43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...
43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...
43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...
43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...
43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...
Shin, H-M; McKone, T E; Bennett, D H
2017-07-01
We present a screening-level exposure-assessment method which integrates exposure from all plausible exposure pathways as a result of indoor residential use of cleaning products. The exposure pathways we considered are (i) exposure to a user during product use via inhalation and dermal, (ii) exposure to chemical residues left on clothing, (iii) exposure to all occupants from the portion released indoors during use via inhalation and dermal, and (iv) exposure to the general population due to down-the-drain disposal via inhalation and ingestion. We use consumer product volatilization models to account for the chemical fractions volatilized to air (f volatilized ) and disposed down the drain (f down-the-drain ) during product use. For each exposure pathway, we use a fate and exposure model to estimate intake rates (iR) in mg/kg/d. Overall, the contribution of the four exposure pathways to the total exposure varies by the type of cleaning activities and with chemical properties. By providing a more comprehensive exposure model and by capturing additional exposures from often-overlooked exposure pathways, our method allows us to compare the relative contribution of various exposure routes and could improve high-throughput exposure assessment for chemicals in cleaning products. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS
The Food Quality Protection Act (FQPA) of 1996 requires that all tolerances for pesticide chemical residuals in or on food be considered for anticipated exposure. Drinking water is considered a potential pathway for dietary exposure and there is reliable monitoring data for the ...
Toxicologists use dose-response data from both in vivo and in vitro experiments to evaluate the effects of chemical contaminants on organisms. Cumulative risk assessments (CRAs) consider the effects of multiple stressors on multiple endpoints, and utilize environmental exposure ...
METHOD FOR MEASURING BASE/NEUTRAL AND CARBAMATE PESTICIDES IN PERSONAL DIETARY SAMPLES
Dietary uptake may be a significant pathway of exposure to contaminants. As such,dietary exposure assessments should be considered an important part of the total exposure assessment process. The objective of this work was to develop reliable methods that are applicable to a wide ...
METHOD FOR MEASURING BASE/NEUTRAL AND CARBAMATE PESTICIDES IN PERSONAL DIETARY SAMPLES
Dietary uptake may be a significant pathway of exposure to contaminants. As such, dietary exposure assessments should be considered an important part of the total exposure assessment process. The objective of this work was to develop reliable methods that are applicable to a wide...
Monaghan, A J; Sampson, K M; Steinhoff, D F; Ernst, K C; Ebi, K L; Jones, B; Hayden, M H
2018-02-01
The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue and chikungunya, two globally-important vector-borne diseases. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti . Occurrence patterns for Ae. aegypti for 2061-2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950-2000 reference period. A global land area of 56.9 M km 2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8% (RCP4.5) to 13% (RCP8.5) by 2061-2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298-460 M (8-12%) by 2061-2080 if only climate change is considered, and by 4805-5084 M (127-134%) for SSP3 and 2232-2483 M (59-65%) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-21
The Garden State Cleaners (GSC) and South Jersey Clothing Company (SJCC) sites are located in Buena Borough, Atlantic County, New Jersey. Completed human exposure pathway existed in the past at the site and were associated with groundwater, and ambient air (SJCC). Potential exposure pathways are associated with groundwater and on site soils (SJCC). Based upon the likelihood of past exposure, ATSDR and NJDOH consider this site to have posed a public health hazard.
Sources and transport pathways of micropollutants into surface waters - an overview
NASA Astrophysics Data System (ADS)
Stamm, Christian
2017-04-01
Micropollutants reach water bodies from a large range of sources through different transport pathways. They consist of hundreds or thousands of compounds rendering exposure assessment an analytical challenge. Prominent examples of micropollutants are wastewater-born pharmaceuticals and hormones or plant protection products originating from diffuse agricultural sources. This presentation reviews the possible origin of micropollutants and their transport pathways. It demonstrates that considering municipal wastewater and agriculture may fall short of comprising all relevant source-pathway combination in a given watershed by providing examples from industry, animal production, or leaching to groundwater. The diversity of source-pathway leads on the one hand to a large number of possible chemicals to be considered including parent compounds of end products, their transformation products, legacy compounds but also intermediates used during industrial synthesis processes. On the other hand, it leads to a wide range of temporal dynamics by which these compounds reach streams and rivers. This combination makes a comprehensive exposure assessment for micropollutants a real scientific challenge. An outlook into new development in sampling and analytics will suggest possible solution for this challenge.
Applicability of western chemical dietary exposure models to the Chinese population.
Zhao, Shizhen; Price, Oliver; Liu, Zhengtao; Jones, Kevin C; Sweetman, Andrew J
2015-07-01
A range of exposure models, which have been developed in Europe and North America, are playing an increasingly important role in priority setting and the risk assessment of chemicals. However, the applicability of these tools, which are based on Western dietary exposure pathways, to estimate chemical exposure to the Chinese population to support the development of a risk-based environment and exposure assessment, is unclear. Three frequently used modelling tools, EUSES, RAIDAR and ACC-HUMANsteady, have been evaluated in terms of human dietary exposure estimation by application to a range of chemicals with different physicochemical properties under both model default and Chinese dietary scenarios. Hence, the modelling approaches were assessed by considering dietary pattern differences only. The predicted dietary exposure pathways were compared under both scenarios using a range of hypothetical and current emerging contaminants. Although the differences across models are greater than those between dietary scenarios, model predictions indicated that dietary preference can have a significant impact on human exposure, with the relatively high consumption of vegetables and cereals resulting in higher exposure via plants-based foodstuffs under Chinese consumption patterns compared to Western diets. The selected models demonstrated a good ability to identify key dietary exposure pathways which can be used for screening purposes and an evaluative risk assessment. However, some model adaptations will be required to cover a number of important Chinese exposure pathways, such as freshwater farmed-fish, grains and pork. Copyright © 2015 Elsevier Inc. All rights reserved.
Relative contributions of four exposure pathways to influenza infection risk.
Nicas, Mark; Jones, Rachael M
2009-09-01
The relative contribution of four influenza virus exposure pathways-(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes-must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.
Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon
2011-12-01
Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.
Refining the aggregate exposure pathway.
Tan, Yu-Mei; Leonard, Jeremy A; Edwards, Stephen; Teeguarden, Justin; Egeghy, Peter
2018-03-01
Advancements in measurement technologies and modeling capabilities continue to result in an abundance of exposure information, adding to that currently in existence. However, fragmentation within the exposure science community acts as an obstacle for realizing the vision set forth in the National Research Council's report on Exposure Science in the 21 st century to consider exposures from source to dose, on multiple levels of integration, and to multiple stressors. The concept of an Aggregate Exposure Pathway (AEP) was proposed as a framework for organizing and integrating diverse exposure information that exists across numerous repositories and among multiple scientific fields. A workshop held in May 2016 followed introduction of the AEP concept, allowing members of the exposure science community to provide extensive evaluation and feedback regarding the framework's structure, key components, and applications. The current work briefly introduces topics discussed at the workshop and attempts to address key challenges involved in refining this framework. The resulting evolution in the AEP framework's features allows for facilitating acquisition, integration, organization, and transparent application and communication of exposure knowledge in a manner that is independent of its ultimate use, thereby enabling reuse of such information in many applications.
Done through 10 regional office and in close cooperation with a network of federal, state, and local governments. First they investigate the site, then determine response alternatives and safety measures, considering hazards and exposure pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallinger, K.; Huggins, A.; Warner, L.
1995-12-31
An Indirect Exposure Assessment (IEA) was conducted, under USEPA`s RCRA Combustion Strategy, as part of the Part B permitting process for a proposed hazardous waste incinerator. The IEA involved identification of constituents of concern, emissions estimations, air dispersion and deposition modeling, evaluation of site-specific exposure pathways/scenarios, and food chain modeling in order to evaluate potential human health and environmental risks. The COMPDEP model was used to determine ambient ground level concentrations and dry and wet deposition rates of constituents of concern. The air modeling results were input into 50th percentile (Central) and 95th percentile (High-End) exposure scenarios which evaluated directmore » exposure via inhalation, dermal contact, and soil ingestion pathways, and indirect exposure through the food chain. The indirect pathway analysis considered the accumulation of constituents in plants and animals used as food sources by local inhabitants. Local food consumption data obtained from the Puerto Rico USDA were combined with realistic present-day and future-use exposure scenarios such as residential use, pineapple farming, and subsistence farming to obtain a comprehensive evaluation of risk, Overall risk was calculated using constituent doses and toxicity factors associated with the various routes of exposure. Risk values for each exposure pathway were summed to determine total carcinogenic and non-carcinogenic hazard to exposed individuals. A population risk assessment was also conducted in order to assess potential risks to the population surrounding the facility. Results of the assessment indicated no acute effects from constituents of concern, and a high-end excess lifetime cancer risk of approximately 6 in a million with dioxins (as 2,3,7,8-TCDD) and arsenic dominating the risk estimate.« less
Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR
Xu, Xiaohua; Balsiger, Robert; Tyrrell, Jean; Boyaka, Prosper N.; Tarran, Robert; Cormet-Boyaka, Estelle
2015-01-01
Background CFTR plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date. Methods The molecular mechanisms leading to down-regulation of CFTR by cigarette smoke were determined using pharmacologic inhibitors and silencing RNAs. Results Using human bronchial epithelial cells, here we show that cigarette smoke induces degradation of CFTR that is attenuated by the lysosomal inhibitors, but not proteasome inhibitors. Cigarette smoke can activate multiple signaling pathways in airway epithelial cells, including the MEK/Erk1/2 MAPK pathway regulating cell survival. Interestingly, pharmacological inhibition of the MEK/Erk1/2 MAPK pathway prevented the loss of plasma membrane CFTR upon cigarette smoke exposure. Similarly, decreased expression of Erk1/2 using silencing RNAs prevented the suppression of CFTR protein by cigarette smoke. Conversely, specific inhibitors of the JNK or p38 MAPK pathways had no effect on CFTR decrease after cigarette smoke exposure. In addition, inhibition of the MEK/Erk1/2 MAPK pathway prevented the reduction of the airway surface liquid observed upon cigarette smoke exposure of primary human airway epithelial cells. Finally, addition of the antioxidant NAC inhibited activation of Erk1/2 by cigarette smoke and precluded the cigarette smoke-induced decrease of CFTR. Conclusions These results show that the MEK/Erk1/2 MAPK pathway regulates plasma membrane CFTR in human airway cells. General Significance The MEK/Erk1/2 MAPK pathway should be considered as a target for strategies to maintain/restore CFTR expression in the lung of smokers. PMID:25697727
Hunt, G J
1997-04-01
First, some of the early work is reviewed on exposure pathways in connection with proposed and early liquid radioactive waste discharges from Sellafield. The main historical features of these discharges, affected by relevant plant operations, are then briefly described. The important radiological exposure pathways resulting from the discharges and people's consumption and occupancy habits are considered. To place the changing scenario onto a consistent basis using present-day methodology, a reconstruction of exposures has been carried out using environmental monitoring data and models. The three major pathways are examined of Porphyra/laverbread consumption in South Wales, fish and shellfish consumption near Sellafield, and external exposure over local and more distant sediments. The results show that over the period 1952 to about 1970 the laverbread pathway was probably critical, taking a cautious approach. Effective dose rates fluctuated at around 1 mSv y(-1) from about 1956 to 1971. From about 1970 to 1985, the fish and shellfish pathway was likely to have been critical, with effective dose rates peaking at about 2 mSv y(-1) in 1975-1976. External exposure was likely to have been of lesser importance than the other two pathways until about 1985, when with the retention of previously-released radiocesium on sediments it has become dominant. This phenomenon applies particularly further afield where radiocesium concentrations have been slower to decline; in the Ribble estuary, houseboat dwellers have been the critical group from about 1985. Effective doses have been at about 0.3 mSv y(-1) and declining; they are due to the effects of radiocesium discharges in earlier years. Dose rates have remained within contemporary ICRP dose limits.
Robb, Katharine; Null, Clair; Teunis, Peter; Yakubu, Habib; Armah, George; Moe, Christine L.
2017-01-01
Abstract. Rapid urbanization has contributed to an urban sanitation crisis in low-income countries. Residents in low-income, urban neighborhoods often have poor sanitation infrastructure and services and may experience frequent exposure to fecal contamination through a range of pathways. There are little data to prioritize strategies to decrease exposure to fecal contamination in these complex and highly contaminated environments, and public health priorities are rarely considered when planning urban sanitation investments. The SaniPath Study addresses this need by characterizing pathways of exposure to fecal contamination. Over a 16 month period, an in-depth, interdisciplinary exposure assessment was conducted in both public and private domains of four neighborhoods in Accra, Ghana. Microbiological analyses of environmental samples and behavioral data collection techniques were used to quantify fecal contamination in the environment and characterize the behaviors of adults and children associated with exposure to fecal contamination. Environmental samples (n = 1,855) were collected and analyzed for fecal indicators and enteric pathogens. A household survey with 800 respondents and over 500 hours of structured observation of young children were conducted. Approximately 25% of environmental samples were collected in conjunction with structured observations (n = 441 samples). The results of the study highlight widespread and often high levels of fecal contamination in both public and private domains and the food supply. The dominant fecal exposure pathway for young children in the household was through consumption of uncooked produce. The SaniPath Study provides critical information on exposure to fecal contamination in low-income, urban environments and ultimately can inform investments and policies to reduce these public health risks. PMID:28722599
Relation of pediatric blood lead levels to lead in gasoline.
Billick, I H; Curran, A S; Shier, D R
1980-01-01
Analysis of a large data set of pediatric blood lead levels collected in New York City (1970-1976) shows a highly significant association between geometric mean blood lead levels and the amount of lead present in gasoline sold during the same period. This association was observed for all age and ethnic groups studied, and it suggests that possible exposure pathways other than ambient air should be considered. Even without detailed knowledge of the exact exposure pathways, sufficient information now exists for policy analysis and decisions relevant to controls and standards related to lead in gasoline and its effect on subsets of the population. PMID:7389685
Human health risk assessment of triclosan in land-applied biosolids.
Verslycke, Tim; Mayfield, David B; Tabony, Jade A; Capdevielle, Marie; Slezak, Brian
2016-09-01
Triclosan (5-chloro-2-[2,4-dichlorophenoxy]-phenol) is an antimicrobial agent found in a variety of pharmaceutical and personal care products. Numerous studies have examined the occurrence and environmental fate of triclosan in wastewater, biosolids, biosolids-amended soils, and plants and organisms exposed to biosolid-amended soils. Triclosan has a propensity to adhere to organic carbon in biosolids and biosolid-amended soils. Land application of biosolids containing triclosan has the potential to contribute to multiple direct and indirect human health exposure pathways. To estimate exposures and human health risks from biosolid-borne triclosan, a risk assessment was conducted in general accordance with the methodology incorporated into the US Environmental Protection Agency's Part 503 biosolids rule. Human health exposures to biosolid-borne triclosan were estimated on the basis of published empirical data or modeled using upper-end environmental partitioning estimates. Similarly, a range of published triclosan human health toxicity values was evaluated. Margins of safety were estimated for 10 direct and indirect exposure pathways, both individually and combined. The present risk assessment found large margins of safety (>1000 to >100 000) for potential exposures to all pathways, even under the most conservative exposure and toxicity assumptions considered. The human health exposures and risks from biosolid-borne triclosan are concluded to be de minimis. Environ Toxicol Chem 2016;35:2358-2367. © 2016 SETAC. © 2016 SETAC.
Rosenbach, F; Richter, M; Pförtner, T-K
2015-05-01
In light of the consistent SES gradient in cardiovascular diseases, current research is focusing on possible pathways through which the socioeconomic status (SES) may impact health. Inflammatory processes play a critical role in the development of cardiovascular diseases and are associated with stress. Therefore, they might be one psychobiological pathway explaining how the SES gets under the skin. Considering the different meanings of education, occupation and income, this article gives an overview of the association between inflammatory biomarkers and socioeconomic status. There is high evidence for associations between indicators of SES - education, occupation and income - and inflammatory biomarkers. Possible pathways are health status, health behavior and psychobiological processes as a result of increased exposure to psychosocial stress. The SES gradient in cardiovascular diseases reflects behavioral as well as physiological pathways and systemic inflammation seems to be involved. Low SES is associated with an increased exposure to adverse circumstances of life, which can trigger biological responses and result in an increased risk of cardiovascular diseases. Medical history taking in cardiology should focus on socio-structural exposures and thereby reflect the different meanings of education, occupation and income.
Rhodes, Victoria L; Thomas, Matthew B; Michel, Kristin
2018-08-01
The Toll pathway is a central regulator of antifungal immunity in insects. In mosquitoes, the Toll pathway affects infections with the fungal entomopathogen, Beauveria bassiana, which is considered a potential mosquito biopesticide. We report here the use of B. bassiana strain I93-825 in Anopheles gambiae to analyze the impact of Toll pathway modulation on mosquito survival. Exposure to a narrow dose range of conidia by direct contact decreased mosquito longevity and median survival. In addition, fungal exposure dose correlated positively and linearly with hazard ratio. Increased Toll signaling by knockdown of its inhibitor, cactus, decreased survivorship of uninfected females, increased mosquito survival after low dose B. bassiana exposure, but had little effect following exposure to higher doses. This observed trade-off could have implications for development of B. bassiana as a prospective vector control tool. On the one hand, selection for small increases in mosquito immune signaling across a narrow dose range could impair efficacy of B. bassiana. On the other hand, costs of immunity and the capacity for higher doses of fungus to overwhelm immune responses could limit evolution of resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Impact of Mars Atmospheric Dust on Human Health
NASA Astrophysics Data System (ADS)
Kamakolanu, U. G.
2017-06-01
The martian dust impact can be considered as an exposure to ultra fine particles of martian dust. Direct nose to brain pathway of particulate matter can affect the fine motor skills and gross motor skills, cognition may be affected.
A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture
Dickin, Sarah K.; Schuster-Wallace, Corinne J.; Qadir, Manzoor; Pizzacalla, Katherine
2016-01-01
Background: Wastewater is increasingly being used in the agricultural sector to cope with the depletion of freshwater resources as well as water stress linked to changing climate conditions. As wastewater irrigation expands, research focusing on the human health risks is critical because exposure to a range of contaminants must be weighed with the benefits to food security, nutrition and livelihoods. Objectives: The goal of this paper was to review research examining health risks and exposure pathways associated with wastewater irrigation to identify research trends and gaps. Methods: We conducted a review of the literature and identified a total of 126 studies published from 1995 to 2013. Findings were summarized based on several themes including types of exposure pathways, wastewater contaminants, methodological approaches and the geographical distribution of research. Results: Only 23 studies used epidemiological methods, while most research applied alternative methods to estimate risk, such as quantitative risk assessment models or comparisons of crop contamination to established guidelines for wastewater reuse. A geographic breakdown demonstrated a focus on microbiological contaminants in specific regions such as sub-Saharan Africa and Southeast Asia, despite growing chemical risks associated with rapid urbanization and industrialization that may change the types and distribution of wastewater contaminants. Conclusions: To provide a more comprehensive understanding of the health risks of wastewater use in agriculture, future research should consider multiple exposure routes, long-term health implications, and increase the range of contaminants studied, particularly in regions heavily dependent on wastewater irrigation. Citation: Dickin SK, Schuster-Wallace CJ, Qadir M, Pizzacalla K. 2016. A review of health risks and pathways for exposure to wastewater use in agriculture. Environ Health Perspect 124:900–909; http://dx.doi.org/10.1289/ehp.1509995 PMID:26824464
A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture.
Dickin, Sarah K; Schuster-Wallace, Corinne J; Qadir, Manzoor; Pizzacalla, Katherine
2016-07-01
Wastewater is increasingly being used in the agricultural sector to cope with the depletion of freshwater resources as well as water stress linked to changing climate conditions. As wastewater irrigation expands, research focusing on the human health risks is critical because exposure to a range of contaminants must be weighed with the benefits to food security, nutrition and livelihoods. The goal of this paper was to review research examining health risks and exposure pathways associated with wastewater irrigation to identify research trends and gaps. We conducted a review of the literature and identified a total of 126 studies published from 1995 to 2013. Findings were summarized based on several themes including types of exposure pathways, wastewater contaminants, methodological approaches and the geographical distribution of research. Only 23 studies used epidemiological methods, while most research applied alternative methods to estimate risk, such as quantitative risk assessment models or comparisons of crop contamination to established guidelines for wastewater reuse. A geographic breakdown demonstrated a focus on microbiological contaminants in specific regions such as sub-Saharan Africa and Southeast Asia, despite growing chemical risks associated with rapid urbanization and industrialization that may change the types and distribution of wastewater contaminants. To provide a more comprehensive understanding of the health risks of wastewater use in agriculture, future research should consider multiple exposure routes, long-term health implications, and increase the range of contaminants studied, particularly in regions heavily dependent on wastewater irrigation. Dickin SK, Schuster-Wallace CJ, Qadir M, Pizzacalla K. 2016. A review of health risks and pathways for exposure to wastewater use in agriculture. Environ Health Perspect 124:900-909; http://dx.doi.org/10.1289/ehp.1509995.
Li, Zijian; Jennings, Aaron A.
2017-01-01
Worldwide jurisdictions are making efforts to regulate pesticide standard values in residential soil, drinking water, air, and agricultural commodity to lower the risk of pesticide impacts on human health. Because human may exposure to pesticides from many ways, such as ingestion, inhalation, and dermal contact, it is important to examine pesticide standards by considering all major exposure pathways. Analysis of implied maximum dose limits for commonly historical and current used pesticides was adopted in this study to examine whether worldwide pesticide standard values are enough to prevent human health impact or not. Studies show that only U.S. has regulated pesticides standard in the air. Only 4% of the total number of implied maximum dose limits is based on three major exposures. For Chlorpyrifos, at least 77.5% of the total implied maximum dose limits are above the acceptable daily intake. It also shows that most jurisdictions haven't provided pesticide standards in all major exposures yet, and some of the standards are not good enough to protect human health. PMID:29546224
Code of Federal Regulations, 2011 CFR
2011-10-01
... plume and ingestion exposure pathways respectively. (h) Plume Exposure Pathway refers to whole body... to days. (i) Ingestion Exposure Pathway refers to exposure primarily from ingestion of water or foods... exposure pathway EPZ when any of these entities has specific roles in emergency planning and preparedness...
Code of Federal Regulations, 2010 CFR
2010-10-01
... plume and ingestion exposure pathways respectively. (h) Plume Exposure Pathway refers to whole body... to days. (i) Ingestion Exposure Pathway refers to exposure primarily from ingestion of water or foods... exposure pathway EPZ when any of these entities has specific roles in emergency planning and preparedness...
Code of Federal Regulations, 2013 CFR
2013-10-01
... plume and ingestion exposure pathways respectively. (h) Plume Exposure Pathway refers to whole body... to days. (i) Ingestion Exposure Pathway refers to exposure primarily from ingestion of water or foods... exposure pathway EPZ when any of these entities has specific roles in emergency planning and preparedness...
Code of Federal Regulations, 2014 CFR
2014-10-01
... plume and ingestion exposure pathways respectively. (h) Plume Exposure Pathway refers to whole body... to days. (i) Ingestion Exposure Pathway refers to exposure primarily from ingestion of water or foods... exposure pathway EPZ when any of these entities has specific roles in emergency planning and preparedness...
Code of Federal Regulations, 2012 CFR
2012-10-01
... plume and ingestion exposure pathways respectively. (h) Plume Exposure Pathway refers to whole body... to days. (i) Ingestion Exposure Pathway refers to exposure primarily from ingestion of water or foods... exposure pathway EPZ when any of these entities has specific roles in emergency planning and preparedness...
HEALTH EFFECTS FROM CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA
Arsenite and arsenate are widely present in natural waters. The inorganic forms , especially arsenite, are believed to be the most toxic species. Methylation is often considered to be the primary detoxification pathway for the metaboliism of inorganic arsenic. Recently studi...
Global Coastal Exposure due to Sea-level Rise beyond Tipping Points with Multiple Warming Pathways
NASA Astrophysics Data System (ADS)
Tawatari, R.; Iseri, Y.; Kiguchi, M.; Kanae, S.
2016-12-01
Sea-level is observed and estimated to continue rising. In the future, the rise could be abrupt and irreversible in century to millennial timescale even if we conduct strong reduction of greenhouse gas emission. Greenland ice sheet and West Antarctic ice sheet are considered as attributable climate systems which would significantly enhance presently-projected sea-level rise by several meters if global mean temperature passes certain "Tipping points" which would exist around +1-5 degree Celsius above present temperature (1980-1999 average). Therefore, vulnerable coastal low-lying area, especially small islands, deltas or poor developing countries, would suffer from semi-permanent inundation and forced to counteract due to the enhanced sea-level rise. This study estimate range of sea-level rise until the year 2300 and 3000 considering excess of tipping points with using multiple levels of temperature scenarios which consist of excess tipping points and non-excess tipping points pathways. We extract state-of-the-art knowledge of tipping elements from paper reviewing to express reasonable relationship between temperature and abruptly-changing sea-level transition across the ages. This study also calculate coastal exposure globally as affected population, area and asset below the estimated sea-level for each countries with overlaying 30 arc-second gridded topography, population distribution and the sea-level. The result indicates which country would be critically affected if we follow overshooting pathways. Furthermore, this study visualize uncertain coastal exposure due to sea-level rise in the future from the multiple warming pathways. This estimation of possible future beyond tipping point would be useful information for decision-makers to establish new planning of defense, migration or mitigation for the future societies.
Developmental Pathways from Prenatal Tobacco and Stress Exposure to Behavioral Disinhibition
Clark, C.A.C.; Espy, K.A.; Wakschlag, L.
2016-01-01
Prenatal tobacco exposure (PTE) and prenatal stress exposure (PSE) each have been linked to externalizing behavior, although their effects generally have been considered in isolation. Here, we aimed to characterize the joint or interactive roles of PTE and PSE in early developmental pathways to behavioral disinhibition, a profile of cognitive and behavioral under-control that presages severe externalizing behavior. As part of a prospective, longitudinal study, 296 children were assessed at a mean age of 5 years. Exposures were assessed via repeated interviews across the prenatal period and bioassays of cotinine were obtained. Behavioral disinhibition was assessed using temperament measures in infancy, performance-based executive control tasks and measures of disruptive and inattentive behavior. PSE was associated with a higher probability of difficult temperament in infancy. Each exposure independently predicted poorer executive control at age 5 years. Difficult temperament and executive control difficulties in turn predicted elevated levels of disruptive behavior, although links from PTE and PSE to parent-reported attention problems were less robust. Children who experienced these prenatal exposures in conjunction with higher postnatal stress exposure showed the lowest executive control and highest levels of disruptive behavior. Findings highlight the compounding adverse impact of PTE and PSE on children’s behavioral trajectories. Given their high concordance, prenatal health campaigns should target these exposures in tandem. PMID:26628107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorber, M.; Cleverly, D.; Schaum, J.
1996-12-31
Testing for emissions of dioxins from the stack of the Columbus, Ohio Waste to Energy (WTE) municipal solid waste combustion facility in 1992 implied that dioxin emissions could approach 1,000 grams of dioxin toxic equivalents (TEQs) per year. The incinerator has been in operation since the early 1980s. Several varying activities to further evaluate or curtail emissions were conducted by local, state and federal agencies in 1994. Also in that year, US EPA`s Region 5 issued an emergency order under Section 7003 of RCRA requiring the facility to install maximum Achievable Control Technology (MACT). As part of their justification formore » this emergency order, Region 5 used a screening level risk assessment of potential indirect impacts. This paper describes this assessment. The exposure setting is a hypothetical dairy farm where individuals on the farm obtain their beef, milk, and vegetables from home sources. A 70-year exposure scenario is considered, which includes 45 years of facility operation at the pre- and post-MACT emission rates, followed by 25 years of impact due to residual soil concentrations. Soil dermal contact, inhalation, and breast milk exposures were also considered for this assessment. The source term, or dioxin loadings to this setting, were derived from air dispersion modeling of emissions from the Columbus WTE. A key finding of the assessment was that exposures to dioxin in beef and milk dominated the estimated risks, with excess cancer risk form these two pathways estimated at 2.8 {times} 10{sup {minus}4}. A second key finding was that over 90% of a lifetime of impact from these two pathways, and the inhalation and vegetable ingestion pathways, has already occurred due to pre-MACT emissions.« less
Abualfaraj, Noura; Olson, Mira S.
2018-01-01
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10−6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10−6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10−6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts. PMID:29641504
Abualfaraj, Noura; Gurian, Patrick L; Olson, Mira S
2018-04-11
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10 -6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10 -6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10 -6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts.
ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA
Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be the
detoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba
Men, Inner Mo...
Hines, Stephanie A; Chappie, Daniel J; Lordo, Robert A; Miller, Brian D; Janke, Robert J; Lindquist, H Alan; Fox, Kim R; Ernst, Hiba S; Taft, Sarah C
2014-06-01
The Legionella species have been identified as important waterborne pathogens in terms of disease morbidity and mortality. Microbial exposure assessment is a tool that can be utilized to assess the potential of Legionella species inhalation exposure from common water uses. The screening-level exposure assessment presented in this paper developed emission factors to model aerosolization, quantitatively assessed inhalation exposures of aerosolized Legionella species or Legionella species surrogates while evaluating two generalized levels of assumed water concentrations, and developed a relative ranking of six common in-home uses of water for potential Legionella species inhalation exposure. Considerable variability in the calculated exposure dose was identified between the six identified exposure pathways, with the doses differing by over five orders of magnitude in each of the evaluated exposure scenarios. The assessment of exposure pathways that have been epidemiologically associated with legionellosis transmission (ultrasonic and cool mist humidifiers) produced higher estimated inhalation exposure doses than pathways where epidemiological evidence of transmission has been less strong (faucet and shower) or absent (toilets and therapy pool). With consideration of the large uncertainties inherent in the exposure assessment process used, a relative ranking of exposure pathways from highest to lowest exposure doses was produced using culture-based measurement data and the assumption of constant water concentration across exposure pathways. In this ranking, the ultrasonic and cool mist humidifier exposure pathways were estimated to produce the highest exposure doses, followed by the shower and faucet exposure pathways, and then the toilet and therapy pool exposure pathways. Published by Elsevier Ltd.
40 CFR 194.52 - Consideration of exposure pathways.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Consideration of exposure pathways... Individual and Ground-Water Protection Requirements § 194.52 Consideration of exposure pathways. In compliance assessments that analyze compliance with § 191.15 of this chapter, all potential exposure pathways...
40 CFR 194.52 - Consideration of exposure pathways.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Consideration of exposure pathways... Individual and Ground-Water Protection Requirements § 194.52 Consideration of exposure pathways. In compliance assessments that analyze compliance with § 191.15 of this chapter, all potential exposure pathways...
40 CFR 194.52 - Consideration of exposure pathways.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Consideration of exposure pathways... Individual and Ground-Water Protection Requirements § 194.52 Consideration of exposure pathways. In compliance assessments that analyze compliance with § 191.15 of this chapter, all potential exposure pathways...
40 CFR 194.52 - Consideration of exposure pathways.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Consideration of exposure pathways. 194... Individual and Ground-Water Protection Requirements § 194.52 Consideration of exposure pathways. In compliance assessments that analyze compliance with § 191.15 of this chapter, all potential exposure pathways...
40 CFR 194.52 - Consideration of exposure pathways.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Consideration of exposure pathways... Individual and Ground-Water Protection Requirements § 194.52 Consideration of exposure pathways. In compliance assessments that analyze compliance with § 191.15 of this chapter, all potential exposure pathways...
Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert, E-mail: hcrwang@utk.edu
Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis ofmore » human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive agents, such as curcumin, effective in suppressing TCC-induced cellular pre-malignancy.« less
Teeguarden, Justin. G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Harding, Anna K; Kile, Molly L.; Simonich, Staci M; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.
2016-01-01
Synopsis Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more efficient integration of exposure assessment and hazard identification. Together, the two pathways form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. PMID:26759916
Xue, Jianping; Zartarian, Valerie; Tornero-Velez, Rogelio; Tulve, Nicolle S
2014-12-01
The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cumulative doses for seven commonly used pyrethroids, and comparisons of model evaluation results with NHANES biomarker data for 3-PBA and DCCA metabolites. Model input distributions were fit to publicly available pesticide usage survey data, NHANES, and other studies, then SHEDS-Multimedia was applied to estimate total pyrethroid exposures and doses for 3-5 year olds for one year variability simulations. For dose estimations we used a pharmacokinetic model and two approaches for simulating dermal absorption. SHEDS-Multimedia predictions compared well to NHANES biomarker data: ratios of 3-PBA observed data to SHEDS-Multimedia modeled results were 0.88, 0.51, 0.54 and 1.02 for mean, median, 95th, and 99th percentiles, respectively; for DCCA, the ratios were 0.82, 0.53, 0.56, and 0.94. Modeled time-averaged cumulative absorbed dose of the seven pyrethroids was 3.1 nmol/day (versus 8.4 nmol/day for adults) in the general population (residential pyrethroid use and non-use homes) and 6.7 nmol/day (versus 10.5 nmol/day for adults) in the simulated residential pyrethroid use population. For the general population, contributions to modeled cumulative dose by chemical were permethrin (60%), cypermethrin (22%), and cyfluthrin (16%); for residential use homes, contributions were cypermethrin (49%), permethrin (29%), and cyfluthrin (17%). The primary exposure route for 3-5 year olds in the simulated residential use population was non-dietary ingestion exposure; whereas for the simulated general population, dietary exposure was the primary exposure route. Below the 95th percentile, the major exposure pathway was dietary for the general population; non-dietary ingestion was the major pathway starting below the 70th percentile for the residential use population. The new dermal absorption methodology considering surface loading had some impact, but did not change the order of key pathways. Published by Elsevier Ltd.
Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates
Shore, Richard F.; Taggart, Mark A.; Smits, Judit; Mateo, Rafael; Richards, Ngaio L.; Fryday, Steve
2014-01-01
Pharmaceuticals are highly bioactive compounds now known to be widespread environmental contaminants. However, research regarding exposure and possible effects in non-target higher vertebrate wildlife remains scarce. The fate and behaviour of most pharmaceuticals entering our environment via numerous pathways remain poorly characterized, and hence our conception and understanding of the risks posed to wild animals is equally constrained. The recent decimation of Asian vulture populations owing to a pharmaceutical (diclofenac) offers a notable example, because the exposure route (livestock carcasses) and the acute toxicity observed were completely unexpected. This case not only highlights the need for further research, but also the wider requirement for more considered and comprehensive ‘ecopharmacovigilance’. We discuss known and potential high risk sources and pathways in terrestrial and freshwater ecosystems where pharmaceutical exposure in higher vertebrate wildlife, principally birds and mammals, may occur. We examine whether approaches taken within existing surveillance schemes (that commonly target established classes of persistent or bioaccumulative contaminants) and the risk assessment approaches currently used for pesticides are relevant to pharmaceuticals, and we highlight where new approaches may be required to assess pharmaceutical-related risk. PMID:25405960
Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole
2015-01-01
One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137
Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure.
Yu, Ning; Tong, Yun; Zhang, Danni; Zhao, Shanshan; Fan, Xinli; Wu, Lihui; Ji, Hua
2018-07-02
Glyphosate is the active ingredient in numerous herbicide formulations. The roles of glyphosate in embryo-toxicity and neurotoxicity have been reported in human and animal models. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. However, the role of glyphosate in neuronal development is still not fully understood. Our previous study found that perinatal glyphosate exposure resulted in differential microRNA expression in the prefrontal cortex of mouse offspring. However, the mechanism of glyphosate-induced neurotoxicity in the developing brain is still not fully understood. Considering the pivotal role of Circular RNAs (circRNAs) in the regulation of gene expression, a circRNA microarray method was used in this study to investigate circRNA expression changes in the hippocampus of mice with perinatal glyphosate exposure. The circRNA microarrays revealed that 663 circRNAs were significantly altered in the perinatal glyphosate exposure group compared with the control group. Among them, 330 were significantly upregulated, and the other 333 were downregulated. Furthermore, the relative expression levels of mmu-circRNA-014015, mmu-circRNA-28128 and mmu-circRNA-29837 were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that stress-associated steroid metabolism pathways, such as aldosterone synthesis and secretion pathways, may be involved in the neurotoxicity of glyphosate. These results showed that circRNAs are aberrantly expressed in the hippocampus of mice with perinatal glyphosate exposure and play potential roles in glyphosate-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.
Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages.
Ao, Junjie; Yuan, Tao; Gao, Li; Yu, Xiaodan; Zhao, Xiaodong; Tian, Ying; Ding, Wenjin; Ma, Yuning; Shen, Zhemin
2018-09-01
Organic ultraviolet (UV) filters, found in many personal care products, are considered emerging contaminants due to growing concerns about potential long-term deleterious effects. We investigated the immunomodulatory effects of four commonly used organic UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 4-methylbenzylidene camphor, 4-MBC; 2-ethylhexyl 4-methoxycinnamate, EHMC; and butyl-methoxydibenzoylmethane, BDM) on human macrophages. Our results indicated that exposure to these four UV filters significantly increased the production of various inflammatory cytokines in macrophages, particular tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). After exposure to the UV filters, a significant 1.1-1.5 fold increase were found in TNF-α and IL-6 mRNA expression. In addition, both the p38 MAPK and the NF-κB signaling pathways were enhanced 2 to 10 times in terms of phosphorylation after exposure to the UV filters, suggesting that these pathways are involved in the release of TNF-α and IL-6. Molecular docking analysis predicted that all four UV filter molecules would efficiently bind transforming growth factor beta-activated kinase 1 (TAK1), which is responsible for the activation of the p38 MAPK and NF-κB pathways. Our results therefore demonstrate that exposure to the four organic UV filters investigated may alter human immune system function. It provides new clue for the development of asthma or allergic diseases in terms of the environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
Teeguarden, Justin G; Tan, Yu-Mei; Edwards, Stephen W; Leonard, Jeremy A; Anderson, Kim A; Corley, Richard A; Kile, Molly L; Simonich, Staci M; Stone, David; Tanguay, Robert L; Waters, Katrina M; Harper, Stacey L; Williams, David E
2016-05-03
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the "systems approaches" used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.
Expanding on Successful Concepts, Models, and Organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.
In her letter to the editor1 regarding our recent Feature Article “Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework” 2, Dr. von Göetz expressed several concerns about terminology, and the perception that we propose the replacement of successful approaches and models for exposure assessment with a concept. We are glad to have the opportunity to address these issues here. If the goal of the AEP framework was to replace existing exposure models or databases for organizing exposure data with a concept, we would share Dr. von Göetz concerns. Instead,more » the outcome we promote is broader use of an organizational framework for exposure science. The framework would support improved generation, organization, and interpretation of data as well as modeling and prediction, not replacement of models. The field of toxicology has seen the benefits of wide use of one or more organizational frameworks (e.g., mode and mechanism of action, adverse outcome pathway). These frameworks influence how experiments are designed, data are collected, curated, stored and interpreted and ultimately how data are used in risk assessment. Exposure science is poised to similarly benefit from broader use of a parallel organizational framework, which Dr. von Göetz correctly points out, is currently used in the exposure modeling community. In our view, the concepts used so effectively in the exposure modeling community, expanded upon in the AEP framework, could see wider adoption by the field as a whole. The value of such a framework was recognized by the National Academy of Sciences.3 Replacement of models, databases, or any application with the AEP framework was not proposed in our article. The positive role broader more consistent use of such a framework might have in enabling and advancing “general activities such as data acquisition, organization…,” and exposure modeling was discussed in some detail. Like Dr. von Göetz, we recognized the challenges associated with acceptance of the terminology, definitions, and structure proposed in the paper. To address these challenges, an expert workshop was held in May, 2016 to consider and revise the “basic elements” outlined in the paper. The attendees produced revisions to the terminology (e.g., key events) that align with terminology currently in use in the field. We were also careful in our paper to acknowledge a point raised by Dr. von Göetz, that the term AEP implies aggregation, providing these clarifications: “The simplest form of an AEP represents a single source and a single pathway and may more commonly be referred to as an exposure pathway,”; and “An aggregate exposure pathway may represent multiple sources and transfer through single pathways to the TSE, single sources and transfer through multiple pathways to the target site exposure (TSE), or any combination of these.” These clarifications address the concern that the AEP term is not accurate or logical, and further expands upon the word “aggregate” in a broader context. Our use of AEP is consistent with the definition for “aggregate exposure”, which refers to the combined exposures to a single chemical across multiple routes and pathways.3 The AEP framework embraces existing methods for collection, prediction, organization, and interpretation of human and ecological exposure data cited by Dr. von Göetz. We remain hopeful that wider recognition and use of an organizing concept for exposure information across the exposure science, toxicology and epidemiology communities advances the development of the kind of infrastructure and models Dr. von Göetz discusses. This outcome would be a step forward, rather than a step backward.« less
Watkins, B M; Smith, G M; Little, R H; Kessler, J
1999-04-01
Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.
Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon
2018-03-16
Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.
Silvestri, Erin E.; Perkins, Sarah; Lordo, Robert; Kovacik, William; Nichols, Tonya L.; Bowling, Charlena Yoder; Griffin, Dale W.; Schaefer, Frank W.
2015-01-01
Bacillus species spores have the potential to remain viable in the soil for many years. Lasting environmental contamination following a release is a possibility, and planning for site characterization and remediation activities should consider both indoor-to-outdoor spore transport and outdoor soil as potential exposure pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.
Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less
Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; ...
2016-01-13
Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less
Exposure Assessment of Livestock Carcass Management ...
Report This report describes relative exposures and hazards for different livestock carcass management options in the event of a natural disaster. A quantitative exposure assessment by which livestock carcass management options are ranked relative to one another for a hypothetical site setting, a standardized set of environmental conditions (e.g., meteorology), and following a single set of assumptions about how the carcass management options are designed and implemented. These settings, conditions, and assumptions are not necessarily representative of site-specific carcass management efforts. Therefore, the exposure assessment should not be interpreted as estimating levels of chemical and microbial exposure that can be expected to result from the management options evaluated. The intent of the relative rankings is to support scientifically-based livestock carcass management decisions that consider potential hazards to human health, livestock, and the environment. This exposure assessment also provides information to support choices about mitigation measures to minimize or eliminate specific exposure pathways.
NASA Astrophysics Data System (ADS)
Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.
2013-04-01
Exposure to environmental chemicals results from multiple sources, environmental media, and exposure routes. Ideally, modeled exposures should be compared to biomonitoring data. This study compares the magnitude and variation of modeled polycyclic aromatic hydrocarbons (PAHs) exposures resulting from emissions to outdoor and indoor air and estimated exposure inferred from biomarker levels. Outdoor emissions result in both inhalation and food-based exposures. We modeled PAH intake doses using U.S. EPA's 2002 National Air Toxics Assessment (NATA) county-level emissions data for outdoor inhalation, the CalTOX model for food ingestion (based on NATA emissions), and indoor air concentrations from field studies for indoor inhalation. We then compared the modeled intake with the measured urine levels of hydroxy-PAH metabolites from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) survey as quantifiable human intake of PAH parent-compounds. Lognormal probability plots of modeled intakes and estimated intakes inferred from biomarkers suggest that a primary route of exposure to naphthalene, fluorene, and phenanthrene for the U.S. population is likely inhalation from indoor sources. For benzo(a)pyrene, the predominant exposure route is likely from food ingestion resulting from multi-pathway transport and bioaccumulation due to outdoor emissions. Multiple routes of exposure are important for pyrene. We also considered the sensitivity of the predicted exposure to the proportion of the total naphthalene production volume emitted to the indoor environment. The comparison of PAH biomarkers with exposure variability estimated from models and sample data for various exposure pathways supports that both indoor and outdoor models are needed to capture the sources and routes of exposure to environmental contaminants.
Labib, Sarah; Williams, Andrew; Yauk, Carole L; Nikota, Jake K; Wallin, Håkan; Vogel, Ulla; Halappanavar, Sabina
2016-03-15
A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the 'gold standard' for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions endpoints. We found that regardless of the type of MWCNT, the BMD values for pathways associated with fibrosis were 14.0-30.4 μg/mouse, which are comparable to the BMDs derived by NIOSH for MWCNT-induced lung fibrotic lesions (21.0-27.1 μg/mouse). The results demonstrate that transcriptomic data can be used to as an effective mechanism-based method to derive acceptable levels of exposure to nanomaterials in product development when epidemiological data are unavailable.
Hu, Zhiwei; Brooks, Samira A; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Prudhomme, Kalan R; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Lowe, Leroy; Jensen, Lasse; Bisson, William H; Kleinstreuer, Nicole
2015-06-01
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
There are thousands of consumer product chemicals to which humans may be exposed to via direct (e.g. product use) or indirect (e.g. contact with contaminated media) pathways. The US EPA has developed a research program known as ExpoCast to predict exposures to give real-world con...
Principles for developing animal models of military PTSD
Daskalakis, Nikolaos P.; Yehuda, Rachel
2014-01-01
The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946
USE OF PHARMACOKINETIC MODELING TO DESIGN STUDIES FOR PATHWAY-SPECIFIC EXPOSURE MODEL EVALUATION
Validating an exposure pathway model is difficult because the biomarker, which is often used to evaluate the model prediction, is an integrated measure for exposures from all the exposure routes/pathways. The purpose of this paper is to demonstrate a method to use pharmacokeneti...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.
Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in responsemore » to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening strategies should therefore consider how exposure to these materials alters susceptibility to other environmental exposures.« less
Using exposomics to assess cumulative risks and promote health.
Smith, Martyn T; de la Rosa, Rosemarie; Daniels, Sarah I
2015-12-01
Under the exposome paradigm all nongenetic factors contributing to disease are considered to be 'environmental' including chemicals, drugs, infectious agents, and psychosocial stress. We can consider these collectively as environmental stressors. Exposomics is the comprehensive analysis of exposure to all environmental stressors and should yield a more thorough understanding of chronic disease development. We can operationalize exposomics by studying all the small molecules in the body and their influence on biological pathways that lead to impaired health. Here, we describe methods by which this may be achieved and discuss the application of exposomics to cumulative risk assessment in vulnerable populations. Since the goal of cumulative risk assessment is to analyze, characterize, and quantify the combined risks to health from exposures to multiple agents or stressors, it seems that exposomics is perfectly poised to advance this important area of environmental health science. We should therefore support development of tools for exposomic analysis and begin to engage impacted communities in participatory exposome research. A first step may be to apply exposomics to vulnerable populations already studied by more conventional cumulative risk approaches. We further propose that recent migrants, low socioeconomic groups with high environmental chemical exposures, and pregnant women should be high priority populations for study by exposomics. Moreover, exposomics allows us to study interactions between chronic stress and environmental chemicals that disrupt stress response pathways (i.e., 'stressogens'). Exploring the impact of early life exposures and maternal stress may be an interesting and accessible topic for investigation by exposomics using biobanked samples. © 2015 Wiley Periodicals, Inc.
U.S. EPA Authority to Use Cumulative Risk Assessments in Environmental Decision-Making
Alves, Sarah; Tilghman, Joan; Rosenbaum, Arlene; Payne-Sturges, Devon C.
2012-01-01
Conventionally, in its decision-making, the U.S. EPA has evaluated the effects and risks associated with a single pollutant in a single exposure medium. In reality, people are exposed to mixtures of pollutants or to the same pollutant through a variety of media, including the air, water, and food. It is now more recognized than before that environmental exposure to pollutants occurs via multiple exposure routes and pathways, including inhalation, ingestion, and dermal absorption. Moreover, chemical, biologic, radiologic, physical, and psychologic stressors are all acknowledged as affecting human health. Although many EPA offices attempt to consider cumulative risk assessment and cumulative effects in various ways, there is no Agency-wide policy for considering these risks and the effects of exposure to these risks when making environmental decisions. This article examines how U.S. courts might assess EPA’s general authority and discretion to use cumulative risk assessment as the basis for developing data in support of environmental decision-making, and how courts might assess the validity of a cumulative risk assessment methodology itself. PMID:22829786
Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?
Kirkbride, James B; Susser, Ezra; Kundakovic, Marija; Kresovich, Jacob K; Davey Smith, George; Relton, Caroline L
2012-06-01
We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies.
A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas
Friesen, Melissa C.; Hoppin, Jane A.; Hines, Cynthia J.; Thomas, Kent; Freeman, Laura E. Beane
2015-01-01
Background Women living in agricultural areas may experience high pesticide exposures compared with women in urban or suburban areas because of their proximity to farm activities. Objective Our objective was to review the evidence in the published literature for the contribution of nonoccupational pathways of pesticide exposure in women living in North American agricultural areas. Methods We evaluated the following nonoccupational exposure pathways: paraoccupational (i.e., take-home or bystander exposure), agricultural drift, residential pesticide use, and dietary ingestion. We also evaluated the role of hygiene factors (e.g., house cleaning, shoe removal). Results Among 35 publications identified (published 1995–2013), several reported significant or suggestive (p < 0.1) associations between paraoccupational (n = 19) and agricultural drift (n = 10) pathways and pesticide dust or biomarker levels, and 3 observed that residential use was associated with pesticide concentrations in dust. The 4 studies related to ingestion reported low detection rates of most pesticides in water; additional studies are needed to draw conclusions about the importance of this pathway. Hygiene factors were not consistently linked to exposure among the 18 relevant publications identified. Conclusions Evidence supported the importance of paraoccupational, drift, and residential use pathways. Disentangling exposure pathways was difficult because agricultural populations are concurrently exposed to pesticides via multiple pathways. Most evidence was based on measurements of pesticides in residential dust, which are applicable to any household member and are not specific to women. An improved understanding of nonoccupational pesticide exposure pathways in women living in agricultural areas is critical for studying health effects in women and for designing effective exposure-reduction strategies. Citation Deziel NC, Friesen MC, Hoppin JA, Hines CJ, Thomas K, Beane Freeman LE. 2015. A review of nonoccupational pathways for pesticide exposure in women living in agricultural areas. Environ Health Perspect 123:515–524; http://dx.doi.org/10.1289/ehp.1408273 PMID:25636067
1990-01-01
Selection of Indicator Chemicals 6-36 6.2.2 Estimation of Exposure Point Concentrations or Emission Rates 6-38 6.2.2.1 Exposure Pathway Analysis 6-38...Exposure Point Concentrations or Emission Rates 6-50 j 6.3.2.1 Exposure Pathway Analysis 6-52 6.3.2.2 Exposure Point Concentrations 6-55 6.3.2.3...Exposure Point Concentrations or Emission Rates 6-62 6.4.2.1 Exposure Pathway Analysis 6-62 6.4.2.2 Exposure Point Concentrations 6-69 6.4.2.3
Completing the Link between Exposure Science and ...
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports G
Rahman, M Azizur; Rahman, A; Khan, M Zaved Kaiser; Renzaho, Andre M N
2018-04-15
Arsenic contamination of drinking water, which can occur naturally or because of human activities such as mining, is the single most important public health issue in Bangladesh. Fifty out of the 64 districts in the country have arsenic concentration of groundwater exceeding 50µgL -1 , the Bangladeshi threshold, affecting 35-77 million people or 21-48% of the total population. Chronic arsenic exposure through drinking water and other dietary sources is an important public health issue worldwide affecting hundreds of millions of people. Consequently, arsenic poisoning has attracted the attention of researchers and has been profiled extensively in the literature. Most of the literature has focused on characterising arsenic poisoning and factors associated with it. However, studies examining the socio-economic aspects of chronic exposure of arsenic through either drinking water or foods remain underexplored. The objectives of this paper are (i) to review arsenic exposure pathways to humans; (ii) to summarise public health impacts of chronic arsenic exposure; and (iii) to examine socio-economic implications and consequences of arsenicosis with a focus on Bangladesh. This scoping review evaluates the contributions of different exposure pathways by analysing arsenic concentrations in dietary and non-dietary sources. The socio-economic consequences of arsenicosis disease in Bangladesh are discussed in this review by considering food habits, nutritional status, socio-economic conditions, and socio-cultural behaviours of the people of the country. The pathways of arsenic exposure in Bangladesh include drinking water, various plant foods and non-dietary sources such as soil. Arsenic affected people are often abandoned by the society, lose their jobs and get divorced and are forced to live a sub-standard life. The fragile public health system in Bangladesh has been burdened by the management of thousands of arsenicosis victims in Bangladesh. Copyright © 2017 Elsevier Inc. All rights reserved.
INDIRECT EXPOSURE ASSESSMENT AT THE U.S. EPA
In the early 1980s, exposures and subsequent health impact assessments from contaminants emitted into the air from stationary sources focused on the inhalation pathway. This 'direct' pathway of exposure was thought to be the most critical pathway, as it is for many contaminants. ...
EPA EcoBox Tools by Exposure Pathways - Exposure Pathways In ERA
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.
Driven by major scientific advances in analytical methods, biomonitoring, and computational exposure assessment, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the computationally enabled “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) conceptmore » in the toxicological sciences. The AEP framework offers an intuitive approach to successful organization of exposure science data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathway and adverse outcome pathways, completing the source to outcome continuum and setting the stage for more efficient integration of exposure science and toxicity testing information. Together these frameworks form and inform a decision making framework with the flexibility for risk-based, hazard-based or exposure-based decisions.« less
10 CFR 50.47 - Emergency plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
... clear instruction to the populace within the plume exposure pathway Emergency Planning Zone have been... protective actions has been developed for the plume exposure pathway EPZ for emergency workers and the public... and in place, and protective actions for the ingestion exposure pathway EPZ appropriate to the locale...
Code of Federal Regulations, 2013 CFR
2013-10-01
... its boundaries or is within the 10-mile plume exposure pathway Emergency Planning Zone of such site... planning zone of a site shall exercise their plans and preparedness related to ingestion exposure pathway measures at least once every five years in conjunction with a plume exposure pathway exercise for that site...
Code of Federal Regulations, 2010 CFR
2010-10-01
... its boundaries or is within the 10-mile plume exposure pathway Emergency Planning Zone of such site... planning zone of a site shall exercise their plans and preparedness related to ingestion exposure pathway measures at least once every five years in conjunction with a plume exposure pathway exercise for that site...
Code of Federal Regulations, 2011 CFR
2011-10-01
... its boundaries or is within the 10-mile plume exposure pathway Emergency Planning Zone of such site... planning zone of a site shall exercise their plans and preparedness related to ingestion exposure pathway measures at least once every five years in conjunction with a plume exposure pathway exercise for that site...
Code of Federal Regulations, 2014 CFR
2014-10-01
... its boundaries or is within the 10-mile plume exposure pathway Emergency Planning Zone of such site... planning zone of a site shall exercise their plans and preparedness related to ingestion exposure pathway measures at least once every five years in conjunction with a plume exposure pathway exercise for that site...
Code of Federal Regulations, 2012 CFR
2012-10-01
... its boundaries or is within the 10-mile plume exposure pathway Emergency Planning Zone of such site... planning zone of a site shall exercise their plans and preparedness related to ingestion exposure pathway measures at least once every five years in conjunction with a plume exposure pathway exercise for that site...
Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite.
Anderson, Barbara A; Dearwent, Steve M; Durant, James T; Dyken, Jill J; Freed, Jennifer A; Moore, Susan McAfee; Wheeler, John S
2005-01-01
The Agency for Toxic Substances and Disease Registry (ATSDR) is currently evaluating the potential public health impacts associated with the processing of asbestos-contaminated vermiculite at various facilities around the country. Vermiculite ore contaminated with significant levels of asbestos was mined and milled in Libby, Montana, from the early 1920s until 1990. The majority of the Libby ore was then shipped to processing facilities for exfoliation. ATSDR initiated the National Asbestos Exposure Review (NAER) to identify and evaluate exposure pathways associated with these processing facilities. This manuscript details ATSDR's phased approach in addressing exposure potential around these sites. As this is an ongoing project, only the results from a selected set of completed site analyses are presented. Historical occupational exposures are the most significant exposure pathway for the site evaluations completed to date. Former workers also probably brought asbestos fibers home on their clothing, shoes, and hair, and their household contacts may have been exposed. Currently, most site-related worker and community exposure pathways have been eliminated. One community exposure pathway of indeterminate significance is the current exposure of individuals through direct contact with waste rock brought home for personal use as fill material, driveway surfacing, or soil amendment. Trace levels of asbestos are present in soil at many of the sites and buried waste rock has been discovered at a few sites; therefore, future worker and community exposure associated with disturbing on-site soil during construction or redevelopment at these sites is also a potential exposure pathway.
Relton, Caroline L; Davey Smith, George
2012-01-01
The burgeoning interest in the field of epigenetics has precipitated the need to develop approaches to strengthen causal inference when considering the role of epigenetic mediators of environmental exposures on disease risk. Epigenetic markers, like any other molecular biomarker, are vulnerable to confounding and reverse causation. Here, we present a strategy, based on the well-established framework of Mendelian randomization, to interrogate the causal relationships between exposure, DNA methylation and outcome. The two-step approach first uses a genetic proxy for the exposure of interest to assess the causal relationship between exposure and methylation. A second step then utilizes a genetic proxy for DNA methylation to interrogate the causal relationship between DNA methylation and outcome. The rationale, origins, methodology, advantages and limitations of this novel strategy are presented. PMID:22422451
Metabolic Pathways and Networks Associated with Tobacco Use in Military Personnel
Jones, Dean P.; Walker, Douglas I.; Uppal, Karan; Rohrbeck, Patricia; Mallon, Timothy M.; Go, Young-Mi
2016-01-01
Objective Use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Methods Four hundred de-identified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or non-users according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Results Eighty individuals were classified as tobacco users compared to 320 non-users based on cotinine levels ≥10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Conclusions Tobacco use has complex metabolic effects which must be considered in evaluation of deployment-associated environmental exposures in military personnel. PMID:27501098
Metabolic Pathways and Networks Associated With Tobacco Use in Military Personnel.
Jones, Dean P; Walker, Douglas I; Uppal, Karan; Rohrbeck, Patricia; Mallon, Col Timothy M; Go, Young-Mi
2016-08-01
The aim of this study is to use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Four hundred deidentified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or nonusers according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Eighty individuals were classified as tobacco users compared with 320 nonusers on the basis of cotinine levels at least 10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid, and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Tobacco use has complex metabolic effects that must be considered in evaluation of deployment-associated environmental exposures in military personnel.
Rodríguez-Estival, Jaime; de la Lastra, José M Pérez; Ortiz-Santaliestra, Manuel E; Vidal, Dolors; Mateo, Rafael
2013-04-01
Lead (Pb) is a highly toxic metal that can induce oxidative stress and affect the immune system by modifying the expression of immunomodulator-related genes. The aim of the present study was to investigate the association between Pb exposure and the transcriptional profiles of some cytokines, as well as the relationship between Pb exposure and changes in oxidative stress biomarkers observed in the spleen of wild ungulates exposed to mining pollution. Red deer and wild boar from the mining area studied had higher spleen, liver, and bone Pb levels than controls, indicating a chronic exposure to Pb pollution. Such exposure caused a depletion of spleen glutathione levels in both species and disrupted the activity of antioxidant enzymes, suggesting the generation of oxidative stress conditions. Deer from the mining area also showed an induced T-helper (Th )-dependent immune response toward the Th 2 pathway, whereas boar from the mining area showed a cytokine profile suggesting an inclination of the immune response toward the Th 1 pathway. These results indicate that environmental exposure to Pb may alter immune responses in wild ungulates exposed to mining pollution. However, evidence of direct relationships between Pb-mediated oxidative stress and the changes detected in immune responses were not found. Further research is needed to evaluate the immunotoxic potential of Pb pollution, also considering the prevalence of chronic infectious diseases in wildlife in environments affected by mining activities. Copyright © 2013 SETAC.
Multiple pathway asbestos exposure assessment for a Superfund community.
Noonan, Curtis W; Conway, Kathrene; Landguth, Erin L; McNew, Tracy; Linker, Laura; Pfau, Jean; Black, Brad; Szeinuk, Jaime; Flores, Raja
2015-01-01
Libby, MT, USA, was the home to workers at a historical vermiculite mining facility and served as the processing and distribution center for this industrial product that was contaminated with amphibole asbestos. Several pathways of environmental asbestos exposure to the general population have been identified. The local clinic and health screening program collects data from participants on past occupational and environmental exposures to vermiculite and asbestos. Health studies among this population have demonstrated associations between amphibole exposure and health outcomes, but critical questions regarding the nature and level of exposure associated with specific outcomes remain unanswered. The objective of this study was to develop a comprehensive exposure assessment approach that integrates information on individuals' contact frequency with multiple exposure pathways. For 3031 participants, we describe cumulative exposure metrics for environmental exposures, occupational exposures, and residents' contact with carry-home asbestos from household workers. As expected, cumulative exposures for all three occupational categories were higher among men compared with women, and cumulative exposures for household contact and environmental pathways were higher among women. The comprehensive exposure assessment strategies will advance health studies and risk assessment approaches in this population with a complex history of both occupational and environmental asbestos exposure.
Life-Stage Physiologically-Based Pharmacokinetic (PBPK) ...
This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. Adverse outcome pathways (AOPs), in this case endocrine disruption during development, provide a biologically-based framework for linking molecular initiating events triggered by chemical exposures to key events leading to adverse outcomes. The application of AOPs to human health risk assessment requires extrapolation of in vitro HTS toxicity data to in vivo exposures (IVIVE) in humans, which can be achieved through the use of a PBPK/PD model. Exposure scenarios for chemicals in the PBPK/PD model will consider both placental and lactational transfer of chemicals, with a focus on age dependent dosimetry during fetal development and after birth for a nursing infant. This talk proposes a universal life-stage computational model that incorporates changing physiological parameters to link environmental exposures to in vitro levels of HTS assays related to a developmental toxicological AOP for vascular disruption. In vitro toxicity endpoints discussed are based on two mechanisms: 1) Fetal vascular disruption, and 2) Neurodevelopmental toxicity induced by altering thyroid hormone levels in neonates via inhibition of thyroperoxidase in the thyroid gland. Application of our Life-stage computati
Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...
44 CFR 350.7 - Application by State for review and approval.
Code of Federal Regulations, 2011 CFR
2011-10-01
... coverage of response in the ingestion exposure pathway EPZ. The application will also include plans of all.... (b) Generally, the plume exposure pathway EPZ for nuclear power facilities shall consist of an area about 10 miles (16 Km) in radius and the ingestion exposure pathway EPZ shall consist of an area about...
44 CFR 350.7 - Application by State for review and approval.
Code of Federal Regulations, 2014 CFR
2014-10-01
... coverage of response in the ingestion exposure pathway EPZ. The application will also include plans of all.... (b) Generally, the plume exposure pathway EPZ for nuclear power facilities shall consist of an area about 10 miles (16 Km) in radius and the ingestion exposure pathway EPZ shall consist of an area about...
44 CFR 350.7 - Application by State for review and approval.
Code of Federal Regulations, 2013 CFR
2013-10-01
... coverage of response in the ingestion exposure pathway EPZ. The application will also include plans of all.... (b) Generally, the plume exposure pathway EPZ for nuclear power facilities shall consist of an area about 10 miles (16 Km) in radius and the ingestion exposure pathway EPZ shall consist of an area about...
44 CFR 350.7 - Application by State for review and approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coverage of response in the ingestion exposure pathway EPZ. The application will also include plans of all.... (b) Generally, the plume exposure pathway EPZ for nuclear power facilities shall consist of an area about 10 miles (16 Km) in radius and the ingestion exposure pathway EPZ shall consist of an area about...
44 CFR 350.7 - Application by State for review and approval.
Code of Federal Regulations, 2012 CFR
2012-10-01
... coverage of response in the ingestion exposure pathway EPZ. The application will also include plans of all.... (b) Generally, the plume exposure pathway EPZ for nuclear power facilities shall consist of an area about 10 miles (16 Km) in radius and the ingestion exposure pathway EPZ shall consist of an area about...
Code of Federal Regulations, 2013 CFR
2013-10-01
... populace within the plume exposure pathway Emergency Planning Zone have been established. (6) Provisions... plume exposure pathway EPZ for emergency workers and the public. Guidelines for the choice of protective... actions for the ingestion exposure pathway EPZ appropriate to the locale have been developed. (11) Means...
Code of Federal Regulations, 2012 CFR
2012-10-01
... populace within the plume exposure pathway Emergency Planning Zone have been established. (6) Provisions... plume exposure pathway EPZ for emergency workers and the public. Guidelines for the choice of protective... actions for the ingestion exposure pathway EPZ appropriate to the locale have been developed. (11) Means...
Code of Federal Regulations, 2014 CFR
2014-10-01
... populace within the plume exposure pathway Emergency Planning Zone have been established. (6) Provisions... plume exposure pathway EPZ for emergency workers and the public. Guidelines for the choice of protective... actions for the ingestion exposure pathway EPZ appropriate to the locale have been developed. (11) Means...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jintao; Zhu, Dexiao; Zhang, Jing
Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathwaymore » in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.« less
Essex, Marilyn J; Klein, Marjorie H; Slattery, Marcia J; Goldsmith, H Hill; Kalin, Ned H
2010-01-01
Evidence suggests that chronic high levels of behavioral inhibition are a precursor of social anxiety disorder. The authors sought to identify early risk factors for, and developmental pathways to, chronic high inhibition among school-age children and the association of chronic high inhibition with social anxiety disorder by adolescence. A community sample of 238 children was followed from birth to grade 9. Mothers, teachers, and children reported on the children's behavioral inhibition from grades 1 to 9. Lifetime history of psychiatric disorders was available for the subset of 60 (25%) children who participated in an intensive laboratory assessment at grade 9. Four early risk factors were assessed: female gender; exposure to maternal stress during infancy and the preschool period; and at age 4.5 years, early manifestation of behavioral inhibition and elevated afternoon salivary cortisol levels. All four risk factors predicted greater and more chronic inhibition from grades 1 to 9, and together they defined two developmental pathways. The first pathway, in girls, was partially mediated by early evidence of behavioral inhibition and elevated cortisol levels at age 4.5 years. The second pathway began with exposure to early maternal stress and was also partially mediated by childhood cortisol levels. By grade 9, chronic high inhibition was associated with a lifetime history of social anxiety disorder. Chronic high levels of behavioral inhibition are associated with social anxiety disorder by adolescence. The identification of two developmental pathways suggests the potential importance of considering both sets of risk factors in developing preventive interventions for social anxiety disorder.
Children's Lead Exposure: A Multimedia Modeling Analysis to Guide Public Health Decision-Making.
Zartarian, Valerie; Xue, Jianping; Tornero-Velez, Rogelio; Brown, James
2017-09-12
Drinking water and other sources for lead are the subject of public health concerns around the Flint, Michigan, drinking water and East Chicago, Indiana, lead in soil crises. In 2015, the U.S. Environmental Protection Agency (EPA)'s National Drinking Water Advisory Council (NDWAC) recommended establishment of a "health-based, household action level" for lead in drinking water based on children's exposure. The primary objective was to develop a coupled exposure-dose modeling approach that can be used to determine what drinking water lead concentrations keep children's blood lead levels (BLLs) below specified values, considering exposures from water, soil, dust, food, and air. Related objectives were to evaluate the coupled model estimates using real-world blood lead data, to quantify relative contributions by the various media, and to identify key model inputs. A modeling approach using the EPA's Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia and Integrated Exposure Uptake and Biokinetic (IEUBK) models was developed using available data. This analysis for the U.S. population of young children probabilistically simulated multimedia exposures and estimated relative contributions of media to BLLs across all population percentiles for several age groups. Modeled BLLs compared well with nationally representative BLLs (0-23% relative error). Analyses revealed relative importance of soil and dust ingestion exposure pathways and associated Pb intake rates; water ingestion was also a main pathway, especially for infants. This methodology advances scientific understanding of the relationship between lead concentrations in drinking water and BLLs in children. It can guide national health-based benchmarks for lead and related community public health decisions. https://doi.org/10.1289/EHP1605.
Voisin, Dexter R; Hotton, Anna L; Neilands, Torsten B
2014-09-01
Exposure to community violence and HIV sexual risks are two major public health concerns among youth. This study tests various pathways linking exposure to community violence and sexual behaviors among African American adolescents. Using a sample of 563 (61% females) African American youth attending high school we examined whether problematic psychological symptoms, low school engagement, and/or negative perceptions of peer norms about safer sex functioned as pathways linking exposure to community violence and sexual behaviors. Major findings indicated that, for boys, the relationship between exposure to community violence and sexual début and sexual risk behaviors were linked by aggression. In addition, the relationship between exposure to community violence and sexual risk behaviors were linked by negative perceptions of peer attitudes about safer sex. For girls, the relationship between exposure to community violence and sexual début was linked by aggression and negative perceptions of peer attitudes about safer sex. These findings provide support for pathways linking exposure to community violence to sexual behaviors.
Hotton, Anna L.; Neilands, Torsten B.
2014-01-01
Exposure to community violence and HIV sexual risks are two major public health concerns among youth. This study tests various pathways linking exposure to community violence and sexual behaviors among African American adolescents. Using a sample of 563 (61 % females) African American youth attending high school we examined whether problematic psychological symptoms, low school engagement, and/or negative perceptions of peer norms about safer sex functioned as pathways linking exposure to community violence and sexual behaviors. Major findings indicated that, for boys, the relationship between exposure to community violence and sexual début and sexual risk behaviors were linked by aggression. In addition, the relationship between exposure to community violence and sexual risk behaviors were linked by negative perceptions of peer attitudes about safer sex. For girls, the relationship between exposure to community violence and sexual début was linked by aggression and negative perceptions of peer attitudes about safer sex. These findings provide support for pathways linking exposure to community violence to sexual behaviors. PMID:24327295
2013-01-01
matic brain injury (TBI). Centrally acting acetylcholinesterase (AChE) inhibitors are also being considered as potential therapeutic candidates...repeated blast exposures [12]. AChE inhibitors are possible therapeutic candidates against Alzheimer’s disease and TBI [13–15]. In this study, we...esterase inhibitor , as described earlier [12,17–19]. Brain AChE activity was expressed as milliunits/mg protein. 2.3. Microarray analysis Various
Bioaccessibility and human health risk assessment of lead in soil from Daye City
NASA Astrophysics Data System (ADS)
Li, Q.; Li, F.; Xiao, M. S.; Cai, Y.; Xiong, L.; Huang, J. B.; Fu, J. T.
2018-01-01
Lead (Pb) in soil from 4 sampling sites of Daye City was studied. Bioaccessibilities of Pb in soil were determined by the method of simplified bioaccessible extraction test (SBET). Since traditional health risk assessment was built on the basis of metal total content, the risk may be overestimated. Modified human health risk assessment model considering bioaccessibility was built in this study. Health risk of adults and children exposure to Pb based on total contents and bioaccessible contents were evaluated. The results showed that bioaccessible content of Pb in soil was much lower than its total content, and the average bioaccessible factor (BF) was only 25.37%. The hazard indexes (HIs) for adults and children calculated by two methods were all lower than 1. It indicated that there were no no-carcinogenic risks of Pb for human in Daye. By comparing with the results, the average bioaccessible HIs for adults and children were lower than the total one, which was due to the lower hazard quotient (HQ). Proportions of non-carcinogenic risk exposure to Pb via different pathways have also changed. Particularly, the most main risk exposure pathway for adults turned from the oral ingestion to the inhalation.
Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang
2018-06-05
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Exposures, Mechanisms, and Impacts of Endocrine-Active Flame Retardants
Dishaw, Laura; Macaulay, Laura; Roberts, Simon C.; Stapleton, Heather M.
2014-01-01
This review summarizes the endocrine and neurodevelopmental effects of two current-use additive flame retardants (FRs), tris (1,3-dichloro-isopropyl) phosphate (TDCPP) and Firemaster® 550 (FM 550), and the recently phased-out polybrominated diphenyl ethers (PBDEs), all of which were historically or are currently used in polyurethane foam applications. Use of these chemicals in consumer products has led to widespread exposure in indoor environments. PBDEs and their hydroxylated metabolites appear to primarily target the thyroid system, likely due to their structural similarity to endogenous thyroid hormones. In contrast, much less is known about the toxicity of TDCPP and FM550. However, recent in vitro and in vivo studies suggest that both should be considered endocrine disruptors as studies have linked TDCPP exposure with changes in circulating hormone levels, and FM 550 exposure with changes in adipogenic and osteogenic pathways. PMID:25306433
Soil contamination standards for protection of personnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittmann, P.D.
1998-04-16
The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. Externalmore » dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers.« less
Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in the home. The exposure pathways include dermal contact through the hands and skin, ingestion from hand to mouth activities, ingestion through contact with toys and other items, ...
Takahara, Shogo; Ikegami, Maiko; Yoneda, Minoru; Kondo, Hitoshi; Ishizaki, Azusa; Iijima, Masashi; Shimada, Yoko; Matsui, Yasuto
2017-07-01
Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture. © 2016 Society for Risk Analysis.
The norepinephrine transporter and its regulation.
Mandela, Prashant; Ordway, Gregory A
2006-04-01
For many years, the norepinephrine transporter (NET) was considered a 'static' protein that contributed to the termination of the action of norepinephrine in the synapse of noradrenergic neurons. The concept that the NET is dynamically regulated, adjusting noradrenergic transmission by changing its function and/or expression, was considered initially in the mid 1980s. Since that time, a plethora of studies demonstrate that the NET is regulated by several intracellular and extracellular signaling molecules, and that phosphorylation of the NET is a major pathway regulating its cell surface expression and thereby its function. The NET is a target of action of a number of drugs that are used long-term therapeutically or abused chronically. This has driven numerous investigations of how the NET and its function are regulated by long-term exposure to drugs. While repeated exposure to many drugs has been shown to affect NET function and expression, the intracellular mechanisms for these effects remains elusive.
Wormuth, Matthias; Demou, Evangelia; Scheringer, Martin; Hungerbühler, Konrad
2007-08-01
The awareness of potential risks emerging from the use of chemicals in all parts of daily life has increased the need for risk assessments that are able to cover a high number of exposure situations and thereby ensure the safety of workers and consumers. In the European Union (EU), the practice of risk assessments for chemicals is laid down in a Technical Guidance Document; it is designed to consider environmental and human occupational and residential exposure. Almost 70 EU risk assessment reports (RARs) have been finalized for high-production-volume chemicals during the last decade. In the present study, we analyze the assessment of occupational and consumer exposure to trichloroethylene and phthalates presented in six EU RARs. Exposure scenarios in these six RARs were compared to scenarios used in applications of the scenario-based risk assessment approach to the same set of chemicals. We find that scenarios used in the selected EU RARs to represent typical exposure situations in occupational or private use of chemicals and products do not necessarily represent worst-case conditions. This can be due to the use of outdated information on technical equipment and conditions in workplaces or omission of pathways that can cause consumer exposure. Considering the need for exposure and risk assessments under the new chemicals legislation of the EU, we suggest that a transparent process of collecting data on exposure situations and of generating representative exposure scenarios is implemented to improve the accuracy of risk assessments. Also, the data sets used to assess human exposure should be harmonized, summarized in a transparent fashion, and made accessible for all risk assessors and the public.
Human exposure to xenobiotics may occur through multiple pathways and routes of entry punctuated by exposure intervals throughout a work or leisure day. Exposure to a single environmental chemical along multiple pathways and routes (aggregate exposure) may have an influence on an...
Although children are exposed to a variety of environmental hazards, including pesticides, there is a scarcity of information available to estimate exposures realistically. This article reports on one of the first attempts to measure multi-pathway pesticide exposures in a popu...
Hao, Yanan; Liu, Jing; Feng, Yanni; Yu, Shuai; Zhang, Weidong; Li, Lan; Min, Lingjiang; Zhang, Hongfu; Shen, Wei; Zhao, Yong
2017-08-15
Recently, reproductive, embryonic and developmental toxicity have been considered as one important sector of nanoparticle (NP) toxicology, with some studies already suggesting varying levels of toxicity and possible transgenerational toxic effects. Even though many studies have investigated the toxic effects of zinc oxide nanoparticles (ZnO NPs), little is known of their impact on overall reproductive outcome and transgenerational effects. Previously we found ZnO NPs caused liver dysfunction in lipid synthesis. This investigation, for the first time, explored the liver dysfunction at the molecular level of gene and protein expression in offspring after maternal exposure to ZnO NPs. Three pathways were investigated: lipid synthesis, growth related factors and cell toxic biomarkers/apoptosis at 5 different time points from embryonic day-18 to postnatal day-20. It was found that the expression of 15, 16, and 16 genes in lipid synthesis, growth related factors and cell toxic biomarkers/apoptosis signalling pathway respectively in F1 animal liver were altered by ZnO NPs compared to ZnSO 4 . The proteins in these signalling pathways (five in each pathways analyzed) in F1 animal liver were also changed by ZnO NPs compared to ZnSO 4 . The results suggest that ZnO NPs caused maternal liver defects can also be detected in offspring that might result in problems on offspring liver development, mainly on lipid synthesis, growth, and lesions or apoptosis. Along with others, this study suggests that ZnO NPs may pose reproductive, embryonic and developmental toxicity; therefore, precautions should be taken with regard to human exposure during daily life. Copyright © 2017 Elsevier Inc. All rights reserved.
Coal seam gas water: potential hazards and exposure pathways in Queensland.
Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram
2015-01-01
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome...
Chemical-agnostic hazard prediction: statistical inference of in ...
Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome, a significant correlation must exist between the exposure, the extent of pathway alteration, and the degree of adverse outcome. Biological pathways are regulated at multiple levels, including transcriptional, post-transcriptional, post-translational, and targeted degradation, each of which can affect the levels and extents of modification of proteins involved in the pathways. Significant alterations of toxicity pathways resulting from changes in regulation at any of these levels therefore are likely to be detectable as alterations in the proteome. We hypothesize that significant correlations between exposures, adverse outcomes, and changes in the proteome have the potential to identify putative toxicity pathways, facilitating selection of candidate targets for high throughput screening, even in the absence of a priori knowledge of either the specific pathways involved or the specific agents inducing the pathway alterations. We explored this hypothesis in vitro in BEAS-2B human airway epithelial cells exposed to different concentrations of Ni2+, Cd2+, and Cr6+, alone and in defined mixtures. Levels and phosphorylation status of a variety of signaling pathway proteins and cytokines were
Exposure matrix development for the Libby cohort.
Noonan, C W
2006-11-01
The Libby, MT, cohort includes current and former residents with potential historical exposure to asbestos-contaminated vermiculite. This cohort includes individuals with a broad range of exposure experiences and work histories. While both occupational and nonoccupational exposure pathways were found to be relevant in recent investigations of health effects among this cohort, there has not been a comprehensive approach to characterizing these varied exposure pathways. Any approach toward assessing historical exposures among this population must account for three general categories: (1) occupational exposures, (2) residential exposures, and (3) exposures related to a variety of nonoccupational activities thought to be associated with vermiculite/asbestos exposure in this community. First, a job exposure matrix is commonly used in occupational epidemiology to assess historical worker exposures, allowing for the incorporation of numerous occupational categories and weighting factors applied to specific jobs for different time periods. Second, residential exposures can best be quantified by integrating individuals' residential histories with data on environmental asbestos contamination in the community. Previous soil or sediment sampling as well as air modeling could inform estimates of time- and spatial-dependent exposure concentrations for a residential exposure matrix. Finally, exposure opportunities due to nonoccupational activities could be weighted by factors such as time, geography, environmental sampling, and an assessment of the relative importance for each pathway. These three matrices for occupational, residential, and activity exposure pathways could be combined or used separately to provide a more comprehensive and quantitative, or semiquantitative, assessment of individual exposure in future epidemiological studies of this cohort.
The Role of Environmental Reservoirs in Human Campylobacteriosis
Whiley, Harriet; van den Akker, Ben; Giglio, Steven; Bentham, Richard
2013-01-01
Campylobacteriosis is infection caused by the bacteria Campylobacter spp. and is considered a major public health concern. Campylobacter spp. have been identified as one of the most common causative agents of bacterial gastroenteritis. They are typically considered a foodborne pathogen and have been shown to colonise the intestinal mucosa of all food-producing animals. Much emphasis has been placed on controlling the foodborne pathway of exposure, particularly within the poultry industry, however, other environmental sources have been identified as important contributors to human infection. This paper aims to review the current literature on the sources of human exposure to Campylobacter spp. and will cover contaminated poultry, red meat, unpasteurised milk, unwashed fruit and vegetables, compost, wild bird faeces, sewage, surface water, ground water and drinking water. A comparison of current Campylobacter spp. identification methods from environmental samples is also presented. The review of literature suggests that there are multiple and diverse sources for Campylobacter infection. Many environmental sources result in direct human exposure but also in contamination of the food processing industry. This review provides useful information for risk assessment. PMID:24217177
Alvarado, Jorge A.; Chau, Phuonglan; Wu, Jianfeng; Juster, Richard; Shifera, Amde Selassie; Geske, Michael
2015-01-01
Purpose To profile which cytokine genes are differentially expressed (DE) as up- or downregulated by cultured human trabecular meshwork (TMEs) and Schlemm's canal endothelial cells (SCEs) after three experimental treatments consisting of selective laser trabeculoplasty (SLT) irradiation, exposure to media conditioned either by SLT-irradiated TMEs (TME-cm) or by SCEs (SCE-cm). Also, to profile which cytokines are upregulated ex vivo in SLT-irradiated human conventional aqueous outflow pathway (CAOP) tissues. Methods After each treatment, Affymetrix microarray assays were used to detect upregulated and downregulated genes for cytokines and their receptors in TMEs and SCEs. ELISA and protein antibody arrays were used to detect upregulated cytokines secreted in SLT-irradiated CAOP tissues ex vivo. Results The SLT irradiation upregulated numerous cytokine genes in TMEs, but only a few in SCEs. Exposure to TME- and SCE-cm induced SCEs to upregulate many more cytokine genes than TMEs. Selective laser trabeculoplasty irradiation and exposure to TME-cm downregulated several cytokine genes in TMEs but none in SCEs. Selective laser trabeculoplasty irradiation induced one upregulated and three downregulated cytokine-receptor genes in TMEs but none in SCEs. Exposure to TME-cm induced upregulation of one and downregulation of another receptor gene in TMEs, whereas two unique cytokine-receptor genes were upregulated in SCEs. Cytokine protein expression analysis showed that at least eight cytokines were upregulated in SLT-irradiated human CAOP tissues in situ/ex vivo. Conclusions This study has helped us identify a cytokine signaling pathway and to consider newly identified mechanisms regulating aqueous outflow that may lay the foundation for the future development of cytokine-based glaucoma therapies. PMID:26529044
Alvarado, Jorge A; Chau, Phuonglan; Wu, Jianfeng; Juster, Richard; Shifera, Amde Selassie; Geske, Michael
2015-11-01
To profile which cytokine genes are differentially expressed (DE) as up- or downregulated by cultured human trabecular meshwork (TMEs) and Schlemm's canal endothelial cells (SCEs) after three experimental treatments consisting of selective laser trabeculoplasty (SLT) irradiation, exposure to media conditioned either by SLT-irradiated TMEs (TME-cm) or by SCEs (SCE-cm). Also, to profile which cytokines are upregulated ex vivo in SLT-irradiated human conventional aqueous outflow pathway (CAOP) tissues. After each treatment, Affymetrix microarray assays were used to detect upregulated and downregulated genes for cytokines and their receptors in TMEs and SCEs. ELISA and protein antibody arrays were used to detect upregulated cytokines secreted in SLT-irradiated CAOP tissues ex vivo. The SLT irradiation upregulated numerous cytokine genes in TMEs, but only a few in SCEs. Exposure to TME- and SCE-cm induced SCEs to upregulate many more cytokine genes than TMEs. Selective laser trabeculoplasty irradiation and exposure to TME-cm downregulated several cytokine genes in TMEs but none in SCEs. Selective laser trabeculoplasty irradiation induced one upregulated and three downregulated cytokine-receptor genes in TMEs but none in SCEs. Exposure to TME-cm induced upregulation of one and downregulation of another receptor gene in TMEs, whereas two unique cytokine-receptor genes were upregulated in SCEs. Cytokine protein expression analysis showed that at least eight cytokines were upregulated in SLT-irradiated human CAOP tissues in situ/ex vivo. This study has helped us identify a cytokine signaling pathway and to consider newly identified mechanisms regulating aqueous outflow that may lay the foundation for the future development of cytokine-based glaucoma therapies.
Tobacco exposure and maternal psychopathology: Impact on toddler problem behavior.
Godleski, Stephanie A; Eiden, Rina D; Schuetze, Pamela; Colder, Craig R; Huestis, Marilyn A
Prenatal exposure to tobacco has consistently predicted later problem behavior for children. However, little is known about developmental mechanisms underlying this association. We examined a conceptual model for the association between prenatal tobacco exposure and child problem behavior in toddlerhood via indirect paths through fetal growth, maternal depression, and maternal aggressive disposition in early infancy and via maternal warmth and sensitivity and infant negative affect in later infancy. The sample consisted of 258 mother-child dyads recruited during pregnancy and assessed periodically at 2, 9, and 16months of child age. Pathways via maternal depression and infant negative affect to toddler problem behavior were significant. Further, combined tobacco and marijuana exposure during pregnancy and reduced fetal growth also demonstrated important associations with infant negative affect and subsequent problem behavior. These results highlight the importance of considering the role of maternal negative affect and poor fetal growth as risk factors in the context of prenatal exposure. Copyright © 2016. Published by Elsevier Inc.
Peripheral Blood Signatures of Lead Exposure
LaBreche, Heather G.; Meadows, Sarah K.; Nevins, Joseph R.; Chute, John P.
2011-01-01
Background Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. Methodology/Principal Finding Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. Conclusions/Significance The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway. PMID:21829687
A FUGACITY-BASED INDOOR RESIDENTIAL PESTICIDE FATE MODEL
Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in the home. Exposure pathways include dermal contact of pesticide residues with the hands and skin, ingestion from hand-to-mouth activities, ingestion through contact with toys an...
Aktar, Evin; Bögels, Susan M
2017-12-01
Depression and anxiety load in families. In the present study, we focus on exposure to parental negative emotions in first postnatal year as a developmental pathway to early parent-to-child transmission of depression and anxiety. We provide an overview of the little research available on the links between infants' exposure to negative emotion and infants' emotional development in this developmentally sensitive period, and highlight priorities for future research. To address continuity between normative and maladaptive development, we discuss exposure to parental negative emotions in infants of parents with as well as without depression and/or anxiety diagnoses. We focus on infants' emotional expressions in everyday parent-infant interactions, and on infants' attention to negative facial expressions as early indices of emotional development. Available evidence suggests that infants' emotional expressions echo parents' expressions and reactions in everyday interactions. In turn, infants exposed more to negative emotions from the parent seem to attend less to negative emotions in others' facial expressions. The links between exposure to parental negative emotion and development hold similarly in infants of parents with and without depression and/or anxiety diagnoses. Given its potential links to infants' emotional development, and to later psychological outcomes in children of parents with depression and anxiety, we conclude that early exposure to parental negative emotions is an important developmental mechanism that awaits further research. Longitudinal designs that incorporate the study of early exposure to parents' negative emotion, socio-emotional development in infancy, and later psychological functioning while considering other genetic and biological vulnerabilities should be prioritized in future research.
Children’s Lead Exposure: A Multimedia Modeling Analysis to Guide Public Health Decision-Making
Xue, Jianping; Tornero-Velez, Rogelio; Brown, James
2017-01-01
Background: Drinking water and other sources for lead are the subject of public health concerns around the Flint, Michigan, drinking water and East Chicago, Indiana, lead in soil crises. In 2015, the U.S. Environmental Protection Agency (EPA)’s National Drinking Water Advisory Council (NDWAC) recommended establishment of a “health-based, household action level” for lead in drinking water based on children’s exposure. Objectives: The primary objective was to develop a coupled exposure–dose modeling approach that can be used to determine what drinking water lead concentrations keep children’s blood lead levels (BLLs) below specified values, considering exposures from water, soil, dust, food, and air. Related objectives were to evaluate the coupled model estimates using real-world blood lead data, to quantify relative contributions by the various media, and to identify key model inputs. Methods: A modeling approach using the EPA’s Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia and Integrated Exposure Uptake and Biokinetic (IEUBK) models was developed using available data. This analysis for the U.S. population of young children probabilistically simulated multimedia exposures and estimated relative contributions of media to BLLs across all population percentiles for several age groups. Results: Modeled BLLs compared well with nationally representative BLLs (0–23% relative error). Analyses revealed relative importance of soil and dust ingestion exposure pathways and associated Pb intake rates; water ingestion was also a main pathway, especially for infants. Conclusions: This methodology advances scientific understanding of the relationship between lead concentrations in drinking water and BLLs in children. It can guide national health-based benchmarks for lead and related community public health decisions. https://doi.org/10.1289/EHP1605 PMID:28934096
O'Brien, Niall Joseph; Cummins, Enda J
2011-05-01
Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano-functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano-functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo-catalytic exterior paint (nano-scale TiO₂), antimicrobial food packaging (nano-scale Ag), and particulate-reducing diesel fuel additives (nano-scale CeO₂). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure- and risk-ranking methods may be redefined on a quantitative basis. © 2010 Society for Risk Analysis.
Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal
2016-08-25
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.
20171015 - Predicting Exposure Pathways with Machine Learning (ISES)
Prioritizing the risk posed to human health from the thousands of chemicals in the environment requires tools that can estimate exposure rates from limited information. High throughput models exist to make predictions of exposure via specific, important pathways such as residenti...
10 CFR 50.47 - Emergency plans.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the populace within the plume exposure pathway Emergency Planning Zone have been established. (6... has been developed for the plume exposure pathway EPZ for emergency workers and the public. In... pathway EPZ appropriate to the locale have been developed. (11) Means for controlling radiological...
10 CFR 50.47 - Emergency plans.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the populace within the plume exposure pathway Emergency Planning Zone have been established. (6... has been developed for the plume exposure pathway EPZ for emergency workers and the public. In... pathway EPZ appropriate to the locale have been developed. (11) Means for controlling radiological...
10 CFR 50.47 - Emergency plans.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the populace within the plume exposure pathway Emergency Planning Zone have been established. (6... has been developed for the plume exposure pathway EPZ for emergency workers and the public. In... pathway EPZ appropriate to the locale have been developed. (11) Means for controlling radiological...
Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.
2014-01-01
Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086
Approaches to Children’s Exposure Assessment: Case Study with Diethylhexylphthalate (DEHP)
Ginsberg, Gary; Ginsberg, Justine; Foos, Brenda
2016-01-01
Children’s exposure assessment is a key input into epidemiology studies, risk assessment and source apportionment. The goals of this article are to describe a methodology for children’s exposure assessment that can be used for these purposes and to apply the methodology to source apportionment for the case study chemical, diethylhexylphthalate (DEHP). A key feature is the comparison of total (aggregate) exposure calculated via a pathways approach to that derived from a biomonitoring approach. The 4-step methodology and its results for DEHP are: (1) Prioritization of life stages and exposure pathways, with pregnancy, breast-fed infants, and toddlers the focus of the case study and pathways selected that are relevant to these groups; (2) Estimation of pathway-specific exposures by life stage wherein diet was found to be the largest contributor for pregnant women, breast milk and mouthing behavior for the nursing infant and diet, house dust, and mouthing for toddlers; (3) Comparison of aggregate exposure by pathways vs biomonitoring-based approaches wherein good concordance was found for toddlers and pregnant women providing confidence in the exposure assessment; (4) Source apportionment in which DEHP presence in foods, children’s products, consumer products and the built environment are discussed with respect to early life mouthing, house dust and dietary exposure. A potential fifth step of the method involves the calculation of exposure doses for risk assessment which is described but outside the scope for the current case study. In summary, the methodology has been used to synthesize the available information to identify key sources of early life exposure to DEHP. PMID:27376320
Pathways to Aggression in Urban Elementary School Youth
ERIC Educational Resources Information Center
Ozkol, Hivren; Zucker, Marla; Spinazzola, Joseph
2011-01-01
This study examined the pathways from violence exposure to aggressive behaviors in urban, elementary school youth. We utilized structural equation modeling to examine putative causal pathways between children's exposure to violence, development of posttraumatic stress symptoms, permissive attitudes towards violence, and engagement in aggressive…
Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo
2015-03-01
Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.
Oestrogen exposure and breast cancer risk
Travis, Ruth C; Key, Timothy J
2003-01-01
Epidemiological and experimental evidence implicates oestrogens in the aetiology of breast cancer. Most established risk factors for breast cancer in humans probably act through hormone-related pathways, and increased concentrations of circulating oestrogens have been found to be strongly associated with increased risk for breast cancer in postmenopausal women. This article explores the evidence for the hypothesis that oestrogen exposure is a major determinant of risk for breast cancer. We review recent data on oestrogens and breast cancer risk, consider oestrogen-related risk factors and examine possible mechanisms that might account for the effects of oestrogen. Finally, we discuss how these advances might influence strategies for reducing the incidence of breast cancer. PMID:12927032
[Endocrine disruptors, reproduction and hormone-dependent cancers].
Fenichel, Patrick; Brucker-Davis, Françoise; Chevalier, Nicolas
2016-01-01
Endocrine disruptors are natural or synthetic chemical compounds which are present in the environment and which are able to interfere with hormonal regulation pathways and to induce human health deleterious effects. While their precise implication in human health and diseases is still matter of debates, it becomes likely that they have to be considered as risk factors in numerous chronic diseases: developmental and reproductive defects and hormone dependent cancers (present review), metabolic diseases (obesity and type 2 diabetes), neurodevelopmental or neurodegenerative diseases. Low doses exposure during critical windows of exposure such as foetal, perinatal and peri-pubertal periods, or chronic exposure with bioaccumulation in the adipose tissue, and possible synergic effects of several compounds ("cocktail effect") may participate to the genetic/environment interface suspected to participate to the pathophysiology of many diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Pathways of inhalation exposure to manganese in children ...
Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source. The purpose of this study was to use a structural equations modeling approach combined with exposure estimates derived from air-dispersion modeling to assess potential inhalation exposure pathways for children to a
Exposure and Dosimetry Considerations for Adverse Outcome Pathways (AOPs) (NIH-AOP)
Risk is a function of both of hazard and exposure. Toxicokinetic (TK) models can determine whether chemical exposures produce potentially hazardous tissue concentrations. Whether or not the initial molecular event (MIE) in an Adverse Outcome Pathway (AOP) occurs depends on both e...
INDIRECT EXPOSURE ASSESSMENT AT THE UNITED STATES ENRONMENTAL PROTECTION AGENCY
In the early 1980s, expousres and subsequent health impact assessments from contaminants emitted into the air from stationary sources focused on the inhalation pathway. This 'direct' pathway of exposure was thought to be the most critical pathway, as it is for many contaminants. ...
Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo
We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quant...
Human Health Risk Assessment Calculator. In: SMARTe20ll, EPA/600/C-10/007
This calculator is aimed at supporting a human health risk assessment. Risk scenarios can be built by combining various health effects, exposure pathways, exposure parameters, and analytes. Scenario risk are calculated for each exposure pathway and analyte combination. The out...
The Adverse Outcome Pathway (AOP) framework organizes existing knowledge regarding a series of biological events, starting with a molecular initiating event (MIE) and ending at an adverse outcome. The AOP framework provides a biological context to interpret in vitro toxicity dat...
Brooks, Naomi E.; Myburgh, Kathryn H.
2014-01-01
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy. PMID:24672488
Although metabolomics can successfully detect effects from overall contaminant exposure, its ability to elucidate specific metabolic pathways impacted by those exposures can be hindered by bottlenecks in metabolite identification. However, improved analytical approaches that com...
A Review of Non-occupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas
Women living in agricultural areas may experience relatively high pesticide exposures compared to women in urban or suburban areas due to their proximity to farm activities. However, exposure pathways in these women are not well-characterized. We reviewed the evidence for the con...
Background: Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. Objective: To guide future exposure assessment efforts, we quantified rel...
Metal-induced Dysregulation of the NF-kB Pathway in a Detroit Michigan's Children Cohort
Heavy metal exposure can have adverse effects on childhood development, and early life exposures have been shown to modify key biological pathways. We set out to evaluate the genome-wide effects of metals exposure in the Mechanistic Indicators of Childhood Asthma (MICA) study, wh...
Samuelsson, Laura B; Bovbjerg, Dana H; Roecklein, Kathryn A; Hall, Martica H
2018-01-01
Opportunities for restorative sleep and optimal sleep-wake schedules are becoming luxuries in industrialized cultures, yet accumulating research has revealed multiple adverse health effects of disruptions in sleep and circadian rhythms, including increased risk of breast cancer. The literature on breast cancer risk has focused largely on adverse effects of night shift work and exposure to light at night (LAN), without considering potential effects of associated sleep disruptions. As it stands, studies on breast cancer risk have not considered the impact of both sleep and circadian disruption, and the possible interaction of the two through bidirectional pathways, on breast cancer risk in the population at large. We review and synthesize this literature, including: 1) studies of circadian disruption and incident breast cancer; 2) evidence for bidirectional interactions between sleep and circadian systems; 3) studies of sleep and incident breast cancer; and 4) potential mechanistic pathways by which interrelated sleep and circadian disruption may contribute to the etiology of breast cancer. Copyright © 2017. Published by Elsevier Ltd.
Lewis, Ari S.; Sax, Sonja N.; Wason, Susan C.; Campleman, Sharan L.
2011-01-01
Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit from coordination of information from several different scientific disciplines, including, for example, toxicology, epidemiology, nutrition, neurotoxicology, and the social sciences. PMID:21776216
Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G
2011-01-14
Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.
Heindel, Jerrold J.; Bucher, John R.; Gallo, Michael A.
2012-01-01
Background: There has been increasing interest in the concept that exposures to environmental chemicals may be contributing factors to the epidemics of diabetes and obesity. On 11–13 January 2011, the National Institute of Environmental Health Sciences (NIEHS) Division of the National Toxicology Program (NTP) organized a workshop to evaluate the current state of the science on these topics of increasing public health concern. Objective: The main objective of the workshop was to develop recommendations for a research agenda after completing a critical analysis of the literature for humans and experimental animals exposed to certain environmental chemicals. The environmental exposures considered at the workshop were arsenic, persistent organic pollutants, maternal smoking/nicotine, organotins, phthalates, bisphenol A, and pesticides. High-throughput screening data from Toxicology in the 21st Century (Tox21) were also considered as a way to evaluate potential cellular pathways and generate -hypotheses for testing which and how certain chemicals might perturb biological processes related to diabetes and obesity. Conclusions: Overall, the review of the existing literature identified linkages between several of the environmental exposures and type 2 diabetes. There was also support for the “developmental obesogen” hypothesis, which suggests that chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes or the development of neural circuits that regulate feeding behavior. The effects may be most apparent when the developmental exposure is combined with consumption of a high-calorie, high-carbohydrate, or high-fat diet later in life. Research on environmental chemical exposures and type 1 diabetes was very limited. This lack of research was considered a critical data gap. In this workshop review, we outline the major themes that emerged from the workshop and discuss activities that NIEHS/NTP is undertaking to address research recommendations. This review also serves as an introduction to an upcoming series of articles that review the literature regarding specific exposures and outcomes in more detail. PMID:22296744
40 CFR 300.420 - Remedial site evaluation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... existing information about a release such as information on the pathways of exposure, exposure targets, and... known contaminants; (iii) A description of pathways of migration of contaminants; (iv) An identification...
40 CFR 300.420 - Remedial site evaluation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... existing information about a release such as information on the pathways of exposure, exposure targets, and... known contaminants; (iii) A description of pathways of migration of contaminants; (iv) An identification...
40 CFR 300.420 - Remedial site evaluation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... existing information about a release such as information on the pathways of exposure, exposure targets, and... known contaminants; (iii) A description of pathways of migration of contaminants; (iv) An identification...
10 CFR 50.33 - Contents of applications; general information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... within the plume exposure pathway emergency planning zone (EPZ), 4 as well as the plans of State governments wholly or partially within the ingestion pathway EPZ. 5 If the application is for an early site... plume exposure pathway EPZ for nuclear power reactors shall consist of an area about 10 miles (16 km) in...
10 CFR 50.33 - Contents of applications; general information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... within the plume exposure pathway emergency planning zone (EPZ), 4 as well as the plans of State governments wholly or partially within the ingestion pathway EPZ. 5 If the application is for an early site... plume exposure pathway EPZ for nuclear power reactors shall consist of an area about 10 miles (16 km) in...
10 CFR 50.33 - Contents of applications; general information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... within the plume exposure pathway emergency planning zone (EPZ), 4 as well as the plans of State governments wholly or partially within the ingestion pathway EPZ. 5 If the application is for an early site... plume exposure pathway EPZ for nuclear power reactors shall consist of an area about 10 miles (16 km) in...
10 CFR 50.33 - Contents of applications; general information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... within the plume exposure pathway emergency planning zone (EPZ), 4 as well as the plans of State governments wholly or partially within the ingestion pathway EPZ. 5 If the application is for an early site... plume exposure pathway EPZ for nuclear power reactors shall consist of an area about 10 miles (16 km) in...
40 CFR 270.10 - General application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... associated with transportation to or from the unit; (ii) The potential pathways of human exposure to... resulting from both direct and indirect exposure pathways. The Director may also require a permittee or...
Douma, J C; van der Werf, W; Hemerik, L; Magnusson, C; Robinet, C
2017-04-01
Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once established, eradication is not practically feasible. Therefore, preventing entry of PWN into new areas is crucial. Entry risk analysis can assist in targeting management to reduce the probability of entry. Assessing the entry of PWN is challenging due to the complexity of the wood trade and the wood processing chain. In this paper, we develop a pathway model that describes the wood trade and wood processing chain to determine the structure of the entry process. We consider entry of PWN through imported coniferous wood from China, a possible origin of Portuguese populations, to Europe. We show that exposure increased over years due to an increase in imports of sawn wood. From 2000 to 2012, Europe received an estimated 84 PWN propagules from China, 88% of which arose from imported sawn wood and 12% from round wood. The region in Portugal where the PWN was first reported is among those with the highest PWN transfer per unit of imported wood due to a high host cover and vector activity. An estimated 62% of PWN is expected to enter in countries where PWN is not expected to cause the wilt of pine trees because of low summer temperatures (e.g., Belgium, Sweden, Norway). In these countries, PWN is not easily detected, and such countries can thus serve as potential reservoirs of PWN. The model identifies ports and regions with high exposure, which helps targeting monitoring and surveillance, even in areas where wilt disease is not expected to occur. In addition, we show that exposure is most efficiently reduced by additional treatments in the country of origin, and/or import wood from PWN-free zones. Pathway modelling assists plant health managers in analyzing risks along the pathway and planning measures for enhancing biosecurity. © 2016 by the Ecological Society of America.
Sedman, R M; Polisini, J M; Esparza, J R
1994-01-01
Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human exposure due to direct contact with shallow soil or the ingestion of surface water were then ascertained. Projected changes in dietary intakes of metals due to incinerator emissions were estimated based on changes from baseline dietary intakes that are monitored in U.S. Food and Drug Administration total diet studies. Changes from baseline intake were deemed to be proportional to the projected changes in soil or surface water metal concentrations. Human exposure to metals emitted from nine hazardous waste incinerators were then evaluated. Metal emissions from certain facilities resulted in tangible human exposure through noninhalation pathways. However, the analysis indicated that the deposition of metals from ambient air would result in substantially greater human exposure through noninhalation pathways than the emissions from most of the facilities. PMID:7925180
Hazard assessment for nanomaterials often involves applying in vitro dose-response data to estimate potential health risks that arise from exposure to products that contain nanomaterials. However, much uncertainty is inherent in relating bioactivities observed in an in vitro syst...
The purpose of this manuscript is to describe the practical strategies developed for the implementation of the Minnesota Children's Pesticide Exposure Study (MNCPES), which is one of the first probability-based samples of multi-pathway and multi-pesticide exposures in children....
Exposure to environmental contaminants can influence both human health and ecological endpoints. Chemical risk assessments combine exposure and toxicity data to estimate the likelihood of adverse outcomes for these endpoints, but are rarely conducted in a manner that integrates ...
Parsing the Effects Violence Exposure in Early Childhood: Modeling Developmental Pathways
Carter, Alice S.; Ford, Julian D.
2012-01-01
Objective To prospectively examine pathways from early childhood violence exposure and trauma-related symptoms to school-age emotional health. Methods A longitudinal, birth cohort (N = 437) was assessed with parent reports of lifetime violence exposure and trauma-related symptoms at 3 years of age and later, internalizing and externalizing symptoms, and social competence at school age. Results Early family and neighborhood violence correlated significantly with early trauma-related symptoms and also significantly predicted school-age internalizing and externalizing symptoms and poorer competence, independent of sociodemographic risk and past-year violence exposure. Longitudinal pathways were significantly mediated by arousal and avoidance symptoms at 3 years of age, which increased risk for clinically significant emotional problems and lower competence at school age (adjusted odds ratios = 3.1–6.1, p < 0.01). Conclusions Trauma-related symptoms may mediate developmental pathways from early violence exposure to later emotional health. Interventions that prevent or reduce early trauma-related symptoms may ameliorate the long-term deleterious impact of violence exposure. PMID:21903730
Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin
Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert
2013-01-01
More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage- independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive agents, such as curcumin, effective in suppressing TCC-induced cellular pre-malignancy. PMID:23942114
Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia
2017-04-15
Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecological risk assessment for detonation emissions at an Army Depot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisberg, M.; Fischer, T.
1999-07-01
Treatment of munitions at an Army Depot located in Nevada required a RCRA Part B Subpart X permit. Part of the permitting requirements were to assess ecological impacts from emissions associated with the detonation (treatment) of the munitions. A multi-media multi-pathway ecological risk assessment was performed to assess these impacts. Food-chain exposure, as well as intake of impacted soil, was considered. Of the eight selected receptor wildlife species, estimated hazard quotients were all below thresholds of concern.
Jannik, G T
1999-06-01
Many different radionuclides have been released to the environment from the Savannah River Site (SRS) during the facility's operational history. However, as shown by this analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to off-site people. This article documents the radiological critical contaminant/critical pathway analysis performed for SRS. If site missions and operations remain constant over the next 30 years, only tritium oxide releases are projected to exceed a maximally exposed individual (MEI) risk of 1.0E-06 for either the airborne or liquid pathways. The critical exposure pathways associated with site airborne releases are inhalation and vegetation consumption, whereas the critical exposure pathways associated with liquid releases are drinking water and fish consumption. For the SRS-specific, nontypical exposure pathways (i.e., recreational fishing and deer and hog hunting), cesium-137 is the critical radionuclide.
Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis
Rojas-Mayorquín, Argelia E.; Padilla-Velarde, Edgar; Ortuño-Sahagún, Daniel
2016-01-01
A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD. PMID:28018163
Walter, Ronald B; Boswell, Mikki; Chang, Jordan; Boswell, William T; Lu, Yuan; Navarro, Kaela; Walter, Sean M; Walter, Dylan J; Salinas, Raquel; Savage, Markita
2018-05-10
Evolution occurred exclusively under the full spectrum of sunlight. Conscription of narrow regions of the solar spectrum by specific photoreceptors suggests a common strategy for regulation of genetic pathways. Fluorescent light (FL) does not possess the complexity of the solar spectrum and has only been in service for about 60 years. If vertebrates evolved specific genetic responses regulated by light wavelengths representing the entire solar spectrum, there may be genetic consequences to reducing the spectral complexity of light. We utilized RNA-Seq to assess changes in the transcriptional profiles of Xiphophorus maculatus skin after exposure to FL ("cool white"), or narrow wavelength regions of light between 350 and 600 nm (i.e., 50 nm or 10 nm regions, herein termed "wavebands"). Exposure to each 50 nm waveband identified sets of genes representing discrete pathways that showed waveband specific transcriptional modulation. For example, 350-400 or 450-500 nm waveband exposures resulted in opposite regulation of gene sets marking necrosis and apoptosis (i.e., 350-400 nm; necrosis suppression, apoptosis activation, while 450-500 nm; apoptosis suppression, necrosis activation). Further investigation of specific transcriptional modulation employing successive 10 nm waveband exposures between 500 and 550 nm showed; (a) greater numbers of genes may be transcriptionally modulated after 10 nm exposures, than observed for 50 nm or FL exposures, (b) the 10 nm wavebands induced gene sets showing greater functional specificity than 50 nm or FL exposures, and (c) the genetic effects of FL are primarily due to 30 nm between 500 and 530 nm. Interestingly, many genetic pathways exhibited completely opposite transcriptional effects after different waveband exposures. For example, the epidermal growth factor (EGF) pathway exhibits transcriptional suppression after FL exposure, becomes highly active after 450-500 nm waveband exposure, and again, exhibits strong transcriptional suppression after exposure to the 520-530 nm waveband. Collectively, these results suggest one may manipulate transcription of specific genetic pathways in skin by exposure of the intact animal to specific wavebands of light. In addition, we identify genes transcriptionally modulated in a predictable manner by specific waveband exposures. Such genes, and their regulatory elements, may represent valuable tools for genetic engineering and gene therapy protocols.
Irish, Leah A; Gabert-Quillen, Crystal A; Ciesla, Jeffrey A; Pacella, Maria L; Sledjeski, Eve M; Delahanty, Douglas L
2013-05-01
It has been suggested that a history of trauma exposure is associated with increased vulnerability to the physical health consequences of subsequent trauma exposure, and that posttraumatic stress symptoms (PTSS) may serve as a key pathway in this vulnerability. However, few studies have modeled these relationships using mediation, and most have failed to consider whether specific characteristics of the prior trauma exposure have a differential impact on physical and mental health outcomes. The present study examined 180 victims of a serious motor vehicle accident (MVA) who reported prior exposure to traumatic events. PTSS were assessed by clinical interview 6 weeks post-MVA, and physical health was assessed 6 months post-MVA. Using structural equation modeling, the present study examined the extent to which event (age at first trauma, number, and types of trauma) and response (perceptions of life threat, physical injury, and distress) characteristics of prior trauma were related to physical health outcomes following a serious MVA, and whether these relationships were mediated by PTSS. Results revealed that both event and response characteristics of prior trauma history were associated with poorer physical health, and that PTSS served as a mechanism through which response characteristics, but not event characteristics, led to poorer physical health. These results highlight the enduring impact of trauma exposure on physical health outcomes, and underscore the importance of considering multiple mechanisms through which different aspects of prior trauma exposure may impact physical health. © 2012 Wiley Periodicals, Inc.
Coupled near-field and far-field exposure assessment framework for chemicals in consumer products.
Fantke, Peter; Ernstoff, Alexi S; Huang, Lei; Csiszar, Susan A; Jolliet, Olivier
2016-09-01
Humans can be exposed to chemicals in consumer products through product use and environmental emissions over the product life cycle. Exposure pathways are often complex, where chemicals can transfer directly from products to humans during use or exchange between various indoor and outdoor compartments until sub-fractions reach humans. To consistently evaluate exposure pathways along product life cycles, a flexible mass balance-based assessment framework is presented structuring multimedia chemical transfers in a matrix of direct inter-compartmental transfer fractions. By matrix inversion, we quantify cumulative multimedia transfer fractions and exposure pathway-specific product intake fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. Combining product intake fractions with chemical mass in the product yields intake estimates for use in life cycle impact assessment and chemical alternatives assessment, or daily intake doses for use in risk-based assessment and high-throughput screening. Two illustrative examples of chemicals used in personal care products and flooring materials demonstrate how this matrix-based framework offers a consistent and efficient way to rapidly compare exposure pathways for adult and child users and for the general population. This framework constitutes a user-friendly approach to develop, compare and interpret multiple human exposure scenarios in a coupled system of near-field ('user' environment), far-field and human intake compartments, and helps understand the contribution of individual pathways to overall human exposure in various product application contexts to inform decisions in different science-policy fields for which exposure quantification is relevant. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Transport and transportation pathways of hazardous chemicals from solid waste disposal.
Van Hook, R I
1978-01-01
To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772
Anyanful, Akwasi; Easley, Kirk A.; Benian, Guy M.; Kalman, Daniel
2010-01-01
SUMMARY Caenorhabditis elegans exhibit avoidance behavior when presented with diverse bacterial pathogens. We hypothesized that exposure to pathogens might not only cause worms to move away but also simultaneously activate pathways that promote resistance to the pathogen. We show that brief exposure to the virulent or avirulent strains of the bacterial pathogen enteropathogenic E. coli (EPEC) “conditions” or “immunizes” C. elegans to survive a subsequent exposure that would otherwise prove lethal. Conditioning requires dopaminergic neurons. Conditioning also requires the p38 MAP Kinase pathway, which regulates innate immunity, and the insulin/IGFR pathway, which regulates lifespan. Our findings suggest that the molecular pathways that regulate innate immunity and lifespan and provide protection may, in nature, be regulated or “conditioned” by exposure to pathogens, and perhaps allow survival in noxious environments. PMID:19454349
A review of soil cadmium contamination in China including a health risk assessment.
Wang, Lin; Cui, Xiangfen; Cheng, Hongguang; Chen, Fei; Wang, Jiantong; Zhao, Xinyi; Lin, Chunye; Pu, Xiao
2015-11-01
Cadmium (Cd) is one of the most serious soil contaminants in China, and it poses an increasing risk to human health as large amounts of Cd are emitted into the environment. However, knowledge about soil Cd concentrations and the human health risks of these concentrations at a national scale is limited. In this study, we conducted a review of 190 articles about soil Cd concentrations during 2001 to 2010. The study involved 146 cities in China, and we quantified the risks to human health according to different regions. The results showed that elevated Cd levels were present compared to the background value of soil in 1990, and the soil Cd concentrations in the Guangxi province exceeded even the class III Soil Environmental Quality standard, which is the limit for the normal growth of plants. The Chinese soil Cd concentrations ranged from 0.003 mg kg(-1) to 9.57 mg kg(-1). The soil Cd concentrations had the following trend: northwest > southwest > south central > east > northeast > north. The sources of soil Cd are mainly from smelting, mining, waste disposal, fertilizer and pesticide application, and vehicle exhaust, etc. but differentiated in various regions. The soil Cd contamination in urban areas was more serious than contamination in the agricultural areas. Currently, there is no significant non-carcinogenic risk in any of the provinces. Regarding the different exposure pathways, the dermal pathway is the primary source of soil Cd exposure, and the risk associated with this pathway is generally hundreds of times higher than the risk for an ingestion pathway. For most of the provinces, the health risk to the urban population was higher than the risk to the rural population. For each population, the carcinogenic risk was less than 10(-6) in most of the provinces, except for the urban population in the Hunan province. If the other exposure pathways are fully considered, then the people in these areas may have a higher carcinogenic risk. This review provides a comprehensive assessment of soil Cd pollution in China, and it identifies policy recommendations for pollution mitigation and environmental management in the relevant regions.
Rager, Julia E.; Yosim, Andrew; Fry, Rebecca C.
2014-01-01
There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans. PMID:25479081
Mechanisms of Action of Isothiocyanates in Cancer Chemoprevention: An Update
Navarro, Sandi L.; Li, Fei; Lampe, Johanna W.
2011-01-01
Isothiocyanates, derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered. PMID:21935537
Niu, Zhongzheng; Xie, Chuanbo; Wen, Xiaozhong; Tian, Fuying; Yuan, Shixin; Jia, Deqin; Chen, Wei-Qing
2016-04-29
It is well documented that maternal exposure to second-hand smoke (SHS) during pregnancy causes low birth weight (LBW), but its mechanism remains unknown. This study explored the potential pathways. We enrolled 195 pregnant women who delivered full-term LBW newborns, and 195 who delivered full-term normal birth weight newborns as the controls. After controlling for maternal age, education level, family income, pre-pregnant body mass index, newborn gender and gestational age, logistic regression analysis revealed that LBW was significantly and positively associated with maternal exposure to SHS during pregnancy, lower placental weight, TNF-α and IL-1β, and that SHS exposure was significantly associated with lower placental weight, TNF-α and IL-1β. Structural equation modelling identified two plausible pathways by which maternal exposure to SHS during pregnancy might cause LBW. First, SHS exposure induced the elevation of TNF-α, which might directly increase the risk of LBW by transmission across the placenta. Second, SHS exposure first increased maternal secretion of IL-1β and TNF-α, which then triggered the secretion of VCAM-1; both TNF-α and VCAM-1 were significantly associated with lower placental weight, thus increasing the risk of LBW. In conclusion, maternal exposure to SHS during pregnancy may lead to LBW through the potential pathways of maternal inflammation and lower placental weight.
Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes?
Carnevali, Oliana; Santangeli, Stefania; Forner-Piquer, Isabel; Basili, Danilo; Maradonna, Francesca
2018-06-11
Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.
Integrating Aggregate Exposure Pathway (AEP) and Adverse ...
High throughput toxicity testing (HTT) holds the promise of providing data for tens of thousands of chemicals that currently have no data due to the cost and time required for animal testing. Interpretation of these results require information linking the perturbations seen in vitro with adverse outcomes in vivo and requires knowledge of how estimated exposure to the chemicals compare to the in vitro concentrations that show an effect. This abstract discusses how Adverse Outcome Pathways (AOPs) can be used to link HTT with adverse outcomes of regulatory significance and how Aggregate Exposure Pathways (AEPs) can connect concentrations of environment stressors at a source with an expected target site concentration designed to provide exposure estimates that are comparable to concentrations identified in HTT. Presentation at the ICCA-LRI and JRC Workshop: Fit-For-Purpose Exposure Assessment For Risk-Based Decision Making
Mills, Freya; Petterson, Susan; Norman, Guy
2018-01-01
Public health benefits are often a key political driver of urban sanitation investment in developing countries, however, pathogen flows are rarely taken systematically into account in sanitation investment choices. While several tools and approaches on sanitation and health risks have recently been developed, this research identified gaps in their ability to predict faecal pathogen flows, to relate exposure risks to the existing sanitation services, and to compare expected impacts of improvements. This paper outlines a conceptual approach that links faecal waste discharge patterns with potential pathogen exposure pathways to quantitatively compare urban sanitation improvement options. An illustrative application of the approach is presented, using a spreadsheet-based model to compare the relative effect on disability-adjusted life years of six sanitation improvement options for a hypothetical urban situation. The approach includes consideration of the persistence or removal of different pathogen classes in different environments; recognition of multiple interconnected sludge and effluent pathways, and of multiple potential sites for exposure; and use of quantitative microbial risk assessment to support prediction of relative health risks for each option. This research provides a step forward in applying current knowledge to better consider public health, alongside environmental and other objectives, in urban sanitation decision making. Further empirical research in specific locations is now required to refine the approach and address data gaps. PMID:29360775
Mercury in Arctic Marine Ecosystems: Sources, Pathways, and Exposure
Kirk, Jane L.; Lehnherr, Igor; Andersson, Maria; Braune, Birgit M.; Chan, Laurie; Dastoor, Ashu P.; Durnford, Dorothy; Gleason, Amber L.; Loseto, Lisa L.; Steffen, Alexandra; St. Louis, Vincent L.
2014-01-01
Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods has many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication. PMID:23102902
Armstrong, Bruce K; Cust, Anne E
2017-06-01
Sunlight has been known as an important cause of skin cancer since around the turn of the 20th Century. A 1977 landmark paper of US scientists Fears, Scotto, and Schneiderman advanced a novel hypothesis whereby cutaneous melanoma was primarily caused by intermittent sun exposure (i.e. periodic, brief episodes of exposure to high-intensity ultraviolet radiation) while the keratinocyte cancers, squamous cell carcinoma and basal cell carcinoma, were primarily caused by progressive accumulation of sun exposure. With respect to cutaneous melanoma, this became known as the intermittent exposure hypothesis. The hypothesis stemmed from analysis of measured ambient ultraviolet radiation and age-specific incidence rates of melanoma and keratinocyte cancers collected as an extension to the US Third National Cancer Survey in several US States. In this perspective paper, we put this novel hypothesis into the context of knowledge at the time, and describe subsequent epidemiological and molecular research into melanoma that elaborated the intermittent exposure hypothesis and ultimately replaced it with a dual pathway hypothesis. Our present understanding is of two distinct biological pathways by which cutaneous melanoma might develop; a nevus prone pathway initiated by early sun exposure and promoted by intermittent sun exposure or possibly host factors; and a chronic sun exposure pathway in sun sensitive people who progressively accumulate sun exposure to the sites of future melanomas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.
2014-01-01
Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions are the locally endemic Tusayan flameflower Phemeranthus validulus, the long-legged bat Myotis volans, and the Arizona bat Myotis occultus. The most common vertebrate species identified at the mine site included the Mexican spadefoot toad Spea multiplicata, plateau fence lizard Sceloporus tristichus, violetgreen swallow Tachycineta thalassina, pygmy nuthatch Sitta pygmaea, purple martin Progne subis, western bluebird Sialia mexicana, deermouse Peromyscus maniculatus, valley pocket gopher Thomomys bottae, cliff chipmunk Tamias dorsalis, black-tailed jackrabbit Lepus californicus, mule deer Odocoileus hemionus, and elk Cervus canadensis. A limited number of the most common species were collected for contaminant analysis to establish baseline contaminant and radiological concentrations prior to ore extraction. These empirical baseline data will help validate contaminant exposure pathways and potential threats from contaminant exposures to ecological receptors. Resource managers will also be able to use these data to determine the extent to which local species are exposed to chemical and radiation contamination once the mine is operational and producing ore. More broadly, these data could inform resource management decisions on mitigating chemical and radiation exposure of biota at high-grade uranium breccia pipes throughout the Grand Canyon watershed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea
Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by MAPK in lead exposure • Relationship between vascular ROS and COX-2 products in lead exposure.« less
DEVELOPMENT OF NATIONAL BIOACCUMULATION FACTORS
The 2000 Human Health Methodology incorporates a number of specific advancements made over the past two decades, one of which is in the assessment of chemical exposure to humans through the food chain pathway. For certain chemicals, the food chain exposure pathway is more importa...
ESTIMATION OF CHILDREN'S EXPOSURES VIA POORLY CHARACTERIZED PATHWAYS USING CTEPP DATA
This work involved providing better exposure estimates for poorly characterized pathways (dermal and indirect ingestion) for young children in the CTEPP study. The chemicals used in this analysis were chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol.
Gebbink, Wouter A; Berger, Urs; Cousins, Ian T
2015-01-01
Contributions of direct and indirect (via precursors) pathways of human exposure to perfluorooctane sulfonic acid (PFOS) isomers and perfluoroalkyl carboxylic acids (PFCAs) are estimated using a Scenario-Based Risk Assessment (SceBRA) modelling approach. Monitoring data published since 2008 (including samples from 2007) are used. The estimated daily exposures (resulting from both direct and precursor intake) for the general adult population are highest for PFOS and perfluorooctanoic acid (PFOA), followed by perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA), while lower daily exposures are estimated for perfluorobutanoic acid (PFBA) and perfluorododecanoic acid (PFDoDA). The precursor contributions to the individual perfluoroalkyl acid (PFAA) daily exposures are estimated to be 11-33% for PFOS, 0.1-2.5% for PFBA, 3.7-34% for PFHxA, 13-64% for PFOA, 5.2-66% for PFDA, and 0.7-25% for PFDoDA (ranges represent estimated precursor contributions in a low- and high-exposure scenario). For PFOS, direct intake via diet is the major exposure pathway regardless of exposure scenario. For PFCAs, the dominant exposure pathway is dependent on perfluoroalkyl chain length and exposure scenario. Modelled PFOS and PFOA concentrations in human serum using the estimated intakes from an intermediate-exposure scenario are in agreement with measured concentrations in different populations. The isomer pattern of PFOS resulting from total intakes (direct and via precursors) is estimated to be enriched with linear PFOS (84%) relative to technical PFOS (70% linear). This finding appears to be contradictory to the observed enrichment of branched PFOS isomers in recent human serum monitoring studies and suggests that either external exposure is not fully understood (e.g. there are unknown precursors, missing or poorly quantified exposure pathways) and/or that there is an incomplete understanding of the isomer-specific human pharmacokinetic processes of PFOS, its precursors and intermediates. Copyright © 2014. Published by Elsevier Ltd.
The interaction of social networks and child obesity prevention program effects: the pathways trial.
Shin, Hee-Sung; Valente, Thomas W; Riggs, Nathaniel R; Huh, Jimi; Spruijt-Metz, Donna; Chou, Chih-Ping; Ann Pentz, Mary
2014-06-01
Social network analysis was used to examine whether peer influence from one's social networks moderates obesity prevention program effects on obesity-related behaviors: healthful and unhealthful. Participants included 557 children residing in Southern California. The survey assessed health-promoting behaviors (i.e., physical activity at school, physical activity outside of school, and fruit and vegetable intake), as well as unhealthful behaviors (high-calorie, low-nutrient intake and sedentary activity), and peer exposure calculated from social network nominations as indicators of peer influence. Multilevel models were conducted separately on outcomes predicted by program participation, peer exposure, and program participation by peer exposure. Results indicated that peer exposure was positively associated with one's own healthful and unhealthful behaviors. Program participation effects were moderated by peer influence, but only when unhealthful peer influence was present. Results suggest that peer influence can diminish or amplify prevention programs Future interventions should consider peer-led components to promote healthful influence of peers on healthful and unhealthful behaviors, and programs should be mindful that their effects are moderated by social networks. Copyright © 2014 The Obesity Society.
Stein, Lauren J; Gunier, Robert B; Harley, Kim; Kogut, Katherine; Bradman, Asa; Eskenazi, Brenda
2016-09-01
Previous studies have observed an adverse association between prenatal exposure to organophosphate pesticide (OPs) and child cognition, but few studies consider the potential role of social stressors in modifying this relationship. We seek to explore the potential role of early social adversities in modifying the relationship between OPs and child IQ in an agricultural Mexican American population. Participants from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a prospective longitudinal pre-birth cohort study, include 329 singleton infants and their mothers followed from pregnancy through age 7. Dialkyl phosphate metabolite concentrations (DAPs), a biomarker of organophosphate pesticide exposure, were measured in maternal urine collected twice during pregnancy and averaged. Child cognitive ability was assessed at 7 years using the Wechsler Intelligence Scale for Children - Fourth Edition. Demographic characteristics and adversity information were collected during interviews and home visits at numerous time points from pregnancy until age 7. Among low-income Latina mothers and their children in the Salinas Valley, total adversity and specific domains of adversity including poor learning environment and adverse parent-child relationships were negatively associated with child cognition. Adverse associations between DAP concentrations and IQ were stronger in children experiencing greater adversity; these associations varied by child sex. For example, the association between prenatal OP exposure and Full-Scale IQ is potentiated among boys who experienced high adversity in the learning environment (β=-13.3; p-value <0.01). Greater total and domain-specific adversity modifies negative relationships between prenatal OP exposure and child IQ differently among male and female children. These findings emphasize the need to consider plausible interactive pathways between social adversities and environmental exposures. Copyright © 2016 Elsevier B.V. All rights reserved.
Wing, Steve; Richardson, David B; Hoffmann, Wolfgang
2011-04-01
In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. We review epidemiologic principles used in studies of generic exposure-response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes.
EDCs Mixtures: A Stealthy Hazard for Human Health?
Ribeiro, Edna; Ladeira, Carina; Viegas, Susana
2017-02-07
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed "body burden" of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex "body burden" of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.
EDCs Mixtures: A Stealthy Hazard for Human Health?
Ribeiro, Edna; Ladeira, Carina; Viegas, Susana
2017-01-01
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce. PMID:29051438
Issue Paper on Metal Exposure Assessment
This paper explores the best approaches for characterizing exposure pathways and routes, estimating the most relevant exposure concentrations, linking exposure to dose, and coping with natural or background concentrations.
Cornelius, Marie D.; De Genna, Natacha M.; Goldschmidt, Lidush; Larkby, Cynthia; Day, Nancy L.
2016-01-01
We examined direct and indirect pathways between adverse environmental exposures during gestation and childhood and drinking in mid-adolescence. Mothers and their offspring (n = 917 mother/child dyads) were followed prospectively from second trimester to a 16-year follow-up assessment. Interim assessments occurred at delivery, 6, 10, and 14 years. Adverse environmental factors included gestational exposures to alcohol, tobacco, and marijuana, exposures to childhood maltreatment and violence, maternal psychological symptoms, parenting practices, economic and home environments, and demographic characteristics of the mother and child. Indirect effects of early child behavioral characteristics including externalizing, internalizing activity, attention, and impulsivity were also examined. Polytomous logistic regression analyses were used to evaluate direct effects of adverse environmental exposures with level of adolescent drinking. Structural equation modeling (SEM) was applied to simultaneously estimate the relation between early adversity variables, childhood characteristics, and drinking level at age 16 while controlling for significant covariates. Level of drinking among the adolescent offspring was directly predicted by prenatal exposure to alcohol, less parental strictness, and exposures to maltreatment and violence during childhood. Whites and offspring with older mothers were more likely to drink at higher levels. There was a significant indirect effect between childhood exposure to violence and adolescent drinking via childhood externalizing behavior problems. All other hypothesized indirect pathways were not significant. Thus most of the early adversity measures directly predicted adolescent drinking and did not operate via childhood behavioral dysregulation characteristics. These results highlight the importance of adverse environmental exposures on pathways to adolescent drinking. PMID:26994529
Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects.
Suratman, Suratman; Edwards, John William; Babina, Kateryna
2015-01-01
Organophosphate (OP) compounds are the most widely used pesticides with more than 100 OP compounds in use around the world. The high-intensity use of OP pesticides contributes to morbidity and mortality in farmworkers and their families through acute or chronic pesticides-related illnesses. Many factors contributing to adverse health effects have been investigated by researchers to determine pathways of OP-pesticide exposure among farmers in developed and developing countries. Factors like wind/agricultural pesticide drift, mixing and spraying pesticides, use of personal protective equipment (PPE), knowledge, perceptions, washing hands, taking a shower, wearing contaminated clothes, eating, drinking, smoking, and hot weather are common in both groups of countries. Factors including low socioeconomic status areas, workplace conditions, duration of exposure, pesticide safety training, frequency of applying pesticides, spraying against the wind, and reuse of pesticide containers for storage are specific contributors in developing countries, whereas housing conditions, social contextual factors, and mechanical equipment were specific pathways in developed countries. This paper compares existing research in environmental and behavioural exposure modifying factors and biological monitoring between developing and developed countries. The main objective of this review is to explore the current depth of understanding of exposure pathways and factors increasing the risk of exposure potentially leading to adverse health effects specific to each group of countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguado, Andrea; Galán, María; Zhenyukh, Olha
2013-04-15
Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces MAPK activation, oxidative stress and COX-2 expression. ► Inhibition of MAPK reduces HgCl{sub 2}-induced oxidative stress and COX-2 expression. ► Inhibition of MAPK, oxidative stress and COX-2 restores the altered cell proliferation and size.« less
The NRF2-KEAP1 Pathway Is an Early Responsive Gene Network in Arsenic Exposed Lymphoblastoid Cells
Córdova, Emilio J.; Martínez-Hernández, Angélica; Uribe-Figueroa, Laura; Centeno, Federico; Morales-Marín, Mirna; Koneru, Harsha; Coleman, Matthew A.; Orozco, Lorena
2014-01-01
Inorganic arsenic (iAs), a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure. Signalling pathways such as interferon, B cell receptor and AhR route were also responsive to acute iAs exposure. Since HMOX1 expression increased early (20 min) and was responsive to low iAs concentrations (0.1 µM), this gene could be a suitable early biomarker for iAs exposure. In addition, the novel Nrf2 targets SQSTM1 and ABCB6 could play an important and previously unrecognized role in cellular protection against iAs. PMID:24516582
Sex-based differences in gene expression in hippocampus following postnatal lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.S., E-mail: jay.schneider@jefferson.edu; Anderson, D.W.; Sonnenahalli, H.
The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7 {+-} 2.1 {mu}g/dl and 27.1 {+-} 1.7 {mu}g/dl for females and males, respectively. The expression of 175more » unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. - Highlights: > Postnatal lead exposure has a significant effect on hippocampal gene expression patterns. > At least one set of genes was affected in opposite directions in males and females. > Differentially expressed genes were associated with diverse biological pathways.« less
Deziel, Nicole C; Freeman, Laura E Beane; Graubard, Barry I; Jones, Rena R; Hoppin, Jane A; Thomas, Kent; Hines, Cynthia J; Blair, Aaron; Sandler, Dale P; Chen, Honglei; Lubin, Jay H; Andreotti, Gabriella; Alavanja, Michael C R; Friesen, Melissa C
2017-03-01
Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. To guide future exposure assessment efforts, we quantified relative contributions of these pathways using meta-regression models of published data on dust pesticide concentrations. From studies in North American agricultural areas published from 1995 to 2015, we abstracted dust pesticide concentrations reported as summary statistics [e.g., geometric means (GM)]. We analyzed these data using mixed-effects meta-regression models that weighted each summary statistic by its inverse variance. Dependent variables were either the log-transformed GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential use). For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 64% lower in homes 250 m versus 23 m from fields (interquartile range of published data) based on 52 statistics from seven studies. For the para-occupational pathway, GMs were 2.3 times higher [95% confidence interval (CI): 1.5, 3.3; 15 statistics, five studies] in homes of farmers who applied pesticides more recently or frequently versus less recently or frequently. For the residential use pathway, GMs were 1.3 (95% CI: 1.1, 1.4) and 1.5 (95% CI: 1.2, 1.9) times higher in treated versus untreated homes, when the probability that a pesticide was used for the pest treatment was 1-19% and ≥ 20%, respectively (88 statistics, five studies). Our quantification of the relative contributions of pesticide exposure pathways in agricultural populations could improve exposure assessments in epidemiologic studies. The meta-regression models can be updated when additional data become available. Citation: Deziel NC, Beane Freeman LE, Graubard BI, Jones RR, Hoppin JA, Thomas K, Hines CJ, Blair A, Sandler DP, Chen H, Lubin JH, Andreotti G, Alavanja MC, Friesen MC. 2017. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust pesticide concentrations: meta-regression of published data. Environ Health Perspect 125:296-305; http://dx.doi.org/10.1289/EHP426.
Deziel, Nicole C.; Freeman, Laura E. Beane; Graubard, Barry I.; Jones, Rena R.; Hoppin, Jane A.; Thomas, Kent; Hines, Cynthia J.; Blair, Aaron; Sandler, Dale P.; Chen, Honglei; Lubin, Jay H.; Andreotti, Gabriella; Alavanja, Michael C. R.; Friesen, Melissa C.
2016-01-01
Background: Increased pesticide concentrations in house dust in agricultural areas have been attributed to several exposure pathways, including agricultural drift, para-occupational, and residential use. Objective: To guide future exposure assessment efforts, we quantified relative contributions of these pathways using meta-regression models of published data on dust pesticide concentrations. Methods: From studies in North American agricultural areas published from 1995 to 2015, we abstracted dust pesticide concentrations reported as summary statistics [e.g., geometric means (GM)]. We analyzed these data using mixed-effects meta-regression models that weighted each summary statistic by its inverse variance. Dependent variables were either the log-transformed GM (drift) or the log-transformed ratio of GMs from two groups (para-occupational, residential use). Results: For the drift pathway, predicted GMs decreased sharply and nonlinearly, with GMs 64% lower in homes 250 m versus 23 m from fields (interquartile range of published data) based on 52 statistics from seven studies. For the para-occupational pathway, GMs were 2.3 times higher [95% confidence interval (CI): 1.5, 3.3; 15 statistics, five studies] in homes of farmers who applied pesticides more recently or frequently versus less recently or frequently. For the residential use pathway, GMs were 1.3 (95% CI: 1.1, 1.4) and 1.5 (95% CI: 1.2, 1.9) times higher in treated versus untreated homes, when the probability that a pesticide was used for the pest treatment was 1–19% and ≥ 20%, respectively (88 statistics, five studies). Conclusion: Our quantification of the relative contributions of pesticide exposure pathways in agricultural populations could improve exposure assessments in epidemiologic studies. The meta-regression models can be updated when additional data become available. Citation: Deziel NC, Beane Freeman LE, Graubard BI, Jones RR, Hoppin JA, Thomas K, Hines CJ, Blair A, Sandler DP, Chen H, Lubin JH, Andreotti G, Alavanja MC, Friesen MC. 2017. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust pesticide concentrations: meta-regression of published data. Environ Health Perspect 125:296–305; http://dx.doi.org/10.1289/EHP426 PMID:27458779
Exploring consumer exposure pathways and patterns of use for chemicals in the environment through the Chemical/Product Categories Database (CPCat) (Presented by: Kathie Dionisio, Sc.D., NERL, US EPA, Research Triangle Park, NC (1/23/2014).
A tremendous amount of data on environmental stressors has been accumulated in exposure science, epidemiology, and toxicology, yet most of these data reside in different silos. The Adverse Outcome Pathway (AOP) framework was developed as an organizing principle for toxicological ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana
2010-01-15
Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6more » mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.« less
Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D
2014-07-01
Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee
2017-06-01
We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.
Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee
2017-01-01
We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening. PMID:28621308
Li, Juan; Yao, Wu; Zhang, Lin; Bao, Lei; Chen, Huiting; Wang, Di; Yue, Zhongzheng; Li, Yiping; Zhang, Miao; Hao, Changfu
2017-05-12
Exposure to crystalline silica is considered to increase the risk of lung fibrosis. The primary effector cell, the myofibroblast, plays an important role in the deposition of extracellular matrix (ECM). DNA methylation change is considered to have a potential effect on myofibroblast differentiation. Therefore, the present study was designed to investigate the genome-wide DNA methylation profiles of lung fibroblasts co-cultured with alveolar macrophages exposed to crystalline silica in vitro. AM/fibroblast co-culture system was established. CCK8 was used to assess the toxicity of AMs. mRNA and protein expression of collagen I, α-SMA, MAPK9 and TGF-β1 of fibroblasts after AMs exposed to 100 μg /ml SiO 2 for 0-, 24-, or 48 h were determined by means of quantitative real-time PCR, immunoblotting and immunohistochemistry. Genomic DNA of fibroblasts was isolated using MeDIP-Seq to sequence. R software, GO, KEGG and Cytoscape were used to analyze the data. SiO 2 exposure increased the expression of collagen I and α-SMA in fibroblasts in co-culture system. Analysis of fibroblast methylome identified extensive methylation changes involved in several signaling pathways, such as the MAPK signaling pathway and metabolic pathways. Several candidates, including Tgfb1 and Mapk9, are hubs who can connect the gene clusters. MAPK9 mRNA expression was significantly higher in fibroblast exposed to SiO 2 in co-culture system for 48 h. MAPK9 protein expression was increased at both 24-h and 48-h treatment groups. TGF-β1 mRNA expression of fibroblast has a time-dependent manner, but we didn't observe the TGF-β1 protein expression. Tgfb1 and Mapk9 are helpful to explore the mechanism of myofibroblast differentiation. The genome-wide DNA methylation profiles of fibroblasts in this experimental silicosis model will be useful for future studies on epigenetic gene regulation during myofibroblast differentiation.
Takaki, Koki; Wade, Andrew J; Collins, Chris D
2017-02-01
New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.
Hardefeldt, Jannah M; Reichelt-Brushett, Amanda J
2015-07-15
Coral skeletons record historical trace metal levels in the environment, however, the use of coral skeletal records for biomonitoring studies mostly fail to consider the influence of metal regulation by the living components of coral and subsequent incorporation into the skeleton. This study presents Exaiptasia pallida as a representative of the living components of coral and shows metal partitioning between the tissue and zooxanthellae after chronic exposure to Zn. A strong tendency for preferential accumulation in the zooxanthellae occurred after 32 days exposure and Zn concentrations in tissue and zooxanthellae were 123.3±0.7 mg kg(-1) and 294.9±8.5 respectively. This study shows zooxanthellae density plays an important role in controlling Zn loading in whole anemones and must be considered when investigating metal uptake and loading in zooxanthellate organisms. Further studies that investigate links between aragonite deposition rates and zooxanthellae density and incorporation pathways of metals into skeleton are warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-18
The Ninth Avenue Dump is a 17-acre National Priorities List Site located in an industrialized area within the city limits of Gary, Indiana. A number of contaminants were detected in on-site and off-site ground water, surface water, sediments, and soil samples. Contaminants of concern at the Ninth Avenue Dump Site include: chromium, lead, benzene, polychlorinated biphenyls, 2-butanone, ethylbenzene, toluene, trichloroethylene, vinyl chloride, and xylenes. The pathways for human exposure to site contaminants is through the dermal absorption, ingestion, or inhalation of contaminants from ground water, surface water, soil, air, or contaminated food-chain entities. There is currently no documented exposure tomore » site contaminants. However, the site is considered to be of potential public health concern because of the potential risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less
Delker, Brianna C; Freyd, Jennifer J
2014-10-01
Research in both community and clinical settings has found that exposure to cumulative interpersonal trauma predicts substance use problems. Less is known about betrayal as a dimension of trauma exposure that predicts substance use, and about the behavioral and psychological pathways that explain the relation between trauma and substance use. In a sample of 362 young adults, this study evaluated three intervening pathways between betrayal trauma exposure prior to age 18 years and problematic substance use: (a) substance use to cope with negative affect, (b) difficulty discerning and/or heeding risk, and (c) self-destructiveness. In addition, exposure to trauma low in betrayal (e.g., earthquake) was included in the model. Bootstrap tests of indirect effects revealed that betrayal trauma prior to age 18 years was associated with problematic substance use via posttraumatic stress and two intervening pathways: difficulty discerning/heeding risk (β = .07, p < .001), and self-destructiveness (β = .12, p < .001). Exposure to lower betrayal trauma was not associated with posttraumatic stress or problematic substance use. Results contribute to a trauma-informed understanding of substance use that persists despite potentially harmful consequences. Copyright © 2014 International Society for Traumatic Stress Studies.
Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis.
Vit, Jean-Philippe; Rosselli, Filippo
2003-11-27
Ionizing radiations (IR) exposure leads to damage on several cellular targets. How signals from different targets are integrated to determine the cell fate remains a controversial issue. Understanding the pathway(s) responsible(s) for the cell killing effect of the IR exposure is of prime importance in light of using radiations as anticancer agent or as diagnostic tool. In this study, we have established that IR-induced cell damage initiates two independent signaling pathways that lead to a biphasic intracellular ceramide increase. A transitory increase of ceramide is observed within minutes after IR exposure as a consequence of DNA damage-independent acid sphingomyelinase activation. Several hours after irradiation, a second wave of ceramide accumulation is observed depending on the DNA damage-dependent activation of ceramide synthase, which requires a signaling pathway involving ATM. Importantly, we have demonstrated that the late ceramide accumulation is also dependent on the first one and is rate limiting for the apoptotic process induced by IR. In conclusion, our observations suggest that ceramide is a major determinant of the IR-induced apoptotic process at the cross-point of different signal transduction pathways.
A conceptual framework to support exposure science research ...
While knowledge of exposure is fundamental to assessing and mitigating risks, exposure information has been costly and difficult to generate. Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition that allows it to be more agile, predictive, and data- and knowledge-driven. A necessary element of this evolved paradigm is an organizational and predictive framework for exposure science that furthers the application of systems-based approaches. To enable such systems-based approaches, we proposed the Aggregate Exposure Pathway (AEP) concept to organize data and information emerging from an invigorated and expanding field of exposure science. The AEP framework is a layered structure that describes the elements of an exposure pathway, as well as the relationship between those elements. The basic building blocks of an AEP adopt the naming conventions used for Adverse Outcome Pathways (AOPs): Key Events (KEs) to describe the measurable, obligate steps through the AEP; and Key Event Relationships (KERs) describe the linkages between KEs. Importantly, the AEP offers an intuitive approach to organize exposure information from sources to internal site of action, setting the stage for predicting stressor concentrations at an internal target site. These predicted concentrations can help inform the r
USE OF METAL- AND FLUORESCEIN-TAGGED MATERIALS TO STUDY SETTLED PARTICLES EXPOSURE PATHWAYS
Through the use of ten size ranges of tagged materials (Antley et. al., 2000a), inductively coupled plasma- mass spectrometry (ICP-MS) and flourometry are being used to study the movement of settled particles in the indoor environment, exposure pathways, and the collection effi...
Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy
2010-01-01
This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.
Edwards, Rufus; Turner, Jay R.; Argo, Yuma D.; Olkhanud, Purevdorj B.; Odsuren, Munkhtuul; Guttikunda, Sarath; Ochir, Chimedsuren; Smith, Kirk R.
2017-01-01
Introduction Winter air pollution in Ulaanbaatar, Mongolia is among the worst in the world. The health impacts of policy decisions affecting air pollution exposures in Ulaanbaatar were modeled and evaluated under business as usual and two more-strict alternative emissions pathways through 2024. Previous studies have relied on either outdoor or indoor concentrations to assesses the health risks of air pollution, but the burden is really a function of total exposure. This study combined projections of indoor and outdoor concentrations of PM2.5 with population time-activity estimates to develop trajectories of total age-specific PM2.5 exposure for the Ulaanbaatar population. Indoor PM2.5 contributions from secondhand tobacco smoke (SHS) were estimated in order to fill out total exposures, and changes in population and background disease were modeled. The health impacts were derived using integrated exposure-response curves from the Global Burden of Disease Study. Results Annual average population-weighted PM2.5 exposures at baseline (2014) were estimated at 59 μg/m3. These were dominated by exposures occurring indoors, influenced considerably by infiltrated outdoor pollution. Under current control policies, exposures increased slightly to 60 μg/m3 by 2024; under moderate emissions reductions and under a switch to clean technologies, exposures were reduced from baseline levels by 45% and 80%, respectively. The moderate improvement pathway decreased per capita annual disability-adjusted life year (DALY) and death burdens by approximately 40%. A switch to clean fuels decreased per capita annual DALY and death burdens by about 85% by 2024 with the relative SHS contribution increasing substantially. Conclusion This study demonstrates a way to combine estimated changes in total exposure, background disease and population levels, and exposure-response functions to project the health impacts of alternative policy pathways. The resulting burden analysis highlights the need for aggressive action, including the elimination of residential coal burning and the reduction of current smoking rates. PMID:29088256
Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure.
Winckelmans, Ellen; Nawrot, Tim S; Tsamou, Maria; Den Hond, Elly; Baeyens, Willy; Kleinjans, Jos; Lefebvre, Wouter; Van Larebeke, Nicolas; Peusens, Martien; Plusquin, Michelle; Reynders, Hans; Schoeters, Greet; Vanpoucke, Charlotte; de Kok, Theo M; Vrijens, Karen
2017-08-18
Due to their lack of repair capacity mitochondria are critical targets for environmental toxicants. We studied genes and pathways reflecting mitochondrial responses to short- and medium-term PM 10 exposure. Whole genome gene expression was measured in peripheral blood of 98 adults (49% women). We performed linear regression analyses stratified by sex and adjusted for individual and temporal characteristics to investigate alterations in gene expression induced by short-term (week before blood sampling) and medium-term (month before blood sampling) PM 10 exposure. Overrepresentation analyses (ConsensusPathDB) were performed to identify enriched mitochondrial associated pathways and gene ontology sets. Thirteen Human MitoCarta genes were measured by means of quantitative real-time polymerase chain reaction (qPCR) along with mitochondrial DNA (mtDNA) content in an independent validation cohort (n = 169, 55.6% women). Overrepresentation analyses revealed significant pathways (p-value <0.05) related to mitochondrial genome maintenance and apoptosis for short-term exposure and to the electron transport chain (ETC) for medium-term exposure in women. For men, medium-term PM 10 exposure was associated with the Tri Carbonic Acid cycle. In an independent study population, we validated several ETC genes, including UQCRH and COX7C (q-value <0.05), and some genes crucial for the maintenance of the mitochondrial genome, including LONP1 (q-value: 0.07) and POLG (q-value: 0.04) in women. In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Estefania G.; Department of Physiological Sciences, State University of Londrina, Londrina, PR; Yu Xiaozhong
2010-06-15
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles acrossmore » doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10 mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Cheng, Jinping
Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes weremore » not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.« less
Ahlborn, Gene J; Nelson, Gail M; Ward, William O; Knapp, Geremy; Allen, James W; Ouyang, Ming; Roop, Barbara C; Chen, Yan; O'Brien, Thomas; Kitchin, Kirk T; Delker, Don A
2008-03-15
Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips, and pathway analysis was conducted with DAVID (NIH), Ingenuity Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers.
Wind erosion as an environmental transport pathway of glyphosate and AMPA
NASA Astrophysics Data System (ADS)
Bento, Célia P. M.; Goossens, Dirk; Rezaei, Mahrooz; Riksen, Michel; Mol, Hans G. J.; Ritsema, Coen J.; Geissen, Violette
2017-04-01
Glyphosate is the active ingredient of many commercial formulations of herbicides extensively used worldwide for weed control. Because glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) are considered non-volatile, their loss to the atmosphere is considered negligible. Both compounds strongly adsorb to soil particles and wind-eroded sediment and dust are thus a possible environmental transport pathway. This can result in environmental and human exposure far beyond the agricultural areas where it has been applied. Therefore, special attention is required to the airborne transport of glyphosate and AMPA. In this study, we investigated the behavior of glyphosate and AMPA in wind-eroded sediment by measuring their content in different size fractions (median diameters between 715 and 8 µm) of a loess soil, during a period of 28 days after glyphosate application. Granulometrical extraction was done using a wind tunnel and a Soil Fine Particle Extractor. Extractions were conducted on days 0, 3, 7, 14, 21 and 28 after glyphosate application. Results indicated that glyphosate and AMPA contents were significantly higher in the finest particle fractions (median diameters between 8 and 18 µm), and lowered significantly with the increase in particle size. Glyphosate and AMPA contents correlated positively with clay, organic matter, and silt content. The dissipation of glyphosate over time was very low, which was associated to the low soil moisture content of the sediment. Consequently, the formation of AMPA was also very low. The low dissipation of glyphosate in our study indicates that the risk of glyphosate transport in dry sediment to off-target areas by wind can be very high. The highest glyphosate and AMPA contents were found in the smallest soil fractions (PM10 and less), which are easily inhaled. This contributes to the risk of human and animal exposure and, therefore, more attention should be paid to this route of exposure in environmental and human health risk assessment studies. Moreover, glyphosate applications during dry periods in regions susceptible to wind erosion should be avoided.
Zikmund-Fisher, Brian J.; Turkelson, Angela; Franzblau, Alfred; Diebol, Julia K.; Allerton, Lindsay A.; Parker, Edith A.
2013-01-01
Chemical properties of contaminants lead them to behave in particular ways in the environment and hence have specific pathways to human exposure. If residents of affected communities lack awareness of these properties, however, they could make incorrect assumptions about where and how exposure occurs. We conducted a mailed survey of 904 residents of Midland and Saginaw counties in Michigan, USA to assess to what degree residents of a community with known dioxin contamination appear to understand the hydrophobic nature of dioxins and the implications of that fact on different potential exposure pathways. Participants assessed whether various statements about dioxins were true, including multiple statements assessing beliefs about dioxins in different types of water. Participants also stated whether they believed different exposure pathways were currently significant sources of dioxin exposure in this community. A majority of residents believed that dioxins can be found in river water that has been filtered to completely remove all particulates, well water, and even city tap water, beliefs which are incongruous with the hydrophobic nature of dioxins. Mistrust of government and personal concern about dioxins predicted greater beliefs about dioxins in water. In turn, holding more beliefs about dioxins in water predicted beliefs that drinking and touching water are currently significant exposure pathways for dioxins. Ensuring that community residents’ mental models accurately reflect the chemical properties of different contaminants can be important to helping them to adjust their risk perceptions and potentially their risk mitigation behaviors accordingly. PMID:23391895
Saili, Katerine S.; Tilton, Susan C.; Waters, Katrina M.; Tanguay, Robert L.
2013-01-01
Transient developmental exposure to 0.1 μM bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80 μM BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear. We used global gene expression analysis to identify candidate genes and signaling pathways that mediate BPA’s developmental toxicity in zebrafish. Exposure concentrations were selected and anchored to the positive control, 17β-estradiol (E2), based on previously determined behavioral or teratogenic phenotypes. Functional analysis of differentially expressed genes revealed distinct expression profiles at 24 hours post fertilization for 0.1 versus 80 μM BPA and 0.1 versus 15 μM E2 exposure, identification of prothrombin activation as a top canonical pathway impacted by both 0.1 μM BPA and 0.1 μM E2 exposure, and suppressed expression of several genes involved in nervous system development and function following 0.1 μM BPAexposure. PMID:23557687
Impact of Physical Abuse on Internalizing Behavior Across Generations.
Esteves, Kyle; Gray, Sarah A O; Theall, Katherine P; Drury, Stacy S
2017-10-01
This study investigated the multigenerational impact of mothers' own exposure to physical maltreatment on internalizing symptoms in her child after accounting for her parenting practices, depression, and the child's own exposure to stressful life events. Children ( n = 101, ages 5-16), predominantly African American, were recruited into this cross sectional study using ethnographic mapping and targeted sampling for high-risk neighborhoods. Mothers reported retrospectively on their own exposure to physical maltreatment in childhood, their parenting practices, as well as current depressive symptoms. Maternal report of her child's exposure to stressful life events and child behavior was also collected. Maternal childhood exposure to physical maltreatment was significantly associated with her child's internalizing symptoms ( p = .004); this effect remained after accounting for child sex, maternal depressive symptoms, harsh parenting practices, and the child's own exposure to stressful life events. Formal tests of mediation through these pathways were non-significant. Findings suggest mothers' experience of childhood maltreatment contributes uniquely to children's internalizing symptoms, potentially through previously uncharacterized pathways. Examination of additional behavioral, psychosocial and biological pathways may help better describe the multi-generational effects of child maltreatment.
Environmental source of arsenic exposure.
Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub
2014-09-01
Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.
Environmental Source of Arsenic Exposure
Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub
2014-01-01
Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196
Martin, Elizabeth M.; Stýblo, Miroslav; Fry, Rebecca C
2017-01-01
Chronic exposure to arsenic has been associated with the development of diabetes mellitus (DM), a disease characterized by hyperglycemia resulting from dysregulation of glucose homeostasis. This review summarizes four major mechanisms by which arsenic induces diabetes, namely inhibition of insulin-dependent glucose uptake, pancreatic β-cell damage, pancreatic β-cell dysfunction and stimulation of liver gluconeogenesis that are supported by both in vivo and in vitro studies. Additionally, the role of polymorphic variants associated with arsenic toxicity and disease susceptibility, as well as epigenetic modifications associated with arsenic exposure, are considered in the context of arsenic-associated DM. Taken together, in vitro, in vivo and human genetic/epigenetic studies support that arsenic has the potential to induce DM phenotypes and impair key pathways involved in the regulation of glucose homeostasis. PMID:28470093
Martin, Elizabeth M; Stýblo, Miroslav; Fry, Rebecca C
2017-05-01
Chronic exposure to arsenic has been associated with the development of diabetes mellitus (DM), a disease characterized by hyperglycemia resulting from dysregulation of glucose homeostasis. This review summarizes four major mechanisms by which arsenic induces diabetes, namely inhibition of insulin-dependent glucose uptake, pancreatic β-cell damage, pancreatic β-cell dysfunction and stimulation of liver gluconeogenesis that are supported by both in vivo and in vitro studies. Additionally, the role of polymorphic variants associated with arsenic toxicity and disease susceptibility, as well as epigenetic modifications associated with arsenic exposure, are considered in the context of arsenic-associated DM. Taken together, in vitro, in vivo and human genetic/epigenetic studies support that arsenic has the potential to induce DM phenotypes and impair key pathways involved in the regulation of glucose homeostasis.
Potential release scenarios for carbon nanotubes used in composites.
Nowack, Bernd; David, Raymond M; Fissan, Heinz; Morris, Howard; Shatkin, Jo Anne; Stintz, Michael; Zepp, Richard; Brouwer, Derk
2013-09-01
The expected widespread use of carbon nanotube (CNT)-composites in consumer products calls for an assessment of the possible release and exposure to workers, consumers and the environment. Release of CNTs may occur at all steps in the life cycle of products, but to date only limited information is available about release of CNTs from actual products and articles. As a starting point for exposure assessment, exploring sources and pathways of release helps to identify relevant applications and situations where the environment and especially humans may encounter releases of CNTs. It is the aim of this review to identify various potential release scenarios for CNTs used in polymers and identify the greatest likelihood of release at the various stages throughout the life-cycle of the product. The available information on release of CNTs from products and articles is reviewed in a first part. In a second part nine relevant release scenarios are described in detail: injection molding, manufacturing, sports equipment, electronics, windmill blades, fuel system components, tires, textiles, incineration, and landfills. Release from products can potentially occur by two pathways; (a) where free CNTs are released directly, or more frequently (b) where the initial release is a particle with CNTs embedded in the matrix, potentially followed by the subsequent release of CNTs from the matrix. The potential for release during manufacturing exists for all scenarios, however, this is also the situation when exposure can be best controlled. For most of the other life cycle stages and their corresponding release scenarios, potential release of CNTs can be considered to be low, but it cannot be excluded totally. Direct release to the environment is also considered to be very low for most scenarios except for the use of CNTs in tires where significant abrasion during use and release into the environment would occur. Also the possible future use of CNTs in textiles could result in consumer exposure. A possibility for significant release also exists during recycling operations when the polymers containing CNTs are handled together with other polymers and mainly occupational users would be exposed. It can be concluded that in general, significant release of CNTs from products and articles is unlikely except in manufacturing and subsequent processing, tires, recycling, and potentially in textiles. However except for high energy machining processes, most likely the resulting exposure for these scenarios will be low and to a non-pristine form of CNTs. Actual exposure studies, which quantify the amount of material released should be conducted to provide further evidence for this conclusion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Aggregate Exposure Pathways in Support of Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yu-Mei; Leonard, Jeremy A.; Edwards, Stephen
Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of themore » Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.« less
Aggregate Exposure Pathways in Support of Risk Assessment
Tan, Yu-Mei; Leonard, Jeremy A.; Edwards, Stephen; ...
2018-03-29
Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of themore » Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.« less
Zhu, Hongying; Wang, Ning; Yao, Lei; Chen, Qi; Zhang, Ran; Qian, Junchao; Hou, Yiwen; Guo, Weiwei; Fan, Sijia; Liu, Siling; Zhao, Qiaoyun; Du, Feng; Zuo, Xin; Guo, Yujun; Xu, Yan; Li, Jiali; Xue, Tian; Zhong, Kai; Song, Xiaoyuan; Huang, Guangming; Xiong, Wei
2018-06-14
Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V. Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang
2015-01-01
Background: Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Methods: Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Results: Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Conclusions: Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke. PMID:26392808
Su, Hsun-Cheng; Ramkissoon, Kevin; Doolittle, Janet; Clark, Martha; Khatun, Jainab; Secrest, Ashley; Wolfgang, Matthew C.; Giddings, Morgan C.
2010-01-01
Microbes have developed resistance to nearly every antibiotic, yet the steps leading to drug resistance remain unclear. Here we report a multistage process by which Pseudomonas aeruginosa acquires drug resistance following exposure to ciprofloxacin at levels ranging from 0.5× to 8× the initial MIC. In stage I, susceptible cells are killed en masse by the exposure. In stage II, a small, slow to nongrowing population survives antibiotic exposure that does not exhibit significantly increased resistance according to the MIC measure. In stage III, exhibited at 0.5× to 4× the MIC, a growing population emerges to reconstitute the population, and these cells display heritable increases in drug resistance of up to 50 times the original level. We studied the stage III cells by proteomic methods to uncover differences in the regulatory pathways that are involved in this phenotype, revealing upregulation of phosphorylation on two proteins, succinate-semialdehyde dehydrogenase (SSADH) and methylmalonate-semialdehyde dehydrogenase (MMSADH), and also revealing upregulation of a highly conserved protein of unknown function. Transposon disruption in the encoding genes for each of these targets substantially dampened the ability of cells to develop the stage III phenotype. Considering these results in combination with computational models of resistance and genomic sequencing results, we postulate that stage III heritable resistance develops from a combination of both genomic mutations and modulation of one or more preexisting cellular pathways. PMID:20696867
Pesticide exposure and liver cancer: a review
VoPham, Trang; Bertrand, Kimberly A.; Hart, Jaime E.; Laden, Francine; Brooks, Maria M.; Yuan, Jian-Min; Talbott, Evelyn O.; Ruddell, Darren; Chang, Chung-Chou H.; Weissfeld, Joel L.
2017-01-01
Purpose To review the epidemiologic literature examining pesticide exposure and liver cancer incidence. Methods A search of the MEDLINE and Embase databases was conducted in October 2015. Eligibility criteria included examining hepatocellular carcinoma (HCC) or primary liver cancer, pesticides as an exposure of interest, and individual-level incidence. The review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results Forty-eight papers were assessed for eligibility and 15 studies were included in the review. The majority of studies were conducted in China and Egypt (n=8), used a case-control design (n=14), and examined HCC (n=14). Most studies showed no association between self-reported and/or occupational exposure to pesticides and liver cancer risk. Six studies demonstrated statistically significant positive associations, including three biomarker-based studies (two using pre-diagnostic sera) that reported higher serum levels of dichlorodiphenyltrichloroethane (DDT) were associated with increased HCC risk. Studies indirectly measuring pesticide exposure using self-reported exposure, occupation, job-exposure matrices, or geographic residence demonstrated inconsistent results. These studies were limited by exposure assessment methods, lack of confounder information, minimal case confirmation, selection bias, and/or over-adjustment. Conclusions There is mixed evidence suggesting a possible association between specific pesticides and HCC risk, with the strongest evidence observed in biomarker-based studies. In particular, organochlorine pesticides, including DDT, may increase HCC risk. Future research should focus on improved pesticide exposure assessment methods, potentially incorporating multiple approaches including biomonitoring while considering the chemicals of interest, historical exposure to address latency periods, and examining specific chemicals and exposure pathways. PMID:28194594
Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd
2015-01-01
Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eom, Hyun-Jeong; Ahn, Jeong-Min; Kim, Younghun
2013-07-15
In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression ofmore » the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal amount of silver mass contained in AgNO{sub 3}.« less
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from relevant stressors across different species. Integration is important to provide a more complete assessment of risk, but evaluating endpoints a...
High throughput toxicity testing (HTT) holds the promise of providing data for tens of thousands of chemicals that currently have no data due to the cost and time required for animal testing. Interpretation of these results require information linking the perturbations seen in vi...
Martínez, M A; Rovira, J; Prasad Sharma, R; Nadal, M; Schuhmacher, M; Kumar, V
2018-05-30
Bisphenol A (BPA) and Di-(2-ethylhexyl) phthalate (DEHP) are two wide spread chemicals classified as endocrine disruptors (ED). The present study aims to estimate the non-dietary (dermal, non-dietary ingestion and inhalation) exposure to BPA and DEHP for a pregnant women cohort. In addition, to assess the prenatal exposure for the fetus, a physiologically based pharmacokinetic (PBPK) model was used. It was adapted for pregnancy in order to assess the internal dosimetry levels of EDs (BPA and DEHP) in the fetus. Estimates of exposure to BPA and DEHP from all pathways along with their relative importance were provided in order to establish which proportion of the total exposure came from diet and which came from non-dietary exposures. In this study, the different oral dosing scenarios (dietary and non-dietary) were considered keeping inhalation as a continuous exposure case. Total non-dietary mean values were 0.002 µg/kg bw /day (0.000; 0.004 µg/kg bw /day for 5th and 95th percentile, respectively) for BPA and 0.597 µg/kg bw /day (0.116 µg/kg bw /day and 1.506 µg/kg bw /day for 5th and 95th percentile, respectively) for DEHP. Indoor environments and especially dust ingestion were the main non-dietary contributors to the total exposure of BPA and DEHP with 60% and 81%. However, as expected, diet showed the higher contribution to total exposure with > 99.9% for BPA and 63% for DEHP. Although diet was considered the primary source of exposure to BPA and phthalates, it must be taken into account that with non-dietary sources the first-pass metabolism is lacking, so these may be of equal or even higher toxicological relevance than dietary sources. The present study is in the framework of "Health and environmental-wide associations based on large population surveys" (HEALS) project (FP7-603946). Copyright © 2018 Elsevier Inc. All rights reserved.
NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiongjie; Hu, Mary; Zhang, Xu
The health effects of exposing to ionizing radiation are attracting great interest in the space exploration community and patients considering radiotherapy. However, the impact to metabolism after exposure to high dose radiation has not yet been clearly defined in livers. In the present study, 1H nuclear magnetic resonance (NMR) based metabolomics combined with multivariate data analysis are applied to study the changes of metabolism in the liver of C57BL/6 mouse after whole body exposure to either gamma (3.0 and 7.8 Gy) or proton (3.0 Gy) radiation. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employedmore » for classification and identification of potential biomarkers associated with gamma and proton irradiation. The results show that the radiation exposed groups can be well separated from the control group. At the same radiation dosage, the group exposed to proton radiation is well separated from the group exposed to gamma radiation, indicating different radiation sources induce different alterations based on metabolic profiling. Common to both gamma and proton radiation at the high radiation doses studied in this work, compared with the control groups the concentrations of choline, O-phosphocholine and trimethylamine N-oxide are decreased statistically, while those of glutamine, glutathione, malate, creatinine, phosphate, betaine and 4-hydroxyphenylacetate are statistically and significantly elevated after exposure to radiation. Since these altered metabolites are associated with multiple biological pathways, the changes suggest that the exposure to radiation induce abnormality in multiple biological pathways. In particular, metabolites such as 4-hydroxyphenylacetate, betaine, glutamine, choline and trimethylamine N-oxide may be good candidates of pre-diagnose biomarkers for ionizing radiation in liver.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences
2013-10-01
The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less
Zakirova, Zuchra; Reed, Jon; Crynen, Gogce; Horne, Lauren; Hassan, Samira; Mathura, Venkatarajan; Mullan, Michael; Crawford, Fiona; Ait-Ghezala, Ghania
2017-09-01
Long-term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long-term consequences of combined PB and PER exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER. © 2017 The Authors. PROTEOMICS - Clinical Applications published by WILEY-VCH Verlag GmbH & Co. KGaA.
Zakirova, Zuchra; Reed, Jon; Crynen, Gogce; Horne, Lauren; Hassan, Samira; Mathura, Venkatarajan; Mullan, Michael; Crawford, Fiona
2017-01-01
Purpose Long‐term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well‐characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. Experimental design We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane‐bound protein fractions from brain samples using two orthogonal isotopic labeling LC‐MS/MS proteomic approaches—stable isotope dimethyl labeling and iTRAQ. Results The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. Conclusions and clinical relevance The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long‐term consequences of combined PB and PER exposure in C57BL6/J mice using a well‐characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane‐bound protein fractions from brain samples using two orthogonal isotopic labeling LC‐MS/MS proteomic approaches—stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER. PMID:28371386
Armstrong, Jenna L.; Day, Gregory A.; Park, Ji Young; Stefaniak, Aleksandr B.; Stanton, Marcia L.; Deubner, David C.; Kent, Michael S.; Schuler, Christine R.; Virji, M. Abbas
2016-01-01
Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. PMID:25357184
EPA EcoBox Tools by Exposure Pathways
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
A Systems Toxicology Approach Reveals Biological Pathways Dysregulated by Prenatal Arsenic Exposure
Laine, Jessica E.; Fry, Rebecca C.
2016-01-01
BACKGROUND Prenatal exposure to inorganic arsenic (iAs) is associated with dysregulated gene and protein expression in the fetus, both evident at birth. Potential epigenetic mechanisms that underlie these changes include but are not limited to the methylation of cytosines (CpG). OBJECTIVE The aim of the present study was to compile datasets from studies on prenatal arsenic exposure to identify whether key genes, proteins, or both and their associated biological pathways are perturbed. METHODS We compiled datasets from 12 studies that analyzed the relationship between prenatal iAs exposure and fetal changes to the epigenome (5-methyl cytosine), transcriptome (mRNA expression), and/or proteome (protein expression changes). FINDINGS Across the 12 studies, a set of 845 unique genes was identified and found to enrich for their role in biological pathways, including those signaled by peroxisome proliferator-activated receptor, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, and the glucocorticoid receptor. Tumor necrosis factor was identified as a putative cellular regulator underlying most (n = 277) of the identified iAs-associated genes or proteins. CONCLUSIONS Given their common identification across numerous human cohorts and their known toxicologic role in disease, the identified genes and pathways may underlie altered disease susceptibility associated with prenatal exposure to iAs. PMID:27325076
Voisin, Dexter R; Hotton, Anna; Neilands, Torsten
2018-01-01
African American youth bear a disproportionate burden of sexually transmitted infections. A growing number of studies document that youth exposure to community violence and sexual behaviors are highly correlated. Despite such growing evidence, only a few studies have empirically tested conceptually driven pathways that may account for such relationships. This study seeks to address that gap by exploring multiple pathways linking exposure to community violence and youth sexual behaviors. Using an existing sample of 563 African American youth attending high school, we examined whether possible links between exposure to community violence and sexual activity, sexual risk behaviors were mediated by aggression, low student-teacher connectedness, and negative peer norms. Major findings indicated indirect relationships between exposures to community violence and both sexual activity and risky sex, mediated by aggression and negative peer norms with no significant differences based on gender or socioeconomic status. Overall findings also indicated a significant indirect effect of aggression to risky sex via negative peer norms and from community violence to risky peer norms via aggression. By illuminating ways that community violence, aggression, peer norms, and sexual behaviors are dynamically interrelated, these findings have significant implications for future research and intervention initiatives aimed at addressing the different pathways.
Zhang, Jing; Koch, Iris; Gibson, Laura A; Loughery, Jennifer R; Martyniuk, Christopher J; Button, Mark; Caumette, Guilhem; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S
2015-12-01
Arsenic compounds are widespread environmental contaminants and exposure elicits serious health issues, including early developmental anomalies. Depending on the oxidation state, the intermediates of arsenic metabolism interfere with a range of subcellular events, but the fundamental molecular events that lead to speciation-dependent arsenic toxicity are not fully elucidated. This study therefore assesses the impact of arsenic exposure on early development by measuring speciation and gene expression profiles in the developing Western clawed frog (Silurana tropicalis) larvae following the environmental relevant 0.5 and 1 ppm arsenate exposure. Using HPLC-ICP-MS, arsenate, dimethylarsenic acid, arsenobetaine, arsenocholine, and tetramethylarsonium ion were detected. Microarray and pathway analyses were utilized to characterize the comprehensive transcriptomic responses to arsenic exposure. Clustering analysis of expression data showed distinct gene expression patterns in arsenate treated groups when compared with the control. Pathway enrichment revealed common biological themes enriched in both treatments, including cell signal transduction, cell survival, and developmental pathways. Moreover, the 0.5 ppm exposure led to the enrichment of pathways and biological processes involved in arsenic intake or efflux, as well as histone remodeling. These compensatory responses are hypothesized to be responsible for maintaining an in-body arsenic level comparable to control animals. With no appreciable changes observed in malformation and mortality between control and exposed larvae, this is the first study to suggest that the underlying transcriptomic regulations related to signal transduction, cell survival, developmental pathways, and histone remodeling may contribute to maintaining ongoing development while coping with the potential arsenic toxicity in S. tropicalis during early development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tao, Yebin; Sánchez, Brisa N; Mukherjee, Bhramar
2015-03-30
Many existing cohort studies designed to investigate health effects of environmental exposures also collect data on genetic markers. The Early Life Exposures in Mexico to Environmental Toxicants project, for instance, has been genotyping single nucleotide polymorphisms on candidate genes involved in mental and nutrient metabolism and also in potentially shared metabolic pathways with the environmental exposures. Given the longitudinal nature of these cohort studies, rich exposure and outcome data are available to address novel questions regarding gene-environment interaction (G × E). Latent variable (LV) models have been effectively used for dimension reduction, helping with multiple testing and multicollinearity issues in the presence of correlated multivariate exposures and outcomes. In this paper, we first propose a modeling strategy, based on LV models, to examine the association between repeated outcome measures (e.g., child weight) and a set of correlated exposure biomarkers (e.g., prenatal lead exposure). We then construct novel tests for G × E effects within the LV framework to examine effect modification of outcome-exposure association by genetic factors (e.g., the hemochromatosis gene). We consider two scenarios: one allowing dependence of the LV models on genes and the other assuming independence between the LV models and genes. We combine the two sets of estimates by shrinkage estimation to trade off bias and efficiency in a data-adaptive way. Using simulations, we evaluate the properties of the shrinkage estimates, and in particular, we demonstrate the need for this data-adaptive shrinkage given repeated outcome measures, exposure measures possibly repeated and time-varying gene-environment association. Copyright © 2014 John Wiley & Sons, Ltd.
State of research: environmental pathways and food chain transfer.
Vaughan, B E
1984-01-01
Data on the chemistry of biologically active components of petroleum, synthetic fuel oils, certain metal elements and pesticides provide valuable generic information needed for predicting the long-term fate of buried waste constituents and their likelihood of entering food chains. Components of such complex mixtures partition between solid and solution phases, influencing their mobility, volatility and susceptibility to microbial transformation. Estimating health hazards from indirect exposures to organic chemicals involves an ecosystem's approach to understanding the unique behavior of complex mixtures. Metabolism by microbial organisms fundamentally alters these complex mixtures as they move through food chains. Pathway modeling of organic chemicals must consider the nature and magnitude of food chain transfers to predict biological risk where metabolites may become more toxic than the parent compound. To obtain predictions, major areas are identified where data acquisition is essential to extend our radiological modeling experience to the field of organic chemical contamination. PMID:6428875
Lee, Young Hwan; Kang, Hye-Min; Kim, Duck-Hyun; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong
2017-03-01
Methylmercury (MeHg) is a concerning environmental pollutant that bioaccumulates and biomagnifies in the aquatic food web. However, the effects of MeHg on marine zooplankton are poorly understood even though zooplankton are considered key mediators of the bioaccumulation and biomagnification of MeHg in high-trophic marine organisms. Here, the toxicity of MeHg in the benthic copepod Tigriopus japonicus was assessed, and its adverse effects on growth rate and reproduction were demonstrated. Antioxidant enzymatic activities were increased in the presence of MeHg, indicating that these enzymes play an important role in the defense response to MeHg, which is regulated by a complex mechanism. Subsequent activation of different patterns of mitogen-activated protein kinase (MAPK) pathways was demonstrated, providing a mechanistic approach to understand the signaling pathways involved in the effects of MeHg. Our results provide valuable information for understanding the toxicity of MeHg and the underlying defense mechanism in response to MeHg exposure in marine zooplankton. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The C R Battery Company, Inc. property, a former battery recycling facility, is a National Priorities List (NPL) site situated in Chesterfield County, approximately 6 miles southeast of Richmond, Virginia. The contaminants found on the site at concentrations considered to be of concern include antimony, arsenic, cadmium, and lead. Potential exposure pathways include inhalation of contaminated dust, and the ingestion of contaminated groundwater. The site is an indeterminate public health hazard. However, data are not available for all environmental media to which humans may be exposed.
Evaluating risk of adverse outcomes from chemical exposure is essential for understanding the impacts of environmental contaminants. While human health outcomes are of primary concern and are often the focus of risk assessments, important non-human species are also exposed to co...
Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...
Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...
LOW COST, LOW BURDEN, EXPOSURE MONITORING STRATEGIES
A birth cohort study designed to evaluate the association between exposures to environmental agents and health outcomes presents many challenges for exposure monitoring. Exposure of the child must be measured for multiple chemicals through multiply pathways over an extended peri...
EPA EcoBox Tools by Exposure Pathways - Soil
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
EPA EcoBox Tools by Exposure Pathways - Food Chains
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
EPA EcoBox Tools by Exposure Pathways - References
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
EPA EcoBox Tools by Exposure Pathways - Air
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
ADVANCES IN DIETARY EXPOSURE RESEARCH AT THE UNITED STATES
The United States Environmental Protection Agency-National Exposure Research Laboratory's (USEPA-NERL)dietary exposure research program investigates the role of diet, including drinking water, as a potential pathway of human exposure to environmental contaminants. A primary progr...
A workflow to investigate exposure and pharmacokinetic ...
Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption, distribution, metabolism, excretion (ADME) properties of chemicals. We developed a conceptual workflow to consider exposure and ADME properties in relationship to an MIE and demonstrated the utility of this workflow using a previously established AOP, acetylcholinesterase (AChE) inhibition. Thirty active chemicals found to inhibit AChE in the ToxCastTM assay were examined with respect to their exposure and absorption potentials, and their ability to cross the blood-brain barrier. Structural similarities of active compounds were compared against structures of inactive compounds to detect possible non-active parents that might have active metabolites. Fifty-two of the 1,029 inactive compounds exhibited a similarity threshold above 75% with their nearest active neighbors. Excluding compounds that may not be absorbed, 22 could be potentially toxic following metabolism. The incorporation of exposure and ADME properties into the conceptual workflow resulted in prioritization of 20 out of 30 active compounds identified in an AChE inhibition assay for further analysis, along with identification of several inactive parent compounds of active metabolites. This qualitative approach can minimize co
Boynton-Jarrett, Renée; Hair, Elizabeth; Zuckerman, Barry
2013-10-01
Turbulent social environments are associated with health and developmental risk, yet mechanisms have been understudied. Guided by a life course framework and stress theory, this study examined the association between turbulent life transitions (including frequent residential mobility, school transitions, family structure disruptions, and homelessness) and exposure to violence during adolescence and high school completion, mental health, and health risk behaviors in young adulthood. Participants (n = 4834) from the U.S. National Longitudinal Survey of Youth, 1997 cohort were followed prospectively from age 12-14 years for 10 years. We used structural equation models to investigate pathways between turbulence and cumulative exposure to violence (CEV), and high school completion, mental health, and health risk behaviors, while accounting for early life socio-demographics, family processes, and individual characteristics. Results indicated that turbulence index was associated with cumulative exposure to violence in adolescence. Both turbulence index and cumulative exposure to violence were positively associated with higher health risk behavior, poorer mental health, and inversely associated with high school completion. These findings highlight the importance of considering the cumulative impact of turbulent and adverse social environments when developing interventions to optimize health and developmental trajectory for adolescents transitioning into adulthood. Copyright © 2012 Elsevier Ltd. All rights reserved.
McCallum, Erin S; Bose, Aneesh P H; Warriner, Theresa R; Balshine, Sigal
2017-05-01
Fluoxetine (Prozac™) is designed to alter human behaviour; however, because many physiological pathways are conserved across vertebrates, this drug may affect the behaviour of fish living in fluoxetine-polluted environments. Although a number of studies have used behaviour to document the sub-lethal effects of fluoxetine, the repeatability of these effects across experiments, across behavioural contexts, and over different exposure durations are rarely considered. Here, we conducted two experiments and assessed how fluoxetine exposure affected a range of fitness-related behaviours in wild round goby (Neogobius melanostomus). We found that fluoxetine impacts round goby behaviour at high (40 μg/l) doses, but not at environmentally relevant low doses (1 μg/l). In both experiments, an acute 3-day exposure to fluoxetine reduced round goby aggression in multiple behavioural contexts, but had no detectable effect on overall activity or social affiliative behaviour. While a chronic 28-day exposure to fluoxetine exposure still reduced aggression, this reduction was only detectable in one behavioural context. Our findings demonstrate the importance of repeated behavioural testing (both between and within experiments) and contribute to a growing body of literature evaluating the effects of fluoxetine and other pharmaceuticals on animal behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.
Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo
2015-01-01
Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.
The Minnesota Children's Pesticide Exposure Study (MNCPES) provides exposure, environmental, and biologic data relating to multi-pathway exposures of children for four primary pesticides (chlorpyrifos, malathion, diazinon, and atrazine), 14 secondary pesticides, and 13 polynucl...
Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per
2015-08-07
Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.
Su, Hongqiao; Shi, Yajuan; Lu, Yonglong; Wang, Pei; Zhang, Meng; Sweetman, Andrew; Jones, Kevin; Johnson, Andrew
2017-04-01
Dietary intake is considered to be a major pathway of human exposure to perfluoroalkyl acids (PFAAs). Chicken egg is an important contributor to the Chinese diet. In the present study, PFAAs in home produced eggs (HPEs) and commercially produced eggs (CPEs) surrounding a fluorochemical industrial park (FIP) in China were investigated. PFAAs in HPEs decreased with increasing distance from the FIP. HPEs were much more contaminated than CPEs, with PFAAs in CPEs comparable to or lower than those in HPEs from 20km away from the FIP. PFOA concentrations in HPEs were higher than the levels of PFOA in eggs from other studies reported so far. For the first time, PFBA was reported in eggs and detected in all egg samples. PFOA and PFBA were the predominant forms in HPEs, while PFOA, PFBA and PFOS dominated in CPEs. For PFOA, estimated daily intakes (EDI) were 233ng/kg·bw/day for adults and 657ng/kg·bw/day for children who consume HPEs at households about 2km away from the FIP. The EDI of PFOA for children via HPEs exceeded the reference dose value (333ng/kg·bw/day) proposed by the Environmental Working Group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Applying Aggregate Exposure Pathway and Adverse Outcome ...
Hazard assessment for nanomaterials often involves applying in vitro dose-response data to estimate potential health risks that arise from exposure to products that contain nanomaterials. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biological mechanisms that lead to apical adverse health outcomes in living organisms. The Adverse Outcome Pathway (AOP) framework addresses this uncertainty by acting as a scaffold onto which in vitro toxicity testing and other data can be arranged to aid in the interpretation of these results in terms of biologically-relevant responses, as an AOP connects an upstream molecular initiating event (MIE) to a downstream adverse outcome. In addition to hazard assessment, risk estimation also requires reconciling in vitro concentrations sufficient to produce bioactivity with in vivo concentrations that can trigger a MIE at the relevant biological target. Such target site exposures (TSEs) can be estimated by integrating pharmacokinetic considerations with environmental and exposure factors. Environmental and exposure data have been historically scattered in various resources, such as monitoring data for air pollutants or exposure models for specific chemicals. The Aggregate Exposure Pathway (AEP) framework is introduced to organize existing knowledge concerning biologically, chemically, and physically plausible, as well as empirically supported, links between the i
Hays, Jake; McCawley, Michael; Shonkoff, Seth B C
2017-02-15
Modern oil and gas development frequently occurs in close proximity to human populations and increased levels of ambient noise have been documented throughout some phases of development. Numerous studies have evaluated air and water quality degradation and human exposure pathways, but few have evaluated potential health risks and impacts from environmental noise exposure. We reviewed the scientific literature on environmental noise exposure to determine the potential concerns, if any, that noise from oil and gas development activities present to public health. Data on noise levels associated with oil and gas development are limited, but measurements can be evaluated amidst the large body of epidemiology assessing the non-auditory effects of environmental noise exposure and established public health guidelines for community noise. There are a large number of noise dependent and subjective factors that make the determination of a dose response relationship between noise and health outcomes difficult. However, the literature indicates that oil and gas activities produce noise at levels that may increase the risk of adverse health outcomes, including annoyance, sleep disturbance, and cardiovascular disease. More studies that investigate the relationships between noise exposure and human health risks from unconventional oil and gas development are warranted. Finally, policies and mitigation techniques that limit human exposure to noise from oil and gas operations should be considered to reduce health risks. Copyright © 2016 Elsevier B.V. All rights reserved.
EPA EcoBox Tools by Exposure Pathways - Water and Sediment
Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
Ma, Zhikun; Blackwelder, Amanda J.; Lee, Harry; Zhao, Ming; Yang, Xiaohe
2015-01-01
There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation. PMID:25853264
JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.
Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W
2012-01-01
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
Kily, Layla J M; Cowe, Yuka C M; Hussain, Osman; Patel, Salma; McElwaine, Suzanne; Cotter, Finbarr E; Brennan, Caroline H
2008-05-01
Addiction is a complex psychiatric disorder considered to be a disease of the brain's natural reward reinforcement system. Repeated stimulation of the 'reward' pathway leads to adaptive changes in gene expression and synaptic organization that reinforce drug taking and underlie long-term changes in behaviour. The primitive nature of reward reinforcement pathways and the near universal ability of abused drugs to target the same system allow drug-associated reward and reinforcement to be studied in non-mammalian species. Zebrafish have proved to be a valuable model system for the study of vertebrate development and disease. Here we demonstrate that adult zebrafish show a dose-dependent acute conditioned place preference (CPP) reinforcement response to ethanol or nicotine. Repeated exposure of adult zebrafish to either nicotine or ethanol leads to a robust CPP response that persists following 3 weeks of abstinence and in the face of adverse stimuli, a behavioural indicator of the establishment of dependence. Microarray analysis using whole brain samples from drug-treated and control zebrafish identified 1362 genes that show a significant change in expression between control and treated individuals. Of these genes, 153 are common to both ethanol- and nicotine-treated animals. These genes include members of pathways and processes implicated in drug dependence in mammalian models, revealing conservation of neuro-adaptation pathways between zebrafish and mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-16
The Petro-Processors of Louisiana, Inc. (PPI) site, located in East Baton Rouge Parish, Louisiana, operated two waste disposal facilities: the Brooklawn area and the Scenic Highway area. Both areas contain chlorinated aromatic hydrocarbons and chlorinated hydrocarbons. Contaminants have been detected in samples from soil, groundwater, surface water, and air at the Brooklawn area and in soil, groundwater, and air at the Scenic Highway area. The site is considered a public health hazard because of risks to human health from past, present, and future exposure to hazardous substances. Exposure pathways of public health concern are: ingestion of contaminated fish, potential ingestionmore » of contaminated groundwater and wildlife, dermal contact with contaminated sediments, inhalation of airborne volatile contaminants prior to and during remedial activities, and dermal contact and incidental ingestion of contaminated soils.« less
Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans
The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less
Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...
Nrf2 protects against oxidative stress induced by SiO2 nanoparticles.
Liu, Wei; Hu, Tao; Zhou, Li; Wu, Desheng; Huang, Xinfeng; Ren, Xiaohu; Lv, Yuan; Hong, Wenxu; Huang, Guanqin; Lin, Zequn; Liu, Jianjun
2017-10-01
The aim of our study was to explore the role of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) on the exposure of SiO 2 nanoparticles (NPs) and its influence. To understand the mechanism of NP-induced oxidative stress, the involvement of oxidative-stress-responding transcription factors and the Nrf2/antioxidant reactive element (ARE) signaling pathway in the toxicity of SiO 2 NPs' exposure was investigated via in vivo and in vitro models. A549 cells showed a significant cytotoxic effect while A549-shNrf2 cells showed decreased cell viability after nm-SiO 2 exposure. SiO 2 NPs' exposure activated the Nrf2/ARE signaling pathway. Nrf2 -/- exposed mice showed increased reactive oxygen species, 8-hydroxyl deoxyguanosine level and decreased total antioxidant capacity. Nrf2/ARE signaling pathway activation disrupted, leading inhibition of heme oxygenase-1 and upregulation of PKR-like endoplasmic-reticulum-regulated kinase. Our findings suggested that Nrf2 could protect against oxidative stress induced by SiO 2 NPs, and the Nrf2/ARE pathway might be involved in mild-to-moderate SiO 2 NP-induced oxidative stress that was evident from dampened activity of Nrf2.
Gene expression profiles in liver of mouse after chronic exposure to drinking water.
Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei
2009-10-01
cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.
Imai, Chisato; Barnett, Adrian G.; Hashizume, Masahiro; Honda, Yasushi
2016-01-01
Many studies have found that cardiovascular deaths mostly occur within a few days of exposure to heat, whereas cold-related deaths can occur up to 30 days after exposure. We investigated whether influenza infection could explain the delayed cold effects on ischemic heart diseases (IHD) as they can trigger IHD. We hypothesized two pathways between cold exposure and IHD: a direct pathway and an indirect pathway through influenza infection. We created a multi-state model of the pathways and simulated incidence data to examine the observed delayed patterns in cases. We conducted cross-correlation and time series analysis with Japanese daily pneumonia and influenza (P&I) mortality data to help validate our model. Simulations showed the IHD incidence through the direct pathway occurred mostly within 10 days, while IHD through influenza infection peaked at 4–6 days, followed by delayed incidences of up to 20–30 days. In the mortality data from Japan, P&I lagged IHD in cross-correlations. Time series analysis showed strong delayed cold effects in the older population. There was also a strong delay on intense days of influenza which was more noticeable in the older population. Influenza can therefore be a plausible explanation for the delayed association between cold exposure and cardiovascular mortality. PMID:27136571
Liu, Ruifeng; Printz, Richard L; Jenkins, Erin C; O'Brien, Tracy P; Te, Jerez A; Shiota, Masakazu; Wallqvist, Anders
2018-04-01
Endosulfan was once the most commonly used pesticide in agriculture and horticulture. It is an environmentally persistent organochlorine compound with the potential to bioaccumulate as it progresses through the food chain. Its acute and chronic toxicity to mammals, including humans, is well known, but the molecular mechanisms of its toxicity are not fully understood. To gain insight to these mechanisms, we examined genome-wide gene expression changes of rat liver, heart, and kidney cells induced by endosulfan exposure. We found that among the cell types examined, kidney and liver cells were the most sensitive and most resilient, respectively, to endosulfan insult. We acquired RNA sequencing information from cells exposed to endosulfan to identify differentially expressed genes, which we further examined to determine the cellular pathways that were affected. In kidney cells, exposure to endosulfan was uniquely associated with altered expression levels of genes constituting the hypoxia-inducible factor-1 (HIF-1) signaling pathway. In heart and liver cells, exposure to endosulfan altered the expression levels of genes for many members of the extracellular matrix (ECM)-receptor interaction pathway. Because both HIF-1 signaling and ECM-receptor interaction pathways directly or indirectly control cell growth, differentiation, proliferation, and apoptosis, our findings suggest that dysregulation of these pathways is responsible for endosulfan-induced cell death. Copyright © 2018 Elsevier Ltd. All rights reserved.
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome.
Waugh, Stacey; Kashon, Michael L; Li, Shengqiao; Miller, Gerome R; Johnson, Claud; Krajnak, Kristine
2016-04-01
The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division.
Understanding Exposures in Children’s Environments
EPA scientists have conducted a series of studies to provide a better understanding of the chemical sources, pathways and routes of exposure, and other factors that contribute most to children’s exposures to chemicals.
FEASIBILITY OF USING THE MACROACTIVITY APPROACH TO ASSESS CHILDREN'S DERMAL EXPOSURE TO PESTICIDES
Results derived from an initial assessment of critical exposure pathways for children indicate that dermal contact may result in high residential exposures to pesticides. However, data on children's exposures and activities are insufficient to support quantitative assessments ...
AVAILABLE MICRO-ACTIVITY DATA AND THEIR APPLICABILITY TO AGGREGATE EXPOSURE MODELING
Several human exposure models have been developed in recent years to address children's aggregate and cumulative exposures to pesticides under the Food Quality Protection Act of 1996. These models estimate children's exposures via all significant routes and pathways including ...
Vemula, Harika; Ayon, Navid J; Burton, Alloch; Gutheil, William G
2017-06-01
Cytoplasmic peptidoglycan (PG) precursor levels were determined in methicillin-resistant Staphylococcus aureus (MRSA) after exposure to several cell wall-targeting antibiotics. Three experiments were performed: (i) exposure to 4× MIC levels (acute); (ii) exposure to sub-MIC levels (subacute); (iii) a time course experiment of the effect of vancomycin. In acute exposure experiments, fosfomycin increased UDP-GlcNAc, as expected, and resulted in substantially lower levels of total UDP-linked metabolite accumulation relative to other pathway inhibitors, indicating reduced entry into this pathway. Upstream inhibitors (fosfomycin, d-cycloserine, or d-boroalanine) reduced UDP-MurNAc-pentapeptide levels by more than fourfold. Alanine branch inhibitors (d-cycloserine and d-boroalanine) reduced d-Ala-d-Ala levels only modestly (up to 4-fold) but increased UDP-MurNAc-tripeptide levels up to 3,000-fold. Downstream pathway inhibitors (vancomycin, bacitracin, moenomycin, and oxacillin) increased UDP-MurNAc-pentapeptide levels up to 350-fold and UDP-MurNAc-l-Ala levels up to 80-fold, suggesting reduced MurD activity by downstream inhibitor action. Sub-MIC exposures demonstrated effects even at 1/8× MIC which strongly paralleled acute exposure changes. Time course data demonstrated that UDP-linked intermediate levels respond rapidly to vancomycin exposure, with several intermediates increasing three- to sixfold within minutes. UDP-linked intermediate level changes were also multiphasic, with some increasing, some decreasing, and some increasing and then decreasing. The total (summed) UDP-linked intermediate pool increased by 1,475 μM/min during the first 10 min after vancomycin exposure, providing a revised estimate of flux in this pathway during logarithmic growth. These observations outline the complexity of PG precursor response to antibiotic exposure in MRSA and indicate likely sites of regulation (entry and MurD). Copyright © 2017 American Society for Microbiology.
Lim, Sanghee; Kwak, Minhye; Gray, Christy D.; Xu, Michael; Choi, Jun H.; Junn, Sue; Kim, Jieun; Xu, Jing; Schaefer, Michele; Johns, Roger A.; Song, Hongjun; Ming, Guo-Li; Mintz, C. David
2017-01-01
Clinical and preclinical studies indicate that early postnatal exposure to anesthetics can lead to lasting deficits in learning and other cognitive processes. The mechanism underlying this phenomenon has not been clarified and there is no treatment currently available. Recent evidence suggests that anesthetics might cause persistent deficits in cognitive function by disrupting key events in brain development. The hippocampus, a brain region that is critical for learning and memory, contains a large number of neurons that develop in the early postnatal period, which are thus vulnerable to perturbation by anesthetic exposure. Using an in vivo mouse model we demonstrate abnormal development of dendrite arbors and dendritic spines in newly generated dentate gyrus granule cell neurons of the hippocampus after a clinically relevant isoflurane anesthesia exposure conducted at an early postnatal age. Furthermore, we find that isoflurane causes a sustained increase in activity in the mechanistic target of rapamycin pathway, and that inhibition of this pathway with rapamycin not only reverses the observed changes in neuronal development, but also substantially improves performance on behavioral tasks of spatial learning and memory that are impaired by isoflurane exposure. We conclude that isoflurane disrupts the development of hippocampal neurons generated in the early postnatal period by activating a well-defined neurodevelopmental disease pathway and that this phenotype can be reversed by pharmacologic inhibition. PMID:28683067
Human exposure to organic arsenic species from seafood.
Taylor, Vivien; Goodale, Britton; Raab, Andrea; Schwerdtle, Tanja; Reimer, Ken; Conklin, Sean; Karagas, Margaret R; Francesconi, Kevin A
2017-02-15
Seafood, including finfish, shellfish, and seaweed, is the largest contributor to arsenic (As) exposure in many human populations. In contrast to the predominance of inorganic As in water and many terrestrial foods, As in marine-derived foods is present primarily in the form of organic compounds. To date, human exposure and toxicological assessments have focused on inorganic As, while organic As has generally been considered to be non-toxic. However, the high concentrations of organic As in seafood, as well as the often complex As speciation, can lead to complications in assessing As exposure from diet. In this report, we evaluate the presence and distribution of organic As species in seafood, and combined with consumption data, address the current capabilities and needs for determining human exposure to these compounds. The analytical approaches and shortcomings for assessing these compounds are reviewed, with a focus on the best practices for characterization and quantitation. Metabolic pathways and toxicology of two important classes of organic arsenicals, arsenolipids and arsenosugars, are examined, as well as individual variability in absorption of these compounds. Although determining health outcomes or assessing a need for regulatory policies for organic As exposure is premature, the extensive consumption of seafood globally, along with the preliminary toxicological profiles of these compounds and their confounding effect on assessing exposure to inorganic As, suggests further investigations and process-level studies on organic As are needed to fill the current gaps in knowledge. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yuke; Moe, Christine L.; Null, Clair; Raj, Suraja J.; Baker, Kelly K.; Robb, Katharine A.; Yakubu, Habib; Ampofo, Joseph A.; Wellington, Nii; Freeman, Matthew C.; Armah, George; Reese, Heather E.; Peprah, Dorothy; Teunis, Peter F. M.
2017-01-01
Abstract. Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108–1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination. PMID:29031283
James, Stephanie; Collins, Frank H; Welkhoff, Philip A; Emerson, Claudia; Godfray, H Charles J; Gottlieb, Michael; Greenwood, Brian; Lindsay, Steve W; Mbogo, Charles M; Okumu, Fredros O; Quemada, Hector; Savadogo, Moussa; Singh, Jerome A; Tountas, Karen H; Touré, Yeya T
2018-06-01
Gene drive technology offers the promise for a high-impact, cost-effective, and durable method to control malaria transmission that would make a significant contribution to elimination. Gene drive systems, such as those based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein, have the potential to spread beneficial traits through interbreeding populations of malaria mosquitoes. However, the characteristics of this technology have raised concerns that necessitate careful consideration of the product development pathway. A multidisciplinary working group considered the implications of low-threshold gene drive systems on the development pathway described in the World Health Organization Guidance Framework for testing genetically modified (GM) mosquitoes , focusing on reduction of malaria transmission by Anopheles gambiae s.l. mosquitoes in Africa as a case study. The group developed recommendations for the safe and ethical testing of gene drive mosquitoes, drawing on prior experience with other vector control tools, GM organisms, and biocontrol agents. These recommendations are organized according to a testing plan that seeks to maximize safety by incrementally increasing the degree of human and environmental exposure to the investigational product. As with biocontrol agents, emphasis is placed on safety evaluation at the end of physically confined laboratory testing as a major decision point for whether to enter field testing. Progression through the testing pathway is based on fulfillment of safety and efficacy criteria, and is subject to regulatory and ethical approvals, as well as social acceptance. The working group identified several resources that were considered important to support responsible field testing of gene drive mosquitoes.
James, Stephanie; Collins, Frank H.; Welkhoff, Philip A.; Emerson, Claudia; Godfray, H. Charles J.; Gottlieb, Michael; Greenwood, Brian; Lindsay, Steve W.; Mbogo, Charles M.; Okumu, Fredros O.; Quemada, Hector; Savadogo, Moussa; Singh, Jerome A.; Tountas, Karen H.; Touré, Yeya T.
2018-01-01
Abstract. Gene drive technology offers the promise for a high-impact, cost-effective, and durable method to control malaria transmission that would make a significant contribution to elimination. Gene drive systems, such as those based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein, have the potential to spread beneficial traits through interbreeding populations of malaria mosquitoes. However, the characteristics of this technology have raised concerns that necessitate careful consideration of the product development pathway. A multidisciplinary working group considered the implications of low-threshold gene drive systems on the development pathway described in the World Health Organization Guidance Framework for testing genetically modified (GM) mosquitoes, focusing on reduction of malaria transmission by Anopheles gambiae s.l. mosquitoes in Africa as a case study. The group developed recommendations for the safe and ethical testing of gene drive mosquitoes, drawing on prior experience with other vector control tools, GM organisms, and biocontrol agents. These recommendations are organized according to a testing plan that seeks to maximize safety by incrementally increasing the degree of human and environmental exposure to the investigational product. As with biocontrol agents, emphasis is placed on safety evaluation at the end of physically confined laboratory testing as a major decision point for whether to enter field testing. Progression through the testing pathway is based on fulfillment of safety and efficacy criteria, and is subject to regulatory and ethical approvals, as well as social acceptance. The working group identified several resources that were considered important to support responsible field testing of gene drive mosquitoes. PMID:29882508
A systematic review of dynamics in climate risk and vulnerability assessments
NASA Astrophysics Data System (ADS)
Jurgilevich, Alexandra; Räsänen, Aleksi; Groundstroem, Fanny; Juhola, Sirkku
2017-01-01
Understanding climate risk is crucial for effective adaptation action, and a number of assessment methodologies have emerged. We argue that the dynamics of the individual components in climate risk and vulnerability assessments has received little attention. In order to highlight this, we systematically reviewed 42 sub-national climate risk and vulnerability assessments. We analysed the assessments using an analytical framework with which we evaluated (1) the conceptual approaches to vulnerability and exposure used, (2) if current or future risks were assessed, and (3) if and how changes over time (i.e. dynamics) were considered. Of the reviewed assessments, over half addressed future risks or vulnerability; and of these future-oriented studies, less than 1/3 considered both vulnerability and exposure dynamics. While the number of studies that include dynamics is growing, and while all studies included socio-economic aspects, often only biophysical dynamics was taken into account. We discuss the challenges of assessing socio-economic and spatial dynamics, particularly the poor availability of data and methods. We suggest that future-oriented studies assessing risk dynamics would benefit from larger stakeholder involvement, discussion of the assessment purpose, the use of multiple methods, inclusion of uncertainty/sensitivity analyses and pathway approaches.
New insights into the mechanism of phthalate-induced developmental effects.
Mu, Xiyan; Huang, Ying; Li, Jia; Yang, Ke; Yang, Wenbo; Shen, Gongming; Li, Xuxing; Lei, Yunlei; Pang, Sen; Wang, Chengju; Li, Xuefeng; Li, Yingren
2018-06-11
To investigate the biological pathways involved in phthalate-induced developmental effects, zebrafish embryos were exposed to different concentrations of di-(2-ethylhexyl) (DEHP) and di-butyl phthalate (DBP) for 96 h. Embryonic exposure to DEHP and DBP induced body length decrease, yolk sac abnormities, and immune responses (up-regulation of immune proteins and genes). The lipidomic results showed that at a concentration of 50 μg/L, DEHP and DBP significantly reduced the levels of fatty acids, triglycerides, diacylglycerol, and cholesterol. These effects are partly explained by biological pathway enrichment based on data from the transcriptional and proteomic profiles. Co-exposure to DBP and ER antagonist did not significantly relieve the toxic symptoms compared with exposure to DBP alone. This indicates that phthalate-induced developmental abnormities in zebrafish might not be mediated by the ER pathway. In conclusion, we identified the possible biological pathways that mediate phthalate-induced developmental effects and found that these effects may not be driven by estrogenic activation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gust, M; Gagné, F; Berlioz-Barbier, A; Besse, J P; Buronfosse, T; Tournier, M; Tutundjian, R; Garric, J; Cren-Olivé, C
2014-05-01
This study highlights the usefulness of gastropods for water quality monitoring. Gastropods were caged upstream and downstream of an effluent discharge. Exposure was assessed by measurement of organic contaminants in water. Contamination of the Potamopyrgus antipodarum mudsnail was also measured using innovative techniques at the end of the 42 days of exposure. Biological effects were measured at the individual level (growth, reproduction) and subindividual level (energy reserves, vitellin-like proteins, steroid levels, expression of genes involved in estrogen signaling pathways), thus providing a better understanding of reprotoxic effects. The effluent was mainly contaminated by pharmaceutical compounds, as was the mudsnail. The highest concentrations were measured for oxazepam and were higher than 2 mg/kg downstream of the effluent discharge. Alkylphenols, bisphenol A, and vertebrate-like sex-steroid hormones were also bioaccumulated by the mudsnail downstream of the effluent. The combined use of water and snail contamination provided a complete exposure assessment. Exposure was further linked to biological effects. The mudsnail was shown to be a better adapted species for in situ exposures than Valvata piscinalis. Reproduction was sharply decreased after 6 weeks of exposure in the mudsnail. Feeding issues were excluded, confirming the toxic origin. These effects were related to estrogen signaling pathways using genomic analysis. Genes coding for proteins involved in nongenomic signaling pathways were inhibited, and those of genomic pathway repressors were induced. These results suggest that the chemical contamination due to the effluent discharge altered steroid control of reproduction and blocked the transition between oocyte and unshelled embryo, resulting in a drastic decrease of embryo production, while survival was not affected. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Rongli; Zhang, Juan; Xiong, Mengzhen; Wei, Haiyan; Tan, Kehong; Yin, Lihong; Pu, Yuepu
2015-01-01
Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage- sca-1+ c-kit+ (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity. PMID:26262635
Sun, Rongli; Zhang, Juan; Xiong, Mengzhen; Wei, Haiyan; Tan, Kehong; Yin, Lihong; Pu, Yuepu
2015-08-07
Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage(-) sca-1(+) c-kit(+) (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-09-30
The William Dick Lagoon site consists of three unlined lagoons (approximately 2.5 acres total area) which previously contained over four million gallons of rinse water from cleaning chemical tank trailers. In 1970, two of the lagoons breached and released approximately 300,000 gallons of wastewater into the nearby area and a small tributary. Trichloroethylene, toluene, 4,4-DDE, and polynuclear aromatic hydrocarbons have been reported in the soil on the site. Trichloroethylene was detected in a nearby spring, previously used as a water source by a small number of residents. Potential human exposure pathways include ingestion of contaminated water, dermal exposure to contaminatedmore » water and soil, and inhalation of contaminated dust and organics in the contaminated groundwater. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances. However, it does not appear that a human population is currently exposed to site contaminants at levels of health concern.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-10
A large portion of the ground water in the San Fernando Ground water Basin has been contaminated with volatile organic compounds (VOCs) at concentrations of public health concern. The study area encompasses approximately 190 square miles and currently has 4 designated National Priorities List Sites: North Hollywood, Crystal Springs, Pollock, and Verdugo. The primary contaminants in the study area are PCE and TCE, although other VOCs have been identified in the ground water. The sources of the contamination are currently unidentified and therefore physical hazards such as open storage tanks, vessels, drums, pits, or general debris associated with the sourcesmore » cannot be fully addressed. The sites are considered to be of public health concern because of the risk to human health caused by the likelihood of exposure to hazardous substances through the use of the contaminated groundwater and the potential for exposure at the contaminant source(s) through other exposure pathways.« less
Olvera Alvarez, Hector A; Kubzansky, Laura D; Campen, Matthew J; Slavich, George M
2018-06-03
Socially disadvantaged individuals are at greater risk for simultaneously being exposed to adverse social and environmental conditions. Although the mechanisms underlying joint effects remain unclear, one hypothesis is that toxic social and environmental exposures have synergistic effects on inflammatory processes that underlie the development of chronic diseases, including cardiovascular disease, diabetes, depression, and certain types of cancer. In the present review, we examine how exposure to two risk factors that commonly occur with social disadvantage-early life stress and air pollution-affect health. Specifically, we identify neuroimmunologic pathways that could link early life stress, inflammation, air pollution, and poor health, and use this information to propose an integrated, multi-level model that describes how these factors may interact and cause health disparity across individuals based on social disadvantage. This model highlights the importance of interdisciplinary research considering multiple exposures across domains and the potential for synergistic, cross-domain effects on health, and may help identify factors that could potentially be targeted to reduce disease risk and improve lifespan health. Copyright © 2018. Published by Elsevier Ltd.
Zhang, Jiliang; Zhang, Chunnuan; Sun, Ping; Huang, Maoxian; Fan, Mingzhen; Liu, Min
2017-07-01
Tributyltin (TBT) is widely spread in aquatic ecosystems. Although adverse effects of TBT on reproduction and lipogenesis are observed in fishes, the underlying mechanisms, especially in livers, are still scarce and inconclusive. Thus, RNA-sequencing runs were performed on the hepatic libraries of adult male rare minnow (Gobiocypris rarus) after TBT exposure for 60d. After differentially expressed genes were identified, enrichment analysis and validation by quantitative real-time PCR were conducted. The results showed that TBT up-regulated the profile of hepatic genes in the steroid biosynthesis pathway and down-regulated the profile of hepatic genes in the retinol metabolism pathway. In the hepatic steroid biosynthesis pathway, TBT might induce biosynthesis of cholesterol, which could affect the bioavailability of steroid hormones. More important, 3beta-hydroxysteroid 3-dehydrogenase, a key enzyme in the biosynthesis of all active steroid hormones, was up-regulated by TBT exposure. In the hepatic retinol metabolism pathway, TBT impaired retinoic acid homeostasis which plays essential roles in both reproduction and lipogenesis. The results of two pathways offered new mechanisms underlying the toxicology of TBT and represented a starting point from which detailed mechanistic links should be explored. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing natural direct and indirect effects through multiple pathways.
Lange, Theis; Rasmussen, Mette; Thygesen, Lau Caspar
2014-02-15
Within the fields of epidemiology, interventions research and social sciences researchers are often faced with the challenge of decomposing the effect of an exposure into different causal pathways working through defined mediator variables. The goal of such analyses is often to understand the mechanisms of the system or to suggest possible interventions. The case of a single mediator, thus implying only 2 causal pathways (direct and indirect) from exposure to outcome, has been extensively studied. By using the framework of counterfactual variables, researchers have established theoretical properties and developed powerful tools. However, in practical problems, it is not uncommon to have several distinct causal pathways from exposure to outcome operating through different mediators. In this article, we suggest a widely applicable approach to quantifying and ranking different causal pathways. The approach is an extension of the natural effect models proposed by Lange et al. (Am J Epidemiol. 2012;176(3):190-195). By allowing the analysis of distinct multiple pathways, the suggested approach adds to the capabilities of modern mediation techniques. Furthermore, the approach can be implemented using standard software, and we have included with this article implementation examples using R (R Foundation for Statistical Computing, Vienna, Austria) and Stata software (StataCorp LP, College Station, Texas).
SOURCES AND PATHWAYS OF LEAD EXPOSURE
Exposure is defined here as the amount of a substance that comes into contact with an absorbing surface during a specified period of time. The normal units of exposure are expressed as micrograms per day. The two components of exposure are the concentration of the substance in ...
Morgan, C; Reininghaus, U; Fearon, P; Hutchinson, G; Morgan, K; Dazzan, P; Boydell, J; Kirkbride, J B; Doody, G A; Jones, P B; Murray, R M; Craig, T
2014-01-01
There is evidence that a range of socio-environmental exposures is associated with an increased risk of psychosis. However, despite the fact that such factors probably combine in complex ways to increase risk, the majority of studies have tended to consider each exposure separately. In light of this, we sought to extend previous analyses of data from the AESOP (Aetiology and Ethnicity in Schizophrenia and Other Psychoses) study on childhood and adult markers of disadvantage to examine how they combine to increase risk of psychosis, testing both mediation (path) models and synergistic effects. All patients with a first episode of psychosis who made contact with psychiatric services in defined catchment areas in London and Nottingham, UK (n = 390) and a series of community controls (n = 391) were included in the AESOP study. Data relating to clinical and social variables, including parental separation and loss, education and adult disadvantage, were collected from cases and controls. There was evidence that the effect of separation from, but not death of, a parent in childhood on risk of psychosis was partially mediated through subsequent poor educational attainment (no qualifications), adult social disadvantage and, to a lesser degree, low self-esteem. In addition, there was strong evidence that separation from, but not death of, a parent combined synergistically with subsequent disadvantage to increase risk. These effects held for all ethnic groups in the sample. Exposure to childhood and adult disadvantage may combine in complex ways to push some individuals along a predominantly sociodevelopmental pathway to psychosis.
Vicario, Carmelo M.; Komeilipoor, Naeem; Cesari, Paola; Rafal, Robert D.; Nitsche, Michael A.
2014-01-01
Background Neuroimaging studies of chronic smokers report altered activity of several neural regions involved in the processing of rewarding outcomes. Neuroanatomical evidence suggests that these regions are directly connected to the tongue muscle through the corticobulbar pathways. Accordingly, we examined whether corticobulbar excitability might be considered a somatic marker for nicotine craving. Methods We compared motor-evoked potential (MEP) amplitudes recorded from the tongue and the extensor carpi radialis (control muscle) of chronic smokers under drug withdrawal and intake conditions as well as a nonsmoker group. All participants were tested during passive exposure to pictures showing a smoking cue or a meaningless stimulus. In the intake condition, chronic smokers were asked to smoke a real cigarette (CSn: group 1) or a placebo (CSp: group 2). Results Results show that MEP amplitudes recorded from the tongues of participants in the CSn and CSp groups under the withdrawal condition were selectively enhanced during exposure to a smoking cue. However, this effect on tongue MEP amplitudes disappeared in the intake condition for both the CSn and CSp groups. Limitations Limitations include the fact that the study was conducted in 2 different laboratories, the small sample size, the absence of data on chronic smoker craving strength and the different tastes of the real and placebo cigarettes. Conclusion These results suggest that, in chronic smokers, tongue muscle MEP amplitudes are sensitive to neural processes active under the physiological status of nicotine craving. This finding implicates a possible functional link between neural excitability of the corticobulbar pathway and the reward system in chronic smokers. PMID:24485386
Cao-Lei, Lei; Dancause, Kelsey N; Elgbeili, Guillaume; Massart, Renaud; Szyf, Moshe; Liu, Aihua; Laplante, David P; King, Suzanne
2015-01-01
Prenatal maternal stress (PNMS) in animals and humans predicts obesity and metabolic dysfunction in the offspring. Epigenetic modification of gene function is considered one possible mechanism by which PNMS results in poor outcomes in offspring. Our goal was to determine the role of maternal objective exposure and subjective distress on child BMI and central adiposity at 13½ years of age, and to test the hypothesis that DNA methylation mediates the effect of PNMS on growth. Mothers were pregnant during the January 1998 Quebec ice storm. We assessed their objective exposure and subjective distress in June 1998. At age 13½ their children were weighed and measured (n = 66); a subsample provided blood samples for epigenetic studies (n = 31). Objective and subjective PNMS correlated with central adiposity (waist-to-height ratio); only objective PNMS predicted body mass index (BMI). Bootstrapping analyses showed that the methylation level of genes from established Type-1 and -2 diabetes mellitus pathways showed significant mediation of the effect of objective PNMS on both central adiposity and BMI. However, the negative mediating effects indicate that, although greater objective PNMS predicts greater BMI and adiposity, this effect is dampened by the effects of objective PNMS on DNA methylation, suggesting a protective role of the selected genes from Type-1 and -2 diabetes mellitus pathways. We provide data supporting that DNA methylation is a potential mechanism involved in the long-term adaptation and programming of the genome in response to early adverse environmental factors. PMID:26098974
Chen, Yuanzhen; Si, Youbin; Zhou, Dongmei; Dang, Fei
2017-03-01
With the increasing application in antimicrobial products, silver nanoparticles (AgNP) are inevitably released into the terrestrial environment, and pose potential risks to invertebrates such as land snails Achatina fulica, which take up AgNP from food and water. Here we differentiate Ag uptake biodynamic between Ag forms (i.e., PVP-AgNP vs. AgNO 3 ) and between exposure pathways. Snails assimilated Ag efficiently from lettuce leaves pre-exposed to AgNP, with assimilation efficiencies (AEs) averaging 62-85% and food ingestion rates of 0.11 ± 0.03 g g -1 d -1 . Dietary Ag bioavailability was independent on Ag forms, as revealed by comparable AEs between AgNP and AgNO 3 . However, the uptake rate constant from water was much lower for AgNP relative to AgNO 3 (2 × 10 -4 vs. 0.12 L g -1 d -1 ). The elimination rate constants were 0.0093 ± 0.0037 d -1 for AgNP and 0.019 ± 0.0077 d -1 for AgNO 3 . Biodynamic modeling further showed that dietary exposure was the dominant uptake pathway for AgNP in most circumstances, while for AgNO 3 the relative importance of waterborne and dietary exposure depended on Ag concentrations in food and water. Our findings highlight the importance of dietary uptake of AgNP during bioaccumulation, which should be considered in the risk assessment of these nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling the Interplay between Childhood and Adult Adversity in Pathways to Psychosis
Morgan, Craig; Reininghaus, Ulrich; Fearon, Paul; Hutchinson, Gerard; Morgan, Kevin; Dazzan, Paola; Boydell, Jane; Kirkbride, James; Doody, Gillian A; Jones, Peter B; Murray, Robin M; Craig, Tom
2014-01-01
Background There is evidence that a range of socio-environmental exposures are associated with an increased risk of psychosis. However, despite the fact that such factors probably combine in complex ways to increase risk, the majority of studies have tended to consider each exposure separately. In light of this, we sought to extend previous analyses of data from the ÆSOP study on childhood and adult markers of disadvantage to examine how they combine to increase risk of psychosis, testing both mediation (path) models and synergistic effects. Method All patients with a first episode of psychosis who made contact with psychiatric services in defined catchment areas in London and Nottingham, UK (n = 390) and a series of community controls (n = 391) were included in the ÆSOP study. Data relating to clinical and social variables, including parental separation and loss, education and adult disadvantage, were collected from cases and controls. Results There was evidence that the effect of separation from, but not death of, a parent in childhood on risk of psychosis was partially mediated through subsequent poor educational attainment (no qualifications), adult social disadvantage and, to a lesser degree, low self-esteem. In addition, there was strong evidence that separation from, but not death of, a parent combined synergistically with subsequent disadvantage to increase risk. These effects held for all ethnic groups in the sample. Conclusions Exposure to childhood and adult disadvantage may combine in complex ways to push some individuals along a predominantly socio-developmental pathway to psychosis. PMID:23590972
Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas
2014-01-01
Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.].
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability an...
Burgess, Stephen; Daniel, Rhian M; Butterworth, Adam S; Thompson, Simon G
2015-01-01
Background: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. Methods: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. Results: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. Conclusions: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes. PMID:25150977
Deng, Ting; Zhang, Yu; Wu, Yang; Ma, Ping; Duan, Jiufei; Qin, Wei; Yang, Xu; Chen, Mingqing
2018-06-15
Epidemiological studies suggest a positive relationship between phthalate exposure and diabetes. However, little is known about the impact of dibutyl phthalate (DBP) exposure on the development of diabetes. To determine the role of DBP exposure on the development of type 2 diabetes, mice were orally exposed to DBP dosages of 0.5, 5, 50 mg/kg/day for 7 weeks, combined with a high fat diet and injections of a low dose of streptozotocin (STZ). The results showed that exposure to 50 mg/kg/day DBP alone induced a marked decrease in insulin secretion and glucose intolerance, but had no influence on insulin resistance. However, combined with a high fat diet and STZ treatment, DBP exposure markedly aggravated glucose intolerance, insulin tolerance and insulin resistance and induced lesions in the pancreas and kidney. Investigation of the role of DBP on the insulin signaling pathway, we found that DBP exposure could disrupt the PI3K expression and AKT phosphorylation, and decrease the level of GLUT-2 in the pancreas. Administering demethylasterriquinone B1, significantly increased the level of PI3K, AKT phosphorylation and GLUT-2 expression, effectively inhibiting the aggravation of diabetes. Our results suggested that DBP aggravated type 2 diabetes by disrupting the insulin signaling pathway and impairing insulin secretion. Copyright © 2018 Elsevier B.V. All rights reserved.
Gao, Bei; Chi, Liang; Mahbub, Ridwan; Bian, Xiaoming; Tu, Pengcheng; Ru, Hongyu; Lu, Kun
2017-04-17
Lead exposure remains a global public health issue, and the recent Flint water crisis has renewed public concern about lead toxicity. The toxicity of lead has been well established in a variety of systems and organs. The gut microbiome has been shown to be highly involved in many critical physiological processes, including food digestion, immune system development, and metabolic homeostasis. However, despite the key role of the gut microbiome in human health, the functional impact of lead exposure on the gut microbiome has not been studied. The aim of this study is to define gut microbiome toxicity induced by lead exposure in C57BL/6 mice using multiomics approaches, including 16S rRNA sequencing, whole genome metagenomics sequencing, and gas chromatography-mass spectrometry (GC-MS) metabolomics. 16S rRNA sequencing revealed that lead exposure altered the gut microbiome trajectory and phylogenetic diversity. Metagenomics sequencing and metabolomics profiling showed that numerous metabolic pathways, including vitamin E, bile acids, nitrogen metabolism, energy metabolism, oxidative stress, and the defense/detoxification mechanism, were significantly disturbed by lead exposure. These perturbed molecules and pathways may have important implications for lead toxicity in the host. Taken together, these results demonstrated that lead exposure not only altered the gut microbiome community structures/diversity but also greatly affected metabolic functions, leading to gut microbiome toxicity.
Refining the aggregate exposure pathway
Advancements in measurement technologies and modeling capabilities continue to result in an abundance of exposure information, adding to that currently in existence. However, fragmentation within the exposure science community acts as an obstacle for realizing the vision set fort...
Molecular pathway activation in cancer and tissue following space radiation exposure
NASA Astrophysics Data System (ADS)
Kovyrshina, Tatiana A.
Space radiation exposure is an important safety concern for astronauts, especially since one of the risks is carcinogenesis. This thesis explores the link between lung, colorectal, and breast cancer and iron particles and gamma radiation on a molecular level. We obtained DNA microarrays for each condition from the Gene Expression Omnibus (GEO), a public functional genomics data repository, cleaned up the data, and analysed overexpression and underexpression of pathway analysis. Our results show that pathways which participate in DNA replication appear to be overexpressed in cancer cells and cells exposed to ionizing radiation.
Goswami, Dinesh G; Tewari-Singh, Neera; Dhar, Deepanshi; Kumar, Dileep; Agarwal, Chapla; Ammar, David A; Kant, Rama; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh
2016-02-01
To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to the vesicating agent, nitrogen mustard (NM), a bifunctional alkylating analog of the chemical warfare agent sulfur mustard. Toxic effects and associated mechanisms were examined in maximally affected corneal tissue using corneal cultures and human corneal epithelial (HCE) cells exposed to NM. Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation, and levels of vascular endothelial growth factor, cyclooxygenase 2, and matrix metalloproteinase-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53, and H2A.X ser139 levels. NM exposure also induced caspase-3 and poly ADP ribose polymerase cleavage, suggesting their involvement in NM-induced apoptotic death in the rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in cyclooxygenase 2, matrix metalloproteinase-9, and vascular endothelial growth factor levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation, and neovascularization. NM exposure also induced activation of activator protein 1 transcription factor proteins and upstream signaling pathways including mitogen-activated protein kinases and Akt protein kinase, suggesting that these could be key factors involved in NM-induced corneal injury. Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant-induced ocular injuries, which could be helpful in the development of targeted therapies.
Pavanello, Sofia; Bonzini, Matteo; Angelici, Laura; Motta, Valeria; Pergoli, Laura; Hoxha, Mirjam; Cantone, Laura; Pesatori, Angela Cecilia; Apostoli, Pietro; Tripodi, Armando; Baccarelli, Andrea; Bollati, Valentina
2016-09-30
Continuous exposure to particulate air pollution (PM) is a serious worldwide threat to public health as it coherently links with increased morbidity and mortality of cardiorespiratory diseases (CRD), and of type 2 diabetes (T2D). Extracellular vesicles (EVs) are circular plasma membrane fragments released from human cells that transfer microRNAs between tissues. In the present work it was explored the hypothesis that EVs with their encapsulated microRNAs (EVmiRNAs) contents might mediate PM effects by triggering key pathways in CRD and T2D. Expression of EVmiRNAs analyzed by real-time PCR was correlated with oxidative stress, coagulation and inflammation markers, from healthy steel plant workers (n=55) with a well-characterized exposure to PM and PM-associated metals. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways regulated by PM-associated EVmiRNAs. Increased expression in 17 EVmiRNAs is associated with PM and metal exposure (p<0.01). Mir-196b that tops the list, being related to 9 different metals, is fundamental in insulin biosynthesis, however three (miR-302b, miR-200c, miR-30d) out of these 17 EVmiRNAs are in turn also related to disruptions (p<0.01) in inflammatory and coagulation markers. The study's findings support the hypothesis that adverse cardiovascular and metabolic effects stemming from inhalation exposures in particular to PM metallic component may be mediated by EVmiRNAs that target key factors in the inflammation, coagulation and glucose homeostasis pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Goswami, Dinesh G; Tewari-Singh, Neera; Dhar, Deepanshi; Kumar, Dileep; Agarwal, Chapla; Ammar, David A; Kant, Rama; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh
2015-01-01
Purpose To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to vesicating agent, nitrogen mustard (NM), a bi-functional alkylating analog of chemical warfare agent sulfur mustard (SM). Methods Toxic effects and associated mechanisms were examined in maximal affected corneal tissue employing corneal cultures and human corneal epithelial (HCE) cells exposed to nitrogen mustard (NM). Results Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation and levels of VEGF, COX-2 and MMP-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53 and H2A.X ser139 levels. NM exposure also induced caspase-3 and PARP cleavage, suggesting their involvement in NM-induced apoptotic death in rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in COX-2, MMP-9 and VEGF levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation and neovascularization. NM exposure also induced activation of AP-1 transcription factor proteins and upstream signaling pathways including MAPKs and Akt, suggesting that these could be key factors involved in NM-induced corneal injury. Conclusion Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant–induced ocular injuries, which could be helpful in the development of targeted therapies. PMID:26555588
Daskalakis, Nikolaos P; Cohen, Hagit; Cai, Guiqing; Buxbaum, Joseph D; Yehuda, Rachel
2014-09-16
Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes.
A tiered approach for integrating exposure and dosimetry with ...
High-throughput (HT) risk screening approaches apply in vitro dose-response data to estimate potential health risks that arise from exposure to chemicals. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biological mechanisms that lead to apical adverse health outcomes in living organisms. The chemical-agnostic Adverse Outcome Pathway (AOP) framework addresses this uncertainty by acting as a scaffold onto which pathway-based data can be arranged to aid in the understanding of in vitro toxicity testing results. In addition, risk estimation also requires reconciling chemical concentrations sufficient to produce bioactivity in vitro with concentrations that trigger a molecular initiating event (MIE) at the relevant biological target in vivo. Such target site exposures (TSEs) can be estimated using computational models to integrate exposure information with a chemical’s absorption, distribution, metabolism, and elimination (ADME) processes. In this presentation, the utility of a tiered approach for integrating exposure, ADME, and hazard into risk-based decision making will be demonstrated using several case studies, along with the investigation of how uncertainties in exposure and ADME might impact risk estimates. These case studies involve 1) identifying and prioritizing chemicals capable of altering biological pathways based on their potential to reach an in vivo target; 2) evaluating the infl
Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China
Qu, Chang-Sheng; Ma, Zong-Wei; Yang, Jin; Liu, Yang; Bi, Jun; Huang, Lei
2012-01-01
Heavy metal pollution is becoming a serious issue in developing countries such as China, and the public is increasingly aware of its adverse health impacts in recent years. We assessed the potential health risks in a lead-zinc mining area and attempted to identify the key exposure pathways. We evaluated the spatial distributions of personal exposure using indigenous exposure factors and field monitoring results of water, soil, food, and indoor and outdoor air samples. The risks posed by 10 metals and the contribution of inhalation, ingestion and dermal contact pathways to these risks were estimated. Human hair samples were also analyzed to indicate the exposure level in the human body. Our results show that heavy metal pollution may pose high potential health risks to local residents, especially in the village closest to the mine (V1), mainly due to Pb, Cd and Hg. Correspondingly, the residents in V1 had higher Pb (8.14 mg/kg) levels in hair than those in the other two villages. Most of the estimated risks came from soil, the intake of self-produced vegetables and indoor air inhalation. This study highlights the importance of site-specific multipathway health risk assessments in studying heavy-metal exposures in China. PMID:23152752
Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara
2016-02-15
Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
Mishra, Manish; Sharma, Anurag; Negi, M P S; Dwivedi, U N; Chowdhuri, D Kar
2011-05-18
Mutagen sensitive strains (mus) in Drosophila are known for their hypersensitivity to mutagens and environmental carcinogens. Accordingly, these mutants were grouped in pre- and post-replication repair pathways. However, studying mutants belonging to one particular repair pathway may not be adequate for examining chemical-induced genotoxicity when other repair pathways may neutralize its effect. To test whether both pre-and post-replication pathways are involved and effect of Cr(III)- and Cr(VI)-induced genotoxicity in absence or presence of others, we used double mutant approach in D. melanogaster. We observed DNA damage as evident by changes in Comet assay DNA migration in cells of larvae of Oregon R(+) and single mutants of pre- (mei-9, mus201 and mus210) and post- (mei-41, mus209 and mus309) replication repair pathways and also in double mutants of different combinations (pre-pre, pre-post and post-post replication repair) exposed to increasing concentrations of Cr(VI) (0.0, 5.0, 10.0 and 20.0 μg/ml) for 48 h. The damage was greater in pre-replication repair mutants after exposure to 5.0 μg/ml Cr(VI), while effects on Oregon R(+) and post replication repair mutants were insignificant. Post-replication repair mutants revealed significant DNA damage after exposure to 20.0 μg/ml Cr(VI). Further, double mutants generated in the above repair categories were examined for DNA damage following Cr(VI) exposure and a comparison of damage was studied between single and double mutants. Combinations of double mutants generated in the pre-pre replication repair pathways showed an indifferent interaction between the two mutants after Cr(VI) exposure while a synergistic interaction was evident in exposed post-post replication repair double mutants. Cr(III) (20.0 μg/ml) exposure to these strains did not induce any significant DNA damage in their cells. The study suggests that both pre- and post-replication pathways are affected in Drosophila by Cr(VI) leading to genotoxicity, which may have consequences for metal-induced carcinogenesis. 2011 Elsevier B.V. All rights reserved.
Risk-based indicators of Canadians' exposures to environmental carcinogens.
Setton, Eleanor; Hystad, Perry; Poplawski, Karla; Cheasley, Roslyn; Cervantes-Larios, Alejandro; Keller, C Peter; Demers, Paul A
2013-02-12
Tools for estimating population exposures to environmental carcinogens are required to support evidence-based policies to reduce chronic exposures and associated cancers. Our objective was to develop indicators of population exposure to selected environmental carcinogens that can be easily updated over time, and allow comparisons and prioritization between different carcinogens and exposure pathways. We employed a risk assessment-based approach to produce screening-level estimates of lifetime excess cancer risk for selected substances listed as known carcinogens by the International Agency for Research on Cancer. Estimates of lifetime average daily intake were calculated using population characteristics combined with concentrations (circa 2006) in outdoor air, indoor air, dust, drinking water, and food and beverages from existing monitoring databases or comprehensive literature reviews. Intake estimates were then multiplied by cancer potency factors from Health Canada, the United States Environmental Protection Agency, and the California Office of Environmental Health Hazard Assessment to estimate lifetime excess cancer risks associated with each substance and exposure pathway. Lifetime excess cancer risks in excess of 1 per million people are identified as potential priorities for further attention. Based on data representing average conditions circa 2006, a total of 18 carcinogen-exposure pathways had potential lifetime excess cancer risks greater than 1 per million, based on varying data quality. Carcinogens with moderate to high data quality and lifetime excess cancer risk greater than 1 per million included benzene, 1,3-butadiene and radon in outdoor air; benzene and radon in indoor air; and arsenic and hexavalent chromium in drinking water. Important data gaps were identified for asbestos, hexavalent chromium and diesel exhaust in outdoor and indoor air, while little data were available to assess risk for substances in dust, food and beverages. The ability to track changes in potential population exposures to environmental carcinogens over time, as well as to compare between different substances and exposure pathways, is necessary to support comprehensive, evidence-based prevention policy. We used estimates of lifetime excess cancer risk as indicators that, although based on a number of simplifying assumptions, help to identify important data gaps and prioritize more detailed data collection and exposure assessment needs.
A major pathway for exposure to many pesticides is through diet. The objectives were to rank pesticides by comparing their calculated daily dietary exposure as determined by EPA's Stochastic Human Exposure and Dose Simulation (SHEDS) to single pesticides for different age groups ...
Dietary ingestion may be a significant pathway of human exposure to many potentially toxic chemicals. The U.S.Environmental Protection Agency-National Human Exposure Laboratory has made the development of methods for measuring persoanl dietary exposures a high priority for its di...
Three key areas of scientific inquiry in the study of human exposure to environmental contaminants are 1) assessment of aggregate (i.e., multi-pathway, multi-route) exposures, 2) application of probabilistic methods to exposure prediction, and 3) the interpretation of biomarker m...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpkins, A.A.
1996-09-01
AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet.
Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D
2013-07-01
To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.
HUMAN EXPOSURE MEASUREMENTS - CHILDREN'S FOCUS
In support of the Food Quality Protection Act of 1996, research under this task is designed to identify those pesticides, pathways, and activities that represent the highest potential exposures to children and to determine the factors that influence these exposures. The research...
Aggregate Exposure Pathway Workshop
Recognizing the growing demands for conducting rapid, cost-effective, and reliable exposure assessment on the thousands of chemicals in commerce, a committee convened by the National Research Council (NRC) developed its vision for exposure science in the 21st century. A necessary...
Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima
2017-04-12
Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.
Green, Angharad E; Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar
2018-05-01
Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development.
Weiden, Michael D.; Kwon, Sophia; Caraher, Erin; Berger, Kenneth I.; Reibman, Joan; Rom, William N.; Prezant, David J.; Nolan, Anna
2016-01-01
Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung’s normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after World Trade Center (WTC) exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1
Balbus, John M; Boxall, Alistair B A; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren
2013-01-01
Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Copyright © 2012 SETAC.
Zuo, Zhenghong; Cai, Tongjian; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui
2012-01-01
Background: Hexavalent chromium [Cr(VI)] is recognized as a human carcinogen via inhalation. However, the molecular mechanisms by which Cr(VI) causes cancers are not well understood. Objectives: We evaluated cyclooxygenase-2 (COX-2) expression and the signaling pathway leading to this induction due to Cr(VI) exposure in cultured cells. Methods: We used the luciferase reporter assay and Western blotting to determine COX-2 induction by Cr(VI). We used dominant negative mutant, genetic knockout, gene knockdown, and chromatin immunoprecipitation approaches to elucidate the signaling pathway leading to COX-2 induction. Results: We found that Cr(VI) exposure induced COX-2 expression in both normal human bronchial epithelial cells and mouse embryonic fibroblasts in a concentration- and time-dependent manner. Deletion of IKKβ [inhibitor of transcription factor NFκB (IκB) kinase β; an upstream kinase responsible for nuclear factor κB (NFκB) activation] or overexpression of TAM67 (a dominant-negative mutant of c-Jun) dramatically inhibited the COX-2 induction due to Cr(VI), suggesting that both NFκB and c-Jun/AP-1 pathways were required for Cr(VI)-induced COX-2 expression. Our results show that p65 and c-Jun are two major components involved in NFκB and AP-1 activation, respectively. Moreover, our studies suggest crosstalk between NFκB and c-Jun/AP-1 pathways in cellular response to Cr(VI) exposure for COX-2 induction. Conclusion: We demonstrate for the first time that Cr(VI) is able to induce COX-2 expression via an NFκB/c-Jun/AP-1–dependent pathway. Our results provide novel insight into the molecular mechanisms linking Cr(VI) exposure to lung inflammation and carcinogenesis. PMID:22472290
Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome
Waugh, Stacey; Kashon, Michael L.; Li, Shengqiao; Miller, Gerome R.; Johnson, Claud; Krajnak, Kristine
2016-01-01
Objective The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Methods Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s2, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Results Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Conclusion Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division. PMID:27058473
Population dose commitments due to radioactive releases from nuclear power plant sites in 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1980. In addition doses derived from the shutdown reactors at the Three Mile Island site were included. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showingmore » the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 40 person-rem to a low of 0.02 person-rem with an arithmetic mean of 4 person-rem. The total population dose for all sites was estimated at 180 person-rem for the 96 million people considered at risk.« less
Population dose commitments due to radioactive releases from nuclear power plant sites in 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk.« less
Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?
Rothwell, Patrick E
2016-01-01
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.
Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?
Rothwell, Patrick E.
2016-01-01
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789
NEAR ROADWAYS EXPOSURE TO URBAN AIR POLLUTANTS STUDY (NEXUS)
The proposed research addresses both the effects and the mechanisms by which traffic-associated exposures induce exaggerated airway responses in children with asthma, and how these exposures cause biologic responses on inflammatory pathways, oxidative stress, and the frequ...
INTEGRATED HUMAN EXPOSURE SOURCE-TO-DOSE MODELING
The NERL human exposure research program is designed to provide a sound, scientifically-based approach to understanding how people are actually exposed to pollutants and the factors and pathways influencing exposure and dose. This research project serves to integrate and incorpo...
Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd
2015-01-01
Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent. PMID:25792804
Leveraging Gene-Environment Interactions and Endotypes for Asthma Gene Discovery
Bønnelykke, Klaus; Ober, Carole
2016-01-01
Asthma is a heterogeneous clinical syndrome that includes subtypes of disease with different underlying causes and disease mechanisms. Asthma is caused by a complex interaction between genes and environmental exposures; early-life exposures in particular play an important role. Asthma is also heritable, and a number of susceptibility variants have been discovered in genome-wide association studies, although the known risk alleles explain only a small proportion of the heritability. In this review, we present evidence supporting the hypothesis that focusing on more specific asthma phenotypes, such as childhood asthma with severe exacerbations, and on relevant exposures that are involved in gene-environment interactions (GEIs), such as rhinovirus infections, will improve detection of asthma genes and our understanding of the underlying mechanisms. We will discuss the challenges of considering GEIs and the advantages of studying responses to asthma-associated exposures in clinical birth cohorts, as well as in cell models of GEIs, to dissect the context-specific nature of genotypic risks, to prioritize variants in genome-wide association studies, and to identify pathways involved in pathogenesis in subgroups of patients. We propose that such approaches, in spite of their many challenges, present great opportunities for better understanding of asthma pathogenesis and heterogeneity and, ultimately, for improving prevention and treatment of disease. PMID:26947980
Wing, Steve; Richardson, David B.; Hoffmann, Wolfgang
2011-01-01
Background In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. Objectives We review epidemiologic principles used in studies of generic exposure–response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Discussion Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Conclusions Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes. PMID:21147606
Chronic Exposure to Uranium from Gestation: Effects on Behavior and Neurogenesis in Adulthood
Dinocourt, Céline; Culeux, Cécile; Legrand, Marie; Elie, Christelle; Lestaevel, Philippe
2017-01-01
Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium. Models of uranium exposure during brain development highlight the need to improve our understanding of the effects of uranium. In a model in which uranium exposure began from the first day of gestation, we studied the neurobehavioral consequences as well as the progression of hippocampal neurogenesis in animals from dams exposed to uranium. Our results show that 2-month-old rats exposed to uranium from gestational day 1 displayed deficits in special memory and a prominent depressive-like phenotype. Cell proliferation was not disturbed in these animals, as shown by 5-bromo-2′deoxyuridine (BrdU)/neuronal specific nuclear protein (NeuN) immunostaining in the dentate gyrus. However, in some animals, the pyramidal cell layer was dispersed in the CA3 region. From our previous results with the same model, the hypothesis of alterations of neurogenesis at prior stages of development is worth considering, but is probably not the only one. Therefore, further investigations are needed to correlate cerebral dysfunction and its underlying mechanistic pathways. PMID:28513543
The impact of PFOS on health in the general population: a review.
Saikat, Sohel; Kreis, Irene; Davies, Bethan; Bridgman, Stephen; Kamanyire, Robie
2013-02-01
Perfluorooctane sulphonate (PFOS) is a persistent organic pollutant that is toxic, bioaccumulative and undergoes wide transportation across all environmental media. It has been widely detected in environmental samples but there is limited information about the health effects on humans from environmental exposure. This paper presents the findings of a review of the literature on the impact of PFOS on the health of the general population. Fifteen relevant epidemiological studies were identified that looked at the association between human PFOS exposure and a range of health related outcomes. Small but statistically significant associations have been reported with PFOS and total cholesterol, glucose metabolism, body mass index (BMI), thyroid function, infertility, breast feeding, uric acid and attention deficit/hyperactivity disorder (ADHD). The true significance of these findings is uncertain due to the inconsistencies in some of the study results and the limitations of the literature. The majority of studies were cross-sectional and considered surrogate markers of health (e.g. cholesterol levels). The available literature is also limited in ascertaining the link between PFOS concentrations in the environment, exposure pathways and health effects. We conclude that the current evidence is inconclusive and further large-scale prospective cohort studies would be useful to assess the association between environmental exposure to PFOS, appropriate biomarkers (e.g. serum levels of PFOS) and health outcomes.
Chronic Exposure to Uranium from Gestation: Effects on Behavior and Neurogenesis in Adulthood.
Dinocourt, Céline; Culeux, Cécile; Legrand, Marie; Elie, Christelle; Lestaevel, Philippe
2017-05-17
Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium. Models of uranium exposure during brain development highlight the need to improve our understanding of the effects of uranium. In a model in which uranium exposure began from the first day of gestation, we studied the neurobehavioral consequences as well as the progression of hippocampal neurogenesis in animals from dams exposed to uranium. Our results show that 2-month-old rats exposed to uranium from gestational day 1 displayed deficits in special memory and a prominent depressive-like phenotype. Cell proliferation was not disturbed in these animals, as shown by 5-bromo-2'deoxyuridine (BrdU)/neuronal specific nuclear protein (NeuN) immunostaining in the dentate gyrus. However, in some animals, the pyramidal cell layer was dispersed in the CA3 region. From our previous results with the same model, the hypothesis of alterations of neurogenesis at prior stages of development is worth considering, but is probably not the only one. Therefore, further investigations are needed to correlate cerebral dysfunction and its underlying mechanistic pathways.
Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response
Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo
2015-01-01
Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474
From the exposome to mechanistic understanding of chemical ...
BACKGROUND: Current definitions of the exposome expand beyond the initial idea to consider the totality of exposure and aim to relate to biological effects. While the exposome has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. OBJECTIVES: We explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept - a framework to structure and organize the sequence of toxicological events from an initial molecular interaction of a chemical to an adverse outcome.METHODS: This review was informed by a Workshop organized by the Integrated Project EXPOSOME at the UFZ Helmholtz Centre for Environmental Research in Leipzig, Germany. DISCUSSION: The exposome encompasses all chemicals, including exogenous chemicals and endogenous compounds that are produced in response to external factors. By complementing the exposome research with the AOP concept, we can achieve a better mechanistic understanding, weigh the importance of various components of the exposome, and determine primary risk drivers. The ability to interpret multiple exposures and mixture effects at the mechanistic level requires a more holistic approach facilitated by the exposome concept.CONCLUSION: Incorporating the AOP conc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu
Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 humanmore » skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA(III) perturbs Nrf2 pathway and selenoprotein synthesis.« less
Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.
2016-01-01
Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053
NASA Astrophysics Data System (ADS)
Chai, Tingting; Cui, Feng; Yin, Zhiqiang; Yang, Yang; Qiu, Jing; Wang, Chengju
2016-09-01
In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.
The National Human Exposure Assessment Survey (NHEXAS) Phase I field study conducted in EPA Region 5 (Great Lakes Area) provides extensive exposure data on a representative sample of approximately 250 residents of the region. Associated environmental media and biomarker (blood...
Bilbey, Nicolas; Blanke, Philipp; Naoum, Christopher; Arepalli, Chesnel Dey; Norgaard, Bjarne Linde; Leipsic, Jonathon
2016-01-01
This study aims to determine the potential impact of introducing noninvasive fractional flow reserve based on coronary computed tomography angiography (CTA) into clinical practice, with respect to radiation dose exposure and downstream event rate. We modeled a population of 1000 stable, symptomatic patients with suspected coronary artery disease, using the disease prevalence from the CONFIRM registry to estimate the pretest likelihood. Four potential clinical pathways were modeled based on the first noninvasive diagnostic test performed: (1) dobutamine echo; (2) single-photon emission computerized tomography (SPECT); (3) coronary CTA; and (4) CTA+FFRCT and leading to possible invasive coronary angiography. The posttest likelihood of testing positive/negative by each test was based on the presenting disease burden and diagnostic accuracy of each test. The dobutamine echo pathway resulted in the lowest radiation dose of 5.4 mSv, with 4.0 mSv from angiography and 1.4 mSv from percutaneous coronary intervention (PCI). The highest dose was with SPECT, with 26.5 mSv. The coronary computed tomography angiography (cCTA) pathway demonstrated a dose of 14.2 mSv, 3.7 mSv from cCTA, 7.7 mSv from angiography, and 2.8 mSv from PCI. The CTA+FFRCT pathway exhibited a radiation dose of 9.7 mSv, 3.7 mSv for cCTA, 4.2 mSv for angiography, and 1.8 mSv for PCI. Radiation dose exposure for CTA+FFRCT was lower than for SPECT (P<.001). The CTA+FFRCT pathway resulted in the lowest projected death/myocardial infarction rate at 1 year (2.44%) while the dobutamine stress pathway had the highest 1-year event rate (2.84%). Our analysis suggests that integrating FFRCT into the CTA clinical pathway may result in reduced cumulative radiation exposure, while promoting favorable clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Bekö, Gabriel; Weschler, Charles J.; Langer, Sarka; Callesen, Michael; Toftum, Jørn; Clausen, Geo
2013-01-01
Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child’s home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw) and BBzP the lowest (median: 0.49 µg/d/kg-bw). For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI) for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDIcum), which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDIcum. Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child’s total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values. PMID:23626820
Adapting biomarker technologies to adverse outcome ...
Adverse outcome pathways (AOP) research is a relatively new concept in human systems biology for assessing the molecular level linkage from an initiating (chemical) event that could lead to a disease state. Although most implementations of AOPs are based on liquids analyses, there are now new technologies being considered derived from the broad field of breath research, especially in applications of gas-phase analysis and instrumentation. The ultimate goal is to discover disease progressions in human or animal systems, identify them at the molecular or cellular level, and then choose analytes that can distinctly define the presence of a particular path (Ankley et al. 2010, Villeneuve et al. 2014). Once such in vivo pathways are identified, then in vitro assays can be developed for streamlined testing of chemical effects without additional human or animal based studies (Pleil et al. 2012). Recent work has focused on discovery analysis in breath, or other biological media, wherein as many as possible compounds are cataloged and then linked to their biochemical source as exogenous (external), endogenous (internal) or from the microbiome (Pleil et al. 2013a, de Lacy Costello 2014, Pleil et al. 2013b, Trefz et al. 2013, Pleil et al. 2014). Such research lays the groundwork for identifying compounds from systems biology that might be relevant for developing AOPs for in vitro research. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atm
Ryu, Do-Yeal; Rahman, Md Saidur; Pang, Myung-Geol
2017-09-06
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.
Ryu, Do-Yeal
2017-01-01
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases. PMID:28878155
Zhang, Xingli; Zou, Wei; Mu, Li; Chen, Yuming; Ren, Chaoxiu; Hu, Xiangang; Zhou, Qixing
2016-11-15
Although organophosphate flame retardants (OPFRs) have been shown to accumulate in abiotic and biotic environmental compartments, data about OPFRs concentrations in various foods are limited and are none in humans through diets. In this work, the concentrations of 6 typical OPFRs were investigated in 50 rice samples, 75 commonly consumed foods and 45 human hair samples from China. The dietary intakes of OPFRs for adult people via food ingestion were estimated. The concentrations of ΣOPFRs in foods ranged from 0.004ng/g to 287ng/g. OPFRs were detected in 53.3% of the human hair samples. The highest OPFRs concentrations were found in rice and vegetables. Tri(2-chloroethyl)phosphate(TCEP), tris(2-chloroisopropyl)phosphate(TCIPP), and tri(2-ethyltexyl)phosphate(TEHP) were predominant in all food samples. OPFRs concentrations in foods were not significantly affected by the packaging materials. The mean dietary intakes of ΣOPFRs for adult males and females were 539 and 601ng/kg body weight/day, respectively. The greatest contribution to these values is from rice, accounting for approximately 60% of the total intake, particularly from rice protein. Rice ingestion was considered a potential major pathway for human exposure to OPFRs, and regional differences in the levels of OPFRs in foods and dietary differences should be given more attention in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Client knowledge, attitudes and practices regarding zoonoses: a metropolitan experience.
Steele, S G; Mor, S M
2015-12-01
To assess knowledge, attitudes and practices in relation to zoonoses among pet owners. Questionnaire completed by 81 clients attending a small animal practice in Sydney, Australia. Most (64.5%) clients reported that they were not concerned about contracting a disease from their pet, but 7.9% and 3.9% of clients were a little or very concerned, respectively; 23.7% of clients stated that they had not considered the possibility. Although respondents indicated that they had heard of a number of zoonoses, knowledge of animal sources and exposure pathways was generally low, particularly for the more important zoonoses in Australia such as toxoplasmosis, psittacosis and Q fever. Only 37.0%, 12.3% and 11.1%, respectively, of clients had heard of these diseases. Most respondents (84.1%) indicated that they viewed veterinarians as having the primary responsibility for providing information about zoonoses, yet less than half (48.1%) recalled ever getting information from their veterinarian. Likewise, many respondents (48.1%) indicated that medical professionals played a role in providing information about zoonoses, yet less than one-quarter (23.5%) recalled ever getting information from their doctor. The low level of knowledge among pet owners about sources and exposure pathways indicates a need to strengthen communication between veterinarians, doctors and their clients around the possible risks of zoonoses and appropriate prevention strategies. © 2015 Australian Veterinary Association.
Raffy, Gaëlle; Mercier, Fabien; Glorennec, Philippe; Mandin, Corinne; Le Bot, Barbara
2018-06-15
Many semi-volatile organic compounds (SVOCs), suspected of reprotoxic, neurotoxic or carcinogenic effects, were measured in indoor settled dust. Dust ingestion is a non-negligible pathway of exposure to some of these SVOCs, and an accurate knowledge of the real exposure is necessary for a better evaluation of health risks. To this end, the bioaccessibility of SVOCs in dust needs to be considered. In the present work, bioaccessibility measurement methods, SVOCs' oral bioaccessibility data and influencing factors were reviewed. SVOC bioaccessibilities (%) ranged from 11 to 94, 8 to 100, 3 to 92, 1 to 81, 6 to 52, and 2 to 17, for brominated flame retardants, organophosphorus flame retardants, polychlorobiphenyls, phthalates, pesticides and polycyclic aromatic hydrocarbons, respectively. Measurements method produced varying results depending on the inclusion of food and/or sink in the model. Characteristics of dust, e.g., organic matter content and particle size, also influenced bioaccessibility data. Last, results were influenced by SVOC properties, such as octanol/water partition coefficient and migration pathway into dust. Factors related to dust and SVOCs could be used in prediction models. To this end, more bioaccessibility studies covering more substances should be performed, using methods that are harmonized and validated by comparison to in-vivo studies. Copyright © 2018 Elsevier B.V. All rights reserved.
An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...
Douglas, Ronald H
2018-05-01
The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Strong, Larkin L.; Thompson, Beti; Koepsell, Thomas D.; Meischke, Hendrika; Coronado, Gloria D.
2011-01-01
Objective To evaluate the effectiveness of a community intervention in promoting adoption of behaviors to reduce the take-home pathway of pesticide exposure in farmworker households. Methods Using two cross-sectional samples of farmworker households in 11 intervention and 12 comparison communities in Washington State, we examined whether differences over time in reported pesticide safety practices varied by community intervention status. Results Pesticide safety practices increased in both intervention and comparison communities over time. Changes were significantly greater in intervention communities for removing work shoes before entering the home (p=0.003) and marginally significantly greater for changing out of work clothes within one hour of arriving home (p=0.05). Conclusions The intervention was associated with modest effects in certain behaviors among farmworkers. Further research is needed to identify successful strategies for reducing the take-home pathway of pesticide exposure. PMID:19620892
Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.
Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J
2009-04-01
Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.
Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Maryka H.
Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure,more » within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.« less
Data Sources for Prioritizing Human Exposure to Chemicals
Humans may be exposed to thousands of chemicals through contact in the workplace, home, and via air, water, food, and soil. A major challenge is estimating chemical exposures, which requires understanding potential exposure pathways directly related to how chemicals are used. Wit...
Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon
2014-01-01
Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911
Potential fluid mechanic pathways of platelet activation.
Shadden, Shawn C; Hendabadi, Sahar
2013-06-01
Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here, we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport.
Potential fluid mechanic pathways of platelet activation
Shadden, Shawn C.; Hendabadi, Sahar
2012-01-01
Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport. PMID:22782543
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho
2015-01-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145
Moriwaki, Hiroshi; Takatah, Yumiko; Arakawa, Ryuichi
2003-10-01
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are shown to be globally distributed, environmentally persistent and bioaccumulative. Although there is evidence that these compounds exist in the serum of non-occupationally exposed humans, the pathways leading to the presence of PFOS and PFOA are not well characterized. The concentrations of PFOS and PFOA in the vacuum cleaner dust collected in Japanese homes were measured. The compounds were detected in all the dust samples and the ranges were 11-2500 ng g(-1) for PFOS and 69-3700 ng g(-1) for PFOA. It was ascertained that PFOS and PFOA were present in the dust in homes, and that the absorption of the dust could be one of the exposure pathways of the PFOS and PFOA to humans. With regard to risk management, it is important to consider the usage of PFOS and PFOA in the indoor environment in order to avoid further pollution.
Pluchino, Lenora Ann; Liu, Amethyst Kar-Yin; Wang, Hwa-Chain Robert
2015-03-01
Most breast cancers occur sporadically due to long-term exposure to low-dose carcinogens in the diet and the environment. Specifically, smoke, polluted air, and high-temperature cooked meats comprise multiple carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), benzo[α]pyrene (B[α]P), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). We sought to determine if these carcinogens act together to induce breast cell carcinogenesis, and if so, whether noncytotoxic dietary agents could intervene. We demonstrated that coexposure to physiologically achievable doses of NNK, B[α]P, and PhIP (NBP) holistically enhanced initiation and progression of breast cell carcinogenesis. Reactive oxygen species (ROS) and activation of the ERK pathway were transiently induced by NBP in each exposure, and cross talk between reinforced ROS elevation and ERK activation played an essential role in increased DNA oxidation and damage. After cumulative exposures to NBP, this cross talk contributed to enhanced initiation of cellular carcinogenesis and led to enhanced acquisition of cancer-associated properties. Using NBP-induced transient changes, such as ROS elevation and ERK pathway activation, and cancer-associated properties as targeted endpoints, we revealed, for the first time, that two less-studied dietary compounds, ergosterol and mimosine, at physiologically achievable noncytotoxic levels, were highly effective in intervention of NBP-induced cellular carcinogenesis. Combined ergosterol and mimosine were more effective than individual agents in blocking NBP-induced transient endpoints, including ROS-mediated DNA oxidation, which accounted for their preventive ability to suppress progression of NBP-induced cellular carcinogenesis. Thus, dietary components, such as mushrooms containing ergosterol and legumes containing mimosine, should be considered for affordable prevention of sporadic breast cancer associated with long-term exposure to environmental and dietary carcinogens. Copyright © 2014 Elsevier Inc. All rights reserved.
Nedveckaite, T; Gudelis, A; Vives i Batlle, J
2013-05-01
This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Yook C.; Rodean, H.C.; Anspaugh, L.R.
The Nevada Applied Ecology Group (NAEG) Model of transport and dose for transuranic radionuclides was modified and expanded for the analysis of radionuclides other than pure alpha-emitters. Doses from internal and external exposures were estimated for the inventories and soil distributions of the individual radionuclides quantified in Areas 2 and 4 of the Nevada Test Site (NTS). We found that the dose equivalents via inhalation to liver, lungs, bone marrow, and bone surface from the plutonium isotopes and /sup 241/Am, those via ingestion to bone marrow and bone surfaces from /sup 90/Sr, and those via ingestion to all the targetmore » organs from /sup 137/Cs were the highest from internal exposures. The effective dose equivalents from /sup 137/Cs, /sup 152/Eu, and /sup 154/Eu were the highest from the external exposures. The /sup 60/Co, /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu dose estimates for external exposures greatly exceeded those for internal exposures. The /sup 60/Co, /sup 90/Sr, and /sup 137/Cs dose equivalents from internal exposures were underestimated due to the adoption of some of the foodchain parameter values originally selected for /sup 239/Pu. Nonetheless, the ingestion pathway contributed significantly to the dose estimates for /sup 90/Sr and /sup 137/Cs, but contributed very much less than external exposures to the dose estimates for /sup 60/Co. Therefore, the use of more appropriate values would not alter the identification of important radionuclides, pathways, target organs, and exposure modes in this analysis. 19 refs., 13 figs., 12 tabs.« less
Eguchi, Akifumi; Sakurai, Kenichi; Watanabe, Masahiro; Mori, Chisato
2017-05-01
Polychlorinated biphenyls (PCBs) have been associated with adverse human reproductive and fetal developmental measures or outcomes because of their endocrine-disrupting effects; however, the biological mechanisms of adverse effects of PCB exposure in humans are not currently well established. In this study, we aimed to identify the biological pathways and potential biomarkers of PCB exposure in maternal and umbilical cord serum using a hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) metabolomics platform. The median concentration of total PCBs in maternal (n=93) and cord serum (n=93) were 350 and 70pgg -1 wet wt, respectively. PCB levels in maternal and fetal serum from the Chiba Study of Mother and Children's Health (C-MACH) cohort are comparable to those of earlier cohort studies conducted in Japan, the USA, and European countries. We used the random forest model with the metabolome profile to predict exposure levels of PCB (first quartile [Q1] and fourth quartile [Q4]) for pregnant women and fetuses. In the prediction model for classification of Q1 versus Q4 (area-under-curve [AUC]: pregnant women=0.812 and fetuses=0.919), citraconic acid level in maternal serum and ethanolamine, p-hydroxybenzoate, and purine levels in cord serum had >0.70 AUC values. These candidate biomarkers and metabolite included in composited models were related to glutathione and amino acid metabolism in maternal serum and the amino acid metabolism and ubiquinone and other terpenoid-quinone biosynthesis in cord serum (FDR <0.10), indicating disruption of metabolic pathways by PCB exposure in pregnant women and fetuses. These results showed that metabolome analysis might be useful to explore potential biomarkers and related biological pathways for PCB exposure. Thus, more detailed studies are needed to verify sensitivity of the biomarkers and clarify the biochemical changes resulting from PCB exposure. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Xuesheng; Fang, Bingxin; Wang, Tantan; Liu, Hui; Feng, Mingbao; Qin, Li; Zhang, Rui
2018-06-17
Polychlorinated diphenyl sulfides (PCDPSs) are considered as a class of sulfur-containing dioxin-like pollutants with ubiquitous occurrence in natural waters and potential ecotoxicity to aquatic organisms. However, to date, no information is available regarding the bioaccumulation and biotransformation of PCDPSs in aquatic species. In this study, the uptake and depuration kinetics of 4,4'-dichlorodiphenyl sulfide (4,4'-di-CDPS) in the freshwater mussel Anodonta woodiana were investigated through semi-static exposure. The uptake rates (k 1 ), depuration rates (k 2 ), biological half-lives (t 1/2 ) and tissue-specific bioconcentration factors (BCFs) of 4,4'-di-CDPS in the gill, liver and muscle were measured in the range of 0.509-21.734 L d -1 g -1 d.w., 0.083-0.221 d -1 , 3.14-8.35 d and 3.662 × 10 3 -124.979 × 10 3 L kg -1 l.w., respectively. With the increase in exposure dose, the values of k 1 and BCFs were significantly reduced, indicating that low-dose exposure to 4,4'-di-CDPS could lead to more severe bioaccumulation. Based on the analysis of mass spectra of the extracted liver samples, the structures of four metabolites of 4,4'-di-CDPS were identified. Moreover, the levels of these metabolites were also quantitatively measured. The proposed metabolic pathways of 4,4'-di-CDPS in mussel liver included sulfur-oxidation, dechlorination and methoxylation. Comparatively, sulfur-oxidation was the predominant metabolic pathway of 4,4'-di-CDPS in the liver of A. woodiana. These results provide valuable data and fill the information gap on the bioaccumulation and metabolism of PCDPSs in freshwater species. Copyright © 2018 Elsevier B.V. All rights reserved.
The Health Impacts of Energy Policy Pathways in Ulaanbaatar, Mongolia: A Total Exposure Assessment
NASA Astrophysics Data System (ADS)
Hill, L. A.; Damdinsuren, Y.; Olkhanud, P. B.; Smith, K. R.; Turner, J. R.; Edwards, R.; Odsuren, M.; Ochir, C.
2015-12-01
Ulaanbaatar is home to nearly half of Mongolia's 2.8 million residents. The city's rapid growth, frigid winters, valley topography, and reliance on coal-fired stoves have led to some of the worst winter pollution levels in the world. To better understand this issue, we modeled integrated PM2.5exposures and related health impacts for various city-wide heating policies through 2024. This assessment is one of the first to employ a total exposure approach and results of the 2014 Comparative Risk Assessments of the Global Burden of Disease Project (CRA/GBD) in a policy-relevant energy study. Emissions related to heating, traffic, and power generation were considered under Business as Usual, Moderate Improvement, and Max Improvement scenarios. Calibrated outdoor models were combined with indoor models, local infiltration and time activity estimates, and demographic projections to estimate PM2.5exposures in 2014 and 2024. Indoor exposures were assigned by heating type, home type, and smoking status; outdoor exposures were assigned through geocoding. Population average annual exposures were calculated and applied to local disease rates and integrated exposure-response curves (2014 CRA/GBD) to arrive at annual projections of premature deaths and DALYs. We estimate 2014 annual average exposures at 68 μg/m3, dictated almost exclusively by indoor winter exposures. Under current trends, annual exposures increase 10% to 75 μg/m3 in 2024. This is in stark contrast to the moderate and max improvement scenarios, which lead to 2024 annual exposures that are 31%, and 68% lower, respectively. Under the Moderate scenario, 2024 per capita annual DALY and death burdens drop 26% and 22%, respectively, from 2014 levels. Under the Max scenario, 2024 per capita annual DALY and death burdens drop 71% and 66%, respectively, from 2014. SHS becomes a major contributor as emissions from other sectors decrease. Reductions are dominated by cardiovascular and lower respiratory diseases in children.
Mukherjee, Dwaipayan; Royce, Steven G.; Alexander, Jocelyn A.; Buckley, Brian; Isukapalli, Sastry S.; Bandera, Elisa V.; Zarbl, Helmut; Georgopoulos, Panos G.
2014-01-01
Zearalenone (ZEA), a fungal mycotoxin, and its metabolite zeranol (ZAL) are known estrogen agonists in mammals, and are found as contaminants in food. Zeranol, which is more potent than ZEA and comparable in potency to estradiol, is also added as a growth additive in beef in the US and Canada. This article presents the development and application of a Physiologically-Based Toxicokinetic (PBTK) model for ZEA and ZAL and their primary metabolites, zearalenol, zearalanone, and their conjugated glucuronides, for rats and for human subjects. The PBTK modeling study explicitly simulates critical metabolic pathways in the gastrointestinal and hepatic systems. Metabolic events such as dehydrogenation and glucuronidation of the chemicals, which have direct effects on the accumulation and elimination of the toxic compounds, have been quantified. The PBTK model considers urinary and fecal excretion and biliary recirculation and compares the predicted biomarkers of blood, urinary and fecal concentrations with published in vivo measurements in rats and human subjects. Additionally, the toxicokinetic model has been coupled with a novel probabilistic dietary exposure model and applied to the Jersey Girl Study (JGS), which involved measurement of mycoestrogens as urinary biomarkers, in a cohort of young girls in New Jersey, USA. A probabilistic exposure characterization for the study population has been conducted and the predicted urinary concentrations have been compared to measurements considering inter-individual physiological and dietary variability. The in vivo measurements from the JGS fall within the high and low predicted distributions of biomarker values corresponding to dietary exposure estimates calculated by the probabilistic modeling system. The work described here is the first of its kind to present a comprehensive framework developing estimates of potential exposures to mycotoxins and linking them with biologically relevant doses and biomarker measurements, including a systematic characterization of uncertainties in exposure and dose estimation for a vulnerable population. PMID:25474635
Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peloquin, R.A.; Schwab, J.D.; Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10/sup -6/ mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10/sup -6/ mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D. A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1977. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ, Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 220 person-rem to a low of 0.003 person-rem with an arithmetic mean of 16 person-rem. The total population dose for all sites was estimated at 700 person-rem for the 92 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10{sup -5} mrem to a high of 0.1 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Exploring Exposure Pathways with Chemical/Product Categorical CPCat)Data
Humans are exposed to thousands of chemicals over our lifetimes. A major challenge to risk assessors is to understand how and when chemical exposures occur, and which “exposure pathways” contribute the most. An informatics-driven approach to assigning “product-use” categories to ...
AN OVERVIEW OF THE NATIONAL HUMAN EXPOSURE ASSESSMENT SURVEY (NHEXAS) PHASE I STUDIES
The National Human Exposure Assessment Survey (NHEXAS) Phase I studies were sponsored by EPA's Office of Research and Development (ORD) to address critical information needs for assessing human exposures to multiple chemicals from multiple pathways and media. These studies were...
Historically, risk assessment has relied upon toxicological data to obtain hazard-based reference levels, which are subsequently compared to exposure estimates to determine whether an unacceptable risk to public health may exist. Recent advances in analytical methods, biomarker ...
MODELING INHALATION AND MULTIMEDIA MULTIPATHWAY HUMAN EXPOSURES TO ENVIRONMENTAL POLLUTANTS
Estimation of exposures of children and adults to air toxics or multimedia pollutants require careful consideration of sources and concentrations of pollutants that may be present in different media, as well as various routes and pathways of exposures associated with age-specif...
REDUCTION OF INGESTION EXPOSURE TO TRIHALOMETHANES DUE TO VOLATILIZATION. (R825362)
Ingestion of tap water is one of the principal exposure
pathways for disinfection byproducts (DBPs). One major
class of DBPs, trihalomethanes (THM), are highly volatile,
and volatilization will tend to lower ingestion exposures.
This study quantifies volatilization...
Bourke, Chase H.; Stowe, Zachary N.; Neigh, Gretchen N.; Olson, Darin E.; Owens, Michael J.
2013-01-01
Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10–20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943
Karriker-Jaffe, Katherine J; Lönn, Sara L; Cook, Won K; Kendler, Kenneth S; Sundquist, Kristina
2018-03-01
Our goal was to test a cascade model to identify developmental pathways, or chains of risk, from neighborhood deprivation in childhood to alcohol use disorder (AUD) in young adulthood. Using Swedish general population data, we examined whether exposure to neighborhood deprivation during early and middle childhood was associated with indicators of social functioning in adolescence and emerging adulthood, and whether these were predictive of AUD. Structural equation models showed exposure to neighborhood deprivation was associated with lower school achievement during adolescence, poor social functioning during emerging adulthood, and the development of AUD for both males and females. Understanding longitudinal pathways from early exposure to adverse environments to later AUD can inform prevention and intervention efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar
2018-01-01
Abstract Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development. PMID:29548026
Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole; Tan, Qihua; Petersen, Thomas K; Kruse, Torben A; Thomassen, Mads
2010-09-01
The pathogenesis of irritant contact dermatitis (ICD) is poorly understood, and genes participating in the epidermal response to chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays (representing 47,000 transcripts) revealed essentially different pathway responses (1/2)hours after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen-activated signaling cascades including extracellular signal-regulated kinase and growth factor receptor signaling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed, whereas we identified 23 suggested common biomarkers for ICD. In conclusion, we bring new insights into two hitherto less well-elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative mild exposures, respectively.
Cong, Ming; Wu, Huifeng; Cao, Tengfei; Lv, Jiasen; Wang, Qing; Ji, Chenglong; Li, Chenghua; Zhao, Jianmin
2018-01-01
Previous study revealed severe toxic effects of ammonia nitrogen on Ruditapes philippinarum including lysosomal instability, disturbed metabolic profiles, gill tissues with damaged structure, and variation of neurotransmitter concentrations. However, the underlying molecular mechanism was not fully understood yet. In the present study, digital gene expression technology (DGE) was applied to globally screen the key genes and pathways involved in the responses to short- and long-term exposures of ammonia nitrogen. Results of DGE analysis indicated that short-term duration of ammonia exposure affected pathways in Dorso-ventral axis formation, Notch signaling, thyroid hormone signaling and protein processing in endoplasmic reticulum. The long-term exposure led to DEGs significantly enriched in gap junction, immunity, signal and hormone transduction, as well as key substance metabolism pathways. Functional research of significantly changed DEGs suggested that the immunity of R. philippinarum was weakened heavily by toxic effects of ammonia nitrogen, as well as neuro-transduction and metabolism of important substances. Taken together, the present study provides a molecular support for the previous results of the detrimental toxicity of ammonia exposure in R. philippinarum, further work will be performed to investigate the specific genes and their certain functions involved in ammonia toxicity to molluscs. Copyright © 2017 Elsevier B.V. All rights reserved.
The Differential Impact of Oxytocin Receptor Gene in Violence-Exposed Boys and Girls
Merrill, Livia C.; Jones, Christopher W.; Drury, Stacy S.; Theall, Katherine P.
2017-01-01
Childhood violence exposure is a prevalent public health problem. Understanding the lasting impact of violence requires an enhanced appreciation for the complex effects of violence across behavioral, physiologic, and molecular outcomes. This subject matched, cross-sectional study of 80 children explored the impact of violence exposure across behavioral, physiologic, and cellular outcomes. Externalizing behavior, diurnal cortisol rhythm, and telomere length (TL) were examined in a community recruited cohort of Black youth. Given evidence that genetic variation contributes to individual differences in response to the environment, we further tested whether a polymorphism in the oxytocin receptor gene (OXTR rs53576) moderated associations between violence and youth outcomes. Exposure to violence was directly associated with increased externalizing behavior, but no direct association of violence was found with cortisol or TL. Oxytocin genotype, however, moderated the association between violence and both cortisol and TL, suggesting that pathways linked to oxytocin may contribute to individual differences in the physiologic and molecular consequences of violence exposure. Sex differences with OXTR in cortisol and TL outcomes were also detected. Taken together, these findings suggest that there are complex pathways through which violence exposure impacts children, and that these pathways differ by both genetic variation and the sex of the child. PMID:28341538
The differential impact of oxytocin receptor gene in violence-exposed boys and girls.
Merrill, Livia C; Jones, Christopher W; Drury, Stacy S; Theall, Katherine P
2017-06-01
Childhood violence exposure is a prevalent public health problem. Understanding the lasting impact of violence requires an enhanced appreciation for the complex effects of violence across behavioral, physiologic, and molecular outcomes. This subject matched, cross-sectional study of 80 children explored the impact of violence exposure across behavioral, physiologic, and cellular outcomes. Externalizing behavior, diurnal cortisol rhythm, and telomere length (TL) were examined in a community recruited cohort of Black youth. Given evidence that genetic variation contributes to individual differences in response to the environment, we further tested whether a polymorphism in the oxytocin receptor gene (OXTR rs53576) moderated associations between violence and youth outcomes. Exposure to violence was directly associated with increased externalizing behavior, but no direct association of violence was found with cortisol or TL. Oxytocin genotype, however, moderated the association between violence and both cortisol and TL, suggesting that pathways linked to oxytocin may contribute to individual differences in the physiologic and molecular consequences of violence exposure. Sex differences with OXTR in cortisol and TL outcomes were also detected. Taken together, these findings suggest that there are complex pathways through which violence exposure impacts children, and that these pathways differ by both genetic variation and the sex of the child. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Mediation analysis with multiple versions of the mediator.
Vanderweele, Tyler J
2012-05-01
The causal inference literature has provided definitions of direct and indirect effects based on counterfactuals that generalize the approach found in the social science literature. However, these definitions presuppose well-defined hypothetical interventions on the mediator. In many settings, there may be multiple ways to fix the mediator to a particular value, and these various hypothetical interventions may have very different implications for the outcome of interest. In this paper, we consider mediation analysis when multiple versions of the mediator are present. Specifically, we consider the problem of attempting to decompose a total effect of an exposure on an outcome into the portion through the intermediate and the portion through other pathways. We consider the setting in which there are multiple versions of the mediator but the investigator has access only to data on the particular measurement, not information on which version of the mediator may have brought that value about. We show that the quantity that is estimated as a natural indirect effect using only the available data does indeed have an interpretation as a particular type of mediated effect; however, the quantity estimated as a natural direct effect, in fact, captures both a true direct effect and an effect of the exposure on the outcome mediated through the effect of the version of the mediator that is not captured by the mediator measurement. The results are illustrated using 2 examples from the literature, one in which the versions of the mediator are unknown and another in which the mediator itself has been dichotomized.
Mediation analysis with multiple versions of the mediator
VanderWeele, Tyler J.
2013-01-01
The causal inference literature has provided definitions of direct and indirect effects based on counterfactuals that generalize the approach found in the social science literature. However, these definitions presuppose well defined hypothetical interventions on the mediator. In many settings there may be multiple ways to fix the mediator to a particular value and these different hypothetical interventions may have very different implications for the outcome of interest. In this paper we consider mediation analysis when multiple versions of the mediator are present. Specifically, we consider the problem of attempting to decompose a total effect of an exposure on an outcome into the portion through the intermediate and the portion through other pathways. We consider the setting in which there are multiple versions of the mediator but the investigator only has access to data on the particular measurement, not which version of the mediator may have brought that value about. We show that the quantity that is estimated as a natural indirect effect using only the available data does indeed have an interpretation as a particular type of mediated effect; however, the quantity estimated as a natural direct effect in fact captures both a true direct effect and an effect of the exposure on the outcome mediated through the effect of the version of the mediator that is not captured by the mediator measurement. The results are illustrated using two examples from the literature, one in which the versions of the mediator are unknown and another in which the mediator itself has been dichotomized. PMID:22475830
Uptake dynamics of inorganic mercury and methylmercury by the earthworm Pheretima guillemi.
Dang, Fei; Zhao, Jie; Zhou, Dongmei
2016-02-01
Mercury uptake dynamics in the earthworm Pheretima guillemi, including the dissolved uptake rate constant (ku) from pore-water and assimilation efficiencies (AEs) from mercury-contaminated soil, was quantified in this study. Dissolved uptake rate constants were 0.087 and 0.553 L g(-1) d(-1) for inorganic mercury (IHg) and methylmercury (MeHg), respectively. Assimilation efficiency of IHg in field-contaminated soil was 7.2%, lower than 15.4% of spiked soil. In contrast, MeHg exhibited comparable AEs for both field-contaminated and spiked soil (82.4-87.2%). Within the framework of biodynamic model, we further modelled the exposure pathways (dissolved exposure vs soil ingestion) to source the accumulated mercury in Pheretima guillemi. The model showed that the relative importance of soil ingestion to mercury bioaccumulation depended largely on mercury partitioning coefficients (K(d)), and was also influenced by soil ingestion rate of earthworms. In the examined field-contaminated soil, almost (>99%) accumulated IHg and MeHg was predicted to derive from soil ingestion. Therefore, soil ingestion should be carefully considered when assessing mercury exposure risk to earthworms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determinants of Children's Mental Health in War-Torn Settings: Translating Research Into Action.
Miller, Kenneth E; Jordans, Mark J D
2016-06-01
Research on the mental health and psychosocial wellbeing of children in conflict-affected settings has undergone a significant paradigm shift in recent years. Earlier studies based on a war exposure model primarily emphasized the effects of direct exposure to armed conflict; this has gradually given way to a broader understanding of the diverse pathways by which organized violence affects children. A robustly supported comprehensive model includes risk factors at multiple points in time (prior war exposure, ongoing daily stressors) and at all levels of the social ecology. In particular, findings suggest that material deprivation and a set of family variables, including harsh parenting, parental distress, and witnessing intimate partner violence, are important mediators of the relationship between armed conflict and children's wellbeing. To date, however, interventions aimed at supporting war-affected children's wellbeing, both preventive and treatment-focused, have focused primarily on direct work with children, while paying only modest attention to ongoing risk factors in their families and broader environments. Possible reasons for the ongoing prioritization of child-focused interventions are considered, and examples are provided of recent evidence-based interventions that have reduced toxic stressors (harsh parenting and the use of violent discipline by teachers) in conflict-affected communities.
Animal models of chronic obstructive pulmonary disease.
Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán
2015-03-01
Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.
Cruz, G; Foster, W; Paredes, A; Yi, K D; Uzumcu, M
2014-09-01
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. © 2014 British Society for Neuroendocrinology.
2017-01-01
The overwhelming increase in the global incidence of obesity and its associated complications such as insulin resistance, atherosclerosis, pulmonary disease, and degenerative disorders including dementia constitutes a serious public health problem. The Inhibitor of DNA Binding/Differentiation-3 (ID3), a member of the ID family of transcriptional regulators, has been shown to play a role in adipogenesis and therefore ID3 may influence obesity and metabolic health in response to environmental factors. This review will highlight the current understanding of how ID3 may contribute to complex chronic diseases via metabolic perturbations. Based on the increasing number of reports that suggest chronic exposure to and accumulation of endocrine disrupting chemicals (EDCs) within the human body are associated with metabolic disorders, we will also consider the impact of these chemicals on ID3. Improved understanding of the ID3 pathways by which exposure to EDCs can potentiate complex chronic diseases in populations with metabolic disorders (obesity, metabolic syndrome, and glucose intolerance) will likely provide useful knowledge in the prevention and control of complex chronic diseases associated with exposure to environmental pollutants. PMID:28785583
Identifying Perceived Neighborhood Stressors Across Diverse Communities in New York City.
Shmool, Jessie L C; Yonas, Michael A; Newman, Ogonnaya Dotson; Kubzansky, Laura D; Joseph, Evelyn; Parks, Ana; Callaway, Charles; Chubb, Lauren G; Shepard, Peggy; Clougherty, Jane E
2015-09-01
There is growing interest in the role of psychosocial stress in health disparities. Identifying which social stressors are most important to community residents is critical for accurately incorporating stressor exposures into health research. Using a community-academic partnered approach, we designed a multi-community study across the five boroughs of New York City to characterize resident perceptions of key neighborhood stressors. We conducted 14 community focus groups; two to three in each borough, with one adolescent group and one Spanish-speaking group per borough. We then used systematic content analysis and participant ranking data to describe prominent neighborhood stressors and identify dominant themes. Three inter-related themes regarding the social and structural sources of stressful experiences were most commonly identified across neighborhoods: (1) physical disorder and perceived neglect, (2) harassment by police and perceived safety and (3) gentrification and racial discrimination. Our findings suggest that multiple sources of distress, including social, political, physical and economic factors, should be considered when investigating health effects of community stressor exposures and psychological distress. Community expertise is essential for comprehensively characterizing the range of neighborhood stressors that may be implicated in psychosocial exposure pathways.
NASA Astrophysics Data System (ADS)
de Oliveira, Giovanna Medeiros Tavares; de Oliveira, Elisa Magno Nunes; Pereira, Talita Carneiro Brandão; Papaléo, Ricardo Meurer; Bogo, Maurício Reis
2017-12-01
Iron oxide nanoparticles (IONPS) have been widely investigated as a platform for a new class of multifunctional theranostic agents. They are considered biocompatible, and some formulations are already available in the market for clinical use. However, contradictory results regarding toxicity of IONPs raise a concern about the potential harm of these nanoparticles. Changes in the nanoparticle (NP) physicochemical properties or exposure media can significantly alter their behavior and, as a consequence, their toxic effects. Here, behavior and two-step RT-qPCR were employed to access the potential toxicological effects of dextran-coated IONPs (CLIO-NH2) and uncoated IONPs (UCIO) in zebrafish larvae. Animals were exposed for 7 days to NP solutions ranging from 0.1-100 μg/mL directly mixed to the system water. UCIO showed high decantation and instability in solution, altering zebrafish mortality but showing no alterations in behavior and molecular expression analysis. CLIO-NH2 exposure did not cause significant mortality or changes in hatching rate of zebrafish larvae; however, behavior and expression profiles of the group exposed to lower concentration (1 μg/mL) presented a tendency to decrease the locomotor activity and apoptotic pathway activation.
Obesity and perinatal TCDD exposure increases mammary tumors in FVB mice
Risk of breast cancer has been consistently shown to correlate to total lifetime exposure to estrogens. Because both TCDD exposure and the state of obesity interact with the estrogen pathway, we wanted to investigate how TCDD and obesity interact with mammary cancer susceptibili...
Skin exposure promotes a Th2 - dependent sensitization to peanut allergens
USDA-ARS?s Scientific Manuscript database
Sensitization to foods often occurs in infancy without known prior oral exposure, which suggests that alternative routes of exposure contribute to food allergy. We hypothesized that peanut activates innate immune pathways in the skin that promote sensitization. We tested this hypothesis by topical...
The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cum...
SIP Version 1.0 User's Guide for Pesticide Exposure of Birds and Mammals through Drinking Water
Model provides an upper bound estimate of exposure of birds and mammals to pesticides through drinking water alone. Intended for use in problem formulation to determine whether or not drinking water exposure alone is a potential pathway of concern.
Curtis, David S; Fuller-Rowell, Thomas E; Doan, Stacey N; Zgierska, Aleksandra E; Ryff, Carol D
2016-10-01
The role of early life adversity (ELA) in the development of health disparities has not received adequate attention. The current study examined differential exposure and differential vulnerability to ELA as explanations for socioeconomic and racial disparities in body mass index (BMI). Data were derived from a sample of 150 college students (M age = 18.8, SD = 1.0; 45 % African American; 55 % European American) who reported on parents' education and income as well as on exposure to 21 early adverse experiences. Body measurements were directly assessed to determine BMI. In adjusted models, African American students had higher BMI than European Americans. Similarly, background socioeconomic status was inversely associated with BMI. Significant mediation of group disparities through the pathway of ELA was detected, attenuating disparities by approximately 40 %. Furthermore, ELA was more strongly associated with BMI for African Americans than for European Americans. Efforts to achieve health equity may need to more fully consider early adversity.
Defense mechanisms against toxic phytochemicals in the diet of domestic animals.
Fink-Gremmels, Johanna
2010-02-01
Plant secondary metabolites (PSMs) are non-nutritional components that occur in numerous feed materials and are able to exert toxic effects in animals. The current article aims to summarize innate defense strategies developed by different animal species to avoid excessive exposure to PSMs. These mechanisms include pre-systemic degradation of PSMs by rumen microbiota, the intestinal barrier including efflux transporters of monogastric species, as well as pre-hepatic and intra-hepatic biotransformation processes. These physiological barriers determine systemic exposure and ultimately the dose-dependent adverse effects in the target animal species. Considering the large number of potentially toxic PSMs, which makes an evaluation of all individual PSMs virtually impossible, such a mechanism-oriented approach could improve the predictability of adverse effects and support the interpretation of clinical field observations. Moreover, mechanistic data related to tissue disposition and excretion pathways of PSMs for example into milk, could substantially support the assessment of the risks for consumers of foods derived from PSM-exposed animals.
Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans.
Gifford, Robert M; Reynolds, Rebecca M
2017-11-01
Increasing evidence supports fetal glucocorticoid exposure with associated altered offspring hypothalamic-pituitary-adrenal (HPA) axis activity as a key mechanism linking early life events with later life disease. Alterations in HPA axis activity are linked to a range of cardiometabolic and psychiatric diseases. As many of these diseases manifest sex differences in presentation we review the evidence for programmed sex-differences in the HPA axis. Available literature suggests vulnerability of the female HPA axis to prenatal stressors with female offspring demonstrating increased HPA axis reactivity. This may be due to changes in placental glucocorticoid metabolism leading to increased fetal glucocorticoid exposure. We discuss the potential consequences of increased vulnerability of the female HPA axis for later life health and consider the underlying mechanisms. Further studies are needed to determine whether sex-differences in early-life programming of the HPA axis represent a pathway underpinning the sex-differences in common cardiometabolic and psychiatric diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J
2009-01-01
Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.
Parham, Fred; Portier, Christopher J.; Chang, Xiaoqing; Mevissen, Meike
2016-01-01
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders. PMID:27656641
Techno-economic analysis of biofuel production considering logistic configurations.
Li, Qi; Hu, Guiping
2016-04-01
In the study, a techno-economic analysis method considering logistic configurations is proposed. The economic feasibility of a low temperature biomass gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification are evaluated and compared with the proposed method in Iowa. The results show that both pathways are profitable, biomass gasification pathway could achieve an Internal Rate of Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. A Monte-Carlo simulation considering interactions among parameters is also proposed and conducted, which indicates that both pathways are at high risk currently. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaya, G; Saxer-Sekulic, N; Kaya, A; Sorg, O; Boespflug, A; Thomas, L; Saurat, J H
2018-03-24
Patients treated with vemurafenib for metastatic melanoma often develop skin lesions similar to those observed after exposure to dioxin-like compounds. We previously called these lesions MADISH (metabolizing acquired dioxin-induced skin hamartoma) when analysing a case of acute dioxin poisoning. We performed a clinical trial aimed at comparing the skin lesions observed under vemurafenib treatment with MADISH in order to bring to light a possible cross-talk between vemurafenib and dioxin pathways. In this case-series study we explored the histological aspect of skin lesions in 10 cases treated with vemurafenib for malignant melanoma. We also analysed the ability of vemurafenib and tyrosine kinase inhibitors to induce dioxin-AhR pathway. All patients had skin lesions diagnosed as "non-inflammatory acneiform eruption" by dermatologists. These were predominantly facial with notable retro-auricular involvement and clinically compatible with chloracne/MADISH when assessed by dioxin expert. Histological analysis showed mostly comedo-like lesions and dermal cysts containing epithelial wall with basal or lateral epithelial projections and lamellar keratinization, and alterations of remaining sebaceous glands. The expression of CYP1A1, a gene highly induced following dioxin exposure, was not observed in these lesions. Vemurafenib and the tyrosine kinase inhibitors erlotinib and gefitinib did not induce CYP1A1 activity. Although the skin lesions under vemurafenib treatment were morphologically similar to MADISH, the absence of CYP1A1 expression in dermal cysts of patients and the absence of CYP1A1 activation by vemurafenib led us consider that these skin lesions were different from true MADISH and not mediated by a cross-talk of AhR signalling, but rather to a hyperactivation of PI3K-Akt pathway as a consequence of vemurafenib treatment. A strong expression of CYP1A1 in the epithelial wall of dermal cysts must be required, parallel to the morphology of the lesions, to make the diagnosis of MADISH, the hallmark of an exposure to dioxin-like/chloracnegen compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sahiner, U M; Semic-Jusufagic, A; Curtin, J A; Birben, E; Belgrave, D; Sackesen, C; Simpson, A; Yavuz, T S; Akdis, C A; Custovic, A; Kalayci, O
2014-12-01
Genetic variants in endotoxin signaling pathway are important in modulating the effect of environmental endotoxin on asthma and atopic phenotypes. Our objective was to determine the single nucleotide polymorphisms (SNPs) in the endotoxin signaling pathway that may influence in vitro IgE synthesis and to investigate the relationship between these variants and endotoxin exposure in relation to the development of asthma and atopy in a birth cohort. Peripheral blood mononuclear cells from 45 children with asthma were stimulated with 2 and 200 ng/ml lipopolysaccharide in vitro and IgE was measured in the culture supernatants. Children were genotyped for 121 SNPs from 30 genes in the endotoxin signaling pathway. Variants with a dose-response IgE production in relation to lipopolysaccharide (LPS) were selected for replication in a population-based birth cohort, in which we investigated the interaction between these SNPs and endotoxin exposure in relation to airway hyper-responsiveness, wheeze, and atopic sensitization. Twenty-one SNPs in nine genes (CD14, TLR4, IRF3, TRAF-6, TIRAP, TRIF, IKK-1, ST-2, SOCS1) were found to modulate the effect of endotoxin on in vitro IgE synthesis, with six displaying high linkage disequilibrium. Of the remaining 15 SNPs, for seven we found significant relationships between genotype and endotoxin exposure in the genetic association study in relation to symptomatic airway hyper-responsiveness (CD14-rs2915863 and rs2569191, TRIF-rs4807000), current wheeze (ST-2-rs17639215, IKK-1-rs2230804, and TRIF-rs4807000), and atopy (CD14-rs2915863 and rs2569192, TRAF-6-rs5030411, and IKK-1-rs2230804). Variants in the endotoxin signaling pathway are important determinants of asthma and atopy. The genotype effect is a function of the environmental endotoxin exposure. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reid, Joan A; Richards, Tara N; Loughran, Thomas A; Mulvey, Edward P
2017-03-21
Gun violence and psychological problems are often conflated in public discourse on gun safety. However, few studies have empirically assessed the effect of exposure to violence when exploring the association between gun carrying and psychological distress. To examine the potential effect of exposure to violence on the associations between gun carrying and psychological distress among vulnerable adolescents. Longitudinal cohort study. The Pathways to Desistance study, a study of youths found guilty of a serious criminal offense in Philadelphia County, Pennsylvania, or Maricopa County, Arizona. 1170 male youths aged 14 to 19 years who had been found guilty of a serious criminal offense. Youths were assessed at baseline and at four 6-month intervals with regard to gun carrying ("Have you carried a gun?"), psychological distress (Global Severity Index), and exposure to violence (modified version of the Exposure to Violence Inventory). At the bivariate level, gun carrying was consistently associated with higher levels of psychological distress. However, the association between psychological distress and gun carrying diminished or disappeared when exposure to violence was considered. Exposure to violence (as either a victim or a witness) was significantly related to gun carrying at all follow-up assessments, with increased odds of gun carrying ranging from 1.43 to 1.87 with each additional report of exposure to violence. The study sample was limited to justice-involved male youths. Precarrying distress and exposure to violence could not be fully captured because many participants had initiated gun carrying before baseline. In male youths involved in the criminal justice system, the relationship between psychological distress and gun carrying seems to be influenced by exposure to violence (either experiencing or witnessing it). Further study is warranted to explore whether interventions after exposure to violence could reduce gun carrying in this population. None.
Lewis, Larissa; Somers, Julie Mooney; Guy, Rebecca; Watchirs-Smith, Lucy; Skinner, S Rachel
2018-06-21
Background: There are wide variations in the reported prevalence of exposure to sexual content online, but the literature tends not to distinguish between intended and unintended exposure. Moreover, there is little research exploring the pathways through which exposure occurs or descriptions of such content. While there is much public concern regarding exposure to sexual content, Australian students receive little or no education on mitigating the effect of sexual content online. Methods: Eleven focus group discussions with high school students aged 14-18 years were conducted to discover young people's experiences of exposure to sexual content in social media. In this paper, we describe these pathways to sexual content exposure, the nature of the sexual content young people are exposed to and their views about this exposure. Results: Focus groups showed that exposure to sexual content through social media occurred through networks of 'friends' or followers, and paid-for advertising. Content ranged from subtle messages or photos to explicit pornographic pictures/videos. Most of the exposure young people described was unintended. Conclusions: Exposure to sexual content, no matter the scope and intensity, was almost unavoidable among young people who use social media. Utilising this information to educate young people on mitigating the effect of sexual content, rather than trying to prevent young people from viewing it, could be a more effective approach.
Ng, Carla A; von Goetz, Natalie
2017-01-01
Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1-7; http://dx.doi.org/10.1289/EHP168.
Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry
2013-12-01
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.
Arambula, Sheryl E; Jima, Dereje; Patisaul, Heather B
2018-03-01
Bisphenol A (BPA) is a widely recognized endocrine disruptor prevalent in many household items. Because experimental and epidemiological data suggest links between prenatal BPA exposure and altered affective behaviors in children, even at levels below the current US FDA No Observed Adverse Effect Level (NOAEL) of 5mg/kg body weight (bw)/day, there is concern that early life exposure may alter neurodevelopment. The current study was conducted as part of the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program and examined the full amygdalar transcriptome on postnatal day (PND) 1, with the hypothesis that prenatal BPA exposure would alter the expression of genes and pathways fundamental to sex-specific affective behaviors. NCTR Sprague-Dawley dams were gavaged from gestational day 6 until parturition with BPA (2.5, 25, 250, 2500, or 25000μg/kg bw/day), a reference estrogen (0.05 or 0.5μg ethinyl estradiol (EE 2 )/kg bw/day), or vehicle. PND 1 amygdalae were microdissected and gene expression was assessed with qRT-PCR (all exposure groups) and RNAseq (vehicle, 25 and 250μg BPA, and 0.5μg EE 2 groups only). Our results demonstrate that that prenatal BPA exposure can disrupt the transcriptome of the neonate amygdala, at doses below the FDA NOAEL, in a sex-specific manner and indicate that the female amygdala may be more sensitive to BPA exposure during fetal development. We also provide additional evidence that developmental BPA exposure can interfere with estrogen, oxytocin, and vasopressin signaling pathways in the developing brain and alter signaling pathways critical for synaptic organization and transmission. Copyright © 2017 Elsevier B.V. All rights reserved.
Child-Specific Exposure Scenarios Examples (Final Report) ...
EPA announced the availability of the final report, Child-Specific Exposure Scenarios Examples. This report is intended to be a companion document to the Exposure Factors Handbook (U.S. EPA 2011). The example scenarios were compiled from questions and inquiries received from users of the Exposure Factors Handbook (EFH) on how to select data from the EFH to assess childhood exposures. The scenarios presented in this report promote the use of the standard set of age groups recommended by the U.S. EPA in the report entitled Guidance on Selecting Age Groups for Monitoring and Assessing Childhood Exposures to Environmental Contaminants (U.S. EPA 2005). The purpose of the Child-Specific Exposure Scenarios Examples Report is to outline scenarios for various child-specific exposure pathways and to demonstrate how data from the Exposure Factors Handbook (U.S. EPA, 2011) may be applied for estimating exposures. The handbook provides data on drinking water consumption, soil ingestion, mouthing behavior, inhalation rates, dermal factors including skin area and soil adherence factors, consumption of fruits and vegetables, fish, meats, dairy products, homegrown foods, human milk, activity patterns, body weight, and consumer products. The example scenarios presented here have been selected to best demonstrate the use of the various key data sets in the Child-Specific Exposure Factors Handbook (U.S. EPA, 2008a), and represent commonly encountered exposure pathways. An exhausti
Wu, Lin-Lin; Gong, Wei; Shen, Si-Peng; Wang, Zhong-He; Yao, Jia-Xi; Wang, Jun; Yu, Jing; Gao, Rong; Wu, Gang
2017-09-01
Excessive metal exposure has been recognized as one of the detrimental factors for brain damage. However, the potential adverse effects induced by heavy metals on monoamine neurotransmitter pathways remains poorly understood. Our study aimed to investigate the possible association between metal exposure and neurotransmitter metabolism. By a cross-sectional investigation, 224 electroplating workers and 213 non-electroplating exposure workers were recruited in the exposure and control groups. Metal exposure levels were analyzed using inductively-coupled plasma mass spectrometry and monoamine neurotransmitter pathway metabolites were measured by ultra-performance liquid chromatography tandem mass spectrometry in human urine samples. Multivariate linear regression model was used to assess the dose-response relationships of urinary metals and neurotransmitter pathway metabolites. Significant dose-dependent trends of urinary vanadium quartiles with all metabolites were observed, and the trends demonstrated significance after multiple testing correction. It also showed that urinary chromium levels were significantly associated with decreased serotonin level and cadmium was positively associated with norepinephrine and epinephrine. In addition, arsenic was positively associated with tryptophan, serotonin, dopamine and norepinephrine. Iron was positively associated with increased homovanillic acid (HVA) and epinephrine while nickel was negatively associated with increased epinephrine levels. Zinc was positively related to tryptophan, kynurenin (KYN), 5-hydroxyindole acetic acid (5-HIAA), dopamine, HVA and norepinephrine. There was no significant association between urinary copper with any other metabolites after adjusting of multiple metal models. Metal exposure may be associated with neurotransmitter metabolism disturbances. The present work is expected to provide some support in the prevention and management of metal-associated neurological diseases. Copyright © 2017. Published by Elsevier Ltd.
Urinary metabolites of arsenic are useful as biomarkers of exposure because ingested arsenic is excreted primarily in urine1. Complete urinary arsenic speciation can provide insight into possible metabolic pathways as well as potential exposure sources. The pattern of excreted me...
Predicting SVOC Emissions into Air and Foods in Support of High-Throughput Exposure Assessment
The release of semi-volatile organic compounds (SVOCs) from consumer articles may be a critical human exposure pathway. In addition, the migration of SVOCs from food packaging materials into foods may also be a dominant source of exposure for some chemicals. Here we describe re...
The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory is developing improved methods for modeling the pollutant sources through the air pathway to human exposure in significant microenvironments of exposure. As a part of this project, w...
The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory is developing improved methods for modeling the source through the air pathway to human exposure in significant microenvironments of exposure. As a part of this project, we develope...
The exposure and effects of perfluoroalkyl substances (PFASs) were studied at eight locations in Minnesota and Wisconsin between 2007 and 2011 using tree swallows (Tachycineta bicolor) as sentinel species. These eight sites covered a range of possible exposure pathways and ecolog...
Recent advances in analytical methods, biomarker discovery, cell-based assay development, computational tools, sensor/monitor, and omics technology have enabled new streams of exposure and toxicity data to be generated at higher volumes and speed. These new data offer the opport...
Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...
The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understandi...
Emotion Dysregulation as a Mechanism Linking Stress Exposure to Adolescent Aggressive Behavior
ERIC Educational Resources Information Center
Herts, Kate L.; McLaughlin, Katie A.; Hatzenbuehler, Mark L.
2012-01-01
Exposure to stress is associated with a wide range of internalizing and externalizing problems in adolescents, including aggressive behavior. Extant research examining mechanisms underlying the associations between stress and youth aggression has consistently identified social information processing pathways that are disrupted by exposure to…
High throughput screening (HTS) models are being developed and applied to prioritize chemicals for more comprehensive exposure and risk assessment. Dermal pathways are possible exposure routes to humans for thousands of chemicals found in personal care products and the indoor env...
The anthropogenic and geological occurrence of arsenic (As) results in human exposure to a potentially carcinogenic element. The two predominant pathways to As exposure are drinking water (DW) and dietary ingestion (DI). DW exposures are almost exclusively toxic inorganic As. ...
The dietary contribution to an aggregate exposure assessment is potentially an important pathway of exposure especially for young children. Enviornmental contamination appearing in the child's diet can result from contamination in the food as purchased or due to preparing, servin...
NASA Astrophysics Data System (ADS)
Wu, Kun; Huang, Chao; Shi, Xi; Chen, Feng; Xu, Yi-Huan; Pan, Ya-Xiong; Luo, Zhi; Liu, Xu
2016-12-01
Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.
Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals
Jin, Yong Hwan; Dunlap, Paul E.; McBride, Sandra J.; Al-Refai, Hanan; Bushel, Pierre R.; Freedman, Jonathan H.
2008-01-01
A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of ∼4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways. PMID:18437200
Mascha, Edward J; Dalton, Jarrod E; Kurz, Andrea; Saager, Leif
2013-10-01
In comparative clinical studies, a common goal is to assess whether an exposure, or intervention, affects the outcome of interest. However, just as important is to understand the mechanism(s) for how the intervention affects outcome. For example, if preoperative anemia was shown to increase the risk of postoperative complications by 15%, it would be important to quantify how much of that effect was due to patients receiving intraoperative transfusions. Mediation analysis attempts to quantify how much, if any, of the effect of an intervention on outcome goes though prespecified mediator, or "mechanism" variable(s), that is, variables sitting on the causal pathway between exposure and outcome. Effects of an exposure on outcome can thus be divided into direct and indirect, or mediated, effects. Mediation is claimed when 2 conditions are true: the exposure affects the mediator and the mediator (adjusting for the exposure) affects the outcome. Understanding how an intervention affects outcome can validate or invalidate one's original hypothesis and also facilitate further research to modify the responsible factors, and thus improve patient outcome. We discuss the proper design and analysis of studies investigating mediation, including the importance of distinguishing mediator variables from confounding variables, the challenge of identifying potential mediators when the exposure is chronic versus acute, and the requirements for claiming mediation. Simple designs are considered, as well as those containing multiple mediators, multiple outcomes, and mixed data types. Methods are illustrated with data collected by the National Surgical Quality Improvement Project (NSQIP) and utilized in a companion paper which assessed the effects of preoperative anemic status on postoperative outcomes.
Activation of coagulation by a thalidomide-based regimen.
Hoshi, Asuka; Matsumoto, Aya; Chung, Jihwa; Isozumi, Yu; Koyama, Takatoshi
2011-09-01
Combining thalidomide (Thal) with chemotherapeutic agents or steroid preparations led to improved response rates in the treatment of multiple myeloma. However, deep vein thrombosis (DVT) is one of the most serious side-effects noted with this regimen, and how a Thal-based regimen causes DVT is unclear. We investigated the procoagulant effects of Thal when combined with chemotherapeutic agents in vitro, focusing on tissue factor (TF) and phosphatidylserine. We examined the effects of the chemotherapeutic doxorubicin hydrochloride (Dox) and the steroid dexamethasone (Dex), with or without Thal. Our study used the human vascular endothelial, monocytic, and myeloma cell lines, EAhy926, THP-1, and RPMI8226, respectively. In EAhy926 and THP-1, Dex treatment increased expression of TF, which may induce procoagulant activity (PCA). Upregulation of TF mRNA correlated with activation of the Egr-1 pathway. In Thal and Dex treatments, the increase of PCA induction from phosphatidylserine exposure was modest. In contrast, Dox and Thal-Dox increased phosphatidylserine exposure in both cell types. In THP-1 cells, cell surface phosphatidylserine exposure correlated with increased PCA by Dox. Thal alone showed a modest increase in phosphatidylserine exposure in endothelial cells and monocytes. When Thal is given in combination with chemotherapies or Dex, endothelial cell and monocyte PCA may be induced through phosphatidylserine exposure, or TF expression. Induction may be protracted by Thal, which has an antiangiogenic activity. Therefore, prophylactic anticoagulant strategies should be considered in Thal-based combination regimens.
Balbus, John M; Boxall, Alistair BA; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren
2013-01-01
Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Environ. Toxicol. Chem. 2013;32:62–78. © 2012 SETAC PMID:23147420
Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.
Ryberg, Morten Walbech; Rosenbaum, Ralph K; Mosqueron, Luc; Fantke, Peter
2018-04-01
Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation. A comparison with measured data in a case study on pesticides applied to potato fields shows that our model gives good predictions of pesticide air concentrations. We compared our bystander exposure estimates with pathways currently included in LCA, namely aggregated inhalation and ingestion exposure mediated via the environment for the general population, and general population exposure via ingestion of pesticide residues in consumed food crops. The results show that exposure of bystanders is limited relative to total population exposure from ingestion of pesticide residues in crops, but that the exposure magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural pesticides. This inclusion aids decision-making based on LCA as previously restricted knowledge about exposure of bystanders can now be taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lochard, J; Bogdevitch, I; Gallego, E; Hedemann-Jensen, P; McEwan, A; Nisbet, A; Oudiz, A; Oudiz, T; Strand, P; Janssens, A; Lazo, T; Carr, Z; Sugier, A; Burns, P; Carboneras, P; Cool, D; Cooper, J; Kai, M; Lecomte, J-F; Liu, H; Massera, G; McGarry, A; Mrabit, K; Mrabit, M; Sjöblom, K-L; Tsela, A; Weiss, W
2009-06-01
In this report, the Commission provides guidance for the protection of people living in long-term contaminated areas resulting from either a nuclear accident or a radiation emergency. The report considers the effects of such events on the affected population. This includes the pathways of human exposure, the types of exposed populations, and the characteristics of exposures. Although the focus is on radiation protection considerations, the report also recognises the complexity of post-accident situations, which cannot be managed without addressing all the affected domains of daily life, i.e. environmental, health, economic, social, psychological, cultural, ethical, political, etc. The report explains how the 2007 Recommendations apply to this type of existing exposure situation, including consideration of the justification and optimisation of protection strategies, and the introduction and application of a reference level to drive the optimisation process. The report also considers practical aspects of the implementation of protection strategies, both by authorities and the affected population. It emphasises the effectiveness of directly involving the affected population and local professionals in the management of the situation, and the responsibility of authorities at both national and local levels to create the conditions and provide the means favouring the involvement and empowerment of the population. The role of radiation monitoring, health surveillance, and the management of contaminated foodstuffs and other commodities is described in this perspective. The Annex summarises past experience of longterm contaminated areas resulting from radiation emergencies and nuclear accidents, including radiological criteria followed in carrying out remediation measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiamin
Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 andmore » P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.« less
Lorber, Matthew; Toms, Leisa-Maree L
2017-10-01
Several studies have examined the role of breast milk consumption in the buildup of environmental chemicals in infants, and have concluded that this pathway elevates infant body burdens above what would occur in a formula-only diet. Unique data from Australia provide an opportunity to study this finding using simple pharmacokinetic (PK) models. Pooled serum samples from infants in the general population provided data on PCB 153, BDE 47, and DDE at 6-month increments from birth until 4 years of age. General population breast-feeding scenarios for Australian conditions were crafted and input into a simple PK model which predicted infant serum concentrations over time. Comparison scenarios of background exposures to characterize formula-feeding were also crafted. It was found that the models were able to replicate the rise in measured infant body burdens for PCB 153 and DDE in the breast-feeding scenarios, while the background scenarios resulted in infant body burdens substantially below the measurements. The same was not true for BDE 47, however. Both the breast-feeding and background scenarios substantially underpredicted body burden measurements. Two possible explanations were offered: that exposure to higher BDE congeners would debrominate and form BDE 47 in the body, and/or, a second overlooked exposure pathway for PBDEs might be the cause of high infant and toddler body burdens. This pathway was inhalation due to the use of PBDEs as flame retardants in bedding materials. More research to better understand and quantify this pathway, or other unknown pathways, to describe infant and toddler exposures to PBDEs is needed. Published by Elsevier Ltd.
Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats.
Qin, Liyan; Dai, Xufang; Yin, Yunhou
2016-09-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Recent studies have demonstrated that Wnt signaling and mTOR signaling play important roles in the pathogenesis of ASD. However, the relationship of these two signaling pathways in ASD remains unclear. We assessed this question using the valproic acid (VPA) rat model of autism. Our results demonstrated that VPA exposure activated mTOR signaling and suppressed autophagy in the prefrontal cortex, hippocampus and cerebellum of autistic model rats, characterized by enhanced phospho-mTOR and phospho-S6 and decreased Beclin1, Atg5, Atg10, LC3-II and autophagosome formation. Rapamycin treatment suppressed the effect of VPA on mTOR signaling and ameliorated the autistic-like behaviors of rats in our autism model. The administration of VPA also activated Wnt signaling through up-regulating beta-catenin and phospho-GSK3beta. Suppression of the Wnt pathway by sulindac relieved autistic-like behaviors and attenuated VPA-induced mTOR signaling activation in autistic model rats. Our results demonstrate that VPA exposure sequentially activates Wnt signaling and mTOR signaling in rats. Suppression of the Wnt signaling pathway relieves autistic-like behaviors partially by deactivating the mTOR signaling pathway in VPA-exposed rats. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther
Astronauts in space are exposed to a potentially harmful radiation field, which does not exist in its quality and quantity on earth. Radiation exposure in space can lead to delayed or acute health effects. A successful long-term space mission requires better risk estimation and development of appropriate countermeasures, therefore study of the cellular radiation response is necessary. Ionizing radiation can provoke active cellular responses (cell cycle arrest, DNA repair, apoptosis or other forms of cell type). Exposure to ionizing radiation also activates various signaling pathways in human cells. In the cellular radiation-response, two pivotal signal transduction pathways have to be comprehensively studied i.e. the p53-pathway and NF-κB-pathway. Discovery of fluorescent proteins has revolutionized biological research by making it possible to carry out functional studies in living cells and understanding complex signaling pathways. Previously the green fluorescent proteins EGFP and d2EGFP were used for signaling pathway studies. In this work the new red fluorescent protein tdTomato will be used for comprehensive investigation of NF-κB and other transcription factor activation after exposure of human cells to ionizing radiation (X-rays, heavy ions; space conditions). tdTomato has many advantages over EGFP because of its high fluorescence signals and a better signal/noise ratio in human cells. The previously constructed reporter system with d2EGFP was used to evaluate NF-kB activation after exposure to heavy ion particles of different biological effectiveness. The sensitivity threshold of this system was determined to be 2 particle traversals per cell nucleus. In the current study a more sensitive reporter assay will be constructed using a GAL4-VP16 turbo system that comprises a receptor plasmid and a reporter plasmid. This reporter assay will be designed and constructed with tdTomato and evaluation will be done with different molecular techniques.
Moylan, Steven; Jacka, Felice N; Pasco, Julie A; Berk, Michael
2013-01-01
Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis. PMID:23785661
Chen, Lin; Xie, Wenji; Xie, Wenqin; Zhuang, Weiqiang; Jiang, Changcheng; Liu, Naizhen
2017-11-01
Post operational cognitive dysfunction (POCD) occurs in patients after anesthesia and surgery. Abnormal histone acetylation and neuroinflammation are key factors in the pathogenesis of cognitive impairment. Apigenin not only has an anti-inflammatory activity but also modifies histone acetylation. We aimed to investigate whether apigenin can attenuate isoflurane exposure-induced cognitive decline by regulating histone acetylation and inflammatory signaling. Spatial learning and memory were assessed by Morris water maze test. Levels of histone acetylation, BDNF and downstream signaling, and inflammatory components were analyzed. Isoflurane exposure in aged rats lead to impaired spatial learning and memory. These rats exhibited dysregulated histone H3K9 and H4K12 acetylation, which was accompanied by reduced BDNF expression and suppressed BDNF downstream signaling pathway. Apigenin restored histone acetylation and BDNF signaling. Apigenin also suppressed isoflurane exposure induced upregulation of proinflammatory cytokines and NFκB signaling pathway. Memory impairment induced by isoflurane exposure is associated with dysregulated histone acetylation in the hippocampus, which affects BDNF expression and hence BDNF downstream signaling pathway. Apigenin recovers cognitive function by restoring histone acetylation and suppressing neuroinflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Gorman Ng, Melanie; Semple, Sean; Cherrie, John W; Christopher, Yvette; Northage, Christine; Tielemans, Erik; Veroughstraete, Violaine; Van Tongeren, Martie
2012-11-01
Occupational inadvertent ingestion exposure is ingestion exposure due to contact between the mouth and contaminated hands or objects. Although individuals are typically oblivious to their exposure by this route, it is a potentially significant source of occupational exposure for some substances. Due to the continual flux of saliva through the oral cavity and the non-specificity of biological monitoring to routes of exposure, direct measurement of exposure by the inadvertent ingestion route is challenging; predictive models may be required to assess exposure. The work described in this manuscript has been carried out as part of a project to develop a predictive model for estimating inadvertent ingestion exposure in the workplace. As inadvertent ingestion exposure mainly arises from hand-to-mouth contact, it is closely linked to dermal exposure. We present a new integrated conceptual model for dermal and inadvertent ingestion exposure that should help to increase our understanding of ingestion exposure and our ability to simultaneously estimate exposure by the dermal and ingestion routes. The conceptual model consists of eight compartments (source, air, surface contaminant layer, outer clothing contaminant layer, inner clothing contaminant layer, hands and arms layer, perioral layer, and oral cavity) and nine mass transport processes (emission, deposition, resuspension or evaporation, transfer, removal, redistribution, decontamination, penetration and/or permeation, and swallowing) that describe event-based movement of substances between compartments (e.g. emission, deposition, etc.). This conceptual model is intended to guide the development of predictive exposure models that estimate exposure from both the dermal and the inadvertent ingestion pathways. For exposure by these pathways the efficiency of transfer of materials between compartments (for example from surfaces to hands, or from hands to the mouth) are important determinants of exposure. A database of transfer efficiency data relevant for dermal and inadvertent ingestion exposure was developed, containing 534 empirically measured transfer efficiencies measured between 1980 and 2010 and reported in the peer-reviewed and grey literature. The majority of the reported transfer efficiencies (84%) relate to transfer between surfaces and hands, but the database also includes efficiencies for other transfer scenarios, including surface-to-glove, hand-to-mouth, and skin-to-skin. While the conceptual model can provide a framework for a predictive exposure assessment model, the database provides detailed information on transfer efficiencies between the various compartments. Together, the conceptual model and the database provide a basis for the development of a quantitative tool to estimate inadvertent ingestion exposure in the workplace.
Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K
2017-01-01
Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906
Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture
Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.
2009-01-01
Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487
Pluchino, Lenora Ann; Wang, Hwa-Chain Robert
2014-01-01
Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.
Pluchino, Lenora Ann; Wang, Hwa-Chain Robert
2014-01-01
Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens. PMID:25372613
Ma, Yanqin; Zhang, Kankan; Ren, Fengjun; Wang, Jundong
2017-11-01
Excessive fluoride exposure has been reported to cause damage to spleen. Neonatal period is characterized by rapid proliferation and differentiation of lymphocyte in the spleen. Children may be more sensitive to the toxicity of fluoride compared to the adults. The aim of this study was to investigate the effects of postnatal exposure (from neonatal period to early adulthood) to fluoride on the development of spleen on a regular basis and the underlying signal pathway. Results showed a marked decrease in spleen weight index and altered morphology in the spleen of fluoride-treated group on PND-84, which reflected fluoride inhibition of the development of spleen. Fluoride exposure induced cell cycle arrest of splenocytes and decreased the mRNA expression of IL-2, which indicated compromised baseline lymphocyte proliferation in the spleen. Time course research from 3-wk-of-age until 12-wk-of-age showed an adverse and cumulative impact of fluoride on the development of spleen. In view of the key role of MAPK/ERK pathway in lymphocyte development, Raf-1/MEK-1/ERK-2/c-fos mRNA expression and ERK/p-ERK protein expression were detected. Results showed despite a transitory increase in mRNA expression from PND-42 to PND-63 in fluoride-treated group, the expression of these genes on PND-84 decreased significantly compared with PND-42 or PND-63. NaF significantly inhibited the phosphorylation of ERK protein on PND-84. Taken together, these results emphasized the vital role of ERK pathway in the interfered development of spleen induced by a high dose of fluoride exposure in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming
2018-04-23
Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.
Liu, Jian-Feng; Yang, Chang; Deng, Jia-Hui; Yan, Wei; Wang, Hui-Min; Luo, Yi-Xiao; Shi, Hai-Shui; Meng, Shi-Qiu; Chai, Bai-Sheng; Fang, Qin; Chai, Ning; Xue, Yan-Xue; Sun, Jia; Chen, Chen; Wang, Xue-Yi; Wang, Ji-Shi; Lu, Lin
2015-05-27
Fear extinction forms a new memory but does not erase the original fear memory. Exposure to novelty facilitates transfer of short-term extinction memory to long-lasting memory. However, the underlying cellular and molecular mechanisms are still unclear. Using a classical contextual fear-conditioning model, we investigated the effect of novelty on long-lasting extinction memory in rats. We found that exposure to a novel environment but not familiar environment 1 h before or after extinction enhanced extinction long-term memory (LTM) and reduced fear reinstatement. However, exploring novelty 6 h before or after extinction had no such effect. Infusion of the β-adrenergic receptor (βAR) inhibitor propranolol and glucocorticoid receptor (GR) inhibitor RU486 into the CA1 area of the dorsal hippocampus before novelty exposure blocked the effect of novelty on extinction memory. Propranolol prevented activation of the hippocampal PKA-CREB pathway, and RU486 prevented activation of the hippocampal extracellular signal-regulated kinase 1/2 (Erk1/2)-CREB pathway induced by novelty exposure. These results indicate that the hippocampal βAR-PKA-CREB and GR-Erk1/2-CREB pathways mediate the extinction-enhancing effect of novelty exposure. Infusion of RU486 or the Erk1/2 inhibitor U0126, but not propranolol or the PKA inhibitor Rp-cAMPS, into the CA1 before extinction disrupted the formation of extinction LTM, suggesting that hippocampal GR and Erk1/2 but not βAR or PKA play critical roles in this process. These results indicate that novelty promotes extinction memory via hippocampal βAR- and GR-dependent pathways, and Erk1/2 may serve as a behavioral tag of extinction. Copyright © 2015 the authors 0270-6474/15/358308-14$15.00/0.
Huang, Chao-Ying; Chang, Cheng-Wei; Chen, Chaang-Ray; Chuang, Chun-Yu; Chiang, Chi-Shiun; Shu, Wun-Yi; Fan, Tai-Ching; Hsu, Ian C.
2014-01-01
In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure. PMID:25111195
Levy, David T; Cummings, K Michael; Villanti, Andrea C; Niaura, Ray; Abrams, David B; Fong, Geoffrey T; Borland, Ron
2017-01-01
The use of vaporized nicotine products (VNPs), especially e-cigarettes and, to a lesser extent, pressurized aerosol nicotine products and heat-not-burn tobacco products, are being adopted increasingly as an alternative to smoking combusted products, primarily cigarettes. Considerable controversy has accompanied their marketing and use. We propose a framework that describes and incorporates patterns of VNP and combustible cigarette use in determining the total amount of toxic exposure effects on population health. We begin by considering toxicity and the outcomes relevant to population health. We then present the framework and define different measures of VNP use; namely, trial and long-term use for exclusive cigarette smokers, exclusive VNP and dual (cigarette and VNP) use. Using a systems thinking framework and decision theory we considered potential pathways for current, former and never users of VNPs. We then consider the evidence to date and the probable impacts of VNP use on public health, the potential effects of different policy approaches and the possible influence of the tobacco industry on VNP and cigarette use. © 2016 Society for the Study of Addiction.
Levy, David T.; Cummings, K. Michael; Villanti, Andrea C.; Niaura, Ray; Abrams, David B.; Fong, Geoffrey T.; Borland, Ron
2016-01-01
The use of vaporized nicotine products (VNPs), especially e-cigarettes and to a lesser extent pressurized aerosol nicotine products and heat-not-burn tobacco products, are increasingly being adopted as an alternative to smoking combusted products, primarily cigarettes. Considerable controversy has accompanied their marketing and use. We propose a framework that describes and incorporates patterns of VNP and combustible cigarette use in determining the total amount of toxic exposure effects on population health. We begin by considering toxicity and the outcomes relevant to population health. We then present the framework and define different measures of VNP use, namely, trial and long-term use for exclusive cigarette smokers, exclusive VNP and dual (cigarette and VNP) use. Using a systems thinking framework and decision theory we considered potential pathways for current, former and never users of VNPs. We then consider the evidence to-date and the likely impacts of VNP use on public health, the potential effects of different policy approaches, and the possible influence of the tobacco industry on VNP and cigarette use. PMID:27109256
43 CFR 11.61 - Injury determination phase-general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... resulted from the discharge of oil or release of a hazardous substance based upon the exposure pathway and...—injury definition; § 11.63—pathway determination; and § 11.64—testing and sampling methods, of this part... authorized official shall follow the guidance provided in the pathway section, § 11.63 of this part, to...
43 CFR 11.61 - Injury determination phase-general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... resulted from the discharge of oil or release of a hazardous substance based upon the exposure pathway and...—injury definition; § 11.63—pathway determination; and § 11.64—testing and sampling methods, of this part... authorized official shall follow the guidance provided in the pathway section, § 11.63 of this part, to...
43 CFR 11.61 - Injury determination phase-general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... resulted from the discharge of oil or release of a hazardous substance based upon the exposure pathway and...—injury definition; § 11.63—pathway determination; and § 11.64—testing and sampling methods, of this part... authorized official shall follow the guidance provided in the pathway section, § 11.63 of this part, to...
43 CFR 11.61 - Injury determination phase-general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... resulted from the discharge of oil or release of a hazardous substance based upon the exposure pathway and...—injury definition; § 11.63—pathway determination; and § 11.64—testing and sampling methods, of this part... authorized official shall follow the guidance provided in the pathway section, § 11.63 of this part, to...
43 CFR 11.61 - Injury determination phase-general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... resulted from the discharge of oil or release of a hazardous substance based upon the exposure pathway and...—injury definition; § 11.63—pathway determination; and § 11.64—testing and sampling methods, of this part... authorized official shall follow the guidance provided in the pathway section, § 11.63 of this part, to...
AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massarsky, Andrey, E-mail: andrey.massarsky@duke.e
The zebrafish embryo has been proposed as a ‘bridge model’ to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6 h post fertilization (hpf) until 96 hpf to TPM{sub 0.5} and TPM{sub 1.0} (corresponding to 0.5 and 1.0 μg/mL equi-nicotine units)more » in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96 hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity. - Highlights: • Total particulate matter (TPM) is the particulate phase of cigarette smoke. • Zebrafish is proposed as a ‘bridge model’ to study the effects of TPM. • We investigate the roles of antioxidant and aryl hydrocarbon receptor (AHR) pathways. • We demonstrate that the AHR pathway mediates TPM toxicity.« less
Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.
Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte
2011-11-01
Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline. Copyright © 2011 SETAC.
Huo, Chun-Yan; Liu, Li-Yan; Zhang, Zi-Feng; Ma, Wan-Li; Song, Wei-Wei; Li, Hai-Ling; Li, Wen-Long; Kannan, Kurunthachalam; Wu, Yong-Kai; Han, Ya-Meng; Peng, Zhi-Xiang; Li, Yi-Fan
2016-07-19
Indoor window film samples were collected in buildings during 2014-2015 for the determination of six phthalate diesters (PAEs). Linear regression analysis suggested that the film mass was positively and significantly correlated with the duration of film growth (from 7 to 77 days). PAEs were detected in all window film samples (n = 64). For all the samples with growth days ranged from 7 to 77 days, the median concentrations of total six PAEs (∑6PAEs) in winter and summer window film samples were 9900 ng/m(2) film (2000 μg/g film) and 4700 ng/m(2) film (650 μg/g film), respectively. Among PAEs analyzed, di-2-ethyl-hexyl phthalate (DEHP) was the major compound (71 ± 9.7%), followed by di-n-butyl phthalate (DBP; 20 ± 7.4%) and diisobutyl phthalate (DiBP; 5.1 ± 2.2%). Positive correlations among PAEs suggested their common sources in the window film samples. Room temperature and relative humidity were negatively and significantly correlated with PAEs concentations (in ng/m(2)). Poor ventilation in cold winter in Noreastern China significantly influenced the concentrations of PAEs in window film which suggested higher inhalation exposure dose in winter. The median hazard quotient (HQ) values from PAEs exposure were below 1, suggesting that the intake of PAEs via three exposure pathways was considered as acceptable.
Increasing use of pyrethroids in Canadian households: should we be concerned?
van Balen, Erna C; Wolansky, Marcelo J; Kosatsky, Tom
2012-11-07
Pyrethroids are a class of plant-derived insecticides and their man-made analogues that are increasingly applied in Canada as first choice for pest control in many agricultural and residential settings. Their popularity is partly due to their alleged safety compared to the older organochlorine and organophosphate insecticides. Application of pyrethroids is expanding because of recent increases in the level of pest infestations--such as bed bugs--and the decreased susceptibility of target species to many pest control products. Pyrethroid residues have been documented in homes, child care centres and food. While pyrethroids are considered of low health risk for humans, their increased use is of concern. Our current understanding of the adverse effects of pyrethroids derives mainly from studies of short-term effects in laboratory animals, case reports of self- and accidental poisonings, and high-dose occupational exposures, for which the levels and formulations of pyrethroid products differ from those relevant for long-term exposure in the general population. The available data suggest that the reproductive and nervous systems, endocrine signalling pathways, and early childhood development may be targets for adverse effects in the case of repeated exposure to pyrethroid formulations. Given uncertainty about the existence of long-term health effects of exposure to pyrethroids, particularly under realistic scenarios, we should be cautious when promoting pyrethroid products as safe methods for pest control.
Biomarkers in Computational Toxicology
Biomarkers are a means to evaluate chemical exposure and/or the subsequent impacts on toxicity pathways that lead to adverse health outcomes. Computational toxicology can integrate biomarker data with knowledge of exposure, chemistry, biology, pharmacokinetics, toxicology, and e...
Moreman, John; Takesono, Aya; Trznadel, Maciej; Winter, Matthew J; Perry, Alexis; Wood, Mark E; Rogers, Nicola J; Kudoh, Tetsuhiro; Tyler, Charles R
2018-06-05
Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.
Arsenic inhibits hedgehog signaling during P19 cell differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jui Tung; Bain, Lisa J., E-mail: lbain@clemson.edu; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634
Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mousemore » embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH expression and GLI2 primary cilum accumulation. • Induction of the Shh pathway rescues arsenic's inhibitory effects on cell differentiation.« less
Li, Jia-Huan; Xu, Min; Xie, Xiao-Yan; Fan, Qi-Xin; Mu, De-Guang; Zhang, Yong; Cao, Fa-Le; Wang, Yan-Xia; Zhao, Peng-Tao; Zhang, Bo; Jin, Fa-Guang; Li, Zhi-Chao
2011-04-01
1. Tanshinone IIA (TIIA) is one of the main active components of the Chinese herb, Danshen. In the present study, we investigated the role of apoptosis in seawater exposure-induced acute lung injury (ALI), and explored the effects of TIIA on lung injury, apoptosis, and protein kinase B (Akt) and extracellular signal-regulated protein kinase (ERK) pathways in seawater-challenged rats. The rats were randomly divided into four groups: (i) naive group, no drug was given; (ii) TIIA control group, TIIA (50 mg/kg) was given intraperitoneally; (iii) seawater (SW) group, seawater (4 mL/kg) was given; and (iv) TIIA/SW group, TIIA (50 mg/kg) was injected intraperitoneally 10 min after seawater instillation. 2. The results showed that TIIA treatment significantly improved seawater exposure-induced lung histopathological changes, alleviated the decrease in PaO(2) , and reduced lung oedema, vascular leakage and cell infiltration. As shown by terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) assay, seawater exposure induced apoptosis in lung tissue cells. Furthermore, seawater exposure also changed apoptosis-related factors Bcl-2 and caspase-3, and caused a reduction in the activation of Akt and ERK1/2 pathways. Furthermore, TIIA treatment decreased the number of apoptotic cells, reversed changes in Bcl-2 and caspase-3, and upregulated the activation of Akt and ERK1/2 in seawater-challenged rats. 3. In conclusion, the data suggest that apoptosis might play an important role in seawater exposure-induced lung injury and that TIIA could significantly attenuate the severity of ALI and apoptosis in seawater-challenged rats, which is possibly through modulation of Akt and ERK1/2 pathways. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille
2014-04-01
In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the health risks involved. Copyright © 2013 Elsevier B.V. All rights reserved.
A review of models for near-field exposure pathways of chemicals in consumer products.
Huang, Lei; Ernstoff, Alexi; Fantke, Peter; Csiszar, Susan A; Jolliet, Olivier
2017-01-01
Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined "compartment of entry", are transformed or transferred to adjacent compartments, and eventually end in a "human receptor compartment". We first focus on models of physical mass transfers from the product to 'near-field' compartments. For transfers of chemicals from article interior, adequate modeling of in-article diffusion and of partitioning between article surface and air/skin/food is key. Modeling volatilization and subsequent transfer to the outdoor is crucial for transfers of chemicals used in the inner space of appliances, on object surfaces or directly emitted to indoor air. For transfers from skin surface, models need to reflect the competition between dermal permeation, volatilization and fraction washed-off. We then focus on transfers from the 'near-field' to 'human' compartments, defined as respiratory tract, gastrointestinal tract and epidermis, for which good estimates of air concentrations, non-dietary ingestion parameters and skin permeation are essential, respectively. We critically characterize for each exposure pathway the ability of models to estimate near-field transfers and to best inform LCA, CAA and HTS, summarizing the main characteristics of the potentially best-suited models. This review identifies large knowledge gaps for several near-field pathways and suggests research needs and future directions. Copyright © 2016 Elsevier B.V. All rights reserved.
Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation ...
AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE
The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deploy...
The two predominant pathways to arsenic exposure are drinking water and dietary ingestion. A large percentage of the dietary exposure component is associated with a few food groups. For example, seafood alone represents over 50% of the total dietary exposure. From a daily dose...
Exposure to airborne particulate matter (PM) is associated with higher risk for cardiopulmonary diseases but mechanisms for the effects remain unknown. Combustion of biodiesel fuels (BD) is associated with lower emission of PM but the health consequences of exposure to exhaust fr...
Veneranda, M; Prieto-Taboada, N; Fdez-Ortiz de Vallejuelo, S; Maguregui, M; Morillas, H; Marcaida, I; Castro, K; Garcia-Diego, F-J; Osanna, M; Madariaga, J M
2018-05-29
This study aimed at using portable analytical techniques to characterize original and decayed materials from two murals paintings of Ariadne House (archaeological site of Pompeii, Italy) and define the degradation pathways threatening their conservation. The first wall, located in an outdoor environment, has been directly exposed to degradation processes triggered by weathering and atmospheric pollution. The second wall, placed in a basement under the ground floor, has been constantly sheltered from sunlight exposure and drastic temperature fluctuations. The analytical data obtained in-situ by using Raman spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS) correlates the degradation patterns affecting the two surfaces to their environmental context. The deterioration processes detected on the outdoor wall, which entailed the complete loss of the paint layer, were mostly related to leaching and thermal fluctuation phenomena. The mural painting from the basement instead, showed deep degradation issues due to soluble salt infiltration and biological colonization. The results obtained from this unique case of study highlight the indispensable role of in-situ spectroscopic analysis to understand and predict the degradation pathways jeopardizing the cultural heritage and provide to the Archaeological Park of Pompeii important inference to consider in future conservation projects. Copyright © 2018. Published by Elsevier B.V.
NO2 inhalation causes tauopathy by disturbing the insulin signaling pathway.
Yan, Wei; Ku, Tingting; Yue, Huifeng; Li, Guangke; Sang, Nan
2016-12-01
Air pollution has been evidenced as a risk factor for neurodegenerative tauopathies. NO 2 , a primary component of air pollution, is negatively linked to neurodegenerative disorders, but its independent and direct association with tau lesion remains to be elucidated. Considering the fact that the insulin signaling pathway can be targeted by air pollutants and regulate tau function, this study focused on the role of insulin signaling in this NO 2 -induced tauopathy. Using a dynamic inhalation treatment, we demonstrated that exposure to NO 2 induced a disruption of insulin signaling in skeletal muscle, liver, and brain, with associated p38 MAPK and/or JNK activation. We also found that in parallel with these kinase signaling cascades, the compensatory hyperinsulinemia triggered by whole-body insulin resistance (IR) further attenuated the IRS-1/AKT/GSK-3β signaling pathway in the central nervous system, which consequently increased the phosphorylation of tau and reduced the expression of synaptic proteins that contributed to the development of the tau pathology. These findings provide new insight into the possible mechanisms involved in the etiopathogenesis of NO 2 -induced tauopathy, suggesting that the targeting of insulin signaling may be a promising therapeutic strategy to prevent this disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells.
Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades
2017-05-01
Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.
Problems in evaluating radiation dose via terrestrial and aquatic pathways.
Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H
1981-01-01
This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being. PMID:7037381
Internal Dose from Food and Drink Ingestion in the Early Phase after the Accident
NASA Astrophysics Data System (ADS)
Kawai, Masaki; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Sato, Osamu; Takagi, Shunji; Miyatake, Hirokazu; Takahashi, Tomoyuki; Suzuki, Gen
2017-09-01
Activity concentrations in food and drink, represented by water and vegetables, have been monitored continuously since the Fukushima Daiichi Nuclear Power Plant accident, with a focus on radioactive cesium. On the other hand, iodine-131 was not measured systematically in the early phase after the accident. The activity concentrations of iodine-131 in food and drink are important to estimate internal exposure due to ingestion pathway. When the internal dose from ingestion in the evacuation areas is estimated, water is considered as the main ingestion pathway. In this study, we estimated the values of activity concentrations in water in the early phase after the accident, using a compartment model as an estimation method. The model uses measurement values of activity concentration and deposition rate of iodine-131 onto the ground, which is calculated from an atmospheric dispersion simulation. The model considers how drinking water would be affected by radionuclides deposited into water. We estimated the activity concentrations of water on Kawamata town and Minamisouma city during March of 2011 and the committed effective doses were 0.08 mSv and 0.06 mSv. We calculated the transfer parameters in the model for estimating the activity concentrations in the areas with a small amount of measurement data. In addition, we estimated the committed effective doses from vegetables using atmospheric dispersion simulation and FARMLAND model in case of eating certain vegetables as option information.
Vignet, Caroline; Larcher, Thibaut; Davail, Blandine; Joassard, Lucette; Le Menach, Karyn; Guionnet, Tiphaine; Lyphout, Laura; Ledevin, Mireille; Goubeau, Manon; Budzinski, Hélène; Bégout, Marie-Laure; Cousin, Xavier
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects. PMID:29051429
Griffith, William C; Vigoren, Eric M; Smith, Marissa N; Workman, Tomomi; Thompson, Beti; Coronado, Gloria D; Faustman, Elaine M
2018-04-17
The take-home pathway is a significant source of organophosphate pesticide exposure for young children (3-5 years old) living with an adult farmworker. This avoidable exposure pathway is an important target for intervention. We selected 24 agricultural communities in the Yakima Valley of Washington State and randomly assigned them to receive an educational intervention (n = 12) to reduce children's pesticide exposure or usual care (n = 12). We assessed exposure to pesticides in nearly 200 adults and children during the pre and post-intervention periods by measuring metabolites in urine. We compared pre- and post-intervention exposures by expressing the child's pesticide metabolite concentration as a fraction of the adult's concentration living in the same household, because the amount of pesticides applied during the collection periods varied. Exposures in our community were consistently higher, sometimes above the 95 th percentile of the exposures reported by the National Health and Nutrition Examination Survey (NHANES). While intervention and control communities demonstrated a reduction in the ratio of child to adult exposure, this reduction was more pronounced in intervention communities (2.7-fold, p < 0.001 compared to 1.7-fold, p = 0.052 for intervention and control, respectively). By examining the child/adult biomarker ratio, we demonstrated that our community-based intervention was effective in reducing pesticide exposure to children in agricultural communities.
Multi-pathway exposure modeling of chemicals in cosmetics with application to shampoo.
Ernstoff, Alexi S; Fantke, Peter; Csiszar, Susan A; Henderson, Andrew D; Chung, Susie; Jolliet, Olivier
2016-01-01
We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quantified based on the chemical mass originally applied via a product, multiplied by the product intake fractions (PiF, the fraction of a chemical in a product that is taken in by exposed persons) to yield intake rates. The average PiFs for the evaluated chemicals in shampoo ranged from 3×10(-4) up to 0.3 for rapidly absorbed ingredients. Average intake rates ranged between nano- and micrograms per kilogram bodyweight per day; the order of chemical prioritization was strongly affected by the ingredient concentration in shampoo. Dermal intake and inhalation (for 20% of the evaluated chemicals) during use dominated exposure, while the skin permeation coefficient dominated the estimated uncertainties. The fraction of chemical taken in by a shampoo user often exceeded, by orders of magnitude, the aggregated fraction taken in by the population through post-use environmental emissions. Chemicals with relatively high octanol-water partitioning and/or volatility, and low molecular weight tended to have higher use stage exposure. Chemicals with low intakes during use (<1%) and subsequent high post-use emissions, however, may yield comparable intake for a member of the general population. The presented PiF based framework offers a novel and critical advancement for life cycle assessments and high-throughput exposure screening of chemicals in cosmetic products demonstrating the importance of consistent consideration of near- and far-field multi-pathway exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.
Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong
2016-01-01
Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (p<0.05) and recovered to the sham group level at 24h after EMP exposure. Levels of NO, TNF-α and IL-10 also changed significantly in vivo and in vitro after EMP exposure. The protein level of p38 and phosphorylated p38 increased significantly after EMP exposure (p<0.05) and recovered to sham levels at 12 and 24h, respectively. Protein and phosphorylated protein levels of ERK and JNK did not change. SB203580 (p38 inhibitor) partly prevented the change in NO, IL-10, IL-1β, TNF-α levels induced by EMP exposure. Taken together, these results suggested that EMP exposure (200kV/m, 200 pulses) could activate microglia in rat brain and affect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. Copyright © 2015 Elsevier Inc. All rights reserved.