (sevoflurane, r(2)=0.7538; N(2)O, r(2)=0.8749). Biological equivalent limits (BELs) based on National Institute for Occupational Safety and Health (NIOSH) TWA exposure limits, calculated as means of regression slope and y-intercept, were 3.6 microg/l(urine) for sevoflurane (corresponding to 2 ppm) and 22.3 microg/l(urine) for N(2)O (corresponding to 25 ppm). Individual "mixture BELs", which we calculated by applying the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) mix formula to biomarker values and using the obtained NIOSH-based BELs as a reference, closely correlated with mixture TLVs (rho=0.816, Lin's concordance test). CONCLUSIONS. We propose urinary sevoflurane as a new, specific, internal dose biomarker for routine biological monitoring of personal exposures among operating-theatre personnel, and use of reliable "mixture BELs" to provide safer levels of internal exposure for workers exposed to mixtures of sevoflurane and N(2)O, and conceivably also to other mixtures of toxicants with possible additive effects.
Exposure monitoring and risk assessment of biphenyl in the workplace.
Kim, Hyeon-Yeong; Shin, Sae-Mi; Ham, Miran; Lim, Cheol-Hong; Byeon, Sang-Hoon
2015-05-13
This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable maximum exposure and were shown to be 0.03 and 0.12 mg/m³, respectively. In addition, the carcinogenic risk of biphenyl as determined by risk assessment was 0.14 × 10⁻⁴ (central tendency exposure) and 0.56 × 10⁻⁴ (reasonable maximum exposure), which is below the acceptable risk value of 1.0 × 10⁻⁴. Furthermore, the central tendency exposure and reasonable maximum exposure hazard quotients were 0.01 and 0.06 for oral toxicity, 0.05 and 0.23 for inhalation toxicity, and 0.08 and 0.39 for reproduction toxicity, respectively, which are all lower than the acceptable hazard quotient of 1.0. Therefore, exposure to biphenyl was found to be safe in current workplace environments. Because occupational exposure limits are based on socioeconomic assessment, they are generally higher than true values seen in toxicity experiments. Based on the results of exposure monitoring of biphenyl, the current occupational exposure limits in Korea could be reviewed.
NASA Astrophysics Data System (ADS)
Lewis, C. H.; Griffin, M. J.
1998-08-01
There are three current standards that might be used to assess the vibration and shock transmitted by a vehicle seat with respect to possible effects on human health: ISO 2631/1 (1985), BS 6841 (1987) and ISO 2631-1 (1997). Evaluations have been performed on the seat accelerations measured in nine different transport environments (bus, car, mobile crane, fork-lift truck, tank, ambulance, power boat, inflatable boat, mountain bike) in conditions that might be considered severe. For each environment, limiting daily exposure durations were estimated by comparing the frequency weighted root mean square (i.e., r.m.s.) accelerations and the vibration dose values (i.e.,VDV), calculated according to each standard with the relevant exposure limits, action level and health guidance caution zones. Very different estimates of the limiting daily exposure duration can be obtained using the methods described in the three standards. Differences were observed due to variations in the shapes of the frequency weightings, the phase responses of the frequency weighting filters, the method of combining multi-axis vibration, the averaging method, and the assessment method. With the evaluated motions, differences in the shapes of the weighting filters results in up to about 31% difference in r.m.s. acceleration between the “old” and the “new” ISO standard and up to about 14% difference between BS 6841 and the “new” ISO 2631. There were correspondingly greater differences in the estimates of safe daily exposure durations. With three of the more severe motions there was a difference of more than 250% between estimated safe daily exposure durations based on r.m.s. acceleration and those based on fourth power vibration dose values. The vibration dose values provided the more cautious assessments of the limiting daily exposure duration.
NASA Astrophysics Data System (ADS)
Rees, Sian; Dobre, George
2014-01-01
When using scanning laser ophthalmoscopy to produce images of the eye fundus, maximum permissible exposure (MPE) limits must be considered. These limits are set out in international standards such as the National Standards Institute ANSI Z136.1 Safe Use of Lasers (USA) and BS EN 60825-1: 1994 (UK) and corresponding Euro norms but these documents do not explicitly consider the case of scanned beams. Our study aims to show how MPE values can be calculated for the specific case of retinal scanning by taking into account an array of parameters, such as wavelength, exposure duration, type of scanning, line rate and field size, and how each set of initial parameters results in MPE values that correspond to thermal or photochemical damage to the retina.
Radiation exposure levels within timber industries in Calabar, Nigeria
Inyang, S. O.; Inyang, I. S.; Egbe, N. O.
2009-01-01
The UNSCEAR (2000) observed that there could be some exposure at work which would require regulatory control but is not really considered. This study was, therefore, set up to evaluate the effective dose in timber industries in Calabar, Nigeria to determine if the evaluated dose levels could lead to any radiological health effect in the workers, and also determine if the industries require regulatory control. The gamma ray exposure at four timber industries measured using an exposure meter were converted to effective dose and compared with the public and occupational values. The evaluated effective dose values in the timber industries were below public and occupational exposure limits and may not necessarily result in any radiological health hazard. Therefore, they may not require regulatory control. PMID:20098544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perbellini, L.; Mozzo, P.; Olivato, D.
Biological exposure index (BEI) of n-hexane was studied for accuracy using a physiologically based pharmacokinetic (PB-PK) model. The kinetics of n-hexane in alveolar air, blood, urine, and other tissues were simulated for different values of alveolar ventilations and also for constant and variable exposures. The kinetics of 2,5-hexanedione, the toxic n-hexane metabolite, were also simulated. The ranges of n-hexane concentrations in biological media and the urinary concentrations of 2,5-hexanedione are discussed in connection with a mean n-hexane exposure of 180 mg/m3 (50 ppm) (threshold limit value (TLV) suggested by American Conference of Governmental Industrial Hygienists (ACGIH) for 1988-89). The experimentalmore » and field data as well as those predicted by simulation with the PB-PK model were comparable. The physiological-pharmacokinetic simulations are used to propose the dynamic BEIs of n-hexane and 2,5-hexanedione. The use of simulation with PB-PK models enables a better understanding of the limits, advantages, and issues associated with biological monitoring of exposures to industrial solvents.« less
Wu, Yue; Gu, Jun-Ming; Huang, Yun; Duan, Yan-Ying; Huang, Rui-Xue; Hu, Jian-An
2016-01-01
Long-term airborne lead exposure, even below official occupational limits, has been found to cause lead poisoning at higher frequencies than expected, which suggests that China’s existing occupational exposure limits should be reexamined. A retrospective cohort study was conducted on 1832 smelting workers from 1988 to 2008 in China. These were individuals who entered the plant and came into continuous contact with lead at work for longer than 3 months. The dose-response relationship between occupational cumulative lead exposure and lead poisoning, abnormal blood lead, urinary lead and erythrocyte zinc protoporphyrin (ZPP) were analyzed and the benchmark dose lower bound confidence limits (BMDLs) were calculated. Statistically significant positive correlations were found between cumulative lead dust and lead fumes exposures and workplace seniority, blood lead, urinary lead and ZPP values. A dose-response relationship was observed between cumulative lead dust or lead fumes exposure and lead poisoning (p < 0.01). The BMDLs of the cumulative occupational lead dust and fumes doses were 0.68 mg-year/m3 and 0.30 mg-year/m3 for lead poisoning, respectively. The BMDLs of workplace airborne lead concentrations associated with lead poisoning were 0.02 mg/m3 and 0.01 mg/m3 for occupational exposure lead dust and lead fume, respectively. In conclusion, BMDLs for airborne lead were lower than occupational exposure limits, suggesting that the occupational lead exposure limits need re-examination and adjustment. Occupational cumulative exposure limits (OCELs) should be established to better prevent occupational lead poisoning. PMID:26999177
Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Giboyeaux, A.
2017-05-19
The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less
Occupational exposure to electromagnetic fields from medical sources
STAM, Rianne; YAMAGUCHI-SEKINO, Sachiko
2017-01-01
High exposures to electromagnetic fields (EMF) can occur near certain medical devices in the hospital environment. A systematic assessment of medical occupational EMF exposure could help to clarify where more attention to occupational safety may be needed. This paper seeks to identify sources of high exposure for hospital workers and compare the published exposure data to occupational limits in the European Union. A systematic search for peer-reviewed publications was conducted via PubMed and Scopus databases. Relevant grey literature was collected via a web search. For each publication, the highest measured magnetic flux density or internal electric field strength per device and main frequency component was extracted. For low frequency fields, high action levels may be exceeded for magnetic stimulation, MRI gradient fields and movement in MRI static fields. For radiofrequency fields, the action levels may be exceeded near devices for diathermy, electrosurgery and hyperthermia and in the radiofrequency field inside MRI scanners. The exposure limit values for internal electric field may be exceeded for MRI and magnetic stimulation. For MRI and magnetic stimulation, practical measures can limit worker exposure. For diathermy, electrosurgery and hyperthermia, additional calculations are necessary to determine if SAR limits may be exceeded in some scenarios. PMID:29109357
Messeri, Andrea; Amore, Elena; Dugheri, Stefano; Bonari, Alessandro; Pompilio, Ilenia; Arcangeli, Giulio; Rizzo, Giuliana
2016-09-01
Nitrous oxide (N2 O 50% in oxygen) is commonly used for painful procedures in children. Potential negative health effects associated with chronic workplace exposure limit its use. Safe occupational N2 O exposure concentrations are below 25 ppm environmental concentration as a time-weighted average (TWA) and below 200 ppm as a short-time exposure level (STEL) of 15 min. The aim was to assess occupational exposure of staff during nitrous oxide administration to children using different inhalation delivery devices and scavenging systems. Staff nitrous oxide exposure during use of a double face mask (DFM) with or without a demand valve (DV) was compared with a conventional single face mask (FM). We also compared exposure using the hospital central scavenging system with a portable evacuation system. N2 O concentrations, representing exposure values, were monitored within proximity to staff. Urine N2 O concentration was measured in staff administering the N2 O at the end of the procedural session. The mean and median values of TWA and STEL within the working area were lower than recommended values in the DFM (10.8, 11.6 ppm for TWA; 13.9, 11.0 ppm for STEL) and DFM-DV groups (2.3, 2.8 ppm for TWA; 4.4, 3.5 ppm for STEL) using the portable evacuation system. The N2 O urine exposure in DFM-DV group was lower than DFM group: a mean difference of 9.56 ppm (95% CI 2.65-16.46). Staff N2 O urinary concentrations were within safe biological limits in both the DFM and DFM-DV groups. High exposure concentrations to N2 O were recorded in all FM and FM-DV environmental and biological samples. The DFM system, with or without a DV, connected to a portable evacuation system during N2 O administration to children for painful procedures kept N2 O levels within the local environment below recommended limits. © 2016 John Wiley & Sons Ltd.
Hamzah, Nurul Ainun; Mohd Tamrin, Shamsul Bahri; Ismail, Noor Hassim
2016-07-01
Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases. A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV 1 , FVC, and %FEV 1 /FVC) were determined using spirometer. Exposure to cobalt and chromium were 1-3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV 1 , FVC, and %FEV 1 /FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV 1 /FVC (Adj b = -1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours. There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers.
Gryz, Krzysztof; Zradziński, Patryk; Karpowicz, Jolanta
2015-01-01
The use of radiofrequency (98-2450 MHz range) personal exposimeters to measure the electric field (E-field) in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from -96 to +133)%, measurement errors with respect to the unperturbed E-field value). When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions). However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements.
Zradziński, Patryk
2015-01-01
The use of radiofrequency (98–2450 MHz range) personal exposimeters to measure the electric field (E-field) in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from −96 to +133)%, measurement errors with respect to the unperturbed E-field value). When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions). However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements. PMID:25879021
Taylor, Andrew; Angerer, Jurgen; Arnaud, Josiane; Claeys, Françoise; Kristiansen, Jesper; Mazarrasa, Olav; Menditto, Antonio; Patriarca, Marina; Pineau, Alain; Valkonen, Sinikka; Weykamp, Cas
2007-01-01
The European Council Directive 98/24 on the protection of the health and safety of workers exposed to chemical agents sets out provisions for environmental and biological monitoring, making specific reference to binding limit values and health surveillance measures for those with exposure to lead To compare how the Directive has been implemented at a national level in EU countries and to determine whether workers receive equivalent protection. Information on selected key issues was collected from 14 EU countries by means of a structured questionnaire. National occupational exposure limit values generally reflect that set by the Directive (0.15 mg/m(3)), but in five cases lower limits are set. National binding biological limit values range from 20 microg/100 ml blood in one country up to 80 microg/100 ml blood in others. The risk to the unborn child is generally recognised with specific measures for women of child-bearing potential or those that are pregnant or breast feeding. In only three countries are special arrangements included for young workers. Limits at which medical surveillance is put into effect are more consistent at 40 microg/100 ml in most countries. The Directive also refers to guidelines for health surveillance but none have been issued with respect to lead. Thus monitoring strategies and requirements for analytical performance vary considerably. The results of this survey suggest that protection of workers against the risk of exposure to lead at work is far from uniform across the European Union. Such disparity may also have implications on the requirements set at national level for laboratories measuring lead in blood and/or air. In the interest of harmonisation within the EU, further consideration should be given to the Annex II of the EC Directive 98/24, taking into account the suggestions for lower binding limit values for lead; this should include full guidelines for medical surveillance and requirements for laboratories should be issued.
Mounier-Geyssant, Estelle; Barthélemy, Jean-François; Mouchot, Lory; Paris, Christophe; Zmirou-Navier, Denis
2007-11-01
This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period. Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83]) than in summer (0.63 mg.m-3 [0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3). Over half the facilities had no ventilation system. Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation.
Symanski, E.; Kupper, L. L.; Rappaport, S. M.
1998-01-01
OBJECTIVES: To conduct a comprehensive evaluation of long term changes in occupational exposure among a broad cross section of industries worldwide. METHODS: A review of the scientific literature identified studies that reported historical changes in exposure. About 700 sets of data from 119 published and several unpublished sources were compiled. Data were published over a 30 year period in 25 journals that spanned a range of disciplines. For each data set, the average exposure level was compiled for each period and details on the contaminant, the industry and location, changes in the threshold limit value (TLV), as well as the type of sampling method were recorded. Spearman rank correlation coefficients were used to identify monotonic changes in exposure over time and simple linear regression analyses were used to characterise trends in exposure. RESULTS: About 78% of the natural log transformed data showed linear trends towards lower exposure levels whereas 22% indicated increasing trends. (The Spearman rank correlation analyses produced a similar breakdown between exposures monotonically increasing or decreasing over time.) Although the rates of reduction for the data showing downward trends ranged from -1% to -62% per year, most exposures declined at rates between -4% and -14% per year (the interquartile range), with a median value of -8% per year. Exposures seemed to increase at rates that were slightly lower than those of exposures which have declined over time. Data sets that showed downward (versus upward) trends were influenced by several factors including type and carcinogenicity of the contaminant, type of monitoring, historical changes in the threshold limit values (TLVs), and period of sampling. CONCLUSIONS: This review supports the notion that occupational exposures are generally lower today than they were years or decades ago. However, such trends seem to have been affected by factors related to the contaminant, as well as to the period and type of sampling. PMID:9764107
Towards a biological monitoring guidance value for acrylamide.
Sams, C; Jones, K; Warren, N; Cocker, J; Bell, S; Bull, P; Cain, M
2015-08-19
Acrylamide is classified as a potential human carcinogen and neurotoxicant. Biological monitoring is a useful tool for monitoring worker exposure. However, other sources of exposure to acrylamide (including cigarette smoke and diet) also need to be considered. This study has performed repeat measurements of the urinary mercapturic acids of acrylamide (AAMA) and its metabolite glycidamide (GAMA) and determined globin adducts in 20 production-plant workers at a UK acrylamide production facility. The relationship between biomarker levels and environmental monitoring data (air levels and hand washes) was investigated. Good correlations were found between all of the biomarkers (r(2)=0.86-0.91) and moderate correlations were found between the biomarkers and air levels (r(2) = 0.56-0.65). Our data show that urinary AAMA is a reliable biomarker of acrylamide exposure. Occupational hygiene data showed that acrylamide exposure at the company was well within the current UK Workplace Exposure Limit. The 90th percentile of urinary AAMA in non-smoking production-plant workers (537 μmol/mol creatinine (n = 59 samples)) is proposed as a possible biological monitoring guidance value. This 90th percentile increased to 798 μmol/mol if smokers were included (n = 72 samples). These values would be expected following an airborne exposure of less than 0.07 mg/m(3), well below the current UK workplace exposure limit of 0.3mg/m(3). Comparison of biomarker levels in non-occupationally exposed individuals suggests regional variations (between UK and Germany), possibly due to differences in diet. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Griffin, M
2004-01-01
In 2002, the Parliament and Commission of the European Community agreed "minimum health and safety requirements" for the exposure of workers to the risks arising from vibration. The Directive defines qualitative requirements and also quantitative requirements in the form of "exposure action values" and "exposure limit values". The quantitative guidance is based on, but appears to conflict with, the guidance in International Standards for hand-transmitted vibration (ISO 5349) and whole-body vibration (ISO 2631). There is a large internal inconsistency within the Directive for short duration exposures to whole-body vibration: the two alternative methods give very different values. It would appear prudent to base actions on the qualitative guidance (i.e. reducing risk to a minimum) and only refer to the quantitative guidance where there is no other reasonable basis for the identification of risk (i.e. similar exposures are not a suspected cause of injury). Health surveillance and other precautions will be appropriate wherever there is reason to suspect a risk and will not be restricted to conditions where the exposure action value is exceeded. PMID:15090658
Influence of exposure time on toxicity-An overview.
Connell, Des W; Yu, Qiming J; Verma, Vibha
2016-04-29
Data on toxicity of chemicals is usually reported as the LD50, or LC50, with the exposure time from experimental testing in the laboratory reported. But the exposure time is not considered to be a quantifiable variable which can be used to evaluate its importance in expressed toxicity, often described in general terms such as acute, chronic and so on. For the last hundred years Habers Rule has been successfully used to extrapolate from reported exposure times to other exposure times which may be needed for setting standards, health risk assessments and other applications. But it has limitations particularly in environmental applications where exposure levels are low and exposure times are relatively long. The Reduced Life Expectancy (RLE) model overcomes these problems and can be utilised under all exposure conditions. It can be expressed as ln(LT50)=-a (LC50)(ν)+b where the constants ν, a and b can be evaluated by fitting the model to experimental data on the LC50, and corresponding LT50, together with the Normal Life Expectancy (NLE) of the organism being considered as a data point when the LC50 is zero. The constant, ν, at a value of unity gives a linear relationship and where ν<1 the relationship has a concave shape. In our extensive evaluations of the RLE model for fish, invertebrates and mammals involving 115 data sets and with a wide range of organic and inorganic toxicants the RLE model gave correlation coefficients of >0.8 with 107 sets of data. The RLE model can be used to extrapolate from a limited data set on exposure times and corresponding LT50 values to any exposure time and corresponding LT50 value. The discrepancy between Haber's Rule and RLE model increases as the exposure time increases. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Assessing Risk-Based Upper Limits of Melamine Migration from Food Containers.
Ling, Min-Pei; Lien, Keng-Wen; Hsieh, Dennis P H
2016-12-01
Melamine contamination of food has become a major food safety issue because of incidents of infant disease caused by exposure to this chemical. This study was aimed at establishing a safety limit in Taiwan for the degree of melamine migration from food containers. Health risk assessment was performed for three exposure groups (preschool children, individuals who dine out, and elderly residents of nursing homes). Selected values of tolerable daily intake (TDI) for melamine were used to calculate the reference migration concentration limit (RMCL) or reference specific migration limit (RSML) for melamine food containers. The only existing values of these limits for international standards today are 1.2 mg/L (0.2 mg/dm 2 ) in China and 30 mg/L (5 mg/dm 2 ) in the European Union. The factors used in the calculations included the specific surface area of food containers, daily food consumption rate, body weight, TDI, and the percentile of the population protected at a given migration concentration limit (MCL). The results indicate that children are indeed at higher risk of melamine exposure at toxic levels than are other groups and that the 95th percentile of MCL (specific surface area = 5) for children aged 1-6 years should be the RMCL (0.07 mg/dm 2 ) for protecting the sensitive and general population. © 2016 Society for Risk Analysis.
Hamzah, Nurul Ainun; Mohd Tamrin, Shamsul Bahri; Ismail, Noor Hassim
2016-01-01
Background Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases. Methods A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV1, FVC, and %FEV1/FVC) were determined using spirometer. Results Exposure to cobalt and chromium were 1–3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV1, FVC, and %FEV1/FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV1/FVC (Adj b = –1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours. Conclusions There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers. PMID:27392157
Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W
1996-01-01
OBJECTIVE: To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. OPTIONS: The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. OUTCOMES: Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. EVIDENCE: Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. VALUES: A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. BENEFITS, HARMS AND COSTS: A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. RECOMMENDATIONS: The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is recommended to control short-term effects. Further measurements that link the levels of exposure to respiratory health effects in workers across Canada should be collected to establish an exposure-response relation and possible regional differences in the effects of grain dust. VALIDATION: There has been no external review of these recommendations. However, the American Conference of Governmental Industrial Hygienists has recommended an 8-hour average exposure limit of 4 mg/m3 for wheat, oats and barley. PMID:8943927
Personal exposure of children and adults to airborne benzene in four French cities
NASA Astrophysics Data System (ADS)
Gonzalez-Flesca, Norbert; Nerriere, Eléna; Leclerc, Nathalie; Le Meur, Sébastien; Marfaing, Hélène; Hautemanière, Alexis; Zmirou-Navier, Denis
Atmospheric concentrations of and personal exposure to benzene have been measured in four French metropolitan areas for 210 subjects over two seasons. Half of the volunteers were 6-13-year-old children. The adult subjects were non-smokers, not occupationally exposed and they live and work in the monitored areas. Measurements were performed using diffusive samplers followed by GC-FID analysis. The average values for ambient air concentrations (μg m -3) were: Rouen: 1.5; Île de France (Paris area): 1.6; Grenoble: 2.3 and Strasbourg: 2.6, showing that benzene concentrations in the ambient air of the four cities satisfy the requirements of the European Directive 2000/69EC of the European Parliament which stipulates a limit value of 5 μg m -3. However, the 48 h exposures measured were found to be between 2.7 and 3.5 times higher than ambient air concentrations. As a consequence, 60% of the subjects investigated, including children, were exposed to concentrations higher than the ambient air limit value. This work confirms that air monitoring data collected by fixed stations should be used with caution when assessing population exposure to benzene, especially given the influence of indoor sources and other polluted microenvironments where people spend part of their time.
Radiation exposure and risk assessment for critical female body organs
NASA Technical Reports Server (NTRS)
Atwell, William; Weyland, Mark D.; Hardy, Alva C.
1991-01-01
Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.
In situ LTE exposure of the general public: Characterization and extrapolation.
Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc
2012-09-01
In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields. Copyright © 2012 Wiley Periodicals, Inc.
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, beca...
Senzolo, C; Frignani, S; Pavoni, B
2001-07-01
An exposure risk assessment of workers in a refinery production unit was undertaken. Gasoline and its main components were investigated through environmental and biological monitoring. Measured variables were environmental benzene, toluene, pentane and hexane; benzene and toluene in blood and urine; tt-MA (metabolite of benzene) in urine. Multivariate statistical analysis of the data showed that worker's exposure to the above substances fell within the limits specified by organisations such as ACGIH. Also, biological values complied with reference values (RV) for non-occupationally-exposed population. Different values of biological variables were determined by separating smokers from non-smokers: smokers had hematic and urinary benzene values significantly higher than non-smokers. During a 3-yr sampling, it was possible to identify a significant decrease of benzene in the workplace air and of hematic benzene for non-smokers. The most exposed department, one in which tank-lorries were loaded, needs further investigation and extended monitoring.
Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E
2017-07-01
Heat stress exposure limits based on wet-bulb globe temperature (WBGT) were designed to limit exposures to those that could be sustained for an 8-h day using limited data from Lind in the 1960s. In general, Sustainable exposures are heat stress levels at which thermal equilibrium can be achieved, and Unsustainable exposures occur when there is a steady increase in core temperature. This paper addresses the ability of the ACGIH® Threshold Limit Value (TLV®) to differentiate between Sustainable and Unsustainable heat exposures, to propose alternative occupational exposure limits, and ask whether an adjustment for body surface area improves the exposure decision. Two progressive heat stress studies provided data on 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants wearing woven cotton clothing. To assess the discrimination ability of the TLV, the exposure metric was the difference between the observed WBGT and the TLV adjusted for metabolic rate. Conditional logistic regression models and receiver operating characteristic curves (ROC) along with ROC's area under the curve (AUC) were used. Four alternative models for an occupational exposure limit were also developed and compared to the TLV. For the TLV, the odds ratio (OR) for Unsustainable was 2.5 per 1°C-WBGT [confidence interval (CI) 2.12-2.88]. The AUC for the TLV was 0.85 (CI 0.81-0.89). For the alternative models, the ORs were also about 2.5/°C-WBGT, with AUCs between 0.84 and 0.88, which were significantly different from the TLV's AUC but have little practical difference. This study (1) confirmed that the TLV is appropriate for heat stress screening; (2) demonstrated the TLV's discrimination accuracy with an ROC AUC of 0.85; and (3) established the OR of 2.5/°C-WBGT for unsustainable exposures. The TLV has high sensitivity, but its specificity is very low, which is protective. There were no important improvements with alternative exposure limits, and there was weak evidence to support metabolic rate normalized to body surface area. In sum, the TLV is protective with an appropriate margin of safety for relatively constant occupational exposures to heat stress. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Mounier-Geyssant, Estelle; Barthélemy, Jean-François; Mouchot, Lory; Paris, Christophe; Zmirou-Navier, Denis
2007-01-01
Background This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Methods Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period. Results Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83]) than in summer (0.63 mg.m-3 [0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3). Over half the facilities had no ventilation system. Conclusion Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation. PMID:17976230
Biological monitoring and standard setting in the USA: a critical appraisal.
Rappaport, S M
1995-05-01
Occupational exposure limits (OELs) issued in the US by the Occupational Safety and Health Administration (OSHA) require measurements of toxic substances in air rather than in biological samples. Most of OSHA's limits were adopted from the 1968 list of the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs). Although there are no formal requirements to monitor exposures to these substances, it is implicit in the standards that air sampling will be performed. Of the 13 OELs which OSHA has set de novo, 2 (i.e., those for lead and cadmium) require biomonitoring after air sampling has identified the heavily exposed workers. OSHA appears to value biomonitoring in some circumstances but has apparently not found a consistent rationale for using biomarkers to set and enforce its standards. This paper discusses 2 valuable features of biomarkers which should be exploited by OSHA to further its regulatory agenda. The first relates to controversies associated with dose rate which have come into play in setting short-term exposure limits (STELs) when acute effects do not provide the necessary justification. OSHA has not provided evidence that its STELs are needed to reduce the risks of disease (as in the cases of benzene and ethylene oxide). By investigating the exposure-biomarker relationship, it is possible to determine whether the rate of exposure has any influence on the uptake and elimination of toxic substances and, therefore, whether STELs is needed. This is illustrated with data from 2 studies on styrene exposure. The second feature concerns biomonitoring as the primary means of exposure assessment in situations where the biomarker is accumulated over months or years (as in the cases of lead and cadmium). Using data from the lead-battery industry, it is shown that 'correct' compliance decisions are more likely to arise from evaluation of blood lead measurements than from traditional air monitoring.
Ototoxic occupational exposures for a stock car racing team: II. chemical surveys.
Gwin, Kristin K; Wallingford, Kenneth M; Morata, Thais C; Van Campen, Luann E; Dallaire, Jacques; Alvarez, Frank J
2005-08-01
The National Institute for Occupational Safety and Health (NIOSH) conducted a series of surveys to evaluate occupational exposure to noise and potentially ototoxic chemical agents among members of a professional stock car racing team. Exposure assessments included site visits to the team's race shop and a worst-case scenario racetrack. During site visits to the race team's shop, area samples were collected to measure exposures to potentially ototoxic chemicals, including, organic compounds (typical of solvents), metals, and carbon monoxide (CO). Exposures to these chemicals were all below their corresponding Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs), NIOSH recommended exposure limits (RELs), and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs). During site visits to the racetrack, area and personal samples were collected for organic compounds, lead, and CO in and around the "pit" area where the cars undergo race preparation and service during the race. Exposures to organic compounds and lead were either nondetectable or too low to quantify. Twenty-five percent of the CO time-weighted average concentrations exceeded the OSHA PEL, NIOSH REL, and ACGIH TLV after being adjusted for a 10-hour workday. Peak CO measurements exceeded the NIOSH recommended ceiling limit of 200 ppm. Based on these data, exposures to potentially ototoxic chemicals are probably not high enough to produce an adverse effect greater than that produced by the high sound pressure levels alone. However, carbon monoxide levels occasionally exceeded all evaluation criteria at the racetrack.
Is eye lens dosimetry needed in nuclear medicine?
Wrzesień, M; Królicki, L; Albiniak, Ł; Olszewski, J
2018-06-01
The exact level of exposure experienced by nuclear medicine personnel, whose work often requires performing manual procedures involving radioactive isotopes, is associated with the form of radiation source used. The variety of radionuclides and medical procedures, and the yearly increase in the number of patients, as well as the change of the individual dose limit for the lens of the eye from a value of 150 mSv yr -1 to 20 mSv yr -1 , mean that issues of eye lens routine dosimetry become interesting from the radiation protection point of view. This paper presents an analysis of the exposure of the eye lenses of nuclear medicine department personnel, as well as those of personnel in the facilities that produce radiopharmaceuticals for the purpose of diagnosis by positron emission tomography, from the viewpoint of the advisability of routine eye lens exposure monitoring, taking into account changes in the dose limit for the lens of the eye. The paper considers the two most commonly used radionuclides for diagnostic purposes 99m Tc, 18 F, and-for therapeutic purposes- 131 I. Dose measurements were made using thermoluminescent detectors. The estimated exposure analysis identifies the cases when the maximum annual value of the personal dose equivalent, in terms of Hp(3), exceeds threefold the new limit value (20 mSv yr -1 ). It is recommended that Hp(3) doses be routinely monitored in the group of radiopharmacists who label pharmaceuticals with the radionuclide 99m Tc and in chemists working in 18 F-FDG quality control departments in production units, where this is carried out manually.
Exposure to whole-body vibration and seat transmissibility in a large sample of earth scrapers.
Salmoni, Alan; Cann, Adam; Gillin, Kent
2010-01-01
It is often difficult to access a large sample of vehicles in various work environments to evaluate worker exposure to vibration such as in construction and mining. Thus the main purpose of the present research was to test vibration exposure in a relatively large number of earth scrapers. The second aim was to assess vibration exposure values on seat transmissibility. 33earth scrapers were assessed for both exposure to whole-body vibration and seat transmissibility. Two triaxial accelerometers, one placed on the seat and one on the floor directly below the seat, were used to gather whole-body vibration values (a(w)). Each machine was tested for a minimum of three complete work cycles: idling, scraping, travelling full, dumping, travelling empty back to the scrape site. Results showed that idling and scraping produced low levels of vibration when compared to travelling and dumping. Second, when the a(w) values were compared to the EU safety standards for an eight hour work day, the data (z axis) exceeded the exposure action value (0.5 m/s2) in all machines, and the exposure limit value (1.15 m/s2) in some. Implications; Operators of the scrapers were being exposed to unsafe levels of whole-body vibration. When the seats were assessed to see whether they were attenuating operator exposure to vibration, many of the seat effective amplitude transmissibility (SEAT) values exceeded 1.0. This meant that some of the seats were actually amplifying the vibration present at the floor, particularly in the y axis. Travelways should be kept smooth, operating speeds reduced, and new seats, effective in all three axes, designed.
NASA Technical Reports Server (NTRS)
Macewen, J. W.
1973-01-01
Oxygen toxicity is examined, including the effects of oxygen partial pressure variations on toxicity and oxygen effects on ozone and nitrogen dioxide toxicity. Toxicity of fuels and oxidizers, such as hydrazines, are reported. Carbon monoxide, spacecraft threshold limit values, emergency exposure limits, spacecraft contaminants, and water quality standards for space missions are briefly summarized.
OCCUPATIONAL EXPOSURE OF NMR SPECTROMETRISTS TO STATIC AND RADIOFREQUENCY FIELDS.
Berlana, Tania; Úbeda, Alejandro
2017-12-01
Occupational exposure to static and radiofrequency fields emitted by nuclear magnetic resonance spectrometers was assessed through systematic field metering during operation of 19 devices in nine research centers. Whereas no measurable levels of radiofrequency radiation were registered outside the spectrometers, significant exposure to static field was detected, with maximum values recorded at the user's hand (B = 683.00 mT) and head-thorax (B = 135.70 mT) during spectrometer manipulation. All values were well below the exposure limits set by the European standard for workers protection against the effects of acute field exposure only. As for potential effects of chronic exposure, waiting for more complete knowledge, adoption of technical and operational strategies for exposure minimizing is advisable. In this respect, the data revealed that compared with standard magnetic shielding, ultrashield technology allows a 20-65-fold reduction of the field strength received by the operator. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Estimation of risks by chemicals produced during laser pyrolysis of tissues
NASA Astrophysics Data System (ADS)
Weber, Lothar W.; Spleiss, Martin
1995-01-01
Use of laser systems in minimal invasive surgery results in formation of laser aerosol with volatile organic compounds of possible health risk. By use of currently identified chemical substances an overview on possibly associated risks to human health is given. The class of the different identified alkylnitriles seem to be a laser specific toxicological problem. Other groups of chemicals belong to the Maillard reaction type, the fatty acid pyrolysis type, or even the thermally activated chemolysis. In relation to the available different threshold limit values the possible exposure ranges of identified substances are discussed. A rough estimation results in an exposure range of less than 1/100 for almost all substances with given human threshold limit values without regard of possible interactions. For most identified alkylnitriles, alkenes, and heterocycles no threshold limit values are given for lack of, until now, practical purposes. Pyrolysis of anaesthetized organs with isoflurane gave no hints for additional pyrolysis products by fragment interactions with resulting VOCs. Measurements of pyrolysis gases resulted in detection of small amounts of NO additionally with NO2 formation at plasma status.
Wildland smoke exposure values and exhaled breath indicators in firefighters.
Miranda, Ana Isabel; Martins, Vera; Cascão, Pedro; Amorim, Jorge Humberto; Valente, Joana; Borrego, Carlos; Ferreira, António Jorge; Cordeiro, Carlos Robalo; Viegas, Domingos Xavier; Ottmar, Roger
2012-01-01
Smoke from forest fires contains significant amounts of gaseous and particulate pollutants. Firefighters exposed to wildland fire smoke can suffer from several acute and chronic adverse health effects. Consequently, exposure data are of vital importance for the establishment of cause/effect relationships between exposure to smoke and firefighter health effects. The aims of this study were to (1) characterize the relationship between wildland smoke exposure and medical parameters and (2) identify health effects pertinent to wildland forest fire smoke exposure. In this study, firefighter exposure levels of carbon monoxide (CO), nitrogen dioxide (NO₂), and volatile organic compounds (VOC) were measured in wildfires during three fire seasons in Portugal. Personal monitoring devices were used to measure exposure. Firefighters were also tested for exhaled nitric oxide (eNO) and CO before and after their firefighting activities. Data indicated that exposure levels during firefighting activities were beyond limits recommended by the Occupational Exposure Standard (OES) values. Medical tests conducted on the firefighters also indicated a considerable effect on measured medical parameters, with a significant increase in CO and decrease in NO in exhaled air of majority of the firefighters.
Dennison, James E; Bigelow, Philip L; Mumtaz, Moiz M; Andersen, Melvin E; Dobrev, Ivan D; Yang, Raymond S H
2005-03-01
Under OSHA and American Conference of Governmental Industrial Hygienists (ACGIH) guidelines, the mixture formula (unity calculation) provides a method for evaluating exposures to mixtures of chemicals that cause similar toxicities. According to the formula, if exposures are reduced in proportion to the number of chemicals and their respective exposure limits, the overall exposure is acceptable. This approach assumes that responses are additive, which is not the case when pharmacokinetic interactions occur. To determine the validity of the additivity assumption, we performed unity calculations for a variety of exposures to toluene, ethylbenzene, and/or xylene using the concentration of each chemical in blood in the calculation instead of the inhaled concentration. The blood concentrations were predicted using a validated physiologically based pharmacokinetic (PBPK) model to allow exploration of a variety of exposure scenarios. In addition, the Occupational Safety and Health Administration and ACGIH occupational exposure limits were largely based on studies of humans or animals that were resting during exposure. The PBPK model was also used to determine the increased concentration of chemicals in the blood when employees were exercising or performing manual work. At rest, a modest overexposure occurs due to pharmacokinetic interactions when exposure is equal to levels where a unity calculation is 1.0 based on threshold limit values (TLVs). Under work load, however, internal exposure was 87%higher than provided by the TLVs. When exposures were controlled by a unity calculation based on permissible exposure limits (PELs), internal exposure was 2.9 and 4.6 times the exposures at the TLVs at rest and workload, respectively. If exposure was equal to PELs outright, internal exposure was 12.5 and 16 times the exposure at the TLVs at rest and workload, respectively. These analyses indicate the importance of (1) selecting appropriate exposure limits, (2) performing unity calculations, and (3) considering the effect of work load on internal doses, and they illustrate the utility of PBPK modeling in occupational health risk assessment.
Public magnetic field exposure based on internal current density for electric low voltage systems.
Keikko, Tommi; Seesvuori, Reino; Hyvönen, Martti; Valkealahti, Seppo
2009-04-01
A measurement concept utilizing a new magnetic field exposure metering system has been developed for indoor substations where voltage is transformed from a medium voltage of 10 or 20 kV to a low voltage of 400 V. The new metering system follows the guidelines published by the International Commission on Non-Ionizing Radiation Protection. It can be used to measure magnetic field values, total harmonic distortion of the magnetic field, magnetic field exposure ratios for public and workers, load current values, and total harmonic distortion of the load current. This paper demonstrates how exposure to non-sinusoidal magnetic fields and magnetic flux density exposure values can be compared directly with limit values for internal current densities in a human body. Further, we present how the magnetic field and magnetic field exposure behaves in the vicinity of magnetic field sources within the indoor substation and in the neighborhood. Measured magnetic fields around the substation components have been used to develop a measurement concept by which long-term measurements in the substations were performed. Long-term measurements revealed interesting and partly unexpected dependencies between the measured quantities, which have been further analyzed. The principle of this paper is to substitute a demanding exposure measurement with measurements of the basic quantities like the 50 Hz fundamental magnetic field component, which can be estimated based on the load currents for certain classes of substation lay-out.
Carlton, G N; England, E C
2000-09-01
1,6-Hexamethylene diisocyanate (HDI) exposures were measured during polyurethane enamel spray painting at four Air Force bases. Breathing zone samples were collected for HDI monomer and polyisocyanates (oligomers) using three sampling methods: NIOSH Method 5521, the Iso-Chek sampler, and the total aerosol mass method (TAMM). Exposures to HDI monomer are low when compared to current occupational exposure limits; the highest 8-hr time-weighted average (TWA) exposure found was 3.5 micrograms/m3, below the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 34 micrograms/m3. HDI oligomer levels were higher; mean task exposures indicated by either the Iso-Chek sampler or TAMM are above the Oregon ceiling limit of 1 mg/m3. Eight-hour TWA exposures, however, were much lower, with only one exceeding the Oregon standard of 0.5 mg/m3. Poor worker practices commonly observed during this study included: standing in downwind positions so paint overspray passed through breathing zones; spraying toward other painters; and using excessive paint spray gun air cap pressures. Workers should stand in upwind orientation relative to the aircraft being painted, causing overspray to move away from the painter's breathing zone; adjust their position to prevent spraying other painters or limit paint application to one worker at a time; and use air cap pressure gauges prior to spraying to limit spray gun air cap pressures and reduce paint overspray generation rates. These improved techniques will result in reduced worker exposures to isocyanates.
Zhang, W F; Tang, S H; Tan, Q; Liu, Y M
2016-08-20
Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.
Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V
2003-10-01
Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.
[The new German general threshold limit value for dust--pro and contra the adoption in Austria].
Godnic-Cvar, Jasminka; Ponocny, Ivo
2004-01-01
Since it has been realised that inhalation of inert dust is one of the important confounding variables for the development of chronic bronchitis, the threshold values for occupational exposure to these dusts needs to be further decreased. The German Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK-Commission) has set a new threshold (MAK-Value) for inert dusts (4 mg/m3 for inhalable dust, 1.5 mg/m3 for respirable dust) in 1997. This value is much lower than the threshold values currently used world-wide. The aim of the present article is to assess the scientific plausibility of the methodology (databases and statistics) used to set these new German MAK-Values, regarding their adoption in Austria. Although we believe that it is substantial to lower the MAK-Value for inert dust in order to prevent the development of chronic bronchitis as a consequence of occupational exposure to inert dusts, the applied methodology used by the German MAK-Commission in 1997 to set the new MAK-Values does not justify the reduction of the threshold limit value. A carefully designed study to establish an appropriate scientific basis for setting a new threshold value for inert dusts in the workplace should be carried out. Meanwhile, at least the currently internationally applied threshold values should be adopted in Austria.
Flavoring exposure in food manufacturing.
Curwin, Brian D; Deddens, Jim A; McKernan, Lauralynn T
2015-05-01
Flavorings are substances that alter or enhance the taste of food. Workers in the food-manufacturing industry, where flavorings are added to many products, may be exposed to any number of flavoring compounds. Although thousands of flavoring substances are in use, little is known about most of these in terms of worker health effects, and few have occupational exposure guidelines. Exposure assessment surveys were conducted at nine food production facilities and one flavor manufacturer where a total of 105 area and 74 personal samples were collected for 13 flavoring compounds including five ketones, five aldehydes, and three acids. The majority of the samples were below the limit of detection (LOD) for most compounds. Diacetyl had eight area and four personal samples above the LOD, whereas 2,3-pentanedione had three area samples above the LOD. The detectable values ranged from 25-3124 ppb and 15-172 ppb for diacetyl and 2,3-pentanedione respectively. These values exceed the proposed National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for these compounds. The aldehydes had the most detectable samples, with each of them having >50% of the samples above the LOD. Acetaldehyde had all but two samples above the LOD, however, these samples were below the OSHA PEL. It appears that in the food-manufacturing facilities surveyed here, exposure to the ketones occurs infrequently, however levels above the proposed NIOSH REL were found. Conversely, aldehyde exposure appears to be ubiquitous.
Modeled occupational exposures to gas-phase medical laser-generated air contaminants.
Lippert, Julia F; Lacey, Steven E; Jones, Rachael M
2014-01-01
Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.
Exposure-response relationships of occupational inhalative allergens.
Baur, X; Chen, Z; Liebers, V
1998-05-01
Only a few threshold limit values exist at present for allergens in the workplace known to cause bronchial asthma. This contrasts with the great number of occupational asthma cases observed in industrialized countries. Recently published studies provide clear evidence for exposure intensity response relationships of occupational allergens of plant, microbiological, animal or man-made origin. If allergen exposure levels fall short of determined limit values, they are not associated with an increased risk of occupational asthma. Corresponding data are available for wheat flour (1-2.4 mg/m3), fungal alpha-amylase (0.25 ng/m3), natural rubber latex (0.6 ng/m3), western red cedar (0.4 mg/m3) and rat allergens (0.7 microg/m3). It is suggested to stipulate legally binding threshold limit values (TLV/TWA) on this basis in order to induce more effective primary preventive measures. If no reliable data on the health risk of an occupational airborne noxa exist, the lowest reasonably practicable exposure level has to be achieved. Appropriate secondary preventive measures have to be initiated in all workplaces contaminated with airborne allergens. Verified exposure-response relationships provide the basis for risk assessment and for targeted interventions to reduce the incidence of occupational asthma also in consideration of cost benefit aspects. 'Occupational asthma is a disease characterized by variable airflow limitation and/or airway hyperresponsiveness due to causes in a working environment. These causes can give rise to asthma through immunological or non-immunological mechanisms. Up to 15% of all asthma cases are of occupational origin or have at least a significant causal occupational factor. According to the New Zealand part of the European Respiratory Health Survey, an increased risk of asthma prevalence was found for several occupations such as laboratory technicians, food producers, chemical workers, plastic and rubber workers. The Spain part of this study comprising 2646 Spanish subjects showed an asthma risk to be attributed to occupational exposures between 5 and 6.7%. Main asthma-inducing agents in the workplace are flour, grain and feed dust, animal dander/urinary proteins and isocyanates. Further, several inhalative irritants such as chlorine, acid or alkaline aerosols play a pivotal role. Many low molecular weight chemicals have irritative as well as allergenic effects on the airways, e. g. isocyanates and acid anhydrides. In addition to chronic or repetitive exposures, also singular accidental exposure to high concentrations of irritative or toxic airborne substances can cause occupational asthma. This condition is frequently called reactive airways dysfunction.
Martínez-Búrdalo, M; Martín, A; Sanchis, A; Villar, R
2009-02-01
In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna. Copyright 2008 Wiley-Liss, Inc.
Outdoor characterization of radio frequency electromagnetic fields in a Spanish birth cohort.
Calvente, I; Fernández, M F; Pérez-Lobato, R; Dávila-Arias, C; Ocón, O; Ramos, R; Ríos-Arrabal, S; Villalba-Moreno, J; Olea, N; Núñez, M I
2015-04-01
There is considerable public concern in many countries about the possible adverse effects of exposure to non-ionizing radiation electromagnetic fields, especially in vulnerable populations such as children. The aim of this study was to characterize environmental exposure profiles within the frequency range 100kHz-6GHz in the immediate surrounds of the dwellings of 123 families from the INMA-Granada birth cohort in Southern Spain, using spot measurements. The arithmetic mean root mean-square electric field (ERMS) and power density (SRMS) values were, respectively, 195.79mV/m (42.3% of data were above this mean) and 799.01µW/m(2) (30% of values were above this mean); median values were 148.80mV/m and 285.94µW/m(2), respectively. Exposure levels below the quantification limit were assigned a value of 0.01V/m. Incident field strength levels varied widely among different areas or towns/villages, demonstrating spatial variability in the distribution of exposure values related to the surface area population size and also among seasons. Although recorded values were well below International Commission for Non-Ionizing Radiation Protection reference levels, there is a particular need to characterize incident field strength levels in vulnerable populations (e.g., children) because of their chronic and ever-increasing exposure. The effects of incident field strength have not been fully elucidated; however, it may be appropriate to apply the precautionary principle in order to reduce exposure in susceptible groups. Copyright © 2014 Elsevier Inc. All rights reserved.
Occupational safety considerations with hydrazine fuels
NASA Technical Reports Server (NTRS)
Clewell, H. J.; Haddad, T. S.; George, M. E.; Mcdougal, J. N.; Andersen, M. E.
1992-01-01
A simple pharmacokinetic model and a specially designed dermal vapor exposure chamber which provides respiratory protection were used to determine the rate of penetration of hydrazine and 1,1-dimethylhydrazine (UDMH) vapor through the skin of rats. Parameters for the pharmacokinetic model were determined from intravenous and inhalation exposure data. The model was then used to estimate the skin permeation coefficient for hydrazine or UDMH vapor from the dermal-vapor exposure data. This analysis indicates that UDMH vapor has a relatively high permeability through skin (0.7 cm/hr), a value somewhat higher than was obtained for hydrazine by the same procedure (0.09 cm/hr). Based on these skin permeability results, a skin-only vapor exposure limit giving protection equivalent to the inhalation Threshold Limit Value (TLV) could be calculated. The current TLV's for UDMH and hydrazine are 0.5 and 0.1 ppm, respectively. The corresponding skin-only TLV equivalents, for personnel wearing respiratory protection, are 32 ppm for UDMH and 48 ppm for hydrazine. Should the proposed lowering to the TLV's for these compounds to 0.01 ppm be adopted, the equivalent skin-only TLV's would become 0.64 ppm for UDMH and 4.8 for hydrazine.
Messias, Iracimara de Anchieta; Okuno, Emico; Colacioppo, Sérgio
2011-10-01
Measure physical therapists' exposure to the electric and magnetic fields produced by 17 shortwave diathermy devices in physical therapy clinics in the city of Presidente Prudente, São Paulo State, Brazil. Compare the observed values with the exposure levels recommended by the International Commission on Non-ionizing Radiation Protection (ICNIRP). Observe the efficacy of Faraday cages as a means of protecting physical therapists from exposure to oscillating electric and magnetic fields. Electric and magnetic field measurements were taken at four points during actual physical therapy sessions: in proximity to the operator's pelvis and head, the devices' electrical cables, and the electrodes. The measuring equipment was a Wandel & Goltermann EMR-200. The values obtained in proximity to the electrodes and cables were 10 to 30 times higher than ICNIRP's recommended occupational reference levels. In the shortwave diathermy treatment rooms with Faraday cages, the fields were even higher than in treatment rooms not so equipped-principally the magnetic field, where the values were more than 100 times higher than the ICNIRP exposure limit. The electric and magnetic field intensities obtained in this study are generally above the exposure levels recommend in ICNIRP standards. It was also observed that the Faraday cage offers physical therapists no protection, and instead, increases their level of exposure.
Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine
2015-01-01
In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m3 TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia. PMID:25380085
Neghab, Masoud; Hosseinzadeh, Kiamars; Hassanzadeh, Jafar
2015-01-01
Background Unleaded petrol contains significant amounts of monocyclic aromatic hydrocarbons such as benzene, toluene, and xylenes (BTX). Toxic responses following occupational exposure to unleaded petrol have been evaluated only in limited studies. The main purpose of this study was to ascertain whether (or not) exposure to unleaded petrol, under normal working conditions, is associated with any hepatotoxic or nephrotoxic response. Methods This was a cross-sectional study in which 200 employees of Shiraz petrol stations with current exposure to unleaded petrol, as well as 200 unexposed employees, were investigated. Atmospheric concentrations of BTX were measured using standard methods. Additionally, urine and fasting blood samples were taken from individuals for urinalysis and routine biochemical tests of kidney and liver function. Results The geometric means of airborne concentrations of BTX were found to be 0.8 mg m−3, 1.4 mg m−3, and 2.8 mg m−3, respectively. Additionally, means of direct bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea and plasma creatinine were significantly higher in exposed individuals than in unexposed employees. Conversely, serum albumin, total protein, and serum concentrations of calcium and sodium were significantly lower in petrol station workers than in their unexposed counterparts. Conclusion The average exposure of petrol station workers to BTX did not exceed the current threshold limit values (TLVs) for these chemicals. However, evidence of subtle, subclinical and prepathologic early liver and kidney dysfunction was evident in exposed individuals. PMID:26929843
Cooper, Justin; Marx, Bernd; Buhl, Johannes; Hombach, Volker
2002-09-01
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure. Copyright 2002 Wiley-Liss, Inc.
Rat lung metallothionein and heme oxygenase gene expression following ozone and zinc oxide exposure.
Cosma, G; Fulton, H; DeFeo, T; Gordon, T
1992-11-01
We have conducted exposures in rats to determine pulmonary responses following inhalation of two common components of welding fumes, zinc oxide and ozone. To examine their effects on target-inducible gene expression, we measured mRNA levels of two metal-responsive genes, metallothionein (MT) and heme oxygenase (HO), in lung tissue by RNA slot-blot analysis. A 3-hr exposure to ZnO fume via a combustion furnace caused a substantial elevation in lung MT mRNA at all concentrations tested. Exposures to 5 and 2.5 mg/m3 ZnO resulted in peak 8-fold increases in MT mRNA levels (compared to air-exposed control animal values) immediately after exposure, while 1 mg/m3 ZnO exposure caused a 3.5-fold elevation in MT mRNA. These levels returned to approximate control gene expression values 24 hr after exposure. In addition, ZnO exposure caused an immediate elevation in lung HO gene expression levels, with 8-, 11-, and 5-fold increases observed after the same ZnO exposure levels (p < 0.05). Like MT gene induction, HO mRNA values returned to approximate control levels 24 hr after exposure. In striking contrast to the induction of MT and HO gene expression after ZnO exposures, there was no elevation in gene expression following a 6-hr exposure to 0.5 and 1 ppm ozone, even when lungs were examined as late as 72 hr after exposure. Our results demonstrate the induction of target gene expression following the inhalation of ZnO at concentrations equal to, and below, the current recommended threshold limit value of 5 mg/m3 ZnO. Furthermore, the lack of effect of ozone exposure on MT and HO gene expression suggests no involvement of these genes in the acute respiratory response to this oxidant compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poet, Torka S.; Mast, Terryl J.; Huckaby, James L.
Over 1,500 different volatile chemicals have been reported in the headspaces of tanks used to store high-level radioactive waste at the U.S. Department of Energy's Hanford Site. Concern about potential exposure of tank farm workers to these chemicals has prompted efforts to evaluate their toxicity, identify chemicals that pose the greatest risk, and incorporate that information into the tank farms industrial hygiene worker protection program. Established occupation exposure limits for individual chemicals and petroleum hydrocarbon mixtures have been used elsewhere to evaluate about 900 of the chemicals. In this report headspace concentration screening values were established for the remaining 600more » chemicals using available industrial hygiene and toxicological data. Screening values were intended to be more than an order of magnitude below concentrations that may cause adverse health effects in workers, assuming a 40-hour/week occupational exposure. Screening values were compared to the maximum reported headspace concentrations.« less
GIS, Pollution Prevention and Public Health
Using examples of preventing pollution and reducing risk of exposure to communities, this guide answers basic interest and start-up questions, addresses benefits and limitations and illustrates the value of GIS for local health departments.
Exposure to whole-body vibration in open-cast mines in the Barents region.
Burström, Lage; Hyvärinen, Ville; Johnsen, Magnar; Pettersson, Hans
2016-01-01
We aimed to measure and evaluate whole-body vibration (WBV) exposure among drivers of mining vehicles in the Barents region. In the period from November 2012 to August 2014, this cross-sectional study was carried out at 3 mines in Finland, Norway and Sweden as part of the MineHealth project. Measurements of WBV were conducted on the surface of the driver's seat during normal work in accordance with international standards. Personal data on daily exposure times were collected by a questionnaire. Measurements were conducted on 95 different mining vehicles both as root mean square (RMS) value and vibration dose value (VDV) representing different manufacturers, models and capacities. Of the 453 miners who answered the questionnaire, 232 indicated that they were exposed to WBV during their working day. The results show that the mean daily exposure time varies between 1.9 and 6.7 h for different vehicles. The calculated mean A(8) could be found in an interval between 0.2 and 1.0 m/s(2) and the corresponding 8-h VDV fell between 7 and 17 m/s(1.75). Exposure to WBV among operators of mining vehicles may be a serious health and safety problem in the mines studied. The employers ought, therefore, take active steps to reduce exposure in accordance with the European vibration directive. Moreover, since some groups of drivers are exposed to vibration that is close to or exceeds the exposure limit values, the employer should take immediate action to reduce exposure below these values.
Exposure to whole-body vibration in open-cast mines in the Barents region
Burström, Lage; Hyvärinen, Ville; Johnsen, Magnar; Pettersson, Hans
2016-01-01
Objectives We aimed to measure and evaluate whole-body vibration (WBV) exposure among drivers of mining vehicles in the Barents region. Study design In the period from November 2012 to August 2014, this cross-sectional study was carried out at 3 mines in Finland, Norway and Sweden as part of the MineHealth project. Methods Measurements of WBV were conducted on the surface of the driver's seat during normal work in accordance with international standards. Personal data on daily exposure times were collected by a questionnaire. Results Measurements were conducted on 95 different mining vehicles both as root mean square (RMS) value and vibration dose value (VDV) representing different manufacturers, models and capacities. Of the 453 miners who answered the questionnaire, 232 indicated that they were exposed to WBV during their working day. The results show that the mean daily exposure time varies between 1.9 and 6.7 h for different vehicles. The calculated mean A(8) could be found in an interval between 0.2 and 1.0 m/s2 and the corresponding 8-h VDV fell between 7 and 17 m/s1.75. Conclusions Exposure to WBV among operators of mining vehicles may be a serious health and safety problem in the mines studied. The employers ought, therefore, take active steps to reduce exposure in accordance with the European vibration directive. Moreover, since some groups of drivers are exposed to vibration that is close to or exceeds the exposure limit values, the employer should take immediate action to reduce exposure below these values. PMID:26864832
Baracco, A; Coggiola, M; Discalzi, G; Perrelli, F; Romano, C
2009-01-01
Italian law on safety at work does not clarify specific levels of load for safe manual material handling. For this reason professionals appointed for safety need to define new target range value for the correct application of D.Lgs. 81/2008 law. Authors, discussing about indication of the national laws and international rules, suggest the assumption of a load of 25 and 20 kg as reference values for male and female adult and healthy workers. They also examine the graduation of the acceptable loads in relation to workers' age and the Lifting Index values to be adopted as action limit and exposure limit.
Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces
NASA Astrophysics Data System (ADS)
Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz
2017-07-01
The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.
Effects of concurrent noise and jet fuel exposure on hearing loss.
Kaufman, Laura R; LeMasters, Grace K; Olsen, Donna M; Succop, Paul
2005-03-01
We sought to examine the effects of occupational exposure to jet fuel on hearing in military workers. Noise-exposed subjects, with or without jet fuel exposure, underwent hearing tests. Work histories, recreational exposures, protective equipment, medical histories, alcohol, smoking, and demographics were collected by questionnaire. Jet fuel, solvent, and noise exposure data were collected from records. Fuel exposure estimates were less than 34% of the OSHA Threshold Limit Values. Subjects with 3 years of jet fuel exposure had a 70% increase in adjusted odds of hearing loss (OR = 1.7; 95% CI = 1.14-2.53) and the odds increased to 2.41 (95% CI = 1.04-5.57) for 12 years of noise and fuel exposure. These findings suggest that jet fuel has a toxic affect on the auditory system.
Flavoring exposure in food manufacturing
Curwin, Brian D.; Deddens, Jim A.; McKernan, Lauralynn T.
2015-01-01
Flavorings are substances that alter or enhance the taste of food. Workers in the food-manufacturing industry, where flavorings are added to many products, may be exposed to any number of flavoring compounds. Although thousands of flavoring substances are in use, little is known about most of these in terms of worker health effects, and few have occupational exposure guidelines. Exposure assessment surveys were conducted at nine food production facilities and one flavor manufacturer where a total of 105 area and 74 personal samples were collected for 13 flavoring compounds including five ketones, five aldehydes, and three acids. The majority of the samples were below the limit of detection (LOD) for most compounds. Diacetyl had eight area and four personal samples above the LOD, whereas 2,3-pentanedione had three area samples above the LOD. The detectable values ranged from 25–3124 ppb and 15–172 ppb for diacetyl and 2,3-pentanedione respectively. These values exceed the proposed National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for these compounds. The aldehydes had the most detectable samples, with each of them having >50% of the samples above the LOD. Acetaldehyde had all but two samples above the LOD, however, these samples were below the OSHA PEL. It appears that in the food-manufacturing facilities surveyed here, exposure to the ketones occurs infrequently, however levels above the proposed NIOSH REL were found. Conversely, aldehyde exposure appears to be ubiquitous. PMID:25052692
History of the development of radiation protection standards for space activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, W K
Initial recommendations for limitations on radiation exposures in space were made in 1970 by the Radiobiological Advisory Panel of the Committee on Space Medicine, National Academy of Sciences/National Research Council (NAS/NRC). Using a risk-based approach and taking into consideration a range of factors, the Panel recommended an overall career limit of 4 Sv. Because it was assumed that only small numbers of people would be involved, most of whom would be in excess of 30 y of age, the question of genetic effects did not appear to be of concern. On the basis of subsequent epidemiological findings, the values ofmore » the risk coefficients were increased. As a result of this and other considerations, NASA in the early 1980s asked the NCRP to re-examine both the risks and the philosophy for protecting astronauts. In undertaking this task, the NCRP decided to treat the radiation exposures of crew members and payload specialists as an occupational hazard and to evaluate their risks in terms of those to radiation workers and to workers in other industries. Noting that in the less safe but not the most hazardous occupations, workers had an average lifetime risk of mortality of about three percent, the NCRP concluded that a reasonable career limit for astronauts should be based on a lifetime absolute excess risk of mortality of three percent. Using this as a base, the NCRP recommended a career limit for 25 y olds of 1 Sv for females and 1.5 Sv for males. Since the risk decreases the older the age at which the exposures begin, the limits culminated with a career limit of 3 Sv for females and 4 Sv for males whose initial exposure occurred at age 55. These recommendations were based on an assumed nominal value of a lifetime risk of fatal cancers for all ages of about 2 {times} 10{sup -2} Sv{sup -1}.« less
Yokota, Kozo; Ueno, Hiroshi; Ikeda, Naoko; Johyama, Yasushi; Michitsuji, Hiromi; Yamada, Seiji
2007-10-01
To examine the correlation between airborne ethylene glycol dimethyl ether (EGdiME) exposures and the urinary methoxyacetic acid (MAA) and to approach the issue of a permissible exposure limit for EGdiME. The survey was conducted on Thursday. Workers occupationally exposed to EGdiME, as well as nonexposed controls, were studied in combination with one of the authors, who was coincidentally exposed to EGdiME while carrying out the study. Air levels of EGdiME were determined by personal sampling on passive gas tubes. Urine was collected from nine control subjects and ten workers immediately before and after the shift, and from one of the authors at intervals during 12 h. The analyses of EGdiME in air and MAA in urine were performed by gas chromatography with flame ionization detection. The time-weighted average (TWA) air levels of EGdiME ranged from 0.7 to 10.5 ppm during 8 h work shifts. The urinary levels of MAA in one of the authors increased continuously during exposure and after the end of exposure. The levels of urinary MAA in the exposed workers were significantly higher than those in the control subjects. On the other hand, the postshift values were higher than the preshift values in the exposed workers, but the difference was not significant. A linear correlation was found between the TWA air levels of EGdiME and creatinine-adjusted MAA levels in urine collected at the end of the shift (r = 0.933; P < 0.0001). According to our equation, a linear extrapolation to the biological limit value recommended by Shih et al. (1999) of 40 mg MAA/g crea indicated an average inhalation exposure to EGdiME over the workweek of 12 ppm. These results indicate that the determination of MAA in urine is suitable for use in the biological monitoring of EGdiME exposure.
Whole-body vibration exposure of occupational horseback riding in agriculture: A ranching example.
Zeng, Xiaoke; Trask, Catherine; Kociolek, Aaron M
2017-02-01
Horse riding is common in many occupations; however, there is currently no research evaluating exposure to whole-body vibration and mechanical shock on horseback. Whole-body vibration was measured on a cattle rancher during two 30 min horseback rides using a tri-axial accelerometer mounted on a western saddle. Vibration was summarized into standardized metrics, including the 8 hr equivalent root-mean-squared acceleration (A[8]) and the daily 4th power vibration dose value (VDV). The resulting exposures were compared to the exposure limit and action values provided by European Union Directive 2002/44/EC. The highest vibration for both rides was in the vertical axis, with average A(8) and VDV of 0.56 m/s 2 and 26.24 m/s 1.75 , respectively. The A(8) value indicated moderate risk while the VDV suggested high risk of harmful health effects. Exposure to whole-body vibration and mechanical shock during occupational horseback riding may pose deleterious health risks and increased susceptibility to low back pain. Am. J. Ind. Med. 60:215-220, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Fenske, Richard A.; Bradman, Asa; Whyatt, Robin M.; Wolff, Mary S.; Barr, Dana B.
2005-01-01
In this article we examine sampling strategies and analytical methods used in a series of recent studies of children’s exposure to pesticides that may prove useful in the design and implementation of the National Children’s Study. We focus primarily on the experiences of four of the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency/ Children’s Centers and include University of Washington studies that predated these centers. These studies have measured maternal exposures, perinatal exposures, infant and toddler exposures, and exposure among young children through biologic monitoring, personal sampling, and environmental monitoring. Biologic monitoring appears to be the best available method for assessment of children’s exposure to pesticides, with some limitations. It is likely that a combination of biomarkers, environmental measurements, and questionnaires will be needed after careful consideration of the specific hypotheses posed by investigators and the limitations of each exposure metric. The value of environmental measurements, such as surface and toy wipes and indoor air or house dust samples, deserves further investigation. Emphasis on personal rather than environmental sampling in conjunction with urine or blood sampling is likely to be most effective at classifying exposure. For infants and young children, ease of urine collection (possible for extended periods of time) may make these samples the best available approach to capturing exposure variability of nonpersistent pesticides; additional validation studies are needed. Saliva measurements of pesticides, if feasible, would overcome the limitations of urinary metabolite-based exposure analysis. Global positioning system technology appears promising in the delineation of children’s time–location patterns. PMID:16203262
Basketter, D A; Broekhuizen, C; Fieldsend, M; Kirkwood, S; Mascarenhas, R; Maurer, K; Pedersen, C; Rodriguez, C; Schiff, H-E
2010-02-09
A wide range of substances have been recognized as sensitizing, either to the skin and/or to the respiratory tract. Many of these are useful materials, so to ensure that they can be used safely it is necessary to characterize the hazards and establish appropriate exposure limits. Under new EU legislation (REACH), there is a requirement to define a derived no effect level (DNEL). Where a DNEL cannot be established, e.g. for sensitizing substances, then a derived minimal effect level (DMEL) is recommended. For the bacterial and fungal enzymes which are well recognized respiratory sensitizers and have widespread use industrially as well as in a range of consumer products, a DMEL can be established by thorough retrospective review of occupational and consumer experience. In particular, setting the validated employee medical surveillance data against exposure records generated over an extended period of time is vital in informing the occupational DMEL. This experience shows that a long established limit of 60 ng/m(3) for pure enzyme protein has been a successful starting point for the definition of occupational health limits for sensitization in the detergent industry. Application to this of adjustment factors has limited sensitization induction, avoided any meaningful risk of the elicitation of symptoms with known enzymes and provided an appropriate level of security for new enzymes whose potency has not been fully characterized. For example, in the detergent industry, this has led to general use of occupational exposure limits 3-10 times lower than the 60 ng/m(3) starting point. In contrast, consumer exposure limits vary because the types of exposure themselves cover a wide range. The highest levels shown to be safe in use, 15 ng/m(3), are associated with laundry trigger sprays, but very much lower levels (e.g. 0.01 ng/m(3)) are commonly associated with other types of safe exposure. Consumer limits typically will lie between these values and depend on the actual exposure associated with product use. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Tsujimura, Hiroji; Taoda, Kazushi; Kitahara, Teruyo
2015-01-01
The aims of this study were to clarify in detail the levels of whole-body vibration (WBV) exposure from a variety of agricultural machines in a rice farmer over one year, and to evaluate the daily level of exposure compared with European and Japanese threshold limits. The subject was a full-time, male rice farmer. We measured vibration accelerations on the seat pan and at the seat base of four tractors with various implements attached, one rice-planting machine, two combine harvesters, produced by the same manufacturer, and one truck used for transportation of agricultural machines. The position and velocity of the machines were recorded in parallel with WBV measurements. In addition, during the year starting in April 2010, the subject completed a questionnaire regarding his work (date, place, content, hours worked, machines used). We calculated the daily exposure to WBV, A(8), on all the days on which the subject used the agricultural machines. The WBV magnitude in farm fields was relatively high during tasks with high velocity and heavy mechanical load on the machine, and had no dominant axis. The subject worked for 159 days using the agricultural machines during the year, and the proportion of days on which A(8) values exceeded the thresholds was 90% for the Japan occupational exposure limit and 24% for the EU exposure action value. Our findings emphasize the need for rice farmers to have health management strategies suited to the farming seasons and measures to reduce WBV exposure during each farm task.
Chandrasekar, Vaishnavi; Janes, Dustin W; Saylor, David M; Hood, Alan; Bajaj, Akhil; Duncan, Timothy V; Zheng, Jiwen; Isayeva, Irada S; Forrey, Christopher; Casey, Brendan J
2018-01-01
A novel approach for rapid risk assessment of targeted leachables in medical device polymers is proposed and validated. Risk evaluation involves understanding the potential of these additives to migrate out of the polymer, and comparing their exposure to a toxicological threshold value. In this study, we propose that a simple diffusive transport model can be used to provide conservative exposure estimates for phase separated color additives in device polymers. This model has been illustrated using a representative phthalocyanine color additive (manganese phthalocyanine, MnPC) and polymer (PEBAX 2533) system. Sorption experiments of MnPC into PEBAX were conducted in order to experimentally determine the diffusion coefficient, D = (1.6 ± 0.5) × 10 -11 cm 2 /s, and matrix solubility limit, C s = 0.089 wt.%, and model predicted exposure values were validated by extraction experiments. Exposure values for the color additive were compared to a toxicological threshold for a sample risk assessment. Results from this study indicate that a diffusion model-based approach to predict exposure has considerable potential for use as a rapid, screening-level tool to assess the risk of color additives and other small molecule additives in medical device polymers.
Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean
2015-01-01
To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493
Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David
2011-07-01
To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in farming and even clay soil farming may pose a risk. Soil type may determine whether exposure is >100 μg · m(3), but the job type and the manner in which the task is performed (e.g. mechanical or manual) may be important determinants of exposure. Identifying quartz exposure determinants (e.g. type of job) and modifiers will be of value to focus implementation of controls of particular importance in developing countries.
Occupational exposures to solvents and metals are associated with fixed airflow obstruction.
Alif, Sheikh M; Dharmage, Shyamali C; Benke, Geza; Dennekamp, Martine; Burgess, John A; Perret, Jennifer L; Lodge, Caroline J; Morrison, Stephen; Johns, David P; Giles, Graham G; Gurrin, Lyle C; Thomas, Paul S; Hopper, John L; Wood-Baker, Richard; Thompson, Bruce R; Feather, Iain H; Vermeulen, Roel; Kromhout, Hans; Walters, E Haydn; Abramson, Michael J; Matheson, Melanie C
2017-11-01
Objectives This study investigated the associations between occupational exposures to solvents and metals and fixed airflow obstruction (AO) using post-bronchodilator spirometry. Methods We included 1335 participants from the 2002-2008 follow-up of the Tasmanian Longitudinal Health Study. Ever-exposure and cumulative exposure-unit (EU) years were calculated using the ALOHA plus job exposure matrix (JEM). Fixed AO was defined as post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) <0.7 and FEV 1 /FVC
Urbinello, Damiano; Joseph, Wout; Huss, Anke; Verloock, Leen; Beekhuizen, Johan; Vermeulen, Roel; Martens, Luc; Röösli, Martin
2014-07-01
Concerns of the general public about potential adverse health effects caused by radio-frequency electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary considerably between regions. It may be speculated that precautionary limits affect the base station network in a manner that mean population exposure unintentionally increases. The objectives of this multicentre study were to compare mean exposure levels in outdoor areas across four different European cities and to compare with regulatory RF-EMF exposure levels in the corresponding areas. We performed measurements in the cities of Amsterdam (the Netherlands, regulatory limits for mobile phone base station frequency bands: 41-61 V/m), Basel (Switzerland, 4-6 V/m), Ghent (Belgium, 3-4.5 V/m) and Brussels (Belgium, 2.9-4.3 V/m) using a portable measurement device. Measurements were conducted in three different types of outdoor areas (central and non-central residential areas and downtown), between 2011 and 2012 at 12 different days. On each day, measurements were taken every 4s for approximately 15 to 30 min per area. Measurements per urban environment were repeated 12 times during 1 year. Arithmetic mean values for mobile phone base station exposure ranged between 0.22 V/m (Basel) and 0.41 V/m (Amsterdam) in all outdoor areas combined. The 95th percentile for total RF-EMF exposure varied between 0.46 V/m (Basel) and 0.82 V/m (Amsterdam) and the 99th percentile between 0.81 V/m (Basel) and 1.20 V/m (Brussels). All exposure levels were far below international reference levels proposed by ICNIRP (International Commission on Non-Ionizing Radiation Protection). Our study did not find indications that lowering the regulatory limit results in higher mobile phone base station exposure levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ostry, Vladimir; Malir, Frantisek; Dofkova, Marcela; Skarkova, Jarmila; Pfohl-Leszkowicz, Annie; Ruprich, Jiri
2015-09-10
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011-2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01-0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4-6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for "average consumer" was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for "high consumers" in the group 4-6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18-59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day ("high consumers", middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18-59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18-59 years old compared to the other population groups.
Hand-arm vibration in orthopaedic surgery: a neglected risk.
Mahmood, F; Ferguson, K B; Clarke, J; Hill, K; Macdonald, E B; Macdonald, D J M
2017-12-30
Hand-arm vibration syndrome is an occupational disease caused by exposure to hand-arm transmitted vibration. The Health and Safety Executive has set limits for vibration exposure, including an exposure action value (EAV), where steps should be taken to reduce exposure, and an exposure limit value (ELV), beyond which vibrating equipment must not be used for the rest of the working day. To measure hand-arm transmitted vibration among orthopaedic surgeons, who routinely use hand-operated saws. We undertook a cadaveric study measuring vibration associated with a tibial cut using battery-operated saws. Three surgeons undertook three tibial cuts each on cadaveric tibiae. Measurements were taken using a frequency-weighted root mean square acceleration, with the vibration total value calculated as the root of the sums squared in each of the three axes. A mean (SD) vibration magnitude of 1 (0.2) m/s2 in the X-axis, 10.3 (1.9) m/s2 in the Y-axis and 4.2 (1.3) m/s2 in the Z-axis was observed. The weighted root mean squared magnitude of vibration was 11.3 (1.7) m/s2. These results suggest an EAV of 23 min and ELV of 1 h 33 min using this equipment. Our results demonstrate that use of a battery-operated sagittal saw can transmit levels of hand-arm vibration approaching the EAV or ELV through prolonged use. Further study is necessary to quantify this risk and establish whether surveillance is necessary for orthopaedic surgeons. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Aguirre, Erik; Iturri, Peio Lopez; Azpilicueta, Leire; de Miguel-Bilbao, Silvia; Ramos, Victoria; Gárate, Uxue; Falcone, Francisco
2015-03-01
A high number of wireless technologies can be found operating in vehicular environments with the aim of offering different services. The dosimetric evaluation of this kind of scenarios must be performed in order to assess their compatibility with current exposure limits. In this work, a dosimetric evaluation inside a conventional car is performed, with the aid of an in-house 3D Ray Launching computational code, which has been compared with measurement results of wireless sensor networks located inside the vehicle. These results can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields, taking into account the impact of the morphology and the topology of the vehicle for current as well as for future exposure limits.
Exposure limits for nanoparticles: report of an international workshop on nano reference values.
van Broekhuizen, Pieter; van Veelen, Wim; Streekstra, Willem-Henk; Schulte, Paul; Reijnders, Lucas
2012-07-01
This article summarizes the outcome of the discussions at the international workshop on nano reference values (NRVs), which was organized by the Dutch trade unions and employers' organizations and hosted by the Social Economic Council in The Hague in September 2011. It reflects the discussions of 80 international participants representing small- and medium-size enterprises (SMEs), large companies, trade unions, governmental authorities, research institutions, and non-governmental organizations (NGOs) from many European countries, USA, India, and Brazil. Issues that were discussed concerned the usefulness and acceptability of precaution-based NRVs as a substitute for health-based occupational exposure limits (OELs) and derived no-effect levels (DNELs) for manufactured nanoparticles (NPs). Topics concerned the metrics for measuring NPs, the combined exposure to manufactured nanomaterials (MNMs) and process-generated NPs, the use of the precautionary principle, the lack of information about the presence of nanomaterials, and the appropriateness of soft regulation for exposure control. The workshop concluded that the NRV, as an 8-h time-weighted average, is a comprehensible and useful instrument for risk management of professional use of MNMs with a dispersible character. The question remains whether NRVs, as advised for risk management by the Dutch employers' organization and trade unions, should be under soft regulation or that a more binding regulation is preferable.
Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari
2009-05-01
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm. Copyright 2009 Wiley-Liss, Inc.
Bernard, Thomas E; Iheanacho, Ivory
2015-01-01
Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.
ERIC Educational Resources Information Center
Suwaed, Muhammad; Swaid, Faten
2015-01-01
In recent decades, the Bedouin population in Galilee, in Northern Israel, experienced significant multifaceted changes. Exposure to other cultures and other social components, with which this population had very limited interaction in the past, had affected its norms and behavior patterns and caused adaption of manners and values that had not been…
Periago, J F; Morente, A; Villanueva, M; Luna, A
1994-01-01
We determined the correlations between the concentrations of n-hexane and toluene in exhaled and environmental air in the shoe manufacturing industry. Data were collected in 1988 and in 1992 from a total of 265 subjects. Environmental air samples were collected with personal diffusive samplers by adsorption on activated charcoal during exposure and from end-expired air (alveolar air) on cartridges of activated charcoal after exposure. Both compounds were desorbed with carbon disulphide and analysed by gas chromatography. Linear regression analyses showed a good correlation between environmental and end-expired air concentrations (r = 0.82 for n-hexane and r = 0.81 for toluene). These correlations allowed us to calculate the concentrations in expired air corresponding to current environmental limit values. The calculated concentrations in end-expired air that correspond to current environmental threshold limit values of 176 mg m-3 for n-hexane and 377 mg m-3 for toluene are 28 mg m-3 (95% confidence limit, 27-29 mg m-3) and 40 mg m-3 (95% confidence limit, 39-41 mg m-3), respectively. Similar correlations were found when the data from the two study periods were analysed separately.
Shuhua, Xi; Qingshan, Sun; Fei, Wang; Shengnan, Liu; Ling, Yan; Lin, Zhang; Yingli, Song; Nan, Yan; Guifan, Sun
2014-01-01
In order to evaluate the degree of arsenic (As) exposure and the factors influencing urinary As excretion and metabolism, 192 workers from a steel and iron smelting plant, with different type of work in production such as roller, steel smelting, iron smelting and metallic charge preparation, were recruited. Information about characteristics of each subject was obtained by questionnaire and inorganic As (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The results showed that steel smelters had significantly higher concentrations of DMA and total As (TAs) than rollers and metallic charge preparation workers, and iron and steel smelters had a higher value of primary methylation index and lower proportion of the iAs (iAs%) than rollers and metallic charge preparation workers. In steel smelters, urinary As level exceeded the biological exposure index (BEI) limit for urinary As of 35 μg/l by 65.52%, and higher than metallic charge preparation workers (35.14%). The individuals consumed seafood in recent 3 days had a higher TAs than the individuals without seafood consumption. Multivariate logistic regression analysis showed that different jobs, taken Chinese medicine of bezoar and seafood consumption in recent 3 days were significantly associated with urinary TAs exceeded BEI limit value 35 μg/l. Our results suggest that workers in steel and iron smelting plant had a lower level of As exposure, and seafood consumption and taking Chinese medicine of bezoar also could increase the risk of urinary TAs exceeded BEI limit value.
Rebeniak, Małgorzata; Wojciechowska-Mazurek, Maria; Mania, Monika; Szynal, Tomasz; Strzelecka, Agnieszka; Starska, Krystyna
2014-01-01
The dietary intake of harmful elements, particularly lead and cadmium constitutes a health threat and essential measures should be undertaken to reduce consumer exposure. The latest risk assessments by the European Food Safety Authority (EFSA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA) have indicated that the Provisional Tolerable Weekly Intake (PTWI) for lead and cadmium do not ensure health safety and their review had to be undertaken. Migration from ceramics and glassware intended for food contact is an important source of lead and cadmium intake. To study the release of lead and cadmium from ceramics and glassware (including decorated products) intended for food contact that are available on the Polish market and to assess the resulting health risk to the consumer. Ceramics and glassware (mainly decorated) were sampled from the Polish market during 2010- 2012 throughout the country by staff of the Sanitary-Epidemiological Stations in accordance with monitoring procedures and guidelines designed by the National Institute of Public Health-National Institute of Hygiene. Migration of lead and cadmium was measured by incubating the samples with 4% acetic acid for 24 hours at a temperature of 22±2ºC in the dark. Flame Atomic Absorption Spectrometry (FAAS) was used to measure these elements in food simulant according to a validated and accredited method (PN-EN ISO/IEC 17025). 1273 samples of ceramics and glass wares were analysed in 2010-2012. Lead and cadmium release were usually found to be below analytical detection limits. Permissible migration limits (as prescribed by the legislation) of these metals were rarely exceeded and were reported mainly in articles imported from outside the EU. Two imported and decorated ceramic flat plates released lead at 0.9 and 11.9 mg/dm2 (limit 0.8 mg/dm2) and 5 imported deep plates gave migration values of 4.7 mg/L, 4.9 mg/L, 5.6 mg/L, 6.1 mg/L, 8.6 mg/L (limit 4.0 mg/L). Lead migrations from ceramic ware rims above the 2.0 mg per product limit (as established in Polish Standard PN-B-13210:1997 [16]) were observed in 4 samples, at 2.1, 3.7, 4.2 and 14.4 mg per product, respectively. Migrations of cadmium from the ceramic samples' rims were within permissible limits. Majority of high migration results were obtained for decorated rims of glass vessels for beverages. The highest migration from the rim of an imported glass mug was reported at 163.8 mg/product for lead and at 8.96 mg/product for cadmium. Risk assessment indicated that exposures to lead and cadmium released from ceramic wares based on the migration limits set by the EU legislation lead to human intake close to, or exceeding reference doses. For a 20 kg b.w. child the lead BMDL01 value could thus be exceeded by over 30-fold and the cadmium TWI value 4-fold. Review of EU legislation applicable to lead and cadmium migration limits from ceramics is necessary with an intention to lower such limits. The limits applied to the rims of ceramics and glassware intended for beverages should be included. The release of lead and cadmium at the maximum permissible levels for ceramics may lead to uptakes becoming hazardous to human health. Appropriate measures are thus necessary to reduce sources of exposure. lead, cadmium, ceramic food contact articles, glass food contact articles, lead migration, cadmium migration, lead exposure, cadmium exposure, food contact articles, risk assessment.
Exposures to quartz, diesel, dust, and welding fumes during heavy and highway construction.
Woskie, Susan R; Kalil, Andrew; Bello, Dhimiter; Virji, M Abbas
2002-01-01
Personal samples for exposure to dust, diesel exhaust, quartz, and welding fume were collected on heavy and highway construction workers. The respirable, thoracic, and inhalable fractions of dust and quartz exposures were estimated from 260 personal impactor samples. Respirable quartz exposures exceeded the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) in 7-31% of cases for the trades sampled. More than 50% of the samples in the installation of drop ceilings and wall tiles and concrete finish operations exceeded the NIOSH REL for quartz. Thoracic exposures to quartz and dust exceeded respirable exposures by a factor of 4.5 and 2.8, respectively. Inhalable exposures to quartz and dust exceeded respirable exposures by a factor of 25.6 and 9.3, respectively. These findings are important due to the identification of quartz as a carcinogen by the National Toxicology Program and the International Agency for Research on Cancer. Fourteen percent of the personal samples for EC (n = 261), collected as a marker for diesel exhaust, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) for diesel exhaust. Seventeen of the 22 (77%) samples taken during a partially enclosed welding operation reached or exceeded the ACGIH TLV of 5 mg/m3 for welding fume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overton, J.H.; Jarabek, A.M.
1989-01-01
The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less
NASA Astrophysics Data System (ADS)
Magnusson, M. L.; Pope, M. H.; Hulshof, C. T. J.; Bovenzi, M.
1998-08-01
It seems evident from a large number of studies that there is a positive relationship between exposure to whole body vibration (WBV) and the occurrence of low back pain. There are existing standards for evaluating the human exposure to WBV, which are based on other factors than the effect of musculoskeletal disorders. Several national and international standards also exist for evaluating human exposure to WBV. The exposure limit values or health guidance caution zones included in some of these standards are not or only to a limited extent based on systematic epidemiological investigations. It has not yet been possible to establish a clear exposure-response relationship. There are many confounding or contributing factors which influence the hazards to workers caused by exposure to WBV. Reliable methods for the detection and prevention of injury due to vibration exposure at work, alone or in combination with other risk factors, need to be implemented. The aim of this paper was to design a protocol and a questionnaire for conducting collaborative studies of WBV and musculoskeletal back disorders. The protocol will be tested in a pilot study before it will be used in multi-center studies.
Weldon, Brittany A; M Faustman, Elaine; Oberdörster, Günter; Workman, Tomomi; Griffith, William C; Kneuer, Carsten; Yu, Il Je
2016-09-01
With the increased production and widespread commercial use of silver nanoparticles (AgNPs), human and environmental exposures to silver nanoparticles are inevitably increasing. In particular, persons manufacturing and handling silver nanoparticles and silver nanoparticle containing products are at risk of exposure, potentially resulting in health hazards. While silver dusts, consisting of micro-sized particles and soluble compounds have established occupational exposure limits (OELs), silver nanoparticles exhibit different physicochemical properties from bulk materials. Therefore, we assessed silver nanoparticle exposure and related health hazards in order to determine whether an additional OEL may be needed. Dosimetric evaluations in our study identified the liver as the most sensitive target organ following inhalation exposure, and as such serves as the critical target organ for setting an occupational exposure standard for airborne silver nanoparticles. This study proposes an OEL of 0.19 μg/m(3) for silver nanoparticles derived from benchmark concentrations (BMCs) from subchronic rat inhalation toxicity assessments and the human equivalent concentration (HEC) with kinetic considerations and additional uncertainty factors. It is anticipated that this level will protect workers from potential health hazards, including lung, liver, and skin damage.
Ferri, F; Candela, S; Bedeschi, E; Picciati, A M; Davoli, V; Rinaldi, L; Riccò, D
1998-01-01
In a survey carried out in 1981, Pb exposure of children living in two geographical areas of the district of Scandiano and attending the first year of primary school was studied. The two areas were different concerning both traffic and the presence of ceramic tile industries, thus suggesting a different exposure of children. The survey demonstrated blood lead levels (PbB) markedly higher than 10 micrograms/100 ml, a value recently identified by the Centers for Disease Control (CDC, Atlanta, USA) as the limit beyond which children's learning capacity may be damaged. It was evident that both the occupational exposure of parents and, to a lower extent, the residence in zones with higher levels of pollution influenced PbB levels. During the last ten years significant improvements have led to the reduction of atmospheric emissions and of occupational exposure of ceramic workers. A new survey has been carried out in 1995. We examined 147 children attending the first year of primary school, and living in two zones for which a different level of Pb exposure could be assumed. In both zones, a clear reduction of PbB was observed in comparison with data obtained in 1981. Mean and standard deviation for PbB in the two groups were 4.1 +/- 1.71 and 4.5 +/- 2.04 micrograms/100 ml, with median values of 3.7 and 4.0 micrograms/100 ml, respectively. Only two cases (1.4%) exceeded the limit values proposed by CDC. Although the mean PbB were much lower than those observed in 1981, higher PbB were found in children whose parents were occupationally exposed to Pb. Maternal exposure seems to be particularly important in determining PbB in children. In comparison with data from the international literature, our results are very close to those obtained for children living in Scandinavian countries, in Germany or in France and rather different from those obtained by other authors in Italy.
Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.
2014-01-01
Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. PMID:24502997
Mitchell, Rebecca G; Spliethoff, Henry M; Ribaudo, Lisa N; Lopp, Donna M; Shayler, Hannah A; Marquez-Bravo, Lydia G; Lambert, Veronique T; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Stone, Edie B; McBride, Murray B
2014-04-01
Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Concentrations and Exposure Evaluation of Metals in Diverse Food Items from Chengdu, China.
Wang, Rong; Zhong, Bifeng; Pi, Lu; Xie, Fuyu; Chen, Mengqin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei
2018-01-01
A total of 520 food samples belonging to 29 food types and 63 drinking water were collected in Chengdu market of China in 2014 to investigate the concentrations of 11 metals, and to assess the related exposure to the local consumers by estimating the hazard quotient and carcinogenic risk (CR). The results showed that metals concentrations in drinking water were below the limit values suggested by the Ministry of Health of the People's Republic of China, and FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). While As, Cd, and Cr were found at concentrations higher than the limit values in some of the foodstuffs. Children in Chengdu intake more metals compared to adults, with the same order of Mn > Zn > Cu > Sr > Cr > Ni > As > Cd > Pb > Co > Sb. Among all of the diverse food, rice, flour, and fish and seafood were the primary sources to intake metals for Chengdu residents. Residents in Chengdu are subjected to both carcinogenic and non-carcinogenic risks based on the calculated HI and CR values, especially for children. Finally, total daily metals intakes for both children and adults were calculated based on the current study and our previous studies, including consumption of food and drinking water and intake of outdoor and indoor dust. Dietary exposure is the predominant exposure route to metals for Chengdu residents, accounting for more than 75.8% of the total daily metals intakes for both children and adults.
Garg, A; Kapellusch, J; Hegmann, K; Wertsch, J; Merryweather, A; Deckow-Schaefer, G; Malloy, E J
2012-01-01
A cohort of 536 workers was enrolled from 10 diverse manufacturing facilities and was followed monthly for six years. Job physical exposures were individually measured. Worker demographics, medical history, psychosocial factors, current musculoskeletal disorders (MSDs) and nerve conduction studies (NCS) were obtained. Point and lifetime prevalence of carpal tunnel syndrome (CTS) at baseline (symptoms + abnormal NCS) were 10.3% and 19.8%. During follow-up, there were 35 new CTS cases (left, right or both hands). Factors predicting development of CTS included: job physical exposure (American conference of governmental industrial hygienists Threshold Limit Value (ACGIH TLV) for Hand Activity Level (HAL) and the Strain Index (SI)), age, BMI, other MSDs, inflammatory arthritis, gardening outside of work and feelings of depression. In the adjusted models, the TLV for HAL and the SI were both significant per unit increase in exposure with hazard ratios (HR) increasing up to a maximum of 5.4 (p = 0.05) and 5.3 (p = 0.03), respectively; however, similar to other reports, both suggested lower risk at higher exposures. Data suggest that the TLV for HAL and the SI are useful metrics for estimating exposure to biomechanical stressors. This study was conducted to determine how well the TLV for HAL and the SI predict risk of CTS using a prospective cohort design with survival analysis. Both the TLV for HAL and the SI were found to predict risk of CTS when adjusted for relevant covariates.
NASA Astrophysics Data System (ADS)
Oliver, Jeffrey W.; Stolarski, David J.; Noojin, Gary D.; Hodnett, Harvey M.; Imholte, Michelle L.; Rockwell, Benjamin A.; Kumru, Semih S.
2007-02-01
A series of experiments in a new animal model for retinal damage, cynomolgus monkeys (Macaca fascicularis), have been conducted to determine the damage threshold for 12.5-nanosecond laser exposures at 1064 nm. These results provide a direct comparison to threshold values obtained in rhesus monkey (Macaca mulatta), which is the model historically used in establishing retinal maximum permissible exposure (MPE) limits. In this study, the irradiance level of a collimated Gaussian laser beam of 2.5 mm diameter at the cornea was randomly varied to produce a rectangular grid of exposures on the retina. Exposures sites were fundoscopically evaluated at post-irradiance intervals of 1 hour and 24 hours. Probit analysis was performed on dose-response data to obtain probability of response curves. The 50% probability of damage (ED50) values for 1 and 24 hours post-exposure are 28.5(22.7-38.4) μJ and 17.0(12.9-21.8) μJ, respectively. These values compare favorably to data obtained with the rhesus model, 28.7(22.3-39.3) μJ and 19.1(13.6-24.4) μJ, suggesting that the cynomolgus monkey may be a suitable replacement for rhesus monkey in photoacoustic minimum visible lesion threshold studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, C.H.; Genoway, R.G.; Schneider, M.J.
1977-01-01
Resistance to abrupt and gradual cold shock was determined in bioassays with pumpkinseed (Lepomis gibbosus), rainbow trout (Salmo gairdneri) and a northwestern crayfish (Pacifastacus leniusculus) acclimated to higher temperatures at 5 C increments. Test criteria were median tolerance limits (TLm) for 96-h exposures after abrupt cold shock, and 50% loss of equilibrium (LE50) for decline rates of 18, 15, 10, 5 and 1 C/h during gradual cold shock. Cold resistance depended on original acclimation temperature (AT) and varied among species under both test conditions in the order: pumpkinseed < rainbow trout < crayfish. The lower TLm limit for pumpkinseed wasmore » 12.3 C at 30 C AT, 9.6 C at 25 C AT, 4.5 C at 20 C AT, and 2.7 C at 15 C AT. Rainbow trout at 20, 15 and 10 C AT survived abrupt exposures to cold down to 3.3, 1.4 and 0.5 C, respectively. Crayfish at 25, 20 and 15 C AT survived exposures down to 2.5, 0.4 and 0.0 C, respectively. TLm values were slightly above LE50 values for both fish species but well below for crayfish. Partial adaptation significantly lowered LE values at decline rates below 18 C/h for pumpkinseed, and to a lesser extent for the other two species, thus extending the lower margin of cold resistance.« less
Gelbke, Heinz-Peter; Banton, Marcy; Faes, Eric; Leibold, Edgar; Pemberton, Mark; Duhayon, Sophie
2014-02-01
Residual styrene present in polystyrene food packaging may migrate into food at low levels. To assure safe use, safe exposure levels are derived for consumers potentially exposed via food using No/Low Adverse Effect Levels from animal and human studies and assessment factors proposed by European organisations (EFSA, ECHA, ECETOC). Ototoxicity and developmental toxicity in rats and human ototoxicity and effects on colour discrimination have been identified as the most relevant toxicological properties for styrene health assessments. Safe exposure levels derived from animal studies with assessment factors of EFSA and ECHA were expectedly much lower than those using the ECETOC approach. Comparable safe exposure levels were obtained from human data with all sets of assessment factors while ototoxicity in rats led to major differences. The safe exposure levels finally selected based on criteria of science and health protection converged to the range of 90-120 mg/person/d. Assuming a consumption of 1 kg food/d for an adult, this translates to 90 mg styrene migration into 1 kg food as safe for consumers. This assessment supports a health based Specific Migration Limit of 90 ppm, a value somewhat higher than the current overall migration limit of 60 ppm in the European Union. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Slob, Wout
2006-07-01
Probabilistic dietary exposure assessments that are fully based on Monte Carlo sampling from the raw intake data may not be appropriate. This paper shows that the data should first be analysed by using a statistical model that is able to take the various dimensions of food consumption patterns into account. A (parametric) model is discussed that takes into account the interindividual variation in (daily) consumption frequencies, as well as in amounts consumed. Further, the model can be used to include covariates, such as age, sex, or other individual attributes. Some illustrative examples show how this model may be used to estimate the probability of exceeding an (acute or chronic) exposure limit. These results are compared with the results based on directly counting the fraction of observed intakes exceeding the limit value. This comparison shows that the latter method is not adequate, in particular for the acute exposure situation. A two-step approach for probabilistic (acute) exposure assessment is proposed: first analyse the consumption data by a (parametric) statistical model as discussed in this paper, and then use Monte Carlo techniques for combining the variation in concentrations with the variation in consumption (by sampling from the statistical model). This approach results in an estimate of the fraction of the population as a function of the fraction of days at which the exposure limit is exceeded by the individual.
Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W
1996-11-15
To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is recommended to control short-term effects. Further measurements that link the levels of exposure to respiratory health effects in workers across Canada should be collected to establish an exposure-response relation and possible regional differences in the effects of grain dust. There has been no external review of these recommendations. However, the American Conference of Governmental Industrial Hygienists has recommended an 8-hour average exposure limit of 4 mg/m3 for wheat, oats and barley.
Gromiec, Jan P; Wesołowski, Wiktor; Brzeźnicki, Sławomir; Wróblewska-Jakubowska, Krystyna; Kucharska, Małgorzata
2002-12-01
Several hundred chemical compounds were found in workroom environments in the rubber industry, but most of the published exposure data relate to the production of tyres; information from the "non-tyre" sections are very limited, if any. This study was carried out to identify chemical substances and measure their air concentrations in the repair shop of a brown coal mine in which damaged rubber conveyor belts were repaired. GC-MS and HPLC analysis of stationary air samples resulted in identification of aliphatic and aromatic hydrocarbons to C12, PAHs, alcohols, phenols, ketones, heterocyclic nitrogen and sulfur compounds. Quantitative evaluation of occupational exposure included determination of organic compound vapours collected on charcoal (GC-MSD), polycyclic aromatic hydrocarbons (HPLC), N-nitrosoamines and other amines (GC-NPD) and DNPH derivatives of aldehydes (HPLC) in the breathing zone of workers representing all job titles. The concentrations of investigated compounds were very low. Carcinogenic substances: N-nitrosoamines, benzene, PAHs were not present in workroom air in concentrations exceeding limits of detection of the analytical methods being applied; concentrations of methylisobutylketone, tetrachloroethylene, naphtha, aromatic hydrocarbons, phthalates and aldehydes were much lower than the respective occupational exposure limit values. The results indicate much lower exposure than that reported in the production of tyres and other fabricated rubber products.
Spirtas, R; Steinberg, M; Wands, R C; Weisburger, E K
1986-01-01
The Chemical Substances Threshold Limit Value Committee of the American Conference of Governmental Industrial Hygienists has refined its procedures for evaluating carcinogens. Types of epidemiologic and toxicologic evidence used are reviewed and a discussion is presented on how the Committee evaluates data on carcinogenicity. Although it has not been conclusively determined whether biological thresholds exist for all types of carcinogens, the Committee will continue to develop guidelines for permissible exposures to carcinogens. The Committee will continue to use the safety factor approach to setting Threshold Limit Values for carcinogens, despite its shortcomings. A compilation has been developed for lists of substances considered to be carcinogenic by several scientific groups. The Committee will use this information to help to identify and classify carcinogens for its evaluation. PMID:3752326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirtas, R.; Steinberg, M.; Wands, R.C.
1986-10-01
The Chemical Substances Threshold Limit Value Committee of the American Conference of Governmental Industrial Hygienists has refined its procedures for evaluating carcinogens. Types of epidemiologic and toxicologic evidence used are reviewed and a discussion is presented on how the Committee evaluates data on carcinogenicity. Although it has not been conclusively determined whether biological thresholds exist for all types of carcinogens, the Committee will continue to develop guidelines for permissible exposures to carcinogens. The Committee will continue to use the safety factor approach to setting Threshold Limit Values for carcinogens, despite its shortcomings. A compilation has been developed for lists ofmore » substances considered to be carcinogenic by several scientific groups. The Committee will use this information to help to identify and classify carcinogens for its evaluation.« less
Madjidi, Faramarz; Behroozy, Ali
2014-01-01
Exposure to visible light and near infrared (NIR) radiation in the wavelength region of 380 to 1400 nm may cause thermal retinal injury. In this analysis, the effective spectral radiance of a hot source is replaced by its temperature in the exposure limit values in the region of 380-1400 nm. This article describes the development and implementation of a computer code to predict those temperatures, corresponding to the exposure limits proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). Viewing duration and apparent diameter of the source were inputs for the computer code. At the first stage, an infinite series was created for calculation of spectral radiance by integration with Planck's law. At the second stage for calculation of effective spectral radiance, the initial terms of this infinite series were selected and integration was performed by multiplying these terms by a weighting factor R(λ) in the wavelength region 380-1400 nm. At the third stage, using a computer code, the source temperature that can emit the same effective spectral radiance was found. As a result, based only on measuring the source temperature and accounting for the exposure time and the apparent diameter of the source, it is possible to decide whether the exposure to visible and NIR in any 8-hr workday is permissible. The substitution of source temperature for effective spectral radiance provides a convenient way to evaluate exposure to visible light and NIR.
Dermal exposure to chromium in the grinding of stainless and acid-proof steel.
Mäkinen, Milja; Linnainmaa, Markku
2004-04-01
The aim of the study was to measure the dermal exposure levels of chromium dust during grinding of stainless and acid-proof steel parts. The potential dermal exposure of the body was measured with a patch sampling method and the actual exposure of hands with a hand-wash method. Simultaneously, personal air samples were also collected. The range of body and hand exposure to chromium dust was 4.04-3406 and 0.72-79.7 mg/h, respectively. Dust was distributed quite evenly to different body parts. Workers using hand-held grinding tools were more exposed than those using band grinders. It was judged that the sampling methods applied in this study gave a realistic estimation of exposure levels, because of the uniform distribution of contamination during grinding. Respiratory exposure was high compared to Finnish occupational exposure limit values.
Occupational exposure assessment for crystalline silica dust: approach in Poland and worldwide.
Maciejewska, Aleksandra
2008-01-01
Crystalline silica is a health hazard commonly encountered in work environment. Occupational exposure to crystalline silica dust concerns workers employed in such industries as mineral, fuel-energy, metal, chemical and construction industry. It is estimated that over 2 million workers in the European Union are exposed to crystalline silica. In Poland, over 50 thousand people work under conditions of silica dust exposure exceeding the occupational exposure limit. The assessment of occupational exposure to crystalline silica is a multi-phase process, primarily dependent on workplace measurements, quantitative analyses of samples, and comparison of results with respective standards. The present article summarizes the approaches to and methods used for assessment of exposure to crystalline silica as adopted in different countries in the EU and worldwide. It also compares the occupational limit values in force in almost 40 countries. Further, it points out the consequences resulting from the fact that IARC has regarded the two most common forms of crystalline silica: quartz and cristobalite as human carcinogens. The article includes an inter-country review of the methods used for air sample collection, dust concentration measurements, and determination of crystalline silica. The selection was based on the GESTIS database which lists the methods approved by the European Union for the measurements and tests regarding hazardous agents. Special attention has been paid to the methods of determining crystalline silica. The author attempts to analyze the influence of analytical techniques, sample preparation and the reference materials on determination results. Also the operating parameters of the method, including limit of detection, limit of quantification, and precision, have been compared.
Possible Health Benefits From Reducing Occupational Magnetic Fields
Bowman, Joseph D.; Ray, Tapas K.; Park, Robert M.
2015-01-01
Background Magnetic fields (MF) from AC electricity are a Possible Human Carcinogen, based on limited epidemiologic evidence from exposures far below occupational health limits. Methods To help formulate government guidance on occupational MF, the cancer cases prevented and the monetary benefits accruing to society by reducing workplace exposures were determined. Life-table methods produced Disability Adjusted Life Years, which were converted to monetary values. Results Adjusted for probabilities of causality, the expected increase in a worker’s disability-free life are 0.04 year (2 weeks) from a 1 microtesla (μT) MF reduction in average worklife exposure, which is equivalent to $5,100/worker/μT in year 2010 U.S. dollars (95% confidence interval $1,000–$9,000/worker/μT). Where nine electrosteel workers had 13.8 μT exposures, for example, moving them to ambient MFs would provide $600,000 in benefits to society (uncertainty interval $0–$1,000,000). Conclusions When combined with the costs of controls, this analysis provides guidance for precautionary recommendations for managing occupational MF exposures. PMID:23129537
Possible health benefits from reducing occupational magnetic fields.
Bowman, Joseph D; Ray, Tapas K; Park, Robert M
2013-07-01
Magnetic fields (MF) from AC electricity are a Possible Human Carcinogen, based on limited epidemiologic evidence from exposures far below occupational health limits. To help formulate government guidance on occupational MF, the cancer cases prevented and the monetary benefits accruing to society by reducing workplace exposures were determined. Life-table methods produced Disability Adjusted Life Years, which were converted to monetary values. Adjusted for probabilities of causality, the expected increase in a worker's disability-free life are 0.04 year (2 weeks) from a 1 microtesla (µT) MF reduction in average worklife exposure, which is equivalent to $5,100/worker/µT in year 2010 U.S. dollars (95% confidence interval $1,000-$9,000/worker/µT). Where nine electrosteel workers had 13.8 µT exposures, for example, moving them to ambient MFs would provide $600,000 in benefits to society (uncertainty interval $0-$1,000,000). When combined with the costs of controls, this analysis provides guidance for precautionary recommendations for managing occupational MF exposures. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Calkins, D. S.; Degioanni, J. J.; Tan, M. N.; Davis, J. R.; Pierson, D. L.
1993-01-01
Performance and physiological measurements were obtained from four pairs of men exposed for 24 hr to 1 percent (10,000 ppm) Halon 1301 (CBrF3) and to air with order counterbalanced using a double-blind protocol. Cognitive and motor performance was assessed before, during, and after the exposures, using seven scales of the Automated Portable Testing System, which produced 13 measures of performance. Halon inhalation induced decrements in 2 of the 13 measures, but actual and estimated magnitudes of the decrements were no greater than 5 percent of baseline values. Physiological data obtained before, during, and after the exposures revealed significant changes during Halon inhalation for 6 of the 52 variables assessed; however, all physiological values remained within clinically acceptable limits. No cardiovascular effects were noted. This study demonstrated that exposure to 1 percent Halon 1301 for 24 hr can produce minor disturbance of central nervous system function as assessed by cognitive tasks.
Lin, Tser-Sheng; Wu, Chin-Ching
2011-12-01
A total of 94 (54 males, 40 females) healthy adult residents living in an industrial city in northern Taiwan were recruited to study their exposure to industrial metals by measuring their blood levels of V, Cr, Mn, Ni, Co, As, Se, Mo, Cd, Pb, and W. All participants were non-smokers without obvious direct occupational exposure to these elements, although by working in administrative sectors in industrial facilities their indirect or potential exposure was increased. The average concentrations of V, Cr, Mn, Ni, Co, As, Se, Mo, Cd, Pb, and W in blood were 0.30, 1.49, 15.1, 3.84, 2.73, 21.1, 204, 3.2, 0.76, 51.1, and 0.40 ng/mL, respectively. These values were significantly higher than reference values reported for the general population, in some cases exceeding those of occupationally exposed workers. The principal component and correlation analyses among blood element levels suggested that the predominant sources of exposure were glass manufacturing and traffic-related sources. Despite of some limitations, the study demonstrates that the residents in this industrial area may suffer adverse chronic health effects attributable to exposures to these elements.
Exposure to infrasonic noise in agriculture.
Bilski, Bartosz
2017-03-21
Although exposure to audible noise has been examined in many publications, the sources of infrasound in agriculture have not been fully examined and presented. The study presents the assessment of exposure to infrasound from many sources at workplaces in agriculture with examples of possible ergonomic and health consequences caused by such exposure. Workers'-perceived infrasonic noise levels were examined for 118 examples of moving and stationary agricultural machines (modern and old cab-type tractors, old tractors without cabins, small tractors, grinders, chargers, forage mixers, grain cleaners, conveyors, bark sorters and combine-harvesters). Measurements of infrasound were taken with the use of class 1 instruments (digital sound analyzer DSA-50 digital and acoustic calibrator). Noise level measurements were performed in accordance with PN-Z-01338:2010, PN-EN ISO 9612:2011 and ISO 9612:2009. The most intense sources of infrasound in the study were modern and old large size types agricultural machinery (tractors, chargers and combined-harvesters, and stationary forage mixers with ventilation). The G-weighted infrasound levels were significant and at many analyzed workplaces stayed within or exceeded the occupational exposure limit (LG eq, 8h = 102 dB) when the duration of exposure is longer than 22 min./8-hours working day (most noisy - modern cab-type tractors), 46 min./8 hours working day (most noisy - old type cab-tractors), 73 min./8 hours working day (most noisy - old tractors without cabins), 86 min./8-hours working day (most noisy - combine-harvesters) and 156 min./8 hours working day (most noisy - stationary forage mixers with ventilation). All measured machines generated infrasonic noise exceeded the value LG eq, Te = 86 dB (occupational exposure limit for workplaces requiring maintained mental concentration). A very important harmful factor is infrasound exposure for pregnant women and adolescents at workplaces in agriculture. Very valuable work can be technical limiting exposure to infrasound from new and used agricultural machinery. The technical limitation of infrasound caused by both old and new agricultural machinery can be invaluable from the work point of view.
[Occupational exposure to hand-transmitted vibration in Poland].
Harazin, Barbara; Zieliński, Grzegorz
2004-01-01
Occupational exposure to hand transmitted vibration may cause disorders in upper extremities known as hand-arm vibration syndrome. Therefore it is essential to know the sources of vibration, occupational groups exposed to vibration and the number of exposed workers. The aim of the study was to estimate the number of men and women exposed to hand-transmitted vibration in Poland. The completed questionnaires were obtained from 265 (80%) sanitary inspection stations. They included questions on: the name of workplaces, the name and the type of vibration sources, workers' gender, the number of workers exposed to vibration, indicating the extent of exposure measured against the three threshold limit values (< 0.5 TLV; 0.5 < TLV < 1 and > 1 TLV), and the number of workers exposed to hand-transmitted vibration not documented by measurements in a particular workplaces, indicating one of the three possible kinds of exposure (occasional, periodical and constant). The questionnaire data were based on measurements and analyses performed in 1997-2000. The results of the study showed that vibrating tools used by grinders, fitters, locksmiths, rammers, road workers, carpenters and smiths proved to be the most frequent sources of hand-transmitted vibration. It was revealed that 78.6% of operators of these tools were exposed to vibration exceeding 1 TLV. The study also indicated that 17,000 workers, including 1700 women, were exposed to vibration exceeding the threshold limit values.
Burstyn, I; Kromhout, H; Boffetta, P
2000-01-01
Workers in the road construction industry include asphalt plant, ground construction, and road paving workers. These individuals can be exposed to a wide range of potentially hazardous substances. A summary of levels of exposure to different substances measured during road construction is presented. In modern road paving, workers typically are exposed to 0.1 to 2 mg/m3 of bitumen fume, which includes 10 to 200 ng/m3 of benzo(a)pyrene. Sampling strategies and analytical methods employed in each reviewed survey are described briefly. The published reports provide some insight into the identity of factors that influence exposure to bitumen among road construction workers: type of work performed, meteorological conditions, temperature of paved asphalt. However, there is a lack of (a) comprehensive and well-designed studies that evaluate determinants of exposure to bitumen in road construction, and (b) standard methods for bitumen sampling and analysis. Information on determinants of other exposures in road construction is either absent or limited. It is concluded that data available through published reports have limited value in assessing historical exposure levels in the road construction industry.
Boelter, Fred; Simmons, Catherine; Hewett, Paul
2011-04-01
Fluid sealing devices (gaskets and packing) containing asbestos are manufactured and blended with binders such that the asbestos fibers are locked in a matrix that limits the potential for fiber release. Occasionally, fluid sealing devices fail and need to be replaced or are removed during preventive maintenance activities. This is the first study known to pool over a decade's worth of exposure assessments involving fluid sealing devices used in a variety of applications. Twenty-one assessments of work activities and air monitoring were performed under conditions with no mechanical ventilation and work scenarios described as "worst-case" conditions. Frequently, the work was conducted using aggressive techniques, along with dry removal practices. Personal and area samples were collected and analyzed in accordance with the National Institute for Occupational Safety and Health Methods 7400 and 7402. A total of 782 samples were analyzed by phase contrast microscopy, and 499 samples were analyzed by transmission electron microscopy. The statistical data analysis focused on the overall data sets which were personal full-shift time-weighted average (TWA) exposures, personal 30-min exposures, and area full-shift TWA values. Each data set contains three estimates of exposure: (1) total fibers; (2) asbestos fibers only but substituting a value of 0.0035 f/cc for censored data; and (3) asbestos fibers only but substituting the limit of quantification value for censored data. Censored data in the various data sets ranged from 7% to just over 95%. Because all the data sets were censored, the geometric mean and geometric standard deviation were estimated using the maximum likelihood estimation method. Nonparametric, Kaplan-Meier, and lognormal statistics were applied and found to be consistent and reinforcing. All three sets of statistics suggest that the mean and median exposures were less than 25% of 0.1 f/cc 8-hr TWA sample or 1.0 f/cc 30-min samples, and that there is at least 95% confidence that the true 95th percentile exposures are less than 0.1 f/cc as an 8-hr TWA.
An emission-weighted proximity model for air pollution exposure assessment.
Zou, Bin; Wilson, J Gaines; Zhan, F Benjamin; Zeng, Yongnian
2009-08-15
Among the most common spatial models for estimating personal exposure are Traditional Proximity Models (TPMs). Though TPMs are straightforward to configure and interpret, they are prone to extensive errors in exposure estimates and do not provide prospective estimates. To resolve these inherent problems with TPMs, we introduce here a novel Emission Weighted Proximity Model (EWPM) to improve the TPM, which takes into consideration the emissions from all sources potentially influencing the receptors. EWPM performance was evaluated by comparing the normalized exposure risk values of sulfur dioxide (SO(2)) calculated by EWPM with those calculated by TPM and monitored observations over a one-year period in two large Texas counties. In order to investigate whether the limitations of TPM in potential exposure risk prediction without recorded incidence can be overcome, we also introduce a hybrid framework, a 'Geo-statistical EWPM'. Geo-statistical EWPM is a synthesis of Ordinary Kriging Geo-statistical interpolation and EWPM. The prediction results are presented as two potential exposure risk prediction maps. The performance of these two exposure maps in predicting individual SO(2) exposure risk was validated with 10 virtual cases in prospective exposure scenarios. Risk values for EWPM were clearly more agreeable with the observed concentrations than those from TPM. Over the entire study area, the mean SO(2) exposure risk from EWPM was higher relative to TPM (1.00 vs. 0.91). The mean bias of the exposure risk values of 10 virtual cases between EWPM and 'Geo-statistical EWPM' are much smaller than those between TPM and 'Geo-statistical TPM' (5.12 vs. 24.63). EWPM appears to more accurately portray individual exposure relative to TPM. The 'Geo-statistical EWPM' effectively augments the role of the standard proximity model and makes it possible to predict individual risk in future exposure scenarios resulting in adverse health effects from environmental pollution.
Bellanger, Martine; Pichery, Céline; Aerts, Dominique; Berglund, Marika; Castaño, Argelia; Cejchanová, Mája; Crettaz, Pierre; Davidson, Fred; Esteban, Marta; Fischer, Marc E; Gurzau, Anca Elena; Halzlova, Katarina; Katsonouri, Andromachi; Knudsen, Lisbeth E; Kolossa-Gehring, Marike; Koppen, Gudrun; Ligocka, Danuta; Miklavčič, Ana; Reis, M Fátima; Rudnai, Peter; Tratnik, Janja Snoj; Weihe, Pál; Budtz-Jørgensen, Esben; Grandjean, Philippe
2013-01-07
Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in southern countries. Some data may not be entirely representative, some countries were not covered, and anticipated changes in mercury pollution all suggest a need for extended biomonitoring of human MeHg exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brisson, Michael J.; Ashley, Kevin
2005-08-16
Beryllium in various forms is widely used throughout the world in ceramics, aerospace and military applications, electronics, and sports equipment. Workplace exposure to beryllium is a growing industrial hygiene concern due to the potential for development of chronic beryllium disease (CBD), a lung condition with no known cure, in a small percentage of those exposed. There are workplace exposure limits for beryllium that have been in place for several decades. However, recent studies suggest that the current American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) and the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL)more » may not be sufficiently protective for workers who are potentially exposed to airborne beryllium. Early in 2005, ACGIH issued a Notice of Intended Change (NIC) to the current TLV for beryllium which entails a 100-fold reduction (from 2 to 0.02 micrograms per cubic meter of sampled air). It is noted that ACGIH TLVs do not carry legal force in the manner that OSHA PELs or other federal regulations do. Nevertheless, OSHA plans a beryllium rulemaking in the near future, and a reduction in the PEL is anticipated. Also, if this change in the TLV for beryllium is adopted, it is reasonable to assume that at least some sampling and analysis activities will need to be modified to address airborne beryllium at the lower levels. There are implications to both the industrial hygiene and the laboratory communities, which are discussed.« less
NASA Astrophysics Data System (ADS)
Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.
2017-06-01
Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.
Assessment of noise exposure for basketball sports referees.
Masullo, Massimiliano; Lenzuni, Paolo; Maffei, Luigi; Nataletti, Pietro; Ciaburro, Giuseppe; Annesi, Diego; Moschetto, Antonio
2016-01-01
Dosimetric measurements carried out on basketball referees have shown that whistles not only generate very high peak sound pressure levels, but also play a relevant role in determining the overall exposure to noise of the exposed subjects. Because of the peculiar geometry determined by the mutual positions of the whistle, the microphone, and the ear, experimental data cannot be directly compared with existing occupational noise exposure and/or action limits. In this article, an original methodology, which allows experimental results to be reliably compared with the aforementioned limits, is presented. The methodology is based on the use of two correction factors to compensate the effects of the position of the dosimeter microphone (fR) and of the sound source (fS). Correction factors were calculated by means of laboratory measurements for two models of whistles (Fox 40 Classic and Fox 40 Sonik) and for two head orientations (frontal and oblique).Results sho w that for peak sound pressure levels the values of fR and fS, are in the range -8.3 to -4.6 dB and -6.0 to -1.7 dB, respectively. If one considers the Sound Exposure Levels (SEL) of whistle events, the same correction factors are in the range of -8.9 to -5.3 dB and -5.4 to -1.5 dB, respectively. The application of these correction factors shows that the corrected weekly noise exposure level for referees is 80.6 dB(A), which is slightly in excess of the lower action limit of the 2003/10/EC directive, and a few dB below the Recommended Exposure Limit (REL) proposed by the National Institute for Occupational Safety and Health (NIOSH). The corrected largest peak sound pressure level is 134.7 dB(C) which is comparable to the lower action limit of the 2003/10/EC directive, but again substantially lower than the ceiling limit of 140 dB(A) set by NIOSH.
Vincent, Raymond; Catani, Jacques; Créau, Yvon; Frocaut, Anne-Marie; Good, Andrée; Goutet, Pierre; Hou, Alain; Leray, Fabrice; André-Lesage, Marie-Ange; Soyez, Alain
2009-06-01
An assessment survey of occupational exposure to beryllium (Be) was conducted in France between late 2004 and the end of 2006. Exposure estimates were based on the analytical results of samples collected from workplace air and from work surfaces in 95 facilities belonging to 37 sectors of activity. The results of this study indicated airborne Be concentrations in excess of the occupational exposure limit value of 2 microg m(-3) recommended in France. Metallurgy and electronic component manufacturing represented the activities and occupations where workers had the highest arithmetic mean exposures to Be. Surface contamination levels were also high and frequently exceeded thresholds recommended by different bodies. These results should prompt the development of prevention programmes that include Be substitution, process control and surface decontamination, in conjunction with suitable medical surveillance.
Ali, Nadeem; Ibrahim Ismail, Iqbal Mohammad; Kadi, Mohammad W; Salem Ali Albar, Hussain Mohammed
2018-05-23
Indoor settled dust particles are considered as an important source of human exposure to chemicals such as organophosphate flame retardants (PFRs). In recent decades the Kingdom of Saudi Arabia (KSA) has experienced tremendous growth in population, as a result the number of masjids has also increased significantly to provide sufficient space for the public to offer prayers. The hospitality industry in KSA is also expanding to cater for the ever-increasing number of pilgrims visiting the two holy cities of the kingdom. However, limited data are available on the indoor pollution of masjids and hotels. In this study, PFRs were analyzed in the settled dust collected from various hotels and masjids of Jeddah, KSA. Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloro-2-propyl) phosphate (TCPP) were the major PFRs in masjid (median = 2490 and 2055 ngg-1) and hotel (median = 2360 and 3315 ngg-1) dust, respectively. A public health risk assessment was carried out by determining the incremental lifetime cancer risk (ILCR), and daily exposure via dust ingestion, inhalation, and dermal contact of PFRs. The calculated daily exposure via dust ingestion was well below the reference dose (RfD) values, and also the calculated hazardous quotient (HQ) and carcinogenic risk were well below the risk mark. However, the ILCR for PFRs was below the reference values of USEPA, which suggested that long-term exposure to these chemicals has a limited cause for concern. The study showed that the general public is exposed to PFRs in the studied microenvironments and the major exposure routes are dermal contact and ingestion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... States Government, including but not limited to any Government-sponsored enterprise. Liquid investments... installments based on the outstanding balance of those loans. Market risk means the risk to your financial condition because the value of your holdings may decline if interest rates or market prices change. Exposure...
78 FR 37818 - Request for Information on Toluene Diisocyanates
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
.... engineering controls, work practices, personal protective equipment, exposure data before and after... Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) for TDI is 0.005 ppm... vitro and in vivo studies. (7) Information on control measures (e.g., engineering controls, work...
Makris, Susan L; Scott, Cheryl Siegel; Fox, John; Knudsen, Thomas B; Hotchkiss, Andrew K; Arzuaga, Xabier; Euling, Susan Y; Powers, Christina M; Jinot, Jennifer; Hogan, Karen A; Abbott, Barbara D; Hunter, E Sidney; Narotsky, Michael G
2016-10-01
The 2011 EPA trichloroethylene (TCE) IRIS assessment, used developmental cardiac defects from a controversial drinking water study in rats (Johnson et al. [51]), along with several other studies/endpoints to derive reference values. An updated literature search of TCE-related developmental cardiac defects was conducted. Study quality, strengths, and limitations were assessed. A putative adverse outcome pathway (AOP) construct was developed to explore key events for the most commonly observed cardiac dysmorphologies, particularly those involved with epithelial-mesenchymal transition (EMT) of endothelial origin (EndMT); several candidate pathways were identified. A hypothesis-driven weight-of-evidence analysis of epidemiological, toxicological, in vitro, in ovo, and mechanistic/AOP data concluded that TCE has the potential to cause cardiac defects in humans when exposure occurs at sufficient doses during a sensitive window of fetal development. The study by Johnson et al. [51] was reaffirmed as suitable for hazard characterization and reference value derivation, though acknowledging study limitations and uncertainties. Published by Elsevier Inc.
n-hexane polyneuropathy in Japan: a review of n-hexane poisoning and its preventive measures.
Takeuchi, Y
1993-07-01
n-Hexane is used in industry as a solvent for adhesive, dry cleaning, and vegetable oil extraction. In 1963, the first case of severe polyneuropathy suspected to be caused by n-hexane was referred to us. Case studies, animal experiments, and field surveys on n-hexane poisoning were conducted, and preventive measures like threshold limit value revision and biological monitoring were also studied. I review a brief history of our investigations on n-hexane poisoning and its preventive measures in Japan. n-Hexane could cause overt polyneuropathy in workers exposed to more than 100 ppm time-weighted average concentrations [TWA]. The present threshold limit value of 40 ppm in Japan is considered low enough to prevent subclinical impairment of peripheral nerve caused by n-hexane. Urinary 2,5-hexanedione could be a good indicator for biological monitoring of n-hexane exposure. About 2.2 mg/liter of 2,5-hexanedione measured by our improved method corresponds to exposure of 40 ppm (TWA) of n-hexane.
Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane
2016-01-01
Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance.
Bennett, James S.; Marlow, David A.; Nourian, Fariba; Breay, James; Hammond, Duane
2016-01-01
Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers (“hosemen”). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group—the total of monomer and oligomer as NCO group mass—showed six of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance. PMID:26698920
Case cluster of pneumoconiosis at a coal slag processing facility.
Fagan, Kathleen M; Cropsey, Erin B; Armstrong, Jenna L
2015-05-01
During an inspection by the Occupational Safety and Health Administration (OSHA) of a small coal slag processing plant with 12 current workers, four cases of pneumoconiosis were identified among former workers. The OSHA investigation consisted of industrial hygiene sampling, a review of medical records, and case interviews. Some personal sampling measurements exceeded the OSHA Permissible Exposure Limit (PEL) for total dust exposures of 15 mg/m(3), and the measured respirable silica exposure of 0.043 mg/m(3), although below OSHA's current PEL for respirable dust containing silica, was above the American Conference of Governmental Industrial Hygienists' Threshold Limit Value (TLV). Chest x-rays for all four workers identified small opacities consistent with pneumoconiosis. This is the first known report of lung disease in workers processing coal slag and raises concerns for workers exposed to coal slag dust. © 2015 Wiley Periodicals, Inc.
Coexposure to toluene and p-xylene in man: central nervous functions.
Olson, B A; Gamberale, F; Iregren, A
1985-01-01
Sixteen men were studied in an exposure chamber to assess the effect of four hours' exposure to toluene (3.25 mmol/m3), xylene (2.84 mmol/m3), a mixture of toluene and xylene (2.20 + 0.94 mmol/m3), and a control condition. With the aid of microcomputers, subjects performed tests of simple reaction time, short term memory, and choice reaction time immediately after entering the chamber, after two, and after four hours' exposure. The results indicate that the performance on the tests was unaffected by exposure. In the light of this result the risk of an acute effect on central nervous functions after exposure for four hours at concentrations that do not exceed the Swedish threshold limit values was considered to be minimal. PMID:3970870
Hair analyses: worthless for vitamins, limited for minerals.
Hambidge, K M
1982-11-01
Despite many major and minor problems with interpretation of analytical data, chemical analyses of human hair have some potential value. Extensive research will be necessary to define this value, including correlation of hair concentrations of specific elements with those in other tissues and metabolic pools and definition of normal physiological concentration ranges. Many factors that may compromise the correct interpretation of analytical data require detailed evaluation for each specific element. Meanwhile, hair analyses are of some value in the comparison of different populations and, for example, in public health community surveys of environmental exposure to heavy metals. On an individual basis, their established usefulness is much more restricted and the limitations are especially notable for evaluation of mineral nutritional status. There is a wide gulf between the limited and mainly tentative scientific justification for their use on an individual basis and the current exploitation of multielement chemical analyses of human hair.
Kapellusch, Jay M; Bao, Stephen S; Silverstein, Barbara A; Merryweather, Andrew S; Thiese, Mathew S; Hegmann, Kurt T; Garg, Arun
2017-12-01
The Strain Index (SI) and the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value for Hand Activity Level (TLV for HAL) use different constituent variables to quantify task physical exposures. Similarly, time-weighted-average (TWA), Peak, and Typical exposure techniques to quantify physical exposure from multi-task jobs make different assumptions about each task's contribution to the whole job exposure. Thus, task and job physical exposure classifications differ depending upon which model and technique are used for quantification. This study examines exposure classification agreement, disagreement, correlation, and magnitude of classification differences between these models and techniques. Data from 710 multi-task job workers performing 3,647 tasks were analyzed using the SI and TLV for HAL models, as well as with the TWA, Typical and Peak job exposure techniques. Physical exposures were classified as low, medium, and high using each model's recommended, or a priori limits. Exposure classification agreement and disagreement between models (SI, TLV for HAL) and between job exposure techniques (TWA, Typical, Peak) were described and analyzed. Regardless of technique, the SI classified more tasks as high exposure than the TLV for HAL, and the TLV for HAL classified more tasks as low exposure. The models agreed on 48.5% of task classifications (kappa = 0.28) with 15.5% of disagreement between low and high exposure categories. Between-technique (i.e., TWA, Typical, Peak) agreement ranged from 61-93% (kappa: 0.16-0.92) depending on whether the SI or TLV for HAL was used. There was disagreement between the SI and TLV for HAL and between the TWA, Typical and Peak techniques. Disagreement creates uncertainty for job design, job analysis, risk assessments, and developing interventions. Task exposure classifications from the SI and TLV for HAL might complement each other. However, TWA, Typical, and Peak job exposure techniques all have limitations. Part II of this article examines whether the observed differences between these models and techniques produce different exposure-response relationships for predicting prevalence of carpal tunnel syndrome.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Williams, James H.; Fries, Joseph (Technical Monitor)
1999-01-01
The permeation resistance of chlorinated polyethylene (CPE) used in totally encapsulating chemical protective suits against the aerospace fuels hydrazine, monomethylhydrazine, and uns-dimethylhydrazine was determined by measuring the breakthrough time (BT) and time-averaged vapor transmission rate (VTR) using procedures consistent with ASTM F 739 and ASTM F 1383. Two exposure scenarios were simulated: a 2 hour (h) fuel vapor exposure, and a liquid fuel "splash" followed by a 2 h vapor exposure. To simulate internal suit pressure during operation, a positive differential pressure of 0.3 in. water (75 Pa) on the collection side of the permeation apparatus was used. Using the available data, a model was developed to estimate propellant concentrations inside an air-line fed, totally encapsulating chemical protective suit. Concentrations were calculated under simulated conditions of fixed vapor transmission rate, variable breathing air flow rate, and variable splash exposure area. Calculations showed that the maximum allowable permeation rates of hydrazine fuels through CPE were of the order of 0.05 to 0.08 ng/sq cm min for encapsulating suits with low breathing air flow rates (of the order of 5 scfm or 140 L min-1). Above these permeation rates, the 10 parts-per-billion (ppb) threshold limit value time-weighted average could be exceeded. To evaluate suit performance at 10 ppb threshold-limiting value/time-weighted average level concentrations, use of a sensitive analytical method such as cation exchange high performance liquid chromatography with amperometric detection was found to be essential. The analytical detection limit determines the lowest measurable VTR, which in turn governed the lowest per meant concentration that could be calculated inside the totally encapsulating chemical protective suit.
Raffo, Antonio; D'Aloise, Antonio; Magrì, Antonio L; Leclercq, Catherine
2013-09-01
Quantitation of tr-cinnamaldehyde, safrole and myristicin was carried out in 70 samples of cola-flavoured soft drinks purchased in eight European countries with the purpose of assessing the variability in the levels of these substances. Results indicated a limited variability in the content of the three substances: the ratio between the 90th and the 10th percentile concentration amounted to 21, 6 and 13 for tr-cinnamaldehyde, safrole and myristicin, respectively. The uncertainty in the assessment of dietary exposure to these substances due to the variability of their level in cola-flavoured drinks was low. Based on these analytical data and on refined food consumption data, estimates of exposure to safrole associated to cola drink consumption, along with Margin of Exposure (MOE) values, were obtained. For high consumers of cola-flavoured soft drinks in certain age groups, within some European countries, MOE values lower than 10,000 resulted, MOE values of 10,000 or higher having been stated by the EFSA as a quantitative criterion to identify low concern from a public health point of view and low priority for risk management actions. The lowest MOE values, from 1900 to 3000, were observed for children and teen agers in the United Kingdom and Ireland. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sliney, David H.
1990-07-01
Historically many different agencies and standards organizations have proposed laser occupational exposure limits (EL1s) or maximum permissible exposure (MPE) levels. Although some safety standards have been limited in scope to manufacturer system safety performance standards or to codes of practice most have included occupational EL''s. Initially in the 1960''s attention was drawn to setting EL''s however as greater experience accumulated in the use of lasers and some accident experience had been gained safety procedures were developed. It became clear by 1971 after the first decade of laser use that detailed hazard evaluation of each laser environment was too complex for most users and a scheme of hazard classification evolved. Today most countries follow a scheme of four major hazard classifications as defined in Document WS 825 of the International Electrotechnical Commission (IEC). The classifications and the associated accessible emission limits (AEL''s) were based upon the EL''s. The EL and AEL values today are in surprisingly good agreement worldwide. There exists a greater range of safety requirements for the user for each class of laser. The current MPE''s (i. e. EL''s) and their basis are highlighted in this presentation. 2. 0
Deveau, M; Chen, C-P; Johanson, G; Krewski, D; Maier, A; Niven, K J; Ripple, S; Schulte, P A; Silk, J; Urbanus, J H; Zalk, D M; Niemeier, R W
2015-01-01
Occupational exposure limits (OELs) serve as health-based benchmarks against which measured or estimated workplace exposures can be compared. In the years since the introduction of OELs to public health practice, both developed and developing countries have established processes for deriving, setting, and using OELs to protect workers exposed to hazardous chemicals. These processes vary widely, however, and have thus resulted in a confusing international landscape for identifying and applying such limits in workplaces. The occupational hygienist will encounter significant overlap in coverage among organizations for many chemicals, while other important chemicals have OELs developed by few, if any, organizations. Where multiple organizations have published an OEL, the derived value often varies considerably-reflecting differences in both risk policy and risk assessment methodology as well as access to available pertinent data. This article explores the underlying reasons for variability in OELs, and recommends the harmonization of risk-based methods used by OEL-deriving organizations. A framework is also proposed for the identification and systematic evaluation of OEL resources, which occupational hygienists can use to support risk characterization and risk management decisions in situations where multiple potentially relevant OELs exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetterly, K; Favazza, C
2015-06-15
Purpose: Mathematical model observers provide a figure of merit that simultaneously considers a test object and the contrast, noise, and spatial resolution properties of an imaging system. The purpose of this work was to investigate the utility of a channelized Hotelling model observer (CHO) to assess system performance over a large range of angiographic exposure conditions. Methods: A 4 mm diameter disk shaped, iodine contrast test object was placed on a 20 cm thick Lucite phantom and 1204 image frames were acquired using fixed x-ray beam quality and for several detector target dose (DTD) values in the range 6 tomore » 240 nGy. The CHO was implemented in the spatial domain utilizing 96 Gabor functions as channels. Detectability index (DI) estimates were calculated using the “resubstitution” and “holdout” methods to train the CHO. Also, DI values calculated using discrete subsets of the data were used to estimate a minimally biased DI as might be expected from an infinitely large dataset. The relationship between DI, independently measured CNR, and changes in results expected assuming a quantum limited detector were assessed over the DTD range. Results: CNR measurements demonstrated that the angiography system is not quantum limited due to relatively increasing contamination from electronic noise that reduces CNR for low DTD. Direct comparison of DI versus CNR indicates that the CHO relatively overestimates DI for low DTD and/or underestimates DI values for high DTD. The relative magnitude of the apparent bias error in the DI values was ∼20% over the 40x DTD range investigated. Conclusion: For the angiography system investigated, the CHO can provide a minimally biased figure of merit if implemented over a restricted exposure range. However, bias leads to overestimates of DI for low exposures. This work emphasizes the need to verify CHO model performance during real-world application.« less
LaKind, Judy S; Anthony, Laura G; Goodman, Michael
2017-01-01
Environmental epidemiology data are becoming increasingly important in public health decision making, which commonly incorporates a systematic review of multiple studies. This review addresses two fundamental questions: What is the quality of available reviews on associations between exposure to synthetic organic chemicals and neurodevelopmental outcomes? What is the value (e.g., quality and consistency) of the underlying literature? Published reviews on associations between synthetic organic environmental chemical exposures and neurodevelopmental outcomes in children were systematically evaluated. Seventy-four relevant reviews were identified, and these were evaluated with respect to four methodological characteristics: (1) systematic inclusion/exclusion criteria and reproducible methods for search and retrieval of studies; (2) structured evaluation of underlying data quality; (3) systematic assessment of consistency across specific exposure-outcome associations; and (4) evaluation of reporting/publication bias. None of the 74 reviews fully met the criteria for all four methodological characteristics. Only four reviews met two criteria, and six reviews fulfilled only one criterion. Perhaps more importantly, the higher quality reviews were not able to meet all of the criteria owing to the shortcomings of underlying studies, which lacked comparability in terms of specific research question of interest, overall design, exposure assessment, outcome ascertainment, and analytic methods. Thus, even the most thoughtful and rigorous review may be of limited value if the underlying literature includes investigations that address different hypotheses and are beset by methodological inconsistencies and limitations. Issues identified in this review of reviews illustrate considerable challenges that are facing assessments of epidemiological evidence.
Development of occupational exposure limits for the Hanford tank farms.
Still, Kenneth R; Gardner, Donald E; Snyder, Robert; Anderson, Thomas J; Honeyman, James O; Timchalk, Charles
2010-04-01
Production of plutonium for the United States' nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is stored in 177 underground tanks at the Hanford site in southeastern Washington State. Recent attempts to begin the retrieval and treatment of these wastes require moving the waste to more modern tanks and result in potential exposure of the workers to unfamiliar odors emanating from headspace in the tanks. Given the unknown risks involved, workers were placed on supplied air respiratory protection. CH2MHILL, the managers of the Hanford site tank farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an industrial hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPCs) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1826 chemicals were inventoried and evaluated. Over 1500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2MHILL industrial hygiene department to evaluate these COPCs.
Ostry, Vladimir; Malir, Frantisek; Dofkova, Marcela; Skarkova, Jarmila; Pfohl-Leszkowicz, Annie; Ruprich, Jiri
2015-01-01
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011–2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01–0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4–6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for “average consumer” was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for “high consumers” in the group 4–6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18–59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day (“high consumers”, middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18–59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18–59 years old compared to the other population groups. PMID:26378578
Calvente, Irene; Dávila-Arias, Cristina; Ocón-Hernández, Olga; Pérez-Lobato, Rocío; Ramos, Rosa; Artacho-Cordón, Francisco; Olea, Nicolás; Núñez, María Isabel; Fernández, Mariana F.
2014-01-01
Objective To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-“INMA” population-based birth cohort. Methodology The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9–10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Results Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Conclusion Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure. PMID:25192253
Calvente, Irene; Dávila-Arias, Cristina; Ocón-Hernández, Olga; Pérez-Lobato, Rocío; Ramos, Rosa; Artacho-Cordón, Francisco; Olea, Nicolás; Núñez, María Isabel; Fernández, Mariana F
2014-01-01
To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-"INMA" population-based birth cohort. The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9-10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.
Cumulative total effective whole-body radiation dose in critically ill patients.
Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J
2013-11-01
Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.
Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji
2017-06-01
In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.
Occupational exposure in the removal and disposal of asbestos-containing materials in Italy.
Scarselli, Alberto; Corfiati, Marisa; Di Marzio, Davide
2016-07-01
A great variety of asbestos-containing materials are present in both residential and work settings because of the widespread use made in the past, and many occupational activities still entail the risk of asbestos exposure in Italy, more than 2 decades after the total national ban, mainly those involved in the removal and disposal of asbestos. The aim of the study was to evaluate the level and extent of asbestos exposure in Italy between the years 1996-2013 in the sector of asbestos abatement. Data were collected from firm registries of asbestos-exposed workers and descriptive statistics were calculated for exposure-related variables. Overall, 15,860 measurements of asbestos exposure were selected from the national database of registries, mostly referring to the construction sector (N = 11,353). Despite the mean exposure levels are low, the air concentration of asbestos fibers measured during these activities may overcome the action level established by the Italian legislation and, in a limited number of cases, can exceed even the occupational limit value. Among occupations at higher risk, there are also garbage collectors and insulation workers. Starting from the analysis of the Italian database of occupational exposure registries, this study outlines the current levels of asbestos exposure in abatement-related sectors, discussing their possible implications for public health policies and surveillance programs.
Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa
2017-04-01
International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review.
Li, Zijian; Jennings, Aaron
2017-07-22
Abstract : The impact of pesticide residues on human health is a worldwide problem, as human exposure to pesticides can occur through ingestion, inhalation, and dermal contact. Regulatory jurisdictions have promulgated the standard values for pesticides in residential soil, air, drinking water, and agricultural commodity for years. Until now, more than 19,400 pesticide soil regulatory guidance values (RGVs) and 5400 pesticide drinking water maximum concentration levels (MCLs) have been regulated by 54 and 102 nations, respectively. Over 90 nations have provided pesticide agricultural commodity maximum residue limits (MRLs) for at least one of the 12 most commonly consumed agricultural foods. A total of 22 pesticides have been regulated with more than 100 soil RGVs, and 25 pesticides have more than 100 drinking water MCLs. This research indicates that those RGVs and MCLs for an individual pesticide could vary over seven (DDT drinking water MCLs), eight (Lindane soil RGVs), or even nine (Dieldrin soil RGVs) orders of magnitude. Human health risk uncertainty bounds and the implied total exposure mass burden model were applied to analyze the most commonly regulated and used pesticides for human health risk control. For the top 27 commonly regulated pesticides in soil, there are at least 300 RGVs (8% of the total) that are above all of the computed upper bounds for human health risk uncertainty. For the top 29 most-commonly regulated pesticides in drinking water, at least 172 drinking water MCLs (5% of the total) exceed the computed upper bounds for human health risk uncertainty; while for the 14 most widely used pesticides, there are at least 310 computed implied dose limits (28.0% of the total) that are above the acceptable daily intake values. The results show that some worldwide standard values were not derived conservatively enough to avoid human health risk by the pesticides, and that some values were not computed comprehensively by considering all major human exposure pathways.
Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review
Jennings, Aaron
2017-01-01
The impact of pesticide residues on human health is a worldwide problem, as human exposure to pesticides can occur through ingestion, inhalation, and dermal contact. Regulatory jurisdictions have promulgated the standard values for pesticides in residential soil, air, drinking water, and agricultural commodity for years. Until now, more than 19,400 pesticide soil regulatory guidance values (RGVs) and 5400 pesticide drinking water maximum concentration levels (MCLs) have been regulated by 54 and 102 nations, respectively. Over 90 nations have provided pesticide agricultural commodity maximum residue limits (MRLs) for at least one of the 12 most commonly consumed agricultural foods. A total of 22 pesticides have been regulated with more than 100 soil RGVs, and 25 pesticides have more than 100 drinking water MCLs. This research indicates that those RGVs and MCLs for an individual pesticide could vary over seven (DDT drinking water MCLs), eight (Lindane soil RGVs), or even nine (Dieldrin soil RGVs) orders of magnitude. Human health risk uncertainty bounds and the implied total exposure mass burden model were applied to analyze the most commonly regulated and used pesticides for human health risk control. For the top 27 commonly regulated pesticides in soil, there are at least 300 RGVs (8% of the total) that are above all of the computed upper bounds for human health risk uncertainty. For the top 29 most-commonly regulated pesticides in drinking water, at least 172 drinking water MCLs (5% of the total) exceed the computed upper bounds for human health risk uncertainty; while for the 14 most widely used pesticides, there are at least 310 computed implied dose limits (28.0% of the total) that are above the acceptable daily intake values. The results show that some worldwide standard values were not derived conservatively enough to avoid human health risk by the pesticides, and that some values were not computed comprehensively by considering all major human exposure pathways. PMID:28737697
Li, Zijian
2018-08-01
To evaluate whether pesticide maximum residue limits (MRLs) can protect public health, a deterministic dietary risk assessment of maximum pesticide legal exposure was conducted to convert global MRLs to theoretical maximum dose intake (TMDI) values by estimating the average food intake rate and human body weight for each country. A total of 114 nations (58% of the total nations in the world) and two international organizations, including the European Union (EU) and Codex (WHO) have regulated at least one of the most currently used pesticides in at least one of the most consumed agricultural commodities. In this study, 14 of the most commonly used pesticides and 12 of the most commonly consumed agricultural commodities were identified and selected for analysis. A health risk analysis indicated that nearly 30% of the computed pesticide TMDI values were greater than the acceptable daily intake (ADI) values; however, many nations lack common pesticide MRLs in many commonly consumed foods and other human exposure pathways, such as soil, water, and air were not considered. Normality tests of the TMDI values set indicated that all distributions had a right skewness due to large TMDI clusters at the low end of the distribution, which were caused by some strict pesticide MRLs regulated by the EU (normally a default MRL of 0.01 mg/kg when essential data are missing). The Box-Cox transformation and optimal lambda (λ) were applied to these TMDI distributions, and normality tests of the transformed data set indicated that the power transformed TMDI values of at least eight pesticides presented a normal distribution. It was concluded that unifying strict pesticide MRLs by nations worldwide could significantly skew the distribution of TMDI values to the right, lower the legal exposure to pesticide, and effectively control human health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crump, Kenny; Van Landingham, Cynthia
2012-01-01
NIOSH/NCI (National Institute of Occupational Safety and Health and National Cancer Institute) developed exposure estimates for respirable elemental carbon (REC) as a surrogate for exposure to diesel exhaust (DE) for different jobs in eight underground mines by year beginning in the 1940s—1960s when diesel equipment was first introduced into these mines. These estimates played a key role in subsequent epidemiological analyses of the potential relationship between exposure to DE and lung cancer conducted in these mines. We report here on a reanalysis of some of the data from this exposure assessment. Because samples of REC were limited primarily to 1998–2001, NIOSH/NCI used carbon monoxide (CO) as a surrogate for REC. In addition, because CO samples were limited, particularly in the earlier years, they used the ratio of diesel horsepower (HP) to the mine air exhaust rate as a surrogate for CO. There are considerable uncertainties connected with each of these surrogate-based steps. The estimates of HP appear to involve considerable uncertainty, although we had no data upon which to evaluate the magnitude of this uncertainty. A sizable percentage (45%) of the CO samples used in the HP to CO model was below the detection limit which required NIOSH/NCI to assign CO values to these samples. In their preferred REC estimates, NIOSH/NCI assumed a linear relation between C0 and REC, although they provided no credible support for that assumption. Their assumption of a stable relationship between HP and CO also is questionable, and our reanalysis found a statistically significant relationship in only one-half of the mines. We re-estimated yearly REC exposures mainly using NIOSH/NCI methods but with some important differences: (i) rather than simply assuming a linear relationship, we used data from the mines to estimate the CO—REC relationship; (ii) we used a different method for assigning values to nondetect CO measurements; and (iii) we took account of statistical uncertainty to estimate bounds for REC exposures. This exercise yielded significantly different exposure estimates than estimated by NIOSH/NCI. However, this analysis did not incorporate the full range of uncertainty in REC exposures because of additional uncertainties in the assumptions underlying the modeling and in the underlying data (e.g. HP and mine exhaust rates). Estimating historical exposures in a cohort is generally a very difficult undertaking. However, this should not prevent one from recognizing the uncertainty in the resulting estimates in any use made of them. PMID:22594934
Industrial Fungal Enzymes: An Occupational Allergen Perspective
Green, Brett J.; Beezhold, Donald H.
2011-01-01
Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes. PMID:21747869
Estimating systemic exposure to ethinyl estradiol from an oral contraceptive.
Westhoff, Carolyn L; Pike, Malcolm C; Tang, Rosalind; DiNapoli, Marianne N; Sull, Monica; Cremers, Serge
2015-05-01
This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive with steady-state values and to assess whether any simpler measures could provide an adequate proxy of the "gold standard" 24-hour steady-state area under the curve (AUC) value. Identification of a simple, less expensive measure of systemic ethinyl estradiol exposure would be useful for larger studies that are designed to assess the relationship between an individual's ethinyl estradiol exposure and side-effects. We collected 13 samples over 24 hours for pharmacokinetic analysis on days 1 and 21 of the first cycle of a monophasic oral contraceptive that contained 30 μg ethinyl estradiol and 150 μg levonorgestrel in 17 nonobese healthy white women. We also conducted an abbreviated single-dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of a full 13-sample steady-state pharmacokinetic analysis with results that had been calculated with the use of fewer samples (9 or 5) and after the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. The AUC, maximum, and 24-hour values were similar after the 2 single oral contraceptive doses (AUC; r=0.92). The steady-state 13-sample 24-hour AUC value was correlated highly with the average 9-sample AUC value after the 2 single doses (r=0.81; P=.0002). This correlation remained the same if the number of single-dose samples was reduced to 4, taken at time 1, 2.5, 4, and 24 hours. The 24-hour value at steady-state was correlated highly with the 24-hour steady-state AUC value (r=0.92; P<.0001). The average of the 24-hour values after the 2 single doses was also correlated quite highly with the steady-state AUC value (r=0.72; P=.0026). Limited blood sampling, including results from 2 single doses, gave highly correlated estimates of an oral contraceptive user's steady-state ethinyl estradiol exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
A depth-adjusted ambient distribution approach for setting ...
We compiled and modelled macroinvertebrate assemblage data from samples collected in 1995-2014 from the estuarine portion of the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective to create depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) that can be used to plan remediation and restoration actions, and to assess progress toward achieving removal targets for the degraded benthos beneficial use impairment. The relationship between depth and benthos metrics was wedge-shaped. We therefore used 90th percentile quantile regression to define the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly larvae (e.g., Hexagenia). We also created a scaled trimetric index from the first three metrics. We examined gear type (standard vs. petite Ponar sampler), exposure class (derived from fetch), geographic zone of the AOC, and substrate type for confounding effects on the limiting depth. The effect of gear type was minimal. Metric values were generally higher at more exposed locations, but we judged the exposure effect less important for model application than variation among three geographic zones, so we combined data across exposure classes and created separate models for each geographic zone of the AOC. Based on qualitative substrate data for most samples, we
NASA Technical Reports Server (NTRS)
Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.
1989-01-01
The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A; Shepard, S; Dave, J
Purpose: To characterize the distribution of the deviation index (DI) in digital radiography practices across the United States. Methods: DI data was obtained from 10 collaborating institutions in the United States between 2012 and 2015. Each institution complied with the requirements of the Institutional Review Board at their site. DI data from radiographs of the body parts chest, abdomen, pelvis and extremity were analyzed for anteroposterior, posteroanterior, lateral, and decubitus views. The DI data was analyzed both in aggregate and stratified by exposure control method, image receptor technology, patient age, and participating site for each body part and view. Themore » number of exposures with DI falling within previously published control limits for DI and descriptive statistics were calculated. Results: DI data from 505,930 radiographic exposures was analyzed. The number of exposures with DI falling within published control limits for DI varied from 10 to 20% for adult patients and 10 to 23% for pediatric patients for different body parts and views. Mean DI values averaged over other parameters for radiographs of the abdomen, chest, pelvis, and extremities ranged from 0.3 to 1.0, −0.6 to 0.5, 0.8, and −0.9 to 0.5 for the different adult views and ranged from −1.6 to −0.1, −0.3 to 0.5, −0.1, −0.2 to 1.4 for the different pediatric views, respectively (DI data was solicited only for anteroposterior view of pelvis). Standard deviation values of DI from individual sites ranged from 1.3 to 3.6 and 1.3 to 3.0 for the different adult and pediatric views, respectively. Also of interest was that target exposure indicators varied by up to a factor of 6 between sites for certain body parts and views. Conclusion: Previously published DI control limits do not reflect the state of clinical practice in digital radiography. Mean DI and target exposure indicators are targets for quality improvement efforts in radiography.« less
NASA Astrophysics Data System (ADS)
Martínez-Búrdalo, M.; Sanchis, A.; Martín, A.; Villar, R.
2010-02-01
Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.
Martínez-Búrdalo, M; Sanchis, A; Martín, A; Villar, R
2010-02-21
Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.
Kiln emissions and potters' exposures.
Hirtle, B; Teschke, K; van Netten, C; Brauer, M
1998-10-01
Some ten thousand British Columbia potters work in small private studios, cooperative facilities, educational institutions, or recreation centers. There has been considerable concern that this diffuse, largely unregulated activity may involve exposures to unacceptable levels of kiln emissions. Pottery kiln emissions were measured at 50 sites--10 from each of 5 categories: professional studios, recreation centers, elementary schools, secondary schools, and colleges. Area monitoring was done 76 cm from firing kilns and 1.6 m above the floor to assess breathing zone concentrations of nitrogen dioxide, carbon monoxide, sulfur dioxide, fluorides, aldehydes, aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, gold, iron, lead, lithium, magnesium, manganese, mercury, nickel, selenium, silver, vanadium, and zinc. Personal exposures to the same metals were measured at 24 sites. Almost all measured values were well below permissible concentrations for British Columbia work sites and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs) with the following two exceptions. A single firing duration (495 minute) acrolein measurement adjacent to an electric kiln (0.109 ppm) exceeded these guidelines. One 15-minute sulfur dioxide measurement collected adjacent to a gas kiln (5.7 ppm) exceeded the ACGIH short-term exposure limit. The fact that concentrations in small, ventilated kiln rooms ranked among the highest measured gives rise to concern that unacceptable levels of contamination may exist where small kiln rooms remain unventilated. Custom designed exhaust hoods and industrial heating, ventilating, and air-conditioning systems were the most effective ventilation strategies. Passive diffusion and wall/window fans were least effective.
Aweda, M A; Ajekigbe, A T; Ibitoye, A Z; Evwhierhurhoma, B O; Eletu, O B
2009-01-01
The global system mobile telecommunications system (GSM) which was recently introduced in Nigeria is now being used by over 40 million people in Nigeria. The use of GSM is accompanied with exposure of the users to radiofrequency radiation (RFR), which if significant, may produce health hazards. This is the reason why many relevant national and international organizations recommended exposure limits to RFR and why it is made compulsory for GSM handsets to indicate the maximum power output as a guide to potential consumers. This study was conducted to measure the RFR output power densities (S) from the most commonly used GSM handsets used in Lagos State and compare with the limit recommended for safety assessment. Over 1100 most commonly used handsets of different makes and models as well as wireless phones were sampled and studied in all over the local government areas of the State. An RFR meter, Electrosmog from LESSEMF USA was used for the measurements. The handsets were assessed for health risks using the reference value of 9 Wm(-2) as recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The range of the S-values obtained varied from a minimum of 1.294 0.101 Wm(-2) with Siemens model R228 to a maximum of 16.813 +/- 0.094 Wm(-2) with Samsung model C140*. The results from wireless telephones showed very low S-values ranging from a minimum of 0.024 +/- 0.001 Wm(-2) with HUAWEI and ST CDMA 1 to a maximum of 0.093 +/- 0.002 Wm(-2) with HISENSE. The results showed that the population in Lagos State may be at risk due to significant RFR exposures resulting principally from the use of GSM. Quite a number of handsets emit power above the ICNIRP recommended value. Measured RFR power close to Radio and Television masts and transmitters are within tolerable limits in most cases, only that the public should not reside or work close to RFR installations. Phone calls with GSM should be restricted to essential ones while youths and children that are more susceptible to RFR hazards should be supervised in their use of GSM. Wireless phones are quite safe.
Li, Congsheng; Wu, Tongning
2015-04-01
The use of electronic article surveillance (EAS) systems has become popular in many public sites. As a consequence, concern has risen about infant exposure to magnetic fields (MFs) from this kind of device. To evaluate infant exposure to MFs of an EAS system (operating at 125 kHz and 13.56 MHz), we numerically compared dosimetric results among adult, child and infant models. Results revealed that postures insignificantly influenced dosimetric results if there was a similar cross-sectional area under exposure. Although safety limits are unlikely to be exceeded, the infant has higher SAR values for brain and central nervous system tissues compared with adult (1.5x at 125 kHz and 112x at 13.56 MHz), which deserve further investigation. Infant's specific anatomy (e.g., non-proportionally large head and high fat content) did not induce higher SAR values. The numerical models developed in the study (stroller and postured infant models) could be freely used for nonprofit academic research. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Calkins, D. S.; Degioanni, J. J.; Tan, M. N.; Davis, J. R.; Pierson, D. L.
1993-01-01
Performance and physiological measurements were obtained from four pairs of men exposed for 24 hr to 1% (10,000 ppm) Halon 1301 (bromotrifluoromethane, CBrF3) and to air with order counterbalanced using a double-blind protocol. Cognitive and motor performance was assessed before, during, and after the exposures using seven scales of the Automated Portable Testing System, which produced 13 measures of performance. Halon inhalation induced decrements in 2 of the 13 measures, but actual and estimated magnitudes of the decrements were no greater than 5% of baseline values. Physiological data were obtained before, during, and after the exposures from clinical chemistry analyses of blood and urine samples, pulmonary function tests, and monitoring of vital signs. Significant change during Halon inhalation was observed for 6 of the 52 variables assessed; however, all physiological values remained within clinically acceptable limits. No cardiovascular effects were noted. This study demonstrated that exposure to 1% Halon 1301 for 24 hr can produce minor disturbance of central nervous system function as assessed by cognitive tasks.
Gatti, Daniel M.; Morgan, Daniel L.; Kissling, Grace E.; Shockley, Keith R.; Knudsen, Gabriel A.; Shepard, Kim G.; Price, Herman C.; King, Deborah; Witt, Kristine L.; Pedersen, Lars C.; Munger, Steven C.; Svenson, Karen L.; Churchill, Gary A.
2014-01-01
Background Inhalation of benzene at levels below the current exposure limit values leads to hematotoxicity in occupationally exposed workers. Objective We sought to evaluate Diversity Outbred (DO) mice as a tool for exposure threshold assessment and to identify genetic factors that influence benzene-induced genotoxicity. Methods We exposed male DO mice to benzene (0, 1, 10, or 100 ppm; 75 mice/exposure group) via inhalation for 28 days (6 hr/day for 5 days/week). The study was repeated using two independent cohorts of 300 animals each. We measured micronuclei frequency in reticulocytes from peripheral blood and bone marrow and applied benchmark concentration modeling to estimate exposure thresholds. We genotyped the mice and performed linkage analysis. Results We observed a dose-dependent increase in benzene-induced chromosomal damage and estimated a benchmark concentration limit of 0.205 ppm benzene using DO mice. This estimate is an order of magnitude below the value estimated using B6C3F1 mice. We identified a locus on Chr 10 (31.87 Mb) that contained a pair of overexpressed sulfotransferases that were inversely correlated with genotoxicity. Conclusions The genetically diverse DO mice provided a reproducible response to benzene exposure. The DO mice display interindividual variation in toxicity response and, as such, may more accurately reflect the range of response that is observed in human populations. Studies using DO mice can localize genetic associations with high precision. The identification of sulfotransferases as candidate genes suggests that DO mice may provide additional insight into benzene-induced genotoxicity. Citation French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA, Shepard KG, Price HC, King D, Witt KL, Pedersen LC, Munger SC, Svenson KL, Churchill GA. 2015. Diversity Outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ Health Perspect 123:237–245; http://dx.doi.org/10.1289/ehp.1408202 PMID:25376053
Occupational exposures to respirable crystalline silica during hydraulic fracturing.
Esswein, Eric J; Breitenstein, Michael; Snawder, John; Kiefer, Max; Sieber, W Karl
2013-01-01
This report describes a previously uncharacterized occupational health hazard: work crew exposures to respirable crystalline silica during hydraulic fracturing. Hydraulic fracturing involves high pressure injection of large volumes of water and sand, and smaller quantities of well treatment chemicals, into a gas or oil well to fracture shale or other rock formations, allowing more efficient recovery of hydrocarbons from a petroleum-bearing reservoir. Crystalline silica ("frac sand") is commonly used as a proppant to hold open cracks and fissures created by hydraulic pressure. Each stage of the process requires hundreds of thousands of pounds of quartz-containing sand; millions of pounds may be needed for all zones of a well. Mechanical handling of frac sand creates respirable crystalline silica dust, a potential exposure hazard for workers. Researchers at the National Institute for Occupational Safety and Health collected 111 personal breathing zone samples at 11 sites in five states to evaluate worker exposures to respirable crystalline silica during hydraulic fracturing. At each of the 11 sites, full-shift samples exceeded occupational health criteria (e.g., the Occupational Safety and Health Administration calculated permissible exposure limit, the NIOSH recommended exposure limit, or the ACGIH threshold limit value), in some cases, by 10 or more times the occupational health criteria. Based on these evaluations, an occupational health hazard was determined to exist for workplace exposures to crystalline silica. Seven points of dust generation were identified, including sand handling machinery and dust generated from the work site itself. Recommendations to control exposures include product substitution (when feasible), engineering controls or modifications to sand handling machinery, administrative controls, and use of personal protective equipment. To our knowledge, this represents the first systematic study of work crew exposures to crystalline silica during hydraulic fracturing. Companies that conduct hydraulic fracturing using silica sand should evaluate their operations to determine the potential for worker exposure to respirable crystalline silica and implement controls as necessary to protect workers.
Arsenic Exposure and Hypertension: A Systematic Review
Abhyankar, Lalita N.; Jones, Miranda R.; Guallar, Eliseo
2011-01-01
Background: Environmental exposure to arsenic has been linked to hypertension in persons living in arsenic-endemic areas. Objective: We summarized published epidemiologic studies concerning arsenic exposure and hypertension or blood pressure (BP) measurements to evaluate the potential relationship. Data sources and extraction: We searched PubMed, Embase, and TOXLINE and applied predetermined exclusion criteria. We identified 11 cross-sectional studies from which we abstracted or derived measures of association and calculated pooled odds ratios (ORs) using inverse-variance weighted random-effects models. Data synthesis: The pooled OR for hypertension comparing the highest and lowest arsenic exposure categories was 1.27 [95% confidence interval (CI): 1.09, 1.47; p-value for heterogeneity = 0.001; I2 = 70.2%]. In populations with moderate to high arsenic concentrations in drinking water, the pooled OR was 1.15 (95% CI: 0.96, 1.37; p-value for heterogeneity = 0.002; I2 = 76.6%) and 2.57 (95% CI: 1.56, 4.24; p-value for heterogeneity = 0.13; I2 = 46.6%) before and after excluding an influential study, respectively. The corresponding pooled OR in populations with low arsenic concentrations in drinking water was 1.56 (95% CI: 1.21, 2.01; p-value for heterogeneity = 0.27; I2 = 24.6%). A dose–response assessment including six studies with available data showed an increasing trend in the odds of hypertension with increasing arsenic exposure. Few studies have evaluated changes in systolic and diastolic BP (SBP and DBP, respectively) measurements by arsenic exposure levels, and those studies reported inconclusive findings. Conclusion: In this systematic review we identified an association between arsenic and the prevalence of hypertension. Interpreting a causal effect of environmental arsenic on hypertension is limited by the small number of studies, the presence of influential studies, and the absence of prospective evidence. Additional evidence is needed to evaluate the dose–response relationship between environmental arsenic exposure and hypertension. PMID:22138666
Maintenance of Low-Pressure Carburising Furnaces: A Source of PAH Exposure.
Champmartin, Catherine; Jeandel, Fanny; Monnier, Hubert
2017-04-01
Low-pressure carburising is a new technology used to harden steel; the process has been shown to be a source of considerable polycyclic aromatic hydrocarbons (PAH) pollution. Some PAH are carcinogenic, and activities such as furnace maintenance may thus represent a risk to workers. Occupational exposure during these operations should therefore be assessed. In this study, the PAH-related carcinogenic risk associated with furnace maintenance was assessed by monitoring atmospheric levels of benzo[a]pyrene (BaP), a representative marker, alongside urinary levels of 3-hydroxybenzo[a]pyrene (3-OHBaP), one of its metabolites. PAH exposure levels were monitored during seven sampling campaigns in four different factories specialized in heat-treatment of mechanical workpieces for the automotive and helicopter industries. Two types of furnace were studied, and 37 individuals were monitored. Values up to 20-fold the French regulatory value of 150 ng/m3 for atmospheric BaP, and, for urinary 3-OHBaP values up to 40-fold the French biological limit value (BLV) of 0.35 nmol/mol of creatinine were detected. Very high concentrations of BaP, close to or even exceeding those found in coal-tar pitch (up to about 20 g/kg), were measured in residues (tars, dusts) deposited inside the furnace. Even when adequate and suitable personal protective equipment was used, urinary 3-OHBaP values often exceeded the BLV. We hypothesize that this exposure is linked to insidious and fortuitous dermal contamination through contact with factory equipment and staining. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo
2015-01-01
Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs. PMID:26024363
Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo
2015-05-27
Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs.
Merrill, E A; Gearhart, J M; Sterner, T R; Robinson, P J
2008-07-01
n-Decane is considered a major component of various fuels and industrial solvents. These hydrocarbon products are complex mixtures of hundreds of components, including straight-chain alkanes, branched chain alkanes, cycloalkanes, diaromatics, and naphthalenes. Human exposures to the jet fuel, JP-8, or to industrial solvents in vapor, aerosol, and liquid forms all have the potential to produce health effects, including immune suppression and/or neurological deficits. A physiologically based pharmacokinetic (PBPK) model has previously been developed for n-decane, in which partition coefficients (PC), fitted to 4-h exposure kinetic data, were used in preference to measured values. The greatest discrepancy between fitted and measured values was for fat, where PC values were changed from 250-328 (measured) to 25 (fitted). Such a large change in a critical parameter, without any physiological basis, greatly impedes the model's extrapolative abilities, as well as its applicability for assessing the interactions of n-decane or similar alkanes with other compounds in a mixture model. Due to these limitations, the model was revised. Our approach emphasized the use of experimentally determined PCs because many tissues had not approached steady-state concentrations by the end of the 4-h exposures. Diffusion limitation was used to describe n-decane kinetics for the brain, perirenal fat, skin, and liver. Flow limitation was used to describe the remaining rapidly and slowly perfused tissues. As expected from the high lipophilicity of this semivolatile compound (log K(ow) = 5.25), sensitivity analyses showed that parameters describing fat uptake were next to blood:air partitioning and pulmonary ventilation as critical in determining overall systemic circulation and uptake in other tissues. In our revised model, partitioning into fat took multiple days to reach steady state, which differed considerably from the previous model that assumed steady-state conditions in fat at 4 h post dosing with 1200 ppm. Due to these improvements, and particularly the reconciliation between measured and fitted partition coefficients, especially fat, we have greater confidence in using the proposed model for dose, species, and route of exposure extrapolations and as a harmonized model approach for other hydrocarbon components of mixtures.
Biomonitoring of two types of chromium exposure in an electroplating shop.
Pierre, Francis; Diebold, François; Baruthio, François
2008-01-01
This study is concerned with two specific chromium (Cr) exposure situations at a hard-process electroplating company. Its aims are to define variations in urinary Cr concentration and to clarify their exposure relationships. Airborne chromium exposure and urinary excretion were measured for a-one week period. The majority of the exposed population was divided into two groups distinguishing chromium plating and polishing functions. Analysis of airborne Cr distinguished water soluble Cr(VI), water total soluble Cr and water insoluble Cr. Volunteers provided 6-7 urine samples per day for a monitoring period of 7 days. Differences between the two groups appear in relation to the type of exposure. Low concentration water soluble Cr(VI) (5.3 microg/m3 maximum) in electroplating shops is practically undetected in other workshops. Water insoluble Cr present in low concentration in electroplating exceeds 1 mg/m3 in polishing shops. Total soluble Cr concentrations are similar in these two activities (3-10 microg/m3). In polishing, 0.4% of the Cr aerosol comprises soluble Cr. Urinary Cr varied according to a 24 h cycle in similar manner in both groups throughout the monitoring week. Minimum values (3-10 microg/g crea) occurred when starting a work shift, following by a rapid rise as soon as exposure commenced, whilst maximum values (12-30 microg/g crea) were recorded towards the end of the work shift. Although uncorrelated with soluble Cr(VI), urinary Cr (24 h) is effectively related to the soluble fraction of airborne chromium. In the case of chromium electroplating, correspondence between exposure and excretion appears to be governed by relationships different to those emerging from stainless steel welding, from which current biological limit values have been derived.
Bonanni, Rossana Claudia; Gatto, Maria Pia; Paci, Enrico; Gordiani, Andrea; Gherardi, Monica; Tranfo, Giovanna
2015-10-01
Fifty-eight workers exposed to styrene were monitored in four fibreglass reinforced plastic industries of Central Italy. The aim of the study was to explore the factors that can influence the levels of styrene exposure biomarkers of the workers and the aspects that might interfere with the exposure assessment measures, such as the co-exposure to acetone. Personal monitoring of professional exposure to airborne styrene and acetone was carried out by Radiello samplers and GC/MS analysis. Biological monitoring was performed by the determination of urinary metabolites, mandelic (MA), and phenylglyoxylic (PGA) acids with HPLC/MS/MS and unmetabolized styrene in saliva and venous blood by HS/GC/MS. The median values of the four sites ranged between 24.1 to 94.0mg m(-3) and 7.3 to 331.1mg g(-1) creatinine for airborne styrene and MA + PGA, respectively. A good linear correlation was found between styrene in air and its urinary metabolites (r = 0.854). The median value for airborne styrene was found to exceed the (Threshold Limit Value - Time Weighted Average) of 85 mg m(-3) in one site for all the workers and in two if only moulders are considered. The multiple linear regression model showed that the determinants of urinary MA + PGA excretion were the type of process, workers' tasks, level of acetone co-exposure, and the use of respiratory protection devices. Data show that the simultaneous exposure to acetone modify the styrene metabolism with a reduction in the levels of (MA + PGA) excreted. A significant linear log-correlation was found between salivary levels of styrene and blood concentration (r = 0.746) sampled at the same t x time. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Lee, C. H.; Cho, J. H.; Park, S. J.; Kim, J. S.; On, Y. K.; Huh, J.
2015-10-01
The purpose of this study was to measure the radiation exposure to operator and patient during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures and to calculate the allowable number of cases per year. We carried out 9 electrophysiology studies, 40 radiofrequency catheter ablation and 11 cardiac device implantation procedures. To measure occupational radiation dose and dose-area product (DAP), 13 photoluminescence glass dosimeters were placed at eyes (inside and outside lead glass), thyroids (inside and outside thyroid collar), chest (inside and outside lead apron), wrists, genital of the operator (inside lead apron), and 6 of photoluminescence glass dosimeters were placed at eyes, thyroids, chest and genital of the patient. Exposure time and DAP values were 11.7 ± 11.8 min and 23.2 ± 26.2 Gy cm2 for electrophysiology study; 36.5 ± 42.1 min and 822.4 ± 125.5 Gy cm2 for radiofrequency catheter ablation; 16.2 ± 9.3 min and 27.8 ± 16.5 Gy cm2 for cardiac device implantation procedure, prospectively. 4591 electrophysiology studies can be conducted within the occupational exposure limit for the eyes (150 mSv), and 658-electrophysiology studies with radiofrequency catheter ablation can be carried out within the occupational exposure limit for the hands (500 mSv). 1654 cardiac device implantation procedure can be conducted within the occupational exposure limit for the eyes (150 mSv). The amounts of the operator and patient's radiation exposure were comparatively small. So, electrophysiology study, radio frequency catheter ablation and cardiac device implantation procedures are safe when performed with modern equipment and optimized protective radiation protect equipment.
Development of Occupational Exposure Limits for the Hanford Tank Farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, Kenneth; Gardner, Donald; Snyder, Robert
Production of plutonium for the United States’ nuclear weapons program from the 1940’s to the 1980’s generated 53 million gallons of radioactive chemical waste, which is storedin 177 underground tanks at the Hanford Site in southeastern W 18 ashington State. Recent 19 attempts to begin the retrieval and treatment of these wastes require moving the waste to 20 more modern tanks results in potential exposure of the workers to unfamiliar odors 21 emanating from headspace in the tanks. Given the unknown risks involved, workers 22 were placed on supplied air respiratory protection. CH2M HILL, the managers of the 23 Hanfordmore » Site Tank Farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an Industrial Hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPC) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1,826 chemicals were inventoried and evaluated. Over 1,500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2M HILL industrial hygiene department to evaluate these COPCs.« less
2013-01-01
Background Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Methods Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. Results The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. Conclusions These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in southern countries. Some data may not be entirely representative, some countries were not covered, and anticipated changes in mercury pollution all suggest a need for extended biomonitoring of human MeHg exposure. PMID:23289875
NASA Astrophysics Data System (ADS)
Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.
2014-04-01
Radon exposures were assigned to each residential address in the Oslo region using a geographic information system (GIS) that included indoor radon measurements. The results will be used in an epidemiologic study regarding leukemia and brain cancer. The model is based on 6% of measured residential buildings. High density of indoor radon measurements allowed us to develop a buffer model where indoor radon measurements found around each dwelling were used to assign a radon value for homes lacking radon measurement. Intraclass correlation coefficients (ICCs) were used to study the agreement between radon values from the buffer method, from indoor radon values of measured houses, and from a regression model constructed with radiometric data (eTh, eU) and bedrock geology. We obtained good agreement for both comparisons with ICC values between 0.54 and 0.68. GIS offers a useful variety of tools to study the indoor-radon exposure assessment. By using the buffer method it is more likely that geological conditions are similar within the buffer and this may take more into account the variation of radon over short distances. It is also probable that short-distance-scale correlation patterns express similarities in building styles and living habits. Although the method has certain limitations, we regard it as acceptable for use in epidemiological studies.
Continous animal exposure to a mixture of dichloromethane and 1,1,1-trichloroethane
NASA Technical Reports Server (NTRS)
1975-01-01
An investigation of the effects of combined exposure of animals to dichloromethane and 1,1,1-trichloroethane was conducted using atmospheric concentrations of each solvent which had individually produced minimal measureable effects on livers. Previously established spacecraft threshold limit values for the individual solvent compounds were studied to determine validity when both were present in an astronaut's breathing environment under continuous exposure conditions. Results show that the combined effect of 90-day continuous exposure of animals to 100 ppm dichloromethane and 1000 ppm 1,1, 1-trichloroethane is no greater than the effect of each alone. While the exposed livers of mice appeared to contain slightly more fat, the degree of increased liver weight and the liver-to-body ratios are slightly lower than those measured for each solvent alone.
Occupational EMF exposure from radar at X and Ku frequency band and plasma catecholamine levels.
Singh, Sarika; Kapoor, Neeru
2015-09-01
Workers in certain occupations such as the military may be exposed to technical radiofrequency radiation exposure above current limits, which may pose a health risk. The present investigation intended to find the effect of chronic electromagnetic field (EMF) exposure from radar on plasma catecholamines in the military workforce. In the study, 166 male personnel selected randomly were categorized into three groups: control (n = 68), exposure group-I (X-band, 8-12 GHz, n = 40), and exposure group-II (Ku-band, 12.5-18 GHz, n = 58). The three clusters were further divided into two groups according to their years of service (YOS) (up to 9 years and ≥10 years) to study the effect of years of radar exposure. Enzyme immunoassay was employed to assess catecholamine concentrations. EMF levels were recorded at different occupational distances from radar. Significant adrenaline diminution was registered in exposure group-II with no significant difference in exposure group-I when both groups were weighed against control. Nor-adrenaline and dopamine levels did not vary significantly in both exposure groups when compared to controls. Exposure in terms of YOS also did not yield any significant alteration in any of the catecholamines and in any of the exposure groups when compared with their respective control groups. The shift from baseline catecholamine values due to stress has immense significance for health and well-being. Their continual alteration may prove harmful in due course. Suitable follow-up studies are needed to further strengthen these preliminary observations and for now, exposures should be limited as much as possible with essential safeguards. © 2015 Wiley Periodicals, Inc.
Assessment of the magnetic field exposure due to the battery current of digital mobile phones.
Jokela, Kari; Puranen, Lauri; Sihvonen, Ari-Pekka
2004-01-01
Hand-held digital mobile phones generate pulsed magnetic fields associated with the battery current. The peak value and the waveform of the battery current were measured for seven different models of digital mobile phones, and the results were applied to compute approximately the magnetic flux density and induced currents in the phone-user's head. A simple circular loop model was used for the magnetic field source and a homogeneous sphere consisting of average brain tissue equivalent material simulated the head. The broadband magnetic flux density and the maximal induced current density were compared with the guidelines of ICNIRP using two various approaches. In the first approach the relative exposure was determined separately at each frequency and the exposure ratios were summed to obtain the total exposure (multiple-frequency rule). In the second approach the waveform was weighted in the time domain with a simple low-pass RC filter and the peak value was divided by a peak limit, both derived from the guidelines (weighted peak approach). With the maximum transmitting power (2 W) the measured peak current varied from 1 to 2.7 A. The ICNIRP exposure ratio based on the current density varied from 0.04 to 0.14 for the weighted peak approach and from 0.08 to 0.27 for the multiple-frequency rule. The latter values are considerably greater than the corresponding exposure ratios 0.005 (min) to 0.013 (max) obtained by applying the evaluation based on frequency components presented by the new IEEE standard. Hence, the exposure does not seem to exceed the guidelines. The computed peak magnetic flux density exceeded substantially the derived peak reference level of ICNIRP, but it should be noted that in a near-field exposure the external field strengths are not valid indicators of exposure. Currently, no biological data exist to give a reason for concern about the health effects of magnetic field pulses from mobile phones.
Wong, O
1999-12-01
As reviewed in some detail in the present paper, workers employed in a wide variety of industries were included in the Chinese benzene study, and were exposed to not only benzene but also a wide range of other industrial chemicals. To attribute any or all health effects observed in the exposed cohort to benzene without examining other concomitant exposures is not appropriate. Although it was stated that one of the major objectives of the expanded study was to examine the effects of other risk factors, no such examination was made in any of the analyses in the expanded CAPM-NCI study. The CAPM-NCI study suffered from a number of limitations. One of the most serious limitations of the study involved the exposure estimates developed by the US NCI team. Comparing the assumptions used in the development of estimates and the exposure estimates themselves to actual data reported previously by the Chinese investigators revealed numerous inconsistencies and, in many cases, large discrepancies. It appeared that the exposure estimates were consistently lower than the actual exposure data. The so-called indirect validation conducted by the NCI team served no useful purpose, since by definition it could not validate the absolute values of the estimates. NCI was fully aware of some of the inadequacies of its exposure estimates. Although in a 1994 paper, the NCI team recognized that little confidence could be attached to the estimated (e.g., only 2% of the estimates for the time interval 1949-1959 and only 6% of the estimates prior to 1975 were rated in the high confidence category), the inadequacy of the estimates was never mentioned or discussed in any subsequent analyses or in the latest report (Hayes et al., 1998). Instead, the exposure of the workers was hailed as "well characterized" (Hayes et al., 1998). In conclusion both CAPM and NCI have made substantial efforts in studying the relationship between benzene exposure and various malignancies. Unfortunately, there were many inherent problems in the data as well as serious limitations in the exposure estimates. Because of these unresolved problems and limitations, many of the results in the CAPM-NCI study are unreliable. Therefore, the conclusions of the study, particularly those involving exposure estimates, are not justified.
NASA Astrophysics Data System (ADS)
Henden, Arne
2017-06-01
For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.
How Faint Can You Go? (Abstract)
NASA Astrophysics Data System (ADS)
Henden, A.
2017-12-01
(Abstract only) For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.
Over time, toxicity-testing paradigms have progressed from low-throughput in vivo animal studies for limited numbers of chemicals to high-throughput (HT) in vitro screening assays for thousands of chemicals. Such HT in vitro methods, along with HT in silico predictions of popula...
Base Level Management of Radio Frequency Radiation Protection Program
1989-04-01
Antennae ....... 17 5 Estimated Hazard Distance for Vertical Monopole Antennae ....... 17 6 Permissible Exposure Limits...36 H-1 Monopole Antennas .............................................. 83 H-2 Radiation Pattern of Monopole Antennas...correction factors for determining power density values in the near-field of an emitter. Power Density = (4 x P av)/(Antenna Area) (14) For dipole, monopole
Health-risk based approach to setting drinking water standards for long-term space missions
NASA Technical Reports Server (NTRS)
Macler, Bruce A.; Dunsky, Elizabeth C.
1992-01-01
In order to develop plausible and appropriate drinking water contaminant standards for longer-term NASA space missions, such as those planned for the Space Exploration Initiative, a human health risk characterization was performed using toxicological and exposure values typical of space operations and crew. This risk characterization showed that the greatest acute waterborne health concern was from microbial infection leading to incapacitating gastrointestinal illness. Ingestion exposure pathways for toxic materials yielded de minimus acute health risks unlikely to affect SEI space missions. Risks of chronic health problems were within acceptable public health limits. Our analysis indicates that current Space Station Freedom maximum contamination levels may be unnecessarily strict. We propose alternative environmental contaminant values consistent with both acceptable short and long-term crew health safety.
Inhalation of diethylamine--acute nasal effects and subjective response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundqvist, G.R.; Yamagiwa, M.; Pedersen, O.F.
1992-03-01
Adult volunteers were exposed to 25 ppm (75 mg/m3) diethylamine in a climate chamber for 15 min in order to study the acute nasal reactions to an exposure equivalent to the present threshold limit value-short-term exposure limit. Changes in nasal volume and nasal resistance were measured by acoustic rhinometry and by rhinomanometry. Acute change in nasal volume, usually seen as acute nasal mucosa response to thermal stimuli, was not observed, nor was an acute change in nasal airway resistance. In a subsequent experiment, the aim was to measure acute sensory effects. Exposure to a concentration increasing from 0 to 12more » ppm took place for 60 min, equal to an average concentration of 10 ppm (30 mg/m3). A moderate to strong olfactory response and distinct nasal and eye irritation were observed. In spite of considerable individual variation, the results were in agreement with sensory effect estimates obtained from animal studies.« less
Kapellusch, Jay M.; Garg, Arun; Bao, Stephen S.; Silverstein, Barbara A.; Burt, Susan E.; Dale, Ann Marie; Evanoff, Bradley A.; Gerr, Frederic E.; Harris-Adamson, Carisa; Hegmann, Kurt T.; Merlino, Linda A.; Rempel, David M.
2015-01-01
Pooling data from different epidemiological studies of musculoskeletal disorders (MSDs) is necessary to improve statistical power and to more precisely quantify exposure–response relationships for MSDs. The pooling process is difficult and time-consuming, and small methodological differences could lead to different exposure–response relationships. A subcommittee of a six-study research consortium studying carpal tunnel syndrome: (i) visited each study site, (ii) documented methods used to collect physical exposure data and (iii) determined compatibility of exposure variables across studies. Certain measures of force, frequency of exertion and duty cycle were collected by all studies and were largely compatible. A portion of studies had detailed data to investigate simultaneous combinations of force, frequency and duration of exertions. Limited compatibility was found for hand/wrist posture. Only two studies could calculate compatible Strain Index scores, but Threshold Limit Value for Hand Activity Level could be determined for all studies. Challenges of pooling data, resources required and recommendations for future researchers are discussed. PMID:23697792
Wolff, R K; Obminski, G; Newhouse, M T
1984-01-01
Nine steel workers participated in controlled exposures to sulphur dioxide alone and sulphur dioxide plus carbon dust (5 ppm and 10 mg/m3, respectively). All were experiencing work related respiratory difficulties. Bronchial clearance was measured using radioaerosol inhalations and external detection. Results were variable and no statistically significant changes were observed. One asthmatic showed a complete cessation of clearance during exposure to sulphur dioxide and carbon dust. Bronchial reactivity was found to be significantly raised after exposure to sulphur dioxide but equivocal results were found after exposure to sulphur dioxide and carbon dust. Pronounced changes in pulmonary function were seen only in the two asthmatic subjects. They could not tolerate the levels, indicating that these threshold limit values are too high, at least for these individuals who showed much greater sensitivity to the pollutants than the others. PMID:6498113
Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems
Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton
2012-01-01
Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600
Radiation risk estimation and its application to human beings in space.
Sinclair, W K
1984-01-01
The number of human beings likely to spend time in space will increase as time goes on. While exposures vary according to missions, orbits, shielding, etc., an average space radiation fluence (ignoring solar flares, radiation belts and anomalous regions in space) in locations close to earth is about 10 rad/year with a quality factor of about 5.5. The potential effects of exposure to these fluences include both non-stochastic effects and stochastic effects (cancer and genetic damage). Non-stochastic effects, damage to the lens of the eye, bone marrow or gonads, can be avoided by keeping radiation limits below threshold values. Stochastic effects imply risk at all levels. The magnitude of these risks has been discussed in a number of reports by the UNSCEAR Committee and the BEIR Committee in the USA during 1970-1980. The uncertainties associated with these risks and information which has become available since the last BEIR report is discussed. In considering reasonable limits for exposure in space, acceptable levels for stochastic risks must be based on appropriate comparisons. In view of the limited term of duty of most space workers, a lifetime limit may be appropriate. This lifetime limit might be comparable in terms of risks with limits for radiation workers on the ground but received at a higher annual rate for a shorter time. These and other approaches are expected to be considered by an NCRP Committee currently examining the problem of space radiation hazards.
Dolan, David G; Naumann, Bruce D; Sargent, Edward V; Maier, Andrew; Dourson, Michael
2005-10-01
A scientific rationale is provided for estimating acceptable daily intake values (ADIs) for compounds with limited or no toxicity information to support pharmaceutical manufacturing operations. These ADIs are based on application of the "thresholds of toxicological concern" (TTC) principle, in which levels of human exposure are estimated that pose no appreciable risk to human health. The same concept has been used by the US Food and Drug Administration (FDA) to establish "thresholds of regulation" for indirect food additives and adopted by the Joint FAO/WHO Expert Committee on Food Additives for flavoring substances. In practice, these values are used as a statement of safety and indicate when no actions need to be taken in a given exposure situation. Pharmaceutical manufacturing relies on ADIs for cleaning validation of process equipment and atypical extraneous matter investigations. To provide practical guidance for handling situations where relatively unstudied compounds with limited or no toxicity data are encountered, recommendations are provided on ADI values that correspond to three categories of compounds: (1) compounds that are likely to be carcinogenic, (2) compounds that are likely to be potent or highly toxic, and (3) compounds that are not likely to be potent, highly toxic or carcinogenic. Corresponding ADIs for these categories of materials are 1, 10, and 100 microg/day, respectively.
Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity
2015-01-01
Background Altitude and gravity changes during aeromedical evacuations induce exacerbated cardiovascular responses in unstable patients. Non-invasive cardiac output monitoring is difficult to perform in this environment with limited access to the patient. We evaluated the feasibility and accuracy of stroke volume estimation by finger photoplethysmography (SVp) in hypergravity. Methods Finger arterial blood pressure (ABP) waveforms were recorded continuously in ten healthy subjects before, during and after exposure to +Gz accelerations in a human centrifuge. The protocol consisted of a 2-min and 8-min exposure up to +4 Gz. SVp was computed from ABP using Liljestrand, systolic area, and Windkessel algorithms, and compared with reference values measured by echocardiography (SVe) before and after the centrifuge runs. Results The ABP signal could be used in 83.3% of cases. After calibration with echocardiography, SVp changes did not differ from SVe and values were linearly correlated (p<0.001). The three algorithms gave comparable SVp. Reproducibility between SVp and SVe was the best with the systolic area algorithm (limits of agreement −20.5 and +38.3 ml). Conclusions Non-invasive ABP photoplethysmographic monitoring is an interesting technique to estimate relative stroke volume changes in moderate and sustained hypergravity. This method may aid physicians for aeronautic patient monitoring. PMID:25798613
NASA Technical Reports Server (NTRS)
Evans, J. M.; Stenger, M. B.; Ferguson, C. R.; Ribiero, L. C.; Zhang, Q.; Moore, F. B.; Serrador, J.; Smith, J. D.; Knapp, C. F.
2014-01-01
We recently determined that a short exposure to artificial gravity (AG) improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects. We now seek to determine the mechanisms of that improvement in these hypovolemic men and women. Methods. We determined the orthostatic tolerance limit (OTL) of 9 men and 8 women following a 90 min exposure to AG compared to 90 min of head down bed rest (HDBR). In both cases (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide). Orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output and peripheral resistance (Finometer), cerebral artery blood velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) were measured during supine baseline, during OTL to presyncope and during supine recovery Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater on the day of AG exposure than on the HDBR day. Regression of OTL on these variables identified significant relationships on the HDBR day that were not evident on the AG day: resting TPR correlated positively while resting cerebral flow correlated negatively with OTL. On both days, women's resting stroke volume correlated positively with orthostatic tolerance. Higher group mean values of stroke volume and cerebral artery flow and lower values of blood pressure, peripheral vascular and cerebrovascular resistance both at control and during OTL testing were observed on the AG day. Even though regression of OTL on resting stroke volume was significant only in women, presyncopal stroke volume reached the same level on each day of study for both men and women while the OTL test lasted 30% longer in men and 22% longer in women. Cerebral artery flow appeared to follow stroke volume and absolute values of cerebral flow did not correlate with the development of presyncope. Women responded to AG exposure with elevated cerebral flow at resting control and throughout the OTL test, implying a loss of autoregulation in deconditioned (hypovolemic) women following AG exposure. Conclusions. Before countermeasures to space flight cardiovascular deconditioning are established, gender differences in cardiovascular responses to orthostatic stress, in general, and to orthostatic stress following exposure to artificial gravity, in particular, need to be determined. Since, in both men and women, a single, acute bout of AG exposure improved orthostatic tolerance, the feasibility of short exposures to AG during longer spaceflights or prior to entry into a gravity (Earth or Mars) environment, should be explored. Given the known beneficial effects of AG on other organ systems, the present study indicates that the positive effects of AG on cardiac stroke volume make AG a likely candidate for maintaining cardiovascular conditioning.
MPC and ALI: their basis and their comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, W.E. Jr.; Watson, E.C.
Radiation protection regulations in the United States have evolved from the recommendations of the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP). In 1959, the ICRP issued Publication 2 which contained specific recommendations on dose rate limits, permissible body burdens, metabolic data for radionuclides, and maximum permissible concentrations (MPC) in air or water. Over the next 20 years, new information became available concerning the effects of radiation, the uptake and retention of radionuclides, and the radioactive decay schemes of parent radionuclides. To include this newer information, the ICRP issued Publication 30 inmore » 1978 to supersede Publication 2. One of the secondary limits defined in Publication 30 is the annual limit of intake (ALI). Radionuclide specific ALI values are intended to replace MPC values in determining whether or not ambient air and water concentrations are sufficiently low to maintain the dose to workers within accepted dose rate limits. In this paper, we discuss the derivation of MPC and ALI values, compare inhalation committed dose equivalent factors derived from ICRP Publications 2 and 30, and discuss the practical implications of using either MPC or ALI in determining compliance with occupational exposure limits. 6 references.« less
Occupational Exposure to Crystalline Silica Dust in the United States, 1988–2003
Yassin, Abdiaziz; Yebesi, Francis; Tingle, Rex
2005-01-01
The purposes of this study were a) to summarize measurements of airborne (respirable) crystalline silica dust exposure levels among U.S. workers, b) to provide an update of the 1990 Stewart and Rice report on airborne silica exposure levels in high-risk industries and occupations with data for the time period 1988–2003, c) to estimate the number of workers potentially exposed to silica in industries that the Occupational Safety and Health Administration (OSHA) inspected for high exposure levels, and d) to conduct time trend analyses on airborne silica dust exposure levels for time-weighted average (TWA) measurements. Compliance inspection data that were taken from the OSHA Integrated Management Information System (IMIS) for 1988–2003 (n = 7,209) were used to measure the airborne crystalline silica dust exposure levels among U.S. workers. A second-order autoregressive model was applied to assess the change in the mean silica exposure measurements over time. The overall geometric mean of silica exposure levels for 8-hr personal TWA samples collected during programmed inspections was 0.077 mg/m3, well above the applicable American Conference of Governmental Industrial Hygienists threshold limit value of 0.05 mg/m3. Surgical appliances supplies industry [Standard Industrial Classification (SIC) 3842] had the lowest geometric mean silica exposure level of 0.017 mg/m3, compared with the highest level, 0.166 mg/m3, for the metal valves and pipe fitting industry (SIC 3494), for an 8-hr TWA measurement. Although a downward trend in the airborne silica exposure levels was observed during 1988–2003, the results showed that 3.6% of the sampled workers were exposed above the OSHA-calculated permissible exposure limit. PMID:15743711
Deveau, M.; Chen, C-P; Johanson, G.; Krewski, D.; Maier, A.; Niven, K. J.; Ripple, S.; Schulte, P. A.; Silk, J.; Urbanus, J. H.; Zalk, D. M.; Niemeier, R. W.
2015-01-01
Occupational exposure limits (OELs) serve as health-based benchmarks against which measured or estimated workplace exposures can be compared. In the years since the introduction of OELs to public health practice, both developed and developing countries have established processes for deriving, setting, and using OELs to protect workers exposed to hazardous chemicals. These processes vary widely, however, and have thus resulted in a confusing international landscape for identifying and applying such limits in workplaces. The occupational hygienist will encounter significant overlap in coverage among organizations for many chemicals, while other important chemicals have OELs developed by few, if any, organizations. Where multiple organizations have published an OEL, the derived value often varies considerably—reflecting differences in both risk policy and risk assessment methodology as well as access to available pertinent data. This article explores the underlying reasons for variability in OELs, and recommends the harmonization of risk-based methods used by OEL-deriving organizations. A framework is also proposed for the identification and systematic evaluation of OEL resources, which occupational hygienists can use to support risk characterization and risk management decisions in situations where multiple potentially relevant OELs exist. PMID:26099071
[Reference values for lead in blood in urban population in southern Brazil].
Paoliello, M M; Gutierrez, P R; Turini, C A; Matsuo, T; Mezzaroba, L; Barbosa, D S; Carvalho, S R; Alvarenga, A L; Rezende, M I; Figueiroa, G A; Leite, V G; Gutierrez, A C; Lobo, B C; Cascales, R A
2001-05-01
To describe the reference values for lead in blood in an urban population in the city of Londrina, in the state of Paraná, Brazil. The reference population was composed of 520 adult volunteers who were assessed from November 1994 to December 1996. Exclusion criteria were: occupational exposure to lead, exposure through personal habits or practices, smoking more than 10 cigarettes per day, and living near industrial plants or other places that use lead in their production processes. Also excluded were individuals with abnormal clinical or laboratory results or with chronic diseases or cardiovascular disorders. Lead blood levels were determined using air-acetylene flame atomic absorption spectrophotometry. The detectable limit was 1.23 micrograms/dL. After the analyses of lead in blood, the following values were determined: minimum value, first quartile, median, third quartile, and maximum value; geometric mean; 95% confidence interval; experimental interval; and reference value. The reference values for lead in blood ranged from 1.20 micrograms/dL to 13.72 micrograms/dL. The geometric mean was 5.5 micrograms/dL. In general, the values found in this study are lower than those that have been reported for other countries. Additional data should be gathered from Brazilian populations living in more-industrialized areas.
An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK.
Unwin, John; Cocker, John; Scobbie, Emma; Chambers, Helen
2006-06-01
A cross-industry occupational hygiene survey was commissioned by the Health and Safety Executive (HSE) to determine the levels of polycyclic aromatic hydrocarbon (PAH) exposure in UK industry and to determine if one or more target analytes were suitable as markers for assessing total exposure to PAHs. There were no broadly applicable UK exposure standards for assessing total exposure to PAHs. Until 1993 a guidance value for assessing exposure in coke ovens only, where PAH exposure is known to be the highest, was based on gravimetric analysis of cyclohexane-soluble material. Biological monitoring based on urinary 1-hydroxypyrene (1-OHP) is widely reported to be an effective indicator of exposure by both dermal and inhalation routes but there was no UK guidance value. The survey involved an occupational hygiene study of 25 sites using both airborne monitoring of a total of 17 individual PAHs and biological monitoring. The results showed 8 h TWA levels of total PAH in air ranged from 0.4 to 1912.6 microg m(-3) with a GM of 15.8 microg m(-3). The profile of PAHs was dominated by naphthalene, the most volatile 2-ring PAH. Airborne benzo(a)pyrene (BaP) correlated well (r(2) = 0.971) with levels of carcinogenic 4-6 ring PAHs and was an effective marker of exposure for all industries where significant particle bound PAH levels were found and, in particular, for CTPV exposure. The 8 h TWA levels of BaP ranged from <0.01 to 6.21 microg m(-3) with a GM of 0.036 microg m(-3); 90% were <0.75 microg m(-3) and 95% were <2.0 microg m(-3). Two hundred and eighteen urine samples collected from different workers at the end of shift and 213 samples collected pre-shift next day were analysed for 1-OHP. Levels of 1-OHP in end-of-shift samples were generally higher than those in pre-shift-next-day samples and showed a good correlation (r(2) = 0.768) to airborne BaP levels if samples from workers using respiratory protection or with significant dermal exposure were excluded. Urinary 1-OHP in end-of-shift samples ranged from the limit of detection (0.5 micromol mol(-1) creatinine) to 60 micromol mol(-1) creatinine with a mean of 2.49 micromol mol(-1) and a 90th percentile value of 6.7 micromol mol(-1) creatinine. The highest 1-OHP levels were found in samples from workers impregnating timber with creosote where exposure was dominated by naphthalene. If the 11 samples from these workers were excluded from the dataset, the 90% value for end-of-shift urine samples was 4 micromol mol(-1) creatinine (n = 207) and this value has since been adopted by the HSE as a biological monitoring benchmark value.
[Upper-limb work-related musculoskeletal disorders (UL-WMSDs) and latency of effect].
Nicoletti, S; Battevi, N
2008-01-01
Trends in work-related upper limb musculoskeletal disorders appear to be in constant increase in industrialized countries. In Europe claims and compensation for these disorders have significantly increased. The aim of this study was to investigate the temporal relationship between the beginning of occupational exposure to repetitive movements and exertions of upper limbs, assessed through the OCRA index, and the manifestation of the disorders. Clinical and questionnaire information about 557 cases of UL-WMSDs in the upholstered furniture industry were analyzed in order to investigate the mean latency period of the disorders and to verify to what extent different levels of exposure influence the latency time. The latency of UL-WMSDs is influenced by the level of exposure to risk, measured by means of the OCRA index. Shorter latency times were found for wrist/hand tendonitis, with a mean latency time of 5.4 years and with a greater sensitivity to the level of exposure assessed with the OCRA index value. This might support a sort of predictive value with reference to other UL-WMSDs with longer latency. Probably a latency period of 12 years may be suggested as the cut-off limit to assess a causal relationship between tendon or canalicular WMISDs and occupational exposure to repetitive movements and exertions of upper limbs.
Jeong, Jee Yeon; Park, Jong Su; Kim, Pan Gyi
2016-06-01
Shipbuilding involves intensive welding activities, and welders are exposed to a variety of metal fumes, including manganese, that may be associated with neurological impairments. This study aimed to characterize total and size-fractionated manganese exposure resulting from welding operations in shipbuilding work areas. In this study, we characterized manganese-containing particulates with an emphasis on total mass (n = 86, closed-face 37-mm cassette samplers) and particle size-selective mass concentrations (n = 86, 8-stage cascade impactor samplers), particle size distributions, and a comparison of exposure levels determined using personal cassette and impactor samplers. Our results suggest that 67.4% of all samples were above the current American Conference of Governmental Industrial Hygienists manganese threshold limit value of 100 μg/m(3) as inhalable mass. Furthermore, most of the particles containing manganese in the welding process were of the size of respirable particulates, and 90.7% of all samples exceeded the American Conference of Governmental Industrial Hygienists threshold limit value of 20 μg/m(3) for respirable manganese. The concentrations measured with the two sampler types (cassette: total mass; impactor: inhalable mass) were significantly correlated (r = 0.964, p < 0.001), but the total concentration obtained using cassette samplers was lower than the inhalable concentration of impactor samplers.
Van de Perre, Evelien; Jacxsens, Liesbeth; Lachat, Carl; El Tahan, Fouad; De Meulenaer, Bruno
2015-01-01
In this study the impact of setting European criteria on exposure to aflatoxin B1 via nuts and figs and ochratoxin A via dried fruits is evaluated for the Belgian population, as an example of the European population. Two different scenarios were evaluated. In scenario 1 all collected literature data are considered, assuming that there is no border control nor legal limits in Europe. In the second scenario, contamination levels above the maximum limits are excluded. The results from scenario 1 demonstrated that if no regulation is in place, AFB1 and OTA concentrations reported in the analysed food can have potential health risk to the population. The estimated exposure of OTA for scenario 2 is below the TDI of 5 ng/kg BW⋅day, indicating that OTA concentrations accepted by EU legislation pose a low risk to the Belgian population. For AFB1, the MOE values of scenario 2 are above 10,000 and can be considered to be of low health concern, based on BDML10 for humans, except for figs (MOE = 5782). This means that for all matrices, with exception of figs, the maximum values of AFB1 in the European legislation are sufficient to be of a low health concern for consumers. Copyright © 2014. Published by Elsevier Ltd.
Total fume and metal concentrations during welding in selected factories in Jeddah, Saudi Arabia.
Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid
2010-07-01
Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder's health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers' welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m(3) (Factory 1), 5.3 mg/m(3) (Factory 2), 11.3 mg/m(3) (Factory 3), 6.8 mg/m(3) (Factory 4), 4.7 mg/m(3) (Factory 5), and 3.0 mg/m(3) (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m(3)-0.477 mg/m(3), 0.001 mg/m(3)-0.080 mg/m(3) and 0.001 mg/m(3)-0.058 mg/m(3) respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems.
Uddh-Söderberg, Terese E; Gunnarsson, Sara J; Hogmalm, K Johan; Lindegård, M I Boel G; Augustsson, Anna L M
2015-12-01
The health risk posed by arsenic in vegetables grown in private gardens near 22 contaminated glassworks sites was investigated in this study. Firstly, vegetable (lettuce and potato) and soil samples were collected and arsenic concentrations measured to characterize the arsenic uptake in the selected crops. Secondly, a probabilistic exposure assessment was conducted to estimate the average daily intake (ADIveg), which was then evaluated against toxicological reference values by the calculation of hazard quotients (HQs) and cancer risks (CRs). The results show that elevated arsenic concentrations in residential garden soils are mirrored by elevated concentrations in vegetables, and that consumption of these vegetables alone may result in an unacceptable cancer risk; the calculated reasonable maximum exposure, for example, corresponded to a cancer incidence 20 times higher than the stated tolerance limit. However, the characterization of risk depends to a great extent on which toxicological reference value is used for comparison, as well as how the exposure is determined. Based on the assumptions made in the present study, the threshold levels for chronic non-carcinogenic or acute effects were not exceeded, but the cancer risks indicated highlight the need for further exposure studies, as dietary intake involves more than just homegrown vegetables and total exposure is a function of more than just one exposure pathway. In addition, glassworks sites--and contaminated sites in general--contain multiple contaminants, affecting the final and total risk. Copyright © 2015. Published by Elsevier B.V.
Boogaard, P J; van Sittert, N J
1994-01-01
Biological monitoring of exposure of workers to polycyclic aromatic hydrocarbons (PAHs) in petrochemical industries was performed by the measurement of urinary excretion of 1-hydroxypyrene. In 121 of the 462 workers studied (both smokers and non-smokers) who had had no recent occupational exposure to PAHs a median 1-hydroxypyrene concentration of 0.21 micrograms/g creatinine was found. The upper limit of the 95% confidence interval in these workers of 0.99 micrograms/g creatinine was used as the upper normal value for industrial workers. Urinary 1-hydroxypyrene concentrations were measured in workers involved in manufacture and maintenance operations in oil refineries (13 studies in eight different settings), in workers manufacturing or handling products containing PAHs in chemical plants (five studies in three settings) and laboratories (four studies), and in workers digging soil contaminated with PAHs (three studies). In most studies in oil refineries 1-hydroxypyrene concentrations were only marginally greater than the values measured in the 121 workers with no recent occupational exposure to PAHs. This was also the case in maintenance operations with higher potential exposure to PAHs, indicating that personal protection equipment was generally adequate to prevent excessive exposure. The studies in chemical plants also showed that exposure to PAHs is low. An exception was the workers engaged in the production of needle coke from ethylene cracker residue, where increased urinary 1-hydroxypyrene concentrations were measured. The excretion of 1-hydroxypyrene by the operators and maintenance workers of this plant was investigated in relation to potential methods of exposure to PAHs. Dermal and inhalatory exposure were both significant determinants of exposure to PAHs. PMID:8199667
NASA Astrophysics Data System (ADS)
Schmid, Gernot; Hirtl, Rene
2016-06-01
The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the current-limiting effect of the low-conductivity stratum corneum layer.
Traffic-related particulate air pollution exposure in urban areas
NASA Astrophysics Data System (ADS)
Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.
In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.
Peştean, Claudiu; Larg, Maria Iulia; Bărbuş, Elena; Bădulescu, Claudiu; Piciu, Doina
2018-01-01
Sentinel lymph-node scintigraphy is a useful method for accurate staging of different tumors and a helpful tool in personalized therapy for oncological patients. The radiation exposure for surgical staff has been a concern since the sentinel lymph-node detection method was developed. The objective of the study was to determine and quantify the exposure to radiation of the non-dominant index for the surgeon performing sentinel lymph-node removal and to determine, if there is an irradiation risk imposed during the surgical procedure. We performed a study over a period of one year, where we evaluated the exposure of surgeon's non-dominant index during 196 sentinel lymph-node removal procedures. The pharmaceutical was administrated via subcutaneous injection in four peritumoral or perilesional injection sites. The equipment we used consisted of EuroProbe3 for sentinel lymph-node detection and ring TLD dosimeter placed on the surgeon's non-dominant index. The clinical distribution was: 104 melanomas, 84 breast carcinomas, 6 vulvar carcinomas and 2 penial carcinomas. The administered activity showed an average of 39.55 MBq (SD ± 1.96) Tc-99m nanoalbumin compound. The non-dominant index exposure ranged between 0.10 mSv and 0.13 mSv/month with a cumulative dose of 1.31 mSv/year, thus 6.69 µSv per procedure. The surgeon received a minimal dose for the non-dominant index. The values we recorded did not pose any additional concerns or restrictions, the exposure being under the limits and constraints established by regulations, close to the detectability limit of the dosimeter. The procedure is safe in terms of radiation protection, respecting the limitation and optimization principles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Options for legal measures to reduce acrylamide contents in the most relevant foods.
Grob, K
2007-01-01
Options of taking measures for reducing acrylamide exposure are discussed from the viewpoint of health authorities. To achieve a significant effect on total exposure (without changing eating habits), a substantial reduction must be accomplished for the foods contributing most to total intake. Priority should be given to consumers with high exposure, which means that the average intake profile is not relevant, but high consumption of products with high acrylamide contents is relevant. Rather than introducing legal limits on acrylamide in the end-products, more basic factors determining acrylamide formation should be brought under control. Five measures are proposed. (1) For the preparation of fried and roasted products, potatoes low in reducing sugars should be made available to households and commercial outlets. (2) The content of reducing sugars in prefabricates for French fries should be limited. (3) Newly installed fryers should control the temperature profile from an initially high to a lower final value. (4) The use of ammonium carbonate in bakery products should be restricted. (5) There should be provisions to intervene if an acrylamide content clearly exceeds the level determined by good manufacturing practice and the products involved substantially contribute to total exposure in cases of high consumption.
Ototoxic occupational exposures for a stock car racing team: I. Noise surveys.
Van Campen, Luann E; Morata, Thais; Kardous, Chucri A; Gwin, Kristin; Wallingford, Kenneth M; Dallaire, Jacques; Alvarez, Frank J
2005-08-01
The National Institute for Occupational Safety and Health (NIOSH) surveyed noise exposure for a professional stock car team at their race shop and during two races at one racetrack. At the team's shop, area sound pressure levels (SPLs) were measured for various work tasks. Equivalent levels (Leqs) ranged from 58 to 104 decibels, A-weighted (dBA). Personal noise dosimetry was conducted for at least one employee for each job description in race car assembly (n = 9). The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 90 dBA for an 8-hour, 5-dB exchange rate time-weighted average (TWA) was never exceeded, but in two instances values exceeded OSHA's action level of 85 dBA for hearing conservation implementation. The NIOSH recommended exposure limit (REL) of 85 dBA for a 3-dB exchange rate Leq was exceeded for five of the measured jobs. During the races, SPLs averaged above 100 dBA in the pit area where cars undergo adjustments/refueling, both before and during the race. Peak levels reached 140 dB SPL. NIOSH REL was exceeded for every personal noise dosimetry measurement. Recommendations for hearing protection and communication are presented.
Neumann, H G; Vamvakas, S; Thielmann, H W; Gelbke, H P; Filser, J G; Reuter, U; Greim, H; Kappus, H; Norpoth, K H; Wardenbach, P; Wichmann, H E
1998-11-01
Carcinogenic chemicals in the work area are currently classified into three categories in section III of the German List of MAK and BAT Values (list of values on maximum workplace concentrations and biological tolerance for occupational exposures). This classification is based on qualitative criteria and reflects essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. It is proposed that these categories - IIIA1, IIIA2, IIIB - be retained as Categories 1, 2, and 3, to correspond with European Union regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, these three categories are supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not contribute significantly to risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. Chemicals known to act typically by nongenotoxic mechanisms and for which information is available that allows evaluation of the effects of low-dose exposures, are classified in Category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose-response relationships and toxicokinetics, and for which risk at low doses can be assessed are classified in Category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for Category 4 (1,4-dioxane) and Category 5 (styrene) are presented.
Neumann, H G; Thielmann, H W; Filser, J G; Gelbke, H P; Greim, H; Kappus, H; Norpoth, K H; Reuter, U; Vamvakas, S; Wardenbach, P; Wichmann, H E
1998-01-01
Carcinogenic chemicals in the work area were previously classified into three categories in section III of the German List of MAK and BAT values (the list of values on maximum workplace concentrations and biological tolerance for occupational exposures). This classification was based on qualitative criteria and reflected essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. In the new classification scheme the former sections IIIA1, IIIA2, and IIIB are retained as categories 1, 2, and 3, to correspond with European Union regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, these three categories are supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not contribute significantly to the risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. Chemicals known to act typically by non-genotoxic mechanisms, and for which information is available that allows evaluation of the effects of low-dose exposures, are classified in category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose/response relationships and toxicokinetics and for which risk at low doses can be assessed are classified in category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for category 4 (1,4-dioxane) and category 5 (styrene) are presented.
Georgopoulos, Panos G; Sasso, Alan F; Isukapalli, Sastry S; Lioy, Paul J; Vallero, Daniel A; Okino, Miles; Reiter, Larry
2009-02-01
A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical "inversion" techniques. To quantify the value of different types of exposure data "accompanying" biomarker data, a study was conducted focusing on reconstructing exposures to chlorpyrifos, from measurements of its metabolite levels in urine. The study employed biomarker data as well as supporting exposure-related information from the National Human Exposure Assessment Survey (NHEXAS), Maryland, while the MENTOR-3P system (Modeling ENvironment for TOtal Risk with Physiologically based Pharmacokinetic modeling for Populations) was used for PBTK modeling. Recently proposed, simple numerical reconstruction methods were applied in this study, in conjunction with PBTK models. Two types of reconstructions were studied using (a) just the available biomarker and supporting exposure data and (b) synthetic data developed via augmenting available observations. Reconstruction using only available data resulted in a wide range of variation in estimated exposures. Reconstruction using synthetic data facilitated evaluation of numerical inversion methods and characterization of the value of additional information, such as study-specific data that can be collected in conjunction with the biomarker data. Although the NHEXAS data set provides a significant amount of supporting exposure-related information, especially when compared to national studies such as the National Health and Nutrition Examination Survey (NHANES), this information is still not adequate for detailed reconstruction of exposures under several conditions, as demonstrated here. The analysis presented here provides a starting point for introducing improved designs for future biomonitoring studies, from the perspective of exposure reconstruction; identifies specific limitations in existing exposure reconstruction methods that can be applied to population biomarker data; and suggests potential approaches for addressing exposure reconstruction from such data.
Batke, Sven P; Jocque, Merlijn; Kelly, Daniel L
2014-01-01
High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%.
Batke, Sven P.; Jocque, Merlijn; Kelly, Daniel L.
2014-01-01
High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS’s were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%. PMID:24614168
Contributions of non-occupational activities to total noise exposure of construction workers.
Neitzel, Richard; Seixas, Noah; Goldman, Bryan; Daniell, William
2004-07-01
This paper describes how exposures received during routine and episodic non-occupational activities contribute to total noise exposure in a group of occupationally exposed workers. Two-hundred and sixty-six construction apprentices enrolled in a longitudinal hearing loss study and completed questionnaires at 1 yr of follow-up to determine their episodic activities (e.g. concert attendance, power tool use, firearms exposure). Noise exposure levels for these episodic exposures were determined from the published literature. Routine activities were assessed using activity cards filled out over 530 subject-days, along with noise dosimetry measurements made over 124 subject-days of measurement. Equivalent Leq exposure levels were then calculated for specific activities. These activity-specific Leq values were combined into estimated individual annual Leq exposure levels for the 6760 nominal annual non-occupational hours in a year (LAeq6760h), which were then transformed into equivalent levels for a 2000 h exposure period (LA2000hn) for comparison with occupational noise exposure risk criteria. The mean non-occupational LAeq6760h exposure values for the cohort ranged from 56 to 87 dBA (equivalent LA2000hn 62-93 dBA). At the mid range of the routine and episodic activity exposure level distribution, the mean LAeq6760h was 73 dBA (LA2000hn 78 dBA). Nineteen percent of the LA2000hn non-occupational exposures exceeded 85 dBA, the generally recommended occupational limit for a 2000 h workyear, at the mid-range of exposure levels. Due to a lack of available data, firearms use could not be incorporated into the total noise exposure estimates. However, firearms users reported more exposure to other noisy non-occupational activities and had statistically significantly higher estimated exposure levels even without including their firearms exposure than did non-shooters. When compared with the high levels of occupational noise found in construction, non-occupational noise exposures generally present little additional exposure for most workers. However, they may contribute significantly to overall exposure in the subset of workers who frequently participate in selected noisy activities.
Subcellular Biological Effects of Nanosecond Pulsed Electric Fields
NASA Astrophysics Data System (ADS)
Kolb, Juergen F.; Stacey, Michael
Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.
Antiorthostatic test as a model to study antigravity mechanisms of the cardiovascular system.
Yarullin, K K; Vasilyeva, T D; Alekseev, D A
1976-01-01
The paper presents rheographic investigations of regional haemodynamics (brain, lungs, liver and limbs) during antiorthostatic exposures of varying intensity (-15, -30, -45 degrees, times of exposure 20, 40 and 60 min). Our findings show that the pattern and time of the function of compensatory mechanisms preventing excessive vascular compliance [correction of complicance] under the influence of the hydrostatic blood column depend on the value and length of antiorthostasis, because prolonged venous congestion results not only in congestive circulatory hypoxia but also in arterial hypoxia due to compensatory limitation of arterial inflow.
Lee, Eun Gyung; Slaven, James; Bowen, Russell B.; Harper, Martin
2011-01-01
The Control of Substances Hazardous to Health (COSHH) Essentials model was evaluated using full-shift exposure measurements of five chemical components in a mixture [acetone, ethylbenzene, methyl ethyl ketone, toluene, and xylenes] at a medium-sized plant producing paint materials. Two tasks, batch-making and bucket-washing, were examined. Varying levels of control were already established in both tasks and the average exposures of individual chemicals were considerably lower than the regulatory and advisory 8-h standards. The average exposure fractions using the additive mixture formula were also less than unity (batch-making: 0.25, bucket-washing: 0.56) indicating the mixture of chemicals did not exceed the combined occupational exposure limit (OEL). The paper version of the COSHH Essentials model was used to calculate a predicted exposure range (PER) for each chemical according to different levels of control. The estimated PERs of the tested chemicals for both tasks did not show consistent agreement with exposure measurements when the comparison was made for each control method and this is believed to be because of the considerably different volatilities of the chemicals. Given the combination of health hazard and exposure potential components, the COSHH Essentials model recommended a control approach ‘special advice’ for both tasks, based on the potential reproductive hazard ascribed to toluene. This would not have been the same conclusion if some other chemical had been substituted (for example styrene, which has the same threshold limit value as toluene). Nevertheless, it was special advice, which had led to the combination of hygienic procedures in place at this plant. The probability of the combined exposure fractions exceeding unity was 0.0002 for the batch-making task indicating that the employees performing this task were most likely well protected below the OELs. Although the employees involved in the bucket-washing task had greater potential to exceed the threshold limit value of the mixture (P > 1 = 0.2375), the expected personal exposure after adjusting for the assigned protection factor for the respirators in use would be considerably lower (P > 1 = 0.0161). Thus, our findings suggested that the COSHH essentials model worked reasonably well for the volatile organic chemicals at the plant. However, it was difficult to override the reproductive hazard even though it was meant to be possible in principle. Further, it became apparent that an input of existing controls, which is not possible in the web-based model, may have allowed the model be more widely applicable. The experience of using the web-based COSHH Essentials model generated some suggestions to provide a more user-friendly tool to the model users who do not have expertise in occupational hygiene. PMID:21047985
Lee, Eun Gyung; Slaven, James; Bowen, Russell B; Harper, Martin
2011-01-01
The Control of Substances Hazardous to Health (COSHH) Essentials model was evaluated using full-shift exposure measurements of five chemical components in a mixture [acetone, ethylbenzene, methyl ethyl ketone, toluene, and xylenes] at a medium-sized plant producing paint materials. Two tasks, batch-making and bucket-washing, were examined. Varying levels of control were already established in both tasks and the average exposures of individual chemicals were considerably lower than the regulatory and advisory 8-h standards. The average exposure fractions using the additive mixture formula were also less than unity (batch-making: 0.25, bucket-washing: 0.56) indicating the mixture of chemicals did not exceed the combined occupational exposure limit (OEL). The paper version of the COSHH Essentials model was used to calculate a predicted exposure range (PER) for each chemical according to different levels of control. The estimated PERs of the tested chemicals for both tasks did not show consistent agreement with exposure measurements when the comparison was made for each control method and this is believed to be because of the considerably different volatilities of the chemicals. Given the combination of health hazard and exposure potential components, the COSHH Essentials model recommended a control approach 'special advice' for both tasks, based on the potential reproductive hazard ascribed to toluene. This would not have been the same conclusion if some other chemical had been substituted (for example styrene, which has the same threshold limit value as toluene). Nevertheless, it was special advice, which had led to the combination of hygienic procedures in place at this plant. The probability of the combined exposure fractions exceeding unity was 0.0002 for the batch-making task indicating that the employees performing this task were most likely well protected below the OELs. Although the employees involved in the bucket-washing task had greater potential to exceed the threshold limit value of the mixture (P > 1 = 0.2375), the expected personal exposure after adjusting for the assigned protection factor for the respirators in use would be considerably lower (P > 1 = 0.0161). Thus, our findings suggested that the COSHH essentials model worked reasonably well for the volatile organic chemicals at the plant. However, it was difficult to override the reproductive hazard even though it was meant to be possible in principle. Further, it became apparent that an input of existing controls, which is not possible in the web-based model, may have allowed the model be more widely applicable. The experience of using the web-based COSHH Essentials model generated some suggestions to provide a more user-friendly tool to the model users who do not have expertise in occupational hygiene.
Mueller, Mario J; Stevenson, Graham R
2005-01-01
Increasing projected values of the circulating beam intensity in the Super Proton Synchrotron (SPS) and decreasing limits to radiation exposure, taken with the increasing non-acceptance of unjustified and unoptimised radiation exposures, have led to the need to re-assess the shielding between the ECX and ECA5 underground experimental areas of the SPS. Twenty years ago, these experimental areas at SPS-Point 5 housed the UA1 experiment, where Carlo Rubbia and his team verified the existence of W and Z bosons. The study reported here describes such a re-assessment based on simulations using the multi-purpose FLUKA radiation transport code. This study concludes that while the main shield which is made of concrete blocks and is 4.8 m thick satisfactorily meets the current design limits even at the highest intensities presently planned for the SPS, dose rates calculated for liaison areas on both sides of the main shield significantly exceed the design limits. Possible ways of improving the shielding situation are discussed.
Axten, Charles W; Fayerweather, William E; Trumbore, David C; Mueller, Dennis J; Sampson, Arthur F
2012-01-01
This study extends by 8 years (1998-2005) a previous survey of asphalt fume exposures within North American asphalt processing and roofing product manufacturing workers. It focuses on characterizing personal, full-shift samples and seeks to address several limitations of the previous survey. Five major roofing manufacturers with established occupational health programs submitted workplace asphalt fume sampling results to a central repository for review and analysis. A certified industrial hygienist-led quality assurance team oversaw the data collection, consolidation, and analysis efforts. The analysis dataset consisted of 1261 personal exposure samples analyzed for total particulate (TP) and benzene soluble fraction (BSF) using existing NIOSH methods. For BSF, the survey's arithmetic (0.25 mg/m(3), SD = 0.62) and geometric (0.12 mg/m(3), GSD = 2.88) means indicate that the industry has sustained the control levels achieved in the late 1980s, early 1990s. Similar results were found for TP. The survey-wide summary statistics are consistent with other post-1990 multi-company exposure studies. Although these findings indicate that currently available controls are capable of achieving substantial (95%) compliance with the current threshold limit value in asphalt processing and inorganic shingle and roll plants, they also show that the majority of plants are not achieving this level of exposure control, and that exposures are significantly higher in plants making other product lines, particularly organic felt products. The current retrospective survey of existing company exposure data, like its predecessor, has several important limitations. These include lack of data on smaller manufacturers and on several commercially important product lines; insufficient information on the prevalence and effectiveness of engineering controls; no standard criteria by which to define and assess exposures in non-routine operations; and a paucity of exposure data collected as part of a random sampling strategy. To improve efforts to characterize exposures and potential health risks in roofing plants, a prospective program is currently being developed and piloted with the aim of building a more complete, higher-quality database based on a common industrial hygiene protocol.
Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L
2001-11-01
Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.
Fromme, Hermann; Schwarzbauer, Jan; Lahrz, Thomas; Kraft, Martin; Fembacher, Ludwig
2017-04-01
For decades, plasticizers have been produced in high quantities to improve the flexibility and durability of products. One possible replacement product is alkylsulfonic acid phenylesters (ASEs), marketed as Mesamoll ® . This study aimed to quantify the ASE dust contamination of residences and daycare centers to obtain insight into the recent exposure situation. ASEs were quantified in dust samples collected from 25 residences and 25 daycare centers using GC/MS measurements. Median (95th percentile) values of the sum of tetra- to heptadecylphenylesters are higher in daycare centers, with a value of 19.6mg/kg (216mg/kg), compared to residences, with a value of 7.6mg/kg (171mg/kg). A daily non-dietary intake of 0.08 and 0.86μg/kg b.w., respectively, was observed using the median and 95th percentile values obtained from dust samples. These levels are 1250 and 115 times below a previously set temporary tolerable daily intake value. Nevertheless, the fact that basic data on toxicity and exposure via other pathways are limited or unavailable at present has to be considered. Copyright © 2016 Elsevier GmbH. All rights reserved.
Abualfaraj, Noura; Olson, Mira S.
2018-01-01
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10−6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10−6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10−6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts. PMID:29641504
Abualfaraj, Noura; Gurian, Patrick L; Olson, Mira S
2018-04-11
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10 -6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10 -6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10 -6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts.
Moolla, Raeesa; Curtis, Christopher J; Knight, Jasper
2015-12-15
Of increasing concern is pollution by volatile organic compounds, with particular reference to five aromatic hydrocarbons (benzene, toluene, ethyl benzene and two isomeric xylenes; BTEX). These pollutants are classified as hazardous air pollutants. Due to the potential health risks associated with these pollutants, BTEX concentrations were monitored at a bus diesel-refueling bay, in Johannesburg, South Africa, using gas chromatography, coupled with a photo-ionization detector. Results indicate that o-xylene (29-50%) and benzene (13-33%) were found to be the most abundant species of total BTEX at the site. Benzene was within South African occupational limits, but above international occupational exposure limits. On the other hand, occupational concentrations of toluene, ethyl-benzene and xylenes were within national and international occupational limits throughout the monitoring period, based on 8-hour workday weighted averages. Ethyl-benzene and p-xylene concentrations, during winter, correspond to activity at the site, and thus idling of buses during refueling may elevate results. Overall, occupational air quality at the refueling bay is a matter of health concern, especially with regards to benzene exposure, and future reduction strategies are crucial. Discrepancies between national and international limit values merit further investigation to determine whether South African guidelines for benzene are sufficiently precautionary. Copyright © 2015 Elsevier B.V. All rights reserved.
Smolensky, Michael H; Reinberg, Alain E; Sackett-Lundeen, Linda
2017-01-01
The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can easily identify intolerance before induction of pathology.
Pesticide exposures and chronic kidney disease of unknown etiology: an epidemiologic review.
Valcke, Mathieu; Levasseur, Marie-Eve; Soares da Silva, Agnes; Wesseling, Catharina
2017-05-23
The main causes of chronic kidney disease (CKD) globally are diabetes and hypertension but epidemics of chronic kidney disease of unknown etiology (CKDu) occur in Central America, Sri Lanka, India and beyond. Althoug also being observed in women, CKDu concentrates among men in agricultural sectors. Therefore, suspicions fell initially on pesticide exposure, but currently chronic heat stress and dehydration are considered key etiologic factors. Responding to persistent community and scientific concerns about the role of pesticides, we performed a systematic review of epidemiologic studies that addressed associations between any indicator of pesticide exposure and any outcome measure of CKD. Of the 21 analytical studies we identified, seven were categorized as with low, ten with medium and four with relatively high explanation value. Thirteen (62%) studies reported one or more positive associations, but four had a low explanation value and three presented equivocal results. The main limitations of both positive and negative studies were unspecific and unquantified exposure measurement ('pesticides'), the cross-sectional nature of most studies, confounding and selection bias. The four studies with stronger designs and better exposure assessment (from Sri Lanka, India and USA) all showed exposure-responses or clear associations, but for different pesticides in each study, and three of these studies were conducted in areas without CKDu epidemics. No study investigated interactions between pesticides and other concommittant exposures in agricultural occupations, in particular heat stress and dehydration. In conclusion, existing studies provide scarce evidence for an association between pesticides and regional CKDu epidemics but, given the poor pesticide exposure assessment in the majority, a role of nephrotoxic agrochemicals cannot be conclusively discarded. Future research should procure assessment of lifetime exposures to relevant specific pesticides and enough power to look into interactions with other major risk factors, in particular heat stress.
Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India.
Krishnamurthy, Manikandan; Ramalingam, Paramesh; Perumal, Kumaravel; Kamalakannan, Latha Perumal; Chinnadurai, Jeremiah; Shanmugam, Rekha; Srinivasan, Krishnan; Venugopal, Vidhya
2017-03-01
Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Some 90% WBGT measurements were higher than recommended threshold limit values (27.2-41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ 2 = 26.1258, degrees of freedom = 1, p < 0.001). Change in urine color was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs). Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers' health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.
Geraets, Liesbeth; Zeilmaker, Marco J; Bos, Peter M J
2018-01-05
Human health risk assessment of inhalation exposures generally includes a high-to-low concentration extrapolation. Although this is a common step in human risk assessment, it introduces various uncertainties. One of these uncertainties is related to the toxicokinetics. Many kinetic processes such as absorption, metabolism or excretion can be subject to saturation at high concentration levels. In the presence of saturable kinetic processes of the parent compound or metabolites, disproportionate increases in internal blood or tissue concentration relative to the external concentration administered may occur resulting in nonlinear kinetics. The present paper critically reviews human health risk assessment of inhalation exposure. More specific, it emphasizes the importance of kinetic information for the determination of a safe exposure in human risk assessment of inhalation exposures assessed by conversion from a high animal exposure to a low exposure in humans. For two selected chemicals, i.e. methyl tert-butyl ether and 1,2-dichloroethane, PBTK-modelling was used, for illustrative purposes, to follow the extrapolation and conversion steps as performed in existing risk assessments for these chemicals. Human health-based limit values based on an external dose metric without sufficient knowledge on kinetics might be too high to be sufficiently protective. Insight in the actual internal exposure, the toxic agent, the appropriate dose metric, and whether an effect is related to internal concentration or dose is important. Without this, application of assessment factors on an external dose metric and the conversion to continuous exposure results in an uncertain human health risk assessment of inhalation exposures. Copyright © 2017 Elsevier B.V. All rights reserved.
Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E
2017-07-01
There are times when it is not practical to assess heat stress using environmental metrics and metabolic rate, and heat strain may provide an alternative approach. Heat strain indicators have been used for decades as tools for monitoring physiological responses to work in hot environments. Common indicators of heat strain are body core temperature (assessed here as rectal temperature Tre), heart rate (HR), and average skin temperature (Tsk). Data collected from progressive heat stress trials were used to (1) demonstrate if physiological heat strain indicators (PHSIs) at the upper limit of Sustainable heat stress were below generally accepted limits; (2) suggest values for PHSIs that demonstrate a Sustainable level of heat stress; (3) suggest alternative PHSIs; and (4) determine if metabolic rate was an effect modifier. Two previous progressive heat stress studies included 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants. To assess the discrimination ability of PHSIs, conditional logistic regression and stepwise logistic regression were used to find the best combinations of predictors of Unsustainable exposures. The accuracy of the models was assessed using receiver operating characteristic curves. Current recommendations for physiological heat strain limits were associated with probabilities of Unsustainable greater than 0.5. Screening limits for Sustainable heat stress were Tre of 37.5°C, HR of 105 bpm, and Tsk of 35.8°C. Tsk alone resulted in an area under the curve of 0.85 and the combination of Tsk and HR (area under the curve = 0.88) performed the best. The adjustment for metabolic rate was statistically significant for physiological strain index or ∆Tre-sk as main predictors, but its effect modification was negligible and could be ignored. Based on the receiver operating characteristic curve, PHSIs (Tre, HR, and Tsk) can accurately predict Unsustainable heat stress exposures. Tsk alone or in combination with HR has a high sensitivity, and makes better discriminations than the other PHSIs under relatively constant exposure (metabolic rate and environment) for an hour or so. Screening limits with high sensitivity, however, have low thresholds that limit utility. To the extent that the observed strain is low, there is good evidence that the exposure is Sustainable. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Radiation exposure to the eye lens of orthopaedic surgeons during various orthopaedic procedures.
Romanova, K; Vassileva, J; Alyakov, M
2015-07-01
The aim of the present study was to assess the radiation dose to the eye lens of orthopaedic surgeons during various orthopaedic procedures and to make efforts to ensure that radiation protection is optimised. The study was performed for Fractura femoris and Fractura cruris procedures performed in orthopaedic operating theatres, as well as for fractures of wrist, ankle and hand/shoulder performed in the emergency trauma room. The highest mean value of the eye lens dose of 47.2 μSv and higher mean fluoroscopy time of 3 min, as well as the corresponding highest maximum values of 77.1 μSv and 5.0 min were observed for the Fractura femoris procedure performed with the Biplanar 500e fluoroscopy systems. At a normal workload, the estimated mean annual dose values do not exceed the annual occupational dose limit for the lens of eye, but at a heavy workload in the department, this dose limit could be achieved or exceeded. The use of protective lead glasses is recommended as they could reduce the radiation exposure of the lens of the eye. The phantom measurements demonstrated that the use of half-dose mode could additionally reduce dose to the operator's eye lens. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.
Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco
2016-03-01
The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Exposure and inhalation risk assessment in an aluminium cast-house.
Godderis, L; Vanderheyden, W; Van Geel, J; Moens, G; Masschelein, R; Veulemans, H
2005-12-01
To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.
Pourabedian, Siyamak; Barkhordari, Abdullah; Habibi, Ehsanallah; Rismanchiyan, Masoud; Zare, Mohsen
2010-06-01
The aim of this study was to investigate the effects of occupational exposure to 1,6-hexamethylene diisocyanate (HDI) on peak flowmetry in automobile body paint shop workers in Iran. We studied a population of 43 car painters exposed to HDI at their workplaces. Peak expiratory flow was tested for one working week, from the start to the end of each shift. Air was sampled and HDI analysed in parallel, according to the OSHA 42 method. Daily and weekly HDI exposure averages were (0.42+/-0.1) mg m(-3) and (0.13+/-0.05) mg m(-3), respectively. On painting days, 72 % of workers showed more than a 10 % variation in peak expiratory flow. Inhalation exposure exceeded the threshold limit value (TLV) ten times over. This strongly suggests that HDI affected the peak flowmetry in the studied workers.
Keen, C; Coldwell, M; McNally, K; Baldwin, P; McAlinden, J; Cocker, J
2012-08-13
This is a follow up survey of exposure to 4,4'-methylene-bis(2-chloroaniline) (MbOCA) and isocyanates in the UK polyurethane industry. Urine samples (n=446) were collected from 90 different workers. MbOCA levels were below the limit of detection in 170 samples and 26 were above the UK Biological Monitoring Guidance Value (BMGV) of 15 μmol MbOCA/mol creatinine. Detailed advice and guidance was given to each workplace at the end of the survey in 2008 and the 90% value reduced from 10 to 3 μmol MbOCA/mol creatinine in samples collected since. There was a positive correlation between glove contamination and urinary MbOCA and levels were dependent upon individual working practices especially how gloves were used. Of the 446 samples analysed for urinary metabolites of toluene diisocyanate 280 were below the detection limit and 126 were above the BMGV (1 μmol/mol creatinine). Of the 326 urine samples that were analysed for metabolites of methylenediphenyl diisocyanate, 270 were below the detection limit and 13 were above the BMGV for isocyanates. There was no correlation between urinary levels of isocyanates and MbOCA suggesting different routes of absorption, most likely inhalation and dermal respectively. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.
Tracking natural and anthropogenic Pb exposure to its geological source.
Evans, Jane; Pashley, Vanessa; Madgwick, Richard; Neil, Samantha; Chenery, Carolyn
2018-01-31
Human Pb exposure comes from two sources: (i) natural uptake through ingestion of soils and typified by populations that predate mining activity and (ii) anthropogenic exposure caused by the exposure to Pb derived from ore deposits. Currently, the measured concentration of Pb within a sample is used to discriminate between these two exposure routes, with the upper limit for natural exposure in skeletal studies given as 0.5 or 0.7 mg/kg in enamel and 0.5/0.7 μg/dL in blood. This threshold approach to categorising Pb exposure does not distinguish between the geological origins of the exposure types. However, Pb isotopes potentially provide a more definitive means of discriminating between sources. Whereas Pb from soil displays a crustal average 238 U/ 204 Pb (μ) value of c 9.7, Pb from ore displays a much wider range of evolution pathways. These characteristics are transferred into tooth enamel, making it possible to characterize human Pb exposure in terms of the primary source of ingested Pb and to relate mining activity to geotectonic domains. We surmise that this ability to discriminate between silicate and sulphide Pb exposure will lead to a better understanding of the evolution of early human mining activity and development of exposure models through the Anthropocene.
Exposure of amateur gardeners to pesticides via the non-gloved skin per day.
Beránková, Martina; Hojerová, Jarmila; Melegová, Linda
2017-10-01
To predict a risk to gardeners not wearing protective gloves, the dermal absorption of three active insecticides was assessed in vitro using porcine ear-skin simulating 1-h handling of diluted plant protection products. Acetamiprid and Pirimicarb were found in the receptor fluid immediately after 1-h skin exposure, whereas Chlorpyrifos-methyl absorbed in the skin was not released into the receptor fluid even after 23 hours. The Estimated Gardener Exposure Level (EGEL) at 23 hours after 1-h exposure for two worst-case scenarios (i) non-gloved hands; (ii) non-gloved hands/uncovered forearms, was (i) 0.002, 0.042, and 0.057; (ii) 0.006, 0.101, and 0.135 mg/kg bw/day for Acetamiprid, Pirimicarb, and Chlorpyrifos-methyl, respectively, although the systemically available Chlorpyrifos-methyl amount, due to retention in the skin, is probably lower than determined. The Gardener Exposure Risk (GER), as a ratio of Acceptable Operator Exposure Level (databased values) to EGEL, for Acetamiprid was (i) 35 and 12-fold higher than the limit 1, so the risk via the skin is assumed to be low. Based on the GER values of (i) 0.83 and 0.18; (ii) 0.34 and 0.07 (i.e.<1) for Pirimicarb and Chlorpyrifos-methyl, respectively there is a level of concern regarding the health risk to gardeners handling pesticide products without skin protection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lucas, Brett T; Quinteros, Claudio; Burnett-Seidel, Charlene; Elphick, James R
2017-06-01
Limited data are available describing the aquatic toxicity of molybdenum in freshwater environments, making it difficult to assess the aquatic risk to freshwater organisms. In order to increase available information on the aquatic toxicity of molybdenum, a 96-h LC50 test with the oligochaete Tubifex tubifex and an 85-day development test using brown trout, Salmo trutta, were conducted. The T. tubifex test resulted in an LC50 value of 2782 mg/L. No adverse effects were observed on brown trout survival or length in the concentrations tested, however an IC10 value for growth (wet weight) was determined to be 202 mg/L. Whole body fish tissue concentrations for molybdenum increased in all treatment concentrations tested, although bioconcentration factors decreased at greater exposure concentrations, and ranged from 0.13 at an exposure concentration of 20 mg/L to 0.04 at an exposure of 1247 mg/L. A body burden of 26.0 mg/kg was associated with reduced wet weight.
Terpene exposure and respiratory effects among workers in Swedish joinery shops.
Eriksson, K A; Levin, J O; Sandström, T; Lindström-Espeling, K; Lindén, G; Stjernberg, N L
1997-04-01
Exposure to monoterpenes (alpha-pinene, beta-pinene and delta 3-carene) in joinery shops was studied in Sweden during the processing of Scot's pine, and the acute respiratory effects among the employees were evaluated. A cross-sectional study of 38 workers was carried out in 4 joinery shops. The investigation included personal air sampling of monoterpenes, biological monitoring of metabolites of alpha-pinene in the workers' urine, interviews following a standardized questionnaire, and dynamic spirometry. The personal exposure to monoterpenes in the joinery shops was 10-214 mg/m3. The correlation (correlation coefficient = 0.69) between exposure to alpha-pinene and verbenols (metabolites from alpha-pinene) in urine was relatively good. No acute effects on forced vital capacity or forced expiratory volume during 1 s were detected. The workers had significantly reduced preshift lung function values when compared with the values of a local reference group, even when smokers and ex-smokers were excluded. Personal exposure to the monoterpenes alpha-pinene, and delta 3-carene in joinery shops may exceed the present Swedish occupational exposure limit of 150 mg/m3 during the winter season when workroom air is commonly recirculated. The determination of metabolites of alpha-pinene (verbenols) in urine can be used as an index of exposure to fumes released during wood-treating processes. The results from the lung function tests indicate chronic rather than acute reactions in the airways. The fact that there were no major changes in lung function over a workshift indicates chronic reaction in the airways.
Carnevale, F; Baldasseroni, A
1998-01-01
The implementation in our country of recent legislation on carcinogenic risk assessment and management (VIIth title of Law 626/94) is considered. The authors describe potentialities and limits of the new legislation and of the derived Guidelines issued by the Regions. The health policy in this field and possible evolution in the near future are outlined, bearing in mind the experience of other countries. A short list of questions is suggested as a contribution to the discussion on the future scenario: whether exposure to carcinogens should be lower in the working environment than in the general environment; what is the relative importance of multifactoriality, individual biological variability, individual life-style in the genesis of cancers; whether medical health surveillance is worthwhile in terms of primary prevention; is it always true that there is no threshold limit value for carcinogens; what is the role of individual attitudes to prevention in exposure to carcinogens compared to "objective" protection; which balance between costs and benefits should be aimed at.
Samiee, Farzaneh; Samiee, Keivandokht
2017-01-01
There is limited research on the effect of electromagnetic field on aquatic organisms, especially freshwater fish species. This study was conducted to evaluate the effect of extremely low frequency electromagnetic field (ELF-EMF) (50 Hz) exposure on brain histopathology of Cyprinus carpio, one of the important species of Caspian Sea with significant economic value. A total of 200 healthy fish were used in this study. They were classified randomly in two groups: sham-exposed group and experimental group, which were exposed to five different magnetic field intensities (0.1, 1, 3, 5, and 7 mT) at two different exposure times (0.5 and 1 h). Histologic results indicate that exposure of C. carpio to artificial ELF-EMF caused severe histopathological changes in the brain at field intensities ≥3 mT leading to brain necrosis. Field intensity and duration of exposure were key parameters in induction of lesion in the brain. Further studies are needed to elucidate exact mechanism of EMF exposure on the brain.
Piacenza, Francesco; Malavolta, Marco; Cipriano, Catia; Costarelli, Laura; Giacconi, Robertina; Muti, Elisa; Tesei, Silvia; Pierpaoli, Sara; Basso, Andrea; Bracci, Massimo; Bonacucina, Viviana; Santarelli, Lory; Mocchegiani, Eugenio
2009-09-28
Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.
Chang, Kai-Wen; Hsieh, Ya-Ping; Ting, Chu-Chi; Su, Yen-Hsun; Hofmann, Mario
2017-08-22
Graphene's attractiveness in many applications is limited by its high resistance. Extrinsic doping has shown promise to overcome this challenge but graphene's performance remains below industry requirements. This issue is caused by a limited charge transfer efficiency (CTE) between dopant and graphene. Using AuCl 3 as a model system, we measure CTE as low as 5% of the expected values due to the geometrical capacitance of small adsorbate clusters. We here demonstrate a strategy for enhancing the CTE by a two-step optimization of graphene's surface energy prior to AuCl 3 doping. First, exposure to UV ozone modified the hydrophilicity of graphene and was found to decrease the cluster's geometric capacitance, which had a direct effect on the CTE. Occurrence of lattice defects at high UV exposure, however, deteriorated graphene's transport characteristics and limited the effectiveness of this pretreatment step. Thus, prior to UV exposure, a functionalized polymer layer was introduced that could further enhance graphene's surface energy while protecting it from damage. Combination of these treatment steps were found to increase the AuCl 3 charge transfer efficiency to 70% and lower the sheet resistance to 106 Ω/γ at 97% transmittance which represents the highest reported performance for doped single layer graphene and is on par with commercially available transparent conductors.
Effect of exposure to fentanyl aerosol in mice on breathing pattern and respiratory variables.
Manral, Laxmi; Muniappan, Natrajan; Gupta, Pradeep K; Ganesan, Kumaran; Malhotra, Ramesh Chandra; Vijayaraghavan, Rajagopalan
2009-01-01
The breathing pattern of mice that were exposed to fentanyl aerosol was studied (2.7, 5.7, 6.0, 10.0, and 23.6 microg/m(3); for 1 hour), using dimethyl sulfoxide as a vehicle. This study was conducted in a head-only exposure assembly. Body plethysmographs connected to a volumetric pressure transducer were used to capture the respiratory signals, and an on-line computer program capable of recognizing the changes in the breathing pattern was used for monitoring the respiratory pattern. The response of mice to fentanyl exposure was found to be concentration dependent. A lower concentration (2.7 microg/m(3)) showed fast recovery and no mortality, while 100% mortality was observed at a higher concentration (23.6 microg/m(3)). No sensory, pulmonary irritation, and airway limitation in mice was observed, and death occurred probably due to respiratory depression. The concentration that decreased 50% of the respiratory frequency (RD(50)) was estimated to be 6.4 microg/m(3). The extrapolated human threshold limit value, calculated from the RD(50) value, was found to be 0.192 microg/m(3). The concentration that caused 50% mortality in exposed mice (LC(50)) was estimated to be 8.8 microg/m(3). This study shows that aerosolized fentanyl does not cause sensory and pulmonary irritation, and since the RD(50) and LC(50) are very close with a low safety margin, this type of sedative should not be used as an incapacitating agent.
Kadar, Hanane; Veyrand, Bruno; Barbarossa, Andrea; Pagliuca, Giampiero; Legrand, Arnaud; Bosher, Cécile; Boquien, Clair-Yves; Durand, Sophie; Monteau, Fabrice; Antignac, Jean-Philippe; Le Bizec, Bruno
2011-10-01
Perfluorinated compounds (PFCs) are man-made chemicals for which endocrine disrupting properties and related possible side effects on human health have been reported, particularly in the case of an exposure during the early stages of development, (notably the perinatal period). Existing analytical methods dedicated to PFCs monitoring in food and/or human fluids are currently based on liquid chromatography coupled to tandem mass spectrometry, and were recently demonstrated to present some limitations in terms of sensitivity and/or specificity. An alternative strategy dedicated to the analysis of fourteen PFCs in human breast milk was proposed, based on an effective sample preparation followed by a liquid chromatography coupled to high resolution mass spectrometry measurement (LC-HRMS). This methodology confirmed the high interest for HRMS after negative ionization for such halogenated substances, and finally permitted to reach detection limits around the pg mL(-1) range with an outstanding signal specificity compared to LC-MS/MS. The proposed method was applied to a first set of 30 breast milk samples from French women. The main PFCs detected in all these samples were PFOS and PFOA with respective median values of 74 (range from 24 to 171) and 57 (range from 18 to 102) pg mL(-1), respectively. These exposure data appeared in the same range as other reported values for European countries. Copyright © 2011 Elsevier Ltd. All rights reserved.
Laitinen, Juha; Koponen, Hanna; Sippula, Olli; Korpijärvi, Kirsi; Jumpponen, Mika; Laitinen, Sirpa; Aatamila, Marjaleena; Tissari, Jarkko; Karhunen, Tommi; Ojanen, Kari; Jokiniemi, Jorma; Korpinen, Leena
2017-10-01
Fly and bottom ashes are collected at power plants to reduce the environmental effects of energy production. However, handling the ashes causes health problems for operators, maintenance workers and truck drivers at the power plants. Hence, we evaluated ash loaders' peak inhalation exposures to the chemical components of ash and diesel exhausts in open and closed ash loading stations at biomass-fuelled combined heat and power plants. We also carried out chemical and morphological analyses of the ashes to evaluate their health hazard potential in order to find practical technical measures to reduce workers' exposure. On the basis of X-ray diffraction analyses, the main respirable crystalline ash compounds were SiO 2 , CaSO 4 , CaO, Ca 2 Al 2 SiO 7 , NaCl and Ca 3 Al 2 O 6 in the fly ashes and SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 and Ca 2 Al 2 SiO 7 in the bottom ashes. The short-term exposure levels of respirable crystalline silica, inhalable inorganic dust, Cr, Mn, Ni and nitric oxide exceeded their Finnish eight hours occupational exposure limit values in the closed ash loading station. According to our observations, more attention should be paid to the ash-moistening process, the use of tank trucks instead of open cassette flatbed trucks, and the sealing of the loading line from the silo to the truck which would prevent spreading the ash into the air. The idling time of diesel trucks should also be limited, and ash loading stations should be equipped with exhaust gas ventilators. If working conditions make it impossible to keep to the OEL values, workers must use respirators and protect their eyes and skin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biological monitoring of workers exposed to benzene in the coke oven industry.
Drummond, L; Luck, R; Afacan, A S; Wilson, H K
1988-01-01
Workers in the coke oven industry are potentially exposed to low concentrations of benzene. There is a need to establish a well validated biological monitoring procedure for low level benzene exposure. The use of breath and blood benzene and urinary phenol has been explored in conjunction with personal monitoring data. At exposures of about 1 ppm benzene, urinary phenol is of no value as an indicator of uptake/exposure. Benzene in blood was measured by head space gas chromatography but the concentrations were only just above the detection limit. The determination of breath benzene collected before the next shift is non-specific in the case of smokers. The most useful monitor at low concentrations appears to be breath benzene measured at the end-of-shift. PMID:3378002
High exposure to inorganic arsenic by food: the need for risk reduction.
Gundert-Remy, Ursula; Damm, Georg; Foth, Heidi; Freyberger, Alexius; Gebel, Thomas; Golka, Klaus; Röhl, Claudia; Schupp, Thomas; Wollin, Klaus-Michael; Hengstler, Jan Georg
2015-12-01
Arsenic is a human carcinogen that occurs ubiquitously in soil and water. Based on epidemiological studies, a benchmark dose (lower/higher bound estimate) between 0.3 and 8 μg/kg bw/day was estimated to cause a 1 % increased risk of lung, skin and bladder cancer. A recently published study by EFSA on dietary exposure to inorganic arsenic in the European population reported 95th percentiles (lower bound min to upper bound max) for different age groups in the same range as the benchmark dose. For toddlers, a highly exposed group, the highest values ranged between 0.61 and 2.09 µg arsenic/kg bw/day. For all other age classes, the margin of exposure is also small. This scenario calls for regulatory action to reduce arsenic exposure. One priority measure should be to reduce arsenic in food categories that contribute most to exposure. In the EFSA study the food categories 'milk and dairy products,' 'drinking water' and 'food for infants' represent major sources of inorganic arsenic for infants and also rice is an important source. Long-term strategies are required to reduce inorganic arsenic in these food groups. The reduced consumption of rice and rice products which has been recommended may be helpful for a minority of individuals consuming unusually high amounts of rice. However, it is only of limited value for the general European population, because the food categories 'grain-based processed products (non rice-based)' or 'milk and dairy products' contribute more to the exposure with inorganic arsenic than the food category 'rice.' A balanced regulatory activity focusing on the most relevant food categories is required. In conclusion, exposure to inorganic arsenic represents a risk to the health of the European population, particularly to young children. Regulatory measures to reduce exposure are urgently required.
Assessment of workers' exposure to aflatoxin B1 in a Portuguese waste industry.
Viegas, Susana; Veiga, Luisa; Figueiredo, Paula; Almeida, Ana; Carolino, Elisabete; Viegas, Carla
2015-03-01
Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml(-1) to 25.9ng ml(-1) with a median value of 9.9±5.4ng ml(-1). All of the controls showed values below the method's detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Attarchi, Mirsaeed; Golabadi, Majid; Labbafinejad, Yasser; Mohammadi, Saber
2013-02-01
Recent studies suggest that occupational exposures such as noise and organic solvents may affect blood pressure. The aim of this study was to investigate interaction of noise and mixed organic solvents on blood pressure. Four hundred seventy-one workers of a car manufacturing plant were divided into four groups: group one or G1 workers exposed to noise and mixed organic solvents in the permitted limit or control group, G3 exposed to noise only, G2 exposed to solvents only, and G4 workers exposed to noise and mixed organic solvents at higher than the permitted limit or co-exposure group. Biological interaction of two variables on hypertension was calculated using the synergistic index. The workers of co-exposure group (G4), noise only group (G3), and solvents only group (G2) had significantly higher mean values of SBP and DBP than workers of control group (G1) or office workers (P < 0.05). Also logistic regression analysis showed a significant association between hypertension and exposure to noise and mixture of organic solvents. Odds ratio for hypertension in the co-exposure group and the noise only and solvents only exposed groups was 14.22, 9.43, and 4.38, respectively, compared to control group. In this study, the estimated synergism index was 1.11. Our results indicate that exposure to noise or a mixture of organic solvents may be associated with the prevalence of hypertension in car manufacturing company workers and co-exposure to noise and a mixture of solvents has an additive effect in this regard. Therefore appropriate preventive programs in these workers recommended. Copyright © 2012 Wiley Periodicals, Inc.
New High Throughput Methods to Estimate Chemical ...
EPA has made many recent advances in high throughput bioactivity testing. However, concurrent advances in rapid, quantitative prediction of human and ecological exposures have been lacking, despite the clear importance of both measures for a risk-based approach to prioritizing and screening chemicals. A recent report by the National Research Council of the National Academies, Exposure Science in the 21st Century: A Vision and a Strategy (NRC 2012) laid out a number of applications in chemical evaluation of both toxicity and risk in critical need of quantitative exposure predictions, including screening and prioritization of chemicals for targeted toxicity testing, focused exposure assessments or monitoring studies, and quantification of population vulnerability. Despite these significant needs, for the majority of chemicals (e.g. non-pesticide environmental compounds) there are no or limited estimates of exposure. For example, exposure estimates exist for only 7% of the ToxCast Phase II chemical list. In addition, the data required for generating exposure estimates for large numbers of chemicals is severely lacking (Egeghy et al. 2012). This SAP reviewed the use of EPA's ExpoCast model to rapidly estimate potential chemical exposures for prioritization and screening purposes. The focus was on bounded chemical exposure values for people and the environment for the Endocrine Disruptor Screening Program (EDSP) Universe of Chemicals. In addition to exposure, the SAP
Diesel Exhaust Exposure and the Risk of Lung Cancer—A Review of the Epidemiological Evidence
Sun, Yi; Bochmann, Frank; Nold, Annette; Mattenklott, Markus
2014-01-01
To critically evaluate the association between diesel exhaust (DE) exposure and the risk of lung cancer, we conducted a systematic review of published epidemiological evidences. To comprehensively identify original studies on the association between DE exposure and the risk of lung cancer, literature searches were performed in literature databases for the period between 1970 and 2013, including bibliographies and cross-referencing. In total, 42 cohort studies and 32 case-control studies were identified in which the association between DE exposures and lung cancer was examined. In general, previous studies suffer from a series of methodological limitations, including design, exposure assessment methods and statistical analysis used. A lack of objective exposure information appears to be the main problem in interpreting epidemiological evidence. To facilitate the interpretation and comparison of previous studies, a job-exposure matrix (JEM) of DE exposures was created based on around 4,000 historical industrial measurements. The values from the JEM were considered during interpretation and comparison of previous studies. Overall, neither cohort nor case-control studies indicate a clear exposure-response relationship between DE exposure and lung cancer. Epidemiological studies published to date do not allow a valid quantification of the association between DE and lung cancer. PMID:24473109
Young, Gary S.; Fox, Mary A.; Trush, Michael; Kanarek, Norma; Glass, Thomas A.; Curriero, Frank C.
2012-01-01
Population exposure to multiple chemicals in air presents significant challenges for environmental public health. Air quality regulations distinguish criteria air pollutants (CAPs) (e.g., ozone, PM2.5) from hazardous air pollutants (HAPs)—187 chemicals which include carcinogens and others that are associated with respiratory, cardiovascular, neurological and numerous other non-cancer health effects. Evidence of the public’s cumulative exposure and the health effects of HAPs are quite limited. A multilevel model is used to assess differential exposure to HAP respiratory, neurological, and cancer hazards (2005) related to the Townsend Index of Socioeconomic Deprivation (TSI), after adjustment for regional population size and economic activity, and local population density. We found significant positive associations between tract TSI and respiratory and cancer HAP exposure hazards, and smaller effects for neurological HAPs. Tracts in the top quintile of TSI have between 38%–60% higher HAP exposure than the bottom quintile; increasing population size from the bottom quintile to the top quintile modifies HAP exposure hazard related to TSI, increasing cancer HAP exposure hazard by 6% to 20% and increasing respiratory HAP exposure hazard by 12% to 27%. This study demonstrates the value of social epidemiological methods for analyzing differential exposure and advancing cumulative risk assessment. PMID:22829799
Young, Gary S; Fox, Mary A; Trush, Michael; Kanarek, Norma; Glass, Thomas A; Curriero, Frank C
2012-06-01
Population exposure to multiple chemicals in air presents significant challenges for environmental public health. Air quality regulations distinguish criteria air pollutants (CAPs) (e.g., ozone, PM2.5) from hazardous air pollutants (HAPs)-187 chemicals which include carcinogens and others that are associated with respiratory, cardiovascular, neurological and numerous other non-cancer health effects. Evidence of the public's cumulative exposure and the health effects of HAPs are quite limited. A multilevel model is used to assess differential exposure to HAP respiratory, neurological, and cancer hazards (2005) related to the Townsend Index of Socioeconomic Deprivation (TSI), after adjustment for regional population size and economic activity, and local population density. We found significant positive associations between tract TSI and respiratory and cancer HAP exposure hazards, and smaller effects for neurological HAPs. Tracts in the top quintile of TSI have between 38%-60% higher HAP exposure than the bottom quintile; increasing population size from the bottom quintile to the top quintile modifies HAP exposure hazard related to TSI, increasing cancer HAP exposure hazard by 6% to 20% and increasing respiratory HAP exposure hazard by 12% to 27%. This study demonstrates the value of social epidemiological methods for analyzing differential exposure and advancing cumulative risk assessment.
Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments.
Steinle, Susanne; Reis, Stefan; Sabel, Clive E; Semple, Sean; Twigg, Marsailidh M; Braban, Christine F; Leeson, Sarah R; Heal, Mathew R; Harrison, David; Lin, Chun; Wu, Hao
2015-03-01
Adverse health effects from exposure to air pollution are a global challenge and of widespread concern. Recent high ambient concentration episodes of air pollutants in European cities highlighted the dynamic nature of human exposure and the gaps in data and knowledge about exposure patterns. In order to support health impact assessment it is essential to develop a better understanding of individual exposure pathways in people's everyday lives by taking account of all environments in which people spend time. Here we describe the development, validation and results of an exposure method applied in a study conducted in Scotland. A low-cost particle counter based on light-scattering technology - the Dylos 1700 was used. Its performance was validated in comparison with equivalent instruments (TEOM-FDMS) at two national monitoring network sites (R(2)=0.9 at a rural background site, R(2)=0.7 at an urban background site). This validation also provided two functions to convert measured PNCs into calculated particle mass concentrations for direct comparison of concentrations with equivalent monitoring instruments and air quality limit values. This study also used contextual and time-based activity data to define six microenvironments (MEs) to assess everyday exposure of individuals to short-term PM2.5 concentrations. The Dylos was combined with a GPS receiver to track movement and exposure of individuals across the MEs. Seventeen volunteers collected 35 profiles. Profiles may have a different overall duration and structure with respect to times spent in different MEs and activities undertaken. Results indicate that due to the substantial variability across and between MEs, it is essential to measure near-complete exposure pathways to allow for a comprehensive assessment of the exposure risk a person encounters on a daily basis. Taking into account the information gained through personal exposure measurements, this work demonstrates the added value of data generated by the application of low-cost monitors. Copyright © 2014. Published by Elsevier B.V.
Oguonu, Tagbo; Obumneme-Anyim, Ijeoma N; Eze, Joy N; Ayuk, Adaeze C; Okoli, Chinyere V; Ndu, Ikenna K
2018-05-01
Background Biofuels and other cooking fuels are used in households in low- and middle-income countries. Aim To investigate the impact of cooking fuels on lung function in children in urban and rural households in South-East Nigeria. Methods The multi-stage sampling method was used to enroll children exposed to cooking fuel in the communities. Lung function values FEV1, FVC and the FEV1/FVC ratio, were measured with ndd EasyOne R spirometer. Airflow limitation was determined with FEV1/FVC Z-score values at -1.64 as the lower limit of normal (LLN5). The Global Lung Function Initiative 2012 software was used to calculate the lung function indices. Results The median age (range) of the 912 children enrolled was 10.6 years (6-18). Altogether, 468 (51.6%) children lived in rural areas. Seven hundred and thirty-seven (80.7%) were directly exposed to cooking fuels (418/737, 56.5% in rural areas). Wood and kerosene were the dominant fuels in rural and urban households. The respective mean Z-scores of the exposed children in rural and urban were zFEV1 -0.62, FVC -0.21, FEV1/FVC -0.83 and zFEV1 -0.57, zFVC -0.14, FEV1/FVC -0.75. Few (5.2%, 38/737) of the children had airflow limitation. Most of them (60.5%, 25/38) lived in the rural community; the lowest FEV1/FVC Z-scores were those of exposed to a combination of fuels. Conclusion Exposure to cooking fuels affects lung function in children with airway limitation in a small proportion, Control measures are advocated to reduce the morbidity related to cooking fuels exposure.
Qi, Cong; Gu, Yiyang; Sun, Qing; Gu, Hongliang; Xu, Bo; Gu, Qing; Xiao, Jing; Lian, Yulong
2017-05-01
We assessed the risk of liver injuries following low doses of N,N-dimethylformamide (DMF) below threshold limit values (20 mg/m) among leather industry workers and comparison groups. A cohort of 429 workers from a leather factory and 466 non-exposed subjects in China were followed for 4 years. Poisson regression and piece-wise linear regression were used to examine the relationship between DMF and liver injury. Workers exposed to a cumulative dose of DMF were significantly more likely than non-exposed workers to develop liver injury. A nonlinear relationship between DMF and liver injury was observed, and a threshold of the cumulative DMF dose for liver injury was 7.30 (mg/m) year. The findings indicate the importance of taking action to reduce DMF occupational exposure limits for promoting worker health.
NASA Astrophysics Data System (ADS)
Schmid, Gernot; Cecil, Stefan; Überbacher, Richard
2013-07-01
Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future.
Shao, Tianjie; Pan, Lihuan; Chen, Zhiqing; Wang, Ruiyuan; Li, Wenjing; Qin, Qing; He, Yuran
2018-02-25
Taking Yanta District in Xi'an as the research object, the present study measures the contents of Cadmium (Cd), Lead (Pb), Copper (Cu), Nickel (Ni), and Chromium (Cr) in dust samples and further assesses the health risk of heavy metals intake through dust based on the assessment method of human exposure risk proposed by U.S. EPA, with an aim to investigate the content of heavy metal in the dust of leisure squares and its exposure risk. As the results indicate, the average contents of five heavy metals are obviously higher than the soil background value in Shaanxi Province. Therefore, Cd, Ni, Cu, Pb, and Cr are obviously enriched in urban surface dust in Shaanxi Province, due to the influence of human activities. In addition, it can also be found that the non-carcinogen exposure risk in children is significantly higher than that in adults with the risk values of these five heavy metals all one order of magnitude higher than those of adults. Irrespective of whether addressing the results for children or adults, the non-carcinogen exposure doses of five heavy metals are sorted as Cr > Pb > Cu > Ni > Cd. According to the present situation, for a child, the total non-carcinogenic risk values of five heavy metals have exceeded the safety limit in 11 of the 20 leisure squares in Yanta District of Xi'an. That means the leisure squares are no longer suitable for physical and recreational activities. For the five heavy metals, the average non-carcinogenic risk value of Cr is largest, and causes the largest threat to health in Yanta District, Xi'an. The carcinogenic exposure doses of the heavy metals Cr, Cd, and Ni are very low in respiratory pathways and there is no carcinogenic health risk. In general, the Cr content in dust in domestic cities is higher than that of foreign cities; however, the Pb content is much lower.
Pechacek, Nathan; Osorio, Magdalena; Caudill, Jeff; Peterson, Bridget
2015-02-17
Peracetic acid (PAA) is a peroxide-based chemistry that is highly reactive and can produce strong local effects upon direct contact with the eyes, skin and respiratory tract. Given its increasing prominence in industry, attention has focused on health hazards and associated risks for PAA in the workplace. Occupational exposure limits (OEL) are one means to mitigate risks associated with chemical hazards in the workplace. A mini-review of the toxicity data for PAA was conducted in order to determine if the data were sufficient to derive health-based OELs. The available data for PAA frequently come from unpublished studies that lack sufficient study details, suffer from gaps in available information and often follow unconventional testing methodology. Despite these limitations, animal and human data suggest sensory irritation as the most sensitive endpoint associated with inhalation of PAA. Rodent RD50 data (the concentration estimated to cause a 50% depression in respiratory rate) were selected as the critical studies in deriving OELs. Based on these data, a range of 0.36-0.51mg/m(3) (0.1-0.2ppm) was calculated for a time-weighted average (TWA), and 1.2-1.7mg/m(3) (0.4-0.5ppm) as a range for a short-term exposure limit (STEL). These ranges compare favorably to other published OELs for PAA. Considering the applicable health hazards for this chemistry, a joint TWA/STEL OEL approach for PAA is deemed the most appropriate in assessing workplace exposures to PAA, and the selection of specific values within these proposed ranges represents a risk management decision. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
[Role of biometric analysis in the retrospective assessment of exposure to asbestos].
Pairon, J C; Dumortier, P
1999-12-01
Despite intrinsic limitations due to differences in the bio-persistence of the various asbestos types, in the definition of control populations and in analytical techniques used by the laboratories, mineralogical analysis of biological samples is useful in the assessment of past exposure to asbestos. It provides additional information to occupational and environmental questionnaires, particularly when exposure to asbestos is doubtful, unknown or forgotten by a subject. Results should be interpreted taking into account clinical information. A positive result does not mean existence of asbestos-related disease. A negative result does not exclude previous significant asbestos exposure, clearly identified by an occupational questionnaire (particularly for exposure to chrysotile). Threshold values indicative of a high probability of previous asbestos exposure have been established for bronchoalveolar lavage fluid (BALF) samples and lung tissue samples. Quantification of asbestos bodies by light microscopy is easy to perform. Sensitivity and specificity of this analysis towards the total pulmonary asbestos fiber burden is good. Therefore this analysis should be performed first. Mineralogical analysis in BALF or lung tissue should be considered only when sampling is supported by diagnostic or therapeutic implications.
ASSESSMENT OF PUBLIC EXPOSURE FORM WLANS IN THE WEST BANK-PALESTINE.
Lahham, Adnan; Sharabati, Afifeh; ALMasri, Hussein
2017-11-01
A total of 271 measurements were conducted at 69 different sites including homes, hospitals, educational institutions and other public places to assess the exposure to radiofrequency emission from wireless local area networks (WLANs). Measurements were conducted at different distances from 40 to 10 m from the access points (APs) in real life conditions using Narda SRM-3000 selective radiation meter. Three measurements modes were considered at 1 m distance from the AP which are transmit mode, idle mode, and from the client card (laptop computer). All measurements were conducted indoor in the West Bank environment. Power density levels from WLAN systems were found to vary from 0.001 to ~1.9 μW cm-2 with an average of 0.12 μW cm-2. Maximum value found was in university environment, while the minimum was found in schools. For one measurement case where the AP was 20 cm far while transmitting large files, the measured power density reached a value of ~4.5 μW cm-2. This value is however 221 times below the general public exposure limit recommended by the International Commission on Non-Ionizing Radiation Protection, which was not exceeded in any case. Measurements of power density at 1 m around the laptop resulted in less exposure than the AP in both transmit and idle modes as well. Specific absorption rate for the head of the laptop user was estimated and found to vary from 0.1 to 2 mW/kg. The frequency distribution of measured power densities follows a log-normal distribution which is generally typical in the assessment of exposure resulting from sources of radiofrequency emissions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pierre, F; Baruthio, F; Diebold, F; Biette, P
1995-01-01
OBJECTIVE--To conduct a field study to obtain information on the urinary concentrations of aluminium (Al) and fluoride (F-) depending on the different compounds exposed to in the aluminum industry. METHODS--16 workers from one plant that produced aluminium fluoride (AlF3), and from two plants that produced aluminium electrolytically by two different processes participated in the study for one working week. Pollutants were monitored by eight hour personal sampling every day, and urine samples were collected during the week. Al and F- were analysed in both atmospheric and urine samples by atomic absorption spectrometry and an ion selective electrode. RESULTS--The principal results show different characteristics of kinetic curves of Al and F- excretion in workers with different exposures. Some characteristics of excretory peaks were linked to specific exposures--for instance, after exposure to AlF3 there was one delayed Al peak associated with one delayed F- peak about eight hours after the end of the daily shift, and after mixed exposure to HF and AlF3, two F- peaks were noted, one fast peak at the end of the shift and another delayed peak at 10 hours synchronised with an Al peak. In one of the electrolysis plants, the exposure to Al and F- compounds led to the simultaneous excretion of Al and F- peaks, either as a single peak or two individual ones depending on the type of technology used on site (open or enclosed potlines). The average estimated half life of Al was 7.5 hours, and of F- about nine hours. Quantitative relations between excretion and exposure showed an association between the F- atmospheric limit value of 2.5 mg/m3 with a urinary F- concentration of 6.4 mg/g creatinine at the end of the shift, a peak of 7.4 mg/g creatinine, and 7.4 mg excreted a day. For Al, the exposure to 1.36 mg/m3 during the shift corresponded to a urinary concentration at the end of the shift of 200 microgram/g creatinine. Daily excretion of 200 micrograms corresponded to an exposure to 0.28 mg/m3. CONCLUSION--Particular differences in the behaviour of Al and F- in urine depended upon the original molecular form in the pollutant. These results reinforce the principle that, in biological monitoring, the sampling strategy and the choice of limit value should be dependent on kinetic data that take the exposure compound of the element in question into account. PMID:7627317
Guney, Mert; Nguyen, Alain; Zagury, Gerald J
2014-09-19
Children's potential for exposure to potentially toxic elements in contaminated jewelry and toys via mouth contact has not yet been fully evaluated. Various toys and jewelry (metallic toys and jewelry [MJ], plastic toys, toys with paint or coating, and brittle/pliable toys; n = 32) were tested using the saliva extraction (mouthing) compartment of the DIN and RIVM bioaccessibility protocols to assess As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Se mobilization via saliva. Total concentrations of As, Cd, Cu, Ni, Pb, and Sb were found elevated in analyzed samples. Four metals were mobilized to saliva from 16 MJ in significant quantities (>1 μg for highly toxic Cd and Pb, >10 μg for Cu and Ni). Bioaccessible concentrations and hazard index values for Cd exceeded limit values, for young children between 6 mo- and 3 yr-old and according to both protocols. Total and bioaccessible metal concentrations were different and not always correlated, encouraging the use of bioaccessibility for more accurate hazard assessments. Bioaccessibility increased with increasing extraction time. Overall, the risk from exposure to toxic elements via mouthing was high only for Cd and for MJ. Further research on children's exposure to toxic elements following ingestion of toy or jewelry material is recommended.
Neuropsychological function and past exposure to metallic mercury in female dental workers
Sletvold, Helge; Svendsen, Kristin; Aas, Oddfrid; Syversen, Tore; Hilt, Bjørn
2012-01-01
The aim of this study was to see if dental personnel with previous exposure to metallic mercury have later developed disturbances in cognitive function. Ninety-one female participants who had been selected from a previous health survey of dental personnel were investigated neuropsychologically within the following domains: motor function, short-term memory, working memory, executive function, mental flexibility, and visual and verbal long-term memory. The scores were mainly within normal ranges. Relationships between an exposure score, the duration of employment before 1990, and previously measured mercury in urine as independent variables and the neuropsychological findings as dependent variables, were analyzed by multiple linear regression controlling for age, general ability, length of education, alcohol consumption, and previous head injuries. The only relationship that was statistically significant in the hypothesized direction was between the previously measured urine mercury values and visual long-term memory, where the urine values explained 30% of the variability. As the study had a low statistical power and also some other methodological limitations, the results have to be interpreted with caution. Even so, we think it is right to conclude that neuropsychological findings indicative of subsequent cognitive injuries are difficult to find in groups of otherwise healthy dental personnel with previous occupational exposure to mercury. PMID:22092046
Swidwińska-Gajewska, Anna Maria; Czerczak, Sławomir
2013-01-01
Currently, there are no legally binding workplace exposure limits for substances in the form of nanoobjects. There are different ap proaches to risk assessment and determination of occupational exposure limits. The purpose of this article is to compare exposure levels in the work environment proposed by international organizations and world experts, as well as the assumptions and methods used for their estimation. This paper presents the proposals of the National Institute for Public Health and the Environment in the Netherlands (RIVM), the New Energy and Industrial Technology Development Organization in Japan (NEDO) and the National Institute for Occupational Safety and Health in the USA (NIOSH). The authors also discuss the reports on the levels for carbon nanotubes (Baytubes and Nanocyl) proposed by Pauluhn and Luizi, the derived no-effect levels (DNEL) complying with the REACH Regulation, proposed by experts under the 7th Framework Programme of the European Commission, coordinated by Professor Vicki Stone (ENRHES), and alternative estimation levels for poorly soluble particles by Pauluhn. The issue was also raised whether the method of determining maximum admissible concentrations in the work environment, currently used in Poland, is adequate for nanoobjects. Moreover, the introduction of nanoreference values, as proposed by RIVM, the definition of a new fraction for particles of 1-100 nm, taking into account the surface area and activity of the particles, and an adequate estimation of uncertainty factors seem to be worth considering. Other important, if not key issues are the appropriate measurement (numerical concentration, surface concentration, particle size distribution), as well as the methodology and equipment accessibility to all employers responsible for a reliable risk assessment of exposure to nanoparticles in the work environment.
SUDOQU, a new dose-assessment methodology for radiological surface contamination.
van Dillen, Teun; van Dijk, Arjan
2018-06-12
A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked out demonstrating the potential applications of the methodology. . Creative Commons Attribution license.
Andres, Susanne; Appel, Klaus E; Lampen, Alfonso
2013-08-01
Great attention has been paid to chloropropanols like 3-monochloro-1,2-propanediol and the related substance glycidol due to their presence in food and concerns about their toxic potential as carcinogens. The other chloropropanols 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol have been found in certain foods, but occurrence data are generally limited for these compounds. 1,3-dichloro-2-propanol has the most toxicological relevance showing clear carcinogenic effects in rats possibly via a genotoxic mechanism. The dietary exposure to 1,3-dichloro-2-propanol is quite low. Calculated "Margins of Exposure" values are above 10,000. It is concluded that the 1,3-dichloro-2-propanol exposure is of low concern for human health. The toxicology of 2,3-dichloro-1-propanol has not been adequately investigated. Its toxicological potential regarding hepatotoxic effects seems to be lower than that of 1,3-dichloro-2-propanol. Limited data show that 2,3-dichloro-1-propanol occurs only in trace amounts in food, indicating that exposure to 2,3-dichloro-1-propanol seems to be also of low concern for human health. The dietary 2-monochloro-1,3-propanediol burden appears to be lower than that of 3-monochloro-1,2-propanediol. An adequate risk assessment for 2-monochloro-1,3-propanediol cannot be performed due to limited data on the toxicology and occurrence in food. This article reviews the relevant information about the toxicology, occurrence and dietary exposure to the chloropropanols 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gallium poisoning: a rare case report.
Ivanoff, Chris S; Ivanoff, Athena E; Hottel, Timothy L
2012-02-01
The authors present a case of a college student who suffered acute gallium poisoning as a result of accidental exposure to gallium halide complexes. This is extremely rare and has never been reported in the literature. Acute symptoms after the incident, which initially presented as dermatitis and appeared relatively not life-threatening, rapidly progressed to dangerous episodes of tachycardia, tremors, dyspnea, vertigo, and unexpected black-outs. Had there been effective emergency medical care protocols, diagnostic testing, treatment and antidotes, the latent manifestations of irreversible cardiomyopathy may have been prevented. Given how quickly exposure led to morbidity, this article aims to raise an awareness of the toxic potential of gallium. This has particular relevance for workers involved in the production of semiconductors where there is a potential for accidental exposure to gallium by-products during device processing. It may also have implications for dentists who use gallium alloys to replace mercury containing amalgam. In the absence of threshold limit values and exposure limits for humans, as well as emergency medical guidelines for treatment of poisoning, the case calls on the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration to establish guidelines and medical management protocols specific for gallium. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vibration on board and health effects.
Jensen, Anker; Jepsen, Jørgen Riis
2014-01-01
There is only limited knowledge of the exposure to vibrations of ships' crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces on board. Anecdotal reports have related the development of "white feet" to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships' passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships' construction, but has limited value for the estimation of health risks because they express the vibration intensity differently that it is done in a medical context.
Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali
2008-08-01
The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.
Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy
2017-03-01
The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.
Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong
2015-01-01
INTRODUCTION Emission sources of volatile organic compounds (VOCs) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999–2001) and the National Health and Nutrition Examination Survey (NHANES; 1999–2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1 To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model’s goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2 Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture’s components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3 Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). RESULTS Specific Aim 1 Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10−4, and 13% of all participants had risk levels above 10−2. Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2 Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual’s total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3 In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence’s AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. A portion of these differences are due to the nature of the convenience (RIOPA) and representative (NHANES) sampling strategies used in the two studies. CONCLUSIONS Accurate models for exposure data, which can feature extreme values, multiple modes, data below the MDL, heterogeneous interpollutant dependency structures, and other complex characteristics, are needed to estimate exposures and risks and to develop control and management guidelines and policies. Conventional and novel statistical methods were applied to data drawn from two large studies to understand the nature and significance of VOC exposures. Both extreme value distributions and mixture models were found to provide excellent fit to single VOC compounds (univariate distributions), and copulas may be the method of choice for VOC mixtures (multivariate distributions), especially for the highest exposures, which fit parametric models poorly and which may represent the greatest health risk. The identification of exposure determinants, including the influence of both certain activities (e.g., pumping gas) and environments (e.g., residences), provides information that can be used to manage and reduce exposures. The results obtained using the RIOPA data set add to our understanding of VOC exposures and further investigations using a more representative population and a wider suite of VOCs are suggested to extend and generalize results. PMID:25145040
Biodegradation kinetics for pesticide exposure assessment.
Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J
2001-01-01
Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is necessary to estimate bounding values. Statistical evaluation of measures of central tendency for multisoil kinetic studies shows that geometric means better represent the distribution in soil half-lives than do the arithmetic or harmonic means. Estimates of upper-bound soil half-life values based on the upper 90% confidence bound on the geometric mean tend to accurately represent the upper bound when pesticide degradation rate is biologically driven but appear to overestimate the upper bound when there is extensive coupling of biodegradation with sorptive processes. The limited data available comparing distribution in pesticide soil half-lives between multisoil laboratory studies and multilocation field studies suggest that the probability density functions are similar. Thus, upper-bound estimates of pesticide half-life determined from laboratory studies conservatively represent pesticide biodegradation in the field environment for the purposes of exposure and risk assessment. International guidelines and approaches used for interpretations of soil biodegradation reflect many common elements, but differ in how the source and nature of variability in soil kinetic data are considered. Harmonization of approaches for the use of soil biodegradation data will improve the interpretative power of these data for the purposes of exposure and risk assessment.
NASA Astrophysics Data System (ADS)
Heikal, M.; Ghoneim, M.; El Galy, M.; El Dousky, B.; Sherif, M.
2012-04-01
Sharm El Sheikh area represents one of the most touristic resort allover the world. This area is surrounded by such exposures of Precambrian granites and dike swarms as well as Miocene-Pliocene sedimentary rocks that imply more or less radionuclides U, Th, Ra and K. The radioactivity imposed within the Precambrian rocks has carefully focalized on both field and lab using up-to-date equipments and instruments. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity (Raeq), gamma activity concentration index (Iγ), external hazard index (Hex) internal hazard index (Hin) and annual effective dose rate (AEDR) have been calculated and compared with the internationally approved values. The permissible values for each index revealed that all exposures of granite and mafic dikes have values below safety limits of radiation. The stream sediments within the major wadis are also safe and available for the population and agricultural purposes and/or as construction materials. On the other hand, the felsic dikes that occur far from Sharm El Sheikh town exceed the permissible radiation limits indicating their environmental hazards impacts. It was recommended to restrict land use in a buffer zone adjacent to the felsic dikes of very limited distributions. A planned major town extension of Sharm El Sheikh area has to be stopped around and within these dikes sites, but alternative future residential areas could be delineated to the northwest of the town. An intensive coordination with the Ministry of Environmental Affairs of Egypt, the town planners and other affected authorities guarantees must take into considerations the outstanding integration of the recommendations of our study into future town and regional land use planning.
12 CFR 32.9 - Credit exposure arising from derivative and securities financing transactions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... current credit exposure by the mark-to-market value of the derivative contract. If the mark-to-market value is positive, then the current credit exposure equals that mark-to-market value. If the mark to market value is zero or negative, than the current credit exposure is zero. (C) Calculation of potential...
12 CFR 32.9 - Credit exposure arising from derivative and securities financing transactions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... current credit exposure by the mark-to-market value of the derivative contract. If the mark-to-market value is positive, then the current credit exposure equals that mark-to-market value. If the mark to market value is zero or negative, than the current credit exposure is zero. (C) Calculation of potential...
Human health risk assessment related to contaminated land: state of the art.
Swartjes, F A
2015-08-01
Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools.
Korpinen, Leena H; Pääkkönen, Rauno J
2010-04-01
The occupational exposure to electric and magnetic fields during various work tasks at seven 110 kV substations in Finland's Tampere region was studied. The aim was to investigate if the action values (10 kV/m for the E-field and 500 microT for the B-field) of the EU Directive 2004/40/EC were exceeded. Electric and magnetic fields were measured during the following work tasks: (1) walking or operating devices on the ground; (2) working from a service platform; (3) working around the power transformer on the ground or using a ladder; and (4) changing a bulb from a man hoist. In work task 2 "working from a service platform" the measured electric field (maximum value 16.6 kV/m) exceeded 10 kV/m in three cases. In the future it is important to study if the limit value (10 mA/m(2)) of Directive 2004/40/EC is exceeded at 110 kV substations. The occupational 500 microT action value of the magnetic flux density field (B-field) was not exceeded in any working situation.
Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa
2007-03-01
The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure/exhaust ventilation (above 12 air exchanges/h) together with efficient active scavenging systems are sufficient to sustain N(2)O exposure in ORs at levels below or within the OEL value of 180mg/m(3).
Melching-Kollmuss, Stephanie; Dekant, Wolfgang; Kalberlah, Fritz
2010-03-01
Limits for tolerable concentrations of ground water metabolites ("non-relevant metabolites" without targeted toxicities and specific classification and labeling) derived from active ingredients (AI) of plant protection products (PPPs) are discussed in the European Union. Risk assessments for "non-relevant metabolites" need to be performed when concentrations are above 0.75 microg/L. Since oral uptake is the only relevant exposure pathway for "non-relevant metabolites", risk assessment approaches as used for other chemicals with predominantly oral exposure in humans are applicable. The concept of "thresholds of toxicological concern" (TTC) defines tolerable dietary intakes for chemicals without toxicity data and is widely applied to chemicals present in food in low concentrations such as flavorings. Based on a statistical evaluation of the results of many toxicity studies and considerations of chemical structures, the TTC concept derives a maximum daily oral intake without concern of 90 microg/person/day for non-genotoxic chemicals, even for those with appreciable toxicity. When using the typical exposure assessment for drinking water contaminants (consumption of 2L of drinking water/person/day, allocation of 10% of the tolerable daily intake to drinking water), a TTC-based upper concentration limit of 4.5 microg/L for "non-relevant metabolites" in ground/drinking water is delineated. In the present publication it has been evaluated, whether this value would cover all relevant toxicities (repeated dose, reproductive and developmental, and immune effects). Taking into account, that after evaluation of specific reproduction toxicity data from chemicals and pharmaceuticals, a value of 1 microg/kgbw/day has been assessed as to cover developmental and reproduction toxicity, a TTC value of 60 microg/person/day was assessed as to represent a safe value. Based on these reasonable worst case assumptions, a TTC-derived threshold of 3 microg/L in drinking water is derived. When a non-relevant metabolite is present in concentration below 3 microg/L, animal testing for toxicity is not considered necessary for a compound-specific risk assessment since the application of the TTC covers all relevant toxicities to be considered in such assessment and any health risk resulting from these exposures is very low. (c) 2009 Elsevier Inc. All rights reserved.
Hanley, Kevin W; Andrews, Ronnee; Bertke, Steven; Ashley, Kevin
2017-01-01
The National Institute for Occupational Safety and Health (NIOSH) has conducted an occupational exposure assessment study of manganese (Mn) in welding fume at three factories where heavy equipment was manufactured. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. One hundred nine worker-days were monitored for either total or respirable Mn during gas metal arc welding. The samples were analyzed using an experimental method to separate different Mn fractions based on selective chemical solubility. The full-shift total particle size Mn time-weighted average (TWA) breathing zone concentrations ranged 0.38-26 for soluble Mn in a mild ammonium acetate solution; 3.2-170 for Mn0,2+ in acetic acid; 3.1-290 for Mn3+,4+ in hydroxylamine-hydrochloride; and non-detectable (ND)-130 µg m-3 for insoluble Mn fractions in hydrochloric and nitric acid. The summation of all the total particulate Mn TWA fractions yielded results that ranged from 6.9 to 610 µg m-3. The range of respirable size Mn TWA concentrations were 0.33-21 for soluble Mn; 15-140 for Mn0,2+; 14-170 for Mn3+,4+; 5.3-230 for insoluble Mn; and 36-530 µg m-3 for Mn (sum of fractions). Total particulate TWA GM concentrations of the Mn (sum) were 53 (GSD = 2.5), 150 (GSD = 1.7), and 120 (GSD = 1.8) µg m-3 for the three separate factories. Although all of the workers' exposures were measured below the OSHA regulatory permissible exposure limit and NIOSH recommended exposure limit for Mn, 70 welders' exposures exceeded the ACGIH Threshold Limit Values® for total Mn (100 µg m-3) and 29 exceeded the recently adopted respirable Mn TLV (20 µg m-3). This study shows that a welding fume exposure control and management program is warranted for Mn, which includes improved exhaust ventilation and may necessitate the use of respiratory protection, especially for welding parts that impede air circulation. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Liu, Ping; Wu, Chunhua; Chang, Xiuli; Qi, Xiaojuan; Zheng, Minglan; Zhou, Zhijun
2016-01-01
Background: Prenatal exposure to organophosphorous (OP) pesticides has been found to be associated with adverse effects on child neurodevelopment, but evidence on potential effects induced by both prenatal and postnatal OP exposure in infants is limited. Objectives: Our aim was to investigate the associations of both prenatal and postnatal OP exposure with birth outcomes and infant neurodevelopment. Methods: Exposure to OP in 310 mother–infant pairs was assessed by measuring dimethylphosphate (DM), diethylphosphate (DE), and total dialkylphosphate (DAP) metabolites in urines from pregnant women and their children at 2 years of age. The Gesell Developmental Schedules was administered to examine neurodevelopment of 2-year-old children. Results: Based on the Gesell Developmental Schedules, the proportions of children with developmental delays were < 6%. Adverse associations between head circumference at birth and prenatal OP exposure were demonstrated. Both prenatal and postnatal OP exposure was significantly associated with increased risk of being developmentally delayed. Specifically, odds ratio (OR) value for prenatal DEs was 9.75 (95% CI: 1.28, 73.98, p = 0.028) in the adaptive area, whereas in the social area, OR values for postnatal DEs and DAPs were 9.56 (95% CI: 1.59, 57.57, p = 0.014) and 12.00 (95% CI: 1.23, 117.37, p = 0.033), respectively. Adverse associations were observed only in boys, not in girls. Conclusions: Both prenatal and postnatal OP exposure may adversely affect the neurodevelopment of infants living in the agricultural area. The present study adds to the accumulating evidence on associations of prenatal and postnatal OP exposure with infant neurodevelopment. Citation: Liu P, Wu C, Chang X, Qi X, Zheng M, Zhou Z. 2016. Adverse associations of both prenatal and postnatal exposure to organophosphorous pesticides with infant neurodevelopment in an agricultural area of Jiangsu Province, China. Environ Health Perspect 124:1637–1643; http://dx.doi.org/10.1289/EHP196 PMID:27153333
Uranium hexafluoride public risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, D.R.; Hui, T.E.; Yurconic, M.
1994-08-01
The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person).more » The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.« less
Evaluation of exposures of hospital employees to anesthetic gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambeth, J.D.
1988-01-01
Hospital employees who work in hospital operating and recovery rooms are often exposed to a number of anesthetic gases. There is evidence to support the belief that such exposures have led to higher rates of miscarriages and spontaneous abortions of pregnancies among women directly exposed to these gases than among women not exposed. Most of the studies assessing exposure levels were conducted prior to the widespread use of scavenging systems. Air sampling was conducted in hospital operatories and recovery rooms of three large hospitals to assess the current exposure levels in these areas and determine the effectiveness of these systemsmore » in reducing exposures to fluoride-containing anesthetic gases. It was determined that recovery-room personnel are exposed to levels of anesthesia gases that often approach and exceed the recommended Threshold Limit Value-Time Weighted Average (TLV-TWA) of 2.0 ppm. Recovery-room personnel do not have the protection from exposure provided by scavenging systems in operating rooms. Operating-room personnel were exposed to anesthesia gas levels above the TLV-TWA only when patients were masked, or connected and disconnected from the scavenging systems. Recovery-room personnel also need to be protected from exposure to anesthesia gases by a scavenging system.« less
Li, Ping; Li, Yang; Zhang, Ji; Yu, Shan-Fa; Wang, Zhi-Liang; Jia, Guang
2016-10-01
The concentration of chromium in the blood (CrB) has been confirmed as a biomarker for occupational chromium exposure, but its biological exposure indices (BEIs) are still unclear, so we collected data from the years 2006 and 2008 (Shandong Province, China) to analyze the relationship between the concentration of chromium in the air (CrA) of the workplaces and CrB to establish a reference value of CrB for biological monitoring of occupational workers. The levels of the indicators for nasal injury, kidney (β2 microglobulin (β2-MG)), and genetic damages (8-hydroxy-deoxyguanosine (8-OHdG) and micronucleus (MN)) were measured in all subjects of the year 2011 (Henan Province, China) to verify the protective effect in this reference value of CrB. Compared with the control groups, the concentrations of CrA and CrB in chromium exposed groups were significantly higher (P < 0.05). Positive correlations were found between CrA and CrB in chromium exposed groups (r 2006 = 0.60, r 2008 = 0.35) in the years 2006 and 2008. According to the occupational exposure limitation of CrA (50 μg/m(3), China), the reference value of CrB was recommended to 20 μg/L. The levels of nasal injury, β2-MG, 8-OhdG, and MN were not significantly different between the low chromium exposed group (CrB ≤ 20 μg/L) and the control group, while the levels of β2-MG, 8-OHdG, and MN were statistically different in the high chromium exposed group than that in the control group. This research proved that only in occupational workers, CrB could be used as a biomarker to show chromium exposure in the environment. The recommended reference value of CrB was 20 μg/L. © The Author(s) 2015.
Hanigan, Ivan; Hall, Gillian; Dear, Keith B G
2006-09-13
To explain the possible effects of exposure to weather conditions on population health outcomes, weather data need to be calculated at a level in space and time that is appropriate for the health data. There are various ways of estimating exposure values from raw data collected at weather stations but the rationale for using one technique rather than another; the significance of the difference in the values obtained; and the effect these have on a research question are factors often not explicitly considered. In this study we compare different techniques for allocating weather data observations to small geographical areas and different options for weighting averages of these observations when calculating estimates of daily precipitation and temperature for Australian Postal Areas. Options that weight observations based on distance from population centroids and population size are more computationally intensive but give estimates that conceptually are more closely related to the experience of the population. Options based on values derived from sites internal to postal areas, or from nearest neighbour sites--that is, using proximity polygons around weather stations intersected with postal areas--tended to include fewer stations' observations in their estimates, and missing values were common. Options based on observations from stations within 50 kilometres radius of centroids and weighting of data by distance from centroids gave more complete estimates. Using the geographic centroid of the postal area gave estimates that differed slightly from the population weighted centroids and the population weighted average of sub-unit estimates. To calculate daily weather exposure values for analysis of health outcome data for small areas, the use of data from weather stations internal to the area only, or from neighbouring weather stations (allocated by the use of proximity polygons), is too limited. The most appropriate method conceptually is the use of weather data from sites within 50 kilometres radius of the area weighted to population centres, but a simpler acceptable option is to weight to the geographic centroid.
Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Heather F.; Hausladen, Debra M.; Brabander, Daniel J.
2008-07-15
Environmental lead contamination is prevalent in urban areas where soil represents a significant sink and pathway of exposure. This study characterizes the speciation of lead that is relevant to local recontamination and to human exposure in the backyard gardens of Roxbury and Dorchester, MA, USA. One hundred forty-one backyard gardens were tested by X-ray fluorescence, and 81% of gardens have lead levels above the US EPA action limit of 400 {mu}g/g. Raised gardening beds are the in situ exposure reduction method used in the communities to promote urban gardening. Raised beds were tested for lead and the results showed thatmore » the lead concentration increased from an initial range of 150{+-}40 {mu}g/g to an average of 336 {mu}g/g over 4 years. The percent distribution of lead in the fine grain soil (<100 {mu}m) and the trace metal signature of the raised beds support the conclusion that the mechanism of recontamination is wind-transported particles. Scanning electron microscopy and sequential extraction were used to characterize the speciation of lead, and the trace metal signature of the fine grain soil in both gardens and raised gardening beds is characteristic of lead-based paint. This study demonstrates that raised beds are a limited exposure reduction method and require maintenance to achieve exposure reduction goals. An exposure model was developed based on a suite of parameters that combine relevant values from the literature with site-specific quantification of exposure pathways. This model suggests that consumption of homegrown produce accounts for only 3% of children's daily exposure of lead while ingestion of fine grained soil (<100 {mu}m) accounts for 82% of the daily exposure. This study indicates that urban lead remediation on a yard-by-yard scale requires constant maintenance and that remediation may need to occur on a neighborhood-wide scale.« less
Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design.
Clark, Heather F; Hausladen, Debra M; Brabander, Daniel J
2008-07-01
Environmental lead contamination is prevalent in urban areas where soil represents a significant sink and pathway of exposure. This study characterizes the speciation of lead that is relevant to local recontamination and to human exposure in the backyard gardens of Roxbury and Dorchester, MA, USA. One hundred forty-one backyard gardens were tested by X-ray fluorescence, and 81% of gardens have lead levels above the US EPA action limit of 400 microg/g. Raised gardening beds are the in situ exposure reduction method used in the communities to promote urban gardening. Raised beds were tested for lead and the results showed that the lead concentration increased from an initial range of 150+/-40 microg/g to an average of 336 microg/g over 4 years. The percent distribution of lead in the fine grain soil (<100 microm) and the trace metal signature of the raised beds support the conclusion that the mechanism of recontamination is wind-transported particles. Scanning electron microscopy and sequential extraction were used to characterize the speciation of lead, and the trace metal signature of the fine grain soil in both gardens and raised gardening beds is characteristic of lead-based paint. This study demonstrates that raised beds are a limited exposure reduction method and require maintenance to achieve exposure reduction goals. An exposure model was developed based on a suite of parameters that combine relevant values from the literature with site-specific quantification of exposure pathways. This model suggests that consumption of homegrown produce accounts for only 3% of children's daily exposure of lead while ingestion of fine grained soil (<100 microm) accounts for 82% of the daily exposure. This study indicates that urban lead remediation on a yard-by-yard scale requires constant maintenance and that remediation may need to occur on a neighborhood-wide scale.
Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan
2017-01-01
To compare the human health risk of heavy metals and As in sewage sludge between adults and children, samples were collected from five wastewater treatment plants (WWTPs) located in the urban district of Taiyuan, the capital of Shanxi. Heavy metals and As in sewage sludge can be ranked according to the mean concentration in the following order: Cu > Cr > Zn > Pb > As > Hg > Cd. Compared with the concentration limit set by different countries, the heavy metals contents in sewage sludge were all within the standard limits, except for the content of As, which was higher than the threshold limit established by Canada. A health risk assessment recommended by the United States Environmental Protection Agency (USEPA) was used to compare the non-cancer risk and cancer risk between adults and children. Based on the mean and 95% upper confidence limit (UCL) of the average daily dose (ADD), heavy metals and As can be ranked in the order of Cu > Cr > Zn > Pb > As > Hg > Cd for adults, and Cu > Cr > Zn > Pb > Hg > As > Cd for children. Moreover, results of ADDingest and ADDinhale indicated that ingestion was the main pathway for heavy metals and As exposure for both adults and children, and the sum of ADD implied that the exposure to all heavy metals and As for children was 8.65 and 9.93 times higher, respectively, than that for adults according to the mean and 95% UCL. For the non-carcinogenic risk, according to the hazard quotient (HQ), the risk of Cu, Hg and Cr was higher than the risk of Zn and Pb. The hazard index (HI) for adults was 0.144 and 0.208 for the mean and 95% UCL, which was less than the limit value of 1; for children, the HI was 1.26 and 2.25, which is higher than the limit value of 1. This result indicated that children had non-carcinogenic risk, but adults did not. Furthermore, ingestion was the main pathway for non-carcinogenic risk exposure by the HQingest and HQinhale. For the carcinogenic risk, Cd and As were classified as carcinogenic pollutants. The values of RISK for the mean and 95% UCL for adults and children all exceeded the limit value of 1 × 10−5, which implied that adults and children had a carcinogenic risk, and this risk was higher for children than for adults. The results of RISK for As and Cd implied that As was the main pollutant for carcinogenic risk. Moreover, the results of RISKingest and RISKinhale indicated that ingestion was the main pathway. Uncertainty analysis was performed, and the risk ranges of it were greater than certainty analysis, which implied that uncertainty analysis was more conservative than certainty analysis. A comparison of the non-carcinogenic risk and carcinogenic risk for adults and children indicated that children were more sensitive and vulnerable than adults when exposed to the same pollutant in the environment. PMID:28991185
Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan
2017-10-08
Abstract : To compare the human health risk of heavy metals and As in sewage sludge between adults and children, samples were collected from five wastewater treatment plants (WWTPs) located in the urban district of Taiyuan, the capital of Shanxi. Heavy metals and As in sewage sludge can be ranked according to the mean concentration in the following order: Cu > Cr > Zn > Pb > As > Hg > Cd. Compared with the concentration limit set by different countries, the heavy metals contents in sewage sludge were all within the standard limits, except for the content of As, which was higher than the threshold limit established by Canada. A health risk assessment recommended by the United States Environmental Protection Agency (USEPA) was used to compare the non-cancer risk and cancer risk between adults and children. Based on the mean and 95% upper confidence limit (UCL) of the average daily dose (ADD), heavy metals and As can be ranked in the order of Cu > Cr > Zn > Pb > As > Hg > Cd for adults, and Cu > Cr > Zn > Pb > Hg > As > Cd for children. Moreover, results of ADD ingest and ADD inhale indicated that ingestion was the main pathway for heavy metals and As exposure for both adults and children, and the sum of ADD implied that the exposure to all heavy metals and As for children was 8.65 and 9.93 times higher, respectively, than that for adults according to the mean and 95% UCL. For the non-carcinogenic risk, according to the hazard quotient (HQ), the risk of Cu, Hg and Cr was higher than the risk of Zn and Pb. The hazard index (HI) for adults was 0.144 and 0.208 for the mean and 95% UCL, which was less than the limit value of 1; for children, the HI was 1.26 and 2.25, which is higher than the limit value of 1. This result indicated that children had non-carcinogenic risk, but adults did not. Furthermore, ingestion was the main pathway for non-carcinogenic risk exposure by the HQ ingest and HQ inhale . For the carcinogenic risk, Cd and As were classified as carcinogenic pollutants. The values of RISK for the mean and 95% UCL for adults and children all exceeded the limit value of 1 × 10 -5 , which implied that adults and children had a carcinogenic risk, and this risk was higher for children than for adults. The results of RISK for As and Cd implied that As was the main pollutant for carcinogenic risk. Moreover, the results of RISK ingest and RISK inhale indicated that ingestion was the main pathway. Uncertainty analysis was performed, and the risk ranges of it were greater than certainty analysis, which implied that uncertainty analysis was more conservative than certainty analysis. A comparison of the non-carcinogenic risk and carcinogenic risk for adults and children indicated that children were more sensitive and vulnerable than adults when exposed to the same pollutant in the environment.
Toossi, Mohammad Taghi Bahreyni; Mehrpouyan, Mohammad; Nademi, Hossein; Fardid, Reza
2015-03-01
This study is an effort to propose a mathematical relation between the occupational exposure measured by a dosimeter worn on a lead apron in the chest region of a cardiologist and the dose area product (DAP) recorded by a meter attached to the X-ray tube. We aimed to determine factors by which DAP values attributed to patient exposure could be converted to the over-apron entrance surface air kerma incurred by cardiologists during an angiographic procedure. A Rando phantom representing a patient was exposed by an X-ray tube from 77 pre-defined directions. DAP value for each exposure angle was recorded. Cardiologist exposure was measured by a Radcal ionization chamber 10X5-180 positioned on a second phantom representing the physician. The exposure conversion factor was determined as the quotient of over apron exposure by DAP value. To verify the validity of this method, the over-apron exposure of a cardiologist was measured using the ionization chamber while performing coronary angiography procedures on 45 patients weighing on average 75 ± 5 kg. DAP values for the corresponding procedures were also obtained. Conversion factors obtained from phantom exposure were applied to the patient DAP values to calculate physician exposure. Mathematical analysis of our results leads us to conclude that a linear relationship exists between two sets of data: (a) cardiologist exposure measured directly by Radcal & DAP values recorded by the X-ray machine system (R (2) = 0.88), (b) specialist measured and estimated exposure derived from DAP values (R (2) = 0.91). The results demonstrate that cardiologist occupational exposure can be derived from patient data accurately.
Risk exposure to vibration and noise in the use of agricultural track-laying tractors.
Vallone, Mariangela; Bono, Filippa; Quendler, Elisabeth; Febo, Pierluigi; Catania, Pietro
2016-12-23
Human exposure to mechanical vibration may represent a significant risk factor for exposed workers in the agricultural sector. Also, noise in agriculture is one of the risk factors to be taken into account in the evaluation of workers' health and safety. One of the major sources of discomfort for the workers operating a tractors is the noise to which they are exposed during work. The aim of this study was to evaluate the risk of exposure to whole-body vibration for the operator driving track-laying tractors in vineyard orchard and the noise level. The experimental tests were performed with six different track-laying tractors coupled with the same rototilling machine. The results showed that the vibration values of track-laying tractors coupled to rototilling machine, referred to the 8-hour working day, were always higher than 0.5 m s -2 , the daily exposure action value established by Directive 2002/44/EC of the European Parliament. The daily noise exposure levels always exceeded the exposure limit value of 87 dB(A) established by Directive 2003/10/EC of the European Parliament. The ANOVA repeated measures model showed that the factor 'site', namely, the soil characteristics, did not influence the vibration level on the X and Y-axes of the tractors measured, regardless of their age. In the Z-axis, the vibration level was enhanced as the soil structure increased. As tractor age increased, the influence of soil characteristics was less important. In term of the age of the tractor and the number of hours worked, it was possible to identify three risk classes, which were up to 3,000 hours worked and offered a low risk; from 3,000 - 6,000 hours worked with a medium risk, and over 6,000 hours with a high risk level.
Zradziński, Patryk; Karpowicz, Jolanta; Gryz, Krzysztof; Leszko, Wiesław
2017-06-27
Low frequency magnetic field, inducing electrical field (Ein) inside conductive structures may directly affect the human body, e.g., by electrostimulation in the nervous system. In addition, the spatial distribution and level of Ein are disturbed in tissues neighbouring the medical implant. Numerical models of magneto-therapeutic applicator (emitting sinusoidal magnetic field of frequency 100 Hz) and the user of hearing implant (based on bone conduction: Bonebridge type - IS-BB or BAHA (bone anchorde hearing aid) type - IS-BAHA) were worked out. Values of Ein were analyzed in the model of the implant user's head, e.g., physiotherapist, placed next to the applicator. It was demonstrated that the use of IS-BB or IS-BAHA makes electromagnetic hazards significantly higher (up to 4-fold) compared to the person without implant exposed to magnetic field heterogeneous in space. Hazards for IS-BAHA users are higher than those for IS-BB users. It was found that applying the principles of directive 2013/35/EU, at exposure to magnetic field below exposure limits the direct biophysical effects of exposure in hearing prosthesis users may exceed relevant limits. Whereas applying principles and limits set up by Polish labor law or the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the compliance with the exposure limits also ensures the compliance with relevant limits of electric field induced in the body of hearing implant user. It is necessary to assess individually electromagnetic hazard concerning hearing implant users bearing in mind significantly higher hazards to them compared to person without implant or differences between levels of hazards faced by users of implants of various structural or technological solutions. Med Pr 2017;68(4):469-477. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.
2000-01-01
OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession. METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B). RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in subjects of group A. Cytogenetic investigations showed normal values which were independent of the duration of beryllium exposure. In one subject, the BeLT was positive. Beryllium stimulation indices were significantly higher in subjects with detectable beryllium in the urine than in those with beryllium concentrations below the detection limit (p<0.05). In one factory, two out of four measurements of airborne beryllium concentrations were well above the German threshold limit value of 2 µg/m3 (twofold and 10-fold), and all gemstone cutters working in this factory had measurable beryllium concentrations in urine. CONCLUSION—No adverse clinical health effects were found in this cross sectional investigation of gemstone cutters working with beryls. However, an improvement in workplace hygiene is recommended, accompanied by biological monitoring of beryllium in urine. Keywords: gemstone cutter; beryllium in urine; lymphocyte transformation test PMID:10711282
Healy, Catherine B; Coggins, Marie A; Van Tongeren, Martie; MacCalman, Laura; McGowan, Padraic
2014-11-01
The task of grinding sandstone with a 5-inch angle grinder is a major source of exposure to respirable crystalline silica (RCS), known to cause diseases such as silicosis and lung cancer among workers who work with these materials. A shroud may be a suitable engineering control for this task. The objectives of this study were to evaluate the effectiveness of four commercially available shrouds at reducing respirable dust and RCS levels during the task of grinding sandstone using tools and accessories typical of restoration stone work. The task of grinding sandstone with a 5-inch angle grinder, equipped with different grinding wheels, was carried out over three trials at a restoration stone masonry site. Photometric and RCS data were collected when a 5-inch grinder, equipped with different grinding wheels, was used to grind sandstone with and without a shroud. A total of 24 short duration samples were collected for each no shroud and with shroud combination. Worker feedback on the practicalities of each shroud evaluated was also collected. Respirable dust concentrations and RCS were both significantly lower (P < 0.001) when the grinders were equipped with a shroud compared with grinders without a shroud. Total geometric mean (GM) photometric respirable dust levels measured when grinding with a shroud were 0.5 mg m(-3), a reduction of 92% compared to grinding without a shroud (7.1 mg m(-3)). The overall GM RCS concentrations were reduced by the use of a shroud by 99%. GM photometric exposure levels were highest when using the Hilti 5-inch diamond grinding cup and Diamond turbo cup and lowest when using the Corundum grinding point. Concentrations of respirable dust and RCS can be significantly reduced by using commercially available shrouds while grinding sandstone with a 5-inch angle grinder in restoration stonework. The short-term photometric respirable dust and RCS measurements collected with and without a shroud indicate that dust and RCS concentrations are reduced by between 90 and 99%. Supplemental exposure controls such as respiratory protective equipment would be required to reduce worker 8-h time-weighted average RCS exposure to below the Scientific Committee on Occupational Exposure Limits recommended occupational exposure limit value of 0.05 mg m(-3) and the American Conference of Governmental Industrial Hygienists threshold limit value of 0.025 mg m(-3). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Amsel, J; Soden, K J; Sielken, R L; Valdez-Flora, C
2001-08-01
Occupational exposure to methylene chloride, together with carboxyhemoglobin concentrations, has not been studied previously. Carboxyhemoglobin levels were measured in non-smoking employees exposed to varying concentrations of methylene chloride during the manufacture of cellulose triacetate fibers. The observed carboxyhemoglobin levels were compared to predicted concentrations using a pharmacokinetic model. The presence of carboxyhemoglobin in non-smokers exposed to methylene chloride results primarily from the metabolism of methylene chloride in the liver and exhibits a linear dose-response relationship. The observed levels of carboxyhemoglobin in non-smokers at the end of an 8-hour shift depend upon exposures to methylene chloride that day but are independent of occupational exposures on previous days. The observed daily concentrations of carboxyhemoglobin are consistent with predicted concentrations using a pharmacokinetic model. While varying exposure patterns were shown to change the rate of metabolite formation at the end of shift, these same exposure patterns had almost no effect on the total amount of carbon monoxide in the blood. While the present study addresses the relationship between methylene chloride, carbon monoxide, carboxyhemoglobin and ischemic heart disease, it does not address the issue of tumorigenicity, which is also the basis for the current U.S. Occupational Health and Safety workplace exposure limit of 25 ppm. This study provides support for the conclusion that the current American Conference of Governmental Industrial Hygienists 8-hour Threshold Limit Value of 50 ppm adequately protects human health with regard to ischemic heart disease and carboxyhemoglobin formation among non-smokers. Copyright 2001 Wiley-Liss, Inc.
Raemy, David O; Limbach, Ludwig K; Rothen-Rutishauser, Barbara; Grass, Robert N; Gehr, Peter; Birbaum, Karin; Brandenberger, Christina; Günther, Detlef; Stark, Wendelin J
2011-04-01
Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization. Copyright © 2010 Elsevier B.V. All rights reserved.
Storm, J E; Rozman, K K
1998-06-01
The Occupational Safety and Health Administration (OSHA) methylene chloride Permissible Exposure Level (PEL) or 25 ppm is quantitatively derived from mouse tumor results observed in a high-exposure National Toxicology Program bioassay. Because this approach depends on controversial interspecies and low-dose extrapolations, the PEL itself has stimulated heated debate. Here, an alternative safety assessment for methylene chloride is presented. It is based on an acute human lowest-observed-adverse-effect level (LOAEL) of 200 ppm for subtle central nervous system (CNS) depression. Steep, parallel exposure-response curves for anesthetic and subanesthetic CNS effects associated with compounds mechanistically and structurally related to methylene chloride are shown to support a safety factor of two to account for inter-individual variability in response. LOAEL/no-observed-adverse-effect ratios for subtle CNS effects associated with structurally related solvents are shown to support a safety factor range of two to four to account for uncertainty in identifying a subthreshold exposure level. Anesthetic relative potencies and anesthetic/subanesthetic effect level ratios are shown to be constant for the compounds evaluated, demonstrating that subanesthetic relative potencies are also constant. Relative potencies among similarly derived occupational exposure limits (OELs) for solvents structurally related to methylene chloride are therefore used to validate the derived methylene chloride OEL range of 25-50 ppm. Because this safety assessment is based on human (rather than rodent) data and empirical (rather than theoretical) exposure-response relationships and is supported by relative potency analysis, it is a defensible alternative to to the OSHA risk assessment and should positively contribute to the debate regarding the appropriate basis and value for a methylene chloride PEL.
Cases series of malignant lymphohematopoietic disorder in korean semiconductor industry.
Kim, Eun-A; Lee, Hye-Eun; Ryu, Hyung-Woo; Park, Seung-Hyun; Kang, Seong-Kyu
2011-06-01
Seven cases of malignant lymphohematopoietic (LHP) disorder were claimed to have developed from occupational exposure at two plants of a semiconductor company from 2007 to 2010. This study evaluated the possibility of exposure to carcinogenic agents for the cases. Clinical courses were reviewed with assessing possible exposure to carcinogenic agents related to LHP cancers. Chemicals used at six major semiconductor companies in Korea were reviewed. Airborne monitoring for chemicals, including benzene, was conducted and the ionizing radiation dose was measured from 2008 to 2010. The latency of seven cases (five leukemiae, a Non-Hodgkin's lymphoma, and an aplastic anemia) ranged from 16 months to 15 years and 5 months. Most chemical measurements were at levels of less than 10% of the Korean Occupational Exposure Limit value. No carcinogens related to LHP cancers were used or detected. Complete-shielded radiation-generating devices were used, but the ionizing radiation doses were 0.20-0.22 uSv/hr (background level: 0.21 µSv/hr). Airborne benzene was detected at 0.31 ppb when the detection limit was lowered as low as possible. Ethylene oxide and formaldehyde were not found in the cases' processes, while these two were determined to be among the 263 chemicals in the list that was used at the six semiconductor companies at levels lower than 0.1%. Exposures occurring before 2002 could not be assessed because of the lack of information. Considering the possibility of exposure to carcinogenic agents, we could not find any convincing evidence for occupational exposure in all investigated cases. However, further study is needed because the semiconductor industry is a newly developing one.
Cases Series of Malignant Lymphohematopoietic Disorder in Korean Semiconductor Industry
Lee, Hye-Eun; Ryu, Hyung-Woo; Park, Seung-Hyun; Kang, Seong-Kyu
2011-01-01
Objectives Seven cases of malignant lymphohematopoietic (LHP) disorder were claimed to have developed from occupational exposure at two plants of a semiconductor company from 2007 to 2010. This study evaluated the possibility of exposure to carcinogenic agents for the cases. Methods Clinical courses were reviewed with assessing possible exposure to carcinogenic agents related to LHP cancers. Chemicals used at six major semiconductor companies in Korea were reviewed. Airborne monitoring for chemicals, including benzene, was conducted and the ionizing radiation dose was measured from 2008 to 2010. Results The latency of seven cases (five leukemiae, a Non-Hodgkin's lymphoma, and an aplastic anemia) ranged from 16 months to 15 years and 5 months. Most chemical measurements were at levels of less than 10% of the Korean Occupational Exposure Limit value. No carcinogens related to LHP cancers were used or detected. Complete-shielded radiation-generating devices were used, but the ionizing radiation doses were 0.20-0.22 uSv/hr (background level: 0.21 µSv/hr). Airborne benzene was detected at 0.31 ppb when the detection limit was lowered as low as possible. Ethylene oxide and formaldehyde were not found in the cases' processes, while these two were determined to be among the 263 chemicals in the list that was used at the six semiconductor companies at levels lower than 0.1%. Exposures occurring before 2002 could not be assessed because of the lack of information. Conclusion Considering the possibility of exposure to carcinogenic agents, we could not find any convincing evidence for occupational exposure in all investigated cases. However, further study is needed because the semiconductor industry is a newly developing one. PMID:22953195
[Exposure to hazardous chemical substances in furniture industry].
Pośniak, Małgorzata; Kowalska, Joanna; Makhniashvili, Ivan
2005-01-01
The aim of the study was to assess the exposure to organic solvents in plants of the furniture industry. Studies were conducted in five furniture plants. Hazardous chemicals present in the air at workposts were determined by capillary gas chromatography with mass spectrometry and flame ionization detection. The analysis of air samples collected at the workposts allowed to identify the following chemicals occurring during varnishing and cleaning of furniture surface elements: acetone, butan-2-one, ethyl, isobutyl and methoxypropyl acetate, 4-methylpentan-2-on, toluene, ethylbenzene and xylenes. Indices characteristic of combined exposure ranged from 0.13 to 1.67 and exceeded the limit value at 21% of workposts. The results of the study indicate that chemicals present at representative workposts during the furniture production are harmful to health of workers, especially those involved in varnishing and cleaning of furniture elements.
Improved inhalation technology for setting safe exposure levels for workplace chemicals
NASA Technical Reports Server (NTRS)
Stuart, Bruce O.
1993-01-01
Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.
NASA Technical Reports Server (NTRS)
Sinclair, W. K.
2000-01-01
Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.
Outdoor NO 2 and benzene exposure in the INMA (Environment and Childhood) Asturias cohort (Spain)
NASA Astrophysics Data System (ADS)
Fernández-Somoano, Ana; Estarlich, Marisa; Ballester, Ferran; Fernández-Patier, Rosalía; Aguirre-Alfaro, Amelia; Herce-Garraleta, Ma Dolores; Tardón, Adonina
2011-09-01
Air pollution exposure during pregnancy has been linked to a wide range of negative health effects. NO 2, a traffic pollution marker, and benzene, an industrial pollution indicator, stand out among the types of air pollution linked to these effects. The aim of this work is to show the methodology used to assign exposure levels for both pollutants and preliminary reports in the INMA (Environment and Childhood) Asturias cohort in Spain. This cohort consists of 494 pregnant women and their children, who have been recruited and followed since 2004. Air pollution levels were measured at 67 points by means of passive samplers. The mean NO 2 measured value was 21.2 μg m -3 (range 3.5 μg m -3 to 44.5 μg m -3), and the mean benzene value was 2.72 μg m -3 (range 0.18 μg m -3 to 9.17 μg m -3) at urban sampling points and 0.64 μg m -3 (range 0.04 μg m -3 to 2.62 μg m -3) in rural locations. The Pearson correlation coefficient among pollutants was 0.42. Land Use Regression models were built to predict exposure at the homes of pregnant women. Altitude, road distances and land use were part of the models. The percent of explained variance was 52% for NO 2 and 73% for benzene in the urban zones. No residual autocorrelation was found. Predictions were corrected based on the Air Quality Network of the Principality of Asturias taking into account pregnancy seasonality. Exposure indicators were determined for each term and for the entire pregnancy for each woman. Values for urban locations were higher than those for rural and benzene estimations for 5% of the cohort women were above the European Union annual limit value. Air pollution exposure for the INMA-Asturias cohort clearly depends on the place of residence. In particular, benzene concentrations are remarkably high if an individual lives in an urban and industrial area, which is an issue of management intervention and regulatory concern. Exposure assessment for different pollutants will allow us to evaluate potential adverse effects in foetal and infant health caused by air pollution.
Wang, Chunlin; Chen, Yongheng; Liu, Juan; Wang, Jin; Li, Xiangping; Zhang, Yongbo; Liu, Yimin
2013-04-01
Thallium (Tl) contamination in soils poses a significant threat to human health due to the high toxicity of Tl and its ready assimilation by crops. Consumption of food crops contaminated with Tl is a major food chain route for human exposure. The health risks of Tl in contaminated food crops irrigated with wastewater from a sulfuric acid factory were investigated in this paper. Results indicate that long-term Tl-containing wastewater irrigation resulted in Tl contamination of arable soils and crops. The pollution load index values indicated that the arable soils were moderately enriched with Tl. Tl was highly accumulated in the crops. The content of Tl in the edible plant portions of crops ranged from 1.2 mg/kg to 104.8 mg/kg, exceeding the recommended permissible limits for food crops. The daily intake of metals (DIM) values of Tl for both adults and children via the consumption of the food crops except soya beans were higher than the reference oral dose (RfD) limit recommend by the United States environmental protection agency (US-EPA). Health risk index (HRI) values were generally higher than 1, indicating that health risks associated with Tl exposure are significant and assumed to be dangerous to the health of local villagers. Therefore, much attention should be paid to avoid consumption of these Tl-contaminated crops that can cause great potential risks. Copyright © 2012 Elsevier Inc. All rights reserved.
Fischer, Louise Arup; Menné, Torkil; Voelund, Aage; Johansen, Jeanne Duus
2011-06-01
Allergic contact dermatitis is triggered by chemicals in the environment. Primary prevention is aimed at minimizing the risk of induction, whereas secondary and tertiary prevention are aimed at reducing elicitation. To identify the elicitation doses that will elicit an allergic reaction in 10% of allergic individuals under patch test conditions (ED(10) patch test) for different allergens, and to compare the results with those for different allergens and with animal data indicating sensitizing potency from the literature. The literature was searched for patch test elicitation studies that fulfilled six selected criteria. The elicitation doses were calculated, and fitted dose-response curves were drawn. Sixteen studies with eight different allergens-methylchloroisothiazolinone/ methylisothiazolinone, formaldehyde, nickel, cobalt, chromium, isoeugenol, hydroxyiso hexyl 3-cyclohexene carboxaldehyde, and methyldibromo glutaronitrile-were selected. The median ED(10) value was 0.835 µg/cm(2). The ED(10) patch test values were all within a factor of 7 from the lowest to the highest value, leaving out three outliers. No obvious patterns between the sensitization and elicitation doses for the allergens were found. We found a rather small variation in the ED(10) patch test between the allergens, and no clear relationship between induction potency and elicitation threshold of a range of allergens. This knowledge may stimulate thoughts on introducing a generic approach for limitations in exposure to well-known allergens. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Tarao, H.; Kuisti, H.; Korpinen, L.; Hayashi, N.; Isaka, K.
2012-05-01
Contact currents flow through the human body when a conducting object with different potential is touched. There are limited reports on numerical dosimetry for contact current exposure compared with electromagnetic field exposures. In this study, using an anatomical human adult male model, we performed numerical calculation of internal electric fields resulting from 60 Hz contact current flowing from the left hand to the left foot as a basis case. Next, we performed a variety of similar calculations with varying tissue conductivity and contact area, and compared the results with the basis case. We found that very low conductivity of skin and a small electrode size enhanced the internal fields in the muscle, subcutaneous fat and skin close to the contact region. The 99th percentile value of the fields in a particular tissue type did not reliably account for these fields near the electrode. In the arm and leg, the internal fields for the muscle anisotropy were identical to those in the isotropy case using a conductivity value longitudinal to the muscle fibre. Furthermore, the internal fields in the tissues abreast of the joints such as the wrist and the elbow, including low conductivity tissues, as well as the electrode contact region, exceeded the ICNIRP basic restriction for the general public with contact current as the reference level value.
[Follow-up examination of Danish stainless steel welders previously examined in 1987].
Knudsen, Lisbeth Ehlert; Burr, Herman
2003-07-14
A Danish cohort from 1987 consisting of 226 stainless steel welders and reference persons is part of the European Study Group on Cytogenetic Biomarkers and Health (ESCH). In ESCH increased cancer morbidity and mortality was significantly associated with high levels of chromosomal aberrations, measured in blood samples several years prior to cancer registration. The positive association was found in two cohorts from the Nordic countries and from Italy. ESCH followed all registered cancer cases and control persons by questionnaires and interviews to obtain information about exposures in the period from the time of blood sampling for chromosomal aberration analysis to the time of cancer diagnosis. In Denmark the total cohort was included in the inquiry and the ESCH questions were supplemented with questions from the Danish National Work Environment Cohort Study 1990-95. Responses from one hundred and forty-four persons showed that seventy-four were employed at the same workplace place as in 1987. Differences in occupational exposures, such as more noise, heat and insufficient lighting and no differences in the self-rated health were found in comparison with the Danish National Work Environment Cohort Study as such and with the sample of metal workers. Only very few of the study persons knew the threshold limit value of welding fumes but a majority found that the working environment had improved during the past ten years. This study confirms hazardous exposures in stainless steel welding. The threshold limit value, however, has been lowered since 1987 suggesting there is less cancer risk today from stainless steel welding.
A Procedural Guide on Sick Building Syndrome.
1987-03-01
membrane irrition. Sodium dodecyl sulfate , an ingredient in many carpet shampoos has also been associated with mucous membrane irritation in certain offices...American Industrial Hygiene Conference, 20 May 1986 13. Kreiss, K, and M.G. Gonzales, et al, "Respiratory Irritation Due to Carpet Shampoo ," Chronic...Carpet Shampoo ," Proc. Fifth Inter. Symp. Medichem, San Francisco, p. 347 (1977) 12 15. Threshold Limit Values and Biological Exposure Indices for 1985
An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China.
Zhang, Weiwei; Liu, Yungang; Liu, Yufei; Liang, Boheng; Zhou, Hongwei; Li, Yingyue; Zhang, Yuhua; Huang, Jie; Yu, Chao; Chen, Kuncai
2018-03-20
Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile) cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4) μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW), accounting for 57.6% of the provisional tolerable monthly intake (PTMI). Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption) was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile) was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary.
An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China
Zhang, Weiwei; Liu, Yungang; Liu, Yufei; Liang, Boheng; Zhou, Hongwei; Li, Yingyue; Zhang, Yuhua; Huang, Jie; Yu, Chao; Chen, Kuncai
2018-01-01
Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile) cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4) μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW), accounting for 57.6% of the provisional tolerable monthly intake (PTMI). Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption) was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile) was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary. PMID:29558399
Gies, Andreas; Neumeier, Günther; Rappolder, Marianne; Konietzka, Rainer
2007-04-01
Human health risk assessments for dioxins and dioxin-like PCBs (with the exception of the one by US-EPA) recommend health based exposure limits within the range of 1-4 pg WHO-TEQ/kg bw per day. As all humans are exposed to measurable levels of dioxins and related substances, the determination of the tolerated daily intake is a very significant decision and may influence limit values guiding risk reduction measures and target levels. The proposed TDI has to protect all human subpopulations. In the case of dioxin this is particularly important as the exposure of infants through breast-feeding may exceed the exposure of adults by one or two orders of magnitude. An overview of recently recommended limit values (WHO, SCF, JECFA) for PCDDs, PCDFs and dioxin-like PCBs using WHO-TEFs shows the common feature that the values were derived only from non carcinogenic endpoints. In November 2000 the Scientific Committee on Food of the European Commission published an 'Opinion of the SCF on the Risk Assessment of Dioxins and Dioxin-like PCBs in Food' [SCF, Scientific Committee on Food 2000. Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food. European Commission, Brussels, Adopted on November 2000 http://europa.eu.int/comm/food/fs/sc/scf/out78_en.pdf]. On the basis of this extensive review of data and experimental results the Committee recommended a temporary tolerable weekly intake (t-TWI) of 7 pg WHO-TEQ/kg bw. Only six months later the SCF carried out a re-evaluation of its t-TWI from November 2000. The reconsideration of 'pivotal studies' led to the situation that the re-assessment is now based only on rat studies which investigated only reproductive effects only on male offspring and, in addition, three of these studies are single dose studies at gestational day 15. Applying an overall uncertainty factor of 10 to the LOAEL derived estimated human daily intakes (EHDI) the SCF concluded that 14 pg/kg bw per week should be considered as a tolerable intake for 2,3,7,8-TCDD. The SCF stated that on a body weight basis, the dioxin intake of breast-fed infants has been estimated to be one to two orders of magnitude higher than the average adult intake. Recent German data suggest that the body burden of formerly breast-fed children aged 9-11 is still about 30% higher than those of their formula-fed age-mates. As breast-feeding has measurable benefits for neurological and immunological development, formula feeding cannot be recommended as an alternative to lower dioxin intake. So the only remaining way to lower the dioxin uptake is to drastically reduce the background exposure of the general population. It is acknowledged that any recommendation of a precise number for a TDI is flawed by uncertainties and the possibility of different weight being given to the studies of relevance. The determination of the TDI has influence on all regulatory limit values that are based on the TDI value. A higher TDI lowers the level of protection for humans. It is proposed by the German Federal Environmental Agency that the TDI should be reassessed in a process transparent to the public and on the basis of all relevant endpoints from animal experiments and human epidemiology, including the assessment of cancer risks.
Biological effects of short, high-level exposure to gases: ammonia. Phase report, May 1979-May 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legters, L.J.
1980-05-01
This report presents an analysis and synthesis of the available literature concerned with possible health and performance effects of exposures to ammonia. The US Army's concern is with short, high-level exposures that may exceed present threshold limit values of the American Conference of Governmental Industrial Hygienists (25 ppm or 17 mg/cum as a TWA and a ceiling of 35 ppm or 24 mg/cum for 15 minutes). The organs primarily affected by exposure to ammonia gas are the respiratory tract and the eyes. During brief exposures to concentrations of 500 ppm (348 mg/cum) or less, the biologic responses are immediate, reversible,more » and mainly irritant. Below 50 ppm (35 mg/cum), there are no significant effects except that the odor of ammonia is detectable. Between 50-100 ppm (35-70 mg/cum), most people experience some degree of irritation of the eyes, nose and throat. There is some evidence indicating that personnel may become acclimated to the irritant effects after only 1 or 2 weeks of inhalation.« less
Indoor air quality in Portuguese archives: a snapshot on exposure levels.
Pinheiro, A C; Viegas, C; Viegas, S; Veríssimo, C; Brandão, J; Macedo, M F
2012-01-01
Indoor air quality recently entered legislation in Portugal. Several parameters must be evaluated and kept within limits in order to obtain a certification for air quality and energy consumption. Certification parameters were analyzed in two Portuguese archives in order to assess indoor air quality both for people attending or working on these premises and for maintenance of a written heritage that must be retained for future generations. Carbon monoxide (CO) and carbon dioxide (CO₂), formaldehyde, and fungal counts were kept within stipulated limits. Relative humidity (RH), volatile organic compounds (VOC), particulate matter (PM₁₀), and ozone (O₃) showed values above legislated levels and justified the implementation of corrective measures. In terms of conservation, studies on the limit values are still needed, but according to the available international guidelines, some of the analyzed parameters such as PM₁₀, O₃, and RH were also above desirable values. Corrective measures were proposed to these institutions. Although this study was only of a short duration, it proved valuable in assessing potential eventual problems and constitutes the first Portuguese indoor air quality assessment taking into consideration both aspects of an archive such as human health and heritage safekeeping.
Using Passive Cavitation Images to Classify High-Intensity Focused Ultrasound Lesions
Haworth, Kevin J.; Salgaonkar, Vasant A.; Corregan, Nicholas M.; Holland, Christy K.; Mast, T. Douglas
2015-01-01
Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging for predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the HIFU propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1 MHz continuous-wave ultrasound exposure. The lesions were classified as focal, “tadpole”, or pre-focal based on their shape and location. Passive cavitation images were beam-formed from emissions at the fundamental, harmonic, ultraharmonic, and inharmonic frequencies with an established algorithm. Using the area under a receiver operator characteristic curve (AUROC), fundamental, harmonic, and ultraharmonic emissions were shown to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively), and focal lesions (AUROC values of 0.65 and 0.60, respectively). PMID:26051309
Permeation Resistance of Personal Protective Equipment Materials to Monomethyhydrazine
NASA Technical Reports Server (NTRS)
Waller, J. M.; Williams, J. H.
1997-01-01
Permeation resistance was determined by measuring the breakthrough time and time-averaged vapor transmission rate of monomethylhydrazine (MMH) through two types of personal protective equipment (PPE). The two types of PPE evaluated were the totally encapsulating ILC Dover Chemturion Model 1212 chemical protective suit with accessories, and the FabOhio polyvinyl chloride (PVC) splash garment. Two exposure scenarios were simulated: (1) a saturated vapor exposure for 2 hours (h), and (2) a brief MMH 'splash' followed by a 2-h saturated vapor exposure. Time-averaged MMH concentrations inside the totally-encapsulating suit were calculated by summation of the area-weighted contributions made by each suit component. Results show that the totally encapsulating suit provides adequate protection at the new 10 ppb Threshold Limit Value Time-Weighted Average (TLV-TWA). The permeation resistance of the PVC splash garment to MMH was poorer than any of the totally encapsulating suit materials tested. Breakthrough occurred soon after initial vapor or 'splash' exposure.
Risk assessment of fluoride exposure in drinking water of Tunisia.
Guissouma, Wiem; Hakami, Othman; Al-Rajab, Abdul Jabbar; Tarhouni, Jamila
2017-06-01
The presence of fluoride in drinking water is known to reduce dental cavities among consumers, but an excessive intake of this anion might leads to dental and skeletal fluorosis. This study reports a complete survey of the fluoridated tap water taken from 100 water consumption points in Tunisia. The fluoride concentrations in tap water were between 0 and 2.4 mg L -1 . Risk assessment of Fluoride exposure was assessed depending on the age of consumers using a four-step method: hazard identification, toxicity reference values selection (TRVs), daily exposure assessment, and risk characterization. Our findings suggest that approximately 75% of the Tunisian population is at risk for dental decay, 25% have a potential dental fluorosis risk, and 20% might have a skeletal fluorosis risk according to the limits of fluoride in drinking water recommended by WHO. More investigations are recommended to assess the exposure risk of fluoride in other sources of drinking water such as bottled water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauschild, Veronique; Watson, Annetta Paule
2013-01-01
Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facilitymore » recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.« less
Freire, Carmen; Koifman, Rosalina Jorge; Fujimoto, Denys; de Oliveira Souza, Vanessa Cristina; Barbosa, Fernando; Koifman, Sergio
2015-06-01
This study aimed to investigate the distribution and factors influencing blood levels of Cadmium (Cd), Arsenic (As), and Manganese (Mn), and to determine their reference values in a sample of blood donors residing in Rio Branco, capital city of Acre State, Brazil. Blood samples were collected from all blood donors attending the Central Hemotherapic Unit in Rio Branco between 2010 and 2011. Among these, 1183 donors (98.9%) answered to a questionnaire on sociodemographic and lifestyle factors. Blood metal concentrations were determined by atomic spectrometry. Association between Cd, As and Mn levels and donors' characteristics was examined by linear regression analysis. Reference values were estimated as the upper limit of the 95% confidence interval of the 95th percentile of metal levels. References values were 0.87 μg L(-1) for Cd, 9.87 μg L(-1) for As, and 29.32 μg L(-1) for Mn. Reference values of Cd and As in smokers were 2.66 and 10.86 μg L(-1), respectively. Factors contributing to increase Cd levels were smoking, ethnicity (non-white), and lower education, whereas drinking tea and non-bottled water were associated with lower Cd. Lower levels of As were associated with higher household income, living near industrial facilities, working in a glass factory, a compost plant or in metal mining activities. Risk factors for Mn exposure were not identified. In general, blood Cd concentrations were in the range of exposure levels reported for other people from the general population, whereas levels of As and Mn were higher than in other non-occupationally exposed populations elsewhere. Copyright © 2015 Elsevier Ltd. All rights reserved.
2011-01-01
Background Lead exposure remains a public health concern due to its serious adverse effects, such as cognitive and behavioral impairment: children younger than six years of age being the most vulnerable population. In Europe, the lead-related economic impacts have not been examined in detail. We estimate the annual costs in France due to childhood exposure and, through a cost benefit analysis (CBA), aim to assess the expected social and economic benefits of exposure abatement. Methods Monetary benefits were assessed in terms of avoided national costs. We used results from a 2008 survey on blood-lead (B-Pb) concentrations in French children aged one to six years old. Given the absence of a threshold concentration being established, we performed a sensitivity analysis assuming different hypothetical threshold values for toxicity above 15 μg/L, 24 μg/L and 100 μg/L. Adverse health outcomes of lead exposure were translated into social burden and economic costs based on literature data from literature. Direct health benefits, social benefits and intangible avoided costs were included. Costs of pollutant exposure control were partially estimated in regard to homes lead-based paint decontamination, investments aiming at reducing industrial lead emissions and removal of all lead drinking water pipes. Results The following overall annual benefits for the three hypothetical thresholds values in 2008 are: €22.72 billion, €10.72 billion and €0.44 billion, respectively. Costs from abatement ranged from €0.9 billion to 2.95 billion/year. Finally, from a partial CBA of lead control in soils and dust the estimates of total net benefits were € 3.78 billion, € 1.88 billion and €0.25 billion respectively for the three hypothesized B-Pb effect values. Conclusions Prevention of childhood lead exposure has a high social benefit, due to reduction of B-Pb concentrations to levels below 15 μg/L or 24 μg/L, respectively. Reducing only exposures above 100 μg/L B-Pb has little economic impact due to the small number of children who now exhibit such high exposure levels. Prudent public policies would help avoiding future medical interventions, limit the need for special education and increase future productivity, and hence lifetime income for children exposed to lead. PMID:21599937
An evaluation of airborne nickel, zinc, and lead exposure at hot dip galvanizing plants.
Verma, D K; Shaw, D S
1991-12-01
Industrial hygiene surveys were conducted at three hot dip galvanizing plants to determine occupational exposure to nickel, zinc, and lead. All three plants employed the "dry process" and used 2% nickel, by weight, in their zinc baths. A total of 32 personal and area air samples were taken. The air samples were analyzed for nickel, zinc, and lead. Some samples were also analyzed for various species of nickel (i.e., metallic, soluble, and oxidic). The airborne concentrations observed for nickel and its three species, zinc, and lead at the three plants were all well below the current and proposed threshold limit values recommended by the American Conference of Governmental Industrial Hygienists (ACGIH).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogen, K.T.; Conrado, C.L.; Robison, W.L.
A detailed analysis of uncertainty and interindividual variability in estimated doses was conducted for a rehabilitation scenario for Bikini Island at Bikini Atoll, in which the top 40 cm of soil would be removed in the housing and village area, and the rest of the island is treated with potassium fertilizer, prior to an assumed resettlement date of 1999. Predicted doses were considered for the following fallout-related exposure pathways: ingested Cesium-137 and Strontium-90, external gamma exposure, and inhalation and ingestion of Americium-241 + Plutonium-239+240. Two dietary scenarios were considered: (1) imported foods are available (IA), and (2) imported foods aremore » unavailable (only local foods are consumed) (IUA). Corresponding calculations of uncertainty in estimated population-average dose showed that after {approximately}5 y of residence on Bikini, the upper and lower 95% confidence limits with respect to uncertainty in this dose are estimated to be approximately 2-fold higher and lower than its population-average value, respectively (under both IA and IUA assumptions). Corresponding calculations of interindividual variability in the expected value of dose with respect to uncertainty showed that after {approximately}5 y of residence on Bikini, the upper and lower 95% confidence limits with respect to interindividual variability in this dose are estimated to be approximately 2-fold higher and lower than its expected value, respectively (under both IA and IUA assumptions). For reference, the expected values of population-average dose at age 70 were estimated to be 1.6 and 5.2 cSv under the IA and IUA dietary assumptions, respectively. Assuming that 200 Bikini resettlers would be exposed to local foods (under both IA and IUA assumptions), the maximum 1-y dose received by any Bikini resident is most likely to be approximately 2 and 8 mSv under the IA and IUA assumptions, respectively.« less
Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong
2014-06-01
Emission sources of volatile organic compounds (VOCs*) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999-2001) and the National Health and Nutrition Examination Survey (NHANES; 1999-2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1. To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model's goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2. Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture's components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3. Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). Specific Aim 1. Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10(-4), and 13% of all participants had risk levels above 10(-2). Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2. Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual's total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10(-3) for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3. In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence's AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. (ABSTRACT TRUNCATED)
Ecological risk assessment in a large river-reservoir. 5: Aerial insectivorous wildlife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baron, L.A.; Sample, B.E.; Suter, G.W. II
Risks to aerial insectivores (e.g., rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the remedial investigation of the Clinch River/Poplar Creek (CR/PC) system. Adult mayflies and sediment were collected from three locations and analyzed for contaminants. Sediment-to-mayfly contaminant uptake factors were generated from these data and used to estimate contaminant concentrations in mayflies from 13 additional locations. Contaminants of potential ecological concern (COPECs) were identified by comparing exposure estimates generated using point estimates of parameter values to NOAELs. To incorporate the variation in exposure parameters and to provide a better estimate of the potential exposure, themore » exposure model was recalculated using Monte Carlo methods. The potential for adverse effects was estimated based on the comparison of exposure distribution and the LOAEL. The results of this assessment suggested that population-level effects to rough-winged swallows and little brown bats are considered unlikely. However, because gray bats are endangered, effects on individuals may be significant from foraging in limited subreaches of the CR/PC system. This assessment illustrates the advantage of an iterative approach to ecological risk assessments, using fewer conservative assumptions and more realistic modeling of exposure.« less
Emergency Dose Estimation Using Optically Stimulated Luminescence from Human Tooth Enamel.
Sholom, S; Dewitt, R; Simon, S L; Bouville, A; McKeever, S W S
2011-09-01
Human teeth were studied for potential use as emergency Optically Stimulated Luminescence (OSL) dosimeters. By using multiple-teeth samples in combination with a custom-built sensitive OSL reader, (60)Co-equivalent doses below 0.64 Gy were measured immediately after exposure with the lowest value being 27 mGy for the most sensitive sample. The variability of OSL sensitivity, from individual to individual using multiple-teeth samples, was determined to be 53%. X-ray and beta exposure were found to produce OSL curves with the same shape that differed from those due to ultraviolet (UV) exposure; as a result, correlation was observed between OSL signals after X-ray and beta exposure and was absent if compared to OSL signals after UV exposure. Fading of the OSL signal was "typical" for most teeth with just a few of incisors showing atypical behavior. Typical fading dependences were described by a bi-exponential decay function with "fast" (decay time around of 12 min) and "slow" (decay time about 14 h) components. OSL detection limits, based on the techniques developed to-date, were found to be satisfactory from the point-of-view of medical triage requirements if conducted within 24 hours of the exposure.
Schmid, G; Lager, D; Preiner, P; Uberbacher, R; Cecil, S
2007-01-01
In order to estimate typical radio frequency exposures from indoor used wireless communication technologies applied in homes and offices, WLAN, Bluetooth and Digital Enhanced Cordless Telecommunications systems, as well as baby surveillance devices and wireless headphones for indoor usage, have been investigated by measurements and numerical computations. Based on optimised measurement methods, field distributions and resulting exposure were assessed on selected products and real exposure scenarios. Additionally, generic scenarios have been investigated on the basis of numerical computations. The obtained results demonstrate that under usual conditions the resulting spatially (over body dimensions) averaged and 6-min time-averaged exposure for persons in the radio frequency fields of the considered applications is below approximately 0.1% of the reference level for power density according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines published in 1998. Spatial and temporal peak values can be considerably higher by 2-3 orders of magnitude. In case of some transmitting devices operated in close proximity to the body (e.g. WLAN transmitters), local exposure can reach the same order of magnitude as the basic restriction; however, none of the devices considered in this study exceeded the limits according to the ICNIRP guidelines.
Sarigiannis, Dimosthenis A; Karakitsios, Spyros P; Gotti, Alberto; Liakos, Ioannis L; Katsoyiannis, Athanasios
2011-05-01
This paper summarizes recent data on the occurrence of major organic compounds (benzene, toluene, xylenes, styrene, acetaldehyde, formaldehyde, naphthalene, limonene, α-pinene and ammonia, classified by the European Commission's INDEX strategy report as the priority pollutants to be regulated) and evaluates accordingly cancer and non-cancer risks posed by indoor exposure in dwellings and public buildings in European Union (EU) countries. The review process indicated that significant differences in indoor air quality exist within and among the countries where data were available, indicating corresponding differences in sources and emission strength of airborne chemicals, identified or not. Conservative exposure limits were not exceeded for non-carcinogenic effects, except for formaldehyde; for carcinogenic agents the estimated risks were up to three orders of magnitude higher than the one (10(-6)) proposed as acceptable by risk management bodies. However, the risk assessment evaluation process faces crucial difficulties, either due to the relative paucity of indoor air quality measurements in many EU countries, or by the lack of sampling consistency in the already existing studies, indicating the need for additional measurements of indoor air quality following a harmonized sampling and analytical protocol. Additionally, uncertainties embodied in the cancer potency factors and exposure limit values impose further difficulties in substance prioritization and risk management. Copyright © 2011 Elsevier Ltd. All rights reserved.
Patient-Provider Discussions About Strategies to Limit Air Pollution Exposures.
Mirabelli, Maria C; Damon, Scott A; Beavers, Suzanne F; Sircar, Kanta D
2018-06-11
Exposure to air pollution negatively affects respiratory and cardiovascular health. The objective of this study was to describe the extent to which health professionals report talking about how to limit exposure to air pollution during periods of poor air quality with their at-risk patients. In 2015, a total of 1,751 health professionals completed an online survey and reported whether they talk with their patients about limiting their exposure to air pollution. In 2017, these data were analyzed to assess the frequency that health professionals in primary care, pediatrics, obstetrics/gynecology, and nursing reported talking about limiting air pollution exposure with patients who have respiratory or cardiovascular diseases, were aged ≤18 years, were aged ≥65 years, or were pregnant women. Frequencies of positive responses were assessed across categories of provider- and practice-level characteristics. Overall, 714 (41%) respondents reported ever talking with their patients about limiting their exposure to air pollution. Thirty-four percent and 16% of providers specifically reported talking with their patients with respiratory or cardiovascular disease diagnoses, respectively. Percentages of health professionals who reported talking with their patients about limiting air pollution exposure were highest among respondents in pediatrics (56%) and lowest among respondents in obstetrics/gynecology (0%). Despite the well-described health effects of exposure to air pollution, the majority of respondents did not report talking with their patients about limiting their exposure to air pollution. These findings reveal clear opportunities to improve awareness about strategies to limit air pollution exposure among sensitive groups of patients and their health care providers. Published by Elsevier Inc.
Shafirkin, A V; Mukhamedieva, L N; Tatarkin, S V; Barantseva, M Iu
2012-01-01
The work had the aim to anatomize the existing issues with providing safety in extended orbital and exploration missions for ensuing estimation of actual values of the total radiation risk for the crew, and risks of other delayed effects of simultaneous exposure to ionizing radiation and chemical pollutants in cabin air, and a number of other stressful factors inevitable in space flight. The flow of chronic experiments for separate and combined studies with reproduction of air makeup and radiation doses in actual orbital and predicted exploration missions is outlined. To set safety limits, new approaches should be applied to the description of gradual norm degradation to pathologies in addition to several generalized quantitative indices of adaptation and straining of the regulatory systems, as well as of effectiveness of the compensatory body reserve against separate and combined exposure.
Occupational exposure to airborne mercury during gold mining operations near El Callao, Venezuela.
Drake, P L; Rojas, M; Reh, C M; Mueller, C A; Jenkins, F M
2001-04-01
The National Institute for Occupational Safety and Health (NIOSH) recently conducted a cross-sectional study during gold mining operations near El Callao, Venezuela. The purpose of the study was to assess mercury exposures and mercury-related microdamage to the kidneys. The study consisted of concurrent occupational hygiene and biological monitoring, and an examination of the processing techniques employed at the different mining facilities. Mercury was used in these facilities to remove gold by forming a mercury-gold amalgam. The gold was purified either by heating the amalgam in the open with a propane torch or by using a small retort. Thirty-eight workers participated in this study. Some participants were employed by a large mining company, while others were considered "informal miners" (self-employed). Mercury exposure was monitored by sampling air from the workers' breathing zones. These full-shift air samples were used to calculate time-weighted average (TWA) mercury exposure concentrations. A questionnaire was administered and a spot urine sample was collected. Each urine sample was analyzed for mercury, creatinine, and N-acetyl-beta-D-glucosaminidase (NAG). The range for the 8-h TWA airborne mercury exposure concentrations was 0.1 to 6,315 micrograms/m3, with a mean of 183 micrograms/m3. Twenty percent of the TWA airborne mercury exposure measurements were above the NIOSH recommended exposure limit (REL) of 50 micrograms/m3, and 26% exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 micrograms/m3. The mean urine mercury concentration was 101 micrograms/g creatinine (microgram/g-Cr), and the data ranged from 2.5 to 912 micrograms/g-Cr. Forty-two percent of the study participants had urine mercury concentrations that exceeded the ACGIH biological exposure index (BEI) of 35 micrograms/g-Cr. Urinary NAG excretion is considered a biological marker of preclinical, nonspecific microdamage to the kidney's proximal tubule cells. The mean urine NAG concentration was 3.6 International Units/g-Cr (IU/g-Cr) with a range of 0.5 to 11.5 IU/g-Cr. Three workers had urine NAG levels in excess of the reference values. Correlation analyses found statistically significant correlations between airborne mercury exposure and urine mercury level (P = 0.01), and between urine mercury level and urine NAG excretion (P = 0.01). In addition, the airborne mercury exposure data and urine mercury data were segregated by job tasks. A Wilcoxon rank sum test revealed significant correlations between tasks and mercury exposure (P = 0.03), and between tasks and urine mercury level (P = 0.02). The tasks with the highest mean airborne mercury exposures were "burning the mercury-gold amalgam" and "gold refining/smelting". Recommendations were provided for improving the retort design to better contain mercury, for ventilation in the gold shops, and for medical surveillance and educational programs.
Maternal β-hemolytic streptococcal pharyngeal exposure and colonization in pregnancy.
Heidari-Bateni, Giv; Brar, Anoop K; Hall, Matthew; Hathcock, Trupti; Epstein, Deirdre; Goessling, Lisa S; Cunningham, Madeleine W; Eghtesady, Pirooz
2014-01-01
To report the pharyngeal colonization rate of β-hemolytic streptococci and changes in the value of antistreptolysin O (ASO) and anti-DNase B serology titers during pregnancy. Healthy pregnant women were recruited and blood was drawn in each trimester. The upper limit of normal (ULN) values for ASO and anti-DNase B was calculated for each trimester. Throat swabs were collected for culture and positive cultures were further assessed for the identification of serogroup of the isolated β-hemolytic streptococcus. Out of a total of 126 pregnant women, 34.1% had positive throat cultures. Group C and group G strains were isolated in 18.2% of throat cultures while group F was detected in 13.5% of cases. The rate of colonization with GAS was 1.6%. There was an overall drop in ASO titer during pregnancy while anti-DNase B titers remained relatively unchanged. ULN values of 164(IU), 157(IU), and 156(IU) were calculated for ASO at the first, second, and third trimesters, respectively. Based on the ULN values, 28.6% of patients had recent streptococcal exposure. These results show that pregnant women act as a reservoir for spreading potentially immunogenic (groups C and G) and disease producing (group F) virulent strains of streptococci.
Measurement of radiation exposure of astronauts by radiochemical techniques
NASA Technical Reports Server (NTRS)
Brodzinski, R. L.
1972-01-01
Only two of the fecal specimens collected inflight during the Apollo 15 mission were returned for analysis. Difficulty in obtaining reasonably accurate radiation dose estimates based on the cosmogenic radionuclide content of the specimens was encountered due to the limited sampling. The concentrations of Na-22, K-40, Cr-51, Fe-59, and Cs-137 are reported. The concentrations of 24 major, minor, and trace elements in these two specimens were determined. Most concentrations are typical of those observed previously. Major exceptions are extremely low values for selenium and extraordinarily high values for rare earth elements. The net Po-210 activities in the Apollo 11 and 12 Solar Wind Composition foils and in the Apollo 8 and 12 spacecraft reflective coatings due to lunar exposure have been determined. Equilibrium concentrations of 0.082 + or - 0.012 disintegrations /sq cm sec of Rn-222 in the lunar atmosphere and 0.0238 + or - 0.0035 disintegrations /sq cm sec of Po-210 on the lunar surface have been calculated for Oceanus Procellarum.
Kettler, Susanne; Kennedy, Marc; McNamara, Cronan; Oberdörfer, Regina; O'Mahony, Cian; Schnabel, Jürgen; Smith, Benjamin; Sprong, Corinne; Faludi, Roland; Tennant, David
2015-08-01
Uncertainty analysis is an important component of dietary exposure assessments in order to understand correctly the strength and limits of its results. Often, standard screening procedures are applied in a first step which results in conservative estimates. If through those screening procedures a potential exceedance of health-based guidance values is indicated, within the tiered approach more refined models are applied. However, the sources and types of uncertainties in deterministic and probabilistic models can vary or differ. A key objective of this work has been the mapping of different sources and types of uncertainties to better understand how to best use uncertainty analysis to generate more realistic comprehension of dietary exposure. In dietary exposure assessments, uncertainties can be introduced by knowledge gaps about the exposure scenario, parameter and the model itself. With this mapping, general and model-independent uncertainties have been identified and described, as well as those which can be introduced and influenced by the specific model during the tiered approach. This analysis identifies that there are general uncertainties common to point estimates (screening or deterministic methods) and probabilistic exposure assessment methods. To provide further clarity, general sources of uncertainty affecting many dietary exposure assessments should be separated from model-specific uncertainties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Exposure to carbon monoxide in wildland firefighters during wildfires suppression].
Carballo Leyenda, Belén; Rodríguez-Marroyo, José A; López-Satué, Jorge; Avila Ordás, Concepción; Pernía Cubillo, Raúl; Villa Vicente, José Gerardo
2010-01-01
Health and occupational performance in wildland firefighters are mainly impaired for the carbon monoxide inhalation. Therefore, the aim of this study was to analyze the personal exposure to carbon monoxide in wildland firefighters during wildfires suppression. Carbon monoxide exposure was monitorized in 44 subjects during 58 real wildfires. Moreover, we analyzed the time weighted average exposure for an 8h shift (VA-ED). The wildfires were classified according to the work done (direct attack, indirect attack and mixed attack) and the current fuel (grass, bush, understory and mixed). The mean exposure to carbon monoxide was of 18,4 ± 1,7 ppm, what supposed a VA-ED of 7,0 ± 1,0 ppm. The highest exposures to carbon monoxide were found during the mixed attack (20,4 ± 2,3 ppm) and direct attack (17,5 ± 2,7 ppm). We only obtained significant differences (p < 0.05) between bush (19,8 ± 2,2) and understory (17,2 ± 3,9) and grass (12,0 ± 5,6). Exposures to carbon monoxide were influenced for the work done during the wildfires suppression and the type of fuel involved. Mean values obtained in this study were within safety limits described by different Spanish (INSHT) and international (NIOSH, OSHA) occupational safety and health agencies.
Assessment of human exposure doses received by activation of medical linear accelerator components
NASA Astrophysics Data System (ADS)
Lee, D.-Y.; Kim, J.-H.; Park, E.-T.
2017-08-01
This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.
Grilo, T F; Cardoso, P G; Pato, P; Duarte, A C; Pardal, M A
2014-03-01
A medium-term mesocosm exposure study was conducted to elucidate bioaccumulation and depuration of polychlorinated biphenyl congener 153 (PCB-153) in edible shrimp Palaemonetes varians. Over the 15-day exposure period, shrimp under different exposure concentrations exhibited a significant increase in PCB-153 concentration compared with control organisms. Distinct bioaccumulation patterns and uptake rates were observed depending on the exposure concentrations. For low PCB-153 exposure levels (0.25μgL(-1)), accumulation followed a saturation model, reaching an apparent steady state after fifteen days exposure. For intermediate (2.5μgL(-1)) and high PCB-153 levels (25μgL(-1)), accumulation was faster and linear. In addition, the bioaccumulation rate was not proportional to PCB-153 concentration, and the bioaccumulation was higher at intermediate exposure concentrations. Regarding the depuration phase, P. varians lost up to 30% of PCB-153 after 72h and levels continued slowly to decrease until the end of the 30-d experimental period. However, PCB-153 levels in shrimp did not reach background values, and those exposed to moderate and high PCB-153 concentrations presented contamination levels much higher than the regulatory limit for human food consumption (75ngg(-1) ww for Σ6 PCB). Copyright © 2013 Elsevier Inc. All rights reserved.
Coast Guard exposure to gasoline, MTBE, and benzene vapors during inspection of tank barges.
Davenport, A C; Glynn, T J; Rhambarose, H
2000-01-01
A field study was conducted June through August 1996 in an attempt to quantify short-term exposure levels to Coast Guard personnel performing routine inspection activities aboard commercial tank barges carrying gasoline. Transfer and fleeting operations were monitored in the ports of Pittsburgh, Pa., Huntington, W.Va., Baton Rouge, La., and Galveston, Tex. A total of 43 personal and 68 area samples were analyzed for benzene and total hydrocarbons as gasoline ("gasoline"). Results can be summarized as follows: Personal exposure to benzene gave 15-min time-weighted-average (TWA) results ranging from <0.10 to 0.50 ppm. Area benzene levels ranged from <0.04 to 170 ppm. Personal monitoring for gasoline revealed a range of <2.0 to 590 mg/m3 with a GM of 23 mg/m3. Area sample results for gasoline ranged from 1.7 to 90,000 mg/m3. Twelve personal samples were collected for methyl-tert butyl ether (MTBE). Only two of these were above the limit of detection and had 15-min time-weighted averages of 22 ppm and 1.3 ppm. Eighteen MTBE area samples ranged in value from <3.0 to 38 ppm. Although none of the personal samples met or exceeded proposed or established short-term exposure standards, many of the area sampling results indicated that a significant risk of acute exposure exists in the vicinity of valves, pressure lines, and connections. This includes anticipated sources such as pressure vent valves as well as unexpected sources resulting from structural deficiencies onboard the vessels. These results further emphasize the value of safe work practices and proper vessel maintenance in controlling exposure to harmful chemicals.
Analysis of WBV on standing and seated passengers during off-peak operation in KL monorail
NASA Astrophysics Data System (ADS)
Hasnan, K.; Bakhsh, Q.; Ahmed, A.; Ali, D.; Jamali, A. R.
2018-03-01
In this study, the Whole-Body Vibration (WBV) was analyzed on the standing and seated passenger during off-peak operating hours when train was on the track. The experiments were conducted on two car train at one constant location (bogie-1, which is near to driver’s cabin) during downward direction from KL sentral station towards Titiwangsa station. The aim of this study was to analyze that, in which posture of passenger’s exposures the maximum level of WBV. Since, one passenger was performed the whole journey in standing posture whereas, the other passenger was in seated posture. The result obtained from experiments for the RMS accelerations (Arms), maximum acceleration (Amax) and minimum acceleration (Amin) during the trip. As per standard ISO 2631-1, the daily vibration exposure (A8), Vibration Dose value (VDV) and Crest Factor (CF) of this trip for both standing and sitting orientations were calculated. Results shows that the seated passenger was exposed to longer periods of continuous vibration as compared to the standing passenger. Whereas, the Vibration Dose value (VDV) value was greater than the action value as per ISO 2631-1 and within the limit values. The study concluded that whole body vibration transmitted towards both passengers either standing or seated during their journey. But in overall results comparison of both orientations, the seated passengers gained higher vibration than the standing one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyon, K.H.; Kracko, D.A.; Strunk, M.R.
1995-12-01
The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, alongmore » with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.« less
Calcutta metro: is it safe from noise pollution hazards?
Bhattacharya, S K; Bandyopadhyay, P; Kashyap, S K
1996-01-01
A modest assessment of noise was made in Calcutta Metro, India's first ever underground tube rail system, to examine if the range of noise levels present could endanger the hearing sensitivity of workers for the Metro. Sound measuring instruments of a sound level meter, an octave band analyzer, and a sound level calibrator were used for measuring the sound pressure levels in platforms of three stations: Esplanade, Kalighat and Tollygunge. The results indicated that the averaged A-weighted SPLs in these stations were in the range of 84-87 dBA. In the coaches of the moving train the Leq values ranged 92-99 dBA and LNP 105-117 dBA, all exceeding the safe limit of day time noise exposure of 55 dBA and 85 dBA of ACGIH. The SPLs at 4,000 Hz in the coaches were also in excess of safe exposure limit of 79 dB. The findings thus posed a potential threat to the workers.
The King and the Shah: Modernization, Dependence and Regime Stability.
1985-06-01
and Farsi, fluency in French, English or German is a prerequisite for elite status in either nation. Exposure to Western languages, methods and values...invented. Graduates of this system were so limited by their Arabic education that unless they possessed fluency in a European language, higher education...royal family and the Pahlavi foundation controlled 80 percent of the cement industry in Iran, 70 percent of the hotels and tourism, 62 percent of banking
NASA Technical Reports Server (NTRS)
Smith, L. Montgomery
1998-01-01
In this effort, experimental exposure times for monoenergetic electrons and protons were determined to simulate the space radiation environment effects on Teflon components of the Hubble Space Telescope. Although the energy range of the available laboratory particle accelerators was limited, optimal exposure times for 50 keV, 220 keV, 350 keV, and 500 KeV electrons were calculated that produced a dose-versus-depth profile that approximated the full spectrum profile, and were realizable with existing equipment. For the case of proton exposure, the limited energy range of the laboratory accelerator restricted simulation of the dose to a depth of .5 mil. Also, while optimal exposure times were found for 200 keV, 500 keV and 700 keV protons that simulated the full spectrum dose-versus-depth profile to this depth, they were of such short duration that the existing laboratory could not be controlled to within the required accuracy. In addition to the obvious experimental issues, other areas exist in which the analytical work could be advanced. Improved computer codes for the dose prediction- along with improved methodology for data input and output- would accelerate and make more accurate the calculational aspects. This is particularly true in the case of proton fluxes where a paucity of available predictive software appears to exist. The dated nature of many of the existing Monte Carlo particle/radiation transport codes raises the issue as to whether existing codes are sufficient for this type of analysis. Other areas that would result in greater fidelity of laboratory exposure effects to the space environment is the use of a larger number of monoenergetic particle fluxes and improved optimization algorithms to determine the weighting values.
Mayton, Alan G; Porter, William L; Xu, Xueyan S; Weston, Eric B; Rubenstein, Elaine N
2018-03-01
Workers who operate mine haul trucks are exposed to whole-body vibration (WBV) on a routine basis. Researchers from the National Institute for Occupational Safety and Health (NIOSH) Pittsburgh Mining Research Division (PMRD) investigated WBV and hand-arm vibration (HAV) exposures for mine/quarry haul truck drivers in relation to the haul truck activities of dumping, loading, and traveling with and without a load. The findings show that WBV measures in weighted root-mean-square accelerations (a w ) and vibration dose value (VDV), when compared to the ISO/ANSI and European Directive 2002/44/EC standards, were mostly below the Exposure Action Value (EAV) identified by the health guidance caution zone (HGCZ). Nevertheless, instances were recorded where the Exposure Limit Value (ELV) was exceeded by more than 500 to 600 percent for VDV x and a wx , respectively. Researchers determined that these excessive levels occurred during the traveling empty activity, when the haul truck descended down grade into the pit loading area, sliding at times, on a wet and slippery road surface caused by rain and overwatering. WBV levels (not normalized to an 8-h shift) for the four haul truck activities showed mean a wz levels for five of the seven drivers exceeding the ISO/ANSI EAV by 9-53 percent for the traveling empty activity. Mean a wx and a wz levels were generally higher for traveling empty and traveling loaded and lower for loading/dumping activities. HAV for measures taken on the steering wheel and shifter were all below the HGCZ which indicates that HAV is not an issue for these drivers/operators when handling steering and shifting control devices.
Mayton, Alan G.; Porter, William L.; Xu, Xueyan S.; Weston, Eric B.; Rubenstein, Elaine N.
2018-01-01
Workers who operate mine haul trucks are exposed to whole-body vibration (WBV) on a routine basis. Researchers from the National Institute for Occupational Safety and Health (NIOSH) Pittsburgh Mining Research Division (PMRD) investigated WBV and hand-arm vibration (HAV) exposures for mine/quarry haul truck drivers in relation to the haul truck activities of dumping, loading, and traveling with and without a load. The findings show that WBV measures in weighted root-mean-square accelerations (aw) and vibration dose value (VDV), when compared to the ISO/ANSI and European Directive 2002/44/EC standards, were mostly below the Exposure Action Value (EAV) identified by the health guidance caution zone (HGCZ). Nevertheless, instances were recorded where the Exposure Limit Value (ELV) was exceeded by more than 500 to 600 percent for VDVx and awx, respectively. Researchers determined that these excessive levels occurred during the traveling empty activity, when the haul truck descended down grade into the pit loading area, sliding at times, on a wet and slippery road surface caused by rain and overwatering. WBV levels (not normalized to an 8-h shift) for the four haul truck activities showed mean awz levels for five of the seven drivers exceeding the ISO/ANSI EAV by 9–53 percent for the traveling empty activity. Mean awx and awz levels were generally higher for traveling empty and traveling loaded and lower for loading/dumping activities. HAV for measures taken on the steering wheel and shifter were all below the HGCZ which indicates that HAV is not an issue for these drivers/operators when handling steering and shifting control devices. PMID:29725145
Hewett, Paul; Bullock, William H
2014-01-01
For more than 20 years CSX Transportation (CSXT) has collected exposure measurements from locomotive engineers and conductors who are potentially exposed to diesel emissions. The database included measurements for elemental and total carbon, polycyclic aromatic hydrocarbons, aromatics, aldehydes, carbon monoxide, and nitrogen dioxide. This database was statistically analyzed and summarized, and the resulting statistics and exposure profiles were compared to relevant occupational exposure limits (OELs) using both parametric and non-parametric descriptive and compliance statistics. Exposure ratings, using the American Industrial Health Association (AIHA) exposure categorization scheme, were determined using both the compliance statistics and Bayesian Decision Analysis (BDA). The statistical analysis of the elemental carbon data (a marker for diesel particulate) strongly suggests that the majority of levels in the cabs of the lead locomotives (n = 156) were less than the California guideline of 0.020 mg/m(3). The sample 95th percentile was roughly half the guideline; resulting in an AIHA exposure rating of category 2/3 (determined using BDA). The elemental carbon (EC) levels in the trailing locomotives tended to be greater than those in the lead locomotive; however, locomotive crews rarely ride in the trailing locomotive. Lead locomotive EC levels were similar to those reported by other investigators studying locomotive crew exposures and to levels measured in urban areas. Lastly, both the EC sample mean and 95%UCL were less than the Environmental Protection Agency (EPA) reference concentration of 0.005 mg/m(3). With the exception of nitrogen dioxide, the overwhelming majority of the measurements for total carbon, polycyclic aromatic hydrocarbons, aromatics, aldehydes, and combustion gases in the cabs of CSXT locomotives were either non-detects or considerably less than the working OELs for the years represented in the database. When compared to the previous American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 3 ppm the nitrogen dioxide exposure profile merits an exposure rating of AIHA exposure category 1. However, using the newly adopted TLV of 0.2 ppm the exposure profile receives an exposure rating of category 4. Further evaluation is recommended to determine the current status of nitrogen dioxide exposures. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: additional text on OELs, methods, results, and additional figures and tables.].
Human exposure to soil contaminants in subarctic Ontario, Canada.
Reyes, Ellen Stephanie; Liberda, Eric Nicholas; Tsuji, Leonard James S
2015-01-01
Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT), other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling) from 3 plots (A, B, and C) in Fort Albany (on the mainland), subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.
Krishnan, Kannan; Carrier, Richard
2017-07-03
The consideration of inhalation and dermal routes of exposures in developing guideline values for drinking water contaminants is important. However, there is no guidance for determining the eligibility of a drinking water contaminant for its multiroute exposure potential. The objective of the present study was to develop a 4-step framework to screen chemicals for their dermal and inhalation exposure potential in the process of developing guideline values. The proposed framework emphasizes the importance of considering basic physicochemical properties prior to detailed assessment of dermal and inhalation routes of exposure to drinking water contaminants in setting guideline values.
Health risk assessment and the practice of industrial hygiene.
Paustenbach, D J
1990-07-01
It has been claimed that there may be as many as 2000 airborne chemicals to which persons could be exposed in the workplace and in the community. Of these, occupational exposure limits have been set for approximately 700 chemicals, and only about 30 chemicals have limits for the ambient air. It is likely that some type of health risk assessment methodology will be used to establish limits for the remainder. Although these methods have been used for over 10 yr to set environmental limits, each step of the process (hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of traps into which scientists and risk managers can fall. For example, regulatory approaches to the hazard identification step have allowed little discrimination between the various animal carcinogens, even though these chemicals can vary greatly in their potency and mechanisms of action. In general, epidemiology data have been given little weight compared to the results of rodent bioassays. The dose-response extrapolation process, as generally practiced, often does not present the range of equally plausible values. Procedures which acknowledge and quantitatively account for some or all of the different classes of chemical carcinogens have not been widely adopted. For example, physiologically based pharmacokinetic (PB-PK) and biologically based models need to become a part of future risk assessments. The exposure evaluation portion of risk assessments can now be significantly more valid because of better dispersion models, validated exposure parameters, and the use of computers to account for complex environmental factors. Using these procedures, industrial hygienists are now able to quantitatively estimate the risks caused not only by the inhalation of chemicals but also those caused by dermal contact and incidental ingestion. The appropriate use of risk assessment methods should allow scientists and risk managers to set scientifically valid environmental and occupational standards for air contaminants.
Occupational noise exposure and regulatory adherence in music venues in the United Kingdom.
Barlow, Christopher; Castilla-Sanchez, Francisco
2012-01-01
Noise in most working environments is an unwanted by-product of the process. In most countries, noise exposure for workers has been controlled by legislation for many years. In the music industry the "noise" is actually the "desired" product, and for a long time the UK entertainment industry was exempt from these regulations. From April 2008, however, it became regulated under the Noise at Work Regulations 2005, meaning that employers from orchestras to nightclubs are legally required to adhere to the same requirements (based on ISO 9612:2009) for controlling noise exposure for their staff that have been applied to other industries for many years. A key question is to what degree, 2 years after implementation, these employers are complying with their legal responsibilities to protect the staff from noise? This study assessed four public music venues where live and/or recorded music is regularly played. Thirty staff members in different roles in the venues were monitored using noise dosimetry to determine noise exposure. Questionnaires were used to determine work patterns, attitudes to noise and hearing loss, and levels of training about noise risk. Results showed that the majority of staff (70%) in all venues exceeded the daily noise exposure limit value in their working shift. Use of hearing protection was rare (<30%) and not enforced by most venues. The understanding of the hazard posed by noise was low, and implementation of the noise regulations was haphazard, with staff regularly exceeding regulatory limits. The implication is that the industry is failing to meet regulatory requirements.
Fast exposure time decision in multi-exposure HDR imaging
NASA Astrophysics Data System (ADS)
Piao, Yongjie; Jin, Guang
2012-10-01
Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.
Smith, Todd I; LoPresti, Charles M
2014-07-01
The clinical learning model in medical education is driven by knowledge acquisition through direct patient-care experiences. Despite the emphasis on experiential learning, the ability of educators to quantify the clinical exposures of learners is limited. To utilize Veterans Affairs (VA) electronic medical record information through a data warehouse to quantify clinical exposures during an inpatient internal medicine rotation. We queried the VA clinical data warehouse for the patients encountered by each learner completing an acting internship rotation at the Cleveland VA Medical Center from July 2008 to November 2011. We then used discharge summary information to identify team exposures-patients seen by the learner's inpatient team who were not primarily assigned to the learner. Based on the learner and team exposures, we complied lists of past medical problems, medications prescribed, laboratory tests that resulted, radiology evaluated, and primary discharge diagnoses. Primary learner and team-based clinical exposures were evaluated for a total of 128 acting internship students. The percentage of learners who had a primary exposure to a medication/lab value/imaging result/diagnosis was calculated. The percentage of learners with at least 1 primary or team-based exposure to an item was also calculated. The most common exposures in each category are presented. Analysis of the clinical exposures during an inpatient rotation can augment the ability of educators to understand learners' experiences. These types of analyses could provide information to improve learner experience, implement novel curricula, and address educational gaps in clinical rotations. © 2014 Society of Hospital Medicine.
Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.
Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M
2015-12-01
Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Olson, Michael J; Faria, Ellen C; Hayes, Eileen P; Jolly, Robert A; Barle, Ester Lovsin; Molnar, Lance R; Naumann, Bruce D; Pecquet, Alison M; Shipp, Bryan K; Sussman, Robert G; Weideman, Patricia A
2016-08-01
This manuscript centers on communication with key stakeholders of the concepts and program goals involved in the application of health-based pharmaceutical cleaning limits. Implementation of health-based cleaning limits, as distinct from other standards such as 1/1000th of the lowest clinical dose, is a concept recently introduced into regulatory domains. While there is a great deal of technical detail in the written framework underpinning the use of Acceptable Daily Exposures (ADEs) in cleaning (for example ISPE, 2010; Sargent et al., 2013), little is available to explain how to practically create a program which meets regulatory needs while also fulfilling good manufacturing practice (GMP) and other expectations. The lack of a harmonized approach for program implementation and communication across stakeholders can ultimately foster inappropriate application of these concepts. Thus, this period in time (2014-2017) could be considered transitional with respect to influencing best practice related to establishing health-based cleaning limits. Suggestions offered in this manuscript are intended to encourage full and accurate communication regarding both scientific and administrative elements of health-based ADE values used in pharmaceutical cleaning practice. This is a large and complex effort that requires: 1) clearly explaining key terms and definitions, 2) identification of stakeholders, 3) assessment of stakeholders' subject matter knowledge, 4) formulation of key messages fit to stakeholder needs, 5) identification of effective and timely means for communication, and 6) allocation of time, energy, and motivation for initiating and carrying through with communications. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Azmir, N. A.; Yahya, M. N.
2017-01-01
Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value which is 5 ms-2. Thus, control measure such as engineering and administrative control should be implemented to reduce the severity of hand-transmitted vibration hazard.
Modabbernia, A; Velthorst, E; Gennings, C; De Haan, L; Austin, C; Sutterland, A; Mollon, J; Frangou, S; Wright, R; Arora, M; Reichenberg, A
2016-08-01
Despite evidence for the effects of metals on neurodevelopment, the long-term effects on mental health remain unclear due to methodological limitations. Our objective was to determine the feasibility of studying metal exposure during critical neurodevelopmental periods and to explore the association between early-life metal exposure and adult schizophrenia. We analyzed childhood-shed teeth from nine individuals with schizophrenia and five healthy controls. We investigated the association between exposure to lead (Pb(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), copper (Cu(2+)), magnesium (Mg(2+)), and zinc (Zn(2+)), and schizophrenia, psychotic experiences, and intelligence quotient (IQ). We reconstructed the dose and timing of early-life metal exposures using laser ablation inductively coupled plasma mass spectrometry. We found higher early-life Pb(2+) exposure among patients with schizophrenia than controls. The differences in log Mn(2+) and log Cu(2+) changed relatively linearly over time to postnatal negative values. There was a positive correlation between early-life Pb(2+) levels and psychotic experiences in adulthood. Moreover, we found a negative correlation between Pb(2+) levels and adult IQ. In our proof-of-concept study, using tooth-matrix biomarker that provides direct measurement of exposure in the fetus and newborn, we provide support for the role of metal exposure during critical neurodevelopmental periods in psychosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Stoleski, Saso; Minov, Jordan; Mijakoski, Dragan; Karadzinska-Bislimovska, Jovanka
2015-03-15
Job exposure in agricultural workers often leads to respiratory impairment. To assess the influence of exposure duration and smoking on chronic respiratory symptoms and ventilatory capacity in agricultural workers. A cross-sectional study covered 75 agricultural workers, compared with an equal number of office workers matched by age, exposure duration and smoking status. Standardized questionnaire was used to obtain data on chronic respiratory symptoms, job and smoking history. Lung functional testing was performed by spirometry. The prevalence of respiratory symptoms was higher in agricultural workers, with significant difference for cough (P = 0.034), and dyspnea (P = 0.028). Chronic respiratory symptoms among agricultural workers were significantly associated with duration of exposure (P < 0.05) and daily smoking (P < 0.01), as well as with daily smoking in controls (P < 0.01). The average values of spirometric parameters in exposed workers were significantly different for MEF50 (P = 0.002), MEF75 (P = 0.000), and MEF25-75 (P = 0.049). Obstructive changes in small airways in exposed workers were strongly related to exposure duration (P < 0.05) and smoking (P < 0.01). Agricultural workers with job exposure more than 15 years had more expressed adverse respiratory symptoms and lung function decline. The results confirmed the influence of agricultural exposure and daily smoking on chronic respiratory symptoms and airflow limitation, primarily targeting the small airways.
Frazzoli, Chiara; Dragone, Roberto; Mantovani, Alberto; Massimi, Cristiana; Campanella, Luigi
2007-12-01
Toxicological implications of exposure to bioavailable platinum group metals, here Pd, Pt, and Rh, are still to be clarified. This study obtained by a biosensor-based method preliminary information on potential effects on cellular metabolism as well as on possible tolerance mechanisms. Aerobic respiration was taken as the toxicological end point to perform tandem tests, namely functional toxicity test and tolerance test. Cells were suspended in the absence of essential constituents for growth. The dose-response curves obtained by exposure (2 h) to the metals (nanogram per gram range) suggested the same mechanisms of action, with Rh showing the greatest curve steepness and the lowest EC50 value. Conservative (95% lower confidence interval) EC10 values were 187, 85 and 51 ng g(-1) for Pt, Pd, and Rh respectively. Tolerance patterns were tested during the same runs. The full tolerance obtained after 12 h of exposure to each metal suggested mitochondrial inhibition of aerobic respiration as a target effect. The hazard rating of the metals in the tolerance test changed in the Rh EC50 range, where Rh showed the lowest toxicity. The observed tolerance might suggest a protective mechanism such as metallothionein induction at concentrations around the EC50 values. The performance of the bioassay was satisfactory, in terms of the limit of detection, repeatability, reproducibility, roboustness, sensibility, and stability; the method's critical uncertainty sources were identified for improvements.
Dhungel, Amit; Zmirou-Navier, Denis; van Deventer, Emilie
2015-04-01
This study aims to describe current risk management practices and policies across the world in relation to personal exposures from devices emitting radiofrequency fields, environmental exposures from fixed installations and exposures in the work environment. Data from 86 countries representing all WHO regions were collected through a survey. The majority of countries (76.8 %) had set exposure limits for mobile devices, almost all (90.7 %) had set public exposure limits for fixed installations and 76.5 % had specified exposure limits for personnel in occupational settings. A number of other policies had been implemented at the national level, ranging from information provisions on how to reduce personal exposures and restrictions of usage for certain populations, such as children or pregnant women to prevention of access around base stations. This study suggests that countries with higher mobile subscriptions tend to have set radiofrequency exposure limits for mobile devices and to have provisions on exposure measurements about fixed installations. © The Author 2014. Published by Oxford University Press.
Beelen, Rob; Raaschou-Nielsen, Ole; Stafoggia, Massimo; Andersen, Zorana Jovanovic; Weinmayr, Gudrun; Hoffmann, Barbara; Wolf, Kathrin; Samoli, Evangelia; Fischer, Paul; Nieuwenhuijsen, Mark; Vineis, Paolo; Xun, Wei W; Katsouyanni, Klea; Dimakopoulou, Konstantina; Oudin, Anna; Forsberg, Bertil; Modig, Lars; Havulinna, Aki S; Lanki, Timo; Turunen, Anu; Oftedal, Bente; Nystad, Wenche; Nafstad, Per; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Penell, Johanna; Korek, Michal; Pershagen, Göran; Eriksen, Kirsten Thorup; Overvad, Kim; Ellermann, Thomas; Eeftens, Marloes; Peeters, Petra H; Meliefste, Kees; Wang, Meng; Bueno-de-Mesquita, Bas; Sugiri, Dorothea; Krämer, Ursula; Heinrich, Joachim; de Hoogh, Kees; Key, Timothy; Peters, Annette; Hampel, Regina; Concin, Hans; Nagel, Gabriele; Ineichen, Alex; Schaffner, Emmanuel; Probst-Hensch, Nicole; Künzli, Nino; Schindler, Christian; Schikowski, Tamara; Adam, Martin; Phuleria, Harish; Vilier, Alice; Clavel-Chapelon, Françoise; Declercq, Christophe; Grioni, Sara; Krogh, Vittorio; Tsai, Ming-Yi; Ricceri, Fulvio; Sacerdote, Carlotta; Galassi, Claudia; Migliore, Enrica; Ranzi, Andrea; Cesaroni, Giulia; Badaloni, Chiara; Forastiere, Francesco; Tamayo, Ibon; Amiano, Pilar; Dorronsoro, Miren; Katsoulis, Michail; Trichopoulou, Antonia; Brunekreef, Bert; Hoek, Gerard
2014-03-01
Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. European Community's Seventh Framework Program (FP7/2007-2011). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
James, John T.; Lam, Chiu-wing; Scully, Robert R.
2013-01-01
Brief exposures of Apollo Astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure ot lunar dust. Habitats for exploration, whether mobile of fixed must be designed to limit human exposure to lunar dust to safe levels. We have used a new technique we call Comparative Benchmark Dose Modeling to estimate safe exposure limits for lunar dust collected during the Apollo 14 mission.
46 CFR 197.515 - Permissible exposure limits (PELs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The permissible...
46 CFR 197.515 - Permissible exposure limits (PELs).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The permissible...
46 CFR 197.515 - Permissible exposure limits (PELs).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The permissible...
46 CFR 197.515 - Permissible exposure limits (PELs).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The permissible...
46 CFR 197.515 - Permissible exposure limits (PELs).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Permissible exposure limits (PELs). 197.515 Section 197.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.515 Permissible exposure limits (PELs). The permissible...
Are occupational exposure limits becoming more alike within the European Union?
Schenk, Linda; Hansson, Sven Ove; Rudén, Christina; Gilek, Michael
2008-10-01
The occupational exposure limits (OELs) established by seven different national regulatory agencies of EU member states are compared with those of the European Commission (EC). The comparison concerned: (1) what chemicals have been selected, (2) the average level of exposure limits for all chemicals, and (3) the similarity between the OELs of different EU member states and the OELs recommended by the European Commission. The average level of the exposure limits has declined during the past 10 years in four of the five countries in our study for which historical data were available to us. Poland has not changed its level noticeably and Germany has increased it. Since the first list of indicative OELs was established by the EC, a few of the EU exposure limits have been lowered. The similarity index indicates that the exposure limits of EU member states are converging towards the European Commission's recommended OELs. Still, the average level of OELs differs between organizations--the Estonian OELs are on average 35% higher than the Polish OELs.
Sadeghi, Fatemeh; Nasseri, Simin; Yunesian, Masud; Nabizadeh, Ramin; Mosaferi, Mohammad; Mesdaghinia, Alireza
2018-04-16
Based on the environmental health assessment framework of the United State Environmental Protection Agency, a quantitative health risk assessment of arsenic in contaminated drinking water in a city in the northwest of Iran has been carried out. In the exposure assessment step, arsenic concentrations in drinking water were determined during four seasons. In addition, the water ingestion rate for different age groups in this region was determined. The concentration of arsenic in 163 collected samples from different locations during four seasons ranged from 0 to 99 μg L -1 . Furthermore, a high percentage of the samples manifested higher levels than the permissible limit of 10 μg L -1 . The total daily water intake rates of four age groups 1 to <2 (group 1), 2 to <6 (group 2), 6 to <16 (group 3), and ≥16 years (group 4) were estimated as 0.86, 1.49, 2.00, and 2.33 L day -1 , respectively. Calculating the lifetime average daily dose of arsenic indicated that adults (group 4) had the highest and children (group 1) had the lowest daily intake of arsenic in their entire life. The results of risk characteristic showed that the order of excess lifetime cancer risk via arsenic exposure in the four groups was 4 > 3 > 2 > 1. The estimated risks for all age groups were higher than the acceptable range (1E-6 to 1E-4). The hazard quotient values for all of the classified groups were lower than the recommended limit values (<1), but it cannot be concluded that potential non-carcinogenicity risks are non-existent since the possible exposure to arsenic via food and skin may also pose the risk.
C. S., Lim; M. S., Shaharuddin; W. Y., Sam
2013-01-01
Introduction: A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK). Methodology: By using purposive sampling method, 100 respondents who fulfilled the inclusive criteria were selected from different housing areas of SK based on geographical population distribution. Residents with filtration systems installed were excluded from the study. Questionnaires were administered to determine water consumption-related information and demographics. Two water samples (first-flushed and fully-flushed samples) were collected from kitchen tap of each household using HDPE bottles. A total of 200 water samples were collected and lead concentrations were determined using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Results: Mean lead concentration in first-flushed samples was 3.041± SD 6.967µg/L and 1.064± SD 1.103µg/L for fully-flushed samples. Of the first-flushed samples, four (4) had exceeded the National Drinking Water Quality Standard (NDWQS) lead limit value of 10µg/L while none of the fully-flushed samples had lead concentration exceeded the limit. There was a significant difference between first-flushed samples and fully-flushed samples and flushing had elicited a significant change in lead concentration in the water (Z = -5.880, p<0.05). It was also found that lead concentration in both first-flushed and fully flushed samples was not significantly different across nine (9) areas of Seri Kembangan (p>0.05). Serdang Jaya was found to have the highest lead concentration in first-flushed water (mean= 10.44± SD 17.83µg/L) while Taman Universiti Indah had the highest lead concentration in fully-flushed water (mean=1.45± SD 1.83µg/L). Exposure assessment found that the mean chronic daily intake (CDI) was 0.028± SD 0.034µgday-1kg-1. None of the hazard quotient (HQ) value was found to be greater than 1. Conclusion: The overall quality of water supply in SK was satisfactory because most of the parameters tested in this study were within the range of permissible limit and only a few samples had exceeded the standard values for lead and pH. Non-carcinogenic risk attributed to ingestion of lead in SK tap water was found to be negligible. PMID:23445691
Lim, C S; Shaharuddin, M S; Sam, W Y
2012-11-21
A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK). By using purposive sampling method, 100 respondents who fulfilled the inclusive criteria were selected from different housing areas of SK based on geographical population distribution. Residents with filtration systems installed were excluded from the study. Questionnaires were administered to determine water consumption-related information and demographics. Two water samples (first-flushed and fully-flushed samples) were collected from kitchen tap of each household using HDPE bottles. A total of 200 water samples were collected and lead concentrations were determined using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Mean lead concentration in first-flushed samples was 3.041± SD 6.967µg/L and 1.064± SD 1.103µg/L for fully-flushed samples. Of the first-flushed samples, four (4) had exceeded the National Drinking Water Quality Standard (NDWQS) lead limit value of 10µg/L while none of the fully-flushed samples had lead concentration exceeded the limit. There was a significant difference between first-flushed samples and fully-flushed samples and flushing had elicited a significant change in lead concentration in the water (Z = -5.880, p<0.05). It was also found that lead concentration in both first-flushed and fully flushed samples was not significantly different across nine (9) areas of Seri Kembangan (p>0.05). Serdang Jaya was found to have the highest lead concentration in first-flushed water (mean= 10.44± SD 17.83µg/L) while Taman Universiti Indah had the highest lead concentration in fully-flushed water (mean=1.45± SD 1.83µg/L). Exposure assessment found that the mean chronic daily intake (CDI) was 0.028± SD 0.034µgday-1kg-1. None of the hazard quotient (HQ) value was found to be greater than 1. The overall quality of water supply in SK was satisfactory because most of the parameters tested in this study were within the range of permissible limit and only a few samples had exceeded the standard values for lead and pH. Non-carcinogenic risk attributed to ingestion of lead in SK tap water was found to be negligible.
Diagnosis of toxic alcohols: limitations of present methods.
Kraut, Jeffrey A
2015-01-01
Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.
SAR compliance assessment of PMR 446 and FRS walkie-talkies.
Vermeeren, Günter; Joseph, Wout; Martens, Luc
2015-10-01
The vast amount of studies on radiofrequency dosimetry deal with exposure due to mobile devices and base station antennas for cellular communication systems. This study investigates compliance of walkie-talkies to exposure guidelines established by the International Commission on Non-Ionizing Radiation Protection and the Federal Communications Committee. The generic walkie-talkie consisted of a helical antenna and a ground plane and was derived by reverse engineering of a commercial walkie-talkie. Measured and simulated values of antenna characteristics and electromagnetic near fields of the generic walkie-talkie were within 2% and 8%, respectively. We also validated normalized electromagnetic near fields of the generic walkie-talkie against a commercial device and observed a very good agreement (deviation <6%). We showed that peak localized specific absorption rate (SAR) induced in the oval flat phantom by the generic walkie-talkie is in agreement with four commercial devices if input power of the generic walkie-talkie is rescaled based on magnetic near field. Finally, we found that SAR of commercial devices is within current SAR limits for general public exposure for a worst-case duty cycle of 100%, that is, about 3 times and 6 times lower than the limit on the 1 g SAR (1.6 W/kg) and 10 g SAR (2 W/kg), respectively. But, an effective radiated power as specified by the Private Mobile Radio at 446 MHz (PMR 446) radio standard can cause localized SAR exceeding SAR limits for 1 g of tissue. © 2015 Wiley Periodicals, Inc.
Occupational and Environmental Bronchiolar Disorders
Cummings, Kristin J.; Kreiss, Kathleen
2015-01-01
Occupational and environmental causes of bronchiolar disorders are recognized on the basis of case reports, case series, and, less commonly, epidemiologic investigations. Pathology may be limited to the bronchioles or also involve other components of the respiratory tract, including the alveoli. A range of clinical, functional, and radiographic findings, including symptomatic disease lacking abnormalities on noninvasive testing, poses a diagnostic challenge and highlights the value of surgical biopsy. Disease clusters in workplaces and communities have identified new etiologies, drawn attention to indolent disease that may otherwise have been categorized as idiopathic, and expanded the spectrum of histopathologic responses to an exposure. More sensitive noninvasive diagnostic tools, evidence-based therapies, and ongoing epidemiologic investigation of at-risk populations are needed to identify, treat, and prevent exposure-related bronchiolar disorders. PMID:26024345
[Biological monitoring of occupational exposure to sevoflurane].
Imbriani, M; Zadra, P; Negri, S; Alessio, A; Maestri, L; Ghittori, S
2001-01-01
Sevoflurane has been used in the last few years in brief surgical operations, either alone or in combination with nitrous oxide. Occupationally exposed groups include anesthesiologists, surgeons and operating room nurses. In 1977 the National Institute for Occupational Safety and Health (NIOSH) recommended that occupational exposure to halogenated anesthetic agents (halothane, enflurane, and isoflurane), when used as the sole anesthetic, should be controlled so that no worker would be exposed to time-weighted average concentrations greater than 2 ppm during anesthetic administration. When halogenated anesthetics are associated with nitrous oxide, NIOSH recommends that the limit value should not exceed 0.5 ppm. We think these recommendations can be extended to sevoflurane. Metabolism of sevoflurane is catalyzed by cytochrome P-450; this involves oxidation of the fluoromethyl side chain of the molecule, followed by glucuronidation. Two urinary metabolites of sevoflurane have been identified: inorganic fluoride (which, however, is not specific) and a non-volatile compound that yields hexafluoroisopropanol (HFIP) when digested with the enzyme beta-glucuronidase. In order to investigate the role of urinary HFIP as an indicator of occupational exposure to sevoflurane (CI, ppm), CI was measured in 145 members of 18 operating room staffs. The measurements of the time-weighted average of CI in the breathing zone were made by means of diffusive personal samplers. Each sampler was exposed during the whole working period. Sevoflurane was desorbed with CS2 from charcoal and the concentrations were measured on a gas chromatograph (GC) equipped with a mass selective detector (MSD). The GC was equipped with a 25 meter cross-linked phenylmethylsilicon column (internal diameter 0.2 mm). GC conditions were as follows: injector column temperature = 200 degrees C; column temperature = 30 degrees C; carrier gas = helium; injection technique of samples = splitless. The analytical conditions for the MSD were the following: ion mass monitored = 131 m/e; dwell time = 50 msec; selected ion monitoring window time = 0.1 amu; electromultiplier = 400 V. Urine samples were collected near the end of the shift and were analyzed for HFIP by head-space gas chromatography after glucuronide hydrolysis. 0.5 ml of urine and 1.5 ml of 10 M sulfuric acid were added to 21.8 ml headspace vials. The vials were immediately capped, vortexed, and loaded into the headspace autosampler. Samples were maintained at 100 degrees C for 30 min, after which glucuronide hydrolysis was 99% complete. Analyses were performed on a GC equipped with a MSD. The analytical conditions for urine analysis were as follows: cross-linked 5% phenylmethylsilicon column (internal diameter 0.2 mm, length 25 m); column temperature = 35 degrees C; carrier gas = helium. The analytical conditions for the MSD were: monitored ions = 51.05 and 99; dwell time = 100 ms; selected ion monitoring window time = 0.1 amu; electromultiplier voltage = 2000 Volt. With our analytical procedure, the detection limit of HFIP in urine was 20 micrograms/L. The variation coefficient (CV) for HFIP measurement in urine was 8.7% (on 10 determinations; mean value = 1000 micrograms/L). The median value of CI was 0.77 ppm (Geometric Standard Deviation = 4.08; range = 0.05-27.9 ppm). The correlation between CI and HFIP (Cu, microgram/L) was: Log Cu (microgram/L) = 0.813 x Log CI (ppm) + 2.517 (r = 0.79, n = 145, p < 0.0001). On the basis of the equation it was possible to establish tentatively the biological limit values corresponding to the respective occupational exposure limit values proposed for sevoflurane. According to our experimental results, HFIP values of 488 micrograms/L and 160 micrograms/L correspond to airborne sevoflurane concentrations of 2 and 0.5 ppm respectively.
Development of an Automated Reader for Analysis and Storage of Personnel Dosimeter Badge Data
NASA Technical Reports Server (NTRS)
Meneghelli, B. J.; Hodge, T. R.; Robinson, L. J.; Lueck, D. E.
1997-01-01
The collection and archiving of data from personnel dosimeters has become increasingly important in light of the lowered threshold limit values (TLV) for hydrazine (HZ), monomethylhydrazine (MMH), and unsymmetrical dimethylhydrazine (UDMH). The American Conference of Government Industrial Hygienists (ACGIH) lowered the TLV from 100 parts per billion (ppb) to 10 ppb and has caused increased concern over long term exposures of personnel to trace levels of these hypergols and other potentially harmful chemicals. An automated system of reading the exposure levels of personnel dosimeters and storing exposure data for subsequent evaluation has been developed. The reading of personnel dosimeter badges for exposure lo potentially harmful vapor concentrations of hydrazines or other chemicals is performed visually by comparing the color developed by the badge with a calibrated color comparator. The result obtained using visual comparisons of the developed badge color with the comparator may vary widely from user to user. The automated badge reader takes the variability out of the dosimeter reading by accurately comparing the reflectance obtained from a colored spot on the badge with a reading on the same spot prior to any exposure to chemical vapors. The observed difference between the reflectance values is used as part of a calculation of the dose value for the badge based on a stored calibration curve. The badge reader also stores bar-code data unique to each badge, as well as bar-code information on the user, as part of the permanent badge record. The start and stop exposure times for each badge are recorded and can be used as part of the calculated concentration, in ppm, for each badge logged during a recording period. The badge reader is equipped with a number of badge holders, each of which is unique to a specific type of personnel dosimeter badge. This gives the reader maximum flexibility to allow for the reading of several different types of badges. Test results of the badge reader for several different types of personnel dosimeter badges are presented within the body of this paper.
Development of an Automated Reader for Analysis and Storage of Personnel Dosimeter Badge Data
NASA Technical Reports Server (NTRS)
Meneghelli, B. J.; Hodge, T. R.; Robinson, L. J.; Lueck, D. E.
1997-01-01
The collection and archiving of data from personnel dosimeters has become increasingly important in light of the lowered Threshold Limit Values (TLV) for HydraZine (HZ), MonoMethylHydrazine (MMH), and Unsymmetrical DiMethylHydrazine (UDMH). The American Conference of Government Industrial Hygienists (ACGIH) lowered the TLV from 100 parts per billion (ppb) to IO ppb and has caused increased concern over long term exposures of personnel to trace levels of these hypergols and other potentially harmful chemicals. An automated system of reading the exposure levels of personnel dosimeters and storing exposure data for subsequent evaluation has been developed. The reading of personnel dosimeter badges for exposure to potentially harmful vapor concentrations of hydrazines or other chemicals is performed visually by comparing the color developed by the badge with a calibrated color comparator. The result obtained using visual comparisons of the developed badge color with the comparator may vary widely from user to user. The automated badge reader takes the variability out of the dosimeter reading by accurately comparing the reflectance obtained from a colored spot on the badge with a reading on the same spot prior to any exposure to chemical vapors. The observed difference between the reflectance values is used as part of a calculation of the dose value for the badge based on a stored calibration curve. The badge reader also stores bar-code data unique to each badge, as well as bar-code information on the user, as part of the permanent badge record. The start and stop exposure times for each badge are recorded and can be used as part of the calculated concentration, in ppm, for each badge logged during a recording period. The badge reader is equipped with a number of badge holders, each of which is unique to a specific type of personnel dosimeter badge. This gives the reader maximum flexibility to allow for the reading of several different types of badges. Test results of the badge reader for several different types of personnel dosimeter badges are presented within the body of this paper.
Rehman, Inayat Ur; Ishaq, Muhammad; Ali, Liaqat; Khan, Sardar; Ahmad, Imtiaz; Din, Imran Ud; Ullah, Hameed
2018-06-15
This study focuses on enrichment, spatial distribution, potential ecological risk index (PERI) and human health risk of various toxic metals taken via soil and surface water in the vicinity of Sewakht mines, Pakistan. The samples of soils (n = 54) of different fields and surface water (n = 38) were analyzed for toxic metals including cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), nickel (Ni), zinc (Zn) and molybdenum (Mo). Soil pollution level was evaluated using pollution indices including geo-accumulation index (Igeo), contamination factor (CF), degree of contamination (CD), enrichment factor (EF) and PERI. CF showed moderate contamination of soil with Cd, Co, Fe and Mo, while Igeo values indicated moderate accumulation of Cu. For Cd, EF> 1.5 was found in agricultural soils of the study area. PERI findings presented a very high ecological risk (PERI > 380) at two sites (4%), considerable ecological risk at four sites (7.4%). Non-carcinogenic risk from exposure to Fe in soil was higher than limit (HI > 1) for both children and adults. Moreover, carcinogenic risk postured by soil contaminants i.e. Cd, Cr, Co and Ni in children was higher than their limits (except Pb), while in adults only Co posed higher risk of cancer than the limit (10 -4 ) through soil exposure. Non-carcinogenic risks in children due to Cd, Co, Mo via surface water intake were higher than their safe limits (HQ > 1), while in adults the risk order was Cr > Cd > Cu > Pb > Co > Mo. Moreover, carcinogenic risk exposure due to Co > Cd > Cr > Ni from surface water (except Pb) was higher than the tolerable limit (1 × 10 -4 ) both for children and adults. However, Pb concentrations in both soil and surface water exposure were not likely to cause cancer risk in the local population. Copyright © 2018 Elsevier Inc. All rights reserved.
Interpreting REACH guidance in the determination of the derived no effect level (DNEL).
Kreider, Marisa L; Spencer Williams, E
2010-11-01
Under the new European chemicals regulation, REACH, a new safety value, the Derived No Effect Level (DNEL) must be established for all chemicals manufactured, imported or used in the EU in quantities greater than 10 metric tonnes per year. The DNEL is to be calculated for all relevant exposure pathways, exposure populations, and endpoints of toxicity. The EU has published guidance on how to derive the DNEL, but this guidance has yet to be put into practice and is in some places not prescriptive. Using the Agency for Toxic Substances and Disease Registry (ATSDR) dataset, we have determined inhalation DNELs for styrene. In doing so, we considered what effect key decisions would have on the calculated DNEL. The resulting DNELs were then compared to existing risk criteria values or occupational exposure limits. General population DNELs were generally more conservative than analogous risk criteria (ranging from approximately 0.05 to 2.5 ppm). Worker DNELs are lower than existing occupational standards (ranging from approximately 0.4 to 20 ppm). To our knowledge, this work represents the first rigorous application and interpretation of the EU guidance for determination of a DNEL and will prove useful as a model for determination of other DNELs under REACH. Copyright © 2010 Elsevier Inc. All rights reserved.
Occupational exposure to aluminum and its biomonitoring in perspective.
Riihimäki, Vesa; Aitio, Antero
2012-11-01
Exposure to aluminum at work is widespread, and people are exposed to several species of aluminum, which differ markedly as to the kinetics and toxicity. Especially welding of aluminum is widely applied and continuously expanding. Inhalation of fine particles of sparsely soluble aluminum results in the retention of deposited particles in the lungs. From the lungs, aluminum is released to the blood and distributed to bones and the brain, and excreted to urine. Soluble aluminum compounds are not accumulated in the lungs. Neurotoxicity is the critical effect of exposure to sparsely soluble aluminum compounds. Studies on workers exposed to aluminum welding fumes have revealed disturbances of cognitive processes, memory and concentration, and changes in mood and EEG. Early pulmonary effects have been observed among aluminum powder-production workers using high-resolution computed tomography. The primary objective of aluminum biomonitoring (BM) is to help prevent the formation of aluminum burden in the lungs and thereby to prevent harmful accumulation of aluminum in target organs. BM of aluminum can be effectively used for this purpose in the production/use of aluminum powders, aluminum welding, as well as plasma cutting, grinding, polishing and thermal spraying of aluminum. BM of aluminum may also be similarly useful in the smelting of aluminum and probably in the production of corundum. BM can help identify exposed individuals and roughly quantitate transient exposure but cannot predict health effects in the production/use of soluble aluminum salts. For urinary aluminum (U-Al) we propose an action limit of 3 µmol/L, corrected to a relative density of 1.021, in a sample collected preshift after two days without occupational exposure, and without use of aluminum-containing drugs. This value corresponds roughly to 2.3 µmol/g creatinine. Compliance with this limit is expected to protect the worker against the critical effect of aluminum in exposure to sparsely soluble aluminum dusts, the cognitive function of the central nervous system. For serum aluminum (S-Al), we do not propose an action limit because S-Al is less sensitive as an indicator of aluminum load.
Occupational radiation exposure in nuclear medicine department in Kuwait
NASA Astrophysics Data System (ADS)
Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.
2017-11-01
Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.
Smith, T J; Hammond, S K; Laidlaw, F; Fine, S
1984-01-01
Silicon carbide is produced by heating a mixture of petroleum coke and silica sand to approximately 2000 degrees C in an electric furnace for 36 hours. During heating, large amounts of carbon monoxide are released, sulphur dioxide is produced from residual sulphur in the coke, and hydrocarbon fume is produced by pyrolysis of the coke. Loading and unloading furnaces causes exposures to respirable dust containing crystalline silica, silicon carbide, and hydrocarbons. In the autumn of 1980 extensive measurements were made of personal exposures to air contaminants. Eight hour time weighted exposures to sulphur dioxide ranged from less than 0.1 ppm to 1.5 ppm and respirable participate exposures ranged from 0.01 mg/m3 to 9.0 mg/m3. Geometric mean particulate exposures for jobs ranged from 0.1 mg/m3 to 1.46 mg/m3. The particulate contained varying amounts of alpha-quartz, ranging from less than 1% to 17%, and most quartz exposures were substantially below the threshold limit value of 100 micrograms/m3. Only traces of cristobalite (less than 1%) were found in the particulate. Median exposures to air contaminants in each job were estimated. Since the operations at the plant had been stable over the past 30 years, it was possible to estimate long term exposures of workers to sulphur dioxide, respirable particulate, quartz, total inorganic material, and extractable organic material. Cumulative exposure (average concentration times exposure duration) for each of the air contaminants was estimated for each worker using his job history. There was sufficient independent variability in the sulphur dioxide and respirable particulate cumulative exposures to make an assessment of their independent effects feasible. The theoretical basis for using the cumulative exposure index and its shortcomings for epidemiological applications were presented. PMID:6691927
10 CFR 850.22 - Permissible exposure limit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Permissible exposure limit. 850.22 Section 850.22 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.22 Permissible exposure limit. The responsible employer must assure that no worker is exposed to an airborne...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ajay, E-mail: ajay782@rediffmail.com; Sharma, Sumit, E-mail: sumitshrm210@gmail.com
The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEARmore » [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].« less
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Sharma, Sumit
2015-08-01
The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].
[Analysis of annual exposure to noise among private farmers according to production profile].
Solecki, Leszek
2007-01-01
The objective of the study was the recognition and evaluation of annual exposure to noise among private farmers on selected family farms of three different profiles of agricultural production (plant, animal and mixed). Based on time schedules of agricultural work activities and dosimetric measurements conducted during the whole year, 2 acoustic parameters were determined: total exposure to noise in individual months of the year and equivalent daily exposure to noise. The studies showed that in the case of farms carrying out plant production the highest value of total exposure to noise occurred during the summer-autumn months (July, September, October) and in winter (December, January). On farms of animal production profile the highest values were noted in summer-autumn months (August, October) and winter-spring months (January, March, May, June). On mixed production farms high values occurred in summer-autumn months (August-November) and in April. The distribution of equivalent daily exposure values during the whole year was similar. The results of the study indicated that the greatest noise load occurs on farms carrying out plant and mixed production, whereas the lowest values concerned farms of animal production profile. These values considerably exceed standard values.
Walser, Sandra M; Gerstner, Doris G; Brenner, Bernhard; Bünger, Jürgen; Eikmann, Thomas; Janssen, Barbara; Kolb, Stefanie; Kolk, Annette; Nowak, Dennis; Raulf, Monika; Sagunski, Helmut; Sedlmaier, Nadja; Suchenwirth, Roland; Wiesmüller, Gerhard; Wollin, Klaus-Michael; Tesseraux, Irene; Herr, Caroline E W
2015-10-01
Studies suggest adverse health effects following exposure to bioaerosols in the environment and in particular at workplaces. However, there is still a lack of health-related exposure limits based on toxicological or epidemiological studies from environmental health or from the working environment. The aim of this study was to derive health-based exposure limits for bioaerosols that can protect the general population as group "at risk" via environmental exposure using analysis of peer-reviewed studies related to occupational medicine, indoor air and environmental health. The derivation of exposure limits should be conducted by the members of a bioaerosol expert panel according to established toxicological criteria. A systematic review was performed in Medline (PubMed) including studies containing both data on exposure measurements and observed health outcomes. In addition, literature recommended by the experts was considered. A comprehensive search strategy was generated and resulted in a total of n=1569 studies in combination with the literature recommendations. Subsequently, abstracts were screened using defined exclusion criteria yielding a final number of n=44 studies. A standardized extraction sheet was used to combine data on health effects and exposure to different bioaerosols. After full-text screening and extraction according to the defined exclusion criteria n=20 studies were selected all related to occupational exposures comprising the working areas wood processing, farming, waste processing and others. These studies were analyzed in collaboration with the bioaerosol expert network in terms of suitability for derivation of health-related exposure limits. The bioaerosol expert network concluded that none of the analyzed studies provided suitable dose-response relationships for derivation of exposure limits. The main reasons were: (1) lack of studies with valid dose-response data; (2) diversity of employed measuring methods for microorganisms and bioaerosol-emitting facilities; (3) heterogeneity of health effects; (4) insufficient exposure assessment. However, several indicator parameters and exposure concentrations could be identified for different bioaerosol-emitting facilities. Nevertheless, health-related exposure limits are urgently needed especially in approval procedures of facilities like composting plants or livestock farms emitting bioaerosols in the neighbourhood of residents. In the regulatory toxicology framework, it is common to use animal experimental studies for derivation of general exposure limits if appropriate environmental epidemiological studies on harmful substances are lacking. This might be another possibility to obtain health-related exposure limits for specific bioaerosol parameters. Furthermore, we recommend to use suitable measurable outcome parameters related to bioaerosols; to measure bioaerosols according to a protocol representative for exposure pattern and duration at the particular work place; to develop standardized detection methods for indicator parameters; to combine different detection methods to compensate for the limitations of each method; to apply new analysis methods to identify the real risk potential. Copyright © 2015 Elsevier GmbH. All rights reserved.
Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Jui-Sheng; Wang, Sheng-Wei; Lee, Jin-Jing; Liu, Chen-Wuing
2013-08-01
Seafood farmed in arsenic (As)-contaminated areas is a major exposure pathway for the ingestion of inorganic As by individuals in the southwestern part of Taiwan. This study presents a probabilistic risk assessment using limited data for inorganic As intake through the consumption of the seafood by local residents in these areas. The As content and the consumption rate are both treated as probability distributions, taking into account the variability of the amount in the seafood and individual consumption habits. The Monte Carlo simulation technique is utilized to conduct an assessment of exposure due to the daily intake of inorganic As from As-contaminated seafood. Exposure is evaluated according to the provisional tolerable weekly intake (PTWI) established by the FAO/WHO and the target risk based on the US Environmental Protection Agency guidelines. The assessment results show that inorganic As intake from five types of fish (excluding mullet) and shellfish fall below the PTWI threshold values for the 95th percentiles, but exceed the target cancer risk of 10(-6). The predicted 95th percentile for inorganic As intake and lifetime cancer risks obtained in the study are both markedly higher than those obtained in previous studies in which the consumption rate of seafood considered is a deterministic value. This study demonstrates the importance of the individual variability of seafood consumption when evaluating a high exposure sub-group of the population who eat higher amounts of fish and shellfish than the average Taiwanese.
Praveena, S M; Omar, N A
2017-11-15
Heavy metal in rice studies has attracted a greater concern worldwide. However, there have been limited studies on marketed rice samples although it represents a vital ingestion portion for a real estimation of human health risk. This study was aimed to determine both total and bioaccessible of trace elements and heavy metals (Cd, Cr, Cu, Co, Al, Zn, As, Pb and Fe) in 22 varieties of cooked rice using an inductively coupled plasma-optical emission spectroscopy. Both total and bioaccessible of trace elements and heavy metals were digested using closed-nitric acid digestion and Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in vitro digestion model, respectively. Human health risks via Health Risk Assessment (HRA) were conducted to understand exposure risks involving adults and children representing Malaysian population. Zinc was the highest while As was the lowest contents for total and in their bioavailable forms. Four clusters were identified: (1) Pb, As, Co, Cd and Cr; (2) Cu and Al; (3) Fe and (4) Zn. For HRA, there was no any risks found from single element exposure. While potential carcinogenic health risks present for both adult and children from single As exposure (Life time Cancer Risk, LCR>1×10 -4 ). Total Hazard Quotient values for adult and children were 27.0 and 18.0, respectively while total LCR values for adult and children were 0.0049 and 0.0032, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Workplace Respiratory Protection Factors during Asbestos Removal Operations.
Chazelet, Sandrine; Wild, Pascal; Silvente, Eric; Eypert-Blaison, Céline
2018-05-28
Numerous changes have been made to the French labour regulations in recent years relating to the prevention of risks of exposure to asbestos fibres for operators removing asbestos-containing materials. These changes refer to the method used to count fibres, the collective and personal protective devices to be used on these worksites, and the occupational exposure limit value, which was reduced to 10 f.L-1 on 2 July 2015. In this context, this study assessed the level of respiratory protection afforded by supplied-air respirators and powered air-purifying respirators by monitoring exposure for several operators on nine worksites. The levels of dustiness measured in personal samples taken outside masks showed significant evidence of potential exposure during removal of asbestos-containing plaster or sprayed asbestos, and when using abrasive blasting to treat asbestos-containing materials. For these tasks outside concentration regularly exceeds 25000 f.L-1. Measurements inside masks were generally low, under 10 f.L-1, except in some situations involving the removal of asbestos-containing plaster. This partial penetration of fibres inside masks could be due to the high loading linked to this material. The distributions of Workplace Protection Factors obtained for the two types of respiratory protective devices studied were broad, and the fifth percentile values equal to 236 and 104, respectively, for supplied-air respirators and powered air-purifying respirators. This work highlights once again the need to prioritize collective protection when seeking to prevent asbestos-related risks.
NASA Astrophysics Data System (ADS)
Liorni, I.; Parazzini, M.; Varsier, N.; Hadjem, A.; Ravazzani, P.; Wiart, J.
2016-04-01
So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg-1 in uplink mode and 65 μW kg-1 in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.
Gryz, Krzysztof; Karpowicz, Jolanta; Leszko, Wiesław; Zradziński, Patryk
2014-12-01
The aim of the study was to identify and assess electromagnetic radiofrequency radiation (EMRR) exposure in a workplace located in a publicly accessible environment, and represented by offices (where exposure is caused by various transmitters of local fixed indoor and outdoor wireless communication systems). The investigations were performed in 45 buildings (in urban and rural areas in various regions of Poland), using frequency-selective electric field strength (E-field) exposimeters sensitive to the EMRR with a frequency range of 88-2500 MHz, split into 12 sub-bands corresponding to the operating frequencies of typical EMRR sources. The variability of the E-field was analyzed for each frequency range and the total level of exposure by statistical parameters of recorded exposimetric profiles: minimum, maximum, median values and 25-75th - percentiles. The main sources of exposure to EMRR are mobile phone base transceiver stations (BTS) and radio-television transmitters (RTV). The frequency composition in a particular office depends on the building's location. The E-field recorded in buildings in urban and rural areas from the outdoor BTS did not exceed respectively: medians - 0.19 and 0.05 V/m, 75th percentiles -0.25 and 0.09 V/m. In buildings equipped with the indoor BTS antennas the E-field did not exceed: medians - 1 V/m, 75th percentiles - 1.8 V/m. Whereas in urban and rural areas, the median and 75th percentile values of the E-field recorded in buildings located near the RTV (within 1 km) did not exceed: 1.5 and 3.8 V/m or 0.4 and 0.8 V/m, for radio FM band or for TV bands, respectively. Investigations confirmed the practical applicability of the exposimetric measurements technique for evaluating parameters of worker's exposure in both frequency- and time-domain. The presented results show EMRR exposure of workers or general public in locations comparable to offices to be well below international limits.
Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.
Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man
2017-06-01
Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.
Liorni, I; Parazzini, M; Varsier, N; Hadjem, A; Ravazzani, P; Wiart, J
2016-04-21
So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg(-1) in uplink mode and 65 μW kg(-1) in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.
Tlustos, C; Anderson, W; Flynn, A; Pratt, I
2014-01-01
In 2008, the discovery of elevated levels of dioxins and PCBs in a porcine fat sample taken as part of the national residues monitoring programme led to the detection of a major feed contamination incidence in the Republic of Ireland. To estimate additional exposure to dioxins and PCBs due to the contamination incident, all data associated with the contamination incident were collected and reviewed. An exposure model was devised that took into account the proportion of contaminated product reaching the final consumer during the contamination incident window and which utilised all additional information that became available after the incident occurred. Exposure estimates derived for both dioxins and PCBs showed that the body burden of the general population remained largely unaffected by the contamination incident and only approximately 10% were exposed to elevated levels of dioxins and PCBs. Whilst this proportion of the population experienced quite a significant additional load to the existing body burden, the estimated exposure values do not suggest that these would be associated with adverse health effects, based on current knowledge. The exposure period was also limited in time to approximately 3 months, following the recall of contaminated meat immediately on detection of the contamination.
Environmental exposure assessment framework for nanoparticles in solid waste.
Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders; Hartmann, Nanna Isabella Bloch; Astrup, Thomas Fruergaard
2014-01-01
Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO 2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.
Emergency Dose Estimation Using Optically Stimulated Luminescence from Human Tooth Enamel
Sholom, S.; DeWitt, R.; Simon, S.L.; Bouville, A.; McKeever, S.W.S.
2011-01-01
Human teeth were studied for potential use as emergency Optically Stimulated Luminescence (OSL) dosimeters. By using multiple-teeth samples in combination with a custom-built sensitive OSL reader, 60Co-equivalent doses below 0.64 Gy were measured immediately after exposure with the lowest value being 27 mGy for the most sensitive sample. The variability of OSL sensitivity, from individual to individual using multiple-teeth samples, was determined to be 53%. X-ray and beta exposure were found to produce OSL curves with the same shape that differed from those due to ultraviolet (UV) exposure; as a result, correlation was observed between OSL signals after X-ray and beta exposure and was absent if compared to OSL signals after UV exposure. Fading of the OSL signal was “typical” for most teeth with just a few of incisors showing atypical behavior. Typical fading dependences were described by a bi-exponential decay function with “fast” (decay time around of 12 min) and “slow” (decay time about 14 h) components. OSL detection limits, based on the techniques developed to-date, were found to be satisfactory from the point-of-view of medical triage requirements if conducted within 24 hours of the exposure. PMID:21949479
Environmental exposure assessment framework for nanoparticles in solid waste
NASA Astrophysics Data System (ADS)
Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders; Hartmann, Nanna Isabella Bloch; Astrup, Thomas Fruergaard
2014-06-01
Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.
[Effects on serum myelin proteins of n-hexane exposure].
Yi, Juan; Zhou, Wei; He, Jia-xi; Liu, Qing-jun; Huang, Xian-qing
2011-02-01
Exploring the effects of n-hexane on expression of serum myelin proteins in occupational exposure workers, and finding the early biomarker of n-hexane exposure. In the study, 373 subjects were recruited, 269 exposure workers (work experience of more than1 year) and 104 non-exposure workers were selected. Firstly examined the level of urinary 2,5-hexanedione in the two groups, based on urinary 2,5-hexanedione biological limit value (4 mg/L), the exposed group was divided into high-exposed group and low-exposed group. And then collected blood samples and extracted serum. Human peripheral myelin protein zero (P0) antibody (IgG, IgM) and human peripheral myelin protein two (P2) antibody (IgG, IgM) analysis was performed according to ELISA kit. The concentration of urinary 2,5-hexanedione in the exposed group was (3.10 ± 1.35) mg/L. The level of P0 antibody (IgG, IgM) and P2 antibody (IgG, IgM) in the high-exposed group and low-exposed group were both higher than that in the controls (P < 0.01). P0 antibody and P2 antibody could be used as the early biomarkers of n-hexane exposure, which not only evaluate the occupational hazards in the early, but also provide the policy maker with scientific evidence.
Finley, Brent L; Richter, Richard O; Mowat, Fionna S; Mlynarek, Steve; Paustenbach, Dennis J; Warmerdam, John M; Sheehan, Patrick J
2007-11-01
We analyzed cumulative lifetime exposure to chrysotile asbestos experienced by brake mechanics in the US during the period 1950-2000. Using Monte Carlo methods, cumulative exposures were calculated using the distribution of 8-h time-weighted average exposure concentrations for brake mechanics and the distribution of job tenure data for automobile mechanics. The median estimated cumulative exposures for these mechanics, as predicted by three probabilistic models, ranged from 0.16 to 0.41 fibers per cubic centimeter (f/cm(3)) year for facilities with no dust-control procedures (1970s), and from 0.010 to 0.012 f/cm(3) year for those employing engineering controls (1980s). Upper-bound (95%) estimates for the 1970s and 1980s were 1.96 to 2.79 and 0.07-0.10 f/cm(3) year, respectively. These estimates for US brake mechanics are consistent with, but generally slightly lower than, those reported for European mechanics. The values are all substantially lower than the cumulative exposure of 4.5 f/cm(3) year associated with occupational exposure to 0.1 f/cm(3) of asbestos for 45 years that is currently permitted under the current occupational exposure limits in the US. Cumulative exposures were usually about 100- to 1,000-fold less than those of other occupational groups with asbestos exposure for similar time periods. The cumulative lifetime exposure estimates presented here, combined with the negative epidemiology data for brake mechanics, could be used to refine the risk assessments for chrysotile-exposed populations.
Benhaddya, Mohammed Lamine; Boukhelkhal, Abdelaziz; Halis, Youcef; Hadjel, Mohammed
2016-04-01
Hassi Messaoud town is a recent city that is situated inside the oil field, which hosts an important petroleum extraction field and refinery. Large-scale and long-term oil refinery and corresponding industrial activities may contaminate the surrounding soil/dust and could lead to pollution levels that can affect human health. The soil and road dust samples were analysed for different trace elements: copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). Geo-accumulation index (I(geo)), pollution index (PI), and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of urban soil and road dust. The I(geo) values indicate unpolluted to moderate polluted of investigated metals in the soil samples. The assessment results of PI support the results of I(geo), and IPI indicates heavy metals in road dust polluted seriously. The noncarcinogenic health risk assessment shows that ingestion of soil/dust particles is the route for exposure to heavy metals, followed by dermal adsorption. The human exposure risk assessment based on different exposure pathways showed that the hazard index (HI) was <1.0 for all of the elements. The relative exposure risk (noncarcinogenic) was greater for toddlers. Although the overall risk was within the acceptable limit of 1.00, the HI of Pb from the soil (0.103) and road dust (0.132) was close to the threshold limits, which over the long-term may pose a health risk.
Tuakuila, J
2013-07-01
Data on human exposure to chemicals in Africa are scarce. A biomonitoring study was conducted in a representative sample of the population in Kinshasa (Democratic Republic of Congo) to document exposure to benzene. S-phenylmercapturic acid (S-PMA) was measured by LC-MS/MS in spot urine samples from 220 individuals (50.5% women), aged 6-70 years living in the urban area and from 50 additional subjects from the sub-rural area of Kinshasa. Data were compiled as arithmetic means, geometric means, percentile 95th and range expressed in μg/L. Overall, living in urban Kinshasa was associated with increased levels of S-PMA in urine as compared to a population living in the sub-rural area. Increased levels were also found by comparison with some date from literature. This study reveals the high benzene exposure of the Kinshasa population requiring the determination of benzene concentrations in ambient air of Kinshasa and limit values for the protection of human health. Copyright © 2013 Elsevier GmbH. All rights reserved.
Toxicity assessment of Chlorella vulgaris and Chlorella protothecoides following exposure to Pb(II).
Zhang, Wei; Xiong, Bang; Chen, Lin; Lin, Kuangfei; Cui, Xinhong; Bi, Huasong; Guo, Meijin; Wang, Weiliang
2013-07-01
The short- and long-term toxic effects of Pb(II) exposure on Chlorella vulgaris (C. vulgaris) and Chlorella protothecoides (C. protothecoides) were not well understood. The lab study was performed to observe the Pb(II) exposure induced changes. Results of the observations show: (1) higher level of Pb(II) (50 or 80mgL(-1)) could significantly inhibit the growth and chlorophyll a synthesis of both algae in almost all the treatments and dose-response relationships could be clearly observed, (2) the range of EC50 values (24-120h, 67.73-172.45mgL(-1)) indicated that Pb(II) had a relatively limited short-term toxicity to the two algae, while long-term tests (7-28d, 50.41-63.91mgL(-1)) displayed higher toxicity and (3) SOD and CAT activities of both algae after exposed to medium level of Pb(II) were significantly promoted, and their response might be more susceptible in short-term exposure. This research provides a basic understanding of Pb(II) toxicity to aquatic organisms. Copyright © 2013 Elsevier B.V. All rights reserved.
Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H
2017-05-01
This study assessed the present-day levels (year 2010-2011) of exposure to respirable dust (RD) and respirable silica (RS) in taconite mines and evaluated how the mining process influences exposure concentrations. Personal samples (n = 679) were collected to assess exposure levels of workers to RD and RS at six mines in the Mesabi Iron Range of Minnesota. The RD and RS concentrations were measured using the National Institute for Occupational Safety and Health (NIOSH) 0600 and NIOSH 7500, respectively. Between-mine, between-SEG (similar exposure groups), within-SEG, and within-worker components of variability for RD and RS exposures were estimated using a two- or three-way nested random-effects ANOVA model. The majority of RD concentrations across all mines were below the Mine Safety and Health Administration (MSHA) Permissible Exposure Limit (PEL). The highest concentrations of RD were often observed in either the Pelletizing or Crushing departments, which are inherently dusty operations. With a few exceptions, the concentrations of RS in the crushing and concentrating processes were higher than those in the other mining processes, as well as higher than the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for RS. The magnetic separation and flotation processes in the concentrating department reduced the levels of RS significantly, and lowered the percentage of quartz in RD in the pelletizing department. There was little variability among the six mines or between the two mineralogically distinct zones for either RD or RS exposures. The between-SEG variability for RS did not differ substantially across most of the mines and was a major component of exposure variance. The within-SEG (or between-worker) variance component was typically the smallest because in many instances one worker from a SEG within a mine was monitored multiple times. Some of these findings were affected by the degree of censoring in each SEG and mine, characteristics of the taconite rock, seasonal effects during sampling, or the tasks assigned to each job in that mine.
Schmitt, J; Haufe, E; Trautmann, F; Schulze, H-J; Elsner, P; Drexler, H; Bauer, A; Letzel, S; John, S M; Fartasch, M; Brüning, T; Seidler, A; Dugas-Breit, S; Gina, M; Weistenhöfer, W; Bachmann, K; Bruhn, I; Lang, B M; Bonness, S; Allam, J P; Grobe, W; Stange, T; Westerhausen, S; Knuschke, P; Wittlich, M; Diepgen, T L
2018-02-01
Squamous cell carcinoma (SCC) is one of the most frequent types of cancer constituting a significant public health burden. Prevention strategies focus on limiting ultraviolet (UV) exposure during leisure time. However, the relative impact of occupational and nonoccupational UV exposure for SCC occurrence is unclear. To investigate the association between occupational and nonoccupational UV exposure for SCC in a multicentre population-based case-control study hypothesizing that high occupational UV exposure increases the risk of SCC. Consecutive patients with incident SCC (n = 632) were recruited from a German national dermatology network. Population-based controls (n = 996) without history of skin cancer were recruited from corresponding residents' registration offices and propensity score matched to cases. Lifetime UV exposure, sociodemographic and clinical characteristics were assessed by trained physicians. Occupational and nonoccupational UV exposure doses were estimated by masked investigators using established reference values. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were assessed using conditional logistic regression adjusting for relevant confounders. Total solar UV exposure was significantly associated with increased SCC. The OR for high (> 90th percentile) vs. low (< 40th percentile) and high vs, moderate (40-59th percentile) occupational UV exposure was 1·95 (95% CI 1·19-3·18) and 2·44 (95% CI 1·47-4·06) for SCC. Adjusting for occupational UV exposure, nonoccupational UV exposure was not significantly related to SCC incidence. Dose-response relationships were observed for occupational but not for nonoccupational solar UV exposure. Solar occupational UV exposure is a major determinant of incident SCC. Our findings indicate that prevention strategies should be further expanded to the occupational setting. © 2017 British Association of Dermatologists.
Ward, S.; Augspurger, T.; Dwyer, F.J.; Kane, C.; Ingersoll, C.G.
2007-01-01
Water quality data were collected from three drainages supporting the endangered Carolina heelsplitter (Lasmigona decorata) and dwarf wedgemussel (Alasmidonta heterodon) to determine the potential for impaired water quality to limit the recovery of these freshwater mussels in North Carolina, USA. Total recoverable copper, total residual chlorine, and total ammonia nitrogen were measured every two months for approximately a year at sites bracketing wastewater sources and mussel habitat. These data and state monitoring datasets were compared with ecological screening values, including estimates of chemical concentrations likely to be protective of mussels, and federal ambient water quality criteria to assess site risks following a hazard quotient approach. In one drainage, the site-specific ammonia ecological screening value for acute exposures was exceeded in 6% of the samples, and 15% of samples exceeded the chronic ecological screening value; however, ammonia concentrations were generally below levels of concern in other drainages. In all drainages, copper concentrations were higher than ecological screening values most frequently (exceeding the ecological screening values for acute exposures in 65-94% of the samples). Chlorine concentrations exceeding the acute water quality criterion were observed in 14 and 35% of samples in two of three drainages. The ecological screening values were exceeded most frequently in Goose Creek and the Upper Tar River drainages; concentrations rarely exceeded ecological screening values in the Swift Creek drainage except for copper. The site-specific risk assessment approach provides valuable information (including site-specific risk estimates and ecological screening values for protection) that can be applied through regulatory and nonregulatory means to improve water quality for mussels where risks are indicated and pollutant threats persist. ?? 2007 SETAC.
Determining exhaust fumes exposure in chainsaw operations.
Neri, F; Foderi, C; Laschi, A; Fabiano, F; Cambi, M; Sciarra, G; Aprea, M C; Cenni, A; Marchi, E
2016-11-01
The objective of this study was to investigate the inhalation exposure of forest operators to polycyclic aromatic hydrocarbons (PAHs) and BTEX (benzene, toluene, ethylbenzene and total xylenes) contained in the exhaust fumes released from chainsaws and to suggest possible countermeasures. The study was carried out in four silvicultural treatments (coppice clearcut, conifer thinning, conifer pruning, and sanitary cut), using three types of chainsaw fuel (normal two-stroke petrol mix and two alkylate fuels). Eighty personal air samples were collected; IOM samplers combined with Amberlite XAD-2 sorbent tubes were used for collecting PAHs and Radiello ® samplers were used for BTEX. Results indicate that none of the four silvicultural treatments significantly affected the PAHs and BTEX inhalation exposure of forest workers. On the other hand, statistically significant differences were recorded in the inhalation exposure to PAHs and BTEX when using different fuel types. In particular, the inhalation exposure to PAHs and BTEX was generally one order of magnitude lower when using modern alkylate fuels as compared to the traditional oil and lead-free petrol mixture. The small, non-statistically significant differences in inhalation exposure recorded between the two alkylate fuels suggests that the two fuels might be equivalent in terms of quality. Our study indicates that while forest workers are exposed to PAHs and BTEX, the maximum values are generally well below accepted occupational exposure limits. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vincent, Raymond; Gillet, Martine; Goutet, Pierre; Guichard, Christine; Hédouin-Langlet, Catherine; Frocaut, Anne Marie; Lambert, Pierre; Leray, Fabrice; Mardelle, Patricia; Dorotte, Michel; Rousset, Davy
2015-01-01
A campaign to measure exposure to hexavalent chromium compounds was carried out in France by the seven CARSAT chemistry laboratories, CRAMIF laboratory, and INRS over the 2010-2013 period. The survey included 99 companies involved in various activity sectors. The inhalable fraction of airborne particles was sampled, and exposure levels were determined using ion chromatography analysis combined with post-column derivatization and UV detection. The quality of the measurement results was guaranteed by an inter-laboratory comparison system involving all the laboratories participating in this study. Exposure levels frequently exceeded the French occupational exposure limit value (OELV) of 1 µg m(-3), in activities such as thermal metallization and manufacturing and application of paint in the aeronautics sector. The results also reveal a general trend for a greater proportion of soluble Chromium VI (Cr VI) compounds compared with insoluble compounds. Qualitative and quantitative information relating to the presence of other metallic compounds in the air of workplaces is also provided, for example for Cr III, Ni, Fe, etc. The sampling strategy used and the measurement method are easy to implement, making it possible to check occupational exposure with a view to comparing it to an 8 h-OELV of 1 µg m(-3). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Benjet, C; Bromet, E; Karam, E G; Kessler, R C; McLaughlin, K A; Ruscio, A M; Shahly, V; Stein, D J; Petukhova, M; Hill, E; Alonso, J; Atwoli, L; Bunting, B; Bruffaerts, R; Caldas-de-Almeida, J M; de Girolamo, G; Florescu, S; Gureje, O; Huang, Y; Lepine, J P; Kawakami, N; Kovess-Masfety, Viviane; Medina-Mora, M E; Navarro-Mateu, F; Piazza, M; Posada-Villa, J; Scott, K M; Shalev, A; Slade, T; ten Have, M; Torres, Y; Viana, M C; Zarkov, Z; Koenen, K C
2016-01-01
Considerable research has documented that exposure to traumatic events has negative effects on physical and mental health. Much less research has examined the predictors of traumatic event exposure. Increased understanding of risk factors for exposure to traumatic events could be of considerable value in targeting preventive interventions and anticipating service needs. General population surveys in 24 countries with a combined sample of 68 894 adult respondents across six continents assessed exposure to 29 traumatic event types. Differences in prevalence were examined with cross-tabulations. Exploratory factor analysis was conducted to determine whether traumatic event types clustered into interpretable factors. Survival analysis was carried out to examine associations of sociodemographic characteristics and prior traumatic events with subsequent exposure. Over 70% of respondents reported a traumatic event; 30.5% were exposed to four or more. Five types - witnessing death or serious injury, the unexpected death of a loved one, being mugged, being in a life-threatening automobile accident, and experiencing a life-threatening illness or injury - accounted for over half of all exposures. Exposure varied by country, sociodemographics and history of prior traumatic events. Being married was the most consistent protective factor. Exposure to interpersonal violence had the strongest associations with subsequent traumatic events. Given the near ubiquity of exposure, limited resources may best be dedicated to those that are more likely to be further exposed such as victims of interpersonal violence. Identifying mechanisms that account for the associations of prior interpersonal violence with subsequent trauma is critical to develop interventions to prevent revictimization.
Boraiko, Carol; Batt, John
2005-02-01
Organic tin compounds are primary substances used as heat stabilizers by the polyvinyl chloride (PVC) industry. The use of these compounds in the PVC industry is generally well controlled, usually by automated processes. This study was conducted to provide an overview of worker exposure to organic tin compounds at PVC processing facilities and to verify that these exposures are below the threshold limit value (TLV((R))) set by the American Conference of Governmental Industrial Hygienists for organic tin. The basis of the TLV indicates the principal concern is to minimize adverse effects on immune function and the central nervous system from airborne exposure to organic tin. The TLV has a skin designation based on the potential for percutaneous absorption; the TLVs for inhalation exposures are based on the presumption that there is no concurrent exposure via the skin and oral ingestion routes. Personal exposure monitoring was conducted following the National Institute for Occupational Safety and Health (NIOSH) 5504 sampling method and a modified version of the NIOSH analytical method. The results were reported as"total tin."The data indicated no average exposure levels for individual tasks exceeded the organic tin TLV, and 96%of results the samples were less than 20%of the TLV. Only 1 sample of 102 exceeded the TLV, and the individual was wearing appropriate respiratory protection. Subsequent investigation indicated the highest exposures occurred while the operators were conducting tasks that included manual handling of the organic tin compounds. These data suggest manual operations may have a greater potential for organic tin exposure.
Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel
2012-01-01
Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Karpowicz, Jolanta; Gryz, Krzysztof; Leszko, Wieslaw; Zradziński, Patryk
2013-01-01
Use of electro surgery units (ESU) in surgeries is linked with electromagnetic field emission, which is assessed according to the requirements of occupational health and safety legislation. Surgeons' exposure characteristics was monitored during 11 surgeries (proctectomy, patency of artery, hepatectomy, cystectomy, tonsilectomy, laparoscopy) by real time of monopolar ESU activity recorder. Investigations of root-mean-square value of electric and magnetic field strength was also performed at various modes of ESU operations during cutting (output power, 55-150 W; frequency, 330-445 kHz) and coagulating (40-240 W, 335-770 kHz). Statistical parameters of distribution of ESU operation over any 6-min periods (according to international requirements regarding protection against adverse thermal effects of electromagnetic field) were assessed. Electric field strength, measured 10 cm from the cable supplying an active electrode was 147-675 V/m during cutting and 297-558 V/m during coagulating; magnetic field strength was less than 0.2 A/m in both modes. Monitoring of ESUs showed the following ranges of their operation during surgeries 5-66% of time over starting 3 min of surgery, 3-40% over starting 6 min, and the distribution of their use over any 6-min periods 0-12% (median) / 7-43% (maximum value). The real operation time of ESUs ing surgeries was significantly shorter than that declared by workers. The distance of at least 15 cm between cables, connecting electrodes with generator and workers meets the requirements of the Polish legislation on permissible exposure limits. The assessment of localized exposure of the hand needs a detailed analysis of the SAR ratio distribution and further studies are required.
NASA Astrophysics Data System (ADS)
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk.
Kurt-Karakus, Perihan Binnur
2012-12-01
Levels of eight potentially toxic heavy metals in indoor dust from homes and offices in Istanbul were investigated. The concentrations of heavy metals in indoor dust from homes+office ranged from 62 to 1800 μgg(-1) for Cu, 3-200 μgg(-1) for Pb, 0.4-20 μgg(-1) for Cd, 210-2800 μgg(-1) for Zn, 2.8-460μgg(-1) for Cr, 8-1300μgg(-1) for Mn, 2.4-25μgg(-1) for Co, 120-2600μgg(-1) for Ni. Results of the study were comparable to other studies conducted on indoor dust and street dust from a variety of cities globally. Considering only ingestion + inhalation, the carcinogenic risk level of Cr for adults and children (3.7×10(-5) and 2.7×10(-5)) in Istanbul was in the range of EPA's safe limits (1×10(-6) and 1×10(-4)), indicating that cancer risk of Cr due to exposure to indoor dust in Istanbul can be acceptable. According to calculated Hazard Quotient (HQ), for non-cancer effects, the ingestion of indoor dust appears to be the major route of exposure to the indoor dust that results in a higher risk for heavy metals, followed by dermal contact and inhalation pathways. However, compared to ingestion and dermal contact exposure, exposure through inhalation is almost negligible. Hazard Index (HI) values for all studied elements were lower than safe limit of 1 and this result suggested that none of the population groups would likely to experience potential health risk due to exposure to heavy metals from indoor dust in the study area. Copyright © 2012 Elsevier Ltd. All rights reserved.
Joseph, Wout; Pareit, Daan; Vermeeren, Günter; Naudts, Dries; Verloock, Leen; Martens, Luc; Moerman, Ingrid
2013-01-01
Wireless Local Area Networks (WLANs) are commonly deployed in various environments. The WLAN data packets are not transmitted continuously but often worst-case exposure of WLAN is assessed, assuming 100% activity and leading to huge overestimations. Actual duty cycles of WLAN are thus of importance for time-averaging of exposure when checking compliance with international guidelines on limiting adverse health effects. In this paper, duty cycles of WLAN using Wi-Fi technology are determined for exposure assessment on large scale at 179 locations for different environments and activities (file transfer, video streaming, audio, surfing on the internet, etc.). The median duty cycle equals 1.4% and the 95th percentile is 10.4% (standard deviation SD = 6.4%). Largest duty cycles are observed in urban and industrial environments. For actual applications, the theoretical upper limit for the WLAN duty cycle is 69.8% and 94.7% for maximum and minimum physical data rate, respectively. For lower data rates, higher duty cycles will occur. Although counterintuitive at first sight, poor WLAN connections result in higher possible exposures. File transfer at maximum data rate results in median duty cycles of 47.6% (SD = 16%), while it results in median values of 91.5% (SD = 18%) at minimum data rate. Surfing and audio streaming are less intensively using the wireless medium and therefore have median duty cycles lower than 3.2% (SD = 0.5-7.5%). For a specific example, overestimations up to a factor 8 for electric fields occur, when considering 100% activity compared to realistic duty cycles. Copyright © 2012 Elsevier Ltd. All rights reserved.
29 CFR 1910.1000 - Air contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... recycling (sorting, blending, cleaning and willowing) and garnetting. See also 1910.1043 for cotton dust... where the exposure limit in § 1910.1026 is stayed or is otherwise not in effect. 6 If the exposure limit in § 1910.1026 is stayed or is otherwise not in effect, the exposure limit is a ceiling of 0.1 mg/m3...
29 CFR 1910.1000 - Air contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... recycling (sorting, blending, cleaning and willowing) and garnetting. See also 1910.1043 for cotton dust... where the exposure limit in § 1910.1026 is stayed or is otherwise not in effect. 6 If the exposure limit in § 1910.1026 is stayed or is otherwise not in effect, the exposure limit is a ceiling of 0.1 mg/m3...
29 CFR 1910.1000 - Air contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... recycling (sorting, blending, cleaning and willowing) and garnetting. See also 1910.1043 for cotton dust... where the exposure limit in § 1910.1026 is stayed or is otherwise not in effect. 6 If the exposure limit in § 1910.1026 is stayed or is otherwise not in effect, the exposure limit is a ceiling of 0.1 mg/m3...
Zuclich, Joseph A; Lund, David J; Stuck, Bruce E
2007-01-01
This report summarizes the results of a series of infrared (IR) laser-induced ocular damage studies conducted over the past decade. The studies examined retinal, lens, and corneal effects of laser exposures in the near-IR to far-IR transition region (wavelengths from 1.3-1.4 mum with exposure durations ranging from Q-switched to continuous wave). The corneal and retinal damage thresholds are tabulated for all pulsewidth regimes, and the wavelength dependence of the IR thresholds is discussed and contrasted to laser safety standard maximum permissible exposure limits. The analysis suggests that the current maximum permissible exposure limits could be beneficially revised to (1) relax the IR limits over wavelength ranges where unusually high safety margins may unintentionally hinder applications of recently developed military and telecommunications laser systems; (2) replace step-function discontinuities in the IR limits by continuously varying analytical functions of wavelength and pulsewidth which more closely follow the trends of the experimental retinal (for point-source laser exposures) and corneal ED50 threshold data; and (3) result in an overall simplification of the permissible exposure limits over the wavelength range from 1.2-2.6 mum. A specific proposal for amending the IR maximum permissible exposure limits over this wavelength range is presented.
Effect of 90-day continuous exposure to methylisobutylketone on dogs, monkeys and rats
NASA Technical Reports Server (NTRS)
Macewen, J. D.; Vernot, E. H.; Haun, C. C.
1971-01-01
Continuous exposure of rats, dogs and monkeys to 410 mg/cu M methylisobutylketone vapor (MIBK) was conducted to evaluate the provisional spacecraft exposure limit of 20 ppm established by the Space Science Board in 1968. The exposure, conducted in a simulated space cabin environment, did not produce any measurable changes in dogs or monkeys. Rats developed hyaline droplet nephrosis within 2 weeks of exposure which was reversible upon removal from the MIBK even after 90 days. The data obtained indicated that the 60-minute emergency exposure limit of 100 ppm and the 90- and 1000-day provisional limits as established by the Space Science Board contain a wide margin of safety.
Small-spot laser-exposure effects on visual function
NASA Astrophysics Data System (ADS)
Zwick, Harry; Robbins, David O.; Stuck, Bruce E.; Lund, David J.; Reynolds, Scottie B.; Nawim, Maqsood; Schuschereba, Steven T.
1990-07-01
Laser field exposure effects on visual function involve produc tJon of minimal spot irradiation on or near the huntan fovea. Functional effects of such exposure may involve transient or perinanent change in visual function depending upon exposure dose. While Maximun Permissible Exposure (MPE) lirrtits define exposure in terins of threshold retinal niorphological change such limits are not applicable with regard to transient changes in visual function below MPE limits induced by alteration in retinal physiological processes. Mechanisms of transient and permanent functional change reported in these exper iments point out the need to examine laser safety limits in terms of both the functional as well as the morphological disturbance induced in retinal tissue. L
Occupational exposure to carbon black in its manufacture.
Gardiner, K; Trethowan, W N; Harrington, J M; Calvert, I A; Glass, D C
1992-10-01
Carbon black is manufactured by the vapour phase pyrolysis of heavy aromatic hydrocarbon feedstocks. Its manufacture is worldwide and the majority of its production is for use in the rubber industry especially tyre manufacture. Its carbonaceous nature has led many to investigate the occurrence of exposure-related medical conditions. To quantify any such relationships, it is necessary to assess exposure accurately. As part of such an epidemiological investigation survey involving the measurement both of respirable and of total inhalable carbon black was undertaken in 18 plants in seven European countries between mid-1987 and mid-1989. A total of 1298 respirable samples (SIMPEDS cyclone) and 1317 total inhalable samples (IOM head) were taken and deemed of sufficient quality for inclusion in the study. The distributions of the time-weighted average values were assessed and found to be best described by a log-normal distribution, and so exposure is characterized by geometric means and standard deviations. The data are presented in terms of 13 separate job titles for both dust fractions and shows a wide variation between job titles, with the highest mean exposure experienced by the site cleaners, and 30% of the samples taken from the warehouse packers being in excess of the relevant countries' occupational exposure limits for total inhalable dust. The quality and extent of this data allows both for comparison with exposure standards and for generation of occupational exposure indices, which will be presented in another paper (Gardiner et al., in preparation).
Occupational exposure to silica in construction workers: a literature-based exposure database.
Beaudry, Charles; Lavoué, Jérôme; Sauvé, Jean-François; Bégin, Denis; Senhaji Rhazi, Mounia; Perrault, Guy; Dion, Chantal; Gérin, Michel
2013-01-01
We created an exposure database of respirable crystalline silica levels in the construction industry from the literature. We extracted silica and dust exposure levels in publications reporting silica exposure levels or quantitative evaluations of control effectiveness published in or after 1990. The database contains 6118 records (2858 of respirable crystalline silica) extracted from 115 sources, summarizing 11,845 measurements. Four hundred and eighty-eight records represent summarized exposure levels instead of individual values. For these records, the reported summary parameters were standardized into a geometric mean and a geometric standard deviation. Each record is associated with 80 characteristics, including information on trade, task, materials, tools, sampling strategy, analytical methods, and control measures. Although the database was constructed in French, 38 essential variables were standardized and translated into English. The data span the period 1974-2009, with 92% of the records corresponding to personal measurements. Thirteen standardized trades and 25 different standardized tasks are associated with at least five individual silica measurements. Trade-specific respirable crystalline silica geometric means vary from 0.01 (plumber) to 0.30 mg/m³ (tunnel construction skilled labor), while tasks vary from 0.01 (six categories, including sanding and electrical maintenance) to 1.59 mg/m³ (abrasive blasting). Despite limitations associated with the use of literature data, this database can be analyzed using meta-analytical and multivariate techniques and currently represents the most important source of exposure information about silica exposure in the construction industry. It is available on request to the research community.
NASA Astrophysics Data System (ADS)
Brady, M.
2015-12-01
A method to produce hazard exposure maps that are developed in collaboration with local coastal communities is the focus of this research. Typically efforts to map community exposure to climate threats over large areas have limited consideration of local perspectives about associated risks, constraining their utility for local management. This problem is especially acute in remote locations such as the Arctic where there are unique vulnerabilities to coastal threats that can be fully understood only through inclusion of community stakeholders. Through collaboration with community members, this study identifies important coastal assets and places and surveys local perspectives of exposure to climate threats along Alaska's vast North Slope coastline spanning multiple municipalities. To model physical exposure, the study adapts the U.S. Geological Survey's (USGS) coastal vulnerability index (CVI) to the Arctic context by incorporating the effects of open water distance determined by sea ice extent, and assigning CVI values to coastal assets and places according to direction and proximity. The study found that in addition to concerns about exposed municipal and industrial assets, North Slope communities viewed exposure of traditional activity sites as presenting a particular risk for communities. Highly exposed legacy Cold War Distant Early Warning Line sites are of particular concern with impacts ranging from financial risk to contamination of sensitive coastal marine environments. This research demonstrates a method to collaboratively map community exposure to coastal climate threats to better understand local risks and produce locally usable exposure maps.
Solecki, Leszek
2005-01-01
The aim of the study was the recognition and evaluation of annual exposure to noise among private farmers on family farms of animal production profile. The study covered 16 family farms using arable land of the size of 14-50 ha (25.8 ha on average), equipped with agricultural tractors (working with a set of agricultural machines), machines for the production of fodder, workshop machines and woodworking saws. Based on the precise working time schedules concerning agricultural activities and dosimetric measurements conducted during the whole year, two acoustic parameters were determined: total exposure in individual months and equivalent daily exposure. The study showed that the highest values of the total monthly exposure to noise occurred in two summer-autumn months (August, October) and during four winter-spring months (January, March, and May, June). High values of the total exposure observed in the summer-autumn season result from the performance of intensive field and transport work activities, with prolonged duration of work and a large number of workdays in these months. The occurrence of high total values of the total exposure in winter-spring months, however, is associated with logging wood for winter (saws) and intensive repair work activities. In the seasons of the year analysed, high values of equivalent daily exposure were obtained, within the range: 4.20-4.86 Pa(2) x h. The average value of this parameter for the whole year reached the value: 3.61 Pa(2) x h (standard exceeded 3.6 times). This value is equivalent to the mean level of exposure to noise equal to 90.5 dB. In consideration of the moderate accuracy of mean values obtained and small degree of variability of the results, the data acquired in this study may be used in practice by proper State services for the evaluation of noise risk among private farmers specializing in animal production.
The toxicity of benzene and its metabolism and molecular pathology in human risk assessment.
Yardley-Jones, A; Anderson, D; Parke, D V
1991-01-01
Benzene, a common industrial chemical and a component of gasoline, is radiomimetic and exposure may lead progressively to aplastic anaemia, leukaemia, and multiple myeloma. Although benzene has been shown to cause many types of genetic damage, it has consistently been classified as a non-mutagen in the Ames test, possibly because of the inadequacy of the S9 microsomal activation system. The metabolism of benzene is complex, yielding glucuronide and sulphate conjugates of phenol, quinol, and catechol, L-phenylmercapturic acid, and muconaldehyde and trans, trans-muconic acid by ring scission. Quinol is oxidised to p-benzoquinone, which binds to vital cellular components or undergoes redox cycling to generate oxygen radicals; muconaldehyde, like p-benzoquinone, is toxic through depletion of intracellular glutathione. Exposure to benzene may also induce the microsomal mixed function oxidase, cytochrome P450 IIE1, which is probably responsible for the oxygenation of benzene, but also has a propensity to generate oxygen radicals. The radiomimetic nature of benzene and its ability to induce different sites of neoplasia indicate that formation of oxygen radicals is a major cause of benzene toxicity, which involves multiple mechanisms including synergism between arylating and glutathione-depleting reactive metabolites and oxygen radicals. The occupational exposure limit in the United Kingdom (MEL) and the United States (PEL) was 10 ppm based on the association of benzene exposure with aplastic anaemia, but recently was lowered to 5 ppm and 1 ppm respectively, reflecting a concern for the risk of neoplasia. The American Conference of Governmental Industrial Hygienists (ACGIH) has even more recently recommended that, as benzene is considered an A1 carcinogen, the threshold limit value (TLV) should be decreased to 0.1 ppm. Only one study in man, based on nine cases of benzene associated fatal neoplasia, has been considered suitable for risk assessment. Recent re-evaluation of these data indicated that past assessments may have overestimated the risk, and different authors have considered that lifetime exposure to benzene at 1 ppm would result in an excess of leukaemia deaths of 9.5 to 1.0 per 1000. Although in this study, deaths at low levels of benzene exposure were associated with multiple myeloma and a long latency period, instead of leukaemia, which might justify further lowering of the exposure limit, the risk assessment model has been found to be non-significant for response at low levels of exposure. The paucity of data for man, the complexity of the metabolic activation of benzene, the interactive and synergistic mechanisms of benzene toxicity and carcinogenicity, the different disease endpoints (aplastic anaemia, leukaemia, and multiple myeloma), and different individual susceptibilities, all indicate that in such a complex scenario, regulators should proceed with caution before making further changes to the exposure limit for this chemical. PMID:1854646
Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.
NASA Astrophysics Data System (ADS)
Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.
2015-12-01
A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).
Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb
2016-01-01
To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (α<0.05). For enamel, there was no difference between the presence or absence of cigarette smoke (p=0.1397); however, there were differences among the adhesive systems (p<0.001). CSEB showed higher values and did not differ from SBU, but both were statistically different from SB. The SBMP showed intermediate values, while SB demonstrated lower values. For dentin, specimens subjected to cigarette smoke presented bond strength values that were lower when compared with those not exposed to smoke (p<0.001). For the groups without exposure to cigarette smoke, CSEB showed higher values, differing from SBMP. SB and SBU showed intermediary values. For the groups with exposure to cigarette smoke, SBU showed values that were higher and statistically different from SB and CSEB, which presented lower values of bond strength. SBMP demonstrated an intermediate value of bond strength. The exposure of dentin to cigarette smoke influenced the bonding strength of adhesives, but no differences were noted in enamel.
Consumer product chemical weight fractions from ingredient lists.
Isaacs, Kristin K; Phillips, Katherine A; Biryol, Derya; Dionisio, Kathie L; Price, Paul S
2018-05-01
Assessing human exposures to chemicals in consumer products requires composition information. However, comprehensive composition data for products in commerce are not generally available. Many consumer products have reported ingredient lists that are constructed using specific guidelines. A probabilistic model was developed to estimate quantitative weight fraction (WF) values that are consistent with the rank of an ingredient in the list, the number of reported ingredients, and labeling rules. The model provides the mean, median, and 95% upper and lower confidence limit WFs for ingredients of any rank in lists of any length. WFs predicted by the model compared favorably with those reported on Material Safety Data Sheets. Predictions for chemicals known to provide specific functions in products were also found to reasonably agree with reported WFs. The model was applied to a selection of publicly available ingredient lists, thereby estimating WFs for 1293 unique ingredients in 1123 products in 81 product categories. Predicted WFs, although less precise than reported values, can be estimated for large numbers of product-chemical combinations and thus provide a useful source of data for high-throughput or screening-level exposure assessments.
Skin notation in the context of workplace exposure standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scansetti, G.; Piolatto, G.; Rubino, G.F.
1988-01-01
In the establishment of workplace exposure standards, the potential for cutaneous absorption is taken into consideration through the addition of skin notation to the relevant substance. In the TLVs Documentation (ACGIH, 1986) dermal lethal dose to 50% (LD50) or human data are the bases for the assignment of skin notation to 91 of 168 substances. For the other substances, the skin attribution seems to be based on undocumented statements in 24 (14.5%), skin effects in 13 (8%), and analogy in 7 (4%), while in the remaining 33 (20%) any reference is lacking as to the basis for notation of themore » cutaneous route of entry. Furthermore, since the established cut-off value of 2 g/kg is sometimes bypassed when a notation is added or omitted, the use of dermal LD50 is perplexing. Given the relevance of the skin notation for the validation of threshold limit values (TLVs) in the workplace, a full examination and citation of all available scientific data are recommended when establishing the TLV of substances absorbable through the skin.« less
Li, Huidong; du, Hongxia; Fang, Liping; Dong, Zhan; Guan, Shuai; Fan, Wenjing; Chen, Zilei
2016-06-01
Dissipation behaviors and residues of carbendazim and diethofencarb in combination in tomato were investigated. The half-lives were 2.1-3.4 days for carbendazim, and 1.8-3.2 days for diethofencarb at a dose of 1.5 times of the recommended dosage. The residues of carbendazim and diethofencarb were below the maximum residue limits (MRLs) in China one day after application of the combination. The ultimate residues were significantly lower than the maximum permissible intake (MPI) in China at the recommended high dose for both child and adult. The values of the maximum dietary exposure for carbendazim and diethofencarb were 0.26 and 0.27 mg per person per day, respectively. The theoretical maximum daily intake (TMDI) values for carbendazim and diethofencarb were 1.5 and 0.5 mg/day, respectively. The dietary exposure was lower than the MPI, which indicates the harvested tomato samples under the experimental conditions (open field) are safe for human consumption at the recommended high dosage of the wettable powder. Copyright © 2016 Elsevier Inc. All rights reserved.
An experimental investigation of the internal methane pressure in hydrogen attack
NASA Technical Reports Server (NTRS)
Natan, M.; Johnson, H. H.
1983-01-01
An experimental investigation of the internal methane pressure that is the driving force for bubble growth in hydrogen attack (HA) was done on pure iron (204 ppm C) and on two low carbon steels of slightly different compositions. The methane content N (c.c gas/g. material) in attacked specimens was measured by a vacuum extraction technique. The total void volume V (c.c) was determined from density measurements before and after HA exposure. The two values, N and V, were then used in an equation of state to calculate an average methane pressure P for the attack stages beyond a density loss (d.l.) greater than 0.05 pct. It was determined that N and P depend on hydrogen exposure conditions and the presence of traces of strong carbide forming alloying elements (in steel). They are independent of specimen size and grain size over a limited range. P varies as the bubble volume increases, showing a generally decreasing trend which brings it to values lower than calculated equilibrium pressures, although well within the same order of magnitude. Possible reasons for this behavior are discussed.
Buchhamer, Edgar E; Blanes, Patricia S; Osicka, Rosa M; Giménez, M Cecilia
2012-01-01
The arsenic (As) and fluoride (F⁻) concentration in groundwater and potential adverse human health risk was investigated in the Central-West Region of the Chaco Province, northern Argentina. The mean concentration of As in shallow groundwater was 95 μg/L, where 76% of samples exceeded the World Health Organization (WHO) guideline value of 10 μg/L, while in deep groundwater it was 90 μg/L, where 63% samples exceeded 10 μg/L. For As health risk assessment, the average daily dose, hazard quotient (HQ), and cancer risk were calculated. The values of HQ were found to be >1 in 77% of samples. This level of contamination is considered to constitute a high chronic risk compared with U.S. Environmental Protection Agency (EPA) guidelines. Further, a significant portion of the population has lifetime carcinogenic risk >10⁻⁴ and may suffer from cancer. A positive correlation was observed between As and F⁻ in groundwater. The Código Alimentario Argentino (CAA) suggested a limit of F⁻ in drinking water as low as 0.8 mg/L under tropical environmental conditions; however, in shallow (39%) and deep groundwater (32%), samples exceeded these values. Exposure to F⁻ was calculated and compared with the adequate intake of minimal safe level exposure dose of 0.05 mg/kg/d and it was noted that 42% of population may be at high risk of fluorosis. Chronic exposure to high As and F⁻ levels in this population represents a concern due to possible adverse health effects attributed to these elements.
Lead exposure from food: the German LExUKon project.
Schneider, Klaus; Schwarz, Markus A; Lindtner, Oliver; Blume, Katrin; Heinemeyer, Gerhard
2014-01-01
Lead is a highly toxic contaminant with food being the major source of exposure for the general public. The second German food consumption survey (Nationale Verzehrsstudie II - NVS II) with about 20 000 participants (15 371 for dietary history interviews used for this study) allowed for an updated exposure assessment for the German population. Based on these comprehensive data, information on consumption of 545 individual food items by the German population was generated. Lead concentrations in food were compiled from the German food monitoring programme, European countries' authority programmes and the published literature, covering the years from 2000 to 2009, and were multiplied with consumption data to obtain estimates of lead intake from food. Average lead concentrations per main food group were highest for meat (including offal), followed by fish (including seafood), vegetables and cereals. Due to high consumption, beverages contributed most to the intake of the general public, followed by main groups vegetables, fruits & nuts and cereals. Lead intake from food was estimated to be 0.53 and 0.72 µg kg(-1) bw and day for average and high-end consumers, respectively. This is close to (average consumers) respectively above (high-end consumers) a reference value derived from a recent health risk evaluation performed by EFSA, using the benchmark approach. Uncertainties in these estimates pertain to the influence of values below the limit of quantification and some foods not considered due to lacking occurrence data. In conclusion, the estimated lead intake of the German population from food is still close to health-based reference values. Further efforts to reduce lead intake are required.
Kakooei, Hossein; Shahtaheri, Seyed Jamaleddin; Karbasi, Hossein-Ali
2006-01-01
Evaluation of personal inhalation exposure to methylene diphenyl diisocyanate (MDI) among 39 employees, working in the window fixation and window glue processes in an automobile manufacturing company was performed. This study was conducted for both case and control groups. After sampling and sample preparation processes, MDI was determined with a UV-VIS spectrophotometer at 590 nm; the lung function was assessed with a digital spirometer, too. The average concentration of MDI in the window fixation, and window glue workplaces were 34.53 and 27.37 micro g/m3, respectively, which was lower than the threshold limit value (TLV) recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) (51 micro g/m3). Respiratory symptoms in the exposed group were significantly different compared to the unexposed group (p < .05). Lung capacities in the case group were lower than in the control group (p < .05). Therefore, MDI can be easily measured making it possible to evaluate the adverse effects caused by occupational exposure.
Bone lead levels in an environmentally exposed elderly population in shanghai, China.
Specht, Aaron J; Lin, Yanfen; Xu, Jian; Weisskopf, Marc; Nie, Linda H
2018-06-01
This study looked at measurements of lead (Pb) in a pilot population of environmentally exposed elderly residents of Shanghai, China and presented the first set of bone Pb data on an elderly Chinese population. We found that with environmental exposures in this population using K-shell x-ray fluorescence (KXRF) bone Pb measurements 40% of the individuals had bone Pb levels above the nominal detection limit with an average bone lead level of 4.9 ± 3.6 μg/g. This bone lead level is lower than comparable values from previous studies of community dwelling adults in US cities. This population had a slightly higher geometric mean blood Pb of 2.6 μg/dL than the adult US population. The main conclusion of this data is that in Shanghai there is environmental exposure to Pb, measured through blood and bone, which should be further investigated to assess the health impact of this exposure. Copyright © 2018. Published by Elsevier B.V.
Pralatnet, Sasithorn; Poapolathep, Saranya; Giorgi, Mario; Imsilp, Kanjana; Kumagai, Susumu; Poapolathep, Amnart
2016-07-01
One hundred wheat product samples (50 instant noodle samples and 50 bread samples) were collected from supermarkets in Bangkok, Thailand. Deoxynivalenol (DON) and aflatoxin B1 (AFB1) contamination in these products was analyzed using a validated liquid chromatography-tandem mass spectrometry method. The limit of quantification values of DON and AFB1 in the instant noodles and bread were 2 and 1 ng g(-1), respectively. The survey found that DON was quantifiable in 40% of collected samples, in 2% of noodles (0.089 μg g(-1)), and in 78% of breads (0.004 to 0.331 μg g(-1)). AFB1 was below the limit of quantification of the method in all of the tested samples. The results suggest that the risk of DON exposure via noodles and breads is very low in urban areas of Thailand. No risk can be attributable to AFB1 exposure in the same food matrices, but further studies with a larger sample size are needed to confirm these data.
Long-term study on workers occupationally exposed to ethylbenzene.
Bardodĕj, Z; Círek, A
1988-01-01
Ethylbenzene is synthesized from benzene; subject to catalytic dehydrogenation it yields styrene, a raw material for the production of synthetic rubber and plastics. Long-term biomonitoring of occupational ethylbenzene exposures, carried out in the past 20 years in some 200 ethylbenzene-production workers, revealed this substance to pose little hazard to human health. As it turned out, mandelic acid concentrations in these workers' urine never exceeded 3.25 mmol.l-1 and none of the exposed showed damage to hematopoiesis and/or liver tissue. Over the last 10 years no case of malignancy has been recorded in this industrial facility belonging to a larger chemical complex where the overall incidence of cancer is about 3 times the national average. Today's low-level ethylbenzene exposures would make it fully justifiable if the present-day MAC limits, both whole-shift (200 mg.m-3) and peak (1,000 mg.m-3), were to be halved, i.e. to be lowered to 100 mg.m3 and 500 mg.m3 respectively. These newly recommended limit values are no more exceeded nowadays.
Tabassum, Shawana; Dong, Liang; Kumar, Ratnesh
2018-03-05
We present an effective yet simple approach to study the dynamic variations in optical properties (such as the refractive index (RI)) of graphene oxide (GO) when exposed to gases in the visible spectral region, using the thin-film interference method. The dynamic variations in the complex refractive index of GO in response to exposure to a gas is an important factor affecting the performance of GO-based gas sensors. In contrast to the conventional ellipsometry, this method alleviates the need of selecting a dispersion model from among a list of model choices, which is limiting if an applicable model is not known a priori. In addition, the method used is computationally simpler, and does not need to employ any functional approximations. Further advantage over ellipsometry is that no bulky optics is required, and as a result it can be easily integrated into the sensing system, thereby allowing the reliable, simple, and dynamic evaluation of the optical performance of any GO-based gas sensor. In addition, the derived values of the dynamically changing RI values of the GO layer obtained from the method we have employed are corroborated by comparing with the values obtained from ellipsometry.
Delmaar, J E; Bokkers, B G H; ter Burg, W; van Engelen, J G M
2013-02-01
The demonstration of safe use of chemicals in consumer products, as required under REACH, is proposed to follow a tiered process. In the first tier, simple conservative methods and assumptions should be made to quickly verify whether risks for a particular use are expected. The ECETOC TRA Consumer Exposure Tool was developed to assist in first tier risk assessments for substances in consumer products. The ECETOC TRA is not a prioritization tool, but is meant as a first screening. Therefore, the exposure assessment needs to cover all products/articles in a specific category. For the assessment of the dermal exposure for substances in articles, ECETOC TRA uses the concept of a 'contact layer', a hypothetical layer that limits the exposure to a substance contained in the product. For each product/article category, ECETOC TRA proposes default values for the thickness of this contact layer. As relevant experimental exposure data is currently lacking, default values are based on expert judgment alone. In this paper it is verified whether this concept meets the requirement of being a conservative exposure evaluation method. This is done by confronting the ECETOC TRA expert judgment based predictions with a mechanistic emission model, based on the well established theory of diffusion of substances in materials. Diffusion models have been applied and tested in many applications of emission modeling. Experimentally determined input data for a number of material and substance combinations are available. The estimated emissions provide information on the range of emissions that could occur in reality. First tier tools such as ECETOC TRA tool are required to cover all products/articles in a category and to provide estimates that are at least as high as is expected on the basis of current scientific knowledge. Since this was not the case, it is concluded that the ECETOC TRA does not provide a proper conservative estimation method for the dermal exposure to articles. An alternative method was proposed. Copyright © 2012 Elsevier Inc. All rights reserved.
Comparison of occupational noise legislation in the Americas: an overview and analysis.
Arenas, Jorge P; Suter, Alice H
2014-01-01
The workplace contributes significantly to the total dose of daily noise to which a person is subjected. Therefore, millions of people around the world are exposed to potentially dangerous noise levels and consequently, there is an urgent, global need for legislation to adequately protect the auditory health of workers. Occupational noise legislation has been adopted in many of the countries with different degrees of comprehensiveness and varying levels of sophistication. This paper presents a global view of current legislation on occupational noise in the 22 countries that make up the Americas, that is, Latin America, Canada, and the United States. Upon analysis of the legislation, there are notable differences among countries in the defined values for permissible exposure limit (PEL) and exchange rate. Of the countries that have regulations, the majority (81%) use a PEL of 85 dBA. A PEL of 85 dBA and the 3-dB exchange rate are currently used by 32% of the nations in the Americas. Most nations limit impulsive noise exposure to a peak unweighted sound pressure level of 140 dB (or dBC), while a few use slightly lower limits. However, 27% of the countries in the region still have not established regulations with respect to permissible noise levels and exchange rates. This fact is leaving millions of workers in the Americas unprotected against occupational noise. Provide an overview and analysis of the current legislation on occupational noise in the 22 countries that make up the Americas. The information on legislation, regulations, and standards discussed in this paper were obtained directly from official government sources in each country, the International Labour Organization database, or through various colleagues in each country. (1) There are notable differences among countries in the defined values for PEL and exchange rate. (2) Of the countries that have regulations, the majority (81%) use a PEL of 85 dBA. A PEL of 85 dBA and the 3-dB exchange rate are currently used by 32% of the nations in the Americas. (3) Most nations limit impulsive noise exposure to a peak unweighted sound pressure level of 140 dB (or dBC), while a few use slightly lower limits. (4) 27% of the countries in the region still have not established regulations with respect to permissible noise levels and exchange rates. (5) Millions of workers in the Americas are unprotected against occupational noise.
Prospective study of ultraviolet radiation exposure and risk of breast cancer in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamoiski, Rachel D., E-mail: rachel.zamoiski@nih.g
Although there are few environmental risk factors for breast cancer, some epidemiologic studies found that exposure to solar UV radiation (UVR) may lower risk. Prior epidemiologic studies are limited by narrow ambient UVR ranges and lack lifetime exposure assessment. To address these issues, we studied a cohort with residences representing a wide range of ambient UVR. Using the nationwide U.S. Radiologic Technologists study (USRT), we examined the association between breast cancer risk and UVR based on ambient UVR, time outdoors, a combined variable of ambient UVR and time outdoors (combined UVR), and sun susceptibility factors. Participants reported location of residencemore » and hours spent outdoors during five age periods. Ambient UVR was derived by linking satellite-based annual UVR estimates to self-reported residences. Lifetime values were calculated by averaging these measures accounting for years spent in that location. We examined the risk of breast cancer among 36,725 participants (n=716 cases) from baseline questionnaire completion (2003–2005) through 2012–2013 using Cox proportional hazards models. Breast cancer risk was unrelated to ambient UVR (HR for lifetime 5th vs 1st quintile=1.22, 95% CI: 0.95–1.56, p-trend=0.36), time outdoors (HR for lifetime 5th vs 1st quintile=0.87, 95% confidence interval (CI): 0.68–1.10, p-trend=0.46), or combined UVR (HR lifetime 5th vs 1st quintile =0.85, 95% CI: 0.67–1.08, p-trend=0.46). Breast cancer risk was not associated with skin complexion, eye or hair color, or sunburn history. This study does not support the hypothesis that UVR exposure lowers breast cancer risk. - Highlights: • Prior studies of UVR and breast cancer are inconsistent and limited. • We assessed UVR exposure across the lifetime and in three ways. • Conducted a prospective analysis of UVR exposure and breast cancer risk. • No association of any UVR exposure metric at any age with breast cancer risk. • Our findings suggest UVR exposure does not reduce risk of breast cancer.« less
NASA Astrophysics Data System (ADS)
Shepard, Michele N.
Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From application and evaluation of qualitative risk assessment approaches, differences in control banding models and results were identified, although output generally agreed with conclusions from air sampling as to whether an upgrade in site engineering controls was recommended. This research helped to improve understanding of potential worker exposures to ENMs in CMP processes, as well as the methods for risk assessment and management of metal oxide nanoparticles in occupational environments.
Search for n -n ¯ oscillation in Super-Kamiokande
NASA Astrophysics Data System (ADS)
Abe, K.; Hayato, Y.; Iida, T.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takeuchi, Y.; Ueshima, K.; Watanabe, H.; Higuchi, I.; Ishihara, C.; Ishitsuka, M.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nakayama, S.; Nishino, H.; Okumura, K.; Saji, C.; Takenaga, Y.; Clark, S.; Desai, S.; Dufour, F.; Herfurth, A.; Kearns, E.; Likhoded, S.; Litos, M.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Wang, W.; Goldhaber, M.; Casper, D.; Cravens, J. P.; Dunmore, J.; Griskevich, J.; Kropp, W. R.; Liu, D. W.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.; Ganezer, K. S.; Hartfiel, B.; Hill, J.; Keig, W. E.; Jang, J. S.; Jeoung, I. S.; Kim, J. Y.; Lim, I. T.; Scholberg, K.; Tanimoto, N.; Walter, C. W.; Wendell, R.; Ellsworth, R. W.; Tasaka, S.; Guillian, G.; Learned, J. G.; Matsuno, S.; Messier, M. D.; Ichikawa, A. K.; Ishida, T.; Ishii, T.; Iwashita, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Nitta, K.; Oyama, Y.; Suzuki, A. T.; Hasegawa, M.; Maesaka, H.; Nakaya, T.; Sasaki, T.; Sato, H.; Tanaka, H.; Yamamoto, S.; Yokoyama, M.; Haines, T. J.; Dazeley, S.; Hatakeyama, S.; Svoboda, R.; Sullivan, G. W.; Gran, R.; Habig, A.; Fukuda, Y.; Itow, Y.; Koike, T.; Jung, C. K.; Kato, T.; Kobayashi, K.; McGrew, C.; Sarrat, A.; Terri, R.; Yanagisawa, C.; Tamura, N.; Ikeda, M.; Sakuda, M.; Kuno, Y.; Yoshida, M.; Kim, S. B.; Yang, B. S.; Ishizuka, T.; Okazawa, H.; Choi, Y.; Seo, H. K.; Gando, Y.; Hasegawa, T.; Inoue, K.; Ishii, H.; Nishijima, K.; Ishino, H.; Watanabe, Y.; Koshiba, M.; Totsuka, Y.; Chen, S.; Deng, Z.; Liu, Y.; Kielczewska, D.; Berns, H. G.; Shiraishi, K. K.; Thrane, E.; Washburn, K.; Wilkes, R. J.; Super-Kamiokande Collaboration
2015-04-01
A search for neutron-antineutron (n -n ¯) oscillation was undertaken in Super-Kamiokande using the 1489 live-day or 2.45 ×1034 neutron-year exposure data. This process violates both baryon and baryon minus lepton numbers by an absolute value of two units and is predicted by a large class of hypothetical models where the seesaw mechanism is incorporated to explain the observed tiny neutrino masses and the matter-antimatter asymmetry in the Universe. No evidence for n -n ¯ oscillation was found; the lower limit of the lifetime for neutrons bound in 16O, in an analysis that included all of the significant sources of experimental uncertainties, was determined to be 1.9 ×1032 years at the 90% confidence level. The corresponding lower limit for the oscillation time of free neutrons was calculated to be 2.7 ×108 s using a theoretical value of the nuclear suppression factor of 0.517 ×1023 s-1 and its uncertainty.
Noise exposure and hearing loss among sand and gravel miners.
Landen, Deborah; Wilkins, Steve; Stephenson, Mark; McWilliams, Linda
2004-08-01
The objectives of this study were to describe workplace noise exposures, risk factors for hearing loss, and hearing levels among sand and gravel miners, and to determine whether full shift noise exposures resulted in changes in hearing thresholds from baseline values. Sand and gravel miners (n = 317) were interviewed regarding medical history, leisure-time and occupational noise exposure, other occupational exposures, and use of hearing protection. Audiometric tests were performed both before the work shift (following a 12-hour noise-free interval) and immediately following the work shift. Full shift noise dosimetry was conducted. Miners' noise exposures exceeded the Recommended Exposure Limit (REL) of the National Institute for Occupational Safety and Health (NIOSH) for 69% of workers, and exceeded the Mine Safety and Health Administration's action level for enrollment in a hearing conservation program for 41% of workers. Significantly higher noise exposures occurred among employees of small companies, among workers with a job classification of truck driver, among males, and among black workers. Hearing protection usage was low, with 48% of subjects reporting that they never used hearing protection. Hearing impairment, as defined by NIOSH, was present among 37% of 275 subjects with valid audiograms. Black male workers and white male workers had higher hearing thresholds than males from a comparison North Carolina population unexposed to industrial noise. Small but statistically significant changes in hearing thresholds occurred following full shift noise exposure among subjects who had good hearing sensitivity at baseline. In a logistic regression model, age and history of a past noisy job were significant predictors of hearing impairment. Overall, sand and gravel workers have excessive noise exposures and significant hearing loss, and demonstrate inadequate use of hearing protection. Well-designed hearing conservation programs, with reduction of noise exposure, are clearly needed.
Tabassum, Saiqa; Haider, Saida
2018-02-10
Stressful and emotionally arousing experiences are remembered, and previous reports show that repeated exposure to stressful condition enhances emotional learning. However, the usefulness of the repeated exposure depends on the intensity and duration. Although repeated training as a strategy to improve memory performance is receiving increased attention from researchers, repeated training may induce stressful effects that have not yet been considered. The present study investigated whether exposure to repetitive learning trials with limited or extensive durations in a passive avoidance task (PAT) would be beneficial or harmful to emotional memory performance in rats. Rats were exposed to repetitive learning trials for two different durations in the limited exposure (exposure to four repetitive trials) and extensive exposure groups (exposure to 16 repetitive trials) in a single day to compare the impact of both conditions on rat emotional memory performance. Alterations in corticosterone content and associated oxidative and neurochemical systems were assessed to explore the underlying mechanism responsible for changes in emotional memory. Following extensive exposure, a negative impact on emotional memory was observed compared with the limited exposure group. A lack of any further improvement in memory function following extensive training exposure was supported by increased corticosterone levels, decreased 5-hydroxytryptamine (5-HT) levels and abnormal oxidative stress levels, which may induce negative effects on memory consolidation. It is suggested that limited exposure to repetitive learning trials is more useful for studying improvement in emotional memory, whereas extensive exposure may produce chronic stress-like condition that can be detrimental and responsible for compromised memory performance. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Doney, Brent; Hnizdo, Eva; Graziani, Monica; Kullman, Greg; Burchfiel, Cecil; Baron, Sherry; Fujishiro, Kaori; Enright, Paul; Hankinson, John L.; Stukovsky, Karen Hinckley; Martin, Christopher J.; Donohue, Kathleen M.; Barr, R. Graham
2014-01-01
Introduction The contribution of occupational exposure to the risk of chronic obstructive pulmonary disease COPD in population-based studies is of interest. We compared the performance of self-reported exposure to a newly developed JEM in exposure-response evaluation. Methods We used cross-sectional data from Multi-Ethnic Study of Atherosclerosis (MESA), a population-based sample of 45–84 year olds free of clinical cardiovascular disease at baseline. MESA ascertained the most recent job and employment, and the MESA Lung Study measured spirometry, and occupational exposures for 3686 participants. Associations between health outcomes (spirometry defined airflow limitation and Medical Research Council-defined chronic bronchitis) and occupational exposure [self-reported occupational exposure to vapor-gas, dust, or fumes (VGDF), severity of exposure, and a job-exposure matrix (JEM)-derived score] were evaluated using logistic regression models adjusted for non-occupational risk factors. Results The prevalence of airflow limitation was associated with self-reported exposure to vapor-gas (OR 2.6, 95%CI 1.1–2.3), severity of VGDF exposure (P-trend<0.01), and JEM dust exposure (OR 2.4, 95%CI 1.1–5.0), and with organic dust exposure in females; these associations were generally of greater magnitude among never smokers. The prevalence of chronic bronchitis and wheeze was associated with exposure to VGDF. The association between airflow limitation and the combined effect of smoking and VGDF exposure showed an increasing trend. Self-reported vapor-gas, dust, fumes, years and severity of exposure were associated with increased prevalence of chronic bronchitis and wheeze (P<0.001). Conclusions Airflow limitation was associated with self-reported VGDF exposure, its severity, and JEM-ascertained dust exposure in smokers and never-smokers in this multiethnic study. PMID:24568208
Burney, Peter; Minelli, Cosetta
2018-01-01
The impact of disease on population health is most commonly estimated by the population attributable fraction (PAF), or less commonly by the excess risk, an alternative measure that estimates the absolute risk of disease in the population that can be ascribed to the exposure. Using chronic airflow obstruction as an example, we examined the impact on these estimates of defining disease based on different "normal" values. We estimated PAF and the excess risk in scenarios in which the true rate of disease was 10% in the exposed and 5% in the unexposed, and where either 50% or 20% of the population was exposed. Disease definition was based on a "lower limit of normal", using the 5th, 1st and 0.2nd centile of values in a "normal" population as thresholds to define normality. Where normality is defined by centiles of values in a "normal" population, PAF is strongly influenced by which centile is selected to define normality. This is not true for the population excess risk. Care should be taken when interpreting estimates of PAF when disease is defined from a centile of a normal population. Copyright © 2017 Elsevier Inc. All rights reserved.
Tranfo, Giovanna; Gherardi, Monica; Paci, E; Gatto, Mariapia; Gordiani, A; Caporossi, Lidia; Capanna, Silvia; Sisto, Renata; Papaleo, B; Fiumalbi, Carla; Garofani, Patrizia
2012-01-01
Styrene is used in manufacturing fiberglass reinforced plastics: and occupational exposure was related to neurotoxicology and genotoxicity. The sum of the metabolites mandelic and phenylglyoxylic acids is the ACGIH biomarker for occupational exposure with a BEI of 400 mg/g of creatinine in end shift urine corresponding to a airborne styrene concentration of 85 mg/m3. There are two main molding processes, open and closed, the last more effective at controlling worker's styrene exposure. To compare the open molding process to the compression of fiber reinforced resin foils, a kind of closed molding, monitoring the styrene exposure of workers in two production sites (A and B). Environmental Monitoring was carried out by Radiello samplers and Biological Monitoring by means of the determination of MA and PGA with HPLC/MS/MS in 10 workers at Site A and 14 at Site B. The median values for styrene exposure resulted 31.1 mg/m3 for Site A and 24.4 mg/m for Site B, while the medians for the sum of the two metabolites in the end shift urine were 86.7 e 33.8 mg/g creatinine respectively. There is a significant linear correlation between personal styrene exposure and the excretion of styrene metabolites (R = 0.74). As expected the exposure markers of the workers of the two production sites resulted higher in the open process. The analytical results of both environmental and biological monitoring were all below the occupational exposure limits, confirming the efficacy of the protective devices.
Chen, Jing; Zhou, Chunshan; Wang, Shaojian; Hu, Jincan
2018-06-04
Air pollution contributes significantly to premature death in China. However, only a limited number of studies have identified the potential determinants of population exposure to PM 2.5 from a socioeconomic perspective. This paper analyses the socioeconomic determinants of population exposure at the city level in China. We first estimated population exposure to PM 2.5 by integrating high resolution spatial distribution maps of PM 2.5 concentrations and population density, using data for 2013. Then, geographically weighted regression (GWR) modeling was undertaken to explore the strength and direction of relationships between the selected socioeconomic factors and population exposure. The results indicate that approximately 75% of the population of China lived in an area where PM 2.5 concentrations were over 35 μg/m 3 in 2013. From the GWR models, we found that the percentages for cities that showed a statistically significant relationship (p < 0.05) between population exposure and each of the six factors were: urbanization, 91.92%; industry share, 91.58%; construction level, 88.55%; urban expansion, 73.40%; income disparity, 64.98%; and private vehicles, 27.27%. The R-squared value for the six factors in the multivariable GWR model was 0.88, and all cities demonstrated a statistically significant relationship. More importantly, the association between the six factors and population exposure was found to be spatially heterogeneous at the local geographic level. Consideration of these six drivers of population exposure can help policy makers and epidemiologists to evaluate and reduce population exposure risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Torres, Juan; Menéndez, José Manuel
2015-02-01
This paper establishes a real-time auto-exposure method to guarantee that surveillance cameras in uncontrolled light conditions take advantage of their whole dynamic range while provide neither under nor overexposed images. State-of-the-art auto-exposure methods base their control on the brightness of the image measured in a limited region where the foreground objects are mostly located. Unlike these methods, the proposed algorithm establishes a set of indicators based on the image histogram that defines its shape and position. Furthermore, the location of the objects to be inspected is likely unknown in surveillance applications. Thus, the whole image is monitored in this approach. To control the camera settings, we defined a parameters function (Ef ) that linearly depends on the shutter speed and the electronic gain; and is inversely proportional to the square of the lens aperture diameter. When the current acquired image is not overexposed, our algorithm computes the value of Ef that would move the histogram to the maximum value that does not overexpose the capture. When the current acquired image is overexposed, it computes the value of Ef that would move the histogram to a value that does not underexpose the capture and remains close to the overexposed region. If the image is under and overexposed, the whole dynamic range of the camera is therefore used, and a default value of the Ef that does not overexpose the capture is selected. This decision follows the idea that to get underexposed images is better than to get overexposed ones, because the noise produced in the lower regions of the histogram can be removed in a post-processing step while the saturated pixels of the higher regions cannot be recovered. The proposed algorithm was tested in a video surveillance camera placed at an outdoor parking lot surrounded by buildings and trees which produce moving shadows in the ground. During the daytime of seven days, the algorithm was running alternatively together with a representative auto-exposure algorithm in the recent literature. Besides the sunrises and the nightfalls, multiple weather conditions occurred which produced light changes in the scene: sunny hours that produced sharpen shadows and highlights; cloud coverages that softened the shadows; and cloudy and rainy hours that dimmed the scene. Several indicators were used to measure the performance of the algorithms. They provided the objective quality as regards: the time that the algorithms recover from an under or over exposure, the brightness stability, and the change related to the optimal exposure. The results demonstrated that our algorithm reacts faster to all the light changes than the selected state-of-the-art algorithm. It is also capable of acquiring well exposed images and maintaining the brightness stable during more time. Summing up the results, we concluded that the proposed algorithm provides a fast and stable auto-exposure method that maintains an optimal exposure for video surveillance applications. Future work will involve the evaluation of this algorithm in robotics.
Nuyts, Valerie; Vanhooren, Hadewijch; Begyn, Sarah; Nackaerts, Kristiaan; Nemery, Benoit
2017-01-01
Asbestos bodies (AB) in bronchoalveolar lavage (BAL) can be detected by light microscopy and their concentration is indicative of past cumulative asbestos exposure. We assessed clinical and exposure characteristics, as well as possible time trends, among patients in whom AB had been quantified in BAL. BAL samples obtained from 578 participants between January 1997 and December 2014 were available for analysis. The processing of samples and the microscopic analysis were performed by a single expert and 76% of samples came from a single tertiary care hospital, allowing clinical and exposure data to be extracted from patient files. The study population (95% males) had a mean age of 62.5 (±12.4) years. AB were detected in 55.2% of the samples, giving a median concentration of 0.5 AB/mL (95th centile: 23.6 AB/mL; highest value: 164.5 AB/mL). The AB concentration exceeded 1 AB/mL in 39.4% and 5 AB/mL in 17.8%. A significant decrease from a geometric mean of 0.93 AB/mL in 1997 to 0.2 AB/mL in 2014 was apparent. High AB concentrations generally corresponded with occupations with (presumed) high asbestos exposure. AB concentrations were higher among patients with asbestosis and pleural plaques, when compared with other disease groups. Nevertheless, a substantial proportion of participants with likely exposure to asbestos did not exhibit high AB counts. This retrospective study of a large clinical population supports the value of counting AB in BAL as a complementary approach to assess past exposure to asbestos. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Biomonitoring of exposure to N-methyl-2-pyrrolidone in workers of the automobile industry.
Meier, Swetlana; Schindler, Birgit K; Koslitz, Stephan; Koch, Holger M; Weiss, Tobias; Käfferlein, Heiko U; Brüning, Thomas
2013-07-01
N-methyl-2-pyrrolidone (NMP) is an important organic solvent for varnishes in industry. NMP has been previously shown to be a developmental toxicant in rodents. This study reports current exposures to NMP in the spraying department of an automobile plant using biological monitoring. Two specific metabolites, 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methyl-succinimide (2-HMSI), were analyzed in 69 urine samples of 14 workers exposed to NMP and 9 nonexposed controls. Three different working tasks ('loading' and 'cleaning' of the sprayer system and 'wiping/packing' of the sprayed materials) and three sampling times (preshift, postshift, and preshift of the following day) were studied in exposed workers. Median exposures of 5-HNMP and 2-HMSI in postshift urine of exposed workers were 0.91 and 0.52mg g(-1) creatinine, respectively, whereas median levels in controls were below the limit of detection. Decreased levels of 5-HNMP were observed in preshift urine samples on the following day (0.39mg g(-1) creatinine) in exposed workers, while the concentration of 2-HMSI did not change (0.49mg g(-1) creatinine). Highest exposures occurred during sprayer cleaning with a maximum level of 8.31mg g(-1) creatinine of 5-HNMP in postshift urine. In contrast to 'wipers/packers', no decrease in 5-HNMP could be observed in preshift urine samples on day 2 of the 'loaders' and 'cleaners'. Overall, exposure in terms of 5-HNMP postshift and 2-HMSI preshift of the following day were well below the current biological limit values of the European Union (70 and 20mg g(-1) creatinine). Our results provide initial data on NMP exposure in the automobile industry and suggest that the analysis of 5-HNMP in preshift samples also provides essential information, particularly in situations involving direct handling of liquid NMP-containing formulations.
NASA Astrophysics Data System (ADS)
Reidenbach, Hans-Dieter
2011-06-01
Up to now the knowledge is limited as far as adverse effects are concerned which are the result of temporary blinding from high brightness optical products, like laser pointers, but it is mandatory to be aware of the degree and influence on various visual functions of persons performing challenging activities, especially under mesopic or even scotopic conditions. Therefore various test scenarios have been designed in the laboratory and bright optical radiation from highbrightness LEDs and laser products applied as light sources in order to simulate the temporary blinding of pilots during a night-flight, especially during landing. As an important realistic test object the primary flight display (PFD) of a commercial aircraft has been integrated in the respective test set-up and various alignments on the PFD could be adjusted in order to measure the time duration which is needed to regain the ability to read the respective data on the PFD after an exposure. The pilot's flight deck lighting situation from a full flight simulator A 320 has been incorporated in the test scenarios. The level of exposure of the subjects has been limited well below the maximum permissible exposure (MPE) and the exposure duration was chosen up to a maximum of 10 s. A total of 28 subjects have been included in various tests. As a critical value especially the visual search time (VST) was determined. A significant increase of VST between 2.5 s and 8 s after foveal irradiation has been determined in a specially designed test with a primary flight display (PFD) whereas an increase of 9.1 s for peripheral and 9.9 s for frontal irradiation resulted in an exercise (flight maneuver) with a Microsoft flight-simulator. Various pupil diameters and aversion responses of the subjects during the irradiation might be responsible for the relatively large spread of data, but on the other hand a simple mean value would not comply with the spectrum of functional relationships and possible individual inherent physiological and voluntary active reactions of the irradiated persons, respectively.
NASA Astrophysics Data System (ADS)
Seo, J. H.; Sohn, J. R.; Mo, R.
2017-12-01
According to the OECD, South Korea is expected to have the highest morality and the biggest economic damage due to the air pollution among OECD members in 2060. Korea's air quality monitoring network is provided by Air Korea of the Korea Environment Corporation under the Ministry of Environment. There are 323 measurement stations installed in 97 different places in Korea. The monitoring network is classified into city atmosphere, roadside, country background concentration, and suburban atmosphere monitoring network, which operate according to each measurement purpose. However, the data from this network shows a large difference in pollutant concentration by region and there is a limit to explain the concentration of pollutants in Seoul, which has a very high population density. The data of the fine dust concentration in Korea University is provided by Seongbuk-gu, but actually Korea University is closer to the measuring station in Dongdaemun-gu. Therefore, a difference will occur if the data from Seongbuk-gu is used to the exposure assessment of residents in nearby Korea University for air pollution. Therefore, this study is aimed to acquire estimated value about areas that have not been measured and implement more precise exposure assessment by comparing it with measured value. On May 8, 2017, when the fine dust concentration was the highest, we calculated the pollutant concentration estimates near Korea University by using measuring network of Seongbukgu and Dongdaemun through Kriging method and compared them with actual measured value which was acquired in this study. Analysis results showed that air pollution concentration near Korea University tends to be overestimated when using the data from Seongbukgu. On the other hand, it showed a similarity to measured value when using data from both Seongbukgu and Dongdaemungu through Kriging method. Therefore, it is necessary to estimate the data about blind spots through Kriging method rather than using the existing national atmospheric monitoring data. In addition, it is required to acquire measured data through government agencies and research institutes in addition to the measurement networking data to calculate more accurate pollution concentration and utilize it for the exposure evaluation.
Zhang, Nahui; Wang, Yidan; Xue, Junzeng; Yuan, Lin; Wang, Qiong; Liu, Liang; Wu, Huixian; Hu, Kefeng
2016-06-01
The presence of disinfection by-products (DBPs) releasing from ballast water management systems (BWMS) can cause a possible adverse effects on humans. The objectives of this study were to compute the Derived No Effect Levels (DNELs) for different exposure scenarios and to compare these levels with the exposure levels from the measured DBPs in treated ballast water. The risk assessment showed that when using animal toxicity data, all the DNELs values were approximately 10(3)-10(12) times higher than the exposure levels of occupational and general public exposure scenarios, indicating the level of risk was low (risk characterization ratios (RCRs) < 1). However, when using human data, the RCRs were higher than 1 for dichlorobromomethane and trichloromethane, indicating that the risk of adverse effects on human were significant. This implies that there are apparent discrepancies between risk characterization from animal and human data, which may affect the overall results. We therefore recommend that when appropriate, human data should be used in risk assessment as much as possible, although human data are very limited. Moreover, more appropriate assessment factors can be considered to be employed in estimating the DNELs for human when the animal data is selected as the dose descriptors. Copyright © 2016 Elsevier Inc. All rights reserved.
2015-01-01
Introduction. There is an increasing body of literature relating musculoskeletal diseases to both job physical exposures and psychosocial outcomes. Relationships between job physical exposure measures and psychosocial factors have not been well examined or quantified. These exploratory analyses evaluate relationships between quantified exposures and psychosocial outcomes. Methods. Individualized quantification of duration, repetition, and force and composite scores of the Strain Index (SI) and the Threshold Limit Value for Hand Activity Level (TLV for HAL) were compared to 10 psychosocial measures. Relationships and predicted probabilities were assessed using ordered logistic regression. Analyses were adjusted for age, BMI, and gender. Results and Discussion. Among 1834 study participants there were multiple statistically significant relationships. In general, as duration, repetition, and force increased, psychosocial factors worsened. However, general health and mental exhaustion improved with increasing job exposures. Depression was most strongly associated with increased repetition, while physical exhaustion was most strongly associated with increased force. SI and TLV for HAL were significantly related to multiple psychosocial factors. These relationships persisted after adjustment for strong confounders. Conclusion. This study quantified multiple associations between job physical exposures and occupational and nonoccupational psychosocial factors. Further research is needed to quantify the impacts on occupational health outcomes. PMID:26557686
Evaluation of High-Throughput Chemical Exposure Models ...
The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer parent chemical exposures from biomonitoring measurements and forward models to predict multi-pathway exposures from chemical use information and/or residential media concentrations. Here, both forward and reverse modeling methods are used to characterize the relationship between matched near-field environmental (air and dust) and biomarker measurements. Indoor air, house dust, and urine samples from a sample of 120 females (aged 60 to 80 years) were analyzed. In the measured data, 78% of the residential media measurements (across 80 chemicals) and 54% of the urine measurements (across 21 chemicals) were censored, i.e. below the limit of quantification (LOQ). Because of the degree of censoring, we applied a Bayesian approach to impute censored values for 69 chemicals having at least 15% of measurements above LOQ. This resulted in 10 chemicals (5 phthalates, 5 pesticides) with matched air, dust, and urine metabolite measurements. The population medians of indoor air and dust concentrations were compared to population median exposures inferred from urine metabolites concentrations using a high-throughput reverse-dosimetry approach. Median air and dust concentrations were found to be correl
Metal working fluid exposure and diseases in Switzerland.
Koller, Michael F; Pletscher, Claudia; Scholz, Stefan M; Schneuwly, Philippe
2016-07-01
Exposure to metal working fluids (MWF) is common in machining processes worldwide and may lead to diseases of the skin and the respiratory tract. The aim of the study was to investigate exposure and diseases due to MWF in Switzerland between 2004 and 2013. We performed descriptive statistics including determination of median and 90th percentile values of MWF concentrations listed in a database of Suva. Moreover, we clustered MWF-induced occupational diseases listed in a database from the Swiss Central Office for Statistics in Accident Insurance, and performed linear regression over time to investigate temporal course of the illnesses. The 90th percentile for MWF air concentration was 8.1 mg (aerosol + vapor)/m 3 and 0.9 mg aerosol/m 3 (inhalable fraction). One thousand two hundred and eighty skin diseases and 96 respiratory diseases were observed. This is the first investigation describing exposure to and diseases due to MWF in Switzerland over a timeframe of 10 years. In general, working conditions in the companies of this investigation were acceptable. Most measured MWF concentrations were below both the Swiss and most international occupational exposure limits of 2014. The percentage of workers declared unfit for work was 17% compared to the average of other occupational diseases (12%).
Hexavalent chromium exposures during full-aircraft corrosion control.
Carlton, Gary N
2003-01-01
Aluminum alloys used in the construction of modern aircraft are subject to corrosion. The principal means of controlling this corrosion in the U.S. Air Force are organic coatings. The organic coating system consists of a chromate conversion coat, epoxy resin primer, and polyurethane enamel topcoat. Hexavalent chromium (CrVI) is present in the conversion coat in the form of chromic acid and in the primer in the form of strontium chromate. CrVI inhalation exposures can occur when workers spray conversion coat onto bare metal and apply primer to the treated metal surface. In addition, mechanical abrasion of aircraft surfaces can generate particulates that contain chromates from previously applied primers and conversion coats. This study measured CrVI exposures during these corrosion control procedures. Mean time-weighted average (TWA) exposure to chromic acid during conversion coat treatment was 0.48 microg/m(3), below the current American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV(R)) TWA of 50 microg/m(3) for water-soluble CrVI compounds. Mean TWA exposures to strontium chromate were 5.33 microg/m(3) during mechanical abrasion and 83.8 microg/m(3) during primer application. These levels are in excess of the current ACGIH TLV-TWA of 0.5 microg/m(3) for strontium chromate. In the absence of a change from chromated to nonchromated conversion coats and primers, additional control measures are needed to reduce these exposures.
Occupational characteristics of respiratory cancer patients exposed to asbestos in Lithuania
NASA Astrophysics Data System (ADS)
Everatt, R. Petrauskaitdot e.; Smolianskiedot n, G.; Tossavainen, A.; Cicdot enas, S.; Jankauskas, R.
2009-02-01
Objective: To assess characteristics of asbestos exposure in respiratory cancer patients in Lithuania. Methods. Information on occupational exposure to asbestos was collected by personal interviews and occupational characteristics were evaluated among 183 lung cancer and mesothelioma patients with cumulative asbestos exposure >=0.01 fibre years hospitalized at the Institute of Oncology, Vilnius. Additionally, some results of workplace air measurements were reviewed. Results. Cases with estimated cumulative exposure >=5 fibre years had worked mainly in the construction industry (49%), installation and maintenance (13%), foundry and metal products manufacturing (6%), heating trades and boilerhouses (6%) as fitters/maintenance technicians, construction workers, welders, electricians or foremen. Typical asbestos materials used by the patients were asbestos powder, asbestos cement sheets and pipes, asbestos cord, brake and clutch linings. Patients were exposed to asbestos when insulating boilers, furnaces, pipes in power stations, industrial facilities, ships, locomotives, buildings, while covering and repairing roofs, at the asbestos cement plant or unloading asbestos products. Most patients with estimated cumulative exposure of >=0.01-4.9 fibre years worked as lorry, bus or tractor drivers and motor vehicle mechanics. In 2002-2007 workplace air asbestos concentrations exceeded the limit value of 0.1 f/cm3 in 11 samples out of 208 measurements. Conclusion. The results of this study indicate that since the 1960s occupational exposure to chrysotile asbestos was extensive in Lithuania.
Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D
2014-10-01
Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.
Hernández, Antonio F; Tsatsakis, Aristidis M
2017-05-01
Little is known about the potential adverse effects from longterm exposure to complex mixtures at low doses, close to health-based reference values. Traditional chemical-specific risk assessment based on animal testing may be insufficient and the lack of toxicological studies on chemical mixtures remains a major regulatory challenge. Hence, new methodologies on cumulative risk assessment are being developed but still present major limitations. Evaluation of chemical mixture effects requires an integrated and systematic approach and close collaboration across different scientific fields, particularly toxicology, epidemiology, exposure science, risk assessment and statistics for a proper integration of data from all these disciplines. Well designed and conducted epidemiological studies can take advantage of this new paradigm and can provide insight to support the correlation between humans low-dose exposures and diseases, thus avoiding the uncertainty associated with extrapolation across species. In this regard, human epidemiology studies may play a significant role in the new vision of toxicity testing. However, this type of information has not been fully considered in risk assessment, mainly due to the inherent limitations of epidemiologic studies. An integrated approach of in vivo, in vitro and in silico data, together with systematic reviews or meta-analysis of high quality epidemiological studies will improve the robustness of risk assessment of chemical mixtures and will provide a stronger basis for regulatory decisions. The ultimate goal is that experimental and mechanistic data can lend support and biological plausibility to the human epidemiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dehos, A; Weiss, W
2002-12-01
The considerable increase in using mobile communication which will increase when new technologies, such as UMTS, are introduced has resulted in further public interest concerning the possible health risks from electromagnetic fields of cellular phone networks. In view of evaluating the scientific state-of-the art, it has been shown that based on the available scientific results, the individual risk in view of proved health consequences is considered low. There are, however, indications of biological effects of high-frequency electromagnetic fields, even at intensities below the currently applied limit values or recommendations for limit values. Although the health relevance of these effects is still unclear, they give reason to precautionary measures with the object to minimise possible health risks which might affect a large number of persons. The precautionary measures recommended by the Federal Office for Radiation Protection include three principles: 1. Exposure of the general public to electromagnetic fields should be as low as possible. This applies for both the fixed parts of cellular phone networks and for mobile phones. 2. The population should be informed of risks in an objective and comprehensive way and be involved in the decisions on the construction and operation of cellular phone networks. 3. Scientific uncertainties should be reduced by means of well-directed research programmes. These precautionary measures and the significance of limit values are explained below.