NASA Astrophysics Data System (ADS)
Yasui, Manabu; Kazawa, Elito; Kaneko, Satoru; Takahashi, Ryo; Kurouchi, Masahito; Ozawa, Takeshi; Arai, Masahiro
2014-11-01
SU-8 is a photoresist imaged using UV rays. However, we investigated the characteristics of an SU-8 nanopattern obtained by electron beam lithography (EBL). In particular, we studied the relationship between post-exposure bake (PEB) temperature and exposure time on an SU-8 nanopattern with a focus on phase transition temperature. SU-8 residue was formed by increasing both PEB temperature and exposure time. To prevent the formation of this, Monte Carlo simulation was performed; the results of such simulation showed that decreasing the thickness of SU-8 can reduce the amount of residue from the SU-8 nanopattern. We confirmed that decreasing the thickness of SU-8 can also prevent the formation of residue from the SU-8 nanopattern with EBL.
Study of temperature distributions in wafer exposure process
NASA Astrophysics Data System (ADS)
Lin, Zone-Ching; Wu, Wen-Jang
During the exposure process of photolithography, wafer absorbs the exposure energy, which results in rising temperature and the phenomenon of thermal expansion. This phenomenon was often neglected due to its limited effect in the previous generation of process. However, in the new generation of process, it may very likely become a factor to be considered. In this paper, the finite element model for analyzing the transient behavior of the distribution of wafer temperature during exposure was established under the assumption that the wafer was clamped by a vacuum chuck without warpage. The model is capable of simulating the distribution of the wafer temperature under different exposure conditions. The flowchart of analysis begins with the simulation of transient behavior in a single exposure region to the variation of exposure energy, interval of exposure locations and interval of exposure time under continuous exposure to investigate the distribution of wafer temperature. The simulation results indicate that widening the interval of exposure locations has a greater impact in improving the distribution of wafer temperature than extending the interval of exposure time between neighboring image fields. Besides, as long as the distance between the field center locations of two neighboring exposure regions exceeds the straight distance equals to three image fields wide, the interacting thermal effect during wafer exposure can be ignored. The analysis flow proposed in this paper can serve as a supporting reference tool for engineers in planning exposure paths.
Ramirez-Arcos, Sandra; Mastronardi, Cherie; Perkins, Heather; Kou, Yuntong; Turner, Tracey; Mastronardi, Emily; Hansen, Adele; Yi, Qi-Long; McLaughlin, Natasha; Kahwash, Eiad; Lin, Yulia; Acker, Jason
2013-04-01
A 30-minute rule was established to limit red blood cell (RBC) exposure to uncontrolled temperatures during storage and transportation. Also, RBC units issued for transfusion should not remain at room temperature (RT) for more than 4 hours (4-hour rule). This study was aimed at determining if single or multiple RT exposures affect RBC quality and/or promote bacterial growth. Growth and RT exposure experiments were performed in RBCs inoculated with Serratia liquefaciens and Serratia marcescens. RBCs were exposed once to RT for 5 hours (S. liquefaciens) or five times to RT for 30 minutes (S. marcescens) with periodic sampling for bacterial counts. Noncontaminated units were exposed to RT once (5 hr) or five times (30 min each) and sampled to measure in vitro quality variables. RBC core temperature was monitored using mock units with temperature loggers. Growth and RT exposure experiments were repeated three and at least six times, respectively. Statistical analysis was done using mixed-model analysis. RBC core temperature ranged from 7.3 to 11.6°C during 30-minute RT exposures and the time to reach 10°C varied from 22 to 55 minutes during 5-hour RT exposures. RBC quality was preserved after single or multiple RT exposures. Increased growth of S. liquefaciens was only observed after 2 hours of continuous RT exposure. S. marcescens concentration increased significantly in multiple-exposed units compared to the controls but did not reach clinically important levels. Single or multiple RT exposures did not affect RBC quality but slightly promoted bacterial growth in contaminated units. The clinical significance of these results remains unclear and needs further investigation. © 2012 American Association of Blood Banks.
Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.
Li, Guanghui; Zhao, Jun; Wang, Zike
2018-06-16
Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.
Effects of radiant heat exposure on pacing pattern during a 15-km cycling time trial.
Levels, Koen; de Koning, Jos; Broekhuijzen, Iris; Zwaan, Tamara; Foster, Carl; Daanen, Hein
2014-01-01
The goal of this study was to investigate the effects of different durations of skin temperature manipulation on pacing patterns and performance during a 15-km cycling time trial. Nineteen well-trained men completed three 15-km cycling time trials in 18 °C and 50% relative humidity with 4.5-km (short-heat), 9.0-km (long-heat) or without (control) radiant heat exposure applied by infrared heaters after 1.5 km in the time trial. During the time trials, power output, mean skin temperature, rectal temperature, heart rate and rating of perceived exertion were assessed. The radiant heat exposure resulted in higher mean skin temperature during the time trial for short-heat (35.0 ± 0.6 °C) and long-heat (35.3 ± 0.5 °C) than for control (32.5 ± 1.0 °C; P < 0.001), whereas rectal temperature was similar (P = 0.55). The mean power output was less for short-heat (273 ± 8 W; P = 0.001) and long-heat (271 ± 9 W; P = 0.02) than for control (287 ± 7 W), but pacing patterns did not differ (P = 0.55). Heart rate was greatest in control (177 ± 9 beats · min(-1); P < 0.001), whereas the rating of perceived exertion remained similar. We concluded that a radiant heat exposure and associated higher skin temperature reduced overall performance, but did not modify pacing pattern during a 15-km cycling time trial, regardless of the duration of the exposure.
Ozaki, H; Nagai, Y; Tochihara, Y
2001-04-01
We evaluated human physiological responses and the performance of manual tasks during exposure to severe cold (-25 degrees C) at night (0300-0500 hours) and in the afternoon (1500-1700 hours). Thirteen male students wearing standard cold protective clothing occupied a severely cold room (-25 degrees C) for 20 min, and were then transferred to a cool room (10 degrees C) for 20 min. This pattern of exposure was repeated three times, for a total time of exposure to extreme cold of 60 min. The experiments were started either at 1500 hours or 0300 hours and measurements of rectal temperature, skin temperature, blood pressure, performance in a counting task, hand tremor, and subjective responses were made in each condition. At the end of the experiment at night the mean decrease in rectal temperature [0.68 (SEM 0.04) degree C] was significantly greater than that at the end of the experiment in the afternoon [0.55 (SEM 0.08) degree C, P < 0.01]. After the second cold exposure at night the mean increase in diastolic blood pressure [90 (SEM 2.0) mmHg] was significantly greater than that at the end of the second cold exposure in the afternoon [82 (SEM 2.8) mmHg, P < 0.01]. At the end of the second cold exposure at night, mean finger skin temperature [11.8 (SEM 0.8) degrees C] was significantly higher than that at the comparable time in the afternoon [9.0 (SEM 0.7) degrees C, P < 0.01]. Similarly for the toe, mean skin temperature at the start of the second cold exposure at night [25.6 (SEM 1.5) degrees C] was significantly higher than in the afternoon [20.1 (SEM 0.8) degrees C, P < 0.01]. The increased skin temperatures in the periphery resulted in increased heat loss. Since peripheral skin temperatures were highest at night, the subjects noted diminished sensations of thermal cold and pain at that time. Manual dexterity at the end of the first cold exposure at night [mean 83.7 (SEM 3.6) times.min-1] had decreased significantly more than at the end of the first cold exposure in the afternoon [mean 89.4 (SEM 3.5) times.min-1, P < 0.01]. These findings of a lowered rectal temperature and diminished manual dexterity suggest that there is an increased risk of both hypothermia and accidents for those who work at night.
Doyle, S J; Salvador, P R; Xu, K G
2017-11-01
The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 10 16 to 2.71 × 10 19 m -3 . The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (<5 s) is needed to obtain a valid ion density measurement and that prolonged flame exposures can yield the flame temperature but also risks damage to the Langmuir probe tip.
Schaeffer, Laura; de Crouy-Chanel, Perrine; Wagner, Vérène; Desplat, Julien; Pascal, Mathilde
2016-01-01
Time series studies assessing the effect of temperature on mortality generally use temperatures measured by a single weather station. In the Paris region, there is a substantial measurement network, and a variety of exposure indicators created from multiple stations can be tested. The aim of this study is to test the influence of exposure indicators on the temperature-mortality relationship in the Paris region. The relationship between temperature and non-accidental mortality was assessed based on a time series analysis using Poisson regression and a generalised additive model. Twenty-five stations in Paris and its three neighbouring departments were used to create four exposure indicators. These indicators were (1) the temperature recorded by one reference station, (2) a simple average of the temperatures of all stations, (3) an average weighted on the departmental population and (4) a classification of the stations based on land use and an average weighted on the population in each class. The relative risks and the Akaike criteria were similar for all the exposure indicators. The estimated temperature-mortality relationship therefore did not appear to be significantly affected by the indicator used, regardless of study zone (departments or region) or age group. The increase in temperatures from the 90(th) to the 99(th) percentile of the temperature distribution led to a significant increase in mortality over 75 years (RR = 1.10 [95% CI, 1.07; 1.14]). Conversely, the decrease in temperature between the 10(th) and 1(st) percentile had a significant effect on the mortality under 75 years (RR = 1.04 [95% CI, 1.01; 1.06]). In the Paris area, there is no added value in taking multiple climatic stations into account when estimating exposure in time series studies. Methods to better represent the subtle temperature variations in densely populated areas in epidemiological studies are needed.
Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K
2014-01-01
ABSTRACT Objective: Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Methods: Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Results: Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. Conclusion: The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study. Program managers will need to carefully consider variations in both ambient temperature and rate of use to allocate the appropriate supply level that will maximize coverage and minimize stock loss. PMID:25276588
Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K
2014-08-01
Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study. Program managers will need to carefully consider variations in both ambient temperature and rate of use to allocate the appropriate supply level that will maximize coverage and minimize stock loss.
Effects of Thermal Exposure on Properties of Al-Li Alloys
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Wells, Douglas; Stanton, William; Lawless, Kirby; Russell, Carolyn; Wagner, John; Domack, Marcia; Babel, Henry; Farahmand, Bahram; Schwab, David;
2002-01-01
Aluminum-Lithium (Al-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional Al alloys. For example, the application of Al-Li alloy 2195 to the space shuffle external cryogenic fuel tank resulted in weight savings of over 7,000 lb, enabling successful deployment of International Space Station components. The composition and heat treatment of 2195 were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time-dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. Literature surveys have indicated that there is limited thermal exposure data on Al-Li alloys. The effort reported here was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of Al-Li alloys C458, L277, and 2195 in plate gages. Tensile, fracture toughness, and corrosion resistance were evaluated for both parent metal and friction stir welds (FSW) after exposure to temperatures as high as 300 F for up to 1000 hrs. Microstructural changes were evaluated with thermal exposure in order to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Friction stir welds of all alloys showed a drop in elongation with increased length of exposure. Understanding the effect of thermal exposure on the properties and microstructure of Al-Li alloys must be considered in defining service limiting temperatures and exposure times for a reusable cryotank structure.
Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki
2016-01-01
We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.
NASA Astrophysics Data System (ADS)
Nagesh Kumar, R.; Ram Prabhu, T.; Siddaraju, C.
2016-09-01
The effect of thermal exposure on the mechanical properties of a C355.0 aerospace grade aluminum-silicon alloy (5% Si - 1.2% Cu - 0.5% Mg) was investigated in the present study. The alloy specimens were subjected to T6 (solution treatment and artificial ageing treatment) temper treatment to enhance the strength properties through precipitation hardening. The T6 temper treatment involved solution heat treatment at 520oC for 6h, followed by water quenching and ageing at 150oC. After the heat treatment, the specimens were exposed to various temperatures (50oC, 100oC, 150oC, 200oC and 250oC) for 5 and 10 h to study the structural applications of this alloy to the various Mach number military aircrafts. After the thermal exposure, specimens were tested for tensile, hardness and impact properties (Charpy). The microstructure of the thermal exposed specimens was examined in the optical microscopes and correlated with the mechanical properties results. In summary, an increase of exposure time has a different effect on the tensile and hardness properties of the alloy. For the exposure time 5h, the tensile and hardness properties increase upto 100oC and later decrease with an increase of temperature. In contrast, the tensile and hardness properties linearly decrease with an increase of temperature. Several factors such as matrix grain growth, diffusion rate, Si particles size and distribution, precipitate stability play a key role on deciding the tensile properties of the alloy. Comparing the relative effects of temperature and time, the temperature effects dominate more in deteriorating tensile properties of the alloy. There are no effects of exposure temperature and/or time on the impact properties of the alloy.
Thermoregulation is impaired in an environment without circadian time cues
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.
1978-01-01
Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.
Effect of exposure cycle on hot salt stress corrosion of a titanium alloy
NASA Technical Reports Server (NTRS)
Gray, H. R.; Johnston, J. R.
1974-01-01
The influence of exposure cycle on the hot-salt stress-corrosion cracking resistance of the Ti-8Al-1Mo-1V alloy was determined. Both temperature and stress were cycled simultaneously to simulate turbine-powered aircraft service cycles. Temperature and stress were also cycled independently to determine their individual effects. Substantial increases in crack threshold stresses were observed for cycles in which both temperature and stress or temperature alone were applied for 1 hour and removed for 3 hours. The crack threshold stresses for these cyclic exposures were twice those determined for continuous exposure for the same total time of 96 hours.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effectiveness of oregano oil on four organic leafy greens (iceberg and romaine lettuces and mature and baby spinaches) inoculated with Salmonella Newport as a function of treatment exposure times as well as storage temperatures. Leaf samples were wash...
Menezes-Oliveira, Vanessa B; Scott-Fordsmand, Janeck J; Soares, Amadeu M V M; Amorim, Monica J B
2013-12-01
Global warming affects ecosystems and species' diversity. The physiology of individual species is highly influenced by changes in temperature. The effects on species communities are less studied; they are virtually unknown when combining effects of pollution and temperature. To assess the effects of temperature and pollution in the soil community, a 2-factorial soil mesocosms multispecies experiment was performed. Three exposure periods (28 d, 61 d, and 84 d) and 4 temperatures (19 °C, 23 °C, 26 °C, and 29 °C) were tested, resembling the mean annual values for southern Europe countries and extreme events. The soil used was from a field site, clean, or spiked with Cu (100 mg Cu/kg). Results showed clear differences between 29 °C treatment and all other temperature treatments, with a decrease in overall abundance of organisms, further potentiated by the increase in exposure time. Folsomia candida was the most abundant species and Enchytraeus crypticus was the most sensitive to Cu toxicity. Differences in species optimum temperatures were adequately covered: 19 °C for Hypoaspis aculeifer or 26 °C for E. crypticus. The temperature effects were more pronounced the longer the exposure time. Feeding activity decreased with higher temperature and exposure time, following the decrease in invertebrate abundance, whereas for the same conditions the organic matter turnover increased. Hence, negative impacts on ecosystem services because of temperature increase can be expected by changes on soil function and as consequence of biodiversity loss. © 2013 SETAC.
The use of chlorine dioxide for the inactivation of copepod zooplankton in drinking water treatment.
Lin, Tao; Chen, Wei; Cai, Bo
2014-01-01
The presence of zooplankton in drinking water treatment system may cause a negative effect on the aesthetic value of drinking water and may also increase the threat to human health due to they being the carriers of bacteria. Very little research has been done on the effects of copepod inactivation and the mechanisms involved in this process. In a series of bench-scale experiments we used a response surface method to assess the sensitivity of copepod to inactivation when chlorine dioxide (ClO₂) was used as a disinfectant. We also assessed the effects of the ClO₂dosage, exposure time, organic matter concentration and temperature. Results indicated that the inactivation rate improved with increasing dosage, exposure time and temperature, whereas it decreased with increasing organic matter concentration. Copepod inactivation was more sensitive to the ClO₂dose than that to the exposure time, while being maintained at the same Ct-value conditions. The activation energy at different temperatures revealed that the inactivation of copepods with ClO₂was temperature-dependent. The presence of organic matter resulted in a lower available dose as well as a shorter available exposure time, which resulted in a decrease in inactivation efficiency.
NASA Technical Reports Server (NTRS)
Ellis, David L.
2012-01-01
Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.
Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry
2002-01-01
Aluminum-Lithium (AL-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional aluminum alloys. For example, the application of an Al-Li alloy to the space shuttle external cryogenic fuel tank contributed to the weight savings that enabled successful deployment of International Space Station components. The composition and heat treatment of this alloy were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. As most aerospace structural hardware is weight sensitive, a reusable cryotank will be designed to the limits of the materials mechanical properties. Therefore, this effort was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of one relatively production mature alloy and two developmental alloys C458 and L277. Tensile and fracture toughness behavior was evaluated after exposure to temperatures as high as 3oooF for up to IO00 hrs. Microstructural changes were also evaluated to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Characterizing the effect of thermal exposure on the properties of Al-Li alloys is important to defining a service limiting temperature, exposure time, and end-of-life properties.
Heat exposure in cities: combining the dynamics of temperature and population
NASA Astrophysics Data System (ADS)
Hu, L.; Wilhelmi, O.; Uejio, C. K.
2017-12-01
Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and response strategies.
Climate change and health: Indoor heat exposure in vulnerable populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
White-Newsome, Jalonne L., E-mail: jalonne@umich.edu; Sanchez, Brisa N., E-mail: brisa@umich.edu; Jolliet, Olivier, E-mail: ojolliet@umich.edu
2012-01-15
Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 inmore » Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.« less
Oxygen plasma ashing effects on aluminum and titanium space protective coatings
NASA Technical Reports Server (NTRS)
Synowicki, R.; Kubik, R. D.; Hale, J. S.; Peterkin, Jane; Nafis, S.; Woollam, John A.; Zaat, S.
1991-01-01
Using variable angle spectroscopic ellipsometry and atomic force microscopy (AFM), the surface roughness and oxidation of aluminum and titanium thin films have been studied as a function of substrate deposition temperature and oxygen plasma exposure. Increasing substrate deposition temperatures affect film microstructure by greatly increasing grain size. Short exposures to an oxygen plasma environment produce sharp spikes rising rapidly above the surface as seen by AFM. Ellipsometric measurements were made over a wide range of plasma exposure times, and results at longer exposure times suggest that the surface is greater than 30% void. This is qualitatively verified by the AFM images.
Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.
Schulte, Patricia M; Healy, Timothy M; Fangue, Nann A
2011-11-01
Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
Fractography of the high temperature hydrogen attack of a medium carbon steel
NASA Technical Reports Server (NTRS)
Melson, H. G.; Moorhead, R. D.
1975-01-01
Microscopic fracture processes were studied which are associated with hydrogen attack of a medium carbon steel in a well-controlled, high-temperature, high-purity hydrogen environment. Exposure to a hydrogen pressure and temperature of 3.5 MN/m2 and 575 C was found to degrade room temperature tensile properties with increasing exposure time. After 408 hr, yield and ultimate strengths were reduced by more than 40 percent and elongation was reduced to less than 2 percent. Initial fissure formation was found to be associated with manganese rich particles, most probably manganese oxide, aligned in the microstructure during the rolling operation. Fissure growth was found to be associated with a reduction in carbide content of the microstructure and was inhibited by the depletion of carbon. The interior surfaces of sectioned fissures or bubbles exhibit both primary and secondary cracking by intergranular separation. The grain surfaces were rough and rounded, suggesting a diffusion-associated separation process. Specimens that failed at room temperature after exposure to hydrogen were found to exhibit mixed mode fracture having varying amounts of intergranular separation, dimple formation, and cleavage, depending on exposure time.
Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi
2005-04-01
Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2007-01-01
In this work, results of multiple temperature cycling (TC) (up to 1,000 cycles) of different types of solid tantalum capacitors are analyzed and reported. Deformation of chip tantalum during temperature variations simulating reflow soldering conditions was measured to evaluate the possibility of the pop-corning effect in the parts. To simulate the effect of short-time exposures to solder reflow temperatures on the reliability of tantalum capacitors, several part types were subjected to multiple cycles (up to 100) between room temperature and 240 C with periodical measurements of electrical characteristics of the parts. Mechanisms of degradation caused by temperature cycling and exposure to high temperatures, and the requirements of MIL-PRF-55365 for assessment of the resistance of the parts to soldering heat are discussed.
2011-01-01
Background The evaluation of exposure to ambient temperatures in epidemiological studies has generally been based on records from meteorological stations which may not adequately represent local temperature variability. Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under various meteorological conditions based on satellite and meteorological data. Methods A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7 images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The images encompassed both rural and urban landscapes and predictors included: meteorological records of temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year. Results The model explained 77% of the variance in surface temperature, accounting for both temporal and spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of surface temperature. Conclusions This study suggests that a statistical approach to estimating surface temperature incorporating both spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface temperatures, this model may also be used to assess the possible impacts of land use changes under various meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The method proposed here could be replicated in other areas around the globe for which satellite data and meteorological data is available. PMID:21251286
Kelly-Wintenberg, K; Montie, T C; Brickman, C; Roth, J R; Carr, A K; Sorge, K; Wadsworth, L C; Tsai, P P
1998-01-01
We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 x 10(2) cells were seeded on filter paper. Results showed > or = 3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 x 10(4)) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect > or = 6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated > or = 5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 x 10(5)); 7 min OAUGDP exposures were required to generate a > or = 3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed.
Corneal collagen denaturation in laser thermokeratoplasty
NASA Astrophysics Data System (ADS)
Brinkmann, Ralf; Kampmeier, Juergen; Grotehusmann, Ulf; Vogel, Alfred; Koop, Norbert; Asiyo-Vogel, Mary; Birngruber, Reginald
1996-05-01
In laserthermokeratoplasty (LTK) thermal denaturation and shrinkage of corneal collagen is used to correct hyperopia and astigmatism. In order to optimize dosimetry, the temperature at which maximal shrinkage of collagen fibrils occurs is of major interest. Since the exposure time in clinical LTK-treatment is limited to a few seconds, the kinetics of collagen denaturation as a rate process has to be considered, thus the time of exposure is of critical importance for threshold and shrinkage temperatures. We investigated the time-temperature correlation for corneal collagen denaturation within different time domains by turbidimetry of scattered HeNe laser probe light using a temperature controlled water bath and pulsed IR laser irradiation. In the temperature range of 60 degree(s)C to 95 degree(s)C we found an exponential relation between the denaturation time and temperature. For the typical LTK-treatment time of 2 s, a temperature of 95 degree(s)C is needed to induce thermal damage. Use of pulsed Holmium laser radiation gave significant scattering of HeNe laser probe light at calculated temperatures of around 100 degree(s)DC. Rate parameters according to the formalism of Arrhenius were fitted to these results. Force measurements showed the simultaneous onset of light scattering and collagen shrinkage.
Control of insects and mites in grain using a high temperature/short time (HTST) technique.
Mourier; Poulsen
2000-07-01
Wheat infested with grain mites (Acari) and Sitophilus granarius, and maize infested with Prostephanus truncatus, were exposed to hot air in a CIMBRIA HTST Microline toaster((R)). Inlet temperatures of the hot air were in the range of 150-750 degrees C decreasing to outlet temperatures in the range of 100-300 degrees C during the exposure period. A rotating drum, connected to a natural-gas burner was fed with grain which was in constant movement along the drum and thereby mixed thoroughly during the process. The capacity of the toaster was 1000 kg per hour.Complete control of grain mites and adult S. granarius in wheat was obtained with an inlet temperature of 300-350 degrees C and an average residence time in the drum of 6 s. More than 99% mortality was obtained for all stages of S. granarius with an inlet temperature of 300-350 degrees C and an average exposure period of 40 s. For control of P. truncatus in maize, an inlet temperature of 700 degrees C resulted in a complete disinfestation when the exposure time was 19 s.The reduction in grain moisture content was 0.5-1% at treatments giving 100% control. Germination tests indicate that it is possible to choose a combination of inlet temperatures and exposure periods which effectively kills mites and insects in small grains, without harming the functional properties of the grain.Economy of the method was considered to be competitive with fumigation using phosphine.
Ultra-accelerated natural sunlight exposure testing
Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.
2000-06-13
Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.
Photothermal damage is correlated to the delivery rate of time-integrated temperature
NASA Astrophysics Data System (ADS)
Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.
2016-03-01
Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.
Lorenzon, S; Giulianini, P G; Martinis, M; Ferrero, E A
2007-05-01
Homarus americanus is an important commercial species that can survive 2-3 days out of water if kept cool and humid. Once caught for commercial purpose and shipped around the world, a lobster is likely to be subjected to a number of stressors, including emersion and air exposure, hypoxia, temperature changes and handling. This study focused on the effect of transport stress and specifically at different animal body temperature (6 and 15 degrees C) and air exposure during commercial transport and recovery process in water. Animals were monitored, by hemolymph bleeding, at different times: 0 h (arrival time at plant) 3 h, 12 h, 24 h and 96 h after immersion in the stocking tank with a water temperature of 6.5+/-1.5 degrees C. We analysed the effects by testing some physiological variables of the hemolymph: glucose, cHH, lactate, total protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density. All these variables appeared to be influenced negatively by high temperature both in average of alteration from the physiological value and in recovering time. Blood glucose, lactate, total protein, cholesterol were significantly higher in the group with high body temperature compared to those with low temperature until 96 h after immersion in the recovery tank.
Correlated colour temperature of morning light influences alertness and body temperature.
Te Kulve, Marije; Schlangen, Luc; Schellen, Lisje; Souman, Jan L; van Marken Lichtenbelt, Wouter
2018-03-01
Though several studies have reported human alertness to be affected by the intensity and spectral composition of ambient light, the mechanism behind this effect is still largely unclear, especially for daytime exposure. Alerting effects of nocturnal light exposure are correlated with melatonin suppression, but melatonin levels are generally low during the day. The aim of this study was to explore the alerting effect of light in the morning for different correlated colour temperature (CCT) values, as well as its interaction with ambient temperature. Body temperature and perceived comfort were included in the study as possible mediating factors. In a randomized crossover design, 16 healthy females participated in two sessions, once under 2700K and once under 6500K light (both 55lx). Each session consisted of a baseline, a cool, a neutral and a warm thermal environment. Alertness as measured in a reaction time task was lower for the 6500K exposure, while subjective sleepiness was not affected by CCT. Also, core body temperature was higher under 6500K. Skin temperature parameters and perceived comfort were positively correlated with subjective sleepiness. Reaction time correlated with heat loss, but this association did not explain why the reaction time was improved for 2700K. Copyright © 2017 Elsevier Inc. All rights reserved.
Duret, Steven; Guillier, Laurent; Hoang, Hong-Minh; Flick, Denis; Laguerre, Onrawee
2014-06-16
Deterministic models describing heat transfer and microbial growth in the cold chain are widely studied. However, it is difficult to apply them in practice because of several variable parameters in the logistic supply chain (e.g., ambient temperature varying due to season and product residence time in refrigeration equipment), the product's characteristics (e.g., pH and water activity) and the microbial characteristics (e.g., initial microbial load and lag time). This variability can lead to different bacterial growth rates in food products and has to be considered to properly predict the consumer's exposure and identify the key parameters of the cold chain. This study proposes a new approach that combines deterministic (heat transfer) and stochastic (Monte Carlo) modeling to account for the variability in the logistic supply chain and the product's characteristics. The model generates a realistic time-temperature product history , contrary to existing modeling whose describe time-temperature profile Contrary to existing approaches that use directly a time-temperature profile, the proposed model predicts product temperature evolution from the thermostat setting and the ambient temperature. The developed methodology was applied to the cold chain of cooked ham including, the display cabinet, transport by the consumer and the domestic refrigerator, to predict the evolution of state variables, such as the temperature and the growth of Listeria monocytogenes. The impacts of the input factors were calculated and ranked. It was found that the product's time-temperature history and the initial contamination level are the main causes of consumers' exposure. Then, a refined analysis was applied, revealing the importance of consumer behaviors on Listeria monocytogenes exposure. Copyright © 2014. Published by Elsevier B.V.
Climate change and health: Indoor heat exposure in vulnerable populations☆
White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Dvonch, J. Timothy; O'Neill, Marie S.
2015-01-01
Introduction Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures’ responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings PMID:22071034
Thermal evaluation of laser exposures in an in vitro retinal model by microthermal sensing
NASA Astrophysics Data System (ADS)
Choi, Tae Y.; Denton, Michael L.; Noojin, Gary D.; Estlack, Larry E.; Shrestha, Ramesh; Rockwell, Benjamin A.; Thomas, Robert; Kim, Dongsik
2014-09-01
A temperature detection system using a micropipette thermocouple sensor was developed for use within mammalian cells during laser exposure with an 8.6-μm beam at 532 nm. We have demonstrated the capability of measuring temperatures at a single-cell level in the microscale range by inserting micropipette-based thermal sensors of size ranging from 2 to 4 μm into the membrane of a live retinal pigment epithelium (RPE) cell subjected to a laser beam. We setup the treatment groups of 532-nm laser-irradiated single RPE cell and in situ temperature recordings were made over time. Thermal profiles are given for representative cells experiencing damage resulting from exposures of 0.2 to 2 s. The measured maximum temperature rise for each cell ranges from 39 to 73°C the RPE cells showed a signature of death for all the cases reported herein. In order to check the cell viability, real-time fluorescence microscopy was used to identify the transition of pigmented RPE cells between viable and damaged states due to laser exposure.
Time and temperature interactions in freezing tolerance of winter wheat
USDA-ARS?s Scientific Manuscript database
In order to survive the temperature fluctuations that occur during the winter months, winter wheat (Triticum aestivum L.) plants must tolerate episodes of freezing to various temperatures for various lengths of time. In this study, the ability of six wheat cultivars to survive exposure to -13.5 to ...
Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D
2017-06-01
Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.
Near infrared radiation damage mechanism in the lens
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Talebizadeh, Nooshin; Galichanin, Konstantin; Kronschläger, Martin; Schulmeister, Karl; Yu, Zhaohua
2015-03-01
The current data strongly indicates that there is no photochemical effect of in vivo exposure to 1090 nm near IRR radiation within the pupil. Four groups of 20 Sprague-Dawley rats were unilaterally exposed in vivo to 96 W·cm-2 centered inside the pupil for 10, 18, 33 and 60 min, respectively depending on group belonging. This resulted in radiant exposure doses of 57, 103, 198 and 344 kJ·cm-2. Temperature evolution at the limbus during the exposure and difference of intensity of forward light scattering between the exposed and the contralateral not exposed eye was measured at 1 week after exposure. The temperature at the limbus was found to increase exponentially towards an asymptote with an asymptote temperature of around 7 °C and a time constant (1/k) of around 15 s. No increase of light scattering was found despite that the cumulated radiant exposure dose was [80;250] times the threshold for photochemically induced cataract suggested by previous empirical data. It is concluded that at 1090 nm near IRR there is no photochemical effect.
Servili, Maurizio; Selvaggini, Roberto; Taticchi, Agnese; Esposto, Sonia; Montedoro, GianFrancesco
2003-12-31
The operative conditions of malaxation such as temperature and time of exposure of olive pastes to air contact (TEOPAC) affect volatile and phenolic composition of virgin olive oil (VOO) and, as a consequence, its sensory and healthy qualities. In this paper, optimal temperature and TEOPAC during malaxation were studied, in lab scale, in two Italian cultivars using phenolic compounds, volatile composition, and sensory analysis of VOO as markers. The optimal temperature and TEOPAC, selected by response surface modeling,were cultivar-dependent being 30 min of TEOPAC at the lowest temperature investigated (22 degrees C) and 0 min of TEOPAC at 26 degrees C for Frantoio and Moraiolo cultivars, respectively.
Murhekar, Manoj V; Dutta, Srihari; Kapoor, Ambujam Nair; Bitragunta, Sailaja; Dodum, Raja; Ghosh, Pramit; Swamy, Karumanagounder Kolanda; Mukhopadhyay, Kalyanranjan; Ningombam, Somorjit; Parmar, Kamlesh; Ravishankar, Devegowda; Singh, Balraj; Singh, Varsha; Sisodiya, Rajesh; Subramanian, Ramaratnam; Takum, Tana
2013-12-01
To estimate the proportion of time the vaccines in the cold-chain system in India are exposed to temperatures of < 0 or > 8 °C. In each of 10 states, the largest district and the one most distant from the state capital were selected for study. Four boxes, each containing an electronic temperature recorder and two vials of diphtheria, pertussis and tetanus vaccine, were placed in the state or regional vaccine store for each study state. Two of these boxes were then shipped - one per facility - towards the two most peripheral health facilities where vaccine was stored in each study district. The boxes were shipped, handled and stored as if they were routine vaccine supplies. In state, regional and district vaccine stores and peripheral health facilities, respectively, the temperatures in the boxes exceeded 8 °C for 14.3%, 13.2%, 8.3% and 14.7% of their combined storage times and fell below 0 °C for 1.5%, 0.2%, 0.6% and 10.5% of these times. The boxes also spent about 18% and 7% of their combined times in transit at < 0 and > 8 °C, respectively. In shake tests conducted at the end of the study, two thirds of the vaccine vials in the boxes showed evidence of freezing. While exposure to temperatures above 8 °C occurred at every level of vaccine storage, exposure to subzero temperatures was only frequent during vaccine storage at peripheral facilities and vaccine transportation. Systematic efforts are needed to improve temperature monitoring in the cold-chain system in India.
Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds
NASA Astrophysics Data System (ADS)
Mishra, Vimal; Mukherjee, Sourav; Kumar, Rohini; Stone, Dáithí A.
2017-12-01
Heatwaves with large impacts have increased in the recent past and will continue to increase under future warming. However, the implication for population exposure to severe heatwaves remains unexplored. Here, we characterize maximum potential human exposure (without passive/active reduction measures) to severe heatwaves in India. We show that if the global mean temperature is limited to 2.0 °C above pre-industrial conditions, the frequency of severe heatwaves will rise by 30 times the current climate by the end-21st century. In contrast, the frequency is projected to be about 2.5 times more (than the low-warming scenario of 2 °C) under conditions expected if the RCP8.5 ‘business-as-usual’ emissions scenario is followed. Under the 2.0 °C low-warming target, population exposure to severe heatwaves is projected to increase by about 15 and 92 times the current level by the mid and end-21st century respectively. Strategies to reduce population growth in India during the 21st century may provide only limited mitigation of heatwave exposure mostly late in the century. Limiting global temperatures to 1.5 °C above preindustrial would reduce the exposure by half relative to RCP8.5 by the mid-21st century. If global temperatures are to exceed 1.5 °C then substantial measures will be required to offset the large increase in exposure to severe heatwaves in India.
TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E
2008-11-12
Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. Themore » glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couey, H.M.; Uota, M.
1961-12-01
When spores of Botrytis cinerea are exposed to SO/sub 2/ gas, the subsequent reduction in spore germination is quantitatively proportional to the SO/sub 2/ concentration and the exposure time. The toxicity of SO/sub 2/ increases with increasing relative humidity. In an atmosphere of 96% RH, SO/sub 2/ is more than 20 times as effective as at 75% RH. The toxicity also increases about 1.5 times for each 10/sup 0/C rise in temperature between 0/sup 0/ and 30/sup 0/C. 8 references, 4 figures, 1 table.
Instrument for Study of Microbial Thermal Inactivation
Dickerson, R. W.; Read, R. B.
1968-01-01
An instrument was designed for the study of thermal inactivation of microorganisms using heating times of less than 1 sec. The instrument operates on the principle of rapid automatic displacement of the microorganism to and from a saturated steam atmosphere, and the operating temperature range is 50 to 90 C. At a temperature of 70 C, thermometric lag (time required to respond to 63.2% of a step change) of the fluid sample containing microorganisms was 0.12 sec. Heating time required to heat the sample to within 0.1 C of the exposure temperature was less than 1 sec, permitting exposure periods as brief as 1 sec, provided the proper corrections are made for the lethal effect of heating. The instrument is most useful for heat exposure periods of less than 5 min, and, typically, more than 500 samples can be processed for microbial inactivation determinations within an 8-hr period. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:4874466
High temperature stress and spikelet fertility in rice (Oryza sativa L.).
Jagadish, S V K; Craufurd, P Q; Wheeler, T R
2007-01-01
In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correa, Miguel; Huang, Qian; Fifield, Leonard S.
Cross-linked polyethylene (XLPE) cable insulation samples were exposed to heat and gamma radiation at a series of temperatures, dose rates, and exposure times to evaluate the effects of these variables on material degradation. The samples were tested using the solvent incubation method to collect gel fraction and uptake factor data in order to assess the crosslinking and chain scission occurring in polymer samples with aging. Consistent with previous reports, gel fraction values were observed to increase and uptake factor values to decrease with radiation and thermal exposure. The trends seen were also more prominent as exposure time increased, suggesting thismore » to be a viable method of tracking structural changes in the XLPE-insulated cable material over extended periods. For the conditions explored, the cable insulation material evaluated did not indicate signs of anomalous aging such as inverse temperature effect in which radiation-induced aging is more severe at lower temperature. Ongoing aging under identical radiation conditions and at lower temperature will further inform conclusions regarding the importance of inverse temperature effects for this material under these conditions.« less
Temperature changes across porcelain during multiple exposure CO2 lasing
NASA Astrophysics Data System (ADS)
Barron, Joseph R.; Zakariasen, Kenneth L.; Peacocke, Larry
1990-06-01
Research indicates that laser energy may provide a useful method for glazing and fusing porcelain for intraoral prosthetic purposes. However, it is not known whether such lasing will result in the production of heat levels that may be damaging to adjacent vital tissues such as the dental pulp and periodontal tissues. This research is designed to measure the magnitude of temperature rise across porcelain observed during multiple exposure C02 lasing. Fifteen porcelain examples of 1000 jim (5), 1500 pm (5) and 2000 tm (5) x each received five C02 laser exposures on the same exposure site at 1.0 sec. intervals at 8.0 watts (0.2 sec. per exposure with a 1 mm focal spot). A YSI 144201 thermilinear precision thermistor was placed on the porcelain surface opposite each laser exposure site. Temperature rise above ambient was recorded by an HP3421A data acquisition unit and HP9816 technical microcomputer. Recording continued for sufficient time to allow temperatures to return to ambient. The mean temperature elevations ranged from a low of 2.97 0C (2000 pm) to a high of 7.77 °C (1000 μm). ANOVA and Duncan's Multiple Range Test indicated significant differences in temperature rise by porcelain thickness. It would appear from the results of this research that temperature elevations adjacent to lased porcelain may be sufficiently controllable that safe intraoral porcelain lasing will be possible.
Environmental degradation of 316 stainless steel in high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.
1987-01-01
Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.
Zhou, W T; Fujita, M; Ito, T; Yamamoto, S
1997-07-01
1. This study was to determine the effects of heat load early in life on thermoregulatory responses and whole blood viscosity of broilers during a subsequent exposure to high environmental temperature later in life. 2. The birds, which had been subjected to exposure to 38 degrees C for 24 h at 5-d-old, served as prior exposure group (group A). Both group A and control group B were exposed to 33 degrees C for 3 h when near marketable weight. 3. On exposure to 33 degrees C, although there were no significant differences in the increases in heat production (HP) between the two groups, abdominal temperature (Ta), temperature of external ear tract (Tee), shank skin temperature (Tss), standing-lying frequency and lying time were lower in group A than in group B. Heart rate (HR) and comb surface temperature (Tcs) did not differ but increased in both groups during exposure to 33 degrees C. Respiration rate (RR) was greater in group A. 4. Blood viscosity decreased markedly in both groups after exposure to 33 degrees C; the decrease was greater in group A. 5. These results suggest that early exposure may promote broilers' ability to cope with the subsequent heat load by altering thermoregulatory physiological responses and behavioural patterns, resulting in an alleviation of heat stress.
Mortality, Temporary Sterilization, and Maternal Effects of Sublethal Heat in Bed Bugs
Rukke, Bjørn Arne; Aak, Anders; Edgar, Kristin Skarsfjord
2015-01-01
Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring’s feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions. PMID:25996999
The association of ambient temperature with incidence of cardiac arrhythmias in a short timescale
NASA Astrophysics Data System (ADS)
Kim, Jayeun; Kim, Ho
2017-11-01
The body response time and an association between the exposure to outdoor temperature and cardiac arrhythmia were not fully understood. Hence, we further investigated the association between ambient temperature and the exacerbations of arrhythmia symptoms on a short timescale using the emergency department (ED) visit data. We used a total of 17,088 arrhythmia-related ED visits in Seoul, from 2008 to 2011 and fitted the model adjusting for other meteorological variables and air pollutants under the case-crossover analysis with the same year-month time stratification. The association was presented as an odds ratio (OR) with a 95% confidence interval (CI) by a 5 °C decrease in the ambient temperature. The delay time (h) between exposure and the onset of arrhythmia exacerbation was considered with time blocks for every 3 h as 1-3 h, up to 118-120 h; and daily lags (1 day), from 25-48 h to 97-120 h, as a multi-time average of exposures. The overall association was increased at lag 4-6 h and the increased association was statistically significant at lag 40-42 h (OR 1.027, 95% CI 1.003-1.051) and the adverse association continued at 97-120 h (OR 1.053, 95% CI 1.027-1.080). However, the delay of several days between ambient temperature and body response should be further investigated considering the modification according to varied demographic characteristics or different environmental circumstances.
Heating of tissues by microwaves: a model analysis.
Foster, K R; Lozano-Nieto, A; Riu, P J; Ely, T S
1998-01-01
We consider the thermal response times for heating of tissue subject to nonionizing (microwave or infrared) radiation. The analysis is based on a dimensionless form of the bioheat equation. The thermal response is governed by two time constants: one (tau1) pertains to heat convection by blood flow, and is of the order of 20-30 min for physiologically normal perfusion rates; the second (tau2) characterizes heat conduction and varies as the square of a distance that characterizes the spatial extent of the heating. Two idealized cases are examined. The first is a tissue block with an insulated surface, subject to irradiation with an exponentially decreasing specific absorption rate, which models a large surface area of tissue exposed to microwaves. The second is a hemispherical region of tissue exposed at a spatially uniform specific absorption rate, which models localized exposure. In both cases, the steady-state temperature increase can be written as the product of the incident power density and an effective time constant tau(eff), which is defined for each geometry as an appropriate function of tau1 and tau2. In appropriate limits of the ratio of these time constants, the local temperature rise is dominated by conductive or convective heat transport. Predictions of the block model agree well with recent data for the thresholds for perception of warmth or pain from exposure to microwave energy. Using these concepts, we developed a thermal averaging time that might be used in standards for human exposure to microwave radiation, to limit the temperature rise in tissue from radiation by pulsed sources. We compare the ANSI exposure standards for microwaves and infrared laser radiation with respect to the maximal increase in tissue temperature that would be allowed at the maximal permissible exposures. A historical appendix presents the origin of the 6-min averaging time used in the microwave standard.
Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure.
Cai, Cheng; Geng, Huifang; Wang, Shifu; Gong, Boxue; Zhang, Zheng
2018-05-16
The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy.
Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure
Cai, Cheng; Geng, Huifang; Wang, Shifu; Gong, Boxue; Zhang, Zheng
2018-01-01
The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy. PMID:29772678
Ito, Mana; Ito, Katsutoshi; Ohta, Kohei; Hano, Takeshi; Onduka, Toshimitsu; Mochida, Kazuhiko
2016-08-15
Cytochrome P450 (CYP) enzymes play important roles in the metabolism of exogenous compounds such as polycyclic aromatic hydrocarbons (PAHs). A novel, full-length CYP gene (CYP4V30) was identified in the oligochaete Thalassodrilides sp. CYP4V30 mRNA expression was studied in worms exposed to PAH-polluted (Σ16PAHs; 37441ng/g dry weight) or unpolluted (Σ16PAHs; 19ng/g dry weight) sediment. CYP4V30 expression was much higher in worms exposed to contaminated sediments than in those exposed to unpolluted sediments at some temperatures (20 and 25°C) and exposure durations (11-fold increase at 20°C, 10-day exposure), but not at 15°C or other exposure durations (P<0.05). CYP4V30 mRNA expression was higher in the middle of the body than in the posterior (P<0.05). The variation in transcriptional response with exposure time, temperature, and body region indicates that these factors should be considered when monitoring marine sediment pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dennies, Daniel P.; Parsons, Terry D.
1986-01-01
The oxidation characteristics of 440 C corrosion-resistant steel are evaluated. The dependence of oxide color, type, and thickness, material hardness, and microstructure on temperature is examined. The effects of exposure time, passivation layer, and oxygen pressure on the oxide formation are investigated. A direct relationship between temperature and oxide color, formation, and thickness is detected. It is observed that the exposure time does not affect the microstructure or oxide color, type, or thickness; however, the passivation layer does affect oxide color and type.
[Establishment of heat acclimatization model in rabbits and its pathophysiological characteristics].
Wang, Tao; Wang, Jing; Wang, Shang; Li, Pei-Yao; Zhang, Wen-Cheng; Zhao, Xiao-Ling; Wang, Hai
2013-09-01
To establish an effective and stable rabbit heat acclimatization model for the experiment of heat acclimatization mechanisms. Sixteen healthy male rabbits were divided into heat acclimatization group and control group randomly (n = 8). Heat acclimatization (HA) group was kept in simulation chamber with dry bulb temperature of (36 +/- 1) degrees C, wet bulb temperature of (29 +/- 0.5) degrees C, black-bulb temperature of (40 +/- 1.0) degrees C, 100 min/day for 21 days. Control group was kept in the room with temperature of 20 degrees C and relative humidity < 60% during 20 days, then removed into simulation chamber on day 21 to estimate and monitor the rectal temperature together with the heat acclimatization group. Venous blood of control and heat acclimatization group before and after heat exposure on the 1st day, 11th day and 21st day were collected to detect levels of tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6) and heat shock protein 70 (HSP70) by ELISA analysis. (1) Rectal temperature: There was no significant change in control group during 21 days. In heat acclimatization group, it increased (2.07 +/- 0.43) degrees C after the 1st exposure, and increased (1.78 +/- 0.37) degrees C after the 11th exposure, the range of increasing decreased (0.29 +/- 0.09) degrees C. After the 21st exposure, it increased (1.52 +/- 0.29) degrees C, which was (0.55 +/- 0.14) degrees C lower than that of the 1st (P < 0.05),and (0.53 +/- 0.14) degrees C lower to that of the control group under 1st heat stress (P < 0.05); (2) The level of TNF-alpha after the 1st exposure increased significantly (P < 0.05), but didn't raise along with the exposure times. And fell back to the original level after the 11th and 21st exposure. Compared with control group, the level of IL-6 increased after the 1st, 11th and 21st exposure (P < 0.05), and maintained highly after the 11th and 21st exposure. Compared with the control group, the level of HSP70 increased dramatically with the heat exposure times. Significant increasing of (HSP70) could be detected after the 11th and 21st exposure (P < 0.05), but there was no difference to that of the 1st exposure. Prolonged or repeated exposure to heat stressful environmental conditions can reduce the physiological strain, improve heat tolerance, elicits heat acclimatization.
Nethery, Elizabeth; Mallach, Gary; Rainham, Daniel; Goldberg, Mark S; Wheeler, Amanda J
2014-05-08
Personal exposure studies of air pollution generally use self-reported diaries to capture individuals' time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants' locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant's position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest 'good' agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time "Indoors Other" using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time "In Transit" was relatively consistent between the methods, the mean daily exposure to PM2.5 while "In Transit" was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution.
2014-01-01
Background Personal exposure studies of air pollution generally use self-reported diaries to capture individuals’ time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants’ locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Methods Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant’s position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. Results There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest ‘good’ agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time “Indoors Other” using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time “In Transit” was relatively consistent between the methods, the mean daily exposure to PM2.5 while “In Transit” was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Conclusions Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution. PMID:24885722
Madjidi, Faramarz; Behroozy, Ali
2014-01-01
Exposure to visible light and near infrared (NIR) radiation in the wavelength region of 380 to 1400 nm may cause thermal retinal injury. In this analysis, the effective spectral radiance of a hot source is replaced by its temperature in the exposure limit values in the region of 380-1400 nm. This article describes the development and implementation of a computer code to predict those temperatures, corresponding to the exposure limits proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). Viewing duration and apparent diameter of the source were inputs for the computer code. At the first stage, an infinite series was created for calculation of spectral radiance by integration with Planck's law. At the second stage for calculation of effective spectral radiance, the initial terms of this infinite series were selected and integration was performed by multiplying these terms by a weighting factor R(λ) in the wavelength region 380-1400 nm. At the third stage, using a computer code, the source temperature that can emit the same effective spectral radiance was found. As a result, based only on measuring the source temperature and accounting for the exposure time and the apparent diameter of the source, it is possible to decide whether the exposure to visible and NIR in any 8-hr workday is permissible. The substitution of source temperature for effective spectral radiance provides a convenient way to evaluate exposure to visible light and NIR.
Selfe, James; Alexander, Jill; Costello, Joseph T; May, Karen; Garratt, Nigel; Atkins, Stephen; Dillon, Stephanie; Hurst, Howard; Davison, Matthew; Przybyla, Daria; Coley, Andrew; Bitcon, Mark; Littler, Greg; Richards, Jim
2014-01-01
Whole body cryotherapy (WBC) is the therapeutic application of extreme cold air for a short duration. Minimal evidence is available for determining optimal exposure time. To explore whether the length of WBC exposure induces differential changes in inflammatory markers, tissue oxygenation, skin and core temperature, thermal sensation and comfort. This study was a randomised cross over design with participants acting as their own control. Fourteen male professional first team super league rugby players were exposed to 1, 2, and 3 minutes of WBC at -135°C. Testing took place the day after a competitive league fixture, each exposure separated by seven days. No significant changes were found in the inflammatory cytokine interleukin six. Significant reductions (p<0.05) in deoxyhaemoglobin for gastrocnemius and vastus lateralis were found. In vastus lateralis significant reductions (p<0.05) in oxyhaemoglobin and tissue oxygenation index (p<0.05) were demonstrated. Significant reductions (p<0.05) in skin temperature were recorded. No significant changes were recorded in core temperature. Significant reductions (p<0.05) in thermal sensation and comfort were recorded. Three brief exposures to WBC separated by 1 week are not sufficient to induce physiological changes in IL-6 or core temperature. There are however significant changes in tissue oxyhaemoglobin, deoxyhaemoglobin, tissue oxygenation index, skin temperature and thermal sensation. We conclude that a 2 minute WBC exposure was the optimum exposure length at temperatures of -135°C and could be applied as the basis for future studies.
McArley, Tristan J; Hickey, Anthony J R; Herbert, Neill A
2017-10-01
Intertidal fish species face gradual chronic changes in temperature and greater extremes of acute thermal exposure through climate-induced warming. As sea temperatures rise, it has been proposed that whole-animal performance will be impaired through oxygen and capacity limited thermal tolerance [OCLTT; reduced aerobic metabolic scope (MS)] and, on acute exposure to high temperatures, thermal safety margins may be reduced because of constrained acclimation capacity of upper thermal limits. Using the New Zealand triplefin fish ( Forsterygion lapillum ), this study addressed how performance in terms of growth and metabolism (MS) and upper thermal tolerance limits would be affected by chronic exposure to elevated temperature. Growth was measured in fish acclimated (12 weeks) to present and predicted future temperatures and metabolic rates were then determined in fish at acclimation temperatures and with acute thermal ramping. In agreement with the OCLTT hypothesis, chronic exposure to elevated temperature significantly reduced growth performance and MS. However, despite the prospect of impaired growth performance under warmer future summertime conditions, an annual growth model revealed that elevated temperatures may only shift the timing of high growth potential and not the overall annual growth rate. While the upper thermal tolerance (i.e. critical thermal maxima) increased with exposure to warmer temperatures and was associated with depressed metabolic rates during acute thermal ramping, upper thermal tolerance did not differ between present and predicted future summertime temperatures. This suggests that warming may progressively decrease thermal safety margins for hardy generalist species and could limit the available habitat range of intertidal populations. © 2017. Published by The Company of Biologists Ltd.
Temperature, traffic-related air pollution, and heart rate variability in a panel of healthy adults.
Wu, Shaowei; Deng, Furong; Liu, Youcheng; Shima, Masayuki; Niu, Jie; Huang, Qinsheng; Guo, Xinbiao
2013-01-01
Both ambient temperature and air pollution have been associated with alterations in cardiac autonomic function, but the responsive patterns associated with temperature exposure and the interactive effects of temperature and air pollution remain largely unclear. We investigated the associations between personal temperature exposure and cardiac autonomic function as reflected by heart rate variability (HRV) in a panel of 14 healthy taxi drivers in the context of traffic-related air pollution. We collected real-time data on study subjects' in-car exposures to temperature and traffic-related air pollutants including particulate matter with an aerodynamic diameter ≤2.5 μm (PM(2.5)) and carbon monoxide (CO) and HRV indices during work time (8:30-21:00) on 48 sampling days in the warm season (May-September) and cold season (October-March). We applied mixed-effects models and loess models adjusting for potential confounders to examine the associations between temperature and HRV indices. We found nonlinear relationships between temperature and HRV indices in both the warm and cold seasons. Linear regression stratified by temperature levels showed that increasing temperature levels were associated with declines in standard deviation of normal-to-normal intervals over different temperature strata and increases in low-frequency power and low-frequency:high-frequency ratio in higher temperature range (>25 °C). PM(2.5) and CO modified these associations to various extents. Temperature was associated with alterations in cardiac autonomic function in healthy adults in the context of traffic-related air pollution. Copyright © 2012 Elsevier Inc. All rights reserved.
Effects of exposure, diet, and thermoregulation on fecal glucocorticoid measures in wild bears.
Stetz, Jeff; Hunt, Kathleen; Kendall, Katherine C; Wasser, Samuel K
2013-01-01
We examined fecal glucocorticoid (fGC) measures of nutrition and thermoregulatory demands on wild bears in Glacier National Park, Montana, and assessed how these measures changed in samples left in the field. Both ambient temperature and exposure can impact thermoregulation and sample degradation. Bear diets vary markedly with season, affecting body condition and thus fGC. We collected fecal samples during September and October, 2001, when ambient temperatures ranged from 30°C to -5°C. We collected half of each sample immediately and left the other half in its original location for 1-28 days. We used generalized linear models (GLM) to first predict fGC concentrations in fresh samples based on proxies of nutrition, ambient temperature, thermal exposure, and precipitation. These same covariates were then used to predict degradation-based differences in fGC concentrations between the paired sample halves. Variation in fGC was predicted by diet, Julian date, aspect, and the interaction between Julian date and aspect in both fresh and exposed samples. Cumulative precipitation was also a significant predictor of fGC concentrations in the exposed samples, independent of time, indicating that precipitation contributes to sample degradation but not enough to mask effects of other environmental factors on fGC concentrations. Differences between sample halves were only predicted by cumulative precipitation and exposure time; cumulative precipitation decreased, whereas exposure time increased, fGC concentrations in the exposed sample halves. Results indicate that fGC can provide reliable indices of nutrition and thermoregulatory demands in bears and that sample degradation impacts on these relations are minimal and can be virtually eliminated by controlling for cumulative precipitation over the estimated exposure times.
Effects of Exposure, Diet, and Thermoregulation on Fecal Glucocorticoid Measures in Wild Bears
Stetz, Jeff; Hunt, Kathleen; Kendall, Katherine C.; Wasser, Samuel K.
2013-01-01
We examined fecal glucocorticoid (fGC) measures of nutrition and thermoregulatory demands on wild bears in Glacier National Park, Montana, and assessed how these measures changed in samples left in the field. Both ambient temperature and exposure can impact thermoregulation and sample degradation. Bear diets vary markedly with season, affecting body condition and thus fGC. We collected fecal samples during September and October, 2001, when ambient temperatures ranged from 30°C to −5°C. We collected half of each sample immediately and left the other half in its original location for 1–28 days. We used generalized linear models (GLM) to first predict fGC concentrations in fresh samples based on proxies of nutrition, ambient temperature, thermal exposure, and precipitation. These same covariates were then used to predict degradation-based differences in fGC concentrations between the paired sample halves. Variation in fGC was predicted by diet, Julian date, aspect, and the interaction between Julian date and aspect in both fresh and exposed samples. Cumulative precipitation was also a significant predictor of fGC concentrations in the exposed samples, independent of time, indicating that precipitation contributes to sample degradation but not enough to mask effects of other environmental factors on fGC concentrations. Differences between sample halves were only predicted by cumulative precipitation and exposure time; cumulative precipitation decreased, whereas exposure time increased, fGC concentrations in the exposed sample halves. Results indicate that fGC can provide reliable indices of nutrition and thermoregulatory demands in bears and that sample degradation impacts on these relations are minimal and can be virtually eliminated by controlling for cumulative precipitation over the estimated exposure times. PMID:23457488
Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure.
Ghoshal, Goutam; Kemmerer, Jeremy P; Karunakaran, Chandra; Abuhabsah, Rami; Miller, Rita J; Sarwate, Sandhya; Oelze, Michael L
2014-10-01
Quantitative ultrasound (QUS) imaging is hypothesized to map temperature elevations induced in tissue with high spatial and temporal resolution. To test this hypothesis, QUS techniques were examined to monitor high-intensity focused ultrasound (HIFU) exposure of tissue. In situ experiments were conducted on mammary adenocarcinoma tumors grown in rats and lesions were formed using a HIFU system. A thermocouple was inserted into the tumor to provide estimates of temperature at one location. Backscattered time-domain waveforms from the tissue during exposure were recorded using a clinical ultrasonic imaging system. Backscatter coefficients were estimated using a reference phantom technique. Two parameters were estimated from the backscatter coefficient (effective scatterer diameter (ESD) and effective acoustic concentration (EAC). The changes in the average parameters in the regions corresponding to the HIFU focus over time were correlated to the temperature readings from the thermocouple. The changes in the EAC parameter were consistently correlated to temperature during both heating and cooling of the tumors. The changes in the ESD did not have a consistent trend with temperature. The mean ESD and EAC before exposure were 120 ± 16 μm and 32 ± 3 dB/cm3, respectively, and changed to 144 ± 9 μm and 51 ± 7 dB/cm3, respectively, just before the last HIFU pulse was delivered to the tissue. After the tissue cooled down to 37 °C, the mean ESD and EAC were 126 ± 8 μm and 35 ± 4 dB/cm3, respectively. Peak temperature in the range of 50-60 °C was recorded by a thermocouple placed just behind the tumor. These results suggest that QUS techniques have the potential to be used for non-invasive monitoring of HIFU exposure. © The Author(s) 2014.
Effects of microwaves on the colony-forming capacity of haemopoietic stem cells in mice.
Rotkovská, D; Vacek, A; Bartonícková, A
1987-01-01
A suspension of bone marrow cells from femurs of female (CBA X C57Bl)F1 mice was exposed to 2450 MHz CW microwaves in a specially designed waveguide exposure system. The temperature of the suspension rose, during exposure to microwaves, from 20 degrees C to 45 degrees C, and at an interval within 20 degrees C to 45 degrees C the number of haemopoietic stem cells (CFUs) was determined by the spleen exocolony method. The time of exposure of bone marrow cells to each temperature studied was 20 s. Control suspensions of bone marrow cells were exposed to a water bath temperature. There were no significant effects of the CFUs with the water bath temperature, while after exposure to microwaves the number of spleen colonies was elevated with a nadir at the temperature of 37 degrees C. With a microwave-induced increase of the temperature above 41 degrees C the number of CFUs in the bone marrow suspension decreased. The increase in the number of colonies was related to the rise in the seeding rate of the CFUs as well as to a rise in their proliferative activity, while the drop in the number of colonies was influenced also by heat-killing of the CFUs by microwave exposure.
Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland
NASA Astrophysics Data System (ADS)
Philben, Michael; Holmquist, James; MacDonald, Glen; Duan, Dandan; Kaiser, Karl; Benner, Ronald
2015-06-01
The biochemical composition of a peat core from James Bay Lowland, Canada, was used to assess the extent of peat decomposition and diagenetic alteration. Our goal was to identify environmental controls on peat decomposition, particularly its sensitivity to naturally occurring changes in temperature, oxygen exposure time, and vegetation. All three varied substantially during the last 7000 years, providing a natural experiment for evaluating their effects on decomposition. The bottom 50 cm of the core formed during the Holocene Climatic Optimum (~7000-4000 years B.P.), when mean annual air temperature was likely 1-2°C warmer than present. A reconstruction of the water table level using testate amoebae indicated oxygen exposure time was highest in the subsequent upper portion of the core between 150 and 225 cm depth (from ~2560 to 4210 years B.P.) and the plant community shifted from mostly Sphagnum to vascular plant dominance. Several independent biochemical indices indicated that decomposition was greatest in this interval. Hydrolysable amino acid yields, hydroxyproline yields, and acid:aldehyde ratios of syringyl lignin phenols were higher, while hydrolysable neutral sugar yields and carbon:nitrogen ratios were lower in this zone of both vascular plant vegetation and elevated oxygen exposure time. Thus, peat formed during the Holocene Climatic Optimum did not appear to be more extensively decomposed than peat formed during subsequent cooler periods. Comparison with a core from the West Siberian Lowland, Russia, indicates that oxygen exposure time and vegetation are both important controls on decomposition, while temperature appears to be of secondary importance. The low apparent sensitivity of decomposition to temperature is consistent with recent observations of a positive correlation between peat accumulation rates and mean annual temperature, suggesting that contemporary warming could enhance peatland carbon sequestration, although this could be offset by an increasing contribution of vascular plants to the vegetation.
Occupational exposures and changes in pulmonary function over 13 years among residents of Cracow.
Krzyzanowski, M; Jedrychowski, W; Wysocki, M
1988-01-01
In a 13 year follow up study conducted among residents of Cracow the relation of annual rate of decline in FEV1 to occupational exposures was analysed. The study group consisted of 696 men and 983 women aged 19-60 at the start of the study in 1968. They were interviewed three times, in 1968, 1973, and 1981, and decline in FEV1 was estimated for each subject from spirometric measurements in 1968 and 1981. The interviews provided data on exposure at the workplace to dusts, variable temperature, and chemicals or irritating gases, which established duration and time of the exposure. The FEV1 mean level, height, and smoking habits were considered as confounders in the analysis. The study indicated that the most pronounced influence on decline in FEV1 was prolonged and continuing exposure to variable temperature. The effects of dusts, independent of exposure to variable temperature, were much smaller but analysis in occupational subgroups suggest that dust may be important in some, such as workers in the building materials and pottery industry. Relatively immediate effects of exposure to chemicals were detected independently of effects of other exposures. The estimated effects of occupational exposures were of a similar magnitude as those of tobacco smoking though related to much smaller groups. Both effects were additive in accelerating decline in lung function. These results, obtained in the general population and less biased by selection than studies performed in industrial settings, show the importance of occupational factors in the natural history of limitation of airflow. PMID:3203079
Durability characterization of ceramic materials for gas turbines
NASA Technical Reports Server (NTRS)
Carruthers, W. D.; Lindberg, L. J.
1987-01-01
The strength retention of ceramic materials during extended high-temperature cyclic exposure is critical to their widespread application in gas turbine engines. During a continuing NASA funded program initated in 1979, reaction bonded silicon nitride (RBSN), sintered silicon carbide (SSC), reaction sintered silicon carbide (RSSC), and sintered silicon nitride (SSN) materials were evaluated following simulated gas turbine engine exposures. Exposures were performed by cycling specimens five times per hour between a high velocity burner discharge and a rapid air quench. The retained flexural strengths were determined following up to 3500 hours of exposure at temperatures up to 1370 C. Post-exposure strengths have been correlated with fractography and surface examination using SEM. Results illustrate excellent strength retention of SSC materials after 3500 hours of exposure to 1370 C. At 1200 C, RBSN and RSSC also demonstrate significant strength retention. Although SSN materials typically suffer significant strength losses during exposures at 1200 C, a new composition, which has improved high-temperature strength, also shows improved durability. In the majority of the materials, strength loss is typically associated with flaw formation in the protective SiO2 layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clapp, D.
1983-07-01
Worker exposure to ethylene dibromide (EDB) was investigated at three papaya packing and shipping facilities in Hilo, Hawaii. Breathing-zone samples were collected in the three facilities over a three day period. Blind spikes were submitted as a control on time and temperature effects. Blank samples were also prepared. Spike results reflected the effects of time and temperature in shipment from Hawaii to Massachusetts. All spikes were roughly comparable and showed a recovery of about 68%. Overnight laboratory results were adjusted upward by 72% and NIOSH laboratory results by 68%. Six out of 38 samples exceeded the NIOSH recommended amount ofmore » 130 ppb. The author concludes that there is a chronic, low-concentration exposure to EDB for all workers in the papaya industry in Hilo. An epidemiological study of reproductive and cytogenetic effects of EDB exposure on these workers is recommended.« less
Tiffan, K.F.; Kock, T.J.; Connor, W.P.; Steinhorst, R.K.; Rondorf, D.W.
2009-01-01
This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23?? C on the surface to 11?? C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20?? C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5??6-7??2 h and 6??0-13??8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20?? C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20?? C when temperatures 20?? C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17??0?? C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20?? C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.
Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.
Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K
1998-09-01
This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.
Thermal indicating paints for ammunition health monitoring
NASA Astrophysics Data System (ADS)
Zunino, James L., III; Iqbal, Zafar
2010-04-01
Thermochromic semiconductive polymers that change color in response to external stimuli, such as heat and radiation, can be utilized to monitor the temperature range and elapsed time profiles of stored and prepositioned munitions. These polymers are being tailored to create paints and coatings that will alert Army logistic staff of dangerous temperature exposures. Irreversible indication via color change in multiple thermal bands, 145 F - 164 F (63o-73°C), 165 F - 184 F (74° - 84° C) and over 185 F (>85°C) are possible with these thermochromic polymers. The resulting active coating can be visually inspected to determine if safe temperatures were exceeded. More detailed information, including cumulative time of exposure in certain temperature bands through changes in optical chromaticity describing the vividness or dullness of a color, can be assessed using a hand-held optical densitometer.
Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.
Abraham, John P; Plourde, Brian; Vallez, Lauren; Stark, John; Diller, Kenneth R
2015-12-01
The objective of this study is to develop and present a simple procedure for evaluating the temperature and exposure-time conditions that lead to causation of a deep-partial thickness burn and the effect that the immediate post-burn thermal environment can have on the process. A computational model has been designed and applied to predict the time required for skin burns to reach a deep-partial thickness level of injury. The model includes multiple tissue layers including the epidermis, dermis, hypodermis, and subcutaneous tissue. Simulated exposure temperatures ranged from 62.8 to 87.8°C (145-190°F). Two scenarios were investigated. The first and worst case scenario was a direct exposure to water (characterized by a large convection coefficient) with the clothing left on the skin following the exposure. A second case consisted of a scald insult followed immediately by the skin being washed with cool water (20°C). For both cases, an Arrhenius injury model was applied whereby the extent and depth of injury were calculated and compared for the different post-burn treatments. In addition, injury values were compared with experiment data from the literature to assess verification of the numerical methodology. It was found that the clinical observations of injury extent agreed with the calculated values. Furthermore, inundation with cool water decreased skin temperatures more quickly than the clothing insulating case and led to a modest decrease in the burn extent. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per
2015-01-01
The damage mechanism for near-infrared radiation (IRR) induced cataract is unclear. Both a photochemical and a thermal mechanism were suggested. The current paper aims to elucidate a photochemical effect based on investigation of irradiance-exposure time reciprocity. Groups of 20 rats were unilaterally exposed to 96-W/cm2 IRR at 1090 nm within the dilated pupil accumulating 57, 103, 198, and 344 kJ/cm2, respectively. Temperature was recorded at the limbus of the exposed eye. Seven days after exposure, the lenses were macroscopically imaged and light scattering was quantitatively measured. The average maximum temperature increases for exposure times of 10, 18, 33, and 60 min were expressed as 7.0±1.1, 6.8±1.1, 7.6±1.3, and 7.4±1.1°C [CI (0.95)] at the limbus of the exposed eye. The difference of light scattering in the lenses between exposed and contralateral not-exposed eyes was 0.00±0.02, 0.01±0.03, -0.01±0.02, and -0.01±0.03 transformed equivalent diazepam concentration (tEDC), respectively, and no apparent morphological changes in the lens were observed. An exposure to 96-W/cm2 1090-nm IRR projected on the cornea within the dilated pupil accumulating radiant exposures up to 344 kJ/cm2 does not induce cataract if the temperature rise at the limbus is <8°C. This is consistent with a thermal damage mechanism for IRR-induced cataract.
USDA-ARS?s Scientific Manuscript database
Several antimicrobial compounds are in commercial meat processing plants for the purpose of pathogens control on beef carcasses. However, the efficacy of the method used is influenced by a number of factors such as spray pressure, temperature, type of chemical and concentration, exposure time, metho...
Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun
2013-06-01
Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.
Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.
Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries
2018-01-01
Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p < 0.0001) and REV-ERBα ( p < 0.01) in the BAT and CLOCK ( p < 0.05), PER2 ( p < 0.05), CRY1 ( p < 0.05), CRY2 ( p < 0.01), and REV-ERBα ( p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.
Foret, J; Daurat, A; Tirilly, G
1998-01-01
This simulated night shift study measured the effects of moderate bright light (a 4-hour pulse starting at 2000 or 0400) during the exposure night and subsequent night (dim light). Eight young males remained confined with little physical activity to a laboratory in groups of 4. After a night of reference, they were active for 24 hours; then after a morning recovery sleep, they were active again for 16 hours. Continuously measured rectal temperature proved to be immediately sensitive to 4 hours of bright light, particularly when given at the end of the night. Self-assessed alertness and also performance on a task with a high requirement for short-term memory were improved by the exposure to bright light. During the subsequent night the subjects were exposed only to dim light. Core temperature, subjective alertness and performance continued to show a time course depending on the preceding bright light exposure. Probably because evening exposure to bright light and morning sleep both had a phase-delaying effect, the effects on the circadian pacemaker were more pronounced. Thus, for practical applications in long night shifts, bright light can be considered to improve mood and alertness immediately but the possibility of modifying the circadian "clock" during subsequent nights should be taken into consideration, in particular after exposure to bright light in the evening.
Fernandes, Rafael Henrique; Lopes, Everaldo Antônio; Borges, Darlan Ferreira; Bontempo, Amanda Ferreira; Zanuncio, José Cola; Serrão, José Eduardo
Exposure of the nematophagous fungus Pochonia chlamydosporia to solar radiation and elevated temperatures before being incorporated into the soil can reduce its survival and efficiency as biocontrol agent. A field experiment was carried out to assess the effect of the exposure period on the viability of P. chlamydosporia applied on the soil surface. A commercial bionematicide based on P. chlamydosporia was sprayed on soil, and soil samples were collected before and at 0, 30, 60, 90, 120, and 150min after fungal application. Relative humidity (RH), the irradiance (IR), air temperature (AT), and soil temperature (ST) were recorded. The number of P. chlamydosporia colony forming units (CFUs) was evaluated after 20 days of incubation. P. chlamydosporia survival decreased over the time of exposure on the soil surface. Overall, the number of CFUs decreased by more than 90% at 150min after application. Exposure to RH ≥61%, ST and AT between 25-35°C and 19-29°C, and IR between 1172 and 2126μmol of photons m -2 s -1 induced a negative exponential effect on the survival of the fungus over the time. Exposure to climatic conditions on the soil surface reduces P. chlamydosporia viability. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Selfe, James; Alexander, Jill; Costello, Joseph T.; May, Karen; Garratt, Nigel; Atkins, Stephen; Dillon, Stephanie; Hurst, Howard; Davison, Matthew; Przybyla, Daria; Coley, Andrew; Bitcon, Mark; Littler, Greg; Richards, Jim
2014-01-01
Background Whole body cryotherapy (WBC) is the therapeutic application of extreme cold air for a short duration. Minimal evidence is available for determining optimal exposure time. Purpose To explore whether the length of WBC exposure induces differential changes in inflammatory markers, tissue oxygenation, skin and core temperature, thermal sensation and comfort. Method This study was a randomised cross over design with participants acting as their own control. Fourteen male professional first team super league rugby players were exposed to 1, 2, and 3 minutes of WBC at −135°C. Testing took place the day after a competitive league fixture, each exposure separated by seven days. Results No significant changes were found in the inflammatory cytokine interleukin six. Significant reductions (p<0.05) in deoxyhaemoglobin for gastrocnemius and vastus lateralis were found. In vastus lateralis significant reductions (p<0.05) in oxyhaemoglobin and tissue oxygenation index (p<0.05) were demonstrated. Significant reductions (p<0.05) in skin temperature were recorded. No significant changes were recorded in core temperature. Significant reductions (p<0.05) in thermal sensation and comfort were recorded. Conclusion Three brief exposures to WBC separated by 1 week are not sufficient to induce physiological changes in IL-6 or core temperature. There are however significant changes in tissue oxyhaemoglobin, deoxyhaemoglobin, tissue oxygenation index, skin temperature and thermal sensation. We conclude that a 2 minute WBC exposure was the optimum exposure length at temperatures of −135°C and could be applied as the basis for future studies. PMID:24489726
Thermal history sensors for non-destructive temperature measurements in harsh environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.
2014-02-18
The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature informationmore » can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.« less
Cho, Youngjae; Muhlisin; Choi, Ji Hye; Hahn, Tae-Wook; Lee, Sung Ki
2014-01-01
This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (p<0.05) the growths of E. coli O157:H7, total aerobic and anaerobic bacteria in ground beef samples during storage. Ozone exposure reduced (p<0.05) the CIE a* value of samples over storage time. The CIE L* and CIE b* values of the samples fluctuated over storage time, and ozone had no clear effect. Ozone exposure increased the TBARS values during 1 to 3 d of storage (p<0.05). The CAT and GPx enzyme activities were not affected by ozone exposure until 2 and 3 d of storage, respectively. This study provides information about the use of ozone exposure as an antimicrobial agent for meat under refrigerated storage. The results of this study provide a foundation for the further application of ozone exposure by integrating an ozone generator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.
Patients' experiences of cold exposure during ambulance care.
Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger
2013-06-06
Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.
Effects of High Temperature Exposures on Fatigue Life of Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, Tim P.; Telesman, Jack; Kantzos, Pete T.; Smith, James W.; Browning, Paul F.
2004-01-01
The effects on fatigue life of high temperature exposures simulating service conditions were considered for two disk superalloys. Powder metallurgy processed, supersolvus heat treated Udimet (trademark) 720 and ME3 fatigue specimens were exposed in air at temperatures of 650 to 704 C, for times of 100 h to over 1000 h. They were then tested using conventional fatigue tests at 650 and 704 C, to determine the effects of exposure on fatigue resistance. Cyclic dwell verification tests were also performed to contrast the effects of intermixed exposures and fatigue cycles. The prior exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Cyclic dwell tests reduced lives even more. Fractographic evaluations indicated the failure mode was shifted by the exposures and cyclic dwells from predominantly internal to often surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.
Relationship between season of birth, temperature exposure, and later life wellbeing.
Isen, Adam; Rossin-Slater, Maya; Walker, Reed
2017-12-19
We study how exposure to extreme temperatures in early periods of child development is related to adult economic outcomes measured 30 y later. Our analysis uses administrative earnings records for over 12 million individuals born in the United States between 1969 and 1977, linked to fine-scale, daily weather data and location and date of birth. We calculate the length of time each individual is exposed to different temperatures in utero and in early childhood, and we estimate flexible regression models that allow for nonlinearities in the relationship between temperature and long-run outcomes. We find that an extra day with mean temperatures above 32 °C in utero and in the first year after birth is associated with a 0.1% reduction in adult annual earnings at age 30. Temperature sensitivity is evident in multiple periods of early development, ranging from the first trimester of gestation to age 6-12 mo. We observe that household air-conditioning adoption, which increased dramatically over the time period studied, mitigates nearly all of the estimated temperature sensitivity.
NASA Technical Reports Server (NTRS)
Kerr, J. R.; Haskins, J. F.
1980-01-01
Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.
Correlating measured transient temperature rises with damage rate processes in cultured cells
NASA Astrophysics Data System (ADS)
Denton, Michael L.; Tijerina, Amanda J.; Gonzalez, Cherry C.; Gamboa, B. Giovana; Noojin, Gary D.; Ahmed, Elharith M.; Rickman, John M.; Dyer, Phillip H.; Rockwell, Benjamin A.
2017-02-01
Thermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. Here, two disparate approaches were used to study thermal damage rate processes in cultured retinal pigment epithelial cells. Laser exposure (photothermal) parameters included 2-μm laser exposure of non-pigmented cells and 532-nm exposures of cells possessing a variety of melanosome particle densities. Photothermal experiments used a mid-IR camera to record temperature histories with spatial resolution of about 8 μm, while fluorescence microscopy of the cell monolayers identified threshold damage at the boundary between live and dead cells. Photothermal exposure durations ranged from 0.05-20 s, and the effects of varying ambient temperature were investigated. Temperature during heat transfer using a water-jacketed cuvette was recorded with a fast microthermister, while damage and viability of the suspended cells were determined as percentages. Exposure durations for the heat transfer experiments ranged from 50- 60 s. Empirically-determined kinetic parameters for the two heating methods were compared with each other, and with values found in the literature.
USDA-ARS?s Scientific Manuscript database
Channel catfish, Ictalurus punctatus.spawn annually during the spring and early summer (24 -30 °C). Environmental temperature is the main factor that controls the seasonal maturation of gonads and the timing of spawning. Temperature fluctuations can adversely affect spawning and broodfish conditio...
NASA Astrophysics Data System (ADS)
Oruganti, Malavika
This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.
Effect of high-temperature hydrogen exposure on sintered alpha-SiC
NASA Technical Reports Server (NTRS)
Hallum, Gary W.; Herbell, Thomas P.
1988-01-01
Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrosion at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.
Ultra-accelerated natural sunlight exposure testing facilities
Lewandowski, Allan A.; Jorgensen, Gary J.
2003-08-12
A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.
Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures
NASA Technical Reports Server (NTRS)
Heimerl, George J; Hughes, Philip J
1953-01-01
Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.
Prenatal exposure to diurnal temperature variation and early childhood pneumonia.
Zeng, Ji; Lu, Chan; Deng, Qihong
2017-04-01
Childhood pneumonia is one of the leading single causes of mortality and morbidity in children worldwide, but its etiology still remains unclear. We investigate the association between childhood pneumonia and exposure to diurnal temperature variation (DTV) in different timing windows. We conducted a prospective cohort study of 2,598 children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed by a questionnaire administered by the parents. Individual exposure to DTV during both prenatal and postnatal periods was estimated. Logic regression models was used to examine the association between childhood pneumonia and DTV exposure in terms of odds ratios (OR) and 95% confidence interval (CI). Lifetime prevalence of childhood pneumonia in preschool children in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal DTV exposure, with adjusted OR (95%CI) =1.19 (1.02-1.38), particularly during the second trimester. However, childhood pneumonia not associated with postnatal DTV exposure. Sensitivity analysis indicated that boys are more susceptible to the pneumonia risk of diurnal temperature variation than girls. We further observed that the prevalence of childhood pneumonia was decreased in recent years as DTV shrinked. Early childhood pneumonia was associated with prenatal exposure to the diurnal temperature variation (DTV) during pregnancy, particularly in the second trimester, which suggests fetal origin of childhood pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen
2011-01-01
Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.
Monk, Timothy H; Buysse, Daniel J; Billy, Bart D; Fletcher, Mary E; Kennedy, Kathy S
2013-04-29
In an earlier published telephone interview study (n > 1,000) we have shown that retired shift workers subjectively report worse sleep than retired day workers. This laboratory study sought to determine whether these findings held up when objective polysomnograhic (PSG) measures of sleep were taken and whether retirees' circadian temperature rhythms differed as a function of shift work exposure. All completers of the telephone interview were invited to attend a 36-hour laboratory study for which participants were paid. This involved continuous core body temperature measurement (using an ingestible pill-based system) and 2 nights of PSG. Shift work exposure (plus other measures) was collected by taking a detailed work history. The second laboratory night was scored into sleep stages. Post hoc, we divided participants into 4 shift work exposure groups: 0 years (ie, no exposure to shift work), 1 to 7 years, 7 to 20 years, and >20 years. Sample sizes were 11, 16, 15, and 15, respectively, with approximate equality in mean age (71.7 years of age, 69.1 years of age, 70.0 years of age, and 70.4 years of age, respectively) and percent male (63%, 50%, 67%, and 73%, respectively). Shift work exposure was associated with worse PSG sleep in a dose-related fashion. The percentages of participants with sleep efficiency, 80% for the 0 years, 1 to 7 years, 7 to 20 years, and >20 years groups were 36%, 63%, 67%, and 73%, respectively ( P < 0.01), and the percentages with total sleep time (TST), 6 hours were 36%, 56%, 53%, and 73%, respectively ( P < 0.01). From the circadian rhythm record, shift work exposure appeared to result ( P = 0.06) in an increased spread of phase angles (difference between habitual bedtime and time of temperature trough). In conclusion, it appears likely that shift work may be related to a scarring of sleep and circadian rhythms. This may be associated with a change in the relationship between habitual sleep timing and the phase of the circadian pacemaker.
Aldaeef, A A; Rayhani, M T
2014-12-01
Experimental investigations were carried out to investigate the effect of thermo-chemical exposures on the hydraulic performance of Compacted Clay Liners (CCLs) in landfills. Hydraulic conductivity of most CCL specimens was increased by two to three times their initial values when exposed to 55 °C for 75 days. CCL specimens also experienced increases in their hydraulic conductivities when exposed to leachate at room temperature. This behaviour could be due to the decrease in viscosity when the permeant was changed from tap water to leachate. However, as the leachate exposure time exceeded the first 15 days, hydraulic conductivity readings decreased to as much as one order of magnitude after 75 days of leachate permeation at room temperature. The gradual decrease in the CCLs hydraulic conductivities was most likely due to chemical precipitation and clogging of pore voids within the soils which seemed to reduce the effective pore volume. The rate of hydraulic conductivity reduction due to leachate permeation was slower at higher temperatures, which was attributed to the lower permeant viscosity and lower clogging occurrence. The observed hydraulic behaviours were correlated to the physical, mineral, and chemical properties of the CCLs and described below. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal death kinetics of fifth-instar Plodia interpunctella (Lepidoptera: Pyralidae).
Johnson, J A; Wang, S; Tang, J
2003-04-01
Heat treatments have been suggested as alternatives to chemical fumigants for control of postharvest insects in dried fruits and nuts. Conventional forced hot air treatments heat product too slowly to be practical, but radio frequency treatments are capable of more rapid product heating. While developing radio frequency heat treatments for dried fruits and nuts, the heat tolerance of nondiapausing and diapausing fifth-instar larvae of the Indianmeal moth, Plodia interpunctella (Hübner), was determined using a heating block system developed by Washington State University. Both a 0.5th order kinetic model and a classical empirical model were used to estimate lethal exposure times for temperatures of 44-52 degrees C for nondiapausing fifth-instar larvae. We obtained 95% mortality at exposures suitable for practical radio frequency treatments (< or = 5 min) with temperatures of 50 and 52 degrees C. Diapausing larvae were significantly more tolerant than nondiapausing larvae at the lowest treatment temperature and shortest exposure, but differences were not significant at more extreme temperature-time combinations. Previous studies showed that fifth-instar larvae of the navel orangeworm, Amyelois transitella (Walker), were more heat tolerant than either diapausing or nondiapausing Indianmeal moth larvae. Consequently, efficacious treatments for navel orangeworm would also control Indianmeal moth.
Environmental Exposure Effects on Composite Materials for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Hoffman, D. J.
1980-01-01
The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects, ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection.
Causal mediation analysis for longitudinal data with exogenous exposure
Bind, M.-A. C.; Vanderweele, T. J.; Coull, B. A.; Schwartz, J. D.
2016-01-01
Mediation analysis is a valuable approach to examine pathways in epidemiological research. Prospective cohort studies are often conducted to study biological mechanisms and often collect longitudinal measurements on each participant. Mediation formulae for longitudinal data have been developed. Here, we formalize the natural direct and indirect effects using a causal framework with potential outcomes that allows for an interaction between the exposure and the mediator. To allow different types of longitudinal measures of the mediator and outcome, we assume two generalized mixed-effects models for both the mediator and the outcome. The model for the mediator has subject-specific random intercepts and random exposure slopes for each cluster, and the outcome model has random intercepts and random slopes for the exposure, the mediator, and their interaction. We also expand our approach to settings with multiple mediators and derive the mediated effects, jointly through all mediators. Our method requires the absence of time-varying confounding with respect to the exposure and the mediator. This assumption is achieved in settings with exogenous exposure and mediator, especially when exposure and mediator are not affected by variables measured at earlier time points. We apply the methodology to data from the Normative Aging Study and estimate the direct and indirect effects, via DNA methylation, of air pollution, and temperature on intercellular adhesion molecule 1 (ICAM-1) protein levels. Our results suggest that air pollution and temperature have a direct effect on ICAM-1 protein levels (i.e. not through a change in ICAM-1 DNA methylation) and that temperature has an indirect effect via a change in ICAM-1 DNA methylation. PMID:26272993
SUMMARY REPORT ON CORROSIVITY STUDIES IN COINCINERATION OF SEWAGE SLUDGE AND SOLID WASTE
Corrosion probe exposures were conducted in the Harrisburg, Pennsylvania Incinerator to determine the effects of burning low-chloride sewage sludge with municipal refuse. Probes having controlled temperature gradients were used to measure corrosion rates for exposure times up to ...
Investigation on thermal oxidative aging of nitrile rubber (NBR) O-rings under compression stress
NASA Astrophysics Data System (ADS)
Liu, X. R.; Zhang, W. F.; Lou, W. T.; Huang, Y. X.; Dai, W.
2017-11-01
The degradation behaviors of nitrile rubber O-rings exposure to air under compression were investigated at three elevated temperatures. The physical and mechanical properties of the aging samples before and after exposure at selected time were studied by measuring weight loss, tensile strength and elongation at break. The Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and fracture morphology were used to reveal the microstructural changes of the aging samples. The results indicate that the weight decreased with exposure time and temperature. Based on the results of the crosslinking density, the crosslinking predominates during the most of aging process. The significant changes in tensile strength and elongation at break also indicate the severe degradation in air. The fracture morphology results show that the fracture surface after 64 days of exposure to air turns rough and present defects. The ATR-FTIR results demonstrate that the hydroxyl groups were formed for the samples aged in air.
Effects of Long Term Exposures on PM Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Sudbrack, C. K.; Draper, S. L.; MacKay, R. A.; Telesman, J.
2013-01-01
Turbine disks in some advanced engine applications may be exposed to temperatures above 700 C for extended periods of time, approaching 1,000 h. These exposures could affect the near-surface composition and microstructure through formation of damaged and often embrittled layers. The creation of such damaged layers could significantly affect local mechanical properties. Powder metal disk superalloys LSHR and ME3 were exposed at temperatures of 704, 760, and 815 C for times up to 2,020 h, and the types and depths of environmental attacked were measured. Fatigue tests were performed for selected cases at 704 and 760 C, to determine the impact of these exposures on fatigue life. Fatigue resistance was reduced up to 98% in both superalloys for some exposure conditions. Tensile tests were also performed to help understand fatigue responses, and showed corresponding reductions in ductility. The changes in surface composition and phases, depths of these changed layers, failure responses, and failure initiation modes were compared.
van Rhoon, Gerard C; Aleman, André; Kelfkens, Gert; Kromhout, Hans; Van Leeuwen, Flora E; Savelkoul, Huub F J; Wadman, Wytse J; Van De Weerdt, Rik D H J; Zwamborn, A Peter M; Van Rongen, Eric
2011-01-01
The Health Council of the Netherlands (HCN) and other organisations hold the basic assumption that induced electric current and the generation and absorption of heat in biological material caused by radiofrequency electromagnetic fields are the only causal effects with possible adverse consequences for human health that have been scientifically established to date. Hence, the exposure guidelines for the 10 MHz-10 GHz frequency range are based on avoiding adverse effects of increased temperatures that may occur of the entire human body at a specific absorption rate (SAR) level above 4 W/kg. During the workshop on Thermal Aspects of Radio Frequency Exposure on 11-12 January 2010 in Gaithersburg, Maryland, USA, the question was raised whether there would be a practical advantage in shifting from expressing the exposure limits in SAR to expressing them in terms of a maximum allowable temperature increase. This would mean defining adverse time-temperature thresholds. In this paper, the HCN discusses the need for this, considering six points: consistency, applicability, quantification, causality, comprehensibility and acceptability. The HCN concludes that it seems unlikely that a change of dosimetric quantity will help us forward in the discussion on the scientific controversies regarding the existence or non-existence of non-thermal effects in humans following long duration, low intensity exposure to electromagnetic fields. Therefore, the HCN favours maintaining the current approach of basic restrictions and reference levels being expressed as SAR and in V/m or µT, respectively.
Wood Products Thermal Degradation and Fire
Mark Dietenberger; Laura Hasburgh
2016-01-01
As wood reaches elevated temperatures, the different chemical components undergo thermal degradation that affect the performance of wood. The extent of these changes depends on the temperature level and length of time under exposure conditions. Permanent reductions in strength and modulus of elasticity can occur at temperatures >65 °C, with the amount depending...
Mahroof, R; Subramanyam, B
2006-12-01
Heating the ambient air of a whole, or a portion of a food-processing facility to 50 to 60 degrees C and maintaining these elevated temperatures for 24 to 36 h, is an old technology, referred to as heat treatment. There is renewed interest in adopting heat treatments around the world as a viable insect control alternative to fumigation with methyl bromide. There is limited published information on responses of the Indian meal moth, Plodia interpunctella (Hübner), exposed to elevated temperatures typically used during heat treatments. Time-mortality relationships were determined for eggs, fifth-instars (wandering-phase larvae), pupae, and adults of P. interpunctella exposed to five constant temperatures between 44 and 52 degrees C. Mortality of each stage increased with increasing temperature and exposure time. In general, fifth-instars were the most heat-tolerant stage at all temperatures tested. Exposure for a minimum of 34 min at 50 degrees C was required to kill 99% of the fifth-instars. It is proposed that heat treatments aimed at controlling fifth-instars should be able to control all other stages of P. interpunctella.
Zeinali, Tayebeh; Jamshidi, Abdollah; Khanzadi, Saeid; Azizzadeh, Mohammad
2015-01-01
Listeria monocytogenes can be found throughout the environment and in many foods. It is associated primarily with meat and animal products. Listeria monocytogenes has become increasingly important as a food-borne pathogen. The aim of this study was to evaluate the effect of microwave (MW) treatment of chicken meat samples which were inoculated with L. monocytogenes. Drumettes of broiler carcasses were soaked in fully growth of L. monocytogenes in Brain-Heart Infusion broth. The swab samples were taken from the inoculated samples, after various times of radiation (10, 20, 30, 40, 50, 60, 70 and 80 sec), using a domestic MW oven at full power. Following exposures, viable counts and surface temperature measurements were performed. The bacterial counts were performed on Oxford agar. The results indicated that equal or longer than 60 sec exposures of chicken portions to MW heating which enhances the median surface temperature more than 74 ˚C could eliminate the superficial contamination of chicken meat with L. monocytogenes. Statistical analysis showed samples with equal or longer than 60 sec exposures to MW heating had significant decrease in population of inoculated bacteria compared with positive control group (p < 0.05). Pearson correlation showed a significant correlation between the bacterial population and temperature of samples due to MW exposure (p < 0.001, r = – 0.879 and r2 = 0.773). PMID:26261715
Recent developments in polyimide and bismaleimide adhesives
NASA Technical Reports Server (NTRS)
Politi, R. E.
1985-01-01
Research on high temperature resin systems has intensified. In the Aerospace Industry, the motivation for this increased activity has been to replace heat resistant alloys of aluminum, stainless steel and titanium by lighter weight glass and carbon fiber reinforced composites. Applications for these structures include: (1) engine nacelles involving long time exposure (thousands of hours) to temperatures in the 150 to 300 C range, (2) supersonic military aircraft involving moderately long exposure (hundreds of hours) to temperatures of 150 to 200 C, and (3) missile applications involving only brief exposure (seconds or minutes) to temperatures up to 500 C and above. Because of fatigue considerations, whenever possible, it is preferable to bond rather than mechanically fasten composite structures. For this reason, the increased usage of high temperature resin matrix systems for composites has necessitated the devlopment of compatible and equally heat stable adhesive systems. The performance of high temperature epoxy, epoxy phenolic and condensation polyimide adhesives is reviewed. This is followed by a discussion of three recently developed types of adhesives: (1) condensation reaction polyimides having improved processing characteristics; (2) addition reaction polyimides; and (3) bismaleimides.
NASA Technical Reports Server (NTRS)
Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)
2006-01-01
Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.
Effects of pressure, cold and gloves on hand skin temperature and manual performance of divers.
Zander, Joanna; Morrison, James
2008-09-01
Cold water immersion and protective gloves are associated with decreased manual performance. Although neoprene gloves slow hand cooling, there is little information on whether they provide sufficient protection when diving in cold water. Nine divers wearing three-fingered neoprene gloves and dry suits were immersed in water at 25 and 4 degrees C, at depths of 0.4 msw (101 kPa altitude adjusted) and 40 msw (497 kPa) in a hyperbaric chamber. Skin temperatures were measured at the fingers, hand, forearm, chest and head. Grip strength, tactile sensitivity and manual dexterity were measured at three time intervals. There was an exponential decay in finger and back of hand skin temperatures with exposure time in 4 degrees C water. Finger and back of hand skin temperatures were lower at 40 msw than at 0.4 msw (P < 0.05). There was no effect of pressure or temperature on grip strength. Tactile sensitivity decreased linearly with finger skin temperature at both pressures. Manual dexterity was not affected by finger skin temperature at 0.4 msw, but decreased with fall in finger skin temperature at 40 msw. Results show that neoprene gloves do not provide adequate thermal protection in 4 degrees C water and that impairment of manual performance is dependent on the type of task, depth and exposure time.
Scholefield, R.J.; Bergstedt, R.A.; Bills, T.D.
2003-01-01
The efficacy of 2’, 5-dichloro-4’-nitrosalicylanilide (niclosamide) at various concentrations and exposure times was tested against free-swimming larval sea lampreys (Petromyzon marinus) at 12°C and 17°C in Lake Huron water. Concentrations of niclosamide in test solutions ranged from 0.46 to 4.7 mg/L with pH 7.8 to 8.3, total alkalinity 78 to 88 mg/L as CaCO3, and total hardness 95 to 105 mg/L as CaCO3. In each test, six groups of larvae were exposed to a single concentration of niclosamide for times ranging from 30 s to 30 min. Exposure time was treated as the dose and, for each concentration tested, the exposure time necessary to kill 50 and 99.9% of larvae (ET50 and ET99.9) was determined. Linear regressions of the log10-transformed ET50 and ET99.9 on the log10-transformed niclosamide concentrations were significant at both temperatures with r2ranging from 0.94 to 0.98. The predicted ET50 ranged from 58 sec to 21.7 min and the ET99.9 ranged from 2.5 to 43.5 min across the concentrations and temperatures tested. Niclosamide required a significantly longer time to kill larvae at 12°C than at 17°C.
Hoppin, Jane A; Ulmer, Ross; Calafat, Antonia M; Barr, Dana B; Baker, Susan V; Meltzer, Helle M; Rønningen, Kjersti S
2006-01-01
Collection of urine samples in human studies involves choices regarding shipping, sample preservation, and storage that may ultimately influence future analysis. As more studies collect and archive urine samples to evaluate environmental exposures in the future, we were interested in assessing the impact of urine preservative, storage temperature, and time since collection on nonpersistent contaminants in urine samples. In spiked urine samples stored in three types of urine vacutainers (no preservative, boric acid, and chlorhexidine), we measured five groups of contaminants to assess the levels of these analytes at five time points (0, 24, 48, and 72 h, and 1 week) and at two temperatures (room temperature and 4 degrees C). The target chemicals were bisphenol A (BPA), metabolites of organophosphate (OP), carbamate, and pyrethroid insecticides, chlorinated phenols, and phthalate monoesters, and were measured using five different mass spectrometry-based methods. Three samples were analyzed at each time point, with the exception of BPA. Repeated measures analysis of variance was used to evaluate effects of storage time, temperature, and preservative. Stability was summarized with percent change in mean concentration from time 0. In general, most analytes were stable under all conditions with changes in mean concentration over time, temperature, and preservative being generally less than 20%, with the exception of the OP metabolites in the presence of boric acid. The effect of storage temperature was less important than time since collection. The precision of the laboratory measurements was high allowing us to observe small differences, which may not be important when categorizing individuals into broader exposure groups.
Ultrasonication and the quality of human milk: variation of power and time of exposure.
Christen, Lukas; Lai, Ching Tat; Hartmann, Peter E
2012-08-01
Donor human milk is pasteurized to prevent the potential risk of the transmission of pathogens to preterm infants. Currently, Holder pasteurization (human milk held at 62·5°C for 30 min) is used in most human milk banks, but has the disadvantage that it results in excessive inactivation of important bioactive components. Power-ultrasound (20-100 kHz) is an emerging technology for the preservation of foods and could be an alternative method for the treatment of human milk. The aim of this study was to investigate the effect of different ultrasound settings on the elimination of Escherichia coli and the retention of bile salt stimulated lipase (BSSL) activity. Ultrasonication with a constant power decreased Esch. coli viability exponentially over time until the processing temperature increased to sub-pasteurization level to between 51·4 and 58·5°C, then a log10 1·3 decrease was observed (P<0·05). BSSL activity decreased to 91% until a temperature of 51·4°C and then it decreased to 8% between 51·4 and 64·9°C. Ultrasonication with a constant energy and various power and exposure times showed the highest temperature (53·7°C) when treated with the longest exposure time and lowest ultrasound-power (276 s at 3·62 W) compared with 37·6°C for 39 s at 25·64 W. The findings predict that the viability of Esch. coli could be reduced by log10 5 with a minimal loss of activity of BSSL by applying 13·8 kJ of energy in 12 ml of human milk using high ultrasound power over a short exposure time to ensure that the temperature remains below the critical level for protein denaturation. Alternatively, the use of lower power settings such as the 26 W used in the present studies would require a cooling system to ensure the human milk BSSL was protected against temperature denaturation.
Williams, R; Rankin, N; Smith, T; Galler, D; Seakins, P
1996-11-01
To review the available literature on the relationship between the humidity and temperature of inspired gas and airway mucosal function. International computerized databases and published indices, experts in the field, conference proceedings, bibliographies. Two hundred articles/texts on respiratory tract physiology and humidification were reviewed. Seventeen articles were selected from 40 articles for inclusion in the published data verification of the model. Selection was by independent reviewers. Extraction was by consensus, and was based on finding sufficient data. A relationship exists between inspired gas humidity and temperature, exposure time to a given humidity level, and mucosal function. This relationship can be modeled and represented as an inspired humidity magnitude vs. exposure time map. The model is predictive of mucosal function and can be partially verified by the available literature. It predicts that if inspired humidity deviates from an optimal level, a progressive mucosal dysfunction begins. The greater the humidity deviation, the faster the mucosal dysfunction progresses. A model for the relationship between airway mucosal dysfunction and the combination of the humidity of inspired gas and the duration over which the airway mucosa is exposed to that humidity is proposed. This model suggests that there is an optimal temperature and humidity above which, and below which, there is impaired mucosal function. This optimal level of temperature and humidity is core temperature and 100% relative humidity. However, existing data are only sufficient to test this model for gas conditions below core temperature and 100% relative humidity. These data concur with the model in that region. No studies have yet looked at this relationship beyond 24 hrs. Longer exposure times to any given level of inspired humidity and inspired gas temperatures and humidities above core temperature and 100% relative humidity need to be studied to fully verify the proposed model.
Simulation of cryolipolysis as a novel method for noninvasive fat layer reduction.
Majdabadi, Abbas; Abazari, Mohammad
2016-12-20
Regarding previous problems in conventional liposuction methods, the need for development of new fat removal operations was appreciated. In this study we are going to simulate one of the novel methods, cryolipolysis, aimed to tackle those drawbacks. We think that simulation of clinical procedures contributes considerably in efficacious performance of the operations. To do this we have attempted to simulate temperature distribution in a sample fat of the human body. Using Abaqus software we have presented the graphical display of temperature-time variations within the medium. Findings of our simulation indicate that tissue temperature decreases after cold exposure of about 30 min. It can be seen that the minimum temperature of tissue occurs in shallow layers of the sample and the temperature in deeper layers of the sample remains nearly unchanged. It is clear that cold exposure time of more than the specific time (t > 30 min) does not result in considerable changes. Numerous clinical studies have proved the efficacy of cryolipolysis. This noninvasive technique has eliminated some of drawbacks of conventional methods. Findings of our simulation clearly prove the efficiency of this method, especially for superficial fat layers.
Ultra-Accelerated Natural Sunlight Exposure Testing Facilities
Lewandowski, Allan A.; Jorgensen, Gary J.
2004-11-23
A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.
Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury
Matylevitch, Natalia P.; Schuschereba, Steven T.; Mata, Jennifer R.; Gilligan, George R.; Lawlor, David F.; Goodwin, Cleon W.; Bowman, Phillip D.
1998-01-01
The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72°C for 1 second. After exposure to temperatures of 58 to 59°C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66°C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72°C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59°C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation. PMID:9708816
Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury.
Matylevitch, N P; Schuschereba, S T; Mata, J R; Gilligan, G R; Lawlor, D F; Goodwin, C W; Bowman, P D
1998-08-01
The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72 degrees C for 1 second. After exposure to temperatures of 58 to 59 degrees C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66 degrees C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72 degrees C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59 degrees C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation.
Two-Phase Slug Flow Heat Exchanger for Microbial Thermal Inactivation Research
Stroup, W. H.; Dickerson, R. W.; Read, R. B.
1969-01-01
A continuous two-phase (air-liquid), slug flow, tubular heat exchanger was developed for microbial thermal inactivation research to give exposure times and temperatures in the range of high-temperature, short-time milk pasteurization as well as heat-treated sample volumes of at least 2 ml. The use of air to compartmentalize the liquid in the capillary tubing prevented the development of laminar flow, which enabled precise identification of the residence time of the fastest flowing particles in the heating, holding, and cooling sections of the instrument. Residence time distributions were quantitated by measuring the degree of spreading of radioactive tracers for water, whole milk, chocolate milk, cream, and ice-cream mix with holding temperatures from 50 to 72 C, holding times from 2 to 60 sec, and heating and cooling times of 1.7 sec each. For a holding time of 60 sec and a fastest particle velocity of 10.2 cm/sec, the velocity ratios of the fastest moving particle to the median particle were 1.05, 1.05, 1.10, and 1.13 for whole milk, chocolate milk, cream, and ice-cream mix, respectively. With shorter holding times, these velocity ratios were even closer to unity. These velocity ratios indicated that the instrument would be an effective tool for thermal inactivation research on microorganisms suspended in homogeneous fluids with a viscosity of 15 centipoises or less at the exposure temperature. PMID:5395711
EFFECTS OF TRITIUM GAS EXPOSURE ON EPDM ELASTOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E.
2009-12-11
Samples of four formulations of ethylene-propylene diene monomer (EPDM) elastomer were exposed to initially pure tritium gas at one atmosphere and ambient temperature for various times up to about 420 days in closed containers. Two formulations were carbon-black-filled commercial formulations, and two were the equivalent formulations without filler synthesized for this work. Tritium effects on the samples were characterized by measuring the sample volume, mass, flexibility, and dynamic mechanical properties and by noting changes in appearance. The glass transition temperature was determined by analysis of the dynamic mechanical properties. The glass transition temperature increased significantly with tritium exposure, and themore » unfilled formulations ceased to behave as elastomers after the longest tritium exposure. The filled formulations were more resistant to tritium exposure. Tritium exposure made all samples significantly stiffer and therefore much less able to form a reliable seal when employed as O-rings. No consistent change of volume or density was observed; there was a systematic lowering of sample mass with tritium exposure. In addition, the significant radiolytic production of gas, mainly protium (H{sub 2}) and HT, by the samples when exposed to tritium was characterized by measuring total pressure in the container at the end of each exposure and by mass spectroscopy of a gas sample at the end of each exposure. The total pressure in the containers more than doubled after {approx}420 days tritium exposure.« less
Exposure to oil mist and oil vapour during offshore drilling in norway, 1979-2004.
Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E
2006-03-01
To describe personal exposure to airborne hydrocarbon contaminants (oil mist and oil vapour) from 1979 to 2004 in the mud-handling areas of offshore drilling facilities operating on the Norwegian continental shelf when drilling with oil-based muds. Qualitative and quantitative information was gathered during visits to companies involved in offshore oil and gas production in Norway. Monitoring reports on oil mist and oil vapour exposure covered 37 drilling facilities. Exposure data were analysed using descriptive statistics and by constructing linear mixed-effects models. Samples had been taken during the use of three generations of hydrocarbon base oils, namely diesel oils (1979-1984), low-aromatic mineral oils (1985-1997) and non-aromatic mineral oils (1998-2004). Sampling done before 1984 showed high exposure to diesel vapour (arithmetic mean, AM = 1217 mg m(-3)). When low-aromatic mineral oils were used, the exposure to oil mist and oil vapour was 4.3 and 36 mg m(-3), and the respective AMs for non-aromatic mineral oils were reduced to 0.54 and 16 mg m(-3). Downward time trends were indicated for both oil mist (6% per year) and oil vapour (8% per year) when the year of monitoring was introduced as a fixed effect in a linear mixed-effects model analysis. Rig type, technical control measures and mud temperature significantly determined exposure to oil mist. Rig type, type of base oil, viscosity of the base oil, work area, mud temperature and season significantly determined exposure to oil vapour. Major decreases in variability were found for the between-rig components. Exposure to oil mist and oil vapour declined over time in the mud-handling areas of offshore drilling facilities. Exposure levels were associated with rig type, mud temperature, technical control measures, base oil, viscosity of the base oil, work area and season.
Ruigrok, Hermanus J; Arnaud-Cormos, Delia; Hurtier, Annabelle; Poque, Emmanuelle; de Gannes, Florence Poulletier; Ruffié, Gilles; Bonnaudin, Fabrice; Lagroye, Isabelle; Sojic, Neso; Arbault, Stéphane; Lévêque, Philippe; Veyret, Bernard; Percherancier, Yann
2018-01-01
The existence of effects of radiofrequency field exposure at environmental levels on living tissues and organisms remains controversial, in particular regarding potential "nonthermal" effects produced in the absence of temperature elevation. Therefore, we investigated whether TRPV1, one of the most studied thermosensitive channels, can be activated by the heat produced by radiofrequency fields and by some specific nonthermal interaction with the fields. We have recently shown that TRPV1 activation can be assessed in real-time on live cells using the bioluminescence resonance energy transfer technique. Taking advantage of this innovative assay, we monitored TRPV1 thermal and chemical modes of activation under radiofrequency exposure at 1800 MHz using different signals (CW, GSM, UMTS, LTE, Wi-Fi and WiMAX) at specific absorption rates between 8 and 32 W/kg. We showed that, as expected, TRPV1 channels were activated by the heat produced by radiofrequency field exposure of transiently-transfected HEK293T cells, but found no evidence of TRPV1 activation in the absence of temperature elevation under radiofrequency field exposure. There was no evidence either that, at fixed temperature, radiofrequency exposure altered the maximal efficacy of the agonist Capsaicin to activate TRPV1.
Lechowich, R. V.; Beuchat, L. R.; Fox, K. I.; Webster, F. H.
1969-01-01
Modifications of a commercial 2,450-megahertz microwave oven were made so that 6 ml of microbial suspension could be exposed to the microwave field for various periods of time. The microorganisms were contained in the central tube of a modified Liebig condenser positioned in the approximate geometric center of the oven cavity. Kerosene at -25 C was circulated through the jacket of the condenser during microwave exposure permitting microwaves to reach the microbial suspension. Flow rates of the kerosene were varied to permit the temperature of the suspension to range from 25 to 55 C during microwave exposure. Conductive heating experiments using similar temperatures were also conducted. A thermocouple-relay system was employed to measure the suspension temperature immediately after the magnetron shutoff. Continuous application of microwaves to suspensions of 108 to 109 Streptococcus faecalis or Saccharomyces cerevisiae per ml appeared to produce no lethal effects other than those produced by heat. Respiration rates of microwave-exposed Scerevisiae were directly related to decreases in viable count produced by increased microwave exposure times. Images PMID:4975450
Taking the temperature of the interiors of magnetically heated nanoparticles.
Dong, Juyao; Zink, Jeffrey I
2014-05-27
The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.
Magnetic field effect for cellulose nanofiber alignment
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Chen, Yi; Kang, Kwang-Sun; Park, Young-Bin; Schwartz, Mark
2008-11-01
Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.
Titanium-Water Thermosyphon Gamma Radiation Exposure and Results
NASA Technical Reports Server (NTRS)
Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.
2012-01-01
Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.
Gerhardsson, Lars; Balogh, Istvan; Hambert, Per-Arne; Hjortsberg, Ulf; Karlsson, Jan-Erik
2005-01-01
The aim of the present study was to compare the development of vibration white fingers (VWF) in workers in relation to different ways of exposure estimation, and their relationship to the standard ISO 5349, annex A. Nineteen vibration exposed (grinding machines) male workers completed a questionnaire followed by a structured interview including questions regarding their estimated hand-held vibration exposure. Neurophysiological tests such as fractionated nerve conduction velocity in hands and arms, vibrotactile perception thresholds and temperature thresholds were determined. The subjective estimation of the mean daily exposure-time to vibrating tools was 192 min (range 18-480 min) among the workers. The estimated mean exposure time calculated from the consumption of grinding wheels was 42 min (range 18-60 min), approximately a four-fold overestimation (Wilcoxon's signed ranks test, p<0.001). Thus, objective measurements of the exposure time, related to the standard ISO 5349, which in this case were based on the consumption of grinding wheels, will in most cases give a better basis for adequate risk assessment than self-exposure assessment.
Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C
2011-08-07
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.
Patients’ experiences of cold exposure during ambulance care
2013-01-01
Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143
Causal mediation analysis for longitudinal data with exogenous exposure.
Bind, M-A C; Vanderweele, T J; Coull, B A; Schwartz, J D
2016-01-01
Mediation analysis is a valuable approach to examine pathways in epidemiological research. Prospective cohort studies are often conducted to study biological mechanisms and often collect longitudinal measurements on each participant. Mediation formulae for longitudinal data have been developed. Here, we formalize the natural direct and indirect effects using a causal framework with potential outcomes that allows for an interaction between the exposure and the mediator. To allow different types of longitudinal measures of the mediator and outcome, we assume two generalized mixed-effects models for both the mediator and the outcome. The model for the mediator has subject-specific random intercepts and random exposure slopes for each cluster, and the outcome model has random intercepts and random slopes for the exposure, the mediator, and their interaction. We also expand our approach to settings with multiple mediators and derive the mediated effects, jointly through all mediators. Our method requires the absence of time-varying confounding with respect to the exposure and the mediator. This assumption is achieved in settings with exogenous exposure and mediator, especially when exposure and mediator are not affected by variables measured at earlier time points. We apply the methodology to data from the Normative Aging Study and estimate the direct and indirect effects, via DNA methylation, of air pollution, and temperature on intercellular adhesion molecule 1 (ICAM-1) protein levels. Our results suggest that air pollution and temperature have a direct effect on ICAM-1 protein levels (i.e. not through a change in ICAM-1 DNA methylation) and that temperature has an indirect effect via a change in ICAM-1 DNA methylation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure
NASA Technical Reports Server (NTRS)
Duffy, J. F.; Kronauer, R. E.; Czeisler, C. A.
1996-01-01
1. Both the timing of behavioural events (activity, sleep and social interactions) and the environmental light-dark cycle have been reported to contribute to entrainment of human circadian rhythms to the 24 h day. Yet, the relative contribution of those putative behavioural synchronizers to that of light exposure remains unclear. 2. To investigate this, we inverted the schedule of rest, sedentary activity and social contact of thirty-two young men either with or without exposure to bright light. 3. On this inverted schedule, the endogenous component of the core temperature rhythm of subjects who were exposed to bright light showed a significant phase shift, demonstrating that they were adapting to the new schedule. In contrast, the core temperature rhythm of subjects who were not exposed to bright light moved on average 0.2 h later per day and after 10 days had not significantly adapted to the new schedule. 4. The direction of phase shift in the groups exposed to bright light was dependent on the time of bright light exposure, while control subjects drifted to a later hour regardless of the timing of their schedule of sleep timing, social contact and meals. 5. These results support the concept that the light-dark cycle is the most important synchronizer of the human circadian system. They suggest that inversion of the sleep-wake, rest-activity and social contact cycles provides relatively minimal drive for resetting the human circadian pacemaker. 6. These data indicate that interventions designed to phase shift human circadian rhythms for adjustment to time zone changes or altered work schedules should focus on properly timed light exposure.
An artificial HSE promoter for efficient and selective detection of heat shock pathway activity.
Ortner, Viktoria; Ludwig, Alfred; Riegel, Elisabeth; Dunzinger, Sarah; Czerny, Thomas
2015-03-01
Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.
Prenatal exposure to ambient temperature variation increases the risk of common cold in children.
Lu, Chan; Miao, Yufeng; Zeng, Ji; Jiang, Wei; Shen, Yong-Ming; Deng, Qihong
2018-06-15
Common cold is a frequent upper respiratory tract infection, but the role of ambient temperature in the infection is unclear. We investigated the role of prenatal exposure to diurnal temperature variation (DTV), the difference between the daily maximal and minimal temperatures, in the risk of common cold in children. We conducted a cohort study of 2598 preschool children in Changsha, China. Occurrence of common cold during the past year was surveyed using questionnaire. We then estimated each child's prenatal exposure to DTV during pregnancy. Multivariate logistic regression model was used to examine the association between occurrence of common cold and prenatal exposure to DTV in terms of odds ratios (OR) and 95% confidence interval (CI). About 45% children have common cold (≥3 times) during the past year. We found that common cold in children was associated with maternal DTV exposure during pregnancy, particularly during the first trimester with adjusted OR (95% CI) = 1.27 (1.10-1.46). Male and atopic children were more susceptible to the effect of DTV during pregnancy. The risk of common cold due to DTV is higher in children living in the suburban areas and the bigger houses and in those exposed to environmental tobacco smoke, mold/dampness, new furniture and redecoration. We observed that the risk of common cold in children has been increased in recent years due to increasing DTV. Common cold in children was associated with maternal exposure to temperature variation during pregnancy, suggesting that the risk of common cold may originate in pregnancy. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuehrmann, A.H.; Jamison, H.C.; Manson-Hing, L.R.
Although most users of ionizing radiation are constantly being subjected to increasing amounts of legislation designed to protect the public from excessive exposure, thus far, regulatory measures relating to dentistry have been concerned with barrier materials and use of protective leaded aprons for patients. No effort has been made to establish laws or regulations where professional judgment is required, and dentists are not restricted as to the number of exposures they may make or the speed of the film emulsion they must use. No individual or agency inspects the quality of the finished film or evaluates the individual practitioner's abilitymore » to interpret accurately the resultant roentgenogram; the dentist is simply expected to avoid needless, useless, or wasteful exposure of his patients. To assess the need for improved x-ray film development techniques, which would result in decreased patient exposure, a survey was made in 195 dentists' offices. Only 25 darkrooms examined had no apparent light leaks. There was no safelight in 7 darkrooms, and safelights were judged inadequate in 67 and adequate in 117 darkrooms. A solution thermometer was available in 106 of the 195 darkrooms. In 168 offices, film processing was done on a time-temperature basis (ordinarily 5 min development at 65 deg F or 41/ 2 min at 68 deg ). A solution-replenishing system was used in 23 darkrooms. The darkroom was also evaluated in its general appearance, tidiness, and arrangement on a subjective scale. Twenty-six darkrooms were rated good, 105 fair, and 60 poor. Twenty-seven of the offices reported that a sight developing technique was used, compared with 168 using a time-temperature technique. The time-temperature procedure did not follow manufacturer's directions in many of the offices because of the absence of solution thermometers and temperature-regulating equipment. A stop bath was used in only three offices. The interval of rinsing between developing and fixing of film ranged from no rinsing to 90 sec. The time intervals during which films were fixed ranged from 2 min to 2 hr. The inadequacy of many of the darkroom techniques is discussed and recommendations are made for improvements designed to reduce duration and repetition of x-ray exposures of patients. Nonoptimal film quality results in unnecessary patient exposure (BBB)« less
Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C
2015-03-01
Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.
Risk of Congenital Heart Defects after Ambient Heat Exposure Early in Pregnancy.
Auger, Nathalie; Fraser, William D; Sauve, Reg; Bilodeau-Bertrand, Marianne; Kosatsky, Tom
2017-01-01
Congenital heart defects may be environmentally related, but the association with elevated ambient temperature has received little attention. We studied the relationship between outdoor heat during the first trimester of pregnancy and risk of congenital heart defects. We carried out a retrospective cohort study of 704,209 fetuses between 2 and 8 weeks postconception from April to September in Quebec, Canada, 1988-2012. We calculated the prevalence of congenital heart defects at birth according to the number of days women were exposed to maximum temperature ≥ 30°C. In log-binomial regression models, we estimated prevalence ratios (PR) and 95% confidence intervals (CI) for the relationship of temperature with seven critical and eight noncritical heart defects, adjusted for pregnancy characteristics. Prevalence of congenital heart defects was 979.5 per 100,000 for 10 days or more of temperature ≥ 30°C compared with 878.9 per 100,000 for 0 days of exposure. Temperature was more precisely associated with noncritical than critical defects, which had lower prevalence. Fetuses exposed to 15 days of temperature ≥ 30°C between 2 and 8 weeks postconception had 1.06 times the risk of critical defects (95% CI: 0.67, 1.67) and 1.12 times the risk of noncritical defects (95% CI: 0.98, 1.29) relative to 0 days. Associations were higher for atrial septal defects (PR 1.37, 95% CI: 1.10, 1.70) than for other noncritical defects. For atrial septal defects, associations with elevated temperatures began the 3rd week postconception. Extreme heat exposure during the first trimester may be associated with noncritical heart defects, especially of the atrial septum. Citation: Auger N, Fraser WD, Sauve R, Bilodeau-Bertrand M, Kosatsky T. 2017. Risk of congenital heart defects after ambient heat exposure early in pregnancy. Environ Health Perspect 125:8-14; http://dx.doi.org/10.1289/EHP171.
NASA Astrophysics Data System (ADS)
Zaoutsos, S. P.; Zilidou, M. C.
2017-12-01
In the current study dynamic mechanical analysis (DMA) is performed in CFRPs that have been exposed for certain periods of time to extreme low temperatures. Through experimental data arising from respective DMA tests the influence of low temperature exposure (-40 °C) on the dynamic mechanical properties is studied. DMA tests were conducted in CFRP specimens in three point bending mode at both frequency and thermal scans in order to determine the viscoelastic response of the material in low temperatures. All experimental tests were run both for aged and pristine materials for comparison purposes. The results occurred reveal that there is deterioration both on transition temperature (Tg) and storage modulus values while there is also a moderate increase in the damping ability of the tested material as expressed by the factor tanδ as the period of exposure to low temperature increases.
Holstila, Milja; Pesola, Marko; Saari, Teemu; Koskensalo, Kalle; Raiko, Juho; Borra, Ronald J H; Nuutila, Pirjo; Parkkola, Riitta; Virtanen, Kirsi A
2017-05-01
Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18 F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18 F-FDG PET. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sovie, Amy L.
1992-01-01
A demonstration of the ability of an existing optical fiber cable to survive the harsh environment of a rocket engine was performed at the NASA Lewis Research Center. The intent of this demonstration was to prove the feasibility of applying fiber optic technology to rocket engine instrumentation systems. Extreme thermal transient tests were achieved by wrapping a high temperature optical fiber, which was cablized for mechanical robustness, around the combustion chamber outside wall of a 1500 lb Hydrogen-Oxygen rocket engine. Additionally, the fiber was wrapped around coolant inlet pipes which were subject to near liquid hydrogen temperatures. Light from an LED was sent through the multimode fiber, and output power was monitored as a function of time while the engine was fired. The fiber showed no mechanical damage after 419 firings during which it was subject to transients from 30 K to 350 K, and total exposure time to near liquid hydrogen temperatures in excess of 990 seconds. These extreme temperatures did cause attenuation greater than 3 dB, but the signal was fully recovered at room temperature. This experiment demonstrates that commercially available optical fiber cables can survive the environment seen by a typical rocket engine instrumentation system, and disclose a temperature-dependent attenuation observed during exposure to near liquid hydrogen temperatures.
Cold Weather Protection for Seed. Science Study Aid No. 6.
ERIC Educational Resources Information Center
Valieant, Joan A.
This science study aid, published by the U. S. Department of Agriculture and intended as a supplement to the regular science program, lists activities and experiments relating seed germination to various temperature changes and exposure to adverse temperature conditions for varying lengths of time. (CP)
Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum
2003-11-01
Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.
Factors affecting outdoor exposure in winter: population-based study
NASA Astrophysics Data System (ADS)
Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani
2006-09-01
The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.
Examination of B. subtilis var. niger Spore Killing by Dry Heat Methods
NASA Technical Reports Server (NTRS)
Kempf, Michael J.; Kirschner, Larry E.
2004-01-01
Dry heat microbial reduction is the only NASA approved sterilization method to reduce the microbial bioburden on space-flight hardware prior to launch. Reduction of the microbial bioburden on spacecraft is necessary to meet planetary protection requirements specific for the mission. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated due to frictional forces. Temperatures reached during atmospheric entry events (>200 C) are sufficient to damage or destroy flight hardware and also kill microbial spores that reside on the in-bound spacecraft. The goal of this research is to determine the survival rates of bacterial spores when they are subjected to conditions similar to those the spacecraft would encounter (i.e., temperature, pressure, etc.). B. subtilis var. niger spore coupons were exposed to a range of temperatures from 125 C to 200 C in a vacuum oven (at <1 Torr). After the exposures, the spores were removed by sonication, dilutions were made, and the spores were plated using the pour plate method with tryptic soy agar. After 3 days incubation at 32 C, the number of colony-forming units was counted. Lethality rate constants and D-values were calculated at each temperature. The calculated D-values were: 27 minutes (at 125 C), 13 minutes (at 135 C), and <0.1 minutes (at 150 C). The 125 C and 135 C survivor curves appeared as concavedownward curves. The 150 C survivor curve appeared as a straight-line. Due to the prolonged ramp-up time to the exposure conditions, spore killing during the ramp-up resulted in insufficient data to draw curves for exposures at 160 C, 175 C, and 200 C. Exploratory experiments using novel techniques, with short ramp times, for performing high temperature exposures were also examined. Several of these techniques, such as vacuum furnaces, thermal spore exposure vessels, and laser heating of the coupons, will be discussed.
ERIC Educational Resources Information Center
Carpenter, Matt
2009-01-01
The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…
McCormack, Meredith C; Belli, Andrew J; Waugh, Darryn; Matsui, Elizabeth C; Peng, Roger D; Williams, D'Ann L; Paulin, Laura; Saha, Anik; Aloe, Charles M; Diette, Gregory B; Breysse, Patrick N; Hansel, Nadia N
2016-12-01
There is limited evidence of the effect of exposure to heat on chronic obstructive pulmonary disease (COPD) morbidity, and the interactive effect between indoor heat and air pollution has not been established. To determine the effect of indoor and outdoor heat exposure on COPD morbidity and to determine whether air pollution concentrations modify the effect of temperature. Sixty-nine participants with COPD were enrolled in a longitudinal cohort study, and data from the 601 participant days that occurred during the warm weather season were included in the analysis. Participants completed home environmental monitoring with measurement of temperature, relative humidity, and indoor air pollutants and simultaneous daily assessment of respiratory health with questionnaires and portable spirometry. Participants had moderate to severe COPD and spent the majority of their time indoors. Increases in maximal indoor temperature were associated with worsening of daily Breathlessness, Cough, and Sputum Scale scores and increases in rescue inhaler use. The effect was detected on the same day and lags of 1 and 2 days. The detrimental effect of temperature on these outcomes increased with higher concentrations of indoor fine particulate matter and nitrogen dioxide (P < 0.05 for interaction terms). On days during which participants went outdoors, increases in maximal daily outdoor temperature were associated with increases in Breathlessness, Cough, and Sputum Scale scores after adjusting for outdoor pollution concentrations. For patients with COPD who spend the majority of their time indoors, indoor heat exposure during the warmer months represents a modifiable environmental exposure that may contribute to respiratory morbidity. In the context of climate change, adaptive strategies that include optimization of indoor environmental conditions are needed to protect this high-risk group from the adverse health effects of heat.
Belli, Andrew J.; Waugh, Darryn; Matsui, Elizabeth C.; Peng, Roger D.; Williams, D’Ann L.; Paulin, Laura; Saha, Anik; Aloe, Charles M.; Diette, Gregory B.; Breysse, Patrick N.; Hansel, Nadia N.
2016-01-01
Rationale: There is limited evidence of the effect of exposure to heat on chronic obstructive pulmonary disease (COPD) morbidity, and the interactive effect between indoor heat and air pollution has not been established. Objectives: To determine the effect of indoor and outdoor heat exposure on COPD morbidity and to determine whether air pollution concentrations modify the effect of temperature. Methods: Sixty-nine participants with COPD were enrolled in a longitudinal cohort study, and data from the 601 participant days that occurred during the warm weather season were included in the analysis. Participants completed home environmental monitoring with measurement of temperature, relative humidity, and indoor air pollutants and simultaneous daily assessment of respiratory health with questionnaires and portable spirometry. Measurements and Main Results: Participants had moderate to severe COPD and spent the majority of their time indoors. Increases in maximal indoor temperature were associated with worsening of daily Breathlessness, Cough, and Sputum Scale scores and increases in rescue inhaler use. The effect was detected on the same day and lags of 1 and 2 days. The detrimental effect of temperature on these outcomes increased with higher concentrations of indoor fine particulate matter and nitrogen dioxide (P < 0.05 for interaction terms). On days during which participants went outdoors, increases in maximal daily outdoor temperature were associated with increases in Breathlessness, Cough, and Sputum Scale scores after adjusting for outdoor pollution concentrations. Conclusions: For patients with COPD who spend the majority of their time indoors, indoor heat exposure during the warmer months represents a modifiable environmental exposure that may contribute to respiratory morbidity. In the context of climate change, adaptive strategies that include optimization of indoor environmental conditions are needed to protect this high-risk group from the adverse health effects of heat. PMID:27684429
Wang, Xiang; Lavigne, Eric; Ouellette-kuntz, Hélène; Chen, Bingshu E
2014-02-01
The purpose of this study was to assess the effects of extreme ambient temperature on hospital emergency room visits (ER) related to mental and behavioral illnesses in Toronto, Canada. A time series study was conducted using health and climatic data from 2002 to 2010 in Toronto, Canada. Relative risks (RRs) for increases in emergency room (ER) visits were estimated for specific mental and behavioral diseases (MBD) after exposure to hot and cold temperatures while using the 50th percentile of the daily mean temperature as reference. Poisson regression models using a distributed lag non-linear model (DLNM) were used. We adjusted for the effects of seasonality, humidity, day-of-the-week and outdoor air pollutants. We found a strong association between MBD ER visits and mean daily temperature at 28°C. The association was strongest within a period of 0-4 days for exposure to hot temperatures. A 29% (RR=1.29, 95% CI 1.09-1.53) increase in MBD ER vists was observed over a cumulative period of 7 days after exposure to high ambient temperature (99th percentile vs. 50th percentile). Similar associations were reported for schizophrenia, mood, and neurotic disorers. No significant associations with cold temperatures were reported. The ecological nature and the fact that only one city was investigated. Our findings suggest that extreme temperature poses a risk to the health and wellbeing for individuals with mental and behavior illnesses. Patient management and education may need to be improved as extreme temperatures may become more prevalent with climate change. © 2013 Elsevier B.V. All rights reserved.
Changes in cold tolerance due to a 14-day stay in the Canadian Arctic
NASA Astrophysics Data System (ADS)
Livingstone, S. D.; Romet, T.; Keefe, A. A.; Nolan, R. W.
1996-12-01
Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures -11 and -21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.
Changes in cold tolerance due to a 14-day stay in the Canadian Arctic.
Livingstone, S D; Romet, T; Keefe, A A; Nolan, R W
1996-11-01
Response to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the arctic (average maximum and minimum temperatures -11 and -21 degrees C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11 degrees C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10 degrees C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.
Metallurgical evaluation of factors influencing the ductility of aged T-111
NASA Technical Reports Server (NTRS)
Gold, R. E.
1972-01-01
The metallurgical factors influencing the ductility of T-111 (Ta-8W-2Hf) alloy following long-time exposures of GTA welds and tubing in the temperature range 982 C (1800 F) through 1316 C (2400 F) were evaluated by means of scanning and transmission electron microscopy, Auger electron emission spectroscopy, and optical metallographic procedures. No classical aging response occurs in the alloy over the temperature range studied. The ductility impairment implied by previous investigations is not the result of microstructural response of the alloy to thermal exposures. Intergranular failure in the GTA sheet welds appears the result of random contamination by silicon, potassium, and/or fluorine at the grain boundaries of the fusion zones. Exposure to lithium at high temperatures had no adverse effects on the ductility of T-111 tubing. These materials were, however, sensitive to post-age handling and testing procedures.
Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2016-04-01
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati
2017-04-01
Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.
Marion, Jason W; Lee, Jiyoung; Rosenblum, James S; Buckley, Timothy J
2018-02-01
Increases in outdoor temperature may lead to increases in sunburn, outdoor exposure, and skin cancer in human populations. This study aimed to quantify sunburn incidence and risk for Ohio beachgoers exposed to varying outdoor conditions. Sunburn incidence data were obtained through a prospective cohort study at East Fork Lake (Cincinnati, Ohio, USA). Recruitment occurred over 26 weekend days. Beach interviews and follow-up telephone interviews obtained exposure and health information. New sunburns were self-reported 8-9 days post-enrollment. Survey data were paired with ultraviolet radiation (UVR) index and temperature data for statistical analysis. Among 947 beachgoers, new sunburns were reported in 18% of swimmers. Sunburn incidence was associated with temperature (odds ratio = 1.2; 95% CI: 1.1 - 1.4) and UVR index (odds ratio = 1.6; 95% CI: 1.0 - 2.5) in models adjusted for water exposure, arrival time, and beach visit frequency. Some evidence of a temperature+UVR interaction was observed. Exposure and sunburn data were self-reported without clinical diagnosis and date of onset. The follow-up period enabled sunburns to be reported from a variety of days rather than only the beach visit day thereby limiting interpretation. Sun protection behaviors were not evaluated. Temperature and UVR influence sunburn frequency. Temperature, however was more strongly associated with sunburn in beachgoers than the nearest measured UVR index, suggesting future investigations are needed to better understand how temperature effects sunburn development. Interventions for decreasing sunburn are needed. Copyright © 2017 Elsevier Inc. All rights reserved.
Smoot, L M; Pierson, M D
1998-10-01
Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.
Pölkki, Mari; Kangassalo, Katariina; Rantala, Markus J
2014-01-01
Environmental pollution is considered one of the major threats to organisms. Direct effects of heavy metal pollution on various life-history traits are well recognized, while the effects of potential interactions between two distinct environmental conditions on different traits are poorly understood. Here, we have tested the effects of interactions between temperature conditions and heavy metal exposure on innate immunity and other life-history traits. Maggots of the blow fly Protophormia terraenovae were reared on either copper-contaminated or uncontaminated food, under three different temperature environments. Encapsulation response, body mass, and development time were measured for adult flies that were not directly exposed to copper. We found that the effects of copper exposure on immunity and other traits are temperature-dependent, suggesting that the ability to regulate toxic compounds in body tissues might depend on temperature conditions. Furthermore, we found that temperature has an effect on sex differences in immune defense. Males had an encapsulation response at higher temperatures stronger than that of females. Our results indicate that the effects of environmental conditions on different traits are much more intricate than what can be predicted. This is something that should be considered when conducting immunological experiments or comparing results of previous studies.
Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel
2012-01-01
Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340
Absence of acute ocular damage in humans after prolonged exposure to intense RF EMF
NASA Astrophysics Data System (ADS)
Adibzadeh, F.; van Rhoon, G. C.; Verduijn, G. M.; Naus-Postema, N. C.; Paulides, M. M.
2016-01-01
The eye is considered to be a critical organ when determining safety standards for radio frequency (RF) radiation. Experimental data obtained using animals showed that RF heating of the eye, particularly over a specific threshold, can induce cataracts. During the treatment of cancer in the head and neck by hyperthermia, the eyes receive a considerable dose of RF radiation due to stray radiation from the prolonged (60 min) and intense exposure at 434 MHz of this region. In the current study, we verified the exposure guidelines for humans by determining the association between the electromagnetic and thermal dose in the eyes with the reported ocular effects. We performed a simulation study to retrospectively assess the specific absorption rate (SAR) and temperature increase in the eyes of 16 selected patients (encompassing a total of 74 treatment sessions) whose treatment involved high power delivery as well as a minimal distance between the tumor site and the eye. Our results show that the basic restrictions on the peak 10 g spatial-averaged SAR (10 W kg-1) and peak tissue temperature increase (1 °C) are exceeded by up to 10.4 and 4.6 times, on average, and by at least 6.2 and 1.8 times when considering the lower limit of the 95% confidence interval. Evaluation of the acute effects according to patients’ feedback (all patients), the common toxicity criteria scores (all patients) and an ophthalmology investigation (one patient with the highest exposure) revealed no indication of any serious acute ocular effect, even though the eyes were exposed to high electromagnetic fields, leading to a high thermal dose. We also found that, although there is a strong correlation (R 2 = 0.88) between the predicted induced SAR and temperature in the eye, there are large uncertainties regarding the temperature-SAR relationship. Given this large uncertainty (129%) compared with the uncertainty of 3D temperature simulations (61%), we recommend using temperature simulations as a dosimetric measure in electromagnetic exposure risk assessments.
Stevia rebaudiana Bertoni effect on the hemolytic potential of Listeria monocytogenes.
Sansano, S; Rivas, A; Pina-Pérez, M C; Martinez, A; Rodrigo, D
2017-06-05
The effect of Stevia rebaudiana Bertoni on the hemolytic potential of Listeria monocytogenes was studied by means of the assessment of the Listeriolysin O (LLO) production. The three factors under study, stevia concentration in the range [0-2.5] % (w/v), incubation temperature (10 and 37°C), and exposure time (0-65h) significantly affected (p≤0.05) the hemolytic activity of L. monocytogenes. Results showed that at the lower incubation temperature the hemolytic potential of the bacterium was significantly reduced, from 100% at 37°C to 8% at 10°C (after 65h of incubation) in unsupplemented substrate (0% stevia). Irrespective of the temperature, 10 or 37°C, supplementation of the medium with stevia at 2.5 % (w/v) reduced the bacterium's hemolytic activity by a maximum of 100%. Furthermore, the time of exposure to 2.5 % (w/v) stevia concentration was also a significant factor reducing the hemolytic capability of L. monocytogenes. The possibility of reducing the pathogenic potential of L. monocytogenes (hemolysis) by exposure to stevia should be confirmed in real food matrices, opening a research niche with a valuable future impact on food safety. Copyright © 2017 Elsevier B.V. All rights reserved.
Titanium-Water Thermosyphon Gamma Radiation Effects and Results
NASA Technical Reports Server (NTRS)
Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.
2012-01-01
Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.
NASA Technical Reports Server (NTRS)
Chellman, D. J.
1982-01-01
In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.
Rougier, Carole; Chazal, Philippe; Leveque, Philippe; Leprat, Patrick
2014-01-01
The aim of this study was to investigate the effects on the cell membranes of Escherichia coli of 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C. Escherichia coli cells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced. PMID:24907330
Morita, Takeshi; Fukui, Tomoe; Morofushi, Masayo; Tokura, Hiromi
2007-05-16
The study investigated if 6 h morning bright light exposure, compared with dim light exposure, could influence time sense (range: 5-15 s). Eight women served as participants. The participant entered a bioclimatic chamber at 10:00 h on the day before the test day, where an ambient temperature and relative humidity were controlled at 25 degrees C and 60%RH. She sat quietly in a sofa in 50 lx until 22:00 h, retired at 22:00 h and then slept in total darkness. She rose at 07:00 h the following morning and again sat quietly in a sofa till 13:00 h, either in bright (2500 lx) or dim light (50 lx), the order of light intensities between the two occasions being randomized. The time-estimation test was performed from 13:00 to 13:10 h in 200 lx. The participant estimated the time that had elapsed between two buzzers, ranging over 5-15 s, and inputting the estimate into a computer. The test was carried out separately upon each individual. Results showed that the participants estimated higher durations of the given time intervals after previous exposure to 6 h of bright rather than dim light. The finding is discussed in terms of different load errors (difference between the actual core temperature and its thermoregulatory set-point) following 6-h exposure to bright or dim light in the morning.
A Simplified Diagnostic Method for Elastomer Bond Durability
NASA Technical Reports Server (NTRS)
White, Paul
2009-01-01
A simplified method has been developed for determining bond durability under exposure to water or high humidity conditions. It uses a small number of test specimens with relatively short times of water exposure at elevated temperature. The method is also gravimetric; the only equipment being required is an oven, specimen jars, and a conventional laboratory balance.
Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.
Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels
2017-05-01
MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush
Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong
2010-01-01
Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184
Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger
2015-01-01
Background Approximately 1–3% of the adult population in Europe is allergic to chromium (Cr). A new restriction in REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) based on the ISO 17075 standard has recently been adopted in the EU to limit Cr(VI) in consumer and occupational leather products. Objectives The aim of this study was to critically assess key experimental parameters in this standard on the release of Cr(III) and Cr(VI) and their relevance for skin exposure. Material and methods Four differently tanned, unfinished, leather samples were systematically investigated for their release of Cr(III) and Cr(VI) in relation to surface area, key exposure parameters, temperature, ultraviolet irradiation, and time. Results Although the total release of Cr was largely unaffected by all investigated parameters, except exposure duration and temperature, the Cr oxidation state was highly dynamic, with reduced amounts of released Cr(VI) with time, owing to the simultaneous release of reducing agents from the leather. Significantly more Cr(III) than Cr(VI) was released from the Cr-tanned leather for all conditions tested, and it continued to be released in artificial sweat up to at least 1 week of exposure. Conclusions Several parameters were identified that influenced the outcome of the ISO 17075 test. PMID:25653094
Phase transformation and long-term service of high-temperature martensitic chromium steels
NASA Astrophysics Data System (ADS)
Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.
2000-02-01
Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.
Phase transformation and long-term service of high-temperature martensitic chromium steels
NASA Astrophysics Data System (ADS)
Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.
2001-02-01
Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.
NASA Technical Reports Server (NTRS)
Kerr, James R.; Haskins, James F.
1987-01-01
Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.
Tensile properties of latex paint films with TiO2 pigment
NASA Astrophysics Data System (ADS)
Hagan, Eric W. S.; Charalambides, Maria N.; Young, Christina T.; Learner, Thomas J. S.; Hackney, Stephen
2009-05-01
The tensile properties of latex paint films containing TiO2 pigment were studied with respect to temperature, strain-rate and moisture content. The purpose of performing these experiments was to assist museums in defining safe conditions for modern paintings held in collections. The glass transition temperature of latex paint binders is in close proximity to ambient temperature, resulting in high strain-rate dependence in typical exposure environments. Time dependence of modulus and failure strain is discussed in the context of time-temperature superposition, which was used to extend the experimental time scale. Nonlinear viscoelastic material models are also presented, which incorporate a Prony series with the Ogden or Neo-Hookean hyperelastic function for different TiO2 concentrations.
USDA-ARS?s Scientific Manuscript database
Perennial fruiting trees require sustained exposure to low, near freezing, temperatures before vigorous floral and vegetative bud break is possible after the resumption of warm temperatures in the spring. The depth of dormancy, duration of chilling required (the chilling requirement, CR) blooming da...
Hartley, L M; Packard, M J; Packard, G C
2000-02-01
Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed embryogenesis the preceding summer. Neonates at northern localities consequently may be exposed during winter to subzero temperatures and frozen soil. Hatchlings apparently survive exposure to such conditions by supercooling, but the physiological consequences of this adaptive strategy have not been examined. We measured lactate in hatchling painted turtles after exposure to each of three temperatures (0 degree C, -4 degrees C, and -8 degrees C) for three time periods (5 days, 15 days, and 25 days) to determine the extent to which overwintering hatchlings might rely on anaerobic metabolism to regenerate ATP. Whole-body lactate increased with increasing duration of exposure and decreasing temperature, and the highest levels were associated with the group that experienced the highest mortality. These results indicate that animals may develop a considerable lactic acidosis during a winter in which temperatures fall below 0 degree C for weeks or months and that accumulation of lactate may contribute to mortality of overwintering animals.
Calculation of optimal modes for electric-contact welding of rails of mine haulage tracks
NASA Astrophysics Data System (ADS)
Shevchenko, R. A.; Kozyrev, N. A.; Usoltsev, A. A.; Kriukov, R. E.; Shishkin, P. E.
2017-09-01
The choice of thermal regime is based on the exclusion of formation of quenching structures (martensite and bainite), causing additional stresses and cracks which lead to the destruction of rails. After welded joint upset and cooling at the time of reaching the required temperature it is proposed to perform quasi-isothermal exposure by passing pulses of alternating current through the welded joint. The method for calculating the quasi-isothermal exposure is described that depends on the strength of the welding current and different rails section. It is suggested that after welding the rails during quenching, a quasi-isothermal holding is carried out in the temperature range of the formation of the fine-dispersed structure by passing pulses of alternating electric current through the welded joint maintaining this temperature until the end of the transformation. It is shown that the use of quasi-isothermal exposure at a chosen temperature of 600 - 650 °C makes it possible to obtain a finely dispersed structure of the welded seam of rails of mine haulage tracks without additional heat treatment.
Field orientation effects during 5. 6-GHz radiofrequency irradiation of rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei, M.R.; Jauchem, J.R.; Price, D.L.
1990-12-01
Ketamine-anesthetized Sprague-Dawley rats were exposed in E and H orientations (long axis parallel to electric and magnetic fields, respectively) to far-field 5.6-GHz continuous-wave radio-frequency radiation (RFR). Power densities were used that resulted in equivalent whole-body average specific absorption rates of 14 W/kg in both orientations (90 mW/cm2 for E and 66 mW/cm2 for H). Irradiation was conducted to increase colonic temperature by 1 degree C (from 38.5 to 39.5 degrees C). During experimentation, arterial blood pressure and respiratory rate and colonic, tympanic, left and right subcutaneous (sides toward and away from RFR source), and tail temperatures were continuously recorded. Resultsmore » showed no significant difference in the times required to cause a 1 degree C increase or to recover to the initial temperature when irradiation was stopped. Significant differences between E- and H-orientation exposure were seen in the patterns of localized heating. The tail and left subcutaneous temperature increases were significantly greater during E-orientation exposure, the tympanic site showed no difference, and the right subcutaneous temperature increase was significantly greater during H-orientation exposure. Under both exposure conditions, heart rate and mean arterial blood pressure significantly increased during irradiation; however, there were no significant differences between E and H orientation responses. These findings at 5.6 GHz are in contrast to the significant cardiovascular response differences between E- and H-orientation exposure noted during a previous study of irradiation at 2.45 GHz.« less
NASA Technical Reports Server (NTRS)
Ellis, David L.
2007-01-01
Room temperature tensile testing of Chemically Pure (CP) Titanium Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K for times up to 5,000 h. No significant changes in microstructure or failure mechanism were observed. A statistical analysis of the data was performed. Small statistical differences were found, but all properties were well above minimum values for CP Ti Grade 2 as defined by ASTM standards and likely would fall within normal variation of the material.
Windchill index and military applications.
Santee, William R
2002-07-01
A new Windchill Apparent Temperature (WCT) has been introduced to replace the Windchill Index (WCI) and Windchill Equivalent Temperature (WCET) used to quantify cold exposure. From the time of its introduction the WCI has been criticized on scientific grounds. Despite a history of criticism, the WCI and the derived WCET have been adopted by military and civilian organizations to characterize the hazards presented by exposure to cold environments. However, the military has specific needs that differ from those of the civilian population. Thus, additional weather products and devices, including thermoregulatory models, environmental monitors, and personal physiological status monitors, are available to supplement the revised WCT.
Formaldehyde exposure in U.S. industries from OSHA air sampling data.
Lavoue, Jerome; Vincent, Raymond; Gerin, Michel
2008-09-01
National occupational exposure databanks have been cited as sources of exposure data for exposure surveillance and exposure assessment for occupational epidemiology. Formaldehyde exposure data recorded in the U.S Integrated Management Information System (IMIS) between 1979 and 2001 were collected to elaborate a multi-industry retrospective picture of formaldehyde exposures and to identify exposure determinants. Due to the database design, only detected personal measurement results (n = 5228) were analyzed with linear mixed-effect models, which explained 29% of the total variance. Short-term measurement results were higher than time-weighted average (TWA) data and decreased 18% per year until 1987 (TWA data 5% per year) and 5% per year (TWA data 4% per year) after that. Exposure varied across industries with maximal estimated TWA geometric means (GM) for 2001 in the reconstituted wood products, structural wood members, and wood dimension and flooring industries (GM = 0.20 mg/m(3). Highest short-term GMs estimated for 2001 were in the funeral service and crematory and reconstituted wood products industries (GM = 0.35 mg/m(3). Exposure levels in IMIS were marginally higher during nonprogrammed inspections compared with programmed inspections. An increasing exterior temperature tended to cause a decrease in exposure levels for cold temperatures (-5% per 5 degrees C for T < 15 degrees C) but caused an increase in exposure levels for warm temperatures (+15% per 5 degrees C for T >15 degrees C). Concentrations measured during the same inspection were correlated and varied differently across industries and sample type (TWA, short term). Sensitivity analyses using TOBIT regression suggested that the average bias caused by excluding non-detects is approximately 30%, being potentially higher for short-term data if many non-detects were actually short-term measurements. Although limited by availability of relevant exposure determinants and potential selection biases in IMIS, these results provide useful insight on formaldehyde occupational exposure in the United States in the last two decades. The authors recommend that more information on exposure determinants be recorded in IMIS.
Light and Gravity Effects on Circadian Rhythms of Rhesus Macaques
NASA Technical Reports Server (NTRS)
Fuller, Charles
1997-01-01
Temporal integration of a biological organism's physiological, behavioral and biochemical systems depends upon its circadian timing system. The endogenous period of this timing system is typically synchronized to the 24- hour day by environmental cues. The daily alternation of light and dark has long been known as one of the most potent environmental synchronizers influencing the circadian timing system. Alterations in the lighting environment (length or intensity of light exposure) can also affect the homeostatic state of the organism. A series of experiments was performed using rhesus monkeys with the objective of defining the fundamental properties of the circadian rhythm of body temperature. Three major experiments were performed in addition to several preliminary studies. These experiments explored 1.) the response of the rhesus body temperature rhythm to varying day length and light intensity; 2.) the response of the body temperature rhythm to light exposure as a function of time of day; and 3.) the characteristics of the metabolic heat production rhythm which is responsible for the daily cycle in body temperature. Results of these three completed experiments will be reported here. In addition, preliminary experiments were also performed in social entrainment of rhesus circadian rhythms and the properties of rhesus body temperature rhythms in constant conditions, where no external time cues were provided. Four adult male rhesus monkeys served as subjects in all experiments. All experiments were performed at the California Regional Primate Research Center. Each animal was implanted with a biotelemetry unit that measured deep body temperature. All surgeries were performed by a board certified veterinary surgeon under sterile conditions. The biotelemetry implants also provided an index of activity level in each animal. For metabolic heat production measurements, oxygen consumption and carbon dioxide production were measured and the caloric equivalent of these was calculated. Specific methodologies are described in detail.
GSM mobile phone radiation suppresses brain glucose metabolism
Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki
2011-01-01
We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2007-08-21
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City
NASA Technical Reports Server (NTRS)
Ngo, Nicole S.; Horton, Radley M.
2015-01-01
Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.
Jung, Myung-Hwa; Nikapitiya, Chamilani; Vinay, Tharabenahalli-Nagaraju; Lee, Jehee; Jung, Sung-Ju
2017-11-01
Rock bream iridovirus (RBIV) is a member of the Megalocytivirus genus that causes severe mortality to rock bream. Water temperature is known to affect the immune system and susceptibility of fish to RBIV infection. In this study, we evaluated the time dependent virus replication pattern and time required to completely eliminate virus from the rock bream body against RBIV infection at different water temperature conditions. The rock bream was exposed to the virus and held at 7 (group A1), 4 (group A2) and 2 days (group A3) at 23 °C before the water temperature was reduced to 17 °C. A total of 28% mortality was observed 24-35 days post infection (dpi) in only the 7 day exposure group at 23 °C. In all 23 °C exposure groups, virus replication peaked at 20 to 22 dpi (10 6 -10 7 /μl). In recovery stages (30-100 dpi), the virus copy number was gradually reduced, from 10 6 to 10 1 with faster decreases in the shorter exposure period group at 23 °C. When the water temperature was increased in surviving fish from 17 to 26 °C at 70 dpi, they did not show any mortality or signs of disease and had low virus copy numbers (below 10 2 /μl). Thus, fish need at least 50 days from peaked RBIV levels (approximately 20-25 dpi) to inhibit the virus. This indicates that maintaining the fish at low water temperature (17 °C) for 70 days is sufficient to eradicate RBIV from fish body. Thus, RBIV could be eliminated slowly from the fish body and the virus may be completely eliminated under the threshold of causing mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing
2017-01-01
Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933
Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature
NASA Astrophysics Data System (ADS)
Howe, R.
Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.
Brines, Shannon J.; Brown, Daniel G.; Dvonch, J. Timothy; Gronlund, Carina J.; Zhang, Kai; Oswald, Evan M.; O’Neill, Marie S.
2013-01-01
Background: Land surface temperature (LST) and percent surface imperviousness (SI), both derived from satellite imagery, have been used to characterize the urban heat island effect, a phenomenon in which urban areas are warmer than non-urban areas. Objectives: We aimed to assess the correlations between LSTs and SI images with actual temperature readings from a ground-based network of outdoor monitors. Methods: We evaluated the relationships among a) LST calculated from a 2009 summertime satellite image of the Detroit metropolitan region, Michigan; b) SI from the 2006 National Land Cover Data Set; and c) ground-based temperature measurements monitored during the same time period at 19 residences throughout the Detroit metropolitan region. Associations between these ground-based temperatures and the average LSTs and SI at different radii around the point of the ground-based temperature measurement were evaluated at different time intervals. Spearman correlation coefficients and corresponding p-values were calculated. Results: Satellite-derived LST and SI values were significantly correlated with 24-hr average and August monthly average ground temperatures at all but two of the radii examined (100 m for LST and 0 m for SI). Correlations were also significant for temperatures measured between 0400 and 0500 hours for SI, except at 0 m, but not LST. Statistically significant correlations ranging from 0.49 to 0.91 were observed between LST and SI. Conclusions: Both SI and LST could be used to better understand spatial variation in heat exposures over longer time frames but are less useful for estimating shorter-term, actual temperature exposures, which can be useful for public health preparedness during extreme heat events. PMID:23777856
Method of producing a carbon coated ceramic membrane and associated product
Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.
1993-01-01
A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.
Simulation of Solid-State Weld Microstructures in Ti-17 via Thermal and Thermo- Mechanical Exposures
NASA Astrophysics Data System (ADS)
Orsborn, Jonathan
Solid-state welding processes are very important to the advancement of aviation technology; since they enable the joining of dissimilar metals without the additional weight and bulk of fastening systems, the processes can create for stronger and lighter parts to increase payload and efficiency. However, since the processes are not equilibrium, not much is understood about what happens to the materials during the process. During a solid-state weld, the materials being welded are exposed to rapid heating rates, high maximum temperatures, large and varying amounts of deformation, short hold times at temperature, and fast cooling rates. Due to the dynamic nature of the process it is very hard to measure the strains and temperatures experienced by the materials. This work attempted to simulate the microstructures observed in solid-state welds of Ti-5Al-2Sn-2Zr-4Cr-4Mo, or Ti-17. If the microstructures could be replicated in a controlled and repeatable fashion, then perhaps the conditions of the welding process could be indirectly determined. The simulations were performed by rapidly heating Ti-17 specimens, holding them for a very short time, and rapidly cooling. Some of the samples were also subjected to deformation while at high temperatures. The microstructures resulting from the thermal and thermo-mechanical exposures were then compared with microstructures from an actual solid-state weld of Ti-17. It was determined that the presence of untransformed secondary alpha indicates the temperature did not exceed the beta transus of the alloy (˜900 °C), the presence of untransformed primary alpha indicates that the temperature did not exceed ˜1100 °C, homogenized beta grains indicate that the temperature did exceed 1100°C, and the presence of ghost alpha is indicative that the temperature likely exceeded ˜950 °C. These numbers are rough estimates, as time at temperature and heating rate both factor into the process, and shorter times at higher temperatures can sometimes produce results similar to longer times at lower temperatures. It was also determined that ghost alpha is a conglomeration of alpha laths with many different morphological orientations and crystallographic orientations, with beta present between the laths.
NASA Astrophysics Data System (ADS)
Kreider, Kenneth G.; DeWitt, David P.; Fowler, Joel B.; Proctor, James E.; Kimes, William A.; Ripple, Dean C.; Tsai, Benjamin K.
2004-04-01
Recent studies on dynamic temperature profiling and lithographic performance modeling of the post-exposure bake (PEB) process have demonstrated that the rate of heating and cooling may have an important influence on resist lithographic response. Measuring the transient surface temperature during the heating or cooling process with such accuracy can only be assured if the sensors embedded in or attached to the test wafer do not affect the temperature distribution in the bare wafer. In this paper we report on an experimental and analytical study to compare the transient response of embedded platinum resistance thermometer (PRT) sensors with surface-deposited, thin-film thermocouples (TFTC). The TFTCs on silicon wafers have been developed at NIST to measure wafer temperatures in other semiconductor thermal processes. Experiments are performed on a test bed built from a commercial, fab-qualified module with hot and chill plates using wafers that have been instrumented with calibrated type-E (NiCr/CuNi) TFTCs and commercial PRTs. Time constants were determined from an energy-balance analysis fitting the temperature-time derivative to the wafer temperature during the heating and cooling processes. The time constants for instrumented wafers ranged from 4.6 s to 5.1 s on heating for both the TFTC and PRT sensors, with an average difference less than 0.1 s between the TFTCs and PRTs and slightly greater differences on cooling.
Development of a method for personal, spatiotemporal exposure assessment.
Adams, Colby; Riggs, Philip; Volckens, John
2009-07-01
This work describes the development and evaluation of a high resolution, space and time-referenced sampling method for personal exposure assessment to airborne particulate matter (PM). This method integrates continuous measures of personal PM levels with the corresponding location-activity (i.e. work/school, home, transit) of the subject. Monitoring equipment include a small, portable global positioning system (GPS) receiver, a miniature aerosol nephelometer, and an ambient temperature monitor to estimate the location, time, and magnitude of personal exposure to particulate matter air pollution. Precision and accuracy of each component, as well as the integrated method performance were tested in a combination of laboratory and field tests. Spatial data was apportioned into pre-determined location-activity categories (i.e. work/school, home, transit) with a simple, temporospatially-based algorithm. The apportioning algorithm was extremely effective with an overall accuracy of 99.6%. This method allows examination of an individual's estimated exposure through space and time, which may provide new insights into exposure-activity relationships not possible with traditional exposure assessment techniques (i.e., time-integrated, filter-based measurements). Furthermore, the method is applicable to any contaminant or stressor that can be measured on an individual with a direct-reading sensor.
Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography
NASA Astrophysics Data System (ADS)
Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel
2017-07-01
Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.
Could cryopreserved human semen samples be stored at -80°C?
Vaz, Carlos R; Lamim, Tamara; Salvador, Rafael A; Batschauer, Anna P B; Amaral, Vera Lucia L; Til, David
2018-06-01
To evaluate storage time effects in cryopreserved human semen samples, kept in the freezer at a controlled temperature of -80°C, on sperm viability after thawing. We used 20 semen samples. Each sample was cryopreserved in 10 fingers, which were divided into five groups: one group was kept in cryogenic canisters throughout the experiment(control), and four groups were kept in a VIP Ultra Low MDF-U76V- PE freezer, with the temperature set at -80°C, for 24, 48, 72 and 96 hours, respectively. After the exposure time, the samples were stored in cryogenic canisters after being thawed. The analyzed parameters were: motility, vitality and mitochondrial activity. After thawing, we noticed decreased sperm motility, vitality and mitochondrial activity, when comparing the tested groups with the control group, as well as a progressive reduction in the analyzed parameters between the times evaluated. Cryopreservation of semen samples at -80°C is potentially harmful to sperm viability, causing damage when submitted to longer exposure times.
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions
Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.
2015-01-01
Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5% from relative humidity and temperature on real-time measurements. The overall deviations of these real-time monitors from the NIOSH method results were ≤20%. However, simultaneous monitoring of temperature and relative humidity is recommended in field investigations to understand and correct for environmental impacts on real-time monitoring data. PMID:25894766
Zhou, Xiao-Rong; Gao, Jing-Chun; Pang, Bao-Ping
2016-08-01
Galeruca daurica (Joannis) is a new pest on the grasslands of Inner Mongolia, China. It is univoltine and overwinters in the egg stage. Larvae and adults feed on the foliage of Allium plants. To assess the requirements to terminate egg diapause and subsequent effects on post-diapause development rate, eggs were held at different temperature regimes. Exposure to low temperatures was required to terminate egg diapause. Prolonged exposure (2 mo vs 1 mo) to 5°C and outside ambient conditions (mean temperature: 10.5°C; range: -7.1-21.6°C) enhanced the termination of egg diapause. Prolonged exposure also reduced the time to egg hatch; e.g., eggs held for 2 mo versus 1 mo at 5°C developed more quickly when subsequently placed at warmer temperatures. Egg hatch was observed at 17, 21, 25, and 29°C, but not at 15°C. Regression analysis identified 16.2°C as the minimum temperature for post-diapause development. The temperature requirement to complete embryonic development (from diapause termination to egg hatch) was calculated to be 103.1 to 140.9 degree-days. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ferland, Pierre; Malito, John T.; Phillips, Everett C.
Alcan International Ltd. in collaboration with Ondeo Nalco Company have carried out a fundamental study on the dissolution and performance of a 100% anionic polymer. The effects of method of preparation, solvent composition, temperature and exposure time on flocculent activity under conditions relevant to both atmospheric and pressure decantation were investigated. Flocculent activity was determined using static and dynamic settling tests, and the results were correlated with the reduced specific viscosity (RSV). For any given method of preparation of the flocculent solutions (makeup/dilution) the RSV tended to decrease with increasing solution ionic strength, independent of ionic speciation. While a significant loss in flocculent activity occurred with long exposure of the solution to high temperature, only a minor loss occurred in the short time required to flocculate and settle the mud in a decanter operating at 150 °C. Recent results in an actual plant pressure decanter appear to validate this conclusion.
Wu, Jun; Tjoa, Thomas; Li, Lianfa; Jaimes, Guillermo; Delfino, Ralph J
2012-07-11
Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total sampling time) explained 48% of the variance in daily personal PB-PAH exposure and 39% of the variance in subject-level exposure. The other major predictors of PB-PAH exposures included length-weighted traffic count, work-related exposures, and percent of weekday time. We successfully developed regression models to estimate PB-PAH exposures based on GPS-tracking data, traffic data, and simple questionnaire information. Time in vehicle was the most important determinant of personal PB-PAH exposure in this population. We demonstrated the importance of coupling real-time exposure measures with GPS time-activity tracking in personal air pollution exposure assessment.
Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar.
Sinclair, Brent J; Chown, Steven L
2005-03-01
Multiple freeze-thaw cycles are common in alpine, polar and temperate habitats. We investigated the effects of five consecutive cycles of approx. -5 degrees C on the freeze-tolerant larvae of Pringleophaga marioni Viette (Lepidoptera: Tineidae) on sub-Antarctic Marion Island. The likelihood of freezing was positively correlated with body mass, and decreased from 70% of caterpillars that froze on initial exposure to 55% of caterpillars that froze on subsequent exposures; however, caterpillars retained their freeze tolerance and did not appear to switch to a freeze-avoiding strategy. Apart from an increase in gut water, there was no difference in body composition of caterpillars frozen 0 to 5 times, suggesting that the observed effects were not due to freezing, but rather to exposure to cold per se. Repeated cold exposure did not result in mortality, but led to decreased mass, largely accounted for by a decreased gut mass caused by cessation of feeding by caterpillars. Treatment caterpillars had fragile guts with increased lipid content, suggesting damage to the gut epithelium. These effects persisted for 5 days after the final exposure to cold, and after 30 days, treatment caterpillars had regained their pre-exposure mass, whereas their control counterparts had significantly gained mass. We show that repeated cold exposure does occur in the field, and suggest that this may be responsible for the long life cycle in P. marioni. Although mean temperatures are increasing on Marion Island, several climate change scenarios predict an increase in exposures to sub-zero temperatures, which would result in an increased generation time for P. marioni. Coupled with increased predation from introduced house mice on Marion Island, this could have severe consequences for the P. marioni population.
Vernalizing cold is registered digitally at FLC.
Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin
2015-03-31
A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.
Vernalizing cold is registered digitally at FLC
Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I.; Dean, Caroline; Howard, Martin
2015-01-01
A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor FLOWERING LOCUS C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure. PMID:25775579
Influence of environmental temperature on 40 km cycling time-trial performance.
Peiffer, Jeremiah J; Abbiss, Chris R
2011-06-01
The purpose of this study was to examine the effect of environmental temperature on variability in power output, self-selected pacing strategies, and performance during a prolonged cycling time trial. Nine trained male cyclists randomly completed four 40 km cycling time trials in an environmental chamber at 17°C, 22°C, 27°C, and 32°C (40% RH). During the time trials, heart rate, core body temperature, and power output were recorded. The variability in power output was assessed with the use of exposure variation analysis. Mean 40 km power output was significantly lower during 32°C (309 ± 35 W) compared with 17°C (329 ± 31 W), 22°C (324 ± 34 W), and 27°C (322 ± 32 W). In addition, greater variability in power production was observed at 32°C compared with 17°C, as evidenced by a lower (P = .03) standard deviation of the exposure variation matrix (2.9 ± 0.5 vs 3.5 ± 0.4 units, respectively). Core temperature was greater (P < .05) at 32°C compared with 17°C and 22°C from 30 to 40 km, and the rate of rise in core temperature throughout the 40 km time trial was greater (P < .05) at 32°C (0.06 ± 0.04°C·km-1) compared with 17°C (0.05 ± 0.05°C·km-1). This study showed that time-trial performance is reduced under hot environmental conditions, and is associated with a shift in the composition of power output. These finding provide insight into the control of pacing strategies during exercise in the heat.
A method to remove intercalates from bromine and iodine intercalated carbon fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
1993-01-01
Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.
Hill, E.F.
1989-01-01
Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.
Method for determining the effects of oxygen plasma on a specimen
NASA Technical Reports Server (NTRS)
Whitaker, Ann F. (Inventor)
1991-01-01
A method for determining the effects of exposure of oxygen plasma on a specimen such as a thin film polymer or thin metals. The method includes providing an apparatus with a chamber having a holder supporting the polymer specimen in a plasma environment provided in the chamber. The chamber is regulated to a predetermined pressure and set temperature prior to the introduction of oxygen plasma therein. The specimen is then subjected to the plasma environment for a predetermined time during which time the temperature of the specimen is sensed and regulated to be maintained at the set temperature. Temperature sensing is accomplished by a probe which senses any changes in bulk sample temperature. Temperature regulation is provided by a thermoelectric module and by a coolant flow tube.
Climate warming may increase aphids' dropping probabilities in response to high temperatures.
Ma, Gang; Ma, Chun-Sen
2012-11-01
Dropping off is considered an anti-predator behavior for aphids since previous studies have shown that it reduces the risk of predation. However, little attention is paid to dropping behavior triggered by other external stresses such as daytime high temperatures which are predicted to become more frequent in the context of climate warming. Here we defined a new parameter, drop-off temperature (DOT), to describe the critical temperature at which an aphid drops off its host plant when the ambient temperature increases gradually and slowly. Detailed studies were conducted to reveal effects of short-term acclimation (temperature, exposure time at high-temperature and starvation) on DOT of an aphid species, Sitobion avenae. Our objectives were to test if the aphids dropped off host plant to avoid high temperatures and how short-term acclimation affected the aphids' dropping behavior in response to heat stress. We suggest that dropping is a behavioral thermoregulation to avoid heat stress, since aphids started to move before they dropped off and the dropped aphids were still able to control their muscles prior to knockdown. The adults starved for 12 h had higher DOT values than those that were unstarved or starved for 6 h, and there was a trade-off between behavioral thermoregulation and energy acquisition. Higher temperatures and longer exposure times at high temperatures significantly lowered the aphids' DOT, suggested that the aphids avoid heat stress by dropping when exposed to high temperatures. Climate warming may therefore increase the aphids' dropping probabilities and consequently affect the aphids' individual development and population growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wu, Wei-Jie; Ahn, Byung-Yong
2014-01-01
Response surface methodology (RSM) was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus). Ultraviolet B (UV-B) was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C), exposure time (40-120 min), and irradiation intensity (0.6-1.2 W/m2). The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min), the experimental vitamin D2 content of 239.67 µg/g (dry weight) was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g) within much shorter UV-B exposure time (10 min), and thus should receive attention from the food processing industry.
Schrader, Thorsten; Münter, Klaus; Kleine-Ostmann, Thomas; Schmid, Ernst
2008-12-01
The production of spindle disturbances in FC2 cells, a human-hamster hybrid (A(L)) cell line, by non-ionizing radiation was studied using an electromagnetic field with a field strength of 90 V/m at a frequency of 835 MHz. Due to the given experimental conditions slide flask cultures were exposed at room temperature in a microTEM (transversal electromagnetic field) cell, which allows optimal experimental conditions for small samples of biological material. Numerical calculations suggest that specific absorption rates of up to 60 mW/kg are reached for maximum field exposure. All exposure field parameters--either measured or calculable--are precisely defined and, for the first time, traceable to the standards of the SI system of physical units. Compared with co-incident negative controls, the results of two independently performed experiments suggest that exposure periods of time from 0.5 to 2 h with an electric field strength of 90 V/m are spindle acting agents as predominately indicated by the appearance of spindle disturbances at the ana- and telophase stages (especially lagging and non-disjunction of single chromosomes) of cell divisions. The spindle disturbances do not change the fraction of mitotic cells with increasing exposure time up to 2 h. Due to the applied experimental conditions an influence of temperature as a confounder parameter for spindle disturbances can be excluded.
Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.
Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M
2012-12-01
Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.
Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae).
Johnson, J A; Valero, K A; Wang, S; Tang, J
2004-12-01
While developing radio frequency heat treatments for dried fruits and nuts, we used a heating block system developed by Washington State University to identify the most heat-tolerant life stage of red flour beetle, Tribolium castaneum (Herbst), and to determine its thermal death kinetics. Using a heating rate of 15 degrees C/min to approximate the rapid heating of radio frequency treatments, the relative heat tolerance of red flour beetle stages was found to be older larvae > pupae and adults > eggs and younger larvae. Lethal exposure times for temperatures of 48, 50, and 52 degrees C for the most heat-tolerant larval stage were estimated using a 0.5th order kinetic model. Exposures needed for 95% mortality at 48 degrees C were too long to be practical (67 min), but increasing treatment temperatures to 50 and 52 degrees C resulted in more useful exposure times of 8 and 1.3 min, respectively. Red flour beetle was more sensitive to changes in treatment temperature than previously studied moth species, resulting in red flour beetle being the most heat-tolerant species at 48 degrees C, but navel orangeworm, Amyelois transitella (Walker), being most heat tolerant at 50 and 52 degrees C. Consequently, efficacious treatments for navel orangeworm at 50-52 degrees C also would control red flour beetle.
Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf
2013-01-01
An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366
Temperature changes in the pulp chamber during dentin ablation with Er:YAG laser
NASA Astrophysics Data System (ADS)
Zhang, Xianzeng; Zhao, Haibin; Zhan, Zhenlin; Guo, Wenqing; Xie, Shusen
2012-12-01
To examine the temperature changes in the pulp chamber during cavity preparation in dentin with the Er:YAG laser (2940 nm), a total 20 intact premolars teeth were divided into 4 groups for dentin ablation with different radiant exposures at 4Hz and 8Hz with and without water spray. A K-type thermocouple was used to monitor the temperature changes in pulp chamber during laser treatment. The total time of irradiation was 70 sec. the water spray rate was 3 mL/min. It showed that maximum temperature rise increases with the increasing of radiant exposure and pulse repetition rate and the additional water cooling during laser ablation can significantly reduce the temperature rise in pulp chamber which will benefit to avoid or reduce thermal damage to tooth structure and dental pulp. The highest rise of temperature in the pulp was achieved with 20 J/cm2 and 8 Hz (19.83°C ). For all sample without water spray, the rise of temperature was exceed 5 °C . In contrast, with water spray, the temperature rise in the pulp can be firmly controlled under 1°C. The results also indicated that ablation rate and efficiency can be enhanced by increasing the incident radiant exposure and pulse repetition rate, which simultaneously producing more heat accumulation in dental tissue and causing thermal damage to dental tissue. By applying an additional water spray, thermal damage can be significantly reduced in clinical application.
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
1995-01-01
Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.
Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.
2015-01-01
Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104
An experimental heat wave changes immune defense and life history traits in a freshwater snail.
Leicht, Katja; Jokela, Jukka; Seppälä, Otto
2013-12-01
The predicted increase in frequency and severity of heat waves due to climate change is expected to alter disease dynamics by reducing hosts' ability to resist infections. This could take place via two different mechanisms: (1) through general reduction in hosts' performance under harsh environmental conditions and/or (2) through altered resource allocation that reduces expression of defense traits in order to maintain other traits. We tested these alternative hypotheses by measuring the effect of an experimental heat wave (25 vs. 15°C) on the constitutive level of immune defense (hemocyte concentration, phenoloxidase [PO]-like activity, antibacterial activity of hemolymph), and life history traits (growth and number of oviposited eggs) of the great pond snail Lymnaea stagnalis. We also manipulated the exposure time to high temperature (1, 3, 5, 7, 9, or 11 days). We found that if the exposure to high temperature lasted <1 week, immune function was not affected. However, when the exposure lasted longer than that, the level of snails' immune function (hemocyte concentration and PO-like activity) was reduced. Snails' growth and reproduction increased within the first week of exposure to high temperature. However, longer exposures did not lead to a further increase in cumulative reproductive output. Our results show that short experimental heat waves do not alter immune function but lead to plastic responses that increase snails' growth and reproduction. Thus, although the relative expression of traits changes, short experimental heat waves do not impair snails' defenses. Negative effects on performance get pronounced when the heat waves are prolonged suggesting that high performance cannot be maintained over long time periods. This ultimately reduces the levels of defense traits.
de Grandmont, M J; Ducas, E; Girard, M; Méthot, M; Brien, M; Thibault, L
2014-10-01
Many international standards state that red blood cell (RBC) products should be discarded if left out of controlled temperature storage for longer than 30 min to reduce the risk of bacterial growth and RBC loss of viability. This study aimed to verify whether repeated short-time exposures to room temperature (RT) influence RBCs quality and bacterial proliferation. Saline-adenine-glucose-mannitol (SAGM) and AS-3 RBC units were split and exposed to RT for 30 or 60 min on day 2, 7, 14, 21, and 42 of storage while reference units remained stored at 1-6°C. Red blood cell in vitro quality parameters were evaluated after each exposure. In a second experiment, SAGM and AS-3 RBC units were split and inoculated with Staphylococcus epidermidis (5 CFU/ml), Serratia marcescens (1 CFU/ml), and Serratia liquefaciens (1 CFU/ml). Reference units remained in storage while test units were exposed as described previously. Bacterial concentrations were investigated after each exposure. No differences were noticed between reference and test units in any of the in vitro parameters investigated. S. epidermidis did not grow in either reference or exposed RBCs. While S. marcescens did not grow in AS-3, bacterial growth was observed in RT-exposed SAGM RBCs on day 42. Similar growth was obtained for S. liquefaciens in the two additive solutions for both reference and test units. Short-time exposures to RT do not affect RBC quality and do not significantly influence bacterial growth. An expansion of the '30-minute' rule to 60 min should be considered by regulatory agencies. © 2014 International Society of Blood Transfusion.
Runnacles, Patrício; Arrais, Cesar Augusto Galvão; Pochapski, Marcia Thais; Dos Santos, Fábio André; Coelho, Ulisses; Gomes, João Carlos; De Goes, Mário Fernando; Gomes, Osnara Maria Mongruel; Rueggeberg, Frederick Allen
2015-05-01
This in vivo study evaluated pulp temperature (PT) rise in human premolars during exposure to a light curing unit (LCU) using selected exposure modes (EMs). After local Ethics Committee approval, intact first upper premolars, requiring extraction for orthodontic reasons, from 8 volunteers, received infiltrative and intraligamental anesthesia. The teeth (n=15) were isolated using rubber dam and a minute pulp exposure was attained. A sterile probe from a wireless, NIST-traceable, temperature acquisition system was inserted directly into the coronal pulp chamber, and real time PT (°C) was continuously monitored while the buccal surface was exposed to polywave light from a LED LCU (Bluephase 20i, Ivoclar Vivadent) using selected EMs allowing a 7-min span between each exposure: 10-s either in low (10-s/L) or high (10-s/H); 5-s-turbo (5-s/T); and 60-s-high (60-s/H) intensities. Peak PT values and PT increases from baseline (ΔT) after exposure were subjected to one-way, repeated measures ANOVAs, and Bonferroni's post hoc tests (α=0.05). Linear regression analysis was performed to establish the relationship between applied radiant exposure and ΔT. All EMs produced higher peak PT than the baseline temperature (p<0.001). The 60-s/H mode generated the highest peak PT and ΔT (p<0.001), with some teeth exhibiting ΔT higher than 5.5°C. A significant, positive relationship between applied radiant exposure and ΔT (r(2)=0.916; p<0.001) was noted. Exposing intact, in vivo anesthetized human upper premolars to a polywave LED LCU increases PT, and depending on EM and the tooth, PT increase can be higher than the critical ΔT, thought to be associated with pulpal necrosis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Method of producing a carbon coated ceramic membrane and associated product
Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.
1993-11-16
A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.
Charring rate of wood exposed to a constant heat flux
R. H. White; H. C. Tran
1996-01-01
A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelin, Timothy J; Ho, Clifford K.; Horstman, Luke
This paper presents a study of alternative heliostat standby aiming strategies and their impact on avian flux hazards and operational performance of a concentrating solar power plant. A mathematical model was developed that predicts the bird-feather temperature as a function of solar irradiance, thermal emittance, convection, and thermal properties of the feather. The irradiance distribution in the airspace above the Ivanpah Unit 2 heliostat field was simulated using a ray-trace model for two different times of the day, four days of the year, and nine different standby aiming strategies. The impact of the alternative aiming strategies on operational performance wasmore » assessed by comparing the heliostat slew times from standby position to the receiver for the different aiming strategies. Increased slew times increased a proxy start-up time that reduced the simulated annual energy production. Results showed that spreading the radial aim points around the receiver to a distance of ~150 m or greater reduced the hazardous exposure times that the feather temperature exceeded the hazard metric of 160 degrees C. The hazardous exposure times were reduced by ~23% and 90% at a radial spread of aim points extending to 150 m and 250 m, respectively, but the simulated annual energy production decreased as a result of increased slew times. Single point-focus aiming strategies were also evaluated, but these strategies increased the exposure hazard relative to other aiming strategies.« less
Personal cooling in nuclear power stations. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamon, E.
1983-03-01
Two approaches to personal, non-restrictive cooling of workers exposed to high-temperature work environments in nuclear power plants were evaluated. Both approaches involved a cooling garment designed to be worn under the protective clothing donned in penetration into radiation areas. One garmet was developed to cool by direct body contact with small packets of frozen water enclosed in the pockets of a shirt. The other garmets cooled by circulating a cooled liquid through capillaries in a vest and head cap (System A) or a vest (System B). Testing was conducted in a laboratory simulation of high ambient temperature (55/sup 0/C) andmore » moderate metabolic heat production (200 to 300 kcal/h). Exposure time without cooling (control) was 52 minutes (Group 1) for the workloads demanding 200 kcal/h (48 minutes for Group 2). A long garmet with 7.2 kg of frozen water (LFWG) increased mean exposure time over the control by 242% (163% for the same garmet with 6.2 kg of frozen water). A short-version garmet with 3.8 kg of frozen water (SFWG) increased the stay time by 115%. The circulating-liquid garmets increased mean exposure time 35% (System A) and 27% (System B) over the control. In field observation, the LFWG with 6.2 kg of frozen water improved stay time by 125%.« less
Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment
NASA Astrophysics Data System (ADS)
De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed
2017-07-01
High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly ( P < 0.05) decreased the proportion of time spent in feeding during the observation period in most of the hours of the day as compared to the C. The proportion of time spent in rumination and lying was significantly ( P < 0.05) lower in the T group compared to the C. The animals of T spent significantly ( P < 0.05) more time in rumination in standing position as compared to the C. The overall proportion of time spent in standing, panting in each hour, and total panting time was significantly ( P < 0.05) higher in the T as compared to the C. The result of the study indicates that the exposure of sheep to high ambient temperature severely modulates the behavior of sheep which is directed to circumvent the effect of the stressor.
Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment.
De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed
2017-07-01
High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly (P < 0.05) decreased the proportion of time spent in feeding during the observation period in most of the hours of the day as compared to the C. The proportion of time spent in rumination and lying was significantly (P < 0.05) lower in the T group compared to the C. The animals of T spent significantly (P < 0.05) more time in rumination in standing position as compared to the C. The overall proportion of time spent in standing, panting in each hour, and total panting time was significantly (P < 0.05) higher in the T as compared to the C. The result of the study indicates that the exposure of sheep to high ambient temperature severely modulates the behavior of sheep which is directed to circumvent the effect of the stressor.
NASA Astrophysics Data System (ADS)
Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev
2017-05-01
Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.
Russell, Bayden D.; Connell, Sean D.; Findlay, Helen S.; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova
2013-01-01
Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term. PMID:23980241
Russell, Bayden D; Connell, Sean D; Findlay, Helen S; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova
2013-01-01
Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term.
NASA Astrophysics Data System (ADS)
Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya
2015-04-01
Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.
Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya
2015-01-01
Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4°C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4°C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts’ heath and NASA’s mission. PMID:25821722
Degradation of benzodiazepines after 120 days of EMS deployment.
McMullan, Jason T; Jones, Elizabeth; Barnhart, Bruce; Denninghoff, Kurt; Spaite, Daniel; Zaleski, Erin; Silbergleit, Robert
2014-01-01
EMS treatment of status epilepticus improves outcomes, but the benzodiazepine best suited for EMS use is unclear, given potential high environmental temperature exposures. To describe the degradation of diazepam, lorazepam, and midazolam as a function of temperature exposure and time over 120 days of storage on active EMS units. Study boxes containing vials of diazepam, lorazepam, and midazolam were distributed to 4 active EMS units in each of 2 EMS systems in the southwestern United States during May-August 2011. The boxes logged temperature every minute and were stored in EMS units per local agency policy. Two vials of each drug were removed from each box at 30-day intervals and underwent high-performance liquid chromatography to determine drug concentration. Concentration was analyzed as mean (and 95%CI) percent of initial labeled concentration as a function of time and mean kinetic temperature (MKT). 192 samples were collected (2 samples of each drug from each of 4 units per city at 4 time-points). After 120 days, the mean relative concentration (95%CI) of diazepam was 97.0% (95.7-98.2%) and of midazolam was 99.0% (97.7-100.2%). Lorazepam experienced modest degradation by 60 days (95.6% [91.6-99.5%]) and substantial degradation at 90 days (90.3% [85.2-95.4%]) and 120 days (86.5% [80.7-92.3%]). Mean MKT was 31.6°C (95%CI 27.1-36.1). Increasing MKT was associated with greater degradation of lorazepam, but not midazolam or diazepam. Midazolam and diazepam experienced minimal degradation throughout 120 days of EMS deployment in high-heat environments. Lorazepam experienced significant degradation over 120 days and appeared especially sensitive to higher MKT exposure.
Time-temperature-stress capabilities of composites for supersonic cruise aircraft applications
NASA Technical Reports Server (NTRS)
Haskins, J. F.; Kerr, J. R.; Stein, B. A.
1976-01-01
A range of baseline properties was determined for representatives of 5 composite materials systems: B/Ep, Gr/Ep, B/PI, Gr/PI, and B/Al. Long-term exposures are underway in static thermal environments and in ones which simultaneously combine programmed thermal histories and mechanical loading histories. Selected results from the environmental exposure studies with emphasis placed on the 10,000-hour thermal aging data are presented. Results of residual strength determinations and changes in physcial and chemical properties during high temperature aging are discussed and illustrated using metallographic, fractographic and thermomechanical analyses. Some initial results of the long-term flight simulation tests are also included.
Poças, Maria F; Oliveira, Jorge C; Brandsch, Rainer; Hogg, Timothy
2010-07-01
The use of probabilistic approaches in exposure assessments of contaminants migrating from food packages is of increasing interest but the lack of concentration or migration data is often referred as a limitation. Data accounting for the variability and uncertainty that can be expected in migration, for example, due to heterogeneity in the packaging system, variation of the temperature along the distribution chain, and different time of consumption of each individual package, are required for probabilistic analysis. The objective of this work was to characterize quantitatively the uncertainty and variability in estimates of migration. A Monte Carlo simulation was applied to a typical solution of the Fick's law with given variability in the input parameters. The analysis was performed based on experimental data of a model system (migration of Irgafos 168 from polyethylene into isooctane) and illustrates how important sources of variability and uncertainty can be identified in order to refine analyses. For long migration times and controlled conditions of temperature the affinity of the migrant to the food can be the major factor determining the variability in the migration values (more than 70% of variance). In situations where both the time of consumption and temperature can vary, these factors can be responsible, respectively, for more than 60% and 20% of the variance in the migration estimates. The approach presented can be used with databases from consumption surveys to yield a true probabilistic estimate of exposure.
Benzocaine as an anesthetic for striped bass
Gilderhus, Philip A.; Lemm, Carol A.; Woods, L. Curry
1991-01-01
Benzocaine was tested as an anesthetic on juvenile and mature adult striped bass (Morone saxatilis ). Concentrations of 55 mg/L at 22 degree C to 80 mg/L at 11 degree C effectively anesthetized fish in about 3 min. Recovery was more rapid as temperature increased. Fish survived concentrations of twice the effective concentration and exposure times up to 60 min at the effective concentration. Striped bass required higher concentrations for anesthetization than had been previously demonstrated for salmonid fishes, but safety margins for both concentration and exposure time were wider than for the salmonids.
Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger
2015-04-01
Approximately 1-3% of the adult population in Europe is allergic to chromium (Cr). A new restriction in REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) based on the ISO 17075 standard has recently been adopted in the EU to limit Cr(VI) in consumer and occupational leather products. The aim of this study was to critically assess key experimental parameters in this standard on the release of Cr(III) and Cr(VI) and their relevance for skin exposure. Four differently tanned, unfinished, leather samples were systematically investigated for their release of Cr(III) and Cr(VI) in relation to surface area, key exposure parameters, temperature, ultraviolet irradiation, and time. Although the total release of Cr was largely unaffected by all investigated parameters, except exposure duration and temperature, the Cr oxidation state was highly dynamic, with reduced amounts of released Cr(VI) with time, owing to the simultaneous release of reducing agents from the leather. Significantly more Cr(III) than Cr(VI) was released from the Cr-tanned leather for all conditions tested, and it continued to be released in artificial sweat up to at least 1 week of exposure. Several parameters were identified that influenced the outcome of the ISO 17075 test. © 2015 The Authors. Contact Dermatitis published by John Wiley & Sons Ltd.
Upper temperature tolerance of loach minnow under acute, chronic, and fluctuating thermal regimes
Widmer, A.M.; Carveth, C.J.; Bonar, Scott A.; Simms, J.R.
2006-01-01
We used four methods to estimate the upper lethal temperature of loach minnow Rhinichthys cobitis: the lethal thermal method (LTM), chronic lethal method (CLM), acclimated chronic exposure (ACE) method with static temperatures, and ACE method with diel temperature fluctuations. The upper lethal temperature of this species ranged between 32??C and 38??C, depending on the method and exposure time; however, temperatures as low as 28??C resulted in slowed growth compared with the control groups. In LTM trials, we increased temperatures 0.3??C/min and death occurred at 36.8 ?? 0.2??C (mean ?? SE) for fish (37-19 mm total length) acclimated to 30??C and at 36.4 ?? 0.07??C for fish acclimated to 25??C. In CLM trials, temperatures were increased more slowly (1??C/d), allowing fish to acclimate. Mean temperature at death was 33.4 ?? 0.1??C for fish 25-35 mm and 32.9 ?? 0.4??C for fish 45-50 mm. In the ACE experiment with static temperatures, we exposed fish for 30 d to four constant temperatures. No fish (20-40 mm) survived beyond 30 d at 32??C and the 30-d temperature lethal to 50% of the test animals was 30.6??C. Growth at static 28??C and 30??C was slower than growth at 25??C, suggesting that fish were stressed at sublethal temperatures. In ACE trials with diel temperature fluctuations of 4,6, and 10??C and a 32??C peak temperature, over 80% of fish (20-40 mm) survived 30 d. Although brief exposures to 32??C were not lethal, the growth of fish in the three fluctuating-temperature treatments was significantly less than the growth at the ambient temperature (25-29??C). To minimize thermal stress and buffer against temperature spikes, we recommend that loach minnow habitat be managed to avoid water temperatures above 28??C. ?? Copyright by the American Fisheries Society 2006.
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.
2012-01-01
Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a transgranular initiation typical to that observed in unexposed specimens.
Janet S. Prevey; Constance A. Harrington; J. Bradley St. Clair
2018-01-01
Trees have evolved to time flowering to maximize outcrossing, minimize exposure to damaging frosts, and synchronize development with soil moisture and nutrient availability. Understanding the environmental cues that influence the timing of reproductive budburst will be important for predicting how flowering phenology of trees will change with a changing climate, and...
Thermoregulatory responses of rats exposed to 9. 3-GHz radio-frequency radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei, M.R.; Jauchem, J.R.; Heinmets, F.
1987-10-15
Ketamine-anesthetized Sprague-Dawley rats were exposed in H orientation to far-field 9.3-GHz continuous-wave (CW) and pulsed (2 microseconds 500 pps) radiofrequency radiation (RFR) at average power densities of 30 and 60 mW/sq. cm (whole-body average specific absorption rates of 9.3 and 18.6 W/kg, respectively). Irradiation was conducted to cyclicly increase colonic temperature from 38.5 to 39.5 C. Colonic, tympanic, and subcutaneous temperatures, ECG, blood pressure, and respiratory rate were continuously recorded during experimentation. At both power densities, the subcutaneous and tympanic temperature increases significantly exceeded the colonic temperature increase. At both exposure levels, heart rate increased significantly during irradiation and returnedmore » to baseline when exposure was discontinued. Blood pressure and respiratory rate did not significantly change during irradiation. There were no significant differences between the effects of CW and pulsed RFR exposure. The levels of subcutaneous heating and heart rate change were greater, and the times required to achieve and to recover from a 1 C colonic temperature increase were longer than in previous studies conducted at 2.8 GHz. Results of these studies indicate that the carrier frequency used during irradiation markedly affects the pattern of heat distribution and the physiological responses of RF-irradiated animals.« less
NASA Astrophysics Data System (ADS)
Wainwright, P. R.
2007-07-01
This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 °C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.
Wainwright, P R
2007-06-21
This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 degrees C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.
de Araujo Furtado, Marcio; Zheng, Andy; Sedigh-Sarvestani, Madineh; Lumley, Lucille; Lichtenstein, Spencer; Yourick, Debra
2009-10-30
The organophosphorous compound soman is an acetylcholinesterase inhibitor that causes damage to the brain. Exposure to soman causes neuropathology as a result of prolonged and recurrent seizures. In the present study, long-term recordings of cortical EEG were used to develop an unbiased means to quantify measures of seizure activity in a large data set while excluding other signal types. Rats were implanted with telemetry transmitters and exposed to soman followed by treatment with therapeutics similar to those administered in the field after nerve agent exposure. EEG, activity and temperature were recorded continuously for a minimum of 2 days pre-exposure and 15 days post-exposure. A set of automatic MATLAB algorithms have been developed to remove artifacts and measure the characteristics of long-term EEG recordings. The algorithms use short-time Fourier transforms to compute the power spectrum of the signal for 2-s intervals. The spectrum is then divided into the delta, theta, alpha, and beta frequency bands. A linear fit to the power spectrum is used to distinguish normal EEG activity from artifacts and high amplitude spike wave activity. Changes in time spent in seizure over a prolonged period are a powerful indicator of the effects of novel therapeutics against seizures. A graphical user interface has been created that simultaneously plots the raw EEG in the time domain, the power spectrum, and the wavelet transform. Motor activity and temperature are associated with EEG changes. The accuracy of this algorithm is also verified against visual inspection of video recordings up to 3 days after exposure.
2017-04-12
ranged from 36 - 39%. Exposure chamber oxygen remained constant at 21%. The animal exposure box temperature ranged from 72 – 73°F and the...0036333, April - September 2015 Chamber Oxygen Chamber Temperature Chamber Relative (N) Exposure Box Exposure Box Relative (N) Exposure No. Date Range...Study No. S.0036333-15, April - September 2015 Chamber Oxygen Chamber Temperature Chamber Relative (N) Exposure Box Exposure Box Relative (N
Skin Temperature Rhythms in Humans Respond to Changes in the Timing of Sleep and Light.
Cuesta, Marc; Boudreau, Philippe; Cermakian, Nicolas; Boivin, Diane B
2017-06-01
Body temperature is known to vary with circadian phase and to be influenced by factors that can mask its circadian expression. We wanted to test whether skin temperature rhythms were sensitive to an abrupt shift of the sleep schedule and to the resetting effects of light. Nineteen healthy subjects spent 6 days in time isolation and underwent a simulated night-shift procedure. They were assigned to either a control group ( n = 10) or bright light group ( n = 9) and measurements were taken under a baseline day-oriented schedule and during the 4 th cycle of a night-oriented schedule. In the bright light group, participants were exposed to a 3-cycle 8-h exposure of ~6,500 lux at night, while the control group remained in dim light conditions (~3 lux). Skin temperature was recorded in 10 and 4 participants from the control and bright light groups, respectively. We found significant circadian rhythms of plasma melatonin, core body temperature (CBT), and skin temperature at baseline for both groups ( p < 0.001 for all). Rhythms of melatonin, CBT, and skin temperature following night shifts were significantly phase delayed by about 7 to 9 h ( p < 0.05) in response to bright light at night, whereas there was no shift in the control group. In addition, we found that at bedtime melatonin does not consistently increase before the increase in distal skin temperature and subsequent decrease in CBT, in contrast to what has been previously reported. The present study shows that, in constant posture conditions, skin temperature rhythms have an evoked component sensitive to abrupt changes in the timing of sleep. They also comprise an endogenous component that is sensitive to the resetting effects of bright light exposure. These results have applications for the determination of circadian phase, as skin temperature is less intrusive than rectal temperature recordings.
Hussain, Mubasher; Akutse, Komivi Senyo; Ravindran, Keppanan; Lin, Yongwen; Bamisile, Bamisope Steve; Qasim, Muhammad; Dash, Chandra Kanta; Wang, Liande
2017-09-01
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Laperrousaz, Elise; Denis, Raphaël G.; Kassis, Nadim; Contreras, Cristina; López, Miguel; Luquet, Serge; Cruciani-Guglielmacci, Céline; Magnan, Christophe
2018-01-01
Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔLpl mice with 30–35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔLpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔLpl mice remained similar to that observed at 22°C. MBHΔLpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis. PMID:29593657
Postexposure bake characteristics of a chemically amplified deep-ultraviolet resist
NASA Astrophysics Data System (ADS)
Sturtevant, John L.; Holmes, Steven J.; Rabidoux, Paul A.
1992-06-01
In the processing of chemically amplified resist systems, two `dose' parameters must be considered. The exposure dose dictates the amount of photoacid generated, and the thermal dose that is administered during the post-exposure bake (PEB) governs the extent to which the resin is chemically transformed by the acid. An Arrhenius relationship exists between these two dose variables, and the magnitude of the effective activation energy determines the degree of PEB temperature control required for a particular linewidth budget. PEB characteristics are presented for a chemically amplified positive-tone DUV resist used by IBM in the manufacture of 0.5 micrometers 16 Mb DRAMs. The effect of PEB temperature and time on resist sensitivity, contrast, resolution, and process latitude is presented. The influence of exposure and thermal dose on the chemical contamination effect is also discussed.
Explosive and pyrotechnic aging demonstration
NASA Technical Reports Server (NTRS)
Rouch, L. L., Jr.; Maycock, J. N.
1976-01-01
The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.
Recovery from swimming-induced hypothermia in king penguins: effects of nutritional condition.
Halsey, L G; Handrich, Y; Rey, B; Fahlman, A; Woakes, A J; Butler, P J
2008-01-01
We investigated changes in the rate of oxygen consumption (V O2) and body temperature of wild king penguins (Aptenodytes patagonicus) in different nutritional conditions during recovery after exposure to cold water. Over time, birds undertook an identical experiment three times, each characterized by different nutritional conditions: (1) having recently completed a foraging trip, (2) after fasting for many days, and (3) having been refed one meal after the fast. The experiments consisted of a 2-h session in a water channel followed by a period of recovery in a respirometer chamber on land. Refed birds recovered significantly more quickly than fed birds, in terms of both time to reach resting V O2 on land and time to reach recovery of lower abdominal temperature. Previous work found that when penguins are in cold water, abdominal temperatures decrease less in refed birds than in fed or fasted birds, suggesting that refed birds may be vasoconstricting the periphery while perfusing the gut region to access nutrients. This, alongside an increased resting [V O2], seems the most reasonable explanation for why refed birds recovered more quickly subsequent to cold-water exposure in this study; that is, vasoconstriction of the insulative periphery meant that they lost less heat generated by the body core.
Kobey, Robert L.; Montooth, Kristi L.
2013-01-01
SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100
Ultrastructural study of mitochondrial damage in CHO cells exposed to hyperthermia.
Cole, A; Armour, E P
1988-09-01
A unique direct-view stereo electron microscope technique was used to visualize the structure and three-dimensional distributions of mitochondria in CHO cells in situ following hyperthermic treatments. Aberrations induced by various heating regimens were recorded. The protocol included a trypsin digestion that may have enhanced the expression of the initial heat damage. The developed damage was observed as increasing levels of mitochondrial distortion, swelling, and dissociation. Minimal damage was induced at 42 degrees C for exposures of up to 4 h, while significant damage was induced at 43 degrees C for exposures of more than 30 min and at 45 degrees C for exposures of more than 10 min. For moderate exposures, a partial recovery of mitochondrial integrity was observed when the heat treatment was followed by incubation at 37 degrees C for 24 h. Mitochondrial damage was related to the heat dose in that increasing treatment temperature resulted in greater damage, but when compared to cell survival the damage did not parallel cell killing under all time-temperature conditions.
Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.
Rowe, R Kerry; Islam, M Z
2009-10-01
The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.
Rasi, Hanna; Kuivila, Heli; Pölkki, Tarja; Bloigu, Risto; Rintamäki, Hannu; Tourula, Marjo
2017-01-01
ABSTRACT Background: In Finland, children spend a lot of time outdoors in winter. Outdoor recreation in winter has a wide variety of effects on children’s well-being. Although children are a subgroup that is vulnerable to cold exposure, remarkably little research has been done on the subject. Objective: The aim of this study was to describe children’s outdoor recreation, cold exposure and symptoms in winter in Northern Finland. Design: This was a descriptive quantitative study. The participants consisted of 30 children aged 7–8 years who were living in the provinces of Lapland and Northern Ostrobothnia in Finland. Data were collected by using electronic data-logging thermometers fixed on children’s outerwear for a month. The thermometers recorded the environmental temperature every five minutes and from that temperature data, we were able to discern the exact amount and duration of children’s outdoor recreation. In addition, information on the children’s cold symptoms was collected with structured daily entries. Results: Cold weather was not an obstacle to children’s outdoor activities in Finland. However, the duration of outdoor recreation shortened when the outdoor air temperature decreased. There were no significant differences between boys and girls in terms of time spent outdoors. Remarkably, every child reported symptoms associated with cold. Almost half of the children reported experiencing respiratory symptoms and some children also experienced cold pain and numbness. Conclusions: The results of this study illustrate the many and varied effects that cold exposure can have on children’s health and well-being. In order to prevent negative health effects of cold exposure on children, structured prevention strategies are needed: therefore, children’s exposure to cold should be studied more. Future research should also bring out more the positive health effects of outdoor recreation on children’s growth and development. PMID:28346080
The electrical properties and glass transition of some dental materials after temperature exposure.
Marcinkowska, Agnieszka; Gauza-Wlodarczyk, Marlena; Kubisz, Leszek; Hedzelek, Wieslaw
2017-10-17
The physicochemical properties of dental materials will remain stable only when these materials in question are resistant to the changes in the oral cavity. The oral environment is subject to large temperature variations. The aim of the study was the assessment of electrical properties and glass transition of some dental materials after temperature exposure. Composite materials, compomers, materials for temporary prosthetic replacement and resin-based pit and fissure sealants were used in the study. The method used was electric conductivity of materials under changing temperature. The order of materials presenting the best characteristics for insulators was as follows: materials for temporary prosthetic replacement, resin-based pit and fissure sealants, composites, and compomers. Thanks to comparisons made between graphs during I and II heating run, the method could be used to observe changes in the heated material and determine whether the changes observed are reversible or permanent. The graphs also provided temperature values which contain information on glass transition during heating. In the oral cavity the effect of the constant temperature stimulus influences maturity of dental materials and improves their properties. But high temperatures over glass transition temperature can cause irreversible deformation and changes of the materials properties, even in a short time.
Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.
2006-05-01
Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about ?15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less
Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.
2006-01-01
Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 degC. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL1703.« less
Potential Problems with Ethylene-Vinyl Acetate for Photovoltaic Packaging (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K, M.
2006-05-01
Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support electrical isolation, optical coupling, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Due to increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less
Fatigue design procedure for the American SST prototype
NASA Technical Reports Server (NTRS)
Doty, R. J.
1972-01-01
For supersonic airline operations, significantly higher environmental temperature is the primary new factor affecting structural service life. Methods for incorporating the influence of temperature in detailed fatigue analyses are shown along with current test indications. Thermal effects investigated include real-time compared with short-time testing, long-time temperature exposure, and stress-temperature cycle phasing. A method is presented which allows designers and stress analyzers to check fatigue resistance of structural design details. A communicative rating system is presented which defines the relative fatigue quality of the detail so that the analyst can define cyclic-load capability of the design detail by entering constant-life charts for varying detail quality. If necessary then, this system allows the designer to determine ways to improve the fatigue quality for better life or to determine the operating stresses which will provide the required service life.
Air and Water Processes Do Not Produce the Same High-Quality Pasteurization of Donor Human Milk.
Buffin, Rachel; Pradat, Pierre; Trompette, Jocelyne; Ndiaye, Isabelle; Basson, Eliane; Jordan, Isabelle; Picaud, Jean-Charles
2017-11-01
Holder pasteurization is the most commonly used technique in milk banks worldwide, but higher temperatures and longer pasteurization time have been associated with damage to the immune components of human milk. Research aim: This study aimed to assess the detailed pattern of pasteurization temperature using two water pasteurizers (WP1 and WP2) and one air pasteurizer (AP). The milk temperature during each phase of the pasteurization cycle was recorded using 6 to 9 probes, depending on the number of bottles, in the pasteurizers. We used 90 to 200 ml bottles to assess the effect of volume on milk temperature. The time to heat the milk from room temperature to 58°C was 12.4, 12.9, and 64.5 min, respectively, for WP1, WP2, and the AP ( p < .0001). The duration of the plateau was 35.5, 35.2, and 45.8 min ( p < .0001). The duration of exposure to a temperature above 58°C was 49.6, 40.7, and 76.2 min ( p < .0001). The total duration of a full cycle was 79, 66, and 182 min ( p < .0001). The duration of exposure above 58°C for the different volumes of milk treated showed no difference when using WP1 but was significantly longer in small volumes when using WP2. Human milk treated using the air pasteurizer in our study was exposed to higher temperatures and for longer periods of time than the water pasteurizers we employed. Regular qualification of pasteurizers is requested when evaluating the effect of pasteurization on milk components and for routine treatment of human milk in milk banks.
Evaluation of occupation hot exposure in industrial workplaces in a subtropical country.
Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen
2017-05-08
The objective of this study has been to evaluate the occupational heat exposure of 12 workers at 5 plants in a subtropical country. The heat stresses and strain on workers in 5 plants were assessed by the International Organization for Standardization (ISO) 7243 index (wet bulb globe temperature - WBGT) and the ISO 7933 index (maximum allowable exposure time - Dlim). Results indicated that 42% of the subjects (5 workers) surpassed the WBGT limits. According to the Dlim, 42% of the subjects could not continue working in the hot environments. The relationships between the various heat stress indices and the WBGT index were also correlated. However, further studies from different heat environments and more subjects should be performed. The sensitive dependence of skin temperature on meteorological and physiological indices for each subject was clearly observed. Obviously, the heart rate response to metabolic rate was much greater than that caused by environmental heat alone. The exponential relationship between workers' duration-limited exposure time, predicted by various estimated criteria, and WBGT were also found. Int J Occup Med Environ Health 2017;30(3):379-395. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
The impacts of repeated cold exposure on insects.
Marshall, Katie E; Sinclair, Brent J
2012-05-15
Insects experience repeated cold exposure (RCE) on multiple time scales in natural environments, yet the majority of studies of the effects of cold on insects involve only a single exposure. Three broad groups of experimental designs have been employed to examine the effects of RCE on insect physiology and fitness, defined by the control treatments: 'RCE vs cold', which compares RCE with constant cold conditions; 'RCE vs warm', which compares RCE with constant warm conditions; and 'RCE vs matched cold' which compares RCE with a prolonged period of cold matched by time to the RCE condition. RCE are generally beneficial to immediate survival, and increase cold hardiness relative to insects receiving a single prolonged cold exposure. However, the effects of RCE depend on the study design, and RCE vs warm studies cannot differentiate between the effects of cold exposure in general vs RCE in particular. Recent studies of gene transcription, immune function, feeding and reproductive output show that the responses of insects to RCE are distinct from the responses to single cold exposures. We suggest that future research should attempt to elucidate the mechanistic link between physiological responses and fitness parameters. We also recommend that future RCE experiments match the time spent at the stressful low temperature in all experimental groups, include age controls where appropriate, incorporate a pilot study to determine time and intensity of exposure, and measure sub-lethal impacts on fitness.
NASA Astrophysics Data System (ADS)
Ng, Chris Fook Sheng; Ueda, Kayo; Ono, Masaji; Nitta, Hiroshi; Takami, Akinori
2014-07-01
Despite rising concern on the impact of heat on human health, the risk of high summer temperature on heatstroke-related emergency dispatches is not well understood in Japan. A time-series study was conducted to examine the association between apparent temperature and daily heatstroke-related ambulance dispatches (HSAD) within the Kanto area of Japan. A total of 12,907 HSAD occurring from 2000 to 2009 in five major cities—Saitama, Chiba, Tokyo, Kawasaki, and Yokohama—were analyzed. Generalized additive models and zero-inflated Poisson regressions were used to estimate the effects of daily maximum three-hour apparent temperature (AT) on dispatch frequency from May to September, with adjustment for seasonality, long-term trend, weekends, and public holidays. Linear and non-linear exposure effects were considered. Effects on days when AT first exceeded its summer median were also investigated. City-specific estimates were combined using random effects meta-analyses. Exposure-response relationship was found to be fairly linear. Significant risk increase began from 21 °C with a combined relative risk (RR) of 1.22 (95 % confidence interval, 1.03-1.44), increasing to 1.49 (1.42-1.57) at peak AT. When linear exposure was assumed, combined RR was 1.43 (1.37-1.50) per degree Celsius increment. Overall association was significant the first few times when median AT was initially exceeded in a particular warm season. More than two-thirds of these initial hot days were in June, implying the harmful effect of initial warming as the season changed. Risk increase that began early at the fairly mild perceived temperature implies the need for early precaution.
Ng, Chris Fook Sheng; Ueda, Kayo; Ono, Masaji; Nitta, Hiroshi; Takami, Akinori
2014-07-01
Despite rising concern on the impact of heat on human health, the risk of high summer temperature on heatstroke-related emergency dispatches is not well understood in Japan. A time-series study was conducted to examine the association between apparent temperature and daily heatstroke-related ambulance dispatches (HSAD) within the Kanto area of Japan. A total of 12,907 HSAD occurring from 2000 to 2009 in five major cities-Saitama, Chiba, Tokyo, Kawasaki, and Yokohama-were analyzed. Generalized additive models and zero-inflated Poisson regressions were used to estimate the effects of daily maximum three-hour apparent temperature (AT) on dispatch frequency from May to September, with adjustment for seasonality, long-term trend, weekends, and public holidays. Linear and non-linear exposure effects were considered. Effects on days when AT first exceeded its summer median were also investigated. City-specific estimates were combined using random effects meta-analyses. Exposure-response relationship was found to be fairly linear. Significant risk increase began from 21 °C with a combined relative risk (RR) of 1.22 (95% confidence interval, 1.03-1.44), increasing to 1.49 (1.42-1.57) at peak AT. When linear exposure was assumed, combined RR was 1.43 (1.37-1.50) per degree Celsius increment. Overall association was significant the first few times when median AT was initially exceeded in a particular warm season. More than two-thirds of these initial hot days were in June, implying the harmful effect of initial warming as the season changed. Risk increase that began early at the fairly mild perceived temperature implies the need for early precaution.
Merckel, Laura G; Deckers, Roel; Baron, Paul; Bleys, Ronald L A W; van Diest, Paul J; Moonen, Chrit T W; Mali, Willem P Th M; van den Bosch, Maurice A A J; Bartels, Lambertus W
2013-10-05
Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of breast tumors. © 2013 Elsevier B.V. All rights reserved.
Heat and risk of myocardial infarction: hourly level case-crossover analysis of MINAP database
Armstrong, Ben; Hajat, Shakoor; Haines, Andy; Wilkinson, Paul; Smeeth, Liam
2012-01-01
Objective To quantify the association between exposure to higher temperatures and the risk of myocardial infarction at an hourly temporal resolution. Design Case-crossover study. Setting England and Wales Myocardial Ischaemia National Audit Project (MINAP) database. Participants 24 861 hospital admissions for myocardial infarction occurring in 11 conurbations during the warmest months (June to August) of the years 2003-09. Main outcome measure Odds ratio of myocardial infarction for a 1°C increase in temperature. Results Strong evidence was found for an effect of heat acting 1-6 hours after exposure to temperatures above an estimated threshold of 20°C (95% confidence interval 16°C to 25°C). For each 1°C increase in temperature above this threshold, the risk of myocardial infarction increased by 1.9% (0.5% to 3.3%, P=0.009). Later reductions in risk seemed to offset early increases in risk: the cumulative effect of a 1°C rise in temperature above the threshold was 0.2% (−2.1% to 2.5%) by the end of the third day after exposure. Conclusions Higher ambient temperatures above a threshold of 20°C seem to be associated with a transiently increased risk of myocardial infarction 1-6 hours after exposure. Reductions in risk at longer lags are consistent with heat triggering myocardial infarctions early in highly vulnerable people who would otherwise have had a myocardial infarction some time later (“short term displacement”). Policies aimed at reducing the health effects of hot weather should include consideration of effects operating at sub-daily timescales. PMID:23243290
Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Soppet, W.K.
A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment.more » Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.« less
Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh
2017-06-15
Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Nelson, David A.; Curran, Allen R.; Nyberg, Hans A.; Marttila, Eric A.; Mason, Patrick A.; Ziriax, John M.
2013-03-01
Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm-2) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (Tamb = 31 °C, PD = 8 mW cm-2). Skin temperature increases attributable to RF exposure were modest, with the exception of a ‘hot spot’ in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.
Nelson, David A; Curran, Allen R; Nyberg, Hans A; Marttila, Eric A; Mason, Patrick A; Ziriax, John M
2013-03-21
Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm(-2)) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (T(AMB) = 31 °C, PD = 8 mW cm(-2)). Skin temperature increases attributable to RF exposure were modest, with the exception of a 'hot spot' in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
NASA Technical Reports Server (NTRS)
Veazie, David R.
1998-01-01
Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.
Could cryopreserved human semen samples be stored at -80°C?
Vaz, Carlos R; Lamim, Tamara; Salvador, Rafael A; Batschauer, Anna P B; Amaral, Vera Lucia L; Til, David
2018-01-01
Objective To evaluate storage time effects in cryopreserved human semen samples, kept in the freezer at a controlled temperature of -80°C, on sperm viability after thawing. Methods We used 20 semen samples. Each sample was cryopreserved in 10 fingers, which were divided into five groups: one group was kept in cryogenic canisters throughout the experiment(control), and four groups were kept in a VIP Ultra Low MDF-U76V- PE freezer, with the temperature set at -80°C, for 24, 48, 72 and 96 hours, respectively. After the exposure time, the samples were stored in cryogenic canisters after being thawed. The analyzed parameters were: motility, vitality and mitochondrial activity. Results After thawing, we noticed decreased sperm motility, vitality and mitochondrial activity, when comparing the tested groups with the control group, as well as a progressive reduction in the analyzed parameters between the times evaluated. Conclusions Cryopreservation of semen samples at -80°C is potentially harmful to sperm viability, causing damage when submitted to longer exposure times. PMID:29338138
NASA Astrophysics Data System (ADS)
Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.
2009-07-01
Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
An experimental investigation on thermal exposure during bone drilling.
Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed
2012-12-01
This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Thresholds for thermal damage to normal tissues: an update.
Yarmolenko, Pavel S; Moon, Eui Jung; Landon, Chelsea; Manzoor, Ashley; Hochman, Daryl W; Viglianti, Benjamin L; Dewhirst, Mark W
2011-01-01
The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002-2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time-temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered.
Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster
Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA
2015-01-01
When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.; Skidmore, E.; Daugherty, W.
2014-05-30
A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less
Room Temperature Halogenation of Polyimide Film Surface using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Habuka, Hitoshi; Kosuga, Takahiro; Koike, Kunihiko; Aida, Toshihiro; Takeuchi, Takashi; Aihara, Masahiko
2004-02-01
In order to develop a new application of chlorine trifluoride gas, the halogenation of a polyimide film surface at room temperature and at atmospheric pressure is studied for the first time. The polyimide film surface after exposure to the chlorine trifluoride gas shows a decreased water contact angle with increasing chlorine trifluoride gas concentration and exposure period. Since both X-ray photoelectron spectroscopy and infrared absorption spectroscopy simultaneously showed the formation of a carbon-chlorine bond and carbon-fluorine bond, it is concluded that the chlorine trifluoride gas can easily and safely perform the halogenation of the polyimide film surface under the stated conditions using a low-cost process and equipment.
Tensile properties of V-5Cr-5Ti alloy after exposure in air environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Soppet, W.K.
1997-04-01
Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations weremore » developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.« less
Temperature impact on the micro structure of tungsten exposed to He irradiation in LHD
NASA Astrophysics Data System (ADS)
Bernard, Elodie; Sakamoto, Ryuichi; Tokitani, Masayuki; Masuzaki, Suguru; Hayashi, Hiromi; Yamada, Hiroshi; Yoshida, Naoaki
2017-02-01
A new temperature controlled material probe was designed for the exposure of tungsten samples to helium plasma in the LHD. Samples were exposed to estimated fluences of ∼1023 m-2 and temperatures ranging from 65 to 600 °C. Transmission Electron Microscopy analysis allowed the study of the impact of He irradiation under high temperatures on tungsten micro structure for the first time in real-plasma exposure conditions. Both dislocation loops and bubbles appeared from low to medium temperatures and saw an impressive increase of size (factor 4 to 6) most probably by coalescence as the temperature reaches 600 °C, with 500 °C appearing as a threshold for bubble growth. Annealing of the samples up to 800 C highlighted the stability of the dislocation damages formed by helium irradiation at high surface temperature, as bubbles and dislocation loops seem to conserve their characteristics. Additional studies on cross-sections showed that bubbles were formed much deeper (70-100 nm) than the heavily damaged surface layer (10-20 nm), raising concern about the impact on the material mechanical properties conservation and potential additional trapping of hydrogen isotopes.
Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress.
de Andrade Ferrazza, Rodrigo; Mogollón Garcia, Henry David; Vallejo Aristizábal, Viviana Helena; de Souza Nogueira, Camilla; Veríssimo, Cecília José; Sartori, José Roberto; Sartori, Roberto; Pinheiro Ferreira, João Carlos
2017-05-01
Heat stress (HS) adversely influences productivity and welfare of dairy cattle. We hypothesized that the thermoregulatory mechanisms vary depending on the exposure time to HS, with a cumulative effect on the adaptive responses and thermal strain of the cow. To identify the effect of HS on adaptive thermoregulatory mechanisms and predictors of caloric balance, Holstein cows were housed in climate chambers and randomly distributed into thermoneutral (TN; n=12) or HS (n=12) treatments for 16 days. Vaginal temperature (VT), rectal temperature (Tre), respiratory rate (RR), heart rate (HR), and dry matter intake (DMI) were measured. The temperature and humidity under TN were 25.9±0.2°C and 73.0±0.8%, respectively, and under HS were 36.3±0.3°C and 60.9±0.9%, respectively. The RR of the HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm, p<0.001) than in the TN (39.70±0.71bpm). An increase in Tre (39.87±0.07°C in the HS vs. 38.56±0.03°C in the TN, p<0.001) and in VT (39.82±0.10°C in the HS vs. 38.26±0.03°C in the TN, p<0.001) followed the increase in RR. A decrease (p<0.05) in HR occurred in the HS (62.13±0.99bpm) compared with the TN (66.23±0.79bpm); however, the magnitude of the differences was not the same over time. The DMI was lower in HS cows from the third day (8.27±0.33kgd -1 in the HS vs. 14.03±0.29kgd -1 in the TN, p<0.001), and the reduction of DMI was strongly affected (r=-0.65) by changes in the temperature humidity index. The effect of environmental variables from the previous day on physiological parameters and DMI was more important than the immediate effect, and ambient temperature represented the most determinant factor for heat exchange. The difference in the responses to acute and chronic exposure to HS suggests an adaptive response. Thus, intense thermal stress strongly influence thermoregulatory mechanisms and the acclimation process depend critically on heat exposure time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal Inactivation Characteristics of Bacillus subtilis Spores at Ultrahigh Temperatures1
Edwards, J. L.; Busta, F. F.; Speck, M. L.
1965-01-01
The thermal inactivation characteristics of Bacillus subtilis A spores suspended in skim milk with the use of large-scale ultrahigh temperature (UHT) processing equipment were investigated in terms of survival as measured with two plating media. Data on survival immediately after UHT treatments were recorded in temperature-survivor curves, time-survivor curves, and decimal reduction time (DRT) curves. The temperature-survivor curves emphasized that inactivation is accelerated more by increases in the treatment temperature than by increases in the exposure time. Time-survivor curves and DRT curves were not linear. Generally, exceedingly concave time-survivor curves were observed with the standard plating medium; however, only slightly concave curves were observed when CaCl2 and sodium dipicolinate were added to the medium. For a given UHT sample, larger D values were obtained by use of the medium with the added CaCl2 and sodium dipicolinate. The DRT curves of all data were concave and appeared to have two discrete slopes (zD values). The zD values observed in the upper UHT range (above 260 F; 127 C) were twice those observed at lower test temperatures. PMID:4956036
Optimal parameters for laser tissue soldering
NASA Astrophysics Data System (ADS)
McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.
1998-07-01
Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.
NASA Astrophysics Data System (ADS)
Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.
2013-01-01
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop's mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m-2 s-1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m-2 s-1 and 1150 μmol m-2 s-1. The exposure to the damaging air temperature for 44 h at 690 μmol m-2 s-1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m-2 s-1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m-2 s-1 PAR, respiration rate was higher than photosynthesis rate, but after 3-4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20-30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m-2 s-1 or 1150 μmol m-2 s-1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.
de Bruijn, Robert; Reed, J Michael; Romero, L Michael
2017-10-01
Repeated exposure to acute stressors causes dramatic changes in an animal's stress physiology and the cumulative effects are often called chronic stress. Recently we showed that short-term exposure to weather-related stimuli, such as temperature change, artificial precipitation, and food restriction, cause acute responses in captive European starlings (Sturnus vulgaris). Here, we examined the effect of repeated exposure to weather-related stressors on heart rate and corticosterone (CORT) of captive non-molting and molting European starlings. Four times every day for 3 weeks, birds were exposed to either 30 min of a subtle (3°C) decrease in temperature, a short bout of simulated rain, or 2 hr of food removal. The order and time of presentation were randomly assigned on each day. We found no differences in heart rate or heart rate variability. Furthermore, there were no changes in baseline CORT levels, CORT negative feedback efficacy, or maximal adrenal capacity. Mass increased across the experimental period only in molting birds. CORT responses to restraint were decreased in both groups following treatment, suggesting the birds had downregulated their responses to acute stress. Molting birds showed evidence of suppression of the HPA axis compared with non-molting birds, which is consistent with previous research. Overall, our data show that repeated exposure to weather-related stressors does not elicit most of the symptoms normally associated with chronic stress. © 2018 Wiley Periodicals, Inc.
Shi, Wanju; Li, Xiang; Schmidt, Ralf C; Struik, Paul C; Yin, Xinyou; Jagadish, S V Krishna
2018-01-15
High-temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day-time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high-night-time-temperature treatments. The day-time temperature played a dominant role in determining spikelet fertility compared with the night-time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high-yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high-temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early-morning flowering as a promising trait for mitigating HDT stress impact at flowering. © 2018 John Wiley & Sons Ltd.
Thermal Spore Exposure Vessels
NASA Technical Reports Server (NTRS)
Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry
2006-01-01
Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.
Bailey, C; Schmidt-Posthaus, H; Segner, H; Wahli, T; Strepparava, N
2018-02-01
Proliferative kidney disease (PKD) of salmonids caused by Tetracapsuloides bryosalmonae causes high mortalities of wild brown trout (Salmo trutta fario) and farmed rainbow trout (Oncorhynchus mykiss) at elevated water temperatures. Here the aim was to compare the temperature-dependent modulation of T. bryosalmonae in the two salmonid host species, which display different temperature optima. We used a novel experimental set-up in which we exposed brown trout and rainbow trout to an identical quantified low concentration of T. bryosalmonae for a short time period (1 hr). We followed the development of the parasite in the fish hosts for 70 days. PKD prevalence and parasite kinetics were assessed using qPCR. Exposures were performed at temperatures (12°C and 15°C) that reflect an environmental scenario that may occur in the natural habitat of salmonids. T. bryosalmonae infection was confirmed earliest in brown trout kept at 15°C (day 7 post-exposure) while, in all other groups, T. bryosalmonae was not confirmed until day 15 post-exposure. Moreover, significantly greater infection prevalence and a faster increase of parasite intensity were observed in brown trout kept at 15°C than in all other groups. These results indicate that PKD is differentially modulated by water temperature in related host species. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yang, Xin-Bo; Xu, Jun; Li, Hong-Jun; Bi, Qun-Yu; Cheng, Yan; Su, Liang-Bi; Tang, Qiang
2010-04-01
Recently, α-Al2O3:C crystal with highly sensitive thermoluminescence (TL) and optically stimulated luminescence (OSL) has been successfully grown by the temperature gradient technique. This paper investigates the heating rate dependence of TL sensitivity, light-induced fading of TL signals and thermal stability of OSL of α-Al2O3:C crystals. As the heating rate increases, the integral TL response decreases and the dosimetric glow peak shifts to higher temperatures in α-Al2O3:C crystals. Light-induced fading of TL increases with the irradiation dose, and TL response decreases as the exposure time increases, especially in the first 15 minutes. With the increasing intensity of the exposure light, the TL fading of α-Al2O3:C crystal increases sharply. The OSL response of as-grown α-Al2O3:C crystal is quite stable below 373 K and decreases sharply for higher temperatures.
Van Rooyen, Lauren Anne; Allen, Paul; Gallagher, Eimear I; O'Connor, David I
2018-05-24
The effect of CO pretreatments applied to beef striploin steaks (Longissimus thoracis et lumborum, LTL) prior to vacuum packaging and display temperature on colour stability, shelf life and tenderness was determined. Steaks were exposed to 5% CO, 60% CO 2 and 35% N 2 for 3 (CO3), 5 (CO5) or 7 (CO7) h, followed by 28 days display at 2 °C (good industry practice) or 6 °C (mild abuse). CO5 was the optimum exposure time as it induced the desirable colour while not retaining the bright colour, irrespective of display temperature. K/S ratios confirmed that CO pretreatment did not mask spoilage and could be more sensitive than colour parameters at monitoring discoloration as colour was not retained. Exposure to CO did not have any negative effect on meat quality attributes, while mild temperature abuse (6 °C) increased purge loss and decreased pH. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Strnat, R. M. W.; Liu, S.; Strnat, K. J.
1982-03-01
Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.
Accelerated testing of an optimized closing system for automotive fuel tank
NASA Astrophysics Data System (ADS)
Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.
2015-11-01
Taking into account the legal prescriptions which are in force and the new regulatory requirements that will be mandatory to implement in the near future regarding testing characteristics of automotive fuel tanks, resulted the necessity to develop a new testing methodology which allows to estimate the behaviour of the closing system of automotive fuel tank over a long period of time (10-15 years). Thus, were designed and conducted accelerated tests under extreme assembling and testing conditions (high values for initial tightening torques, extreme values of temperature and pressure). In this paper are presented two of durability tests which were performed on an optimized closing system of fuel tank: (i) the test of exposure to temperature with cyclical variation and (ii) the test of continuous exposure to elevated temperature. In these experimental tests have been used main components of the closing system manufactured of two materials variants, both based on the polyoxymethylene, material that provides higher mechanical stiffness and strength in a wide temperature range, as well as showing increased resistance to the action of chemical agents and fuels. The tested sample included a total of 16 optimized locking systems, 8 of each of 2 versions of material. Over deploying the experiments were determined various parameters such as: the initial tightening torque, the tightening torque at different time points during measurements, the residual tightening torque, defects occurred in the system components (fissures, cracks, ruptures), the sealing conditions of system at the beginning and at the end of test. Based on obtained data were plotted the time evolution diagrams of considered parameter (the residual tightening torque of the system consisting of locking nut and threaded ring), in different temperature conditions, becoming possible to make pertinent assessments on the choice between the two types of materials. By conducting these tests and interpreting the obtained results, it can be created a clear picture of the capacity of closing system of fuel tank to fulfil the functional requirements following the exposure to values of testing parameters significantly above the values that may appear throughout the entire service life of the vehicle. The proposed accelerated testing method shows the main advantage of simulation in a limited time all the situations which may be encountered in a much longer period of time, namely the service life of the vehicle.
Penzkofer, Alfons; Scheib, Ulrike; Stehfest, Katja; Hegemann, Peter
2017-01-01
The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region). The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C) and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C). The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail), 530 nm (central region) and 470 nm (short-wavelength tail) and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s). The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s) and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s). Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed. PMID:28981475
Ludlow, M M; Björkman, O
1984-11-01
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.
NASA Technical Reports Server (NTRS)
Manning, Charles R., Jr.; Price, Howard L.
1961-01-01
Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.
NASA Astrophysics Data System (ADS)
Balducci, Eleonora; Ceschini, Lorella; Morri, Alessandro; Morri, Andrea
2017-08-01
This study aims to evaluate the effects of prolonged thermal exposure on both microstructural evolution and mechanical properties of the EN AW-4032 T6 piston alloy. For the purpose, the experimental activities have been carried out on samples machined from forged and heat-treated automotive pistons. The effects of overaging have been investigated in the temperature range of 140-290 °C, firstly by evaluating the time-temperature-hardness curves and then by carrying out room-temperature tensile tests on overaged samples. The material softening was substantial and extremely rapid when the soaking temperature exceeded 250 °C. During overaging, both the tensile strength and the residual hardness considerably decreased, and a relationship between these parameters has been established. The alloy behavior in the plastic field has been modeled according to the Hollomon's equation, showing that both the strain hardening exponent and the strength coefficient are a function of the residual hardness. The results were finally related to the corresponding microstructural changes: OM and FEG-SEM metallographic and fractographic analyses on overaged samples gave evidence of coarsened precipitates along the grain boundaries.
Daily Mean Temperature Affects Urolithiasis Presentation in Seoul: a Time-series Analysis.
Lee, SeoYeon; Kim, Min-Su; Kim, Jung Hoon; Kwon, Jong Kyou; Chi, Byung Hoon; Kim, Jin Wook; Chang, In Ho
2016-05-01
This study aimed to investigate the overall cumulative exposure-response and the lag response relationships between daily temperature and urolithiasis presentation in Seoul. Using a time-series design and distributing lag nonlinear methods, we estimated the relative risk (RR) of urolithiasis presentation associated with mean daily temperature, including the cumulative RR for a 20 days period, and RR for individual daily lag through 20 days. We analyzed data from 14,518 patients of 4 hospitals emergency department who sought medical evaluation or treatment of urolithiasis from 2005-2013 in Seoul. RR was estimated according to sex and age. Associations between mean daily temperature and urolithiasis presentation were not monotonic. Furthermore, there was variation in the exposure-response curve shapes and the strength of association at different temperatures, although in most cases RRs increased for temperatures above the 13°C reference value. The RRs for urolothiasis at 29°C vs. 13°C were 2.54 in all patients (95% confidence interval [CI]: 1.67-3.87), 2.59 in male (95% CI, 1.56-4.32), 2.42 in female (95% CI, 1.15-5.07), 3.83 in male less than 40 years old (95% CI, 1.78-8.26), and 2.47 in male between 40 and 60 years old (95% CI, 1.15-5.34). Consistent trends of increasing RR of urolithiasis presentation were observed within 5 days of high temperatures across all groups. Urolithiasis presentation increased with high temperature with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days, in Seoul, a metropolitan city in Korea.
The effect of prolonged exposure to 750 C air on the tribological performance of PM212
NASA Technical Reports Server (NTRS)
Bemis, Kirk; Bogdanski, Michael S.; Dellacorte, Christopher; Sliney, Harold E.
1994-01-01
The effect of prolonged exposure to 750 C air on the tribological performance and dimensional stability of PM212, a high temperature, self-lubricating composite, is studied. PM212, by weight, contains 70 percent metal-bonded Cr3C2, 15 percent BaF2/CaF2 eutectic, and 15 percent silver. Rub blocks were fabricated from PM212 by cold isostatic pressing followed by sintering. Prior to tribo-testing, the rub blocks were exposed to 750 C air for periods ranging from 100 to 1000 hours. Then, the rub blocks were slid against nickel-based superalloy disks in a double-rub-block tribometer in air under a 66 N load at temperatures from 25 to 750 C with a sliding velocity of 0.36 m/s. Unexposed rub blocks were tested for baseline comparison. Friction coefficients ranged from 0.24 to 0.37 for the unexposed rub blocks and from 0.32 to 0.56 for the exposed ones. Wear for both the composite blocks and superalloy disks was typically in the moderate to low range of 10(exp -5) to 10(exp -6) mm(exp 3)/N-m. Friction and wear data were similar for the rub blocks exposed for 100, 500, and 1000 hours. Prolonged exposure to 750 C air increased friction and wear of the PM212 rub blocks at room temperature, but their triboperformance remained unaffected at higher temperatures, probably due to the formation of lubricious metal oxides. Dimensional stability of the composite was studied by exposing specimens of varying thicknesses for 500 hours in air at 750 C. Block thicknesses were found to increase with increased exposure time until steady state was reached after 100 hours of exposure, probably due to oxidation.
Physiological responses to acute cold exposure in young lean men
Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan
2018-01-01
The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort. PMID:29734360
14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis
Code of Federal Regulations, 2010 CFR
2010-01-01
... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...
14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis
Code of Federal Regulations, 2011 CFR
2011-01-01
... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...
Effects of Exposures on Superalloys for Space Applications
NASA Technical Reports Server (NTRS)
Gabb, Tim; Garg, Anita; Gayda, John
2007-01-01
The industry is demanding longer term service at high temperatures for nickel-base superalloys in gas turbine engine as well as potential space applications. However, longer term service can severely tax alloy phase stability, to the potential detriment of mechanical properties. Cast Mar-M247LC and wrought Haynes 230 superalloys were exposed and creep tested for extended times at elevated temperature. Microstructure and phase evaluations were then undertaken for comparisons.
Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.
2010-01-01
Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206
Optical silicones for use in harsh operating environments
NASA Astrophysics Data System (ADS)
Riegler, Bill; Bruner, Stephen J.; Elgin, Randall
2004-12-01
The optics industry widely uses silcones for various fiber optic cable potting applications and light emitting diode protection. Optics manufacturers know traditional silicone elastomers, gels, thixotropic gels, and fluids not only perform extremely well in high temperature applications, but also offer refractive index matching so that silicones can transmit light with admirable efficiency. However, because environmental conditions may affect a material's performance over time, one must also consider the conditions the device operates in to ensure long-term reliability. External environments may include exposure to a combination of UV light and temperature, while other environments may expose devices to hydrocarbon based fuels. This paper will delve into the chemistry of silicones and functional groups that lend themselves to properties such as temperature, fuel, and radiation resistance to show shy silicone is the material of choice for optic applications under normally harmful forms of exposure. Data will be presented to examine silicone's performance in these environment.
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1974-01-01
The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.
GRAVITY-DARKENED SEASONS: INSOLATION AROUND RAPID ROTATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlers, John P.
2016-11-20
I model the effect of rapid stellar rotation on a planet’s insolation. Fast-rotating stars have induced pole-to-equator temperature gradients (known as gravity darkening) of up to several thousand Kelvin that affect the star’s luminosity and peak emission wavelength as a function of latitude. When orbiting such a star, a planet’s annual insolation can strongly vary depending on its orbital inclination. Specifically, inclined orbits result in temporary exposure to the star’s hotter poles. I find that gravity darkening can drive changes in a planet’s equilibrium temperature of up to ∼15% due to increased irradiance near the stellar poles. This effect canmore » also vary a planet’s exposure to UV radiation by up to ∼80% throughout its orbit as it is exposed to an irradiance spectrum corresponding to different stellar effective temperatures over time.« less
NASA Astrophysics Data System (ADS)
Shan, Ning; Wang, Zhijing; Liu, Xia
2014-11-01
Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.
Bernard, Thomas E; Iheanacho, Ivory
2015-01-01
Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.
NASA Astrophysics Data System (ADS)
Kim, Yun Hae; Han, Joong Won; Kim, Don Won; Choi, Byung Keun; Murakami, R.
Delamination can be observed in the sound areas during and/or after a couple times exposure to the elevated curing temperature due to the repeated repair condition. This study was conducted for checking the degree of degradation of properties of the cured parts and delamination between skin prepreg and honeycomb core. Specimens with glass honeycomb sandwich construction and glass/epoxy prepreg were prepared. The specimens were cured 1 to 5 times at 260°F in an autoclave and each additionally exposed 50, 100 and 150 hours in the 260°F oven. Each specimen was tested for tensile strength, compressive strength, flatwise tensile strength and interlaminar shear strength. To monitor the characteristics of the resin itself, the cured resin was tested using DMA and DSC. As a results, the decrease of Tg value were observed in the specific specimen which is exposed over 50 hrs at 260°F. This means the change or degradative of resin properties is also related to the decrease of flatwise tensile properties. Accordingly, minimal exposure on the curing temperature is recommended for parts in order to prevent the delation and maintain the better condition.
Brown, KK; Shaw, PB; Mead, KR; Kovein, RJ; Voorhees, RT; Brandes, AR
2016-01-01
The purpose of this project was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 seconds, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods. PMID:26786234
Brown, K K; Shaw, P B; Mead, K R; Kovein, R J; Voorhees, R T; Brandes, A R
2016-01-01
The purpose of this article was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 sec, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods.
NASA Astrophysics Data System (ADS)
Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi
2015-04-01
In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.
Risk of hospitalization for fire-related burns during extreme cold weather.
Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie
2017-10-01
Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age < 25 years (95% CI 1.02-2.52), and 1.73 for age ≥ 65 years (95% CI 1.08-2.77). Extremely cold outdoor temperature is a risk factor for fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.
In-situ TEM investigations of graphic-epitaxy and small particles
NASA Technical Reports Server (NTRS)
Heinemann, K.
1983-01-01
Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted; the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence.
LED Curing Lights and Temperature Changes in Different Tooth Sites
Armellin, E.; Bovesecchi, G.; Coppa, P.; Pasquantonio, G.; Cerroni, L.
2016-01-01
Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ 2. After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282
LED Curing Lights and Temperature Changes in Different Tooth Sites.
Armellin, E; Bovesecchi, G; Coppa, P; Pasquantonio, G; Cerroni, L
2016-01-01
Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ (2). After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure.
Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A
2010-07-01
Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.
Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J
2002-02-01
Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.
Impact of Elevated Core Body Temperature on Attention Networks.
Liu, Kai; Jiang, Qingjun; Li, Li; Li, Bo; Yang, Zhen; Qian, Shaowen; Li, Min; Sun, Gang
2015-12-01
Cognitive function can be impaired after passive heat exposure and with an elevation in core body temperature (Tcore). This study examined the dynamic correlation among passive heat exposure, Tcore, and cognition. We gave the Attention Network Test of alerting, orienting, and executive control to five groups of five young men who were being exposed to a hyperthermic condition (50°C, 40% relative humidity) for 0, 10, 20, 30, or 40 minutes. We used the participants' reaction time, accuracy (correct responses), efficiency (accuracy÷reaction time), and Tcore to estimate optimal curve models for best fit of data. We could not estimate an appropriate curve model for either alerting or orienting with Tcore, change in Tcore, or duration of passive heat exposure. We estimated quadratic models for Tcore and duration (adjusted R=0.752), change in Tcore and duration (0.906), executive control score and duration (0.509), and efficiency of executive control and duration (0.293). We estimated linear models for executive control score and Tcore (0.479), efficiency of executive control and Tcore (0.261), executive control score and change in Tcore (0.279), and efficiency of executive control and change in Tcore (0.262). Different attentional abilities had different sensitivities to thermal stress. Executive control of attention deteriorated linearly with a rise in Tcore within the normal physiologic range, but deteriorated nonlinearly with longer passive heat exposure.
Ambient temperature and activation of implantable cardioverter defibrillators
NASA Astrophysics Data System (ADS)
McGuinn, L.; Hajat, S.; Wilkinson, P.; Armstrong, B.; Anderson, H. R.; Monk, V.; Harrison, R.
2013-09-01
The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.
Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function.
Renaudeau, D; Anais, C; Tel, L; Gourdine, J L
2010-11-01
Ninety-six Large White growing barrows were used to determine the effect of temperature on thermoregulatory responses during acclimation to increased ambient temperature. Pigs were exposed to 24°C for 10 d and thereafter to a constant temperature of 24, 28, 32, or 36°C for 20 d. The study was conducted in a climate-controlled room at the INRA experimental facilities in Guadeloupe, French West Indies. Relative humidity was kept constant at 80% throughout the experimental period. Rectal temperature, cutaneous temperature, and respiratory rate were measured [breaths per minute (bpm)] 3 times daily (0700, 1200, and 1800 h) every 2 or 3 d during the experiment. The thermal circulation index (TCI) was determined from rectal, cutaneous, and ambient temperature measurements. Changes in rectal temperature, respiratory rate, TCI, and ADFI over the duration of exposure to hot temperatures were modeled using nonlinear responses curves. Within 1 h of exposure to increased temperature, rectal temperature and respiratory rate increased by 0.46°C/d and +29.3 bpm/d, respectively, and ADFI and TCI decreased linearly by 44.7 g•d(-2)•kg(-0.60) and 1.32°C/d, respectively until a first breakpoint time (td(1)). This point marked the end of the short-term heat acclimation phase and the beginning of the long-term heat acclimation period. The td(1) value for ADFI was greater at 28°C than at 32 and 36°C (2.33 vs. 0.31 and 0.26 d, respectively, P < 0.05), whereas td(1) for the TCI increase was greater at 36°C than at 28 and 32°C (1.02 vs. 0.78 and 0.67 d, respectively; P < 0.05). For rectal temperature and respiratory rate responses, td(1) was not influenced by temperature (P > 0.05) and averaged 1.1 and 0.89 d, respectively. For respiratory rate and rectal temperature, the long-term heat acclimation period was divided in 2 phases, with a rapid decline for both variables followed by a slight decrease (P < 0.05). These 2 phases were separated by a second threshold day (td(2)). For rectal temperature, td(2) increased significantly with temperature (1.60 vs. 5.16 d from 28 to 36°C; P < 0.05). After td(2), the decline in rectal temperature during the exposure to thermal challenge was not influenced by temperature, suggesting that the magnitude of heat stress would affect thermoregulatory responses only at the beginning of the long-term heat acclimation period. The inclusion of random effects in the nonlinear model showed that whatever the temperature considered, interindividual variability of thermoregulatory responses would exist.
NASA Astrophysics Data System (ADS)
Nam, Jingak
Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on the rebar. Fourth, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. This tendency for corrosion initiation increased in proportion to void size irrespective of specimen type. Also, [Cl -]th decreased with increasing void diameter. In addition, new ex-situ leaching method for determining concrete pore water alkalinity was developed.
NASA Astrophysics Data System (ADS)
Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.
2016-01-01
Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.
McDevitt, James; Rudnick, Stephen; First, Melvin; Spengler, John
2010-01-01
Influenza virus has been found to persist in the environment for hours to days, allowing for secondary transmission of influenza via inanimate objects known as fomites. We evaluated the efficacy of heat and moisture for the decontamination of surfaces for the purpose of preventing of the spread of influenza. Aqueous suspensions of influenza A virus were deposited onto stainless steel coupons, allowed to dry under ambient conditions, and exposed to temperatures of 55°C, 60°C, or 65°C and relative humidity (RH) of 25%, 50%, or 75% for up to 1 h. Quantitative virus assays were performed on the solution used to wash the viruses from these coupons, and results were compared with the solution used to wash coupons treated similarly but left under ambient conditions. Inactivation of influenza virus on surfaces increased with increasing temperature, RH, and exposure time. Reductions of greater than 5 logs of influenza virus on surfaces were achieved at temperatures of 60 and 65°C, exposure times of 30 and 60 min, and RH of 50 and 75%. Our data also suggest that absolute humidity is a better predictor of surface inactivation than RH and allows the prediction of survival using two parameters rather than three. Modest amounts of heat and adequate moisture can provide effective disinfection of surfaces while not harming surfaces, electrical systems, or mechanical components, leaving no harmful residues behind after treatment and requiring a relatively short amount of time. PMID:20435770
Sympathoadrenal responses to cold and ketamine anesthesia in the rhesus monkey
NASA Technical Reports Server (NTRS)
Kolka, M. A.; Elizondo, R. S.; Weinberg, R. P.
1983-01-01
The effect of cold exposure on the sympathoadrenal system is investigated in eight adult rhesus monekys with and without ketamine anesthesia. It is found that a 3 hr cold exposure (12 c) was associated with a 175 percent increase above control levels of norepinephrine (NE) and a 100 percent increase in epinephrine (E). Also observed were decreases in the core temperature, mean skin temperature, and mean body temperature. No change in the plasma levels of NE and E from the control values was found during continuous infusion of ketamine; while the core temperature, mean skin temperature, and mean body temperature all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 C) under ketamine anesthesia resulted in a reduction of the core temperature to 33 C within 1 hr. Plasma levels of NE and E were found to be unchanged from control values at core temperatures of 35 and 33 C. It is concluded that the administration of ketamine abolishes both the thermoregulatory response and the catecholamine response to acute cold exposure.
Kennedy, W Joshua; Slinker, Keith A; Volk, Brent L; Koerner, Hilmar; Godar, Trenton J; Ehlert, Gregory J; Baur, Jeffery W
2015-12-23
A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.
Wolska, Jolanta; Czop, Michał; Jakubczyk, Karolina; Janda, Katarzyna
Stinging nettle (Urtica dioica L.) can be found in temperate climate zones of Europe, Africa and America Nettle may be a source of nutritional ingredients, mineral salts, vitamins and antioxidants. The aim of the study was to determine the effect of temperature and brewing time Urtica dioica L. infusions from different parts of this plant on vitamin C (ascorbic acid) content. Infusions of nettle leaf, stem and root were prepared at room temperature, 50°C, 60°C, 70°C and 80°C for 10 minutes. Leaf infusions were also brewed for 5, 10, 15 and 20 minutes at initial water temperature of 60°C. The amount of vitamin C was determined by the spectrophotometric method. The best temperature of brewing nettle infusions, in terms of vitamin C concentration, is between 50 °C and 60 °C as it is sufficient to extract the substance, yet not high enough to destroy it. The optimal time of brewing appeared to be 10 minutes as the prolonged exposure to high temperature appeared to be detrimental for ascorbic acid as well.
Effects of nuclear radiation and elevated temperature storage on electroexplosive devices
NASA Technical Reports Server (NTRS)
Menichelli, V. J.
1976-01-01
Aerospace type electroexplosive devices (EEDs) were subjected to nuclear radiation. Components and chemicals used in the EEDs were also included. The kind of radiation and total dosage administered were those which may be experienced in a space flight of 10 years duration, based on information available at this time. After irradiation, the items were stored in elevated constant-temperature ovens to accelerate early effects of the exposure to radiation. Periodically, samples were withdrawn for visual observation and testing. Significant changes occurred which were attributed to elevated-temperature storage and not radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greef, M. de, E-mail: m.degreef@umcutrecht.nl; Wijlemans, J. W.; Bartels, L. W.
2015-08-15
Purpose: One of the major issues in high intensity focused ultrasound ablation of abdominal lesions is obstruction of the ultrasound beam by the thoracic cage. Beam shaping strategies have been shown by several authors to increase focal point intensity while limiting rib exposure. However, as rib obstruction leaves only part of the aperture available for energy transmission, conserving total emitted acoustic power, the intensity in the near-field tissues inherently increases after beam shaping. Despite of effective rib sparing, those tissues are therefore subjected to increased risk of thermal damage. In this study, for a number of clinically representative intercostal sonicationmore » geometries, modeling clinically available hardware, the effect of beam shaping on both the exposure of the ribs and near-field to acoustic energy was evaluated and the implications for the volumetric ablation rate were addressed. Methods: A relationship between rib temperature rise and acoustic energy density was established by means of in vivo MR thermometry and simulations of the incident acoustic energy for the corresponding anatomies. This relationship was used for interpretation of rib exposure in subsequent numerical simulations in which rib spacing, focal point placement, and the focal point trajectory were varied. The time required to heat a targeted region to 65 °C was determined without and with the application of beam shaping. The required sonication time was used to calculate the acoustic energy density at the fat–muscle interface and at the surface of the ribs. At the fat–muscle interface, exposure was compared to available literature data and rib exposure was interpreted based on the earlier obtained relation between measured temperature rise and simulated acoustic energy density. To estimate the volumetric ablation rate, the cool-down time between periods of energy exposure was estimated using a time-averaged power limit of 100 kJ/h. Results: At the level of the ribs, the temperature rise–energy density proportionality constant was estimated to be 6.0–7.6 °C/(J/mm{sup 2}). Beam shaping by the geometric shadow method typically reduces the acoustic intensity a factor of 2, considering the 1 cm{sup 2} with the highest exposure. For a 4 mm diameter circular sonication trajectory, the near-field energy limit of 2.5 J/mm{sup 2} was exceeded for all considered geometries. The estimated rib temperature was in all but one (sonication 50 mm behind the ribs, with 15 mm rib spacing and a 4 mm diameter circular sonication trajectory) of the considered scenarios within acceptable limits. For those sonication scenarios where a single sonication is considered safe both in terms of near-field as well as rib heating, volumetric ablation rates in the order of 1 ml/h are estimated. Conclusions: Intercostal sonication is associated with an increased risk of near-field overheating. This risk is strongly dependent on the considered rib spacing, the placement of the focus behind the ribs, and the selected sonication trajectory. For the hardware under simulation, obstruction by the thoracic cage renders ablations of clinically relevant volumes within a practical time-frame unfeasible in a large part of the liver. Improvements maybe expected from transducer designs with a larger active surface and/or nonlinear sonication strategies.« less
Peripheral visual response time and visual display layout
NASA Technical Reports Server (NTRS)
Haines, R. F.
1974-01-01
Experiments were performed on a group of 42 subjects in a study of their peripheral visual response time to visual signals under positive acceleration, during prolonged bedrest, at passive 70 deg headup body lift, under exposures to high air temperatures and high luminance levels, and under normal stress-free laboratory conditions. Diagrams are plotted for mean response times to white, red, yellow, green, and blue stimuli under different conditions.
Effects of Thermal Exposure on Properties of Al-Li Alloys
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Wells, Doug; Stanton, William; Lawless, Kirby; Russell, Carolyn; Wagner, John; Domack, Marcia; Babel, Henry; Farahmand, Bahram; Schwab, David;
2002-01-01
This paper presents viewgraphs on the effects of thermal exposure on the mechanical properties of both developmental and production mature Al-Li alloys. The topics include: 1) Aluminum-Lithium Alloys Composition and Features; 2) Key Characteristics of Al-Li Alloys; 3) Research Approach; 4) Available and Tested Material; and 5) Thermal Exposure Matrix. The alloy temperatures, gage thickness and product forms show that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a significant deficit in mechanical properties at higher exposure temperatures in all cases.
Temperature and ultraviolet radiation (UV) alone or in combination are known to inhibit the growth of Symbiodinium isolates. This conclusion was drawn from a number of studies having widely different exposure scenarios. Here we have examined the effects of pre-exposure acclimat...
Ovicidal activity of acrolein vapors to Indian meal moth eggs of various ages.
Pourmirza, Ali Asghr
2007-09-01
The effect of acrolein vapors against carefully aged eggs of Indian meal moth at 27 +/- 1 and 17 +/- 1 degrees C at different dosage levels of acrolein over various exposure times was determined. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. At both temperatures and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acrolein than other age groups. In all bioassays, eggs exposed to higher dosages of acrolein developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17 +/- 1 to 27 +/- 1 degrees C greatly increased the efficacy of acrolein. Overall, at 27 +/- 1 degrees C eggs of P. interpunctella were killed by less than one-fourth of the dosage required for control at 17 +/- 1 degrees C. Acrolein achieved 50% mortality with a dosage of 3.80 mg L(-1) in 1-2 day-old eggs at 27 +/- 1 degrees C. At this temperature hatching was retarded and greatly reduced when eggs aged 1-2 day-old were exposed to 32 mg L(-1) of acrolein for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17 +/- 1 or 27 +/- 1 degrees C, indicating that some development must have occurred under fumigation.
Husain, M.; Rasool, Khawaja G.; Tufail, Muhammad; Alhamdan, Abdullah M. A.; Mehmood, Khalid; Aldawood, Abdulrahman S.
2015-01-01
Comparative efficacy of three different modified atmospheres: 100% CO2, 75% CO2 + 25% N2, and 22 ppm ozone were examined against larval mortality of the almond moth, Ephestia cautella (Walker) (Lepidoptera: Pyralidae) at temperature regimes of 25°C and 35 ± 2°C and 60 ± 5% relative humidity, and 9:15 dark and light. Wandering young larval instars, which are fast growing, large enough in size and considered as more tolerant to modified atmosphere, were collected directly from the rearing culture, placed inside pitted date fruits of vars.: “Khudri,” “Ruziz,” and “Saqie,” were treated with aforementioned gases for 24, 48, and 72 h. The immediate and delayed larval mortality was recorded after each exposure timing. Ozone possessed the strongest fumigant toxicity causing 100% mortality with all varieties, at 25 and 35°C after 24 h exposure and was more effective than 75% CO2 that caused 83 and 100% immediate mortality with variety ruziz at 25 and 35°C, respectively. Extending the treatments exposure time to 72 h, 100% mortality was recorded by exposing larvae to any of the studied gases at 25 and 35°C. These results suggest that gases and temperature used in this study can be effectively used to control E. cautella in dates and stored grains. PMID:26382044
Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli
2013-09-01
To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.
Floros, George D; Kokkari, Anastasia I; Kouloussis, Nikolaos A; Kantiranis, Nikolaos A; Damos, Petros; Filippidis, Anestis A; Koveos, Dimitris S
2018-02-09
We studied the insecticidal activity of different concentrations of very high quality natural zeolites (zeolitic rock containing 92 wt% clinoptilolite) applied on dry beans. The test species was adult bean weevils Acanthoscelides obtectus (Say; Coleoptera: Bruchidae), and the variables included different temperatures and humidity regimes. At certain natural zeolite concentrations the adult mortality approached 100% within the first day of exposure. The lethal natural zeolite concentration for 50% adult mortality (LD50) was 1.1 g/kg dry beans 1 d after exposure. The temperature had no significant effects on the insecticidal potential of the tested natural zeolite formulations. The lethal time (LT) for 50% adult mortality (LT50), at a concentration of 0.5 g/kg dry beans was 106.429, 101.951, and 90.084 min at 15, 20, and 25°C, respectively. It did not differ significantly. In contrast, relative humidity (RH) and exposure time as well as their interactions had a significant effect on natural zeolite formulation and insecticidal potential. At a constant concentration of 0.5 g/kg dry beans and 25°C at 23%, 34%, 53%, and 88% RH the LT50 ranged from 61.6 to 75.9 min; at 72% RH the LT50 was 110.6 min. The results indicate that natural zeolite at low concentrations is promising for the control of the bean weevil under different temperatures and RH regimes. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Workshop on the Destruction of Bacterial Spores Held in Brussels, Belgium on May 1-3, 1985.
1985-05-03
pasteurization , sterilization , UHT, Association, Chipping Campden, fluidized beds, new developments - UK) failures in commercial heat processing 9. Window of...exposure of the food to high temperatures have been diminished by rotation outoclaves and/or HTST (high temperature short time processes). For economic...effect commercial sterility and product - . safety is dependent not only on the inherent heat resistance of spores . .. but also on the numbers
Wiwatanaratanabutr, Itsanun; Grandjean, Frederic
2016-11-01
Wolbachia are a group of intracellular bacteria that cause reproductive alterations in arthropods. Here, we describe the effects of two environmental factors (crowding and temperature) on phenotypic expression of feminization, the host's fecundity and Wolbachia infection intensity among life cycle stages in the naturally Wolbachia-infected copepod, Mesocyclops thermocyclopoides. The copepod was first found to be co-infected with Wolbachia A- and B-supergroups Wolbachia strains based on wsp primers. The relative Wolbachia infection intensity within individuals was determined using quantitative real-time PCR and was significantly higher in the B-supergroup than in the A-supergroup. Experimental results of temperature effect on bacterial density in each developmental stage revealed a significant decrease in Wolbachia infection intensity following exposure to high temperature (37°C) in both sexes and implied that Wolbachia might survive in room temperature (25°C) better than in high temperature. Experimental results of crowding effects on Wolbachia infection intensity suggested a negative correlation between copepod nauplii and Wolbachia infection intensity. No effect of rearing temperature on the sex ratio was reported although the fecundity was significantly decreased by high temperature. The results showed that Wolbachia infection intensity to be correlated with crowding conditions and was decreased following exposure of elevated temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of cold-water immersion on skeletal muscle contractile properties in soccer players.
García-Manso, Juan Manuel; Rodríguez-Matoso, Darío; Rodríguez-Ruiz, David; Sarmiento, Samuel; de Saa, Yves; Calderón, Javier
2011-05-01
This study was designed to analyze changes in muscle response after cold-water immersion. The vastus lateralis of the dominant leg was analyzed in 12 professional soccer players from the Spanish 2nd Division B using tensiomyography, before and after four cold-water immersions at 4°C lasting 4 mins each. Core temperature, skin temperature, and heart rate were monitored. A significant interaction (P ≤ 0.05) was found in muscle deformation between control conditions (5.12 ± 2.27 mm) and (1) immersion 3 (3.64 ± 2.27 mm) and (2) immersion 4 (3.38 ± 1.34 mm). A steady decrease was also observed in response velocity (immersion 1, -7.3%; immersion 2, -25.9%; immersion 3, -30.0%; immersion 4, -36.6%) and contraction velocity (immersion 1, -11.5%; immersion 2, -22.1%; immersion 3, -35.0%; immersion 4, -41.9%), with statistically significant differences (P ≤ 0.05) in relation to the reference values commencing with the third immersion. No significant differences were found between control conditions in subsequent exposures to cold water for the values of response time and contraction time. Sustained time and reaction time showed an increase during repeated exposures and with longer exposure time, although the increase was not statistically significant. This study shows that repeated cold-water immersions (4 × 4 mins at 4°C) cause considerable alterations to muscle behavior. These alterations significantly affect the state of muscles and their response capacity, particularly in relation to muscle stiffness and muscle contraction velocity.
Experimental results on atomic oxygen corrosion of silver
NASA Technical Reports Server (NTRS)
Fromhold, Albert T.
1988-01-01
The results of an experimental study of the reaction kinetics of silver with atomic oxygen in 10 degree increments over the temperature range of 0 to 70 C is reported. The silver specimens, of the order of 10,000 A in thickness, were prepared by thermal evaporation onto 3 inch diameter polished silicon wafers. There were later sliced into pieces having surface areas of the order of 1/4 to 1/2 square inch. Atomic oxygen was generated by a gas discharge in a commercial plasmod asher operating in the megahertz frequency range. The sample temperature within the chamber was controlled by means of a thermoelectric unit. Exposure of the silver specimens to atomic oxygen was incremental, with oxide film thickness measurements being carried out between exposures by means of an automated ellipsometer. For the early growth phase, the data can be described satisfactorily by a logarithmic growth law: the oxide film thickness increases as the logarithm of the exposure time. Furthermore, the oxidation process is thermally activated, the rate increasing with increasing temperature. However, the empirical activation energy parameter deduced from Arrhenius plots is quite low, being of the order of 0.1 eV.
Comparative habitat ecology of Texas and masked bobwhites
Guthery, F.S.; King, N.M.; Nolte, K.R.; Kuvlesky, W.P.; DeStefano, S.; Gall, S.A.; Silvy, N.J.
2000-01-01
The habitat ecology of masked bobwhites (Colinus virginianus ridgwayi) is poorly understood, which hampers recovery efforts for this endangered bird. During 1994-96, we analyzed the habitat ecology of masked bobwhites in Sonora, Mexico, and Arizona, and compared these findings with the habitat ecology of Texas bobwhites (C. v. texanus) in southern Texas. Mean values for the quantity of low screening cover (<50 cm aboveground), operative temperature (??C), and exposure to aerial predators were relatively constant across regions (CV <14.2%), indicating these variables are important in adaptive habitat-use decisions by bobwhites. Bobwhites exhibited preference in all regions for higher canopy coverage of woody vegetation, lower exposure to aerial predators, and lower operative temperatures in comparison with randomly available conditions. The major habitat deficiencies for masked bobwhites were lack of woody and herbaceous cover, which led to high exposure to aerial predators in Sonora and Arizona. High operative temperatures at quail level were associated with the loss of ???24% of potential habitat space-time in Texas, Sonora, and Arizona. Management to improve habitat for masked bobwhites includes any practice that increases canopy coverage of woody vegetation, and height and coverage of herbaceous vegetation.
Maternal exposure to ambient air temperature during pregnancy and early childhood pneumonia.
Miao, Yufeng; Shen, Yong-Ming; Lu, Chan; Zeng, Ji; Deng, Qihong
2017-10-01
Pneumonia has been widely recognized as the leading cause of death in children worldwide, but its etiology still remains unclear. We examined the association between maternal exposure to ambient air temperature during pregnancy and lifetime pneumonia in the offspring. We conducted a cohort study of 2598 preschool children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed using questionnaire. We backwards estimated each child's exposure to air temperature during prenatal and postnatal periods. Multiple regression model was used to examine the association between childhood pneumonia and exposure to air temperature in terms of odd ratios (OR) and 95% confidence interval (CI). Prevalence of childhood pneumonia in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal exposure to air temperature, with adjusted OR (95% CI) = 1.77 (1.23-2.54) for an interquartile range (IQR) increase in temperature, particularly during the second trimester with adjusted OR (95% CI) = 2.26 (1.32-3.89). Boys are more susceptible to the risk of pneumonia due to air temperature than girls. We further observed that maternal exposure to extreme heat days during pregnancy increased the risk of pneumonia in the offspring. Maternal exposure to air temperature during pregnancy, particularly the second trimester, was associated with pneumonia in the children, providing the evidence for fetal origins of pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Temperature changes across CO2-lased dentin during multiple exposures
NASA Astrophysics Data System (ADS)
Zakariasen, Kenneth L.; Barron, Joseph R.; Boran, Thomas L.
1990-06-01
The literature increasingly indicates that lasers will have a multitude of applications for dental hard tissue procedures, e.g. preventive therapy, caries removal, laser etching and endodontic therapy. However, it is critical that such laser therapies avoid the production of heat levels which will be damaging to the surrounding vital tissues, such as the dental pulp and periodontal tissues. Our preliminary research on temperature changes across C02 lased dentin indicated that for single preventive therapeutic exposures (1.2 W., 0. 1 sec., 1.0 mm focal spot) the mean temperature rise across 350 j.tm of dentin was 0.57 0C while across 1000 .tm of dentin the mean rise was only 0.18 °C. Further research utilizing multiple preventive therapeutic exposures (1.2 W., 0. 1 sec., 1.0 mm focal spot, 3 x 1.0 sec. intervals) showed mean temperature elevations of 1.56 0C across 350 m of dentin and 0.66 O across 1000 xm of dentin. While these temperature elevations, which would be associated with preventive therapy, are very low and would be biologically acceptable, it must be noted that exposures of higher intensities are required to fuse enamel and porcelain, or remove decay. This current research investigates temperature elevations which occuT during C02 lasing utilizing the following exposure parameters: 8.0 W., 1.0 mm focal spot, 0.1 sec. exposures, 2 or 4 exposures per site pulsed 1.0 sec. apart. Three dentin thicknesses were utilized, i.e. 1000 jim, 1500 p.tm and 2000 .tm. Four sections of each thickness were utilized with four exposure sites per specimen (2 with 2 exposures, 2 with 4 exposures). All dentin sections were prepared from non-carious third molars using a hard tissue microtome. A thermistor was placed on the dentin surface opposite each lased site and temperature changes were recorded for approximately 50 sec. following lasing. Mean temperature elevations ranged from a high of 3.07 C for the 1000 xm section utilizing four exposures to a low of 0.37 0C for the 2000 m section utilizing two exposures. Analysis of Variance (p < .0001) and Duncan's Multiple Range Test (p =.05) indicated significant differences existed among the mean temperature elevations observed. While significant differences in temperature elevation can be observed both by numbers of exposures and by dentin thickness, it would appear that, under the conditions of this study, the temperature changes across CO2 lased dentin are all relatively low. It should be reiterated that the lasing parameters used in this study are far in excess of those necessary for preventive applications and are, in fact, in the range of exposures which will fuse enamel and dental porcelain, or remove dental caries. The modest temperature elevations observed, combined with the relatively severe exposure parameters utilized on thin sections of dentin, demonstrate the effective protective barrier which dentin provides for the dental pulp relative to heat damage from C02 lasing.
Steinhoff, F S; Wiencke, C; Müller, R; Bischof, K
2008-05-01
The interactive effects of an 8 h exposure to UV radiation and altered temperatures on the ultrastructure and germination of zoospores of the sublittoral brown alga Laminaria hyperborea (Gunn.) Foslie were investigated for the first time. Spores were exposed to four temperatures (2, 7, 12 and 17 degrees C) and three light regimes (PAR, PAR + UV-A, PAR + UV-A+UV-B). Freshly-released spores of L. hyperborea lack a cell wall and contain a nucleus with fine granular nucleoplasm and a nucleolus, one chloroplast, several mitochondria, dictyosomes and an endoplasmatic reticulum. Further, several kinds of so-called adhesive vesicles, lipid globuli and physodes containing UV-absorbing phlorotannins are embedded in the cytoplasm. No eye-spot is present. Physodes were found but they were rare and small. After an 8 h exposure to UV-B, the nucleoplasm had a mottled structure, chloroplasts contained plastoglobuli, the structure of the mitochondria changed from crista- to sacculus-type and germination was strongly inhibited at all temperatures. UV-A only had an impact on the ultrastructure at the highest temperature tested. The strongest effects were found at 17 degrees C, where germination was reduced to 35%, 32% and 9% after exposure to PAR, PAR+UV-A and PAR + UV-A + UV-B, respectively. This study indicates that UV-B radiation has strong damaging effects on the physiology and ultrastructure of zoospores of L. hyperborea. The results are important for developing scenarios for the effect of enhanced UV radiation and increasing temperatures caused by global climate changes.
Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans.
Dijk, D J; Cajochen, C; Borbély, A A
1991-01-02
Seven human subjects were exposed to bright light (BL, approx. 2500 lux) and dim light (DL, approx. 6 lux) during 3 h prior to nocturnal sleep, in a cross-over design. At the end of the BL exposure period core body temperature was significantly higher than at the end of the DL exposure period. The difference in core body temperature persisted during the first 4 h of sleep. The latency to sleep onset was increased after BL exposure. Rapid-eye movement sleep (REMS) and slow-wave sleep (SWS; stage 3 + 4 of non-REMS) were not significantly changed. Eight subjects were exposed to BL from 20.30 to 23.30 h while their eyes were covered or uncovered. During BL exposure with uncovered eyes, core body temperature decreased significantly less than during exposure with covered eyes. We conclude that bright light immediately affects core body temperature and that this effect is mediated via the eyes.
NASA Astrophysics Data System (ADS)
Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore
2014-02-01
The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (P<0.05) compared to the other tested doses (1, 2, 3, 4, 6 and 7 J/cm2) and sham irradiated controls. In conclusion, the LLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.
Yoder, Jay A; Benoit, Joshua B; Denlinger, David L; Rivers, David B
2006-02-01
Nondiapausing larvae of the flesh fly, Sarcophaga bullata, responded to several forms of short-term environmental stress (low temperature, anoxia and desiccation) by accumulating glycerol. Elevation of this polyol, regardless of the type of stress that induced accumulation, conferred cold resistance: larvae with high glycerol levels were 3-4 times more tolerant of a 2h exposure to -10 degrees C than unstressed larvae. Protection against low temperature injury, as well as dehydration, was also attained by injection of exogenous glycerol into third instar larvae. This artificially induced cold hardiness was only temporary: when glycerol-injected larvae were exposed to -10 degrees C immediately after injection, survival was high, but none survived if they were injected and then held at 25 degrees C for 2 days before the -10 degrees C exposure. Larvae ligated behind the brain immediately after low temperature exposure failed to accumulate glycerol, but glycerol did accumulate in larvae ligated 6-24h after cold treatment, thus implying a critical role for the brain in initiating glycerol production. Interestingly, a much shorter exposure (2h) to low temperature was sufficient to reduce the maximum rate of water loss. Collectively, these observations suggest that multiple pathways may be exploited in response to stress: one pathway is most likely associated with rapid cold hardening (RCH) which generates immediate protection, and a second pathway remains activated for a longer period to enhance the initial protection afforded by glycerol.
Verma, A K; Pal, A K; Manush, S M; Das, T; Dalvi, R S; Chandrachoodan, P P; Ravi, P M; Apte, S K
2007-05-01
Apart from increased temperature, thermal effluents discharged through cooling systems of nuclear power plants may often contain chlorine (used against bio-fouling), which may affect the immune status of fish. Therefore, a 28-day trial was undertaken to delineate the effect of high temperature and a persistent sub-lethal chlorine exposure on immunomodulation in Cyprinus carpio advanced fingerlings. Fish were acclimated to four different temperatures (26, 31, 33 and 36 degrees C) and maintained for 30 days in two different groups. One group was exposed to persistent chlorine (0.1mgL(-1)) and was compared with their respective temperature control groups (without chlorine exposure). Expression of heat shock proteins (hsp 70) was tested in muscle after 28 days using Western blotting. Haematological parameters (erythrocyte count, leucocyte count, haemoglobin), serum parameters (total protein, albumin, globulin, A/G ratio) and respiratory burst activity were tested to assess immuno-competence of C. carpio in response to temperature and chlorine exposure. Results indicated that hsp 70 was induced at 36 degrees C in temperature control groups but not in their respective temperatures in the presence of chlorine. Haematological parameters such as haemoglobin, erythrocyte and leucocyte counts appeared depressed in chlorine treated groups as compared to their respective temperature control groups. Serum protein and globulin were affected due to chlorine exposure at different acclimation temperatures. A decrease in NBT activity was recorded in chlorine treated groups as compared to their respective temperature control groups. Overall results indicate that increasing acclimation temperatures alters the immune status of C. carpio advanced fingerlings and persistent sub-lethal exposure to chlorine augments this temperature induced immunosuppression.
Toxicity of the pyrolysis products of spacecraft materials
NASA Technical Reports Server (NTRS)
Lawrence, W. H.
1976-01-01
Data is presented which provides guides to (1) approximate temperature necessary to initiate thermodegradation of the polymeric materials tested, (2) the relative toxicity of thermodegradation products from the various materials, (3) the relative importance of carbon monoxide as the primary cause of death (as contrasted to cyanide or other toxic gases), and (4) whether or not the hazards of the fumes are confined to the time of exposure, or whether post-exposure death is likely. Two different experimental methods were employed.
Morabito, Marco; Iannuccilli, Maurizio; Crisci, Alfonso; Capecchi, Valerio; Baldasseroni, Alberto; Orlandini, Simone; Gensini, Gian Franco
2014-10-01
To investigate the short-term effect of air temperature on outdoor occupational injuries (out_OI) in Central Italy, also by taking different geographical factors and employment sectors of workers into account. Out_OI for all of Tuscany (Central Italy), from 2003 to 2010 (n=162,399), were provided by the National Institute of Insurance for Occupational Illness and Injury. Representative daily meteorological data of the geographical area under study were obtained from the European Reanalysis-interim climatological reanalysis archive. Relationships between short-term changes in air temperature and out_OI were studied through Generalised Additive Models. The exposure-response curves of out_OI and short-term changes in air temperature generally showed significant out_OI increases when cold conditions occurred. The air temperature breakpoint corresponded to the 10th centile (-0.8°C) of the air temperature time series used in this study: a 1°C decrease in temperature below the 10th centile corresponded to a 2.3% (CI 1.3% to 3.3%) increase of out_OI throughout all of Tuscany. The cold effect was strongest in plain areas, especially when out_OI occurred in vehicles other than cars. No relationships of injuries with temperature extremes were observed in workers who generally spend half or most of their time outdoors, such as construction, land and forestry workers. However, these latter outdoor workers showed significant linear associations of injuries with typical (far-from-extreme) temperatures. This large population-based study highlights the significant and independent effects of short-term air temperature changes (especially cold) in triggering out_OI. These findings represent the first step towards developing a geographically differentiated, operative outdoor-temperature-occupational-health warning system aimed at preventing outdoor work injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Coxson, D S
1987-09-01
The response of net photosynthesis (NP) and dark respiration to periods of high insolation exposure was examined in the tropical basidiomycete lichen Cora pavonia. Photoinhibition of NP proved quite dependant on temperature. Rates of light saturated NP were severely impaired immediately after pretreatment high light exposure at temperatures of 10, 20 and 40°C, while similar exposure at 30°C resulted in only minimal photoinhibition. Apparent quantum yield proved an even more sensitive indicator of photoinhibition, reduced in all temperature treatments, although inhibition was again greatest at low and high temperatures. Concurrent exposure to reduced O 2 tensions during high light exposure mitigated some of the deleterious effects of high light exposure at 10 and 20°C, suggesting an interaction of O 2 with the inactivation of photosynthetic function. This represents the first reported instance of light dependant chilling stress in lichens, and may be an important limitation on the distribution of this and other tropical lichen species. This narrow range of temperatures within which thalli of C. pavonia can withstand periods of high insolation exposure coincides with that faced by hydrated thalli during rare periods of high insolation exposure within the cloud/shroud zone on La Soufrière, and points to the necessity of considering periods of atypical or unusual climatic events when interpreting patterns of net photosynthetic response, both in tropical and in north temperate lichen species.
Świergosz-Kowalewska, Renata; Tokarz, Anita
2016-12-01
In a full factorial laboratory experiment, the effects of temperature and two chemical stressors (nickel and chlorpyrifos) on the accumulation of nickel in the liver and kidney of bank voles were studied. The nine-week experiment consisted of three periods: acclimatisation (3 days), intoxication (6 weeks) and elimination (3 weeks). During the main intoxication phase the animals were orally exposed for 42 days to different doses of nickel (Ni) (0, 300 and 800mg/kg food) or chlorpyrifos (CPF) (0, 50 and 350mg/kg food) or a mixture of both chemicals. Additionally, animals from each chemical treatment were divided into subgroups assigned to three temperatures: 10, 20 or 30°C. The highest concentrations of nickel were found in the testis, but there were no statistical effects of studied factors on this tissue. The nickel concentrations were higher in the kidney than in the liver of the bank voles. Nickel levels in the livers were influenced by Ni concentration in the food during intoxication time and additionally by interactions between Ni, temperature and day of exposure during elimination. The kidney concentrations of nickel depended on the level of nickel exposure but also on the interactions of the nickel with other factors: temperature, chlorpyrifos, day of exposure. This influence was observed only during the intoxication phase. The body mass and liver and kidney masses of the animals were affected both by the nickel concentration in the food and by the temperature. Ni in the tissues depended on the interactions between the factors: Ni, temperature and other. The body, liver and kidney masses were affected by both Ni in the food and by the temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada).
Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France
2015-05-01
To quantify the associations between occupational injury compensations and exposure to summer outdoor temperatures in Quebec (Canada). The relationship between 374,078 injuries compensated by the Workers' Compensation Board (WCB) (between May and September, 2003-2010) and maximum daily outdoor temperatures was modelled using generalised linear models with negative binomial distributions. Pooled effect sizes for all 16 health regions of Quebec were estimated with random-effect models for meta-analyses for all compensations and by sex, age group, mechanism of injury, industrial sector and occupations (manual vs other) within each sector. Time lags and cumulative effect of temperatures were also explored. The relationship between daily counts of compensations and maximum daily temperatures reached statistical significance for three health regions. The incidence rate ratio (IRR) of daily compensations per 1°C increase was 1.002 (95% CI 1.002 to 1.003) for all health regions combined. Statistically significant positive associations were observed for men, workers aged less than 45 years, various industrial sectors with both indoor and outdoor activities, and for slips/trips/falls, contact with object/equipment and exposure to harmful substances/environment. Manual occupations were not systematically at higher risk than non-manual and mixed ones. This study is the first to quantify the association between work-related injury compensations and exposure to summer temperatures according to physical demands of the occupation and this warrants further investigations. In the context of global warming, results can be used to estimate future impacts of summer outdoor temperatures on workers, as well as to plan preventive interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Barnett, M C; McFarlane, J R; Hegarty, R S
2015-06-01
Ruminant methane yield (MY) is positively correlated with mean retention time (MRT) of digesta. The hormone triiodothyronine (T3 ), which is negatively correlated with ambient temperature, is known to influence MRT. It was hypothesised that exposing sheep to low ambient temperatures would increase plasma T3 concentration and decrease MRT of digesta within the rumen of sheep, resulting in a reduction of MY. To test this hypothesis, six Merino sheep were exposed to two different ambient temperatures (cold treatment, 9 ± 1 °C; warm control 26 ± 1 °C). The effects on MY, digesta MRT, plasma T3 concentration, CO2 production, DM intake, DM digestibility, change in body weight (BW), rumen volatile fatty acid (VFA) concentrations, estimated microbial protein output, protozoa abundance, wool growth, water intake, urine output and rectal temperature were studied. Cold treatment resulted in a reduction in MY (p < 0.01); digesta MRT in rumen (p < 0.01), hindgut (p = 0.01) and total digestive tract (p < 0.01); protozoa abundance (p < 0.05); and water intake (p < 0.001). Exposure to cold temperature increased plasma T3 concentration (p < 0.05), CO2 production (p = 0.01), total VFA concentrations (p = 0.03) and estimated microbial output from the rumen (p = 0.03). The rate of wool growth increased (p < 0.01) due to cold treatment, but DM intake, DM digestibility and BW change were not affected. The results suggest that exposure of sheep to cold ambient temperatures reduces digesta retention time in the gastrointestinal tract, leading to a reduction in enteric methane yield. Further research is warranted to determine whether T3 could be used as an indirect selection tool for genetic selection of low enteric methane-producing ruminants. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Soman toxicity during and after exposure to different environmental temperatures.
Wheeler, T G
1989-01-01
A systematic study has been conducted to determine physiological susceptibility to the potent anticholinesterase soman during and after exposure to different environmental temperatures. Rats were placed in an environmental chamber set at -1, 7, 15, 23, or 31 degrees C (80% relative humidity, RH) from 0000 to 0800 h. Soman injections were given subcutaneously (sc) at 0600 h (during thermal stress), or at 0810 h after removal from the chamber (injected and tested at 23 degrees C, 60% RH). The measures (taken 30 min after soman injection) included core temperature, grip strength, general state of health, and LD10 estimates (taken 2 h post injection). Soman exposure produced a dose-related effect on each measure under all thermal stress conditions. During thermal stress, soman exposure produced major changes in core temperature ranging from 26 to 41 degrees C, which were linearly related to the environmental temperature condition. After removal from the chamber, soman exposure reduced core temperature by only 1 degree C without regard to prior thermal stress temperature. Grip strength and subjective health rating were soman dose-related with only a minor chamber temperature influence. The toxicity of soman was increased during exposure to either cold or hot environments and after removal from the cold environments. The adrenal-cortical stress response to cold involves increased metabolism and oxygen requirement. The exception was the decreased toxicity observed when soman exposure occurred after removal from a hot environment, exacerbated by a failure in the respiratory system due to anticholinesterase exposure. The increased toxicity of soman while in or after removal from a cold environment is believed to be due to a generalized adrenal-cortical stress response. The increased soman toxicity while in a hot environment, but decreased toxicity after removal from the hot environment, provides an interesting subject for further research.
PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallu-Labruyere, A.; Micou, C.; Schulcz, F.
PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less
NASA Astrophysics Data System (ADS)
Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu
2016-08-01
Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.
Wiggen, Øystein Nordrum; Heen, Sigri; Færevik, Hilde; Reinertsen, Randi Eidsmo
2011-01-01
The purpose of this study was to investigate manual performance and thermal responses during low work intensity in persons wearing standard protective clothing in the petroleum industry when they were exposed to a range of temperatures (5, -5, -15 and -25℃) that are relevant to environmental conditions for petroleum industry personnel in northern regions. Twelve men participated in the study. Protective clothing was adjusted for the given cold exposure according to current practices. The subjects performed manual tests five times under each environmental condition. The manual performance test battery consisted of four different tests: tactile sensation (Semmes-Weinstein monofilaments), finger dexterity (Purdue Pegboard), hand dexterity (Complete Minnesota dexterity test) and grip strength (grip dynamometer). We found that exposure to -5℃ or colder lowered skin and body temperatures and reduced manual performance during low work intensity. In conclusion the current protective clothing at a given cold exposure is not adequate to maintain manual performance and thermal balance for petroleum workers in the high north.
Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra
2011-05-25
Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.
2011-01-01
Background Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. Results We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality. PMID:21612647
Xiang, Fan; Harrison, Simone; Nowak, Madeleine; Kimlin, Michael; Van der Mei, Ingrid; Neale, Rachel E; Sinclair, Craig; Lucas, Robyn M
2015-02-01
To examine the effects of meteorological factors on weekend sun exposure behaviours and personal received dose of ultraviolet radiation (UVR) in Australian adults. Australian adults (n=1002) living in Townsville (19°S, 146°E), Brisbane (27°S, 153°E), Canberra (35°S, 149°E) and Hobart (43°S, 147°E) were recruited between 2009 and 2010. Data on sun exposure behaviours were collected by daily sun exposure dairies; personal UVR exposure was measured with a polysulphone dosimeter. Meteorological data were obtained from the Australian Bureau of Meteorology; ambient UVR levels were estimated using the Ozone Monitoring Instrument data. Higher daily maximum temperatures were associated with reduced likelihood of wearing a long-sleeved shirt or wearing long trousers in Canberra and Hobart, and higher clothing-adjusted UVR dose in Canberra. Higher daily humidity was associated with less time spent outdoors in Canberra. Higher ambient UVR level was related to a greater clothing-adjusted personal UVR dose in Hobart and a greater likelihood of using sunscreen in Townsville. The current findings enhance our understanding of the impact of weather conditions on the population's sun exposure behaviours. This information will allow us to refine current predictive models for UVR-related diseases, and guide future health service and health promotion needs. Copyright © 2015 Elsevier B.V. All rights reserved.
Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-04-01
This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.
Simple and effective method to lower body core temperatures of hyperthermic patients.
O'Connor, John P
2017-06-01
Hyperthermia is a potentially life threatening scenario that may occur in patients due to accompanying morbidities, exertion, or exposure to dry and arid environmental conditions. In particular, heat stroke may result from environmental exposure combined with a lack of thermoregulation. Key clinical findings in the diagnosis of heatstroke are (1) a history of heat stress or exposure, (2) a rectal temperature greater than 40 °C, and (3) central nervous system dysfunction (altered mental state, disorientation, stupor, seizures, or coma) (Prendergast and Erickson, 2014 [1]). In these patients, it is important to bring the body's core temperature down to acceptable levels in a short period of time to avoid tissue/organ injury or death (Yoder, 2001; Casa et al., 2007 [2,3]). A number of potential approaches, both non-invasive and invasive, may be used to lower the temperature of these individuals. Non-invasive techniques generally include: evaporative cooling, ice water immersion, whole-body ice packing, strategic ice packing, and convective cooling. Invasive approaches may include gastric lavage or peritoneal lavage (Schraga and Kates [4]). The efficacy of these methods vary and select treatment approaches may be unsuitable for specific individuals (Schraga and Kates [4]). In this work, the effectiveness of radiation cooling of individuals as a stand-alone treatment and comparisons with existing noninvasive techniques are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Laakso, Ilkka
2009-06-01
This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m-2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 °C in the whole frequency range.
Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data
Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J. Antonio; Economos, Jeannie; Flocks, Joan; McCauley, Linda
2017-01-01
Affordable measurement of core body temperature, Tc, in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining Tc data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared to describing Tc at a single time point or summaries of the time course into an indicator function (e.g., did Tc ever exceed 38°C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher Tc at some point during the workday compared to those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring. PMID:27756853
Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data.
Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J Antonio; Economos, Eugenia; Flocks, Joan; McCauley, Linda
2016-10-18
Affordable measurement of core body temperature (T c ) in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining T c data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared with describing T c at a single time point or summaries of the time course into an indicator function (e.g., did T c ever exceed 38 °C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher T c at some point during the workday compared with those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring. © The Author(s) 2016.
Stability of Phosphatidylethanol in Dry Blood Spot Cards.
Bakhireva, Ludmila N; Shrestha, Shikhar; Gutierrez, Hilda L; Berry, Mike; Schmitt, Cheryl; Sarangarm, Dusadee
2016-05-01
The analysis of phosphatidylethanol, a promising direct ethanol metabolite, in dry blood spots (PEth-DBS) is advantageous due to ease of storage, transportation and minimal invasiveness of capillary blood collection. One potential application of PEth-DBS is to confirm prenatal alcohol exposure in newborns suspected of FASD; however, stability of PEth-DBS is largely unknown. Phlebotomized samples from 31 adults with a history of alcoholism, admitted to the University of New Mexico Emergency Department, were analyzed for blood alcohol content and pipetted onto DBS cards (13 spots per patient). The first spot was analyzed within 2 weeks of collection for a baseline PEth; the remaining 12 spots were allocated into three temperature conditions (room temperature, 4°C, -80°C) for the repeated measures analysis. In addition, 5 newborn DBS samples with a baseline PEth>LOD were obtained from a prospective cohort at UNM and re-analyzed at 4 months after storage at -80°C. A mixed linear model was fitted to examine the effects of temperature, time and temperature-time interaction on PEth degradation over the first 9 months. The baseline PEth levels were 592.8 ± 86.7 ng/ml and 18.3 ± 4.8 ng/ml in adult and newborn samples, respectively. All DBS samples remained positive in successive samples in all temperature conditions. Results of mixed linear model demonstrated a significant effect of temperature (P < 0.001) on PEth degradation over 9 months. PEth-DBS appears to be relatively stable, especially when stored at lower temperatures. These initial results are encouraging and highlight the PEth-DBS potential in retrospective assessment of alcohol exposure. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Retention of ingested porcine reproductive and respiratory syndrome virus in houseflies.
Schurrer, Jennifer A; Dee, Scott A; Moon, Roger D; Murtaugh, Michael P; Finnegan, Colleen P; Deen, John; Kleiboeker, Steven B; Pijoan, Carlos B J
2005-09-01
To evaluate retention of porcine reproductive and respiratory syndrome virus (PRRSV) in houseflies for various time frames and temperatures. Fifteen 2-week-old pigs, two 10-week-old pigs, and laboratory-cultivated houseflies. In an initial experiment, houseflies were exposed to PRRSV; housed at 15 degrees, 20 degrees, 25 degrees, and 30 degrees C; and tested at various time points. In a second experiment to determine dynamics of virus retention, houseflies were exposed to PRRSV and housed under controlled field conditions for 48 hours. Changes in the percentage of PRRSV-positive flies and virus load per fly were assessed over time, and detection of infective virus at 48 hours after exposure was measured. Finally, in a third experiment, virus loads were measured in houseflies allowed to feed on blood, oropharyngeal washings, and nasal washings obtained from experimentally infected pigs. In experiment 1, PRRSV retention in houseflies was proportional to temperature. In the second experiment, the percentage of PRRSV-positive houseflies and virus load per fly decreased over time; however, infective PRRSV was found in houseflies 48 hours after exposure. In experiment 3, PRRSV was detected in houseflies allowed to feed on all 3 porcine body fluids. For the conditions of this study, houseflies did not support PRRSV replication. Therefore, retention of PRRSV in houseflies appears to be a function of initial virus load after ingestion and environmental temperature. These factors may impact the risk of insect-borne spread of PRRSV among farms.
Statistical estimation of ozone exposure metrics
NASA Astrophysics Data System (ADS)
Blankenship, Erin E.; Stefanski, L. A.
Data from recent experiments at North Carolina State University and other locations provide a unique opportunity to study the effect of ambient ozone on the growth of clover. The data consist of hourly ozone measurements over a 140 day growing season at eight sites in the US, coupled with clover growth response data measured every 28 days. The objective is to model an indicator of clover growth as a function of ozone exposure. A common strategy for dealing with the numerous hourly ozone measurements is to reduce these to a single summary measurement, a so-called exposure metric, for the growth period of interest. However, the mean ozone value is not necessarily the best summarization, as it is widely believed that low levels of ozone have a negligible effect on growth, whereas peak ozone values are deleterious to plant growth. There are also suspected interactions with available sunlight, temperature and humidity. A number of exposure metrics have been proposed that reflect these beliefs by assigning different weights to ozone values according to magnitude, time of day, temperature and humidity. These weighting schemes generally depend on parameters that have, to date, been subjectively determined. We propose a statistical approach based on profile likelihoods to estimate the parameters in these exposure metrics.
TOPICAL REVIEW: Climate change, ozone depletion and the impact on ultraviolet exposure of human skin
NASA Astrophysics Data System (ADS)
Diffey, Brian
2004-01-01
For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population.
Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91
NASA Astrophysics Data System (ADS)
Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr
2016-04-01
In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
Neigel, Joseph E.
2017-01-01
Infectious diseases threaten marine populations, and the extent of their impacts is often assessed by prevalence of infection (the proportion of infected individuals). Changes in prevalence are often attributed to altered rates of transmission, although the rates of birth, recovery, and mortality also determine prevalence. The parasitic dinoflagellate Hematodinium perezi causes a severe, often fatal disease in blue crabs. It has been speculated that decreases in prevalence associated with high temperatures result from lower rates of infection. We used field collections, environmental sensor data, and high-temperature exposure experiments to investigate the factors that change prevalence of infections in blue crab megalopae (post-larvae). These megalopae migrate from offshore waters, where temperatures are moderate, to marshes where temperatures may be extremely high. Within a few days of arriving in the marsh, the megalopae metamorphose into juvenile crabs. We found a strong negative association between prevalence of Hematodinium infection in megalopae and the cumulative time water temperatures in the marsh exceeded 34°C over the preceding two days. Temperatures this high are known to be lethal for blue crabs, suggesting that higher mortality of infected megalopae could be the cause of reduced prevalence. Experimental exposure of megalopae from the marsh to a temperature of 34°C resulted in higher mortality for infected than uninfected individuals, and decreased the prevalence of infection among survivors from 18% to 3%. PMID:29084257
Kim, Jun-Hwan; Park, Hee-Ju; Hwang, In-Ki; Han, Jae-Min; Kim, Do-Hyung; Oh, Chul Woong; Lee, Jung-Sick; Kang, Ju-Chan
2017-09-01
Juvenile sablefish, Anoplopoma fimbria (mean length 17.1±2.4cm, and mean weight 75.6±5.7g) were used to evaluate toxic effects on antioxidant systems, immune responses, and stress indicators by ammonia exposure (0, 0.25, 0.75, and 1.25mg/L) at different water temperature (12 and 17°C) in 1 and 2 months. In antioxidant responses, superoxide dismutase (SOD) and catalase (CAT) were significantly increased by ammonia exposure, whereas glutathione (GSH) was decreased. In immune responses, lysozyme and phagocytosis activity were significantly increased by ammonia exposure. In stress indicators, plasma glucose, heat shock protein 70 (HSP 70), and cortisol were significantly increased. At high water temperature (17°C), alterations by ammonia exposure were more distinctly. The results of this study indicated that ammonia exposure can induce toxic effects in the sablefish, and high water temperature can affect the ammonia exposure toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of thermal exposure on the mechanical properties of aluminum-graphite composites
NASA Technical Reports Server (NTRS)
Khan, I. H.
1975-01-01
The mechanical properties of aluminum-graphite composites were measured at room temperature in the as-received condition, after elevated temperature exposure and after thermal cycling. The composites were fabricated by solid-state diffusion bonding of liquid-phase Al-infiltrated Thornel 50 fibers. The results showed that the maximum longitudinal tensile strength of the as-received material was 80,000 psi, which corresponds well with the rule of mixture value. The composite strength was observed to vary widely, depending on the extent of wetting of the fibers by the aluminum. The strength of the composites in the transverse direction was generally very low, due to poor interfacial bonding. Aluminum carbide (Al4C3) formed at the surface of the fibers at temperatures greater than 500 C. Development of the carbide was shown to be diffusion-controlled and was dependent on the time and temperature used. It was shown that the tensile strength was virtually unaffected by heat-treatment up to 500 C; beyond that temperature a drastic degradation of tensile strength occurred. Thermal cycling of the composites below 500 C resulted in an observable degradation of the composite strength.
Seasonal Effect on Ocular Sun Exposure and Conjunctival UV Autofluorescence.
Haworth, Kristina M; Chandler, Heather L
2017-02-01
To evaluate feasibility and repeatability of measures for ocular sun exposure and conjunctival ultraviolet autofluorescence (UVAF), and to test for relationships between the outcomes. Fifty volunteers were seen for two visits 14 ± 2 days apart. Ocular sun exposure was estimated over a 2-week time period using questionnaires that quantified time outdoors and ocular protection habits. Conjunctival UVAF was imaged using a Nikon D7000 camera system equipped with appropriate flash and filter system; image analysis was done using ImageJ software. Repeatability estimates were made using Bland-Altman plots with mean differences and 95% limits of agreement calculated. Non-normally distributed data was transformed by either log10 or square root methods. Linear regression was conducted to evaluate relationships between measures. Mean (±SD) values for ocular sun exposure and conjunctival UVAF were 8.86 (±11.97) hours and 9.15 (±9.47) mm, respectively. Repeatability was found to be acceptable for both ocular sun exposure and conjunctival UVAF. Univariate linear regression showed outdoor occupation to be a predictor of higher ocular sun exposure; outdoor occupation and winter season of collection both predicted higher total UVAF. Furthermore, increased portion of day spent outdoors while working was associated with increased total conjunctival UVAF. We demonstrate feasibility and repeatability of estimating ocular sun exposure using a previously unreported method and for conjunctival UVAF in a group of subjects residing in Ohio. Seasonal temperature variation may have influenced time outdoors and ultimately calculation of ocular sun exposure. As winter season of collection and outdoor occupation both predicted higher total UVAF, our data suggests that ocular sun exposure is associated with conjunctival UVAF and, possibly, that UVAF remains for at least several months after sun exposure.
Seasonal Effect on Ocular Sun Exposure and Conjunctival UV Autofluorescence
Haworth, Kristina M.; Chandler, Heather L.
2016-01-01
Purpose To evaluate feasibility and repeatability of measures for ocular sun exposure and conjunctival ultraviolet autofluorescence (UVAF), and to test for relationships between the outcomes. Methods Fifty volunteers were seen for 2 visits 14±2 days apart. Ocular sun exposure was estimated over a two-week time period using questionnaires that quantified time outdoors and ocular protection habits. Conjunctival UVAF was imaged using a Nikon D7000 camera system equipped with appropriate flash and filter system; image analysis was done using ImageJ software. Repeatability estimates were made using Bland-Altman plots with mean differences and 95% limits of agreement calculated. Non-normally distributed data was transformed by either log10 or square root methods. Linear regression was conducted to evaluate relationships between measures. Results Mean (±SD) values for ocular sun exposure and conjunctival UVAF were 8.86 (±11.97) hours and 9.15 (±9.47) mm2, respectively. Repeatability was found to be acceptable for both ocular sun exposure and conjunctival UVAF. Univariate linear regression showed outdoor occupation to be a predictor of higher ocular sun exposure; outdoor occupation and winter season of collection both predicted higher total UVAF. Furthermore, increased portion of day spent outdoors while working was associated with increased total conjunctival UVAF. Conclusions We demonstrate feasibility and repeatability of estimating ocular sun exposure using a previously unreported method and for conjunctival UVAF in a group of subjects residing in Ohio. Seasonal temperature variation may have influenced time outdoors and ultimately calculation of ocular sun exposure. As winter season of collection and outdoor occupation both predicted higher total UVAF, our data suggests that ocular sun exposure is associated with conjunctival UVAF and possibly, that UVAF remains for at least several months following sun exposure. PMID:27820717
NASA Astrophysics Data System (ADS)
Samimi, Peyman
The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base metal are well-understood. In addition lack of systematic oxidation studies across a wider domain of the alloy composition has complicated the determination of composition-mechanism-property relationships. Clearly, it would be ideal to assess the influence of composition and exposure time on the oxidation resistance, independent of experimental variabilities regarding time, temperature and atmosphere as the potential source of error. Such studies might also provide a series of metrics (e.g., hardness, scale, etc) that could be interpreted together and related to the alloy composition. In this thesis a novel combinatorial approach was adopted whereby a series of compositionally graded specimens, (Ti-xMo, Ti-xCr, Ti-xAl and Ti-xW) were prepared using Laser Engineered Net Shaping (LENS(TM)) technology and exposed to still-air at 650 °C. (Abstract shortened by ProQuest.).
Ticks and the Mammalian Meat Allergy
USDA-ARS?s Scientific Manuscript database
Warmer temperatures and longer days signal the start to spring and summer chores on most cattle ranches. While the time spent outdoors is refreshing after the winter months, it brings with it an increased risk for not only heat exhaustion and dehydration but also for exposure to disease-transmitting...
Franklin, Samuel Patrick; Stoker, Aaron M; Cockrell, Mary K; Pfeiffer, Ferris M; Sonny Bal, B; Cook, James L
2012-01-01
Our objective was to determine whether low-temperature hydrogen peroxide (H2O2) gas plasma sterilization of porous three-dimensional poly(ϵ-caprolactone) (PCL) constructs significantly inhibits cellular metabolism of canine chondrocytes. Porous cylindrical constructs were fabricated using fused deposition modeling and divided into four sterilization groups. Two groups were sterilized with low-temperature H2O2 gas plasma (LTGP) and constructs from one of those groups were subsequently rinsed with Dulbecco's Modified Essential Media (LTGPDM). Constructs in the other two groups were disinfected with either 70% isopropyl alcohol or exposure to UV light. Canine chondrocytes were seeded in 6-well tissue-culture plates and allowed to adhere prior to addition of PCL. Cellular metabolism was assessed by adding resazurin to the tissue-culture wells and assessing conversion of this substrate by viable cells to the fluorescent die resorufin. This process was performed at three times prior to addition of PCL and at four times after addition of PCL to the tissue-culture wells. Metabolism was not significantly different among the different tissue-culture wells at any of the 3 times prior to addition of PCL. Metabolism was significantly different among the treatment groups at 3 of 4 times after addition of PCL to the tissue culture wells. Metabolism was significantly lower with constructs sterilized by LTGP than all other treatment groups at all 3 of these times. We conclude that LTGP sterilization of PCL constructs resulted in significant cytotoxicity to canine chondrocytes when compared to PCL constructs disinfected with either UV light exposure or 70% isopropyl alcohol.
Validation of a new whole-body cryotherapy chamber based on forced convection.
Bouzigon, Romain; Arfaoui, Ahlem; Grappe, Frédéric; Ravier, Gilles; Jarlot, Benoit; Dugue, Benoit
2017-04-01
Whole-body cryotherapy (WBC) and partial-body cryotherapy (PBC) are two methods of cold exposure (from -110 to -195°C according to the manufacturers). However, temperature measurement in the cold chamber during a PBC exposure revealed temperatures ranging from -25 to -50°C next to the skin of the subjects (using isolating layer placed between the sensor and the skin). This discrepancy is due to the human body heat transfer. Moreover, on the surface of the body, an air layer called the boundary layer is created during the exposure and limits heat transfer from the body to the cabin air. Incorporating forced convection in a chamber with a participant inside could reduce this boundary layer. The aim of this study was to explore the use of a new WBC technology based on forced convection (frontal unilateral wind) through the measurement of skin temperature. Fifteen individuals performed a 3-min WBC exposure at -40°C with an average wind speed of 2.3ms -1 . The subjects wore a headband, a surgical mask, underwear, gloves and slippers. The skin temperature of the participants was measured with a thermal camera just before exposure, just after exposure and at 1, 3, 5, 10, 15 and 20min after exposure. Mean skin temperature significantly dropped by 11°C just after exposure (p<0.001) and then significantly increased during the 20-min post exposure period (p<0.001). No critically low skin temperature was observed at the end of the cold exposure. This decrease was greater than the mean decreases in all the cryosauna devices with reported exposures between -140°C and -160°C and those in two other WBC devices with reported exposures between -60°C and -110°C. The use of this new technology provides the ability to reach decreases in skin temperature similar to other technologies. The new chamber is suitable and relevant for use as a WBC device. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mohebian, Zohreh; Farhang Dehghan, Somayeh; Dehghan, Habiballah
2018-01-01
Heat exposure and unsuitable lighting are two physical hazardous agents in many workplaces for which there are some evidences regarding their mental effects. The purpose of this study was to assess the combined effect of heat exposure and different lighting levels on the attention rate and reaction time in a climatic chamber. This study was conducted on 33 healthy students (17 M/16 F) with a mean (±SD) age of 22.1 ± 2.3 years. The attention and reaction time test were done by continuous performance test and the RT meter, respectively, in different exposure conditions including the dry temperatures (22°C and 37°C) and lighting levels (200, 500, and 1500 lux). Findings demonstrated that increase in heat and lighting level caused a decrease in average attention percentage and correct responses and increase in commission error, omission error, and response time ( P < 0.05). The average of simple, diagnostic, two-color selective, and two-sound selective reaction times increased after combined exposure to heat and lighting ( P < 0.05). The results of this study indicated that, in job task which requires using cognitive functions like attention, vigilance, concentration, cautiousness, and reaction time, the work environment must be optimized in terms of heat and lighting level.
Sliney, David H
2002-01-01
The geographical variations in the incidence of age-related ocular changes such as presbyopia and cataracts and diseases such as pterygium and droplet keratopathies have led to theories pointing to sunlight, ultraviolet radiation (UVR) exposure and ambient temperature as potential etiological factors. Some epidemiological evidence also points to an association of age-related macular degeneration to sunlight exposure. The actual distribution of sunlight exposure and the determination of temperature variations of different tissues within the anterior segment of the eye are difficult to assess. Of greatest importance are the geometrical factors that influence selective UVR exposures to different segments of the lens, cornea and retina. Studies show that the temperature of the lens and cornea varies by several degrees depending upon climate, and that the incidence of nuclear cataract incidence is greater in areas of higher ambient temperature (i.e., in the tropics). Likewise, sunlight exposure to local areas of the cornea, lens and retina varies greatly in different environments. However, epidemiological studies of the influence of environmental UVR in the development of cataract, pterygium, droplet keratopathies and age-related macular degeneration have produced surprisingly inconsistent findings. The lack of consistent results is seen to be due largely to either incomplete or erroneous estimates of outdoor UV exposure dose. Geometrical factors dominate the determination of UVR exposure of the eye. The degree of lid opening limits ocular exposure to rays entering at angles near the horizon. Clouds redistribute overhead UVR to the horizon sky. Mountains, trees and building shield the eye from direct sky exposure. Most ground surfaces reflect little UVR. The result is that highest UVR exposure occurs during light overcast where the horizon is visible and ground surface reflection is high. By contrast, exposure in a high mountain valley (lower ambient temperature) with green foliage results in a much lower ocular dose. Other findings of these studies show that retinal exposure to light and UVR in daylight occurs largely in the superior retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Michael G.
Two devices, an occupational carbon monoxide (CO) dosimeter (LOCD), and an indoor air quality (IAQ) passive sampler were developed for use in population-based CO exposure assessment studies. CO exposure is a serious public health problem in the U.S., causing both morbidity and mortality (lifetime mortality risk approximately 10{sup -4}). Sparse data from population-based CO exposure assessments indicate that approximately 10% of the U.S. population is exposed to CO above the national ambient air quality standard. No CO exposure measurement technology is presently available for affordable population-based CO exposure assessment studies. The LOCD and IAQ Passive Sampler were tested in themore » laboratory and field. The palladium-molybdenum based CO sensor was designed into a compact diffusion tube sampler that can be worn. Time-weighted-average (TWA) CO exposure of the device is quantified by a simple spectrophotometric measurement. The LOCD and IAQ Passive Sampler were tested over an exposure range of 40 to 700 ppm-hours and 200 to 4200 ppm-hours, respectively. Both devices were capable of measuring precisely (relative standard deviation <20%), with low bias (<10%). The LOCD was screened for interferences by temperature, humidity, and organic and inorganic gases. Temperature effects were small in the range of 10°C to 30°C. Humidity effects were low between 20% and 90% RH. Ethylene (200 ppm) caused a positive interference and nitric oxide (50 ppm) caused a negative response without the presence of CO but not with CO.« less
Exposure- and flux-based assessment of ozone risk to sugarcane plants
NASA Astrophysics Data System (ADS)
Moura, Bárbara Baêsso; Hoshika, Yasutomo; Ribeiro, Rafael Vasconcelos; Paoletti, Elena
2018-03-01
Ozone (O3) is a toxic oxidative air pollutant, with significant detrimental effects on crops. Sugarcane (Saccharum spp.) is an important crop with no O3 risk assessment performed so far. This study aimed to assess O3 risk to sugarcane plants by using exposure-based indices (AOT40 and W126) based on O3 concentrations in the air, and the flux-based index (PODy, where y is a threshold of uptake) that considers leaf O3 uptake and the influence of environmental conditions on stomatal conductance (gsto). Two sugarcane genotypes (IACSP94-2094 and IACSP95-5000) were subjected to a 90-day Free-Air Controlled Experiment (FACE) exposure at three levels of O3 concentrations: ambient (Amb); Amb x1.2; and Amb x1.4. Total above-ground biomass (AGB), stalk biomass (SB) and leaf biomass (LB) were evaluated and the potential biomass production in a clean air was estimated by assuming a theoretical clean atmosphere at 10 ppb as 24 h O3 average. The Jarvis-type multiplicative algorithm was used to parametrize gsto including environmental factors i.e. air temperature, light intensity, air vapor pressure deficit, and minimum night-time temperature. Ozone exposure caused a negative impact on AGB, SB and LB. The O3 sensitivity of sugarcane may be related to its high gsto (∼535 mmol H2O m-2 s-1). As sugarcane is adapted to hot climate conditions, gsto was restricted when the current minimum air temperature (Tmin) was below ∼14 °C and the minimum night-time air temperature of the previous day (Tnmin) was below ∼7.5 °C. The flux-based index (PODy) performed better than the exposure-based indices in estimating O3 effect on biomass losses. We recommend a y threshold of 2 nmol m-2 s-1 to incorporate O3 effects on both AGB and SB and 1 nmol m-2 s-1 on LB. In order not to exceed 4% reduction in the growth of these two sugarcane genotypes, we recommend the following critical levels: 1.09 and 1.04 mmol m-2 POD2 for AGB, 0.91 and 0.96 mmol m-2 POD2 for SB, and 3.00 and 2.36 mmol m-2 POD1 for LB of IACSP95-5000 and IACSP94-2094, respectively.
Gao, Chuansi; Lin, Li-Yen; Halder, Amitava; Kuklane, Kalev; Holmér, Ingvar
2015-01-01
American standard ASTM F2732 estimates the lowest environmental temperature for thermal comfort for cold weather protective clothing. International standard ISO 11079 serves the same purpose but expresses cold stress in terms of required clothing insulation for a given cold climate. The objective of this study was to validate and compare the temperature ratings using human subject tests at two levels of metabolic rates (2 and 4 MET corresponding to 116.4 and 232.8 W/m(2)). Nine young and healthy male subjects participated in the cold exposure at 3.4 and -30.6 °C. The results showed that both standards predict similar temperature ratings for an intrinsic clothing insulation of 1.89 clo and for 2 MET activity. The predicted temperature rating for 2 MET activity is consistent with test subjects' thermophysiological responses, perceived thermal sensation and thermal comfort. For 4 MET activity, however, the whole body responses were on the cold side, particularly the responses of the extremities. ASTM F2732 is also limited due to its omission and simplification of three climatic variables (air velocity, radiant temperature and relative humidity) and exposure time in the cold which are of practical importance. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young
2016-10-01
This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.
Static and dynamic cyclic oxidation of 12 nickel-, cobalt-, and iron-base high-temperature alloys
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Johnston, J. R.; Sanders, W. A.
1978-01-01
Twelve typical high-temperature nickel-, cobalt-, and iron-base alloys were tested by 1 hr cyclic exposures at 1038, 1093, and 1149 C and 0.05 hr exposures at 1093 C. The alloys were tested in both a dynamic burner rig at Mach 0.3 gas flow and in static air furnace for times up to 100 hr. The alloys were evaluated in terms of specific weight loss as a function of time, and X-ray diffraction analysis and metallographic examination of the posttest specimens. A method previously developed was used to estimate specific metal weight loss from the specific weight change of the sample. The alloys were then ranked on this basis. The burner-rig test was more severe than a comparable furnace test and resulted in an increased tendency for oxide spalling due to volatility of Cr in the protective scale and the more drastic cooling due to the air-blast quench of the samples. Increased cycle frequency also increased the tendency to spall for a given test exposure. The behavior of the alloys in both types of tests was related to their composition and their tendency to form scales. The alloys with the best overall behavior formed alpha-Al2O3 aluminate spinels.
Performance of bolted closure joint elastomers under cask aging conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.; Sindelar, R.; Skidmore, E.
The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperaturemore » and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.« less
Chung, Nana; Park, Jonghoon; Lim, Kiwon
2017-01-01
[Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively). NRF1 protein levels did not show a significant effect in any experimental treatments. Tfam protein levels showed a significant effect in the exercise group (p=0.012), but effects of neither cold exposure nor the interaction were significant (p = 0.085 and p=0.374, respectively). [Conclusion] Exercise and cold exposure promoted increased expression of mitochondrial biogenesis- related genes in soleus muscle. Only cold exposure had a significant effect on PGC-1α protein expression and only exercise had a significant effect on Tfam protein expression. In inguinal adipose tissue, there was interaction between exercise and cold exposure in expression of mitochondrial biogenesis-related genes. PMID:28715885
King, Sibella G; Ahuja, Kiran D K; Wass, Jezreel; Shing, Cecilia M; Adams, Murray J; Davies, Justin E; Sharman, James E; Williams, Andrew D
2013-05-01
Aortic pulse wave velocity (PWV) and augmentation index (AIx) are independent predictors of cardiovascular risk and mortality, but little is known about the effect of air temperature changes on these variables. Our study investigated the effect of exposure to whole-body mild-cold on measures of arterial stiffness (aortic and brachial PWV), and on central haemodynamics [including augmented pressure (AP), AIx], and aortic reservoir components [including reservoir and excess pressures (P ex)]. Sixteen healthy volunteers (10 men, age 43 ± 19 years; mean ± SD) were randomised to be studied under conditions of 12 °C (mild-cold) and 21 °C (control) on separate days. Supine resting measures were taken at baseline (ambient temperature) and after 10, 30, and 60 min exposure to each experimental condition in a climate chamber. There was no significant change in brachial blood pressure between mild-cold and control conditions. However, compared to control, AP [+2 mmHg, 95 % confidence interval (CI) 0.36-4.36; p = 0.01] and AIx (+6 %, 95 % CI 1.24-10.1; p = 0.02) increased, and time to maximum P ex (a component of reservoir function related to timing of peak aortic in-flow) decreased (-7 ms, 95 % CI -15.4 to 2.03; p = 0.01) compared to control. Yet there was no significant change in aortic PWV (+0.04 m/s, 95 % CI -0.47 to 0.55; p = 0.87) or brachial PWV (+0.36 m/s; -0.41 to 1.12; p = 0.35) between conditions. We conclude that mild-cold exposure increases central haemodynamic stress and alters timing of peak aortic in-flow without differentially affecting arterial stiffness.
NASA Astrophysics Data System (ADS)
Liss, Alexander
Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate regionalization method algorithmically forms eight climatically homogeneous regions for Conterminous US from satellite Remote Sensing inputs. The relative risk of hospitalizations due to extreme ambient temperature varied across climatic regions. Difference in regional hospitalization rates suggests presence of an adaptation effect to a prevailing climate. In various climatic regions the hospitalizations peaked earlier than the peak of exposure. This suggests disproportionally high impact of extreme weather events, such as cold spells or heat waves when they occur early in the season. These findings provide an insight into the use of high frequency disjoint data sets for the assessment of the magnitude, timing, synchronization and non-linear properties of adverse health consequences due to exposure to extreme weather events to the elderly in defined climatic regions. These findings assist in the creation of decision support frameworks targeting preventions and adaptation strategies such as improving infrastructure, providing energy assistance, education and early warning notifications for the vulnerable population. This dissertation offers a number of methodological innovations for the assessment of the high frequency spatio-temporal and non-linear impacts of extreme weather events on human health. These innovations help to ensure an improved protection of the elderly population, aid policy makers in the development of efficient disaster prevention strategies, and facilitate more efficient allocation of scarce resources.
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
2003-01-01
The cyclic oxidation test results for some 1000 high temperature commercial and experimental alloys have been collected in an EXCEL database. This database represents over thirty years of research at NASA Glenn Research Center in Cleveland, Ohio. The data is in the form of a series of runs of specific weight change versus time values for a set of samples tested at a given temperature, cycle time, and exposure time. Included on each run is a set of embedded plots of the critical data. The nature of the data is discussed along with analysis of the cyclic oxidation process. In addition examples are given as to how a set of results can be analyzed. The data is assembled on a read-only compact disk which is available on request from Materials Durability Branch, NASA Glenn Research Center, Cleveland, Ohio.
Oxidation kinetics of CVD silicon carbide and silicon nitride
NASA Technical Reports Server (NTRS)
Fox, Dennis S.
1992-01-01
The long-term oxidation behavior of pure, monolithic CVD SiC and Si3N4 is studied, and the isothermal oxidation kinetics of these two materials are obtained for the case of 100 hrs at 1200-1500 C in flowing oxygen. Estimates are made of lifetimes at the various temperatures investigated. Parabolic rate constants for SiC are within an order of magnitude of shorter exposure time values reported in the literature. The resulting silica scales are in the form of cristobalite, with cracks visible after exposure. The oxidation protection afforded by silica for these materials is adequate for long service times under isothermal conditions in 1-atm dry oxygen.
Pourmirza, Ali Asghr; Nasab, Fershteh Sadeghi; Zadeh, Abas Hossein
2007-08-01
The efficacy of acetone vapors against carefully aged eggs of Plodia interpunctella (Hubner) at 17+/-1 and 27+/-1 degrees C at different dosage levels of acetone over various exposure times was determined. Acetone was found to be toxic to Indian meal moth eggs. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. An inverse relationship between LD50 values and exposure times was observed in age groups of tested eggs. At 27+/-1 degrees C and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acetone than other age groups, followed by 0-1 day-old, 2-3 day-old and 3-4 day-old eggs. A similar pattern of susceptibility of eggs was observed at 72 h exposure. In all bioassays, eggs exposed to higher dosages of acetone developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17+/-1 to 27+/-1 degrees C greatly increased the efficacy of acetone. At 27+/-1 degrees C eggs of P. interpunctella were killed by less than one-third of the dosage required for control at 17+/-1 degrees C. Acetone achieved 50% mortality with a dosage of 82.76 mg L(-1) in 1-2 day-old eggs at 27+/-1 degrees C. At this temperature hatching was retarded and greatly diminished when eggs aged 1-2 day-old were exposed to 80 mg L(-1) of acetone for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17+/-1 or 27+/-1 degrees C, indicating that some development must have occurred under fumigation.
Reactive powder concrete reinforced with steel fibres exposed to high temperatures
NASA Astrophysics Data System (ADS)
Alrekabi, T. Kh; Cunha, V. M. C. F.; Barros, J. A. O.
2017-09-01
An experimental investigation was carried out to assess the mechanical properties of reactive powder concrete (RPC) reinforced with steel fibres (2% in vol.) when exposed to high temperatures. The compressive, flexural and tensile strength, modulus of elasticity and post-cracking behaviour were assessed after specimens’ exposure to different high temperatures ranging from 400 to 700°C. The mechanical properties of the RPC were assessed for specimens dried for 24 hours at 60 °C and 100 °C. Partially dried specimens (60 °C) exhibited explosive spalling at nearby 450 °C, while fully dried RPC specimens (100 °C) maintained their integrity after heating exposure. In general, the mechanical properties of RPC significantly decreased with the increase of the temperature exposure. The rate of decrease with temperature of the compressive, tensile and flexural strengths, as well the corresponding post-cracking residual stresses was higher for exposure temperatures above the 400 °C.
High-temperature effect of hydrogen on sintered alpha-silicon carbide
NASA Technical Reports Server (NTRS)
Hallum, G. W.; Herbell, T. P.
1986-01-01
Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.
The Effect of Prior Exposures on the Notched Fatigue Behavior of Disk Superalloy ME3
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gabb, Tim P.; Hull, David R.; Perea, Daniel E.; Schreiber, Daniel K.
2013-01-01
Environmental attack has the potential to limit turbine disk durability, particularly in next generation engines which will run hotter; there is a need to understand better oxidation at potential service conditions and develop models that link microstructure to fatigue response. More efficient gas turbine engine designs will require higher operating temperatures. Turbine disks are regarded as critical flight safety components; a failure is a serious hazard. Low cycle fatigue is an important design criteria for turbine disks. Powder metallurgy alloys, like ME3, have led to major improvements in temperature performance through refractory additions (e.g. Mo,W) at the expense of environmental resistance (Al, Cr). Service conditions for aerospace disks can produce major cycle periods extending from minutes to hours and days with total service times exceeding 1,000 hours in aerospace applications. Some of the effects of service can be captured by extended exposures at elevated temperature prior to LCF testing. Some details of the work presented here have been published.
Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr
NASA Astrophysics Data System (ADS)
Senkova, S. V.; Senkov, O. N.; Miracle, D. B.
2006-12-01
The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.
Sherif, El-Sayed M
2014-07-09
In this work, the results obtained from studying the anodic dissolution of pure iron and API X-65 5L pipeline steel after 40 min and 12 h exposure period in 4.0 wt % NaCl solutions at room temperature were reported. Potential-time, electrochemical impedance spectroscopy, potentiodynamic polarization, and chronoamperometric current-time at constant potential techniques were employed. It has been found that the iron electrode corrodes in the chloride test solutions faster than the API X-65 5L steel does under the same conditions. Increasing the exposure period for the electrodes from 40 min to 12 h showed a significant reduction in the corrosion parameters for both iron and steel in the 4.0 wt % NaCl solution. Results together confirmed clearly that the X-65 steel is superior to iron against corrosion in sodium chloride solutions.
Kemble, Sarah K; Lynfield, Ruth; DeVries, Aaron S; Drehner, Dennis M; Pomputius, William F; Beach, Michael J; Visvesvara, Govinda S; da Silva, Alexandre J; Hill, Vincent R; Yoder, Jonathan S; Xiao, Lihua; Smith, Kirk E; Danila, Richard
2012-03-01
Primary amebic meningoencephalitis (PAM), caused by the free-living ameba Naegleria fowleri, has historically been associated with warm freshwater exposures at lower latitudes of the United States. In August 2010, a Minnesota resident, aged 7 years, died of rapidly progressive meningoencephalitis after local freshwater exposures, with no history of travel outside the state. PAM was suspected on the basis of amebae observed in cerebrospinal fluid. Water and sediment samples were collected at locations where the patient swam during the 2 weeks preceding illness onset. Patient and environmental samples were tested for N. fowleri with use of culture and real-time polymerase chain reaction (PCR); isolates were genotyped. Historic local ambient temperature data were obtained. N. fowleri isolated from a specimen of the patient's brain and from water and sediment samples was confirmed using PCR as N. fowleri genotype 3. Surface water temperatures at the times of collection of the positive environmental samples ranged from 22.1°C to 24.5°C. August 2010 average air temperature near the exposure site was 25°C, 3.6°C above normal and the third warmest for August in the Minneapolis area since 1891. This first reported case of PAM acquired in Minnesota occurred 550 miles north of the previously reported northernmost case in the Americas. Clinicians should be aware that N. fowleri-associated PAM can occur in areas at much higher latitude than previously described. Local weather patterns and long-term climate change could impact the frequency of PAM.
Janssens, Lizanne; Stoks, Robby
2013-01-01
Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819
NASA Technical Reports Server (NTRS)
James, W. F.
1985-01-01
An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.
Brian, Jayne V; Harris, Catherine A; Runnalls, Tamsin J; Fantinati, Andrea; Pojana, Giulio; Marcomini, Antonio; Booy, Petra; Lamoree, Marja; Kortenkamp, Andreas; Sumpter, John P
2008-07-01
Chemical risk assessment is fraught with difficulty due to the problem of accounting for the effects of mixtures. In addition to the uncertainty arising from chemical-to-chemical interactions, it is possible that environmental variables, such as temperature, influence the biological response to chemical challenge, acting as confounding factors in the analysis of mixture effects. Here, we investigate the effects of temperature on the response of fish to a defined mixture of estrogenic chemicals. It was anticipated that the response to the mixture may be exacerbated at higher temperatures, due to an increase in the rate of physiological processing. This is a pertinent issue in view of global climate change. Fathead minnows (Pimephales promelas) were exposed to the mixture in parallel exposure studies, which were carried out at different temperatures (20 and 30 degrees C). The estrogenic response was characterised using an established assay, involving the analysis of the egg yolk protein, vitellogenin (VTG). Patterns of VTG gene expression were also analysed using real-time QPCR. The results revealed that there was no effect of temperature on the magnitude of the VTG response after 2 weeks of chemical exposure. However, the analysis of mixture effects at two additional time points (24 h and 7 days) revealed that the response was induced more rapidly at the higher temperature. This trend was apparent from the analysis of effects both at the molecular and biochemical level. Whilst this indicates that climatic effects on water temperature are not a significant issue with regard to the long-term risk assessment of estrogenic chemicals, the relevance of short-term effects is, as yet, unclear. Furthermore, analysis of the patterns of VTG gene expression versus protein induction gives an insight into the physiological mechanisms responsible for temperature-dependent effects on the reproductive phenology of species such as roach. Hence, the data contribute to our understanding of the implications of global climate change for wild fish populations.
Ozone and Survival in Four Cohorts with Potentially Predisposing Diseases
Schwartz, Joel
2011-01-01
Rationale: Time series studies have reported associations between ozone and daily deaths. Only one cohort study has reported the effect of long-term exposures on deaths, and little is known about effects of chronic ozone exposure on survival in susceptible populations. Objectives: We investigated whether ozone was associated with survival in four cohorts of persons with specific diseases in 105 United States cities, treating ozone as a time varying exposure. Methods: We used Medicare data (1985–2006), and constructed cohorts of persons hospitalized with chronic conditions that might predispose to ozone effects: chronic obstructive pulmonary disease, diabetes, congestive heart failure, and myocardial infarction. Yearly warm-season average ozone was merged to the individual follow-up in each city. We applied Cox proportional hazard model for each cohort within each city, adjusting for individual risk factors, temperature, and city-specific long-term trends. Measurements and Main Results: We found significant associations with a hazard ratio for mortality of 1.06 (95% confidence interval [CI], 1.03–1.08) per 5-ppb increase in summer average ozone for persons with congestive heart failure; of 1.09 (95% CI, 1.06–1.12) with myocardial infarction; of 1.07 (95% CI, 1.04–1.09) with chronic obstructive pulmonary disease; and of 1.07 (95% CI, 1.05–1.10) for diabetics. We also found that the effect varied by region, but that this was mostly explained by mean temperature, which is likely a surrogate of air conditioning use, and hence exposure. Conclusions: This is the first study that follows persons with specific chronic conditions, and shows that long-term ozone exposure is associated with increased risk of death in these groups. PMID:21700916
NASA Technical Reports Server (NTRS)
Hooker, M. W.; Wise, S. A.; Carlberg, I. A.; Stephens, R. M.; Simchick, R. T.; Farjami, A.
1993-01-01
An aging study was performed to determine the stability of YBa2Cu3O(7-x) ceramics in humid environments at 20 C. In this study, fired ceramic specimens were exposed to humidity levels ranging from 30.5 to 100 percent for 2-, 4-, and 6-week time intervals. After storage under these conditions, the specimens were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical resistance measurements. At every storage condition evaluated, the fired ceramics were found to interact with H2O present in the surrounding environment, resulting in the decomposition of the YBa2Cu3O(7-x) phase. XRD data showed that BaCO3, CuO, and Y2BaCuO5 were present after aging and that the peak intensities of these impurity phases increased both with increasing humidity level and with increasing time of exposure. Additionally, SEM analyses of the ceramic microstructures after aging revealed the development of needle-like crystallites along the surface of the test specimens after aging. Furthermore, the superconducting transition temperature T(sub c) was found to decrease both with increasing humidity level and with increasing time of exposure. All the specimens aged at 30.5, 66, and 81 percent relative humidity exhibited superconducting transitions above 80 K, although these values were reduced by the exposure to the test conditions. Conversely, the specimens stored in direct contact with water (100 percent relative humidity) exhibited no superconducting transitions.
High temperature exposure did not affect induced 2n pollen viability in Populus.
Tian, Mengdi; Zhang, Yuan; Liu, Yan; Kang, Xiangyang; Zhang, Pingdong
2018-02-11
High temperature exposure is widely used as a physical mutagenic agent to induce 2n gametes in Populus. However, whether high temperature exposure affects induced 2n pollen viability remains unknown. To clarify whether high temperature exposure affected the induced 2n pollen viability, 2n pollen induced by 38 and 41 °C temperatures, pollen morphology, 2n pollen germination in vitro, and crossing induced 2n pollen with normal gametes to produce a triploid was, based on observations of meiosis, conducted in Populus canescens. We found that the dominant meiotic stages (F = 56.6, p < .001) and the treatment duration (F = 21.4, p < .001) significantly affected the occurrence rate of induced 2n pollen. A significant decrease in pollen production and an increase in aborted pollen were observed (p < .001). High temperature sometimes affected in ectexine deposition and some narrow furrows were also analysed via details of ectexine structure. However, no significant difference in 2n pollen germination rate was observed between natural 2n pollen (26.7%) and high-temperature-induced 2n pollen (26.2%), and 42 triploids were created by crossing high-temperature-induced 2n pollen, suggesting that 38 and 41 °C temperatures exposure will not result in dysfunctional induced 2n pollen. © 2018 John Wiley & Sons Ltd.
Stehly, G.R.; Meinertz, J.R.; Gingerich, W.H.
1998-01-01
The pharmacokinetics of benzocaine during bath exposures at 1 mg/L were determined in rainbow trout acclimated at 6 °C, 12 °C or 18 °C for at least 1 month. Individual fish were exposed to benzocaine in a recirculating system for 4 h and pharmacokinetic parameters were estimated in a unique manner from the concentration of benzocaine in the bath water vs. time curve. Elimination from plasma was also determined after the 4 h exposure. The uptake clearance and metabolic clearance increased with increased acclimatization temperatures (uptake clearance 581 ± 179 mL/min/kg at 6 °C and 1154 ± 447 mL/ min/kg at 18 °C; metabolic clearance 15.2 ± 4.1 mL/min/kg at 6 °C and 22.3 ± 4.2 mL/min/kg at 18 °C). The apparent volume of distribution had a trend for increasing with temperature that was not significant at the 5% level (2369 ± 678 mL/kg at 6 °C to 3260 ± 1182 mL/kg at 18 °C). The elimination half-life of benzocaine in plasma was variable and did not differ significantly with temperature (60.8 ± 30.3 min at 6 °C to 35.9 ± 13.0 min at 12 °C). Elimination of benzocaine from rainbow trout is relatively rapid and even more rapid at higher acclimatization temperatures based on calculated metabolic clearances and measured plasma concentrations, but was not evident by measurement of terminal plasma half-lifes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, G.A. Jr.
The use of traditional laboratory toxicity test species in field exposures have proven to be a valuable assessment tool for monitoring effluent, water, sediment and storm water quality. Mimicking fluctuating exposures of stressors with associated interactions with differing physico-chemical variables is difficult. In situ exposures are conducted for similar time periods measuring similar response endpoints as in more traditional laboratory tests. However, organisms are transferred to the field and exposed in various types of test chambers. The author has observed responses which are similar and which are significantly different from simultaneous laboratory exposures. Temperature, dissolved oxygen, suspended solids, natural light,more » flow, and predation may affect in situ responses, but are often removed from laboratory exposures. The strengths and weaknesses observed with these test systems over the past few years will be reviewed.« less
Cálix-Lara, Thelma F; Kirsch, Katie R; Hardin, Margaret D; Castillo, Alejandro; Smith, Stephen B; Taylor, Thomas M
2015-06-01
Although studies have shown antimicrobial treatments consisting of hot water sprays alone or paired with lactic acid rinses are effective for reducing Escherichia coli O157:H7 loads on beef carcass surfaces, the mechanisms by which these interventions inactivate bacterial pathogens are still poorly understood. It was hypothesized that E. coli O157:H7 exposure to hot water in vitro at rising temperatures for longer time periods would result in increasing deterioration of bacterial outer membrane lipids, sensitizing the pathogen to subsequent lactic acid application. Cocktails of E. coli O157:H7 strains were subjected to hot water at 25 (control) 65, 75, or 85 °C incrementally up to 60 s, after which surviving cells were enumerated by plating. Formation of lipid hydroperoxides from bacterial membranes and cytoplasmic accumulation of L-lactic acid was quantified spectrophotometrically. Inactivation of E. coli O157:H7 proceeded in a hot water exposure duration- and temperature-dependent manner, with populations being reduced to nondetectable numbers following heating of cells in 85 °C water for 30 and 60 s (P < 0.05). Lipid hydroperoxide formation was not observed to be dependent upon increasing water temperature or exposure period. The data suggest that hot water application prior to organic acid application may function to increase the sensitivity of E. coli O157:H7 cells by degrading membrane lipids.
Therapeutic Applications Of Argon Laser
NASA Astrophysics Data System (ADS)
Brunetaud, J. M.; Mosquet, L.; Mordon, S.; Rotteleur, G.
1984-03-01
Argon laser has a C.W. emission and emits several lines between 487 and 544 nm. This radiation is well absorbed by living tissue and especially where there are red pigments (hemoglobin, myoglobin) or black pigments (melanine). Therapeutic applications mainly use thermal effects. By varying the parameters, (optic power, size of exposed area, exposure time) ; one can obtain a coagulation (maximal tissular temperature 60° - 80°) or a vaporization (temperature over 100°). Section occures when the vaporized area is very thin (below 0.5 mm).
NASA Technical Reports Server (NTRS)
Grant, H. P.; Przybyszewski, J. S.
1980-01-01
Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.
1996-01-01
A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.
1996-07-30
A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.
Predicting survival time for cold exposure
NASA Astrophysics Data System (ADS)
Tikuisis, Peter
1995-06-01
The prediction of survival time (ST) for cold exposure is speculative as reliable controlled data of deep hypothermia are unavailable. At best, guidance can be obtained from case histories of accidental exposure. This study describes the development of a mathematical model for the prediction of ST under sedentary conditions in the cold. The model is based on steady-state heat conduction in a single cylinder comprised of a core and two concentric annular shells representing the fat plus skin and the clothing plus still boundary layer, respectively. The ambient condition can be either air or water; the distinction is made by assigning different values of insulation to the still boundary layer. Metabolic heat production ( M) is comprised of resting and shivering components with the latter predicted by temperature signals from the core and skin. Where the cold exposure is too severe for M to balance heat loss, ST is largely determined by the rate of heat loss from the body. Where a balance occurs, ST is governed by the endurance time for shivering. End of survival is marked by the deep core temperature reaching a value of 30° C. The model was calibrated against survival data of cold water (0 to 20° C) immersion and then applied to cold air exposure. A sampling of ST predictions for the nude exposure of an average healthy male in relatively calm air (1 km/h wind speed) are the following: 1.8, 2.5, 4.1, 9.0, and >24 h for -30, -20, -10, 0, and 10° C, respectively. With two layers of loose clothing (average thickness of 1 mm each) in a 5 km/h wind, STs are 4.0, 5.6, 8.6, 15.4, and >24 h for -50, -40, -30, -20, and -10° C. The predicted STs must be weighted against the extrapolative nature of the model. At present, it would be prudent to use the predictions in a relative sense, that is, to compare or rank-order predicted STs for various combinations of ambient conditions and clothing protection.
Crosier, Adrienne E; Pukazhenthi, Budhan S; Henghali, Josephine N; Howard, Jogayle; Dickman, Amy J; Marker, Laurie; Wildt, David E
2006-04-01
Sperm cryopreservation is a valuable tool for the genetic management of ex situ populations. This study was conducted to assess: (1) semen characteristics of wild-born cheetahs; and (2) the impact of three types of glycerol influence (duration of exposure, temperature, and method of addition) on sperm cryosensitivity. To evaluate the impact of duration of glycerol exposure, spermatozoa were incubated in Test Yolk Buffer (TYB) with 4% glycerol at ambient temperature (approximately 22 degrees C) for 15 vs. 60 min before cryopreservation. To evaluate the influence of temperature and method of glycerol addition, spermatozoa were resuspended at ambient temperature either in TYB with 0% glycerol followed by addition of 8% glycerol (1:1 v/v; at ambient temperature vs. 5 degrees C) or directly in TYB with 4% glycerol. All samples were cryopreserved in straws over liquid nitrogen vapor and evaluated for sperm motility and acrosomal integrity after thawing. Semen samples (n = 23; n = 13 males) contained a high proportion (78%) of pleiomorphic spermatozoa. Ejaculates also contained a high proportion of acrosome-intact (86%) and motile spermatozoa (78%). Immediately after thawing, a significant proportion of spermatozoa retained intact acrosomes (range, 48-67%) and motility (range, 40-49%). After thawing, incubation in glycerol for 60 min at ambient temperature before freezing decreased (p < 0.05) sperm motility and acrosomal integrity at one time-point each (pre-centrifugation and post-centrifugation, respectively). However, method or temperature of glycerol addition had no (p > 0.05) impact on sperm cryosurvival. In summary, (1) wild-born cheetahs produce high proportions of pleiomorphic spermatozoa but with a high proportion of intact acrosomes; and (2) resuspension in 4% glycerol, followed by exposure for up to 60 min at ambient temperature, had minimal effect on sperm motility and acrosomal integrity after cryopreservation. Results indicate the feasibility of cryopreserving cheetah spermatozoa under field conditions, providing a user-friendly method to capture and store gametes to enhance genetic management.
Challenges associated with projecting urbanization-induced heat-related mortality.
Hondula, David M; Georgescu, Matei; Balling, Robert C
2014-08-15
Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables. Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983-2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (-95%) to an increase of 339 deaths per year (+359%). Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making. Copyright © 2014 Elsevier B.V. All rights reserved.
Bermingham, Jacqueline F; Chen, Yuen Y; McIntosh, Robert L; Wood, Andrew W
2014-04-01
Fluorescent intensity of the dye Rhodamine-B (Rho-B) decreases with increasing temperature. We show that in fresh rat brain tissue samples in a custom-made radiofrequency (RF) tissue exposure device, temperature rise due to RF radiation as measured by absorbed dye correlates well with temperature measured nearby by fiber optic probes. Estimates of rate of initial temperature rise (using both probe measurement and the dye method) accord well with estimates of local specific energy absorption rate (SAR). We also modeled the temperature characteristics of the exposure device using combined electromagnetic and finite-difference thermal modeling. Although there are some differences in the rate of cooling following cessation of RF exposure, there is reasonable agreement between modeling and both probe measurement and dye estimation of temperature. The dye method also permits measurement of regional temperature rise (due to RF). There is no clear evidence of local differential RF absorption, but further refinement of the method may be needed to fully clarify this issue. © 2014 Wiley Periodicals, Inc.
The Impact of Cycling Temperature on the Transmission of West Nile Virus.
Danforth, Mary E; Reisen, William K; Barker, Christopher M
2016-05-01
West Nile virus (WNV) is an important cause of disease in humans and animals. Risk of WNV infection varies seasonally, with the greatest risk during the warmest parts of the year due in part to the accelerated extrinsic incubation rate of the virus in mosquitoes. Rates of extrinsic incubation have been shown in constant-temperature studies to increase as an approximately linear function of temperature, but for other vector-borne pathogens, such as malaria or dengue virus, nonlinear relationships have been demonstrated under cycling temperatures near the thermal limits of pathogen replication. Using typical daily air temperature profiles from three key periods of WNV amplification in a hyperendemic area of WNV activity in California's Central Valley, as well as a fourth temperature profile based on exposures that would result from daily mosquito host-seeking and resting behavior, we explored the impacts of cycling temperatures on WNV transmission by Culex tarsalis Coquillett, one of the principal vectors in the western United States. The daily cycling temperature ranges studied were representative of those that occur across much of California, but they did not significantly alter the extrinsic incubation period of WNV compared with estimates from mean temperatures alone. This suggests that within the relatively broad range we studied, WNV incubation rates are a simple function of mean temperature. Realistic daily temperature patterns that reflected mosquitoes' avoidance of daytime high temperatures during summer reduced transmission over time compared with air temperatures, indicating that adjustment for mosquito exposure temperatures would be prudent for calculating risk. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Calculating the optimum temperature for serving hot beverages.
Brown, Fredericka; Diller, Kenneth R
2008-08-01
Hot beverages such as tea, hot chocolate, and coffee are frequently served at temperatures between 160 degrees F (71.1 degrees C) and 185 degrees F (85 degrees C). Brief exposures to liquids in this temperature range can cause significant scald burns. However, hot beverages must be served at a temperature that is high enough to provide a satisfactory sensation to the consumer. This paper presents an analysis to quantify hot beverage temperatures that balance limiting the potential scald burn hazard and maintaining an acceptable perception of adequate product warmth. A figure of merit that can be optimized is defined that quantifies and combines both the above effects as a function of the beverage temperature. An established mathematical model for simulating burns as a function of applied surface temperature and time of exposure is used to quantify the extent of thermal injury. Recent data from the literature defines the consumer preferred drinking temperature of coffee. A metric accommodates the thermal effects of both scald hazard and product taste to identify an optimal recommended serving temperature. The burn model shows the standard exponential dependence of injury level on temperature. The preferred drinking temperature of coffee is specified in the literature as 140+/-15 degrees F (60+/-8.3 degrees C) for a population of 300 subjects. A linear (with respect to temperature) figure of merit merged the two effects to identify an optimal drinking temperature of approximately 136 degrees F (57.8 degrees C). The analysis points to a reduction in the presently recommended serving temperature of coffee to achieve the combined result of reducing the scald burn hazard and improving customer satisfaction.
Uejio, C. K.; Tamerius, J. D.; Vredenburg, J.; Asaeda, G.; Isaacs, D. A.; Braun, J.; Quinn, A.; Freese, J. P.
2016-01-01
Most extreme heat studies relate outdoor weather conditions to human morbidity and mortality. In developed nations, individuals spend ~90% of their time indoors. This pilot study investigated the indoor environments of people receiving emergency medical care in New York City, NY, U.S., from July to August 2013. The first objective was to determine the relative influence of outdoor conditions as well as patient characteristics and neighborhood sociodemographics on indoor temperature and specific humidity (N = 764). The second objective was to determine whether cardiovascular or respiratory cases experience hotter and more humid indoor conditions as compared to controls. Paramedics carried portable sensors into buildings where patients received care to passively monitor indoor temperature and humidity. The case–control study compared 338 respiratory cases, 291 cardiovascular cases, and 471 controls. Intuitively, warmer and sunnier outdoor conditions increased indoor temperatures. Older patients who received emergency care tended to occupy warmer buildings. Indoor-specific humidity levels quickly adjusted to outdoor conditions. Indoor heat and humidity exposure above a 26 °C threshold increased (OR: 1.63, 95% CI: 0.98–2.68, P = 0.056), but not significantly, the proportion of respiratory cases. Indoor heat exposures were similar between cardiovascular cases and controls. PMID:26086869
Thermal strategies and energetics in two sympatric colubrid snakes with contrasted exposure.
Lelièvre, Hervé; Le Hénanff, Maxime; Blouin-Demers, Gabriel; Naulleau, Guy; Lourdais, Olivier
2010-03-01
The thermoregulatory strategy of reptiles should be optimal if ecological costs (predation risk and time devoted to thermoregulation) are minimized while physiological benefits (performance efficiency and energy gain) are maximized. However, depending on the exact shape of the cost and benefit curves, different thermoregulatory optima may exist, even between sympatric species. We studied thermoregulation in two coexisting colubrid snakes, the European whipsnake (Hierophis viridiflavus, Lacépède 1789) and the Aesculapian snake (Zamenis longissimus, Laurenti 1768) that diverge markedly in their exposure, but otherwise share major ecological and morphological traits. The exposed species (H. viridiflavus) selected higher body temperatures (approximately 30 degrees C) than the secretive species (Z. longissimus, approximately 25 degrees C) both in a laboratory thermal gradient and in the field. Moreover, this difference in body temperature was maintained under thermophilic physiological states such as digestion and molting. Physiological and locomotory performances were optimized at higher temperatures in H. viridiflavus compared to Z. longissimus, as predicted by the thermal coadaptation hypothesis. Metabolic and energetic measurements indicated that energy requirements are at least twice higher in H. viridiflavus than in Z. longissimus. The contrasted sets of coadapted traits between H. viridiflavus and Z. longissimus appear to be adaptive correlates of their exposure strategies.
NASA Technical Reports Server (NTRS)
Bales, T. T.; Cain, R. L.
1971-01-01
A study has been initiated to determine the effects of elevated-temperature exposure on the room-temperature mechanical properties of titanium honeycomb-core sandwich panels fabricated by brazing or spot diffusion bonding. Only flatwise tensile properties following exposure have been determined to date. Preliminary results indicate very little change in the flatwise tensile strength of sandwich panels fabricated by spot diffusion bonding following exposures of 10,000 hr at 600 and 800 F and 1000 hr at 1000 F. Titanium panels fabricated by using a Ti-Zr-Be braze alloy are susceptible to oxidation at elevated temperature and experience flatwise tensile strength degradation after continuous exposures of 7500 hr at 600 F, 1000 hr at 800 F, and less than 100 hr at 1000 F. It is possible that the exposure life of the brazed panels may be substantially increased if the panel edges are sealed to prevent oxidation of the braze alloy.
Miller, N C; Harris, M F
1994-01-01
Since vaccines may lose their potency if transported or stored outside the recommended temperature range (2-8 degrees C), we carried out a study in the Darwin area of the Northern Territory of Australia to determine the links in the cold chain, including the extent of vaccine monitoring, and whether the vaccines were being exposed to unsafe temperatures. Sabin oral poliomyelitis vaccine (OPV) and recombinant hepatitis-B (HB) vaccine were selected for special monitoring. A total of 127 vials of OPV and 144 vials of HB vaccine were dispatched during October, November and December 1990 to the government, independent health services and general practitioner surgeries which routinely administer these vaccines. We distributed the two vaccines with MonitorMark time/temperature and Coldside indicator tags attached to cards for recording the date, location and temperature exposures each time the vaccines were moved or used. A total of 65% of the OPV and 41% of the HB vaccine monitor cards were returned for analysis. The vaccines were transported and stored at one to four locations prior to being administered. Some 23% of tagged OPV was exposed for 48 hours or more to a temperature > 10 degrees C; 47.5% of tagged HB vaccines were exposed to -3 degrees C or less, the majority of them during storage in health facilities or clinics. Exposures were independent of distance from the distribution centre, mode of transport, or type of facility. Our results show that the vaccines were often exposed to temperatures outside the recommended range during transport and storage, putting them at risk of loss of potency.(ABSTRACT TRUNCATED AT 250 WORDS)
Stability of Phosphatidylethanol in Dry Blood Spot Cards
Bakhireva, Ludmila N.; Shrestha, Shikhar; Gutierrez, Hilda L.; Berry, Mike; Schmitt, Cheryl; Sarangarm, Dusadee
2016-01-01
Background The analysis of phosphatidylethanol, a promising direct ethanol metabolite, in dry blood spots (PEth-DBS) is advantageous due to ease of storage, transportation and minimal invasiveness of capillary blood collection. One potential application of PEth-DBS is to confirm prenatal alcohol exposure in newborns suspected of FASD; however, stability of PEth-DBS is largely unknown. Methods Phlebotomized samples from 31 adults with a history of alcoholism, admitted to the University of New Mexico Emergency Department, were analyzed for blood alcohol content and pipetted onto DBS cards (13 spots per patient). The first spot was analyzed within 2 weeks of collection for a baseline PEth; the remaining 12 spots were allocated into three temperature conditions (room temperature, 4°C, −80°C) for the repeated measures analysis. In addition, 5 newborn DBS samples with a baseline PEth>LOD were obtained from a prospective cohort at UNM and re-analyzed at 4 months after storage at −80°C. A mixed linear model was fitted to examine the effects of temperature, time and temperature–time interaction on PEth degradation over the first 9 months. Results The baseline PEth levels were 592.8 ± 86.7 ng/ml and 18.3 ± 4.8 ng/ml in adult and newborn samples, respectively. All DBS samples remained positive in successive samples in all temperature conditions. Results of mixed linear model demonstrated a significant effect of temperature (P < 0.001) on PEth degradation over 9 months. Conclusions PEth-DBS appears to be relatively stable, especially when stored at lower temperatures. These initial results are encouraging and highlight the PEth-DBS potential in retrospective assessment of alcohol exposure. PMID:26519350
[Principles of antisepsis, disinfection and sterilization].
Hernández-Navarrete, María-Jesús; Celorrio-Pascual, José-Miguel; Lapresta Moros, Carlos; Solano Bernad, Victor-Manuel
2014-12-01
This article aims to provide a brief review of the main concepts on which the prevention and control of infection are based. Antisepsis comprises a set of techniques aimed at the total sterilization, or at most, disinfection, removing germs that contaminate an environment. Both procedures must be preceded by an environmental cleanup in the location in which they intend to be applied. The disinfection is carried out using biocides or germicides. Antimicrobial chemicals, that have mechanisms of action and resistances very similar to antibiotics, are generating concern due to the possibility of crossing genetic information that aggravates the problem of bacterial resistance. Most biocides can act as antiseptics, and applied to skin tissue, or disinfectants on inanimate materials. The spectrum of action of germicides depends on the product itself and external controllable factors: temperature, concentration, exposure time, etc. Sterilization techniques are primarily physical, by exposing the material to steam, or sterilizing gas, using autoclaves. Major advances are the use of low temperatures with shorter exposure times, in parallel with technological advances in instrumentation in order to avoid high temperatures and high use rotations due to workload. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.
Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A
2008-04-02
Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.
Flow Reactor for studying Physicochemical and aging properties of SOA
NASA Astrophysics Data System (ADS)
Babar, Z. B.
2016-12-01
Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.
Andersen, Øivind; Frantzen, Marianne; Rosland, Marte; Timmerhaus, Gerrit; Skugor, Adrijana; Krasnov, Aleksei
2015-08-01
Petroleum-related activities in the Arctic have raised concerns about the adverse effects of potential oil spill on the environment and living organisms. Polar cod plays a key role in the Arctic marine ecosystem and is an important species for monitoring oil pollution in this region. We examined potential interactions of oil pollution and global warming by analysing liver transcriptome changes in polar cod exposed to crude oil at elevated temperature. Adult males and females were kept at high (11°C) or normal (4°C) temperature for 5 days before exposure to mechanically dispersed crude oil for 2 days followed by recovery in clean sea water for 11 days at the two temperatures. Genome-wide microarray analysis of liver samples revealed numerous differentially expressed genes induced by uptake of oil as confirmed by increased levels of bile polycyclic aromatic hydrocarbon (PAH) metabolites. The hepatic response included genes playing important roles in xenobiotic detoxification and closely related biochemical processes, but also of importance for protein stress response, cell repair and immunity. Though magnitude of transcriptome responses was similar at both temperatures, the upregulated expression of cyp1a1 and several chaperone genes was much stronger at 11°C. Most gene expression changes returned to basal levels after recovery. The microarray results were validated by qPCR measurement of eleven selected genes representing both known and novel biomarkers to assess exposure to anthropogenic threats on polar cod. Strong upregulation of the gene encoding fibroblast growth factor 7 is proposed to protect the liver of polar fish with aglomerular kidneys from the toxic effect of accumulated biliary compounds. The highly altered liver transcriptome patterns after acute oil exposure and recovery suggests rapid responses in polar cod to oil pollutants and the ability to cope with toxicity in relatively short time. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of gravity on the circadian timing system
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Hoban-Higgins, T. M.; Griffin, D. W.; Murakami, D. M.
1994-01-01
The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.
NASA Astrophysics Data System (ADS)
Waltham, Nathan J.; Sheaves, Marcus
2017-09-01
Understanding acute hyperthermic exposure risk to animals, including fish in tropical estuaries, is increasingly necessary under future climate change. To examine this hypothesis, fish (upper water column species - glassfish, Ambassis vachellii; river mullet, Chelon subviridis; diamond scale mullet, Ellochelon vaigiensis; and ponyfish, Leiognathus equulus; and lower water bottom dwelling species - whiting Sillago analis) were caught in an artificial tidal lake in tropical north Queensland (Australia), and transported to a laboratory tank to acclimate (3wks). After acclimation, fish (between 10 and 17 individuals each time) were transferred to a temperature ramping experimental tank, where a thermoline increased (2.5 °C/hr; which is the average summer water temperature increasing rate measured in the urban lakes) tank water temperature to establish threshold points where each fish species lost equilibrium (defined here as Acute Effect Temperature; AET). The coolest AET among all species was 33.1 °C (S. analis), while the highest was 39.9 °C (A. vachellii). High frequency loggers were deployed (November and March representing Austral summer) in the same urban lake where fish were sourced, to measure continuous (20min) surface (0.15 m) and bottom (0.1 m) temperature to derive thermal frequency curves to examine how often lake temperatures exceed AET thresholds. For most fish species examined, water temperature that could be lethal were exceeded at the surface, but rarely, if ever, at the bottom waters suggesting deep, cooler, water provides thermal refugia for fish. An energy-balance model was used to estimate daily mean lake water temperature with good accuracy (±1 °C; R2 = 0.91, modelled vs lake measured temperature). The model was used to predict climate change effects on lake water temperature, and the exceedance of thermal threshold change. A 2.3 °C climate warming (based on 2100 local climate prediction) raised lake water temperature by 1.3 °C. However, small as this increase might seem, it led to a doubling of time that water temperatures were in excess of AET thresholds at the surface, but also the bottom waters that presently provide thermal refugia for fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scervini, M.; Palmer, J.; Haggard, D.C.
2015-07-01
Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation formore » relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of Cambridge have been investigated. The rationale for the superior performance of the type N using a customized sheath developed at the University of Cambridge is explained in comparison with the behavior of conventional type N Inconel 600 sheathed thermocouples. (authors)« less
Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K
2015-08-04
Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM counterpart (84%) while Hg(0) vapor was measured in the presence of ammonia (NH3), humidity, and a number of volatile organic compounds at the chosen operating temperature of 55 °C.
Environmental exposure effects on composite materials for commercial aircraft
NASA Technical Reports Server (NTRS)
Hoffman, Daniel J.; Bielawski, William J.
1991-01-01
A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.
NASA Astrophysics Data System (ADS)
Kelly, Michael William
This research was primarily motivated to determine the retinal injury mechanism from ultra-short pulse (<1ns) lasers. The American National Standards Institute, ANSI, standards for safe retinal exposures, and mechanisms for injury, are established for pulse durations longer than 1 ns. Little data exists for shorter pulse durations. High temperatures and pressures, generated within pigmented melanosomes, leads to mechanically mediated injury for such exposures. We used nanosecond time resolved imaging to evaluate transient photo-mechanical effects on isolated melanosomes, pigmented cell cultures, and the retinal pigment epithelium, RPE, ex-vivo. Exposures between 20 ns and 100 fs were performed. We developed a unique ex-vivo model to examine transient events directly on the RPE. Evaluation of cell viability was accomplished in real time, minutes after the exposure. The threshold for cavitation (bubble formation) around single melanosomes corresponded with the threshold for intracellular cavitation and cell killing, in the nanosecond and picosecond domain. Shock waves, formed around melanosomes following sub-nanosecond exposures, did not affect the mechanism for cell killing at threshold. Although the wavelength was increased for shorter exposures (3 ps, 300 fs, and 100 fs) the threshold for intracellular cavitation decreased. All results were compared with data collected by others, using live animal models.
Pregnant Women Models Analyzed for RF Exposure and Temperature Increase in 3T RF Shimmed Birdcages
Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J.; Kainz, Wolfgang; Kuster, Niels
2017-01-01
Purpose MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. Theory and Methods RF shimming improves B1+ uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Results Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures—up to 40.8°C—are equal in fetus and mother. Conclusions Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. PMID:27174499
Stephenson, D J; Lillquist, D R
2001-04-01
Occupational hygienists perform air sampling to characterize airborne contaminant emissions, assess occupational exposures, and establish allowable workplace airborne exposure concentrations. To perform these air sampling applications, occupational hygienists often compare an airborne exposure concentration to a corresponding American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) or an Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL). To perform such comparisons, one must understand the physiological assumptions used to establish these occupational exposure limits, the relationship between a workplace airborne exposure concentration and its associated TLV or PEL, and the effect of temperature and pressure on the performance of an accurate compliance evaluation. This article illustrates the correct procedure for performing compliance evaluations using airborne exposure concentrations expressed in both parts per million and milligrams per cubic meter. In so doing, a brief discussion is given on the physiological assumptions used to establish TLVs and PELs. It is further shown how an accurate compliance evaluation is fundamentally based on comparison of a measured work site exposure dose (derived from the sampling site exposure concentration estimate) to an estimated acceptable exposure dose (derived from the occupational exposure limit concentration). In addition, this article correctly illustrates the effect that atmospheric temperature and pressure have on airborne exposure concentrations and the eventual performance of a compliance evaluation. This article also reveals that under fairly moderate conditions of temperature and pressure, 30 degrees C and 670 torr, a misunderstanding of how varying atmospheric conditions affect concentration values can lead to a 15 percent error in assessing compliance.
Exposure to chlorine dioxide gas for 4 hours renders Syphacia ova nonviable.
Czarra, Jane A; Adams, Joleen K; Carter, Christopher L; Hill, William A; Coan, Patricia N
2014-07-01
The purpose of our study was to evaluate the efficacy of chlorine dioxide gas for environmental decontamination of Syphacia spp. ova. We collected Syphacia ova by perianal cellophane tape impression of pinworm-infected mice. Tapes with attached ova were exposed to chlorine dioxide gas for 1, 2, 3, or 4 h. After gas exposure, ova were incubated in hatching medium for 6 h to promote hatching. For controls, tapes with attached ova were maintained at room temperature for 1, 2, 3, and 4 h without exposure to chlorine dioxide gas and similarly incubated in hatch medium for 6 h. Ova viability after incubation was assessed by microscopic examination. Exposure to chlorine dioxide gas for 4 h rendered 100% of Syphacia spp. ova nonviable. Conversely, only 17% of ova on the 4-h control slide were nonviable. Other times of exposure to chlorine dioxide gas resulted in variable effectiveness. These data suggest that exposure to chlorine dioxide gas for at least 4 h is effective for surface decontamination of Syphacia spp. ova.
The impact of total suspended particulate concentration on workers’ health at ceramic industry
NASA Astrophysics Data System (ADS)
Sintorini, M. M.
2018-01-01
Ceramic production process pollutes the air with particulate matter at high concentration and has negative impact on the workers. The objective of this research was to determine the particulate concentration in the air and to analyse its impact on the workers. This research used cross sectional method to correlate the particulate concentration, temperature, humidity, smoke level and level of workers’ compliance with safety regulations. Sampling was conducted from April to May 2012 in three locations, i.e. exposure area (Mass Preparation I, II) and non-exposure area (Forming area). In the exposure area (Mass Preparation I and II) where the particulate concentrations were 22.3673 mg/m3 and 14.8277 mg/m3, and 58.33%, the workers had bad health status. In the non-exposure area, where the particulate concentration was 3.2185 mg/m3 and 25% the workers had bad health status. The Odds Ratio among the workers in exposure area was 4.2 times higher than the workers in the non-exposure area.
Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures
NASA Astrophysics Data System (ADS)
Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.
2013-12-01
A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.
Clove oil as an anaesthetic for adult sockeye salmon: Field trials
Woody, C.A.; Nelson, Jack L.; Ramstad, K.
2002-01-01
Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.
NASA Astrophysics Data System (ADS)
Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.
2017-09-01
Researchers have investigated the immediate effects of end-of-century climate change scenarios on many marine species, yet it remains unclear whether we can reliably predict how marine species may respond to future conditions because biota may become either more or less resistant over time. Here, we examined the role of pre-exposure to elevated temperature and reduced pH in mitigating the potential negative effects of future ocean conditions on polyps of a dangerous Irukandji jellyfish Alatina alata. We pre-exposed polyps to elevated temperature (28 °C) and reduced pH (7.6), in a full factorial experiment that ran for 14 d. We secondarily exposed original polyps and their daughter polyps to either current (pH 8.0, 25 °C) or future conditions (pH 7.6, 28 °C) for a further 34 d to assess potential phenotypic plastic responses and whether asexual offspring could benefit from parental pre-exposure. Polyp fitness was characterised as asexual reproduction, respiration, feeding, and protein concentrations. Pre-exposure to elevated temperature alone partially mitigated the negative effects of future conditions on polyp fitness, while pre-exposure to reduced pH in isolation completely mitigated the negative effects of future conditions on polyp fitness. Pre-exposure to the dual stressors, however, reduced fitness under future conditions relative to those in the control treatment. Under future conditions, polyps had higher respiration rates regardless of the conditions they were pre-exposed to, suggesting that metabolic rates will be higher under future conditions. Parent and daughter polyps responded similarly to the various treatments tested, demonstrating that parental pre-exposure did not confer any benefit to asexual offspring under future conditions. Importantly, we demonstrate that while pre-exposure to the stressors individually may allow Irukandji polyps to acclimate over short timescales, the stressors are unlikely to occur in isolation in the long term, and thus, warming and acidification in parallel may prevent polyp populations from acclimating to future ocean conditions.
Tarver, Matthew R.; Florane, Christopher B.; Zhang, Dunhua; Grimm, Casey; Lax, Alan R.
2012-01-01
The utilization of multiple castes is a shared feature of social insects. In termites, multiple extrinsic factors have been shown to impact caste differentiation; for example, increased temperature has been shown to increase soldier production. Also, application of exogenous methoprene has also been demonstrated to increase soldier production. The objective of this investigation was to examine and correlate the effects of temperature variation and methoprene treatments on termite caste differentiation, and identify the resulting changes in protein levels. Our results indicate that worker—to—soldier differentiation is modulated by temperature, where a greater number of soldiers developed at a higher rate at higher temperatures compared to lower temperatures. We analyzed total protein by sodium dodecyl sulfate Polyacrylamide gel electrophoresis and N-terminal sequencing and found several changes. Specifically, four proteins affected by temperature change were identified: Hexamerin-1, Hexamerin-2, Endo-beta 1,4 glucanase, and myosin. These proteins were further examined for their response to temperature, assay length (time), and exposure to the juvenile hormone analog methoprene. Hexamerin-1 protein showed a temperature—and assay length—dependent effect, while Hexamerin-2, Endo-beta 1, 4 glucanase, and myosin protein levels were all affected by temperature, assay length, and exposure to methoprene. Our analysis allows the correlation of temperature, assay length, and presence of methoprene with specific changes in protein levels that occur during caste differentiation. These results can be directly applied to better understand the complex developmental factors that control termite differentiation and guide the use of juvenile hormone analogs to maximize efficiency of termite eradication in the field. PMID:22943185
NASA Technical Reports Server (NTRS)
Monson, C. B.; Horowitz, J. M.; Horwitz, B. A.
1988-01-01
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.
Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep
2013-01-01
Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986
Preliminary results on the photo-transferred thermoluminescence from Ge-doped SiO2 optical fiber
NASA Astrophysics Data System (ADS)
Zulkepely, Nurul Najua; Amin, Yusoff Mohd; Md Nor, Roslan; Bradley, D. A.; Maah, Mohd Jamil; Mat Nawi, Siti Nurasiah; Wahib, Nur Fadira
2015-12-01
A study is made of photo-transferred thermoluminescence (PTTL), the TL being induced by transferring charge carriers from deeper to more superficial traps through energetic light exposure. Potential applications include dose reassessment in radiation dosimetry and also as a useful tool for dating. With incomplete emptying of deep traps following first readout, subsequent UV exposure is shown to lead to charge transfer to more shallow traps. Using Ge-doped SiO2 optical fibers exposed to 60Co gamma rays, the PTTL from the medium has been characterized in terms of the stimulation provided by exposure to a UV lamp and duration of exposure, maximum read-out temperature and pre-gamma irradiation dose. Ge-doped SiO2 optical fibers of flat cross-sectional shape have been used in this study. The efficiency of dose reassessment was compared to that of the highly popular phosphor-based TL detector TLD-100. Results show the maximum temperature of readout to have no measurable effect on the PTTL signal. For doses from 20 to 500 cGy, the method is shown to be effective using a UV lamp of wavelength 254 nm, also being indicative of potential application for doses on either side of the range currently investigated. A study was also made of the effect of UV exposure time on PTTL, seeking to determine the greatest accessible sensitivity and lowest measurable dose.
Malek, F.; Rani, K. A.; Rahim, H. A.; Omar, M. H.
2015-01-01
Individuals who report their sensitivity to electromagnetic fields often undergo cognitive impairments that they believe are due to the exposure of mobile phone technology. The aim of this study is to clarify whether short-term exposure at 1 V/m to the typical Global System for Mobile Communication and Universal Mobile Telecommunications System (UMTS) affects cognitive performance and physiological parameters (body temperature, blood pressure and heart rate). This study applies counterbalanced randomizing single blind tests to determine if sensitive individuals experience more negative health effects when they are exposed to base station signals compared with sham (control) individuals. The sample size is 200 subjects with 50.0% Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF) also known as sensitive and 50.0% (non-IEI-EMF). The computer-administered Cambridge Neuropsychological Test Automated Battery (CANTAB eclipseTM) is used to examine cognitive performance. Four tests are chosen to evaluate Cognitive performance in CANTAB: Reaction Time (RTI), Rapid Visual Processing (RVP), Paired Associates Learning (PAL) and Spatial Span (SSP). Paired sample t-test on the other hand, is used to examine the physiological parameters. Generally, in both groups, there is no statistical significant difference between the exposure and sham exposure towards cognitive performance and physiological effects (P’s > 0.05). PMID:26286015
Malek, F; Rani, K A; Rahim, H A; Omar, M H
2015-08-19
Individuals who report their sensitivity to electromagnetic fields often undergo cognitive impairments that they believe are due to the exposure of mobile phone technology. The aim of this study is to clarify whether short-term exposure at 1 V/m to the typical Global System for Mobile Communication and Universal Mobile Telecommunications System (UMTS) affects cognitive performance and physiological parameters (body temperature, blood pressure and heart rate). This study applies counterbalanced randomizing single blind tests to determine if sensitive individuals experience more negative health effects when they are exposed to base station signals compared with sham (control) individuals. The sample size is 200 subjects with 50.0% Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF) also known as sensitive and 50.0% (non-IEI-EMF). The computer-administered Cambridge Neuropsychological Test Automated Battery (CANTAB eclipse(TM)) is used to examine cognitive performance. Four tests are chosen to evaluate Cognitive performance in CANTAB: Reaction Time (RTI), Rapid Visual Processing (RVP), Paired Associates Learning (PAL) and Spatial Span (SSP). Paired sample t-test on the other hand, is used to examine the physiological parameters. Generally, in both groups, there is no statistical significant difference between the exposure and sham exposure towards cognitive performance and physiological effects (P's > 0.05).
Model-based ultrasound temperature visualization during and following HIFU exposure.
Ye, Guoliang; Smith, Penny Probert; Noble, J Alison
2010-02-01
This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cercospora leaf spot caused by Cercospora beticola is the major foliar disease effecting sugar beet (Beta vulgaris L.) production in North Dakota and Minnesota. The sterol demethylation inhibitor (DMI) fungicide tetraconazole is widely-used to manage Cercospora leaf spot. However, there has been an ...
Phenology of Pacific Northwest tree species
Connie Harrington; Kevin Ford; Brad St. Clair
2016-01-01
Phenology is the study of the timing of recurring biological events. For foresters, the most commonly observed phenological events are budburst, flowering, and leaf fall, but other harder to observe events, such as diameter-growth initiation, are also important. Most events that occur in the spring are influenced by past exposure to cool (chilling) temperatures and...
Wildland fires, favored by prolonged drought and rising temperatures, generate significant amounts of ambient particulate matter (PM), which has been linked to adverse health outcomes. The eastern North Carolina peat fires of Pocosin Lake in 2008 and Pains Bay in 2011 were some o...
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley
2016-01-01
A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.
NASA Astrophysics Data System (ADS)
Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.
2016-11-01
The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.
Rydosz, Artur; Szkudlarek, Aleksandra
2015-01-01
Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors’ response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films’ phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204
Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2006-12-01
Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.
NASA Astrophysics Data System (ADS)
Garcia-Fresnillo, L.; Shemet, V.; Chyrkin, A.; de Haart, L. G. J.; Quadakkers, W. J.
2014-12-01
In the present study the long-term behaviour of two ferritic steels, Crofer 22 APU and Crofer 22H, in contact with a Ni-mesh during exposure in simulated anode gas, Ar-4%H2-2%H2O, at 700 and 800 °C for exposure times up to 3000 h was investigated. Ni diffusion from the Ni-mesh into the steel resulted in the formation of an austenitic zone whereas diffusion of iron and chromium from the steel into the Ni-mesh resulted in the formation of chromia base oxides in the Ni-mesh. Depending on the chemical composition of the steel, the temperature and the exposure time, interdiffusion processes between ferritic steel and Ni-mesh also resulted in σ-phase formation at the austenite-ferrite interface and in Laves-phase dissolution in the austenitic zone. The extent and morphology of the σ-phase formation are discussed on the basis of thermodynamic considerations, including reaction paths in the ternary alloy system Fe-Ni-Cr.
Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry
2003-01-01
The objective of this viewgraph representation is to evaluate the effects of thermal exposure on the mechanical properties of both production mature and developmental Al-Li alloys. The researchers find for these alloys, the data clearly shows that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a signficant deficit in mechanical properties at higher exposure temperatures in all cases. Topics considered include: Al-Li alloys composition, key characteristics of Al-Li alloys and thermal exposure matrix.
Microstructural and strength stability of CVD SiC fibers in argon environment
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Hull, David R.
1991-01-01
The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation.
Microstructural and strength stability of CVD SiC fibers in argon environments
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Hull, David R.
1991-01-01
The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation.
Gow, A M; McDonald, A V; Pearson, G J; Setchell, D J
1999-01-01
Infrared lasers are reported to have thermal side effects which may damage pulp tissue. This study investigated the thermal effects of the pulsed Nd:YAG laser. Prepared, extracted teeth were measured prior to irradiation. Temperature was recorded using a thermocouple/data logging system. Laser irradiation was carried out with or without water spray for an exposure time of ten seconds. Results indicated that dry irradiation produced unacceptable temperature rises with dentine thicknesses used. Wet irradiation produced a significantly lower temperature rise. It was concluded that the Nd:YAG laser produced thermal effects which could potentially cause pulpal trauma. A water coolant was effective in reducing these thermal effects, but the temperature rise achieved whilst using water coolant may still cause pulpal damage.
Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind
2012-01-01
Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651
Kinetics of Escherichia coli destruction by microwave irradiation.
Fujikawa, H; Ushioda, H; Kudo, Y
1992-01-01
The kinetics of destruction of Escherichia coli cells suspended in a solution by microwave irradiation with a microwave oven were studied. During radiation at several powers, the temperature of 0.01 M phosphate buffer (PB), pH 7.0, in a glass beaker increased linearly at a rate of A (degrees Centigrade per second) according to the exposure time. When E. coli cells suspended in PB were exposed in the same beaker, the number of viable cells decreased according to the exposure time and the power used. The survival curve was approximated to a set of three linear parts. For each part, a rate constant of destruction (k) and an extrapolated starting temperature (T0) at several powers were estimated. Thereafter, the relationships between A and k and between A and T0 were studied. When a flat petri dish was used, the A value of exposed PB was lower and bacterial destruction was inhibited; the survival curve was similar to a curve predicted from the A value by using the relationships between the parameters. As the concentration of salt in the solution increased (from 0 to 1.35 M), the A value decreased and bacterial destruction was more suppressed. No remarkable difference between the destruction profiles for microwave exposure and conventional heating, which had the potential to generate an equal A value, was detected. These results showed that the parameter A of an irradiated solution is essential when kinetics of bacterial destruction by microwave exposure are studied and that the destruction profile can be interpreted mostly by means of thermal effects. PMID:1575494
Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature
NASA Technical Reports Server (NTRS)
Williams, D. N.; Wood, R. A.
1972-01-01
An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.
Evaluation of cold workplaces: an overview of standards for assessment of cold stress.
Holmér, Ingvar
2009-07-01
Many persons world wide are exposed to cold environments, either indoors for example in cold stores, or outdoors. Cold is a hazard to health and may affect safety and performance of work. Basis for the creation of safe and optimal working conditions may be obtained by the application of relevant international standards. ISO 11079 presents a method for evaluation of whole body heat balance. On the basis of climate and activity a required clothing insulation (IREQ) for heat balance is determined. For clothing with known insulation value an exposure time limited is calculated. ISO 11079 also includes criteria for assessment of local cooling. Finger temperatures should not be below 24 degrees C during prolonged exposures or 15 degrees C occasionally. Wind chill temperature indicates the risk of bare skin to freeze for combinations of wind and low temperatures. Special protection of airways is recommended at temperatures below -20 degrees C, in particular during heavy work. Additional standards are available describing evaluation strategies, work place observation checklists and checklist for medical screening. Risks associated with contact with cold surfaces can be evaluated with ISO 13732. The strategy and principles for assessment and prevention of cold stress are reviewed in this paper.
Depino, Amaicha Mara; Gross, Cornelius
2007-02-27
In humans, anxiety is accompanied by changes in autonomic nervous system function, including increased heart rate, body temperature, and blood pressure, and decreased heart rate variability. In rodents, anxiety is inferred by examining anxiety-related behavioral responses such as avoidance and freezing, and more infrequently by assessing autonomic responses to anxiogenic stimuli. However, few studies have simultaneously measured behavioral and autonomic responses to aversive stimuli in rodents and it remains unclear whether autonomic measures are reliable correlates of anxiety-related behavior in these animal models. Here we recorded for the first time heart rate and body temperature in freely moving BALB/c and C57BL/6 mice during exposure to an unfamiliar environment. Our data show that upon exposure to a novel open field, BALB/c mice showed increased anxiety-related behavior, reduced heart rate and higher heart rate variability (HRV) when compared with C57BL/6 mice. Regression analysis revealed a significant correlation between both heart rate and long-term HRV measures and locomotor activity and time spent in the center of the open field, but no correlation between body temperature and any behavioral variables. In the free exploration test, in which animals were allowed direct access to a novel environment from a familiar environment without experimenter handling, significant correlations were found only between heart rate and total locomotor activity, but not time spent in the unfamiliar chamber despite increased anxiety-related behavior in BALB/c mice. These findings demonstrate that increased anxiety-related behavior in BALB/c mice is not associated with specific changes in heart rate, HRV, or body temperature.
Booth, David T; Evans, Andrew
2011-01-01
For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.
NASA Astrophysics Data System (ADS)
Sidereas, P.; Patil, D. S.; Garcia, R.; Tracy, R. P.; Holzman, J. M.
2007-11-01
In the industrial setting it is not uncommon for a process interruption to occur during irradiation. In this event, dosimeters may be exposed to prolonged periods of elevated temperature without exposure to ionizing radiation. Once the process is restarted, the same dosimeters are exposed to ionizing radiation in order to achieve target dose. The goal of this experiment was to simulate a process interruption within limits and quantify the effects of a combination of factors (heat, time, and fractionation) on dosimeter response. We present an in-depth experimental study on the response of dosimeters that have been irradiated, stored for a fixed period of time at several temperatures, and then re-irradiated. This study was performed using Harwell Red 4034 polymethylmethacrylate (PMMA) and Kodak BioMax alanine film dosimeters.
Periago, J F; Prado, C
2005-04-01
During refuelling, people may easily be exposed to extremely high levels of gasoline vapour for a short time, although such exposure takes on more importance in the case of service station attendants. The volume of gasoline sold in refuelling operations and the ambient temperature can significantly increase the environmental level of benzene, toluene and xylene (BTX) vapours and, subsequently, the occupational risk of service station attendants. This is especially true in the case of benzene, the most important component of gasoline vapours from a toxicological point of view. The European Directive 98/70/EC, limiting the benzene composition of gasoline, and 94/63/EC, concerning the use of vapour recovery systems in the delivery of gasoline to services stations, were applied in Spain from January 2000 and 2002, respectively. In addition, a new limit value for occupational exposure of 3.25 mg/m(3) was fixed for benzene in Directive 97/42/EC, applied from June 2003. However, recent years have seen the growing use of diesel as well as of unleaded and reformulated gasoline. In this study, we analyse the differences found between air concentration levels of BTXs in 2000 and 2003, analysing samples taken from the personal breathing-zone of occupationally exposed workers in service stations. The results are compared with those obtained in a similar study carried out in 1995 (before the new regulations came into force). The study was carried out in two phases. The first phase was carried out in 2000, after application of the new legal regulation limiting the benzene concentration in gasoline. In this case, an occupationally exposed population of 28 service station attendants was sampled in July, with a mean ambient temperature of 30-31 degrees C. In the second phase, 19 exposed subjects were sampled in July 2003, one of the warmest months in recent years with mean temperatures of 35-36 degrees C during the time of exposure monitoring. The results were then compared with those obtained in 1995, for similar summer weather conditions (environmental temperature between 28 and 30 degrees C). A significant relationship between the volume of gasoline sold and the ambient concentration of aromatic hydrocarbons was found for each worker sampled in all three of the years. Furthermore, a significant decrease in the environmental levels of BTXs was observed after January 2000, especially in the case of benzene, with mean time-weighted average concentrations for 8 h of 736 microg/m(3) (range 272-1603) in 1995, 241 microg/m(3) (range 115-453) in 2000 and 163 microg/m(3) (range 36-564) in 2003, despite the high temperatures reached in the last mentioned year.
Fajt, Virginia R; Apley, Michael D; Brogden, Kim A; Skogerboe, Terry L; Shostrom, Valerie K; Chin, Ya-Lin
2004-05-01
To examine effects of danofloxacin and tilmicosin on continuously recorded body temperature in beef calves with pneumonia experimentally induced by inoculation of Mannheimia haemolytica. 41 Angus-cross heifers (body weight, 160 to 220 kg) without a recent history of respiratory tract disease or antimicrobial treatment, all from a single ranch. Radiotransmitters were implanted intravaginally in each calf. Pneumonia was induced intrabronchially by use of logarithmic-phase cultures of M. haemolytica. At 21 hours after inoculation, calves were treated with saline (0.9% NaCl) solution, danofloxacin, or tilmicosin. Body temperature was monitored from 66 hours before inoculation until 72 hours after treatment. Area under the curve (AUC) of the temperature-time plot and mean temperature were calculated for 3-hour intervals and compared among treatment groups. The AUCs for 3-hour intervals did not differ significantly among treatment groups for any of the time periods. Analysis of the mean temperature for 3-hour intervals revealed significantly higher temperatures at most time periods for saline-treated calves, compared with temperatures for antimicrobial-treated calves; however, we did not detect significant differences between the danofloxacin- and tilmicosin-treated calves. The circadian rhythm of temperatures before exposure was detected again approximately 48 hours after bacterial inoculation. Danofloxacin and tilmicosin did not differ in their effect on mean body temperature for 3-hour intervals but significantly decreased body temperature, compared with body temperature in saline-treated calves. Normal daily variation in body temperature must be considered in the face of respiratory tract disease during clinical evaluation of feedlot cattle.
Cicenaite, Aurelija; Huckins, James N.; Alvarez, David A.; Cranor, Walter L.; Gale, Robert W.; Kauneliene, Violeta; Bergqvist, Per-Anders
2007-01-01
Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD–air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (−16, −4, 22 and 40 °C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the −16 °C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration.
NASA Technical Reports Server (NTRS)
Edahl, Robert A., Jr.; Domack, Marcia
2004-01-01
Tensile properties were evaluated for four aluminum alloys that are candidates for airframe applications on high speed transport aircraft. These alloys included the Al-Cu-Mg-Ag alloys C415 and C416 and the Al-Cu-Li-Mg-Ag alloys RX818 and ML377. The Al-Cu-Mg alloys CM001, which was used on the Concorde SST, and 1143, which was modified from the alloy used on the TU144 Russian supersonic aircraft, were tested for comparison. The alloys were subjected to thermal exposure at 200 F, 225 F and 275 F for times up to 30,000 hours. Tensile tests were performed on thermally-exposed and as-received material at -65 F, room temperature, 200 F, 225 F and 275 F. All four candidate alloys showed significant tensile property improvements over CM001 and 1143. Room temperature yield strengths of the candidate alloys were at least 20% greater than for CM001 and 1143, for both the as-received and thermally-exposed conditions. The strength levels of alloy RX818 were the highest of all materials investigated, and were 5-10% higher than for ML377, C415 and C416 for the as-received condition and after 5,000 hours thermal exposure. RX818 was removed from this study after 5,000 hours exposure due to poor fracture toughness performance observed in a parallel study. After 30,000 hours exposure at 200 F and 225 F, the alloys C415, C416 and ML377 showed minor decreases in yield strength, tensile strength and elongation when compared to the as-received properties. Reductions in tensile strength from the as-received values were up to 25% for alloys C415, C416 and ML377 after 15,000 hours exposure at 275 F.
Kalchayanand, Norasak; Koohmaraie, Mohammad; Wheeler, Tommy L
2016-04-01
Several antimicrobial compounds are in commercial meat processing plants for pathogen control on beef carcasses. However, the efficacy of the method used is influenced by a number of factors, such as spray pressure, temperature, type of chemical and concentration, exposure time, method of application, equipment design, and the stage in the process that the method is applied. The objective of this study was to evaluate effectiveness of time of exposure of various antimicrobial compounds against nine strains of Shiga toxin-producing Escherichia coli (STEC) and four strains of Salmonella in aqueous antimicrobial solutions with and without organic matter. Non-O157 STEC, STEC O157:H7, and Salmonella were exposed to the following aqueous antimicrobial solutions with or without beef purge for 15, 30, 60, 120, 300, 600, and 1,800 s: (i) 2.5% lactic acid, (ii) 4.0% lactic acid, (iii) 2.5% Beefxide, (iv) 1% Aftec 3000, (v) 200 ppm of peracetic acid, (vi) 300 ppm of hypobromous acid, and (vii) water as a control. In general, increasing exposure time to antimicrobial compounds significantly (P ≤ 0.05) increased the effectiveness against pathogens tested. In aqueous antimicrobial solutions without organic matter, both peracetic acid and hypobromous acid were the most effective in inactivating populations of STEC and Salmonella, providing at least 5.0-log reductions with exposure for 15 s. However, in antimicrobials containing organic matter, 4.0% lactic acid was the most effective compound in reducing levels of STEC and Salmonella, providing 2- to 3-log reductions with exposure for 15 s. The results of this study indicated that organic matter and exposure time influenced the efficacy of antimicrobial compounds against pathogens, especially with oxidizer compounds. These factors should be considered when choosing an antimicrobial compound for an intervention.
Nonaggregating Microspheres Containing Aldehyde Groups
NASA Technical Reports Server (NTRS)
Rembaum, Alan
1989-01-01
Cobalt gamma irradiation of hydrophilic monomers in presence of acrolein yields exceptionally-stable, nonaggregating microspheres. Mixtures of 2-hydroxyethyl methacrylate (HEMA) and acrolein form homogeneous solutions in distilled water containing 0.4 percent polyethylene oxide (PEO). After deaeration with nitrogen, mixtures irradiated at room temperature with gamma rays from cobalt source; total exposure time 4 hours, at rate of 0.2 milliroentgen per hour. Reaction product centrifuged three times for purification and kept in distilled water.
On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
2003-01-01
A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.
Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda
2016-02-26
The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.
Lee, Sue J; Hajat, Shakoor; Steer, Philip J; Filippi, Veronique
2008-02-01
Although much is known about the incidence and burden of preterm birth, its biological mechanisms are not well understood. While several studies have suggested that high levels of air pollution or exposure to particular climatic factors may be associated with an increased risk of preterm birth, other studies do not support such an association. To determine whether exposure to various environmental factors place a large London-based population at higher risk for preterm birth, we analyzed 482,568 births that occurred between 1988 and 2000 from the St. Mary's Maternity Information System database. Using an ecological study design, any short-term associations between preterm birth and various environmental factors were investigated using time-series regression techniques. Environmental exposures included air pollution (ambient ozone and PM(10)) and climatic factors (temperature, rainfall, sunshine, relative humidity, barometric pressure, and largest drop in barometric pressure). In addition to exposure on the day of birth, cumulative exposure up to 1 week before birth was investigated. The risk of preterm birth did not increase with exposure to the levels of ambient air pollution or meteorological factors experienced by this population. Cumulative exposure from 0 to 6 days before birth also did not show any significant effect on the risk of preterm birth. This large study, covering 13 years, suggests that there is no association between preterm births and recent exposure to ambient air pollution or recent changes in the weather.
Effects of respirator ambient air cooling on thermophysiological responses and comfort sensations.
Caretti, David M; Barker, Daniel J
2014-01-01
This investigation assessed the thermophysiological and subjective impacts of different respirator ambient air cooling options while wearing chemical and biological personal protective equipment in a warm environment (32.7 ± 0.4°C, 49.6 ± 6.5% RH). Ten volunteers participated in 90-min heat exposure trials with and without respirator (Control) wear and performed computer-generated tasks while seated. Ambient air cooling was provided to respirators modified to blow air to the forehead (FHC) or to the forehead and the breathing zone (BZC) of a full-facepiece air-purifying respirator using a low-flow (45 L·min(-1)) mini-blower. An unmodified respirator (APR) trial was also completed. The highest body temperatures (TTY) and least favorable comfort ratings were observed for the APR condition. With ambient cooling over the last 60 min of heat exposure, TTY averaged 37.4 ± 0.6°C for Control, 38.0 ± 0.4°C for APR, 37.8 ± 0.5°C for FHC, and 37.6 ± 0.7°C for BZC conditions independent of time. Both the FHC and BZC ambient air cooling conditions reduced facial skin temperatures, reduced the rise in body temperatures, and led to more favorable subjective comfort and thermal sensation ratings over time compared to the APR condition; however statistical differences among conditions were inconsistent. Independent of exposure time, average breathing apparatus comfort scores with BZC (7.2 ± 2.5) were significantly different from both Control (8.9 ± 1.4) and APR (6.5 ± 2.2) conditions when ambient cooling was activated. These findings suggest that low-flow ambient air cooling of the face under low work rate conditions and mild hyperthermia may be a practical method to minimize the thermophysiological strain and reduce perceived respirator discomfort.
Saiki, M.K.; Monda, D.P.; Bellerud, B.L.
1999-01-01
Resource managers hypothesize that occasional fish kills during summer-early fall in Upper Klamath Lake, Oregon, may be linked to unfavorable water quality conditions created by massive algal blooms. In a preliminary effort to address this concern, short-term (96-h-long) laboratory tests were conducted with larval and juvenile Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers to determine the upper median lethal concentrations (LC50s; also referred to as median tolerance limits) for pH, un-ionized ammonia, and water temperature, and the lower LC50s for dissolved oxygen. The mean LC50s varied among species and life stages as follows: for pH, 10.30-10.39; for un-ionized ammonia, 0.48-1.06 mg litre-1; for temperature, 30.35-31.82??C; and for dissolved oxygen, 1.34-2.10 mg litre-1. Comparisons of 95% confidence limits indicated that, on average, the 96-h LC50s were not significantly different from those computed for shorter exposure times (i.e., 24 h, 48 h, and 72 h). According to two-way analysis of variance, LC50s for the four water quality variables did not vary significantly (p > 0.05) between fish species. However, LC50s for pH (exposure times of 24 h and 48 h) and dissolved oxygen (exposure times of 48 h, 72 h, and 96 h) differed significantly (p ??? 0.05) between life stages, whereas LC50s for un-ionized ammonia and water temperature did not exhibit significant differences. In general, larvae were more sensitive than juveniles to high pH and low dissolved oxygen concentrations. When compared to ambient water quality conditions in Upper Klamath Lake, our results strongly suggest that near-anoxic conditions associated with the senescence phase of algal blooms are most likely to cause high mortalities of larval and juvenile suckers.
Social media responses to heat waves.
Jung, Jihoon; Uejio, Christopher K
2017-07-01
Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.
Detection mechanism and characteristics of ZnO-based N2O sensors operating with photons
NASA Astrophysics Data System (ADS)
Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Youn, C. J.; Hong, K. J.
2013-11-01
N2O sensors made with ZnO-based ZnCdO films were grown on Pyrex substrates by using the RF co-sputtering method. The structure of the N2O sensor was electrode/sensor/glass/illuminant. The mechanism of the photo-assisted oxidation and reduction process on the surface of the N2O sensors was investigated using light from a UV lamp and violet light emitting diode (LED). For photon exposure wavelengths of 365 and 405 nm, the sensitivity of the ZnO-based ZnCdO sensors was measured. From these measurements, the values of the sensitivity of the sensors with x = 0, 0.01, and 0.05 were found to be S = 1.44, 1.39, and 1.33 under LED light with a wavelength of 405 nm, respectively. These sensitivities were compared to those of SnO2 and WO3 materials measured at operating temperatures of 300-600 °C. Also, under exposure with UV light, the response times were observed to be 130 to 270 sec. These response times were slightly slower than that for the traditional method of thermal heating. However, they indicate that the described photon exposure method for N2O detection can replace the conventional heating mode. Consequently, we demonstrated that portable N2O sensors for room-temperature operation could be fabricated without thermal heating.
Social media responses to heat waves
NASA Astrophysics Data System (ADS)
Jung, Jihoon; Uejio, Christopher K.
2017-07-01
Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.
Kinetics of Death of Bacterial Spores at Elevated Temperatures
Wang, Daniel I-C.; Scharer, Jeno; Humphrey, Arthur E.
1964-01-01
The kinetics of death of Bacillus stearothermophilus spores (FS 7954) suspended in phosphate buffer (pH 7) were studied over a temperature range of 127.2 to 143.8 C and exposure times of 0.203 to 4.150 sec. These short exposure were achieved by use of a tubular flow reactor in which a suspension of spores was injected into a hot flowing stream at the entrance of the reactor. Thermal equilibria of the suspension with the hot stream was achieved within 0.0006 sec. After flow through a fixed length of reactor, the stream containing the spores was cooled by flash vaporization and then assayed for viable count. The death rate data were fitted by a logarithmic expression. However, logarithmic death rate was only approximated in the tail or high-kill regions of exposure. Death rate constants obtained from this portion of the data were found to correlate by Arrhenius as well as Absolute Reaction Rate Theory relationships. Thermal-death time curves were found to correlate the data rather poorly. The activation energy and frequency constant for an Arrhenius relationship fit of the data were found to be 83.6 kcal/gmole and 1047.2 min-1, respectively. The standard enthalpy and entropy changes for an Absolute Reaction Rate Theory relationship fit of the data were found to be 84.4 kcal/gmole and 157 cal/gmole-K, respectively. PMID:14215978
Chang, Christine Y.; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D.; Ensminger, Ingo
2015-01-01
Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20–30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field experiments. PMID:25852717
Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.
DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D
2013-07-01
Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.
Kim, Shin-Hu; Kim, Jun-Hwan; Park, Myoung-Ae; Hwang, Seong Don; Kang, Ju-Chan
2015-11-01
Rockfish, Sebastes schlegelii (mean weight 14.53 ± 1.14 cm, and mean weight 38.36 ± 3.45 g) were exposed for 4 weeks (2 weeks and 4 weeks) with the different levels of ammonia in the concentrations of 0, 0.1, 0.5, 1.0mg/L at 19 and 24°C. The ammonia exposure induced significant alterations in antioxidant responses. The activities of SOD, CAT, and GST were considerably increased by the ammonia exposure depending on water temperature, whereas the GSH level was notably decreased after 2 and 4 weeks. In the stress indicators, the cortisol and HSP 70 were significantly elevated by the exposure to ammonia depending on water temperature. In innate immune responses, the phagocytosis and lysozyme activity were notably decreased by ammonia exposure depending on water temperature after 2 and 4 weeks. The results suggest that ammonia exposure depending on water temperature can induce the considerable alterations in antioxidant responses, stress, and immune inhibition. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Hui; Kurtz, Ronald M.
2012-01-01
Abstract. In order to model the thermal effect of laser exposure of the iris during laser corneal surgery, we simulated the temperature increase in porcine cadaver iris. The simulation data for the 60 kHz FS60 Laser showed that the temperature increased up to 1.23°C and 2.45°C (at laser pulse energy 1 and 2 µJ, respectively) by the 24 second procedure time. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using porcine cadaver iris. Simulation results of different types of femtosecond lasers indicate that the Laser in situ keratomileusis procedure does not present a safety hazard to the iris. PMID:22894525
Exposure to heat and freezing in the vaccine cold chain in Thailand.
Techathawat, Sirirat; Varinsathien, Porpit; Rasdjarmrearnsook, Aimorn; Tharmaphornpilas, Piyanit
2007-01-26
This study investigated exposure to heat and freezing of vaccines used in Thailand's National Immunization Program. Cold chain temperatures on 48 randomly selected shipment routes nationwide were monitored. Measles and hepatitis B vaccines were despatched with recording devices and subsequently tested. The study found that extremes of cold appear to be the more significant problem. Heat exposure was relatively brief and not at very high temperatures, so vaccine deterioration was unlikely, as was confirmed by measles vaccine testing. Exposure to temperatures below -0.5 degrees C was widespread, which would be expected to damage hepatitis B vaccine, but shake tests did not detect damage.
NASA Technical Reports Server (NTRS)
Phillips, E. P.
1974-01-01
Specimens of Ti-6Al-4V titanium alloy sheet in the annealed and the solution-treated and aged heat-treatment condition were exposed outdoors at ambient and 560 K (550 F) temperatures to determine the effect of outdoor exposure on fatigue life. Effects of exposure were determined by comparing fatigue lives of exposed specimens to those of unexpected specimens. Two procedures for fatigue testing the exposed specimens were evaluated: (1) fatigue tests conducted outdoors by applying 1200 load cycles per week until failure occurred and (2) conventional fatigue tests (continuous cycling until failure occurred) conducted indoors after outdoor exposure under static load. The exposure period ranged from 9 to 28 months for the outdoor fatigue-test group and was 24 months for the static-load group. All fatigue tests were constant-amplitude bending of specimens containing a drilled hole (stress concentration factor of 1.6). The results of the tests indicate that the fatigue lives of solution-treated and aged specimens were significantly reduced by the outdoor exposure at 560 K but not by the exposure at ambient temperature. Fatigue lives of the annealed specimens were essentially unaffected by the outdoor exposure at either temperature. The two test procedures - outdoor fatigue test and indoor fatigue test after outdoor exposure - led to the same conclusions about exposure effects.
A personal sampler for aircraft engine cold start particles: laboratory development and testing.
Armendariz, Alfredo; Leith, David
2003-01-01
Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.
Whole-body Cryotherapy as a Recovery Technique after Exercise: A Review of the Literature.
Rose, Catriona; Edwards, Kate M; Siegler, Jason; Graham, Kenneth; Caillaud, Corinne
2017-12-01
This review aims to evaluate the current body of literature investigating the effect of whole body cryotherapy on recovery after exercise. A systematic search was conducted to investigate the effect of whole body cryotherapy (WBC, exposure to temperatures between -110 to -190°C) on markers of recovery after damaging exercise in healthy, physically active subjects. Of the 16 eligible articles extracted, ten induced muscle damage using controlled exercise in a laboratory setting, while six induced damage during sport-specific training. Results indicated that muscle pain was reduced in 80% of studies following WBC. Two applied studies found recovery of athletic capacity and performance with WBC improved, variables of this nature were also improved in 71% of studies using controlled exercise. Further benefits of WBC treatment included reduction of systemic inflammation and lower concentrations of markers for muscle cell damage. These results suggest that WBC may improve recovery from muscle damage, with multiple exposures more consistently exhibiting improvements in recovery from pain, loss of muscle function, and markers of inflammation and damage. The diversity in muscle damage protocols, exposure timing with regards to exercise, as well as temperatures, duration and frequencies of exposure, make specific recommendations preliminary at present. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex
2018-01-01
As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.
Fonseca, Juliana da Silva; Marangoni, Laura Fernandes de Barros; Marques, Joseane Aparecida; Bianchini, Adalto
2017-09-01
Effects of increasing temperature alone and in combination with exposure to dissolved copper (Cu) were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii using a marine mesocosm system. Endpoints analyzed included parameters involved in metabolism [maximum photosynthetic capacity of zooxanthellae (Fv/Fm), chlorophyll a and ATP concentrations], calcification [carbonic anhydrase (CA) and Ca 2+ -Mg 2+ -ATPase activity], and oxidative status [antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO)]. Coral polyps were collected, acclimated and exposed to three increasing temperature conditions [25.0±0.1°C (control; average temperature of local seawater), 26.6±0.1°C and 27.3±0.1°C] using a marine mesocosm system. They were tested alone and in combination with four environmentally relevant concentrations of dissolved Cu in seawater [2.9±0.7 (control; average concentration in local seawater), 3.8±0.8, 5.4±0.9 and 8.6±0.3μg/L] for 4, 8 and 12days. Fv/Fm reduced over the experimental period with increasing temperature. Combination of increasing temperature with Cu exposure enhanced this effect. CA and Ca 2+ -Mg 2+ -ATPase activities increased up to 8days of exposure, but recovered back after 12days of experiment. Short-term exposure to increasing temperature or long-term exposure to the combination of stressors reduced LPO, suggesting the occurrence of a remodeling process in the lipid composition of biological membranes. ACAP, ATP and chlorophyll a were not significantly affected by the stressors. These findings indicate that increasing temperature combined with exposure to dissolved Cu increase susceptibility to bleaching and reduce growth in the zooxanthellate scleractinian coral M. harttii. Copyright © 2017 Elsevier B.V. All rights reserved.
Wagner, Johanna; Gastl, Evelyn; Kogler, Martin; Scheiber, Michaela
2016-01-01
In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. PMID:28036058
Hemolysis in a laminar flow-through Couette shearing device: an experimental study.
Boehning, Fiete; Mejia, Tzahiry; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2014-09-01
Reducing hemolysis has been one of the major goals of rotary blood pump development and in the investigational phase, the capability of hemolysis estimation for areas of elevated shear stresses is valuable. The degree of hemolysis is determined by the amplitude of shear stress and the exposure time, but to date, the exact hemolytic behavior at elevated shear stresses and potential thresholds for subcritical shear exposure remain vague. This study provides experimental hemolysis data for a set of shear stresses and exposure times to allow better estimations of hemolysis for blood exposed to elevated shearing. Heparinized porcine blood with a hematocrit of 40% was mechanically damaged in a flow-through laminar Couette shear flow at a temperature of 23°C. Four levels of shear stress, 24, 592, 702, and 842 Pa, were replicated at two exposure times, 54 and 873 ms. For the calculation of the shear stresses, an apparent viscosity of 5 mPas was used, which was verified in an additional measurement of the blood viscosity. The hemolysis measurements were repeated four times, whereby all conditions were measured once within the same day and with blood from the same source. Samples were taken at the inlet and outlet of the shear region and an increase in plasma-free hemoglobin was measured. An index of hemolysis (IH) was thereby calculated giving the ratio of free to total hemoglobin. The results are compared with data from previously published studies using a similar shearing device. Hemolysis was found to increase exponentially with shear stress, but high standard deviations existed at measurements with elevated IH. At short exposure times, the IH remained low at under 0.5% for all shear stress levels. For high exposure times, the IH increased from 0.84% at 592 Pa up to 3.57% at the highest shear stress level. Hemolysis was significant for shear stresses above ∼600 Pa at the high exposure time of 873 ms. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Cates, Charles C; McCabe, James G; Lawson, Gregory W; Couto, Marcelo A
2014-12-01
Median lethal dose (LD50) testing in mice is the 'gold standard' for evaluating the lethality of snake venoms and the effectiveness of interventions. As part of a study to determine the murine LD50 of the venom of 3 species of rattlesnake, temperature data were collected in an attempt to more precisely define humane endpoints. We used an 'up-and-down' methodology of estimating the LD50 that involved serial intraperitoneal injection of predetermined concentrations of venom. By using a rectal thermistor probe, body temperature was taken once before administration and at various times after venom exposure. All but one mouse showed a marked, immediate, dose-dependent drop in temperature of approximately 2 to 6°C at 15 to 45 min after administration. The lowest temperature sustained by any surviving mouse was 33.2°C. Surviving mice generally returned to near-baseline temperatures within 2 h after venom administration, whereas mice that did not survive continued to show a gradual decline in temperature until death or euthanasia. Logistic regression modeling controlling for the effects of baseline core body temperature and venom type showed that core body temperature was a significant predictor of survival. Linear regression of the interaction of time and survival was used to estimate temperatures predictive of death at the earliest time point and demonstrated that venom type had a significant influence on temperature values. Overall, our data suggest that core body temperature is a useful adjunct to monitoring for endpoints in LD50 studies and may be a valuable predictor of survival in venom studies.