Science.gov

Sample records for exposure translating pharmacokinetics

  1. Reconstructing Exposures from Biomarkers using Exposure-Pharmacokinetic Modeling - A Case Study with Carbaryl

    EPA Science Inventory

    Sources of uncertainty involved in exposure reconstruction for a short half-life chemical, carbaryl, were characterized using the Cumulative and Aggregate Risk Evaluation System (CARES), an exposure model, and a human physiologically based pharmacokinetic (PBPK) model. CARES was...

  2. Reconstructing Exposures from Biomarkers using Exposure-Pharmacokinetic Modeling - A Case Study with Carbaryl

    EPA Science Inventory

    Sources of uncertainty involved in exposure reconstruction for a short half-life chemical, carbaryl, were characterized using the Cumulative and Aggregate Risk Evaluation System (CARES), an exposure model, and a human physiologically based pharmacokinetic (PBPK) model. CARES was...

  3. TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR

    EPA Science Inventory

    Toluene Experimental Exposures in Humans:
    Pharmacokinetics and Behavioral Effects
    (Ongoing Research)

    Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2

    Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

  4. TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR

    EPA Science Inventory

    Toluene Experimental Exposures in Humans:
    Pharmacokinetics and Behavioral Effects
    (Ongoing Research)

    Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2

    Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

  5. Multi-functional scaling methodology for translational pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems (MPS).

    PubMed

    Maass, Christian; Stokes, Cynthia L; Griffith, Linda G; Cirit, Murat

    2017-03-07

    Microphysiological systems (MPS) provide relevant physiological environments in vitro for studies of pharmacokinetics, pharmacodynamics and biological mechanisms for translational research. Designing multi-MPS platforms is essential to study multi-organ systems. Typical design approaches, including direct and allometric scaling, scale each MPS individually and are based on relative sizes not function. This study's aim was to develop a new multi-functional scaling approach for integrated multi-MPS platform design for specific applications. We developed an optimization approach using mechanistic modeling and specification of an objective that considered multiple MPS functions, e.g., drug absorption and metabolism, simultaneously to identify system design parameters. This approach informed the design of two hypothetical multi-MPS platforms consisting of gut and liver (multi-MPS platform I) and gut, liver and kidney (multi-MPS platform II) to recapitulate in vivo drug exposures in vitro. This allows establishment of clinically relevant drug exposure-response relationships, a prerequisite for efficacy and toxicology assessment. Design parameters resulting from multi-functional scaling were compared to designs based on direct and allometric scaling. Human plasma time-concentration profiles of eight drugs were used to inform the designs, and profiles of an additional five drugs were calculated to test the designed platforms on an independent set. Multi-functional scaling yielded exposure times in good agreement with in vivo data, while direct and allometric scaling approaches resulted in short exposure durations. Multi-functional scaling allows appropriate scaling from in vivo to in vitro of multi-MPS platforms, and in the cases studied provides designs that better mimic in vivo exposures than standard MPS scaling methods.

  6. A Workflow to Investigate Exposure and Pharmacokinetic ...

    EPA Pesticide Factsheets

    Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals.Objectives: We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition.Methods: Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites.Results: Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation.Conclusions: The incorporation of exposure and ADME properties into the conceptual workflow e

  7. A Workflow to Investigate Exposure and Pharmacokinetic ...

    EPA Pesticide Factsheets

    Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals.Objectives: We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition.Methods: Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites.Results: Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation.Conclusions: The incorporation of exposure and ADME properties into the conceptual workflow e

  8. A Translatable Predictor of Human Radiation Exposure

    PubMed Central

    Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J.; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P.

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay. PMID:25255453

  9. A translatable predictor of human radiation exposure.

    PubMed

    Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  10. Eravacycline Pharmacokinetics and Challenges in Defining Humanized Exposure In Vivo

    PubMed Central

    Monogue, Marguerite L.

    2016-01-01

    We assessed the pharmacokinetic profile of eravacycline, a novel antibiotic of the tetracycline class, and determined the dose in an immunocompetent murine thigh infection model that would provide free-drug exposure similar to that observed in humans after the administration of 1 mg/kg intravenously (i.v.) every 12 h (q12h). Eravacycline demonstrated a nonlinear protein-binding profile. The 2.5-mg/kg i.v. q12h dose in mice resulted in an area under the concentration-time curve for the free, unbound fraction of the drug of 1.64 mg · h/liter, which closely resembles the human exposure level. PMID:27353264

  11. Comparison of the use of a physiologically based pharmacokinetic model and a classical pharmacokinetic model for dioxin exposure assessments.

    PubMed

    Emond, Claude; Michalek, Joel E; Birnbaum, Linda S; DeVito, Michael J

    2005-12-01

    In epidemiologic studies, exposure assessments of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) assume a fixed elimination rate. Recent data suggest a dose-dependent elimination rate for TCDD. A physiologically based pharmacokinetic (PBPK) model, which uses a body-burden-dependent elimination rate, was developed previously in rodents to describe the pharmacokinetics of TCDD and has been extrapolated to human exposure for this study. Optimizations were performed using data from a random selection of veterans from the Ranch Hand cohort and data from a human volunteer who was exposed to TCDD. Assessment of this PBPK model used additional data from the Ranch Hand cohort and a clinical report of two women exposed to TCDD. This PBPK model suggests that previous exposure assessments may have significantly underestimated peak blood concentrations, resulting in potential exposure misclassifications. Application of a PBPK model that incorporates an inducible elimination of TCDD may improve the exposure assessments in epidemiologic studies of TCDD.

  12. Updated aluminum pharmacokinetics following infant exposures through diet and vaccination.

    PubMed

    Mitkus, Robert J; King, David B; Hess, Maureen A; Forshee, Richard A; Walderhaug, Mark O

    2011-11-28

    Aluminum is a ubiquitous element that is released naturally into the environment via volcanic activity and the breakdown of rocks on the earth's surface. Exposure of the general population to aluminum occurs primarily through the consumption of food, antacids, and buffered analgesics. Exposure to aluminum in the general population can also occur through vaccination, since vaccines often contain aluminum salts (frequently aluminum hydroxide or aluminum phosphate) as adjuvants. Because concerns have been expressed by the public that aluminum in vaccines may pose a risk to infants, we developed an up-to-date analysis of the safety of aluminum adjuvants. Keith et al. [1] previously analyzed the pharmacokinetics of aluminum for infant dietary and vaccine exposures and compared the resulting body burdens to those based on the minimal risk levels (MRLs) established by the Agency for Toxic Substances and Disease Registry. We updated the analysis of Keith et al. [1] with a current pediatric vaccination schedule [2]; baseline aluminum levels at birth; an aluminum retention function that reflects changing glomerular filtration rates in infants; an adjustment for the kinetics of aluminum efflux at the site of injection; contemporaneous MRLs; and the most recent infant body weight data for children 0-60 months of age [3]. Using these updated parameters we found that the body burden of aluminum from vaccines and diet throughout an infant's first year of life is significantly less than the corresponding safe body burden of aluminum modeled using the regulatory MRL. We conclude that episodic exposures to vaccines that contain aluminum adjuvant continue to be extremely low risk to infants and that the benefits of using vaccines containing aluminum adjuvant outweigh any theoretical concerns. Published by Elsevier Ltd.

  13. USE OF PHARMACOKINETIC MODELS TO ASSESS OCCUPATIONAL AND RESIDENTIAL PESTICIDE EXPOSURE

    EPA Science Inventory

    Urinary biomarker measurements were analyzed using a dynamic pharmacokinetic model. The dynamic model provided the structure to link spot urine samples with corresponding exposure and absorbed dose. Data from both occupational and residential studies were analyzed. In the Agri...

  14. High-Performance Liquid Chromatography Method for Rich Pharmacokinetic Sampling Schemes in Translational Rat Toxicity Models With Vancomycin.

    PubMed

    Joshi, M D; O'Donnell, J N; Venkatesan, N; Chang, J; Nguyen, H; Rhodes, N J; Pais, G; Chapman, R L; Griffin, B; Scheetz, M H

    2017-07-04

    A translational need exists to understand and predict vancomycin-induced kidney toxicity. We describe: (i) a vancomycin high-performance liquid chromatography (HPLC) method for rat plasma and kidney tissue homogenate; (ii) a rat pharmacokinetic (PK) study to demonstrate utility; and (iii) a catheter retention study to enable future preclinical studies. Rat plasma and pup kidney tissue homogenate were analyzed via HPLC for vancomycin concentrations ranging from 3-75 and 15.1-75.5 μg/mL, respectively, using a Kinetex Biphenyl column and gradient elution of water with 0.1% formic acid: acetonitrile (70:30 v/v). Sprague-Dawley rats (n = 10) receiving 150 mg/kg of vancomycin intraperitoneally had plasma sampled for PK. Finally, a catheter retention study was performed on polyurethane catheters to assess adsorption. Precision was <6.1% for all intra-assay and interassay HPLC measurements, with >96.3% analyte recovery. A two-compartment model fit the data well, facilitating PK exposure estimates. Finally, vancomycin was heterogeneously retained by polyurethane catheters. © 2017 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  15. Physiologically based pharmacokinetic toolkit to evaluate environmental exposures: Applications of the dioxin model to study real life exposures.

    PubMed

    Emond, Claude; Ruiz, Patricia; Mumtaz, Moiz

    2017-01-15

    Chlorinated dibenzo-p-dioxins (CDDs) are a series of mono- to octa-chlorinated homologous chemicals commonly referred to as polychlorinated dioxins. One of the most potent, well-known, and persistent member of this family is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of translational research to make computerized models accessible to health risk assessors, we present a Berkeley Madonna recoded version of the human physiologically based pharmacokinetic (PBPK) model used by the U.S. Environmental Protection Agency (EPA) in the recent dioxin assessment. This model incorporates CYP1A2 induction, which is an important metabolic vector that drives dioxin distribution in the human body, and it uses a variable elimination half-life that is body burden dependent. To evaluate the model accuracy, the recoded model predictions were compared with those of the original published model. The simulations performed with the recoded model matched well with those of the original model. The recoded model was then applied to available data sets of real life exposure studies. The recoded model can describe acute and chronic exposures and can be useful for interpreting human biomonitoring data as part of an overall dioxin and/or dioxin-like compounds risk assessment. Copyright © 2016. Published by Elsevier Inc.

  16. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans.

    PubMed

    Ruigrok, Mitchel J R; de Lange, Elizabeth C M

    2015-05-01

    To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma following intranasal and intravenous administration to calculate measures of extent like drug targeting efficiencies (%DTE) and nose-to-brain transport percentages (%DTP). However, CSF does not necessarily provide direct information on the target site concentrations, while total brain concentrations are not specific to that end either as non-specific binding is not explicitly considered. Moreover, to predict nose-to-brain transport in humans, the use of descriptive analysis of preclinical data does not suffice. Therefore, nose-to-brain research should be performed translationally and focus on preclinical studies to obtain specific information on absorption from the nose, and distinguish between the different transport routes to the brain (absorption directly from the nose to the brain, absorption from the nose into the systemic circulation, and distribution between the systemic circulation and the brain), in terms of extent as well as rate. This can be accomplished by the use of unbound concentrations obtained from plasma and brain, with subsequent advanced mathematical modeling. To that end, brain extracellular fluid (ECF) is a preferred sampling site as it represents most closely the site of action for many targets. Furthermore, differences in nose characteristics between preclinical species and humans should be considered. Finally, pharmacodynamic measurements that can be obtained in both animals and humans should be included to further improve the prediction of the pharmacokinetic-pharmacodynamic relationship of intranasally administered CNS drugs in humans.

  17. In vitro to human in vivo translation - pharmacokinetics and pharmacodynamics of quinidine.

    PubMed

    Polak, Sebastian

    2013-01-01

    The translational sciences aim to transfer results from basic research to the treatment of animals or patients. One of the approaches that could be utilized to achieve this goal is the in vitro-in vivo extrapolation (IVIVE) of pharmacokinetic (PK) and pharmacodynamic (PD) properties using in silico methods. Such methodology, if properly applied, could help substantially reduce the use of animals in pre-clinical research. Here, quinidine was chosen as an example of a drug with cardiac effects and results of nine published clinical studies describing its PK (plasma concentration) and PD (QTcB/?QTcB) effects were mimicked by combination of the IVIVE platform Simcyp (pharmacokinetics prediction) with the ToxComp (cardiac effect prediction) system, based exclusively on in vitro data. The results show that reliable QT prediction is possible using the mechanistic IVIVE of the PK and PD effects. This can be considered a proof-of-concept that also could be applied as a drug safety evaluation procedure.

  18. The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic.

    PubMed

    Zhou, Qingyu; Gallo, James M

    2011-03-01

    Progress in an understanding of the genetic basis of cancer coupled to molecular pharmacology of potential new anticancer drugs calls for new approaches that are able to address key issues in the drug development process, including pharmacokinetic (PK) and pharmacodynamic (PD) relationships. The incorporation of predictive preclinical PK/PD models into rationally designed early-stage clinical trials offers a promising way to relieve a significant bottleneck in the drug discovery pipeline. The aim of the current review is to discuss some considerations for how quantitative PK and PD analyses for anticancer drugs may be conducted and integrated into a global translational effort, and the importance of examining drug disposition and dynamics in target tissues to support the development of preclinical PK/PD models that can be subsequently extrapolated to predict pharmacologic characteristics in patients. In this article, we describe three different physiologically based (PB) PK modeling approaches, i.e., the whole-body PBPK model, the hybrid PBPK model, and the two-pore model for macromolecules, as well as their applications. General conclusions are that greater effort should be made to generate more clinical data that could validate scaled preclinical PB-PK/PD tumor-based models and, thus, stimulate a framework for preclinical to clinical translation. Finally, given the innovative techniques to measure tissue drug concentrations and associated biomarkers of drug responses, development of predictive PK/PD models will become a standard approach for drug discovery and development.

  19. In Vivo Rapid Assessment of Compound Exposure (RACE) for Profiling the Pharmacokinetics of Novel Chemical Probes

    PubMed Central

    McAnally, Danielle; Vicchiarelli, Michael; Siddiquee, Khandaker

    2013-01-01

    The RACE assay is an easy and efficient method for estimating the exposure of novel chemical probe compounds in mice. RACE is a truncated and compressed version of a traditional comprehensive in vivo pharmacokinetics study. The method uses a single standard formulation, dose, route of administration, and a small cohort of mice (n=4). Standardized protocols and an abbreviated sample collection scheme reduce the labor needed to perform both the in life and bioanalytical phases of the study. The procedure reduces the complexity of data analysis by eliminating all but one calculated pharmacokinetic parameter; estimated exposure (eAUC20-120), a parameter that is sufficient to rank order compounds based on exposure, but is also easily determined by most software using the simple trapezoidal rule. The RACE assay protocol is readily applicable to early/exploratory studies of most compounds, and is intended to be employed by laboratories with limited expertise in pharmacology and pharmacokinetics. PMID:23788556

  20. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model.

    PubMed

    Andersen, M E; MacNaughton, M G; Clewell, H J; Paustenbach, D J

    1987-04-01

    The rationale for adjusting occupational exposure limits for unusual work schedules is to assure, as much as possible, that persons on these schedules are placed at no greater risk of injury or discomfort than persons who work a standard 8 hr/day, 40 hr/week. For most systemic toxicants, the risk index upon which the adjustments are made will be either peak blood concentration or integrated tissue dose, depending on what chemical's presumed mechanism of toxicity. Over the past ten years, at least four different models have been proposed for adjusting exposure limits for unusually short and long work schedules. This paper advocates use of a physiologically-based pharmacokinetic (PB-PK) model for determining adjustment factors for unusual exposure schedules, an approach that should be more accurate than those proposed previously. The PB-PK model requires data on the blood:air and tissue:blood partition coefficients, the rate of metabolism of the chemical, organ volumes, organ blood flows and ventilation rates in humans. Laboratory data on two industrially important chemicals--styrene and methylene chloride--were used to illustrate the PB-PK approach. At inhaled concentrations near their respective 8-hr Threshold Limit Value-Time-weighted averages (TLV-TWAs), both of these chemicals are primarily eliminated from the body by metabolism. For these two chemicals, the appropriate risk indexing parameters are integrated tissue dose or total amount of parent chemical metabolized. Since methylene chloride is metabolized to carbon monoxide, the maximum blood carboxyhemoglobin concentrations also might be useful as an index of risk for this chemical.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. [Effect of acute exposure to high altitude on pharmacokinetics of propranolol and metoprolol in rats].

    PubMed

    Zhang, Juanhong; Wang, Rong; Xie, Hua; Yin, Qiang; Jia, Zhengping; Li, Wenbin

    2014-11-01

    To study the pharmacokinetics of propranolol and metoprolol in rats after acute exposure to high altitude. Wistar rats were randomly assigned into 4 groups for treatment with intragastric administration of propranolol or metoprolol after acute exposure to high altitude (4010 m) or normal altitude (50 m). Venous blood samples were collected from the rats at different time points after drug administration to determine the drug concentrations in the plasma and plasma ultrafiltrate using liquid chromatography-mass spectrometry (LC-MS/MS). The protein binding rate of propranolol was significantly increased but that of metoprolol remained unchanged after acute exposure to high altitude. Compared with the rats exposed to normal altitude, the rats with acute exposure to high altitude showed significant alterations in the pharmacokinetic parameters of the drugs, shown by increased Cmax and AUC, prolonged t1/2 and MRT, and lowered Clz/F of propranolol, and by increased Tmax and prolonged t1/2 and MRT of metoprolol without obvious changes of the parameters of the compartmental model. Significant changes in the pharmacokinetics of propranolol and metoprolol occur in rats after acute exposure to high altitude possibly in relation to, apart from the changes in plasma protein binding ratio and blood gas, alterations in metabolic enzyme activities, increased blood viscosity, and species and general conditions of the animals.

  2. Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability

    EPA Science Inventory

    Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...

  3. Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability

    EPA Science Inventory

    Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...

  4. Is the relationship between prenatal exposure to PCB-153 and decreased birth weight attributable to pharmacokinetics?

    PubMed

    Verner, Marc-André; McDougall, Robin; Glynn, Anders; Andersen, Melvin E; Clewell, Harvey J; Longnecker, Matthew P

    2013-10-01

    A recent meta-analysis based on data from > 7,000 pregnancies reported an association between prenatal polychlorinated biphenyl (PCB)-153 exposure and reduced birth weight. Gestational weight gain, which is associated negatively with PCB levels in maternal and cord blood, and positively with birth weight, could substantially confound this association. We sought to estimate the influence of gestational weight gain on the association between PCB-153 exposure and birth weight using a pharmacokinetic model. We modified a recently published pharmacokinetic model and ran Monte Carlo simulations accounting for variability in physiologic parameters and their correlations. We evaluated the pharmacokinetic model by comparing simulated plasma PCB-153 levels during pregnancy to serial measurements in 10 pregnant women from another study population. We estimated the association between simulated plasma PCB-153 levels and birth weight using linear regression models. The plasma PCB-153 level profiles generated with the pharmacokinetic model were comparable to measured levels in 10 pregnant women. We estimated a 118-g decrease in birth weight (95% CI: -129, -106 g) for each 1-μg/L increase in simulated cord plasma PCB-153, compared with the 150-g decrease estimated based on the previous meta-analysis. The estimated decrease in birth weight was reduced to -6 g (95% CI: -18, 6 g) when adjusted for simulated gestational weight gain. Our findings suggest that associations previously noted between PCB levels and birth weight may be attributable to confounding by maternal weight gain during pregnancy.

  5. Pharmacokinetics of nicotine in rats after multiple-cigarette smoke exposure

    SciTech Connect

    Rotenberg, K.S.; Adir, J.

    1983-06-15

    The pharmacokinetics of nicotine and its major metabolites was evaluated in male rats after multiple-cigarette smoke exposure. A smoke-exposure apparatus was used to deliver cigarette smoke to the exposure chamber. The rats were exposed to smoke from a single cigarette every 8 hr for 14 days and to the smoke of a cigarette spiked with radiolabeled nicotine on the 15th day. Blood and urine samples were collected at timed intervals during the 10-min smoke-exposure period of the last cigarette and up to 48 hr thereafter. Nicotine, cotinine, and other polar metabolites were separated by thin-layer chromatography and quantified by liquid scintillation counting. The data were analyzed by computer fitting, and the derived pharmacokinetic parameters were compared to those observed after a single iv injection of nicotine and after a single-cigarette smoke exposure. The results indicated that the amount of nicotine absorbed from multiple-cigarette smoke was approximately 10-fold greater than that absorbed from a single cigarette. Also, unlike the single-cigarette smoke exposure experiment, nicotine plasma levels did not decay monotonically but increased after the 5th hr, and high plasma concentrations persisted for 30 hr. The rate and extent of the formation of cotinine, the major metabolite of nicotine, were decreased as compared with their values following a single-cigarette smoke exposure. It was concluded that nicotine or a constituent of tobacco smoke inhibits the formation of cotinine and may affect the biotransformation of other metabolites. Urinary excretion tended to support the conclusions that the pharmacokinetic parameters of nicotine and its metabolites were altered upon multiple as compared to single dose exposure.

  6. Physiologically-based pharmacokinetic (PBPK) models in human exposure assessment

    SciTech Connect

    Krishnan, K.

    1995-12-31

    The potential dose received by an individual during defined exposure situations can be determined using personal dosimeters or estimated by combining information on exposure scenarios with the environmental concentration (C.) of chemicals. With the latter approach, not only the potential dose but also the internal dose (i.e., amount of chemical that has been absorbed and available for interaction with receptors) and biologically-effective dose (i.e., amount of chemical that actually reaches the cellular sites where interaction with macromolecules occur) can be estimated if C. is provided as an input to PBPK models. These models are mathematical representations of the interrelationships among the critical determinants of the absorption, distribution, metabolism and excretion of chemicals in biota. Since the compartments in this model correspond to biologically relevant tissues or tissue groups, the amount of chemical reaching specific target organ(s) can be estimated. Further, the PBPK models permit the use of biological monitoring data such as urinary levels of metabolites, hemoglobin adduct levels, and alveolar air concentrations, to reconstruct the exposure levels and scenarios for specific subgroups of populations. These models are also useful in providing estimates of target tissue dose in humans simultaneously exposed to chemicals in various media (air, water, soil, food) by different routes (oral, dermal, inhalation). Several examples of exposure assessment for volatile organic chemicals using PBPK models for mammals will be presented, and the strategies for development of these models for other classes of chemicals highlighted.

  7. Pharmacokinetics and exposure-effect relationships of capecitabine in elderly patients with breast or colorectal cancer

    PubMed Central

    Daher-Abdi, Zeinab; Lavau-Denes, Sandrine; Prémaud, Aurélie; Urien, Saik; Sauvage, François-Ludovic; MARTIN, Jean; Leobon, Sophie; Marquet, Pierre; Tubiana-Mathieu, Nicole; Rousseau, Annick

    2014-01-01

    Purpose The aims of the present study were (i) to investigate the impact of great age on pharmacokinetics of capecitabine and its metabolites and (ii) to evaluate the exposure/effect relationship of capecitabine in elderly patients. Methods Data collected from 20 elderly patients (75–92 years old) with breast or colorectal cancer, who received oral capecitabine were analyzed. In order to study the old age effect on pharmacokinetics, data collected from two phase I studies involving 40 younger adults (<75 years old) with metastatic cancer who received oral capecitabine, were added in the database. The population pharmacokinetic analysis was based on a four compartment model describing the sequence of capecitabine and three of its metabolites. Results The absorption rate constant was found lower in the oldest patient group (≥75 y) compared to the youngest group, and the constant rate elimination of the 5-fluorouracil metabolite was found decreased over time (i.e. after 2 consecutive weeks of capecitabine administration). This time effect was not found different between the two age groups. In elderly patients, the exposure-safety analysis showed, from the second cycle of chemotherapy, significantly higher median exposures of capecitabine and its metabolites (5′-deoxy-5-fluorocytidine,5′-deoxy-5-fluorouridine and 5-fluorouracil) in patients who experienced hand-foot syndrome compared to patients who did not. Conclusion This study puts forward new arguments for the treatment of elderly cancer patients who could benefit from capecitabine chemotherapy with acceptable toxicity. PMID:24801171

  8. [Effect of acute exposure to high altitude on the pharmacokinetics of propranolol].

    PubMed

    Li, Wenbin; Jia, Zhengping; Xie, Hua; Zhang, Juanhong; Wang, Yanling; Hao, Ying; Wang, Rong

    2013-09-01

    To study the pharmacokinetics of propranolol in Wistar rats after acute exposure to high altitude. Fourteen male Wistar rats (200±20) g were selected. After administration of propranolol tablets (0.05 g/kg, i.g.), blood samples (3 mL) were collected at 0, 20, 40 min,1, 1.5, 2, 4, 6, 8, 12 and 24 h, respectively. The pharmacokinetic parameters were determined by LC-MS/MS and DAS 2.0 software. The main pharmacokinetic area under concentration-time curve (AUC), mean retention time (MRT), half-life (t1/2) and peak plasma concentration (Cmax) of propranolol were increased by 442.61%, 47.45%, 73.13% and 352.97%, respectively, whereas Tmax and clearance (CL) were decreased by 80.87% and 68.94%, respectively. This study displays significant changes in the pharmacokinetics of propranolol under high altitude, which may provide evidence for clinical rational application of propranolol at high altitude.

  9. Effect of In Vivo Nicotine Exposure on Chlorpyrifos Pharmacokinetics and Pharmacodynamics in Rats

    SciTech Connect

    Lee, Sookwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1 mg nicotine/kg or saline (sc), and to either a single oral dose of 35 mg CPF/kg or a repeated dose of 5 mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. Physiologically based pharmacokinetic model simulations of CPF-oxon concentrations in blood and brain were predicted to be lower in nicotine treated groups, which were simulated by increasing the dearylation Vmax based upon previously conducted in vitro metabolism studies. These results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, further modulating brain AChE inhibition.

  10. A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats

    SciTech Connect

    Emond, Claude; Raymer, James H.; Studabaker, William B.; Garner, C. Edwin; Birnbaum, Linda S.

    2010-02-01

    Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consists of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal-fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.

  11. Effects of subchronic malathion exposure on the pharmacokinetic disposition of pefloxacin.

    PubMed

    Suresh Babu, N; Malik, J K; Rao, G S; Aggarwal, Manoj; Ranganathan, V

    2006-09-01

    Malathion is one of the most extensively used organophosphorus pesticides applied in agriculture, mosquito eradication and in the control of animal ectoparasites and human body lice. The widespread use of malathion has raised concern over its potential to cause untoward health effects in humans, animals and birds. Malathion inhibits cytochrome P450 monooxygenases and has the potential to alter pharmacokinetic profiles of therapeutic agents that are metabolized in the liver. The present study was undertaken to evaluate the impact of subchronic exposure of malathion on the pharmacokinetic disposition of pefloxacin. Chickens were given either normal diet or malathion through food at a concentration of 1000ppm for 28 days. Subsequently, pefloxacin was administered either intravenously or orally (control) to birds fed normal diet and orally to malathion-exposed chickens at a dosage of 10mgkg(-1) body weight. Blood samples were drawn from the brachial vein at predetermined time intervals after drug administration. Plasma was separated and analyzed for pefloxacin by reverse-phase high performance liquid chromatography. The plasma concentration-time data were analyzed by non-compartmental techniques. Following intravenous administration of pefloxacin, elimination half-life (t(1/2β)), area under the plasma concentration-time curve (AUC) and mean residence time (MRT) were 8.2±0.7h, 66±9μghml(-1) and 10.5±1.1h, respectively, and when the drug was administered orally, the respective values of pharmacokinetic parameters were 8.2±0.4h, 31±3.1μghml(-1) and 11.7±0.6h. Malathion exposure significantly increased maximum plasma drug concentration, t(1/2β), AUC and MRT of pefloxacin to 54, 22, 117 and 37% of control, respectively. These findings provide evidence that subchronic malathion exposure markedly influences the elimination kinetics of pefloxacin which may be due to malathion-mediated inhibition of metabolism of pefloxacin.

  12. Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling.

    PubMed

    Vinegar, A; Jepson, G W; Cisneros, M; Rubenstein, R; Brock, W J

    2000-08-01

    Most proposed replacements for Halon 1301 as a fire suppressant are halogenated hydrocarbons. The acute toxic endpoint of concern for these agents is cardiac sensitization. An approach is described that links the cardiac endpoint as assessed in dogs to a target arterial concentration in humans. Linkage was made using a physiologically based pharmacokinetic (PBPK) model. Monte Carlo simulations, which account for population variability, were used to establish safe exposure times at different exposure concentrations for Halon 1301 (bromotrifluoromethane), CF(3)I (trifluoroiodomethane), HFC-125 (pentafluoroethane), HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (1,1,1,3,3,3-hexafluoropropane). Application of the modeling technique described here not only makes use of the conservative cardiac sensitization endpoint, but also uses an understanding of the pharmacokinetics of the chemical agents to better establish standards for safe exposure. The combined application of cardiac sensitization data and physiologically based modeling provides a quantitative approach, which can facilitate the selection and effective use of halon replacement candidates.

  13. Studying permethrin exposure in flight attendants using a physiologically based pharmacokinetic model.

    PubMed

    Wei, Binnian; Isukapalli, Sastry S; Weisel, Clifford P

    2013-07-01

    Assessment of potential health risks to flight attendants from exposure to pyrethroid insecticides, used for aircraft disinsection, is limited because of (a) lack of information on exposures to these insecticides, and (b) lack of tools for linking these exposures to biomarker data. We developed and evaluated a physiologically based pharmacokinetic (PBPK) model to assess the exposure of flight attendants to the pyrethroid insecticide permethrin attributable to aircraft disinsection. The permethrin PBPK model was developed by adapting previous models for pyrethroids, and was parameterized using currently available metabolic parameters for permethrin. The human permethrin model was first evaluated with data from published human studies. Then, it was used to estimate urinary metabolite concentrations of permethrin in flight attendants who worked in aircrafts, which underwent residual and pre-flight spray treatments. The human model was also applied to analyze the toxicokinetics following permethrin exposures attributable to other aircraft disinsection scenarios. Predicted levels of urinary 3-phenoxybenzoic acid (3-PBA), a metabolite of permethrin, following residual disinsection treatment were comparable to the measurements made for flight attendants. Simulations showed that the median contributions of the dermal, oral and inhalation routes to permethrin exposure in flight attendants were 83.5%, 16.1% and 0.4% under residual treatment scenario, respectively, and were 5.3%, 5.0% and 89.7% under pre-flight spray scenario, respectively. The PBPK model provides the capability to simulate the toxicokinetic profiles of permethrin, and can be used in the studies on human exposure to permethrin.

  14. Studying permethrin exposure in flight attendants using a physiologically based pharmacokinetic model

    PubMed Central

    Wei, Binnian; Isukapalli, Sastry S.; Weisel, Clifford P.

    2014-01-01

    Assessment of potential health risks to flight attendants from exposure to pyrethroid insecticides, used for aircraft disinsection, is limited because of (a) lack of information on exposures to these insecticides, and (b) lack of tools for linking these exposures to biomarker data. We developed and evaluated a physiologically based pharmacokinetic (PBPK) model to assess the exposure of flight attendants to the pyrethroid insecticide permethrin attributable to aircraft disinsection. The permethrin PBPK model was developed by adapting previous models for pyrethroids, and was parameterized using currently available metabolic parameters for permethrin. The human permethrin model was first evaluated with data from published human studies. Then, it was used to estimate urinary metabolite concentrations of permethrin in flight attendants who worked in aircrafts, which underwent residual and pre-flight spray treatments. The human model was also applied to analyze the toxicokinetics following permethrin exposures attributable to other aircraft disinsection scenarios. Predicted levels of urinary 3-phenoxybenzoic acid (3-PBA), a metabolite of permethrin, following residual disinsection treatment were comparable to the measurements made for flight attendants. Simulations showed that the median contributions of the dermal, oral and inhalation routes to permethrin exposure in flight attendants were 83.5%, 16.1% and 0.4% under residual treatment scenario, respectively, and were 5.3%, 5.0% and 89.7% under pre-flight spray scenario, respectively. The PBPK model provides the capability to simulate the toxicokinetic profiles of permethrin, and can be used in the studies on human exposure to permethrin. PMID:23462847

  15. The Pharmacokinetic Exposure to Fexofenadine is Volume-Dependently Reduced in Healthy Subjects Following Oral Administration With Apple Juice.

    PubMed

    Luo, J; Imai, H; Ohyama, T; Hashimoto, S; Hasunuma, T; Inoue, Y; Kotegawa, T; Ohashi, K; Uemura, N

    2016-08-01

    Pharmacokinetic exposures to fexofenadine (FEX) are reduced by apple juice (AJ); however, the relationship between the AJ volume and the degree of AJ-FEX interaction has not been understood. In this crossover study, 10 healthy subjects received single doses of FEX 60 mg with different volumes (150, 300, and 600 mL) of AJ or water (control). To identify an AJ volume lacking clinically meaningful interaction, we tested a hypothesis that the 90% confidence interval (CI) for geometric mean ratio (GMR) of FEX AUCAJ /AUCwater is contained within a biocomparability bound of 0.5-2.0, with at least one tested volume of AJ. GMR (90% CI) of AUCAJ 150mL /AUCwater , AUCAJ 300mL /AUCwater , and AUCAJ 600mL /AUCwater were 0.903 (0.752-1.085), 0.593 (0.494-0.712), and 0.385 (0.321-0.462), respectively. While a moderate to large AJ-FEX interaction is caused by a larger volumes of AJ (e.g., 300 to 600 mL), the effect of a small volume (e.g., 150 mL) appears to be not meaningful. © 2016 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  16. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats

    SciTech Connect

    Lee, Soo Kwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Chlorpyrifos (CPF) is one of the most studied and widely used broad spectrum organophosphorus (OP) insecticides. The neurotoxicity of CPF results from inhibition of cholinesterase (ChE) by its metabolite, chlorpyrifos-oxon (CPF-oxon), which subsequently leads to cholinergic hyperstimulation. The routine consumption of alcoholic beverages and tobacco products will modify a number of metabolic and physiological processes which may impact the metabolism and pharmacokinetics of other xenobiotics including pesticides. The objective of this study was to evaluate the influence of repeated ethanol and nicotine co-exposure on in vivo CPF pharmacokinetics and pharmacodynamics. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine along with changes in plasma and brain AChE activities were measured in male Sprague-Dawley (S-D) rats. Animals were repeatedly treated with either saline or ethanol (1 g/kg/day, po) and nicotine (1 mg/kg/day, sc) in addition to CPF (1 or 5 mg/kg/day, po) for 7 days. Rats were sacrificed at times from 1 to 24 hr post-last dosing of CPF. There were apparent differences in blood TCPy pharmacokinetics following ethanol and nicotine pretreatments in both CPF dose groups, which showed higher TCPy peak concentrations and increased blood TCPy AUC in ethanol and nicotine groups over CPF-only (~1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain acetylcholinesterase (AChE) activities from both ethanol and nicotine-treated groups showed substantially less inhibition following repeated 5 mg CPF/kg dosing compared to CPF-only controls (96 ± 13 and 66 ± 7% of naïve at 4 hr post-last CPF dosing, respectively). Inhibition of brain AChE activities was minimal in both 1 mg CPF/kg/day dosing groups, but a similar trend indicating less inhibition following ethanol/nicotine pretreatment was apparent. No differences were observed in plasma ChE activities due to the combined alcohol and nicotine treatments. In vitro, CPF

  17. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA.

    PubMed

    Lorber, Matthew; Egeghy, Peter P

    2011-10-01

    Models for assessing intakes of perfluorooctanoic acid, PFOA, are described and applied. One model is based on exposure media concentrations and contact rates. This model is applied to general population exposures for adults and 2-year old children. The other model is a simple one-compartment, first-order pharmacokinetic (PK) model. Parameters for this model include a rate of elimination of PFOA and a blood volume of distribution. The model was applied to data from the National Health and Nutritional Examination Survey, NHANES, to backcalculate intakes. The central tendency intake estimate for adults and children based on exposure media concentrations and contact rates were 70 and 26 ng/day, respectively. The central tendency adult intake derived from NHANES data was 56 and 37 ng/day for males and females, respectively. Variability and uncertainty discussions regarding the intake modeling focus on lack of data on direct exposure to PFOA used in consumer products, precursor compounds, and food. Discussions regarding PK modeling focus on the range of blood measurements in NHANES, the appropriateness of the simple PK model, and the uncertainties associated with model parameters. Using the PK model, the 10th and 95th percentile long-term average adult intakes of PFOA are 15 and 130 ng/day.

  18. Pharmacokinetics of toxic chemicals in breast milk: use of PBPK models to predict infant exposure.

    PubMed Central

    Clewell, Rebecca A; Gearhart, Jeffery M

    2002-01-01

    Factors controlling the transfer of potentially toxic chemicals in the breast milk of nursing mothers include both chemical characteristics, such as lipophilicity, and physiologic changes during lactation. Physiologically based pharmacokinetic (PBPK) models can aid in the prediction of infant exposure via breast milk. Benefits of these quantitative models include the ability to account for changing maternal physiology and transfer kinetics, as well as the chemical-specific characteristics, in order to produce more accurate estimates of neonatal risk. A recently developed PBPK model for perchlorate and iodide kinetics in the lactating and neonatal rat demonstrates the utility of PBPK modeling in predicting maternal and neonatal distribution of these two compounds. This model incorporates time-dependent changes in physiologic characteristics and includes interactions between iodide and perchlorate that alter the distribution and kinetics of iodide. PMID:12055064

  19. Translational Pharmacokinetic/Pharmacodynamic Modeling of Tumor Growth Inhibition Supports Dose‐Range Selection of the Anti–PD‐1 Antibody Pembrolizumab

    PubMed Central

    Lindauer, A; Valiathan, CR; Mehta, K; Sriram, V; de Greef, R; Elassaiss‐Schaap, J

    2016-01-01

    Pembrolizumab, a humanized monoclonal antibody against programmed death 1 (PD‐1), has a manageable safety profile and robust clinical activity against advanced malignancies. The lowest effective dose for evaluation in further dose‐ranging studies was identified by developing a translational model from preclinical mouse experiments. A compartmental pharmacokinetic model was combined with a published physiologically based tissue compartment, linked to receptor occupancy as the driver of observed tumor growth inhibition. Human simulations were performed using clinical pharmacokinetic data, literature values, and in vitro parameters for drug distribution and binding. Biological and mathematical uncertainties were included in simulations to generate expectations for dose response. The results demonstrated a minimal increase in efficacy for doses higher than 2 mg/kg. The findings of the translational model were successfully applied to select 2 mg/kg as the lowest dose for dose‐ranging evaluations. PMID:27863176

  20. Effect of temperature on the pharmacokinetics of benzocaine in rainbow trout (Oncorhynchus mykiss) after bath exposures

    USGS Publications Warehouse

    Stehly, G.R.; Meinertz, J.R.; Gingerich, W.H.

    1998-01-01

    The pharmacokinetics of benzocaine during bath exposures at 1 mg/L were determined in rainbow trout acclimated at 6 °C, 12 °C or 18 °C for at least 1 month. Individual fish were exposed to benzocaine in a recirculating system for 4 h and pharmacokinetic parameters were estimated in a unique manner from the concentration of benzocaine in the bath water vs. time curve. Elimination from plasma was also determined after the 4 h exposure. The uptake clearance and metabolic clearance increased with increased acclimatization temperatures (uptake clearance 581 ± 179 mL/min/kg at 6 °C and 1154 ± 447 mL/ min/kg at 18 °C; metabolic clearance 15.2 ± 4.1 mL/min/kg at 6 °C and 22.3 ± 4.2 mL/min/kg at 18 °C). The apparent volume of distribution had a trend for increasing with temperature that was not significant at the 5% level (2369 ± 678 mL/kg at 6 °C to 3260 ± 1182 mL/kg at 18 °C). The elimination half-life of benzocaine in plasma was variable and did not differ significantly with temperature (60.8 ± 30.3 min at 6 °C to 35.9 ± 13.0 min at 12 °C). Elimination of benzocaine from rainbow trout is relatively rapid and even more rapid at higher acclimatization temperatures based on calculated metabolic clearances and measured plasma concentrations, but was not evident by measurement of terminal plasma half-lifes.

  1. Translational pharmacokinetic modelling and simulation for the assessment of duration of contraceptive use after treatment with miltefosine.

    PubMed

    Dorlo, Thomas P C; Balasegaram, Manica; Lima, María Angeles; de Vries, Peter J; Beijnen, Jos H; Huitema, Alwin D R

    2012-08-01

    Use of miltefosine in the treatment of visceral leishmaniasis (VL) is hampered by its potential teratogenicity. The duration of adequate contraceptive cover in females of child-bearing potential after cessation of a potentially teratogenic drug therapy remains debated. The objective of this study was to provide a rational approach to suggest durations of contraceptive cover for various miltefosine regimens. A human reproductive safety threshold exposure limit was derived using animal-to-human dose conversion. Pharmacokinetic (PK) data for miltefosine in females are lacking; a previously developed population PK model and a comprehensive anthropometric dataset were used to simulate PK data for Indian female VL patients receiving miltefosine for 5, 7, 10 or 28 days. Probability of supra-threshold miltefosine exposure was used to evaluate adequate durations of post-treatment contraceptive cover for the various regimens. PK data were simulated for 465 treated Indian female VL patients of child-bearing potential with a median age of 25 years (IQR 16-31 years) and median weight of 38 kg (IQR 34-42 kg). From animal reproductive toxicity studies, a human reproductive safety threshold exposure limit was derived of 24.5 μg · day/mL. Probability of 'unprotected' supra-threshold miltefosine exposure was very low (<0.2%) for a post-treatment contraceptive cover period of 4 months for the standard 28 day regimen, and of 2 months for the shorter regimens. To our knowledge, this is the first study providing rational suggestions for contraceptive cover for a teratogenic drug based on animal-to-human dose conversion. For the 28 day miltefosine regimen, post-treatment contraceptive cover may be extended to 4 months, whereas for all shorter regimens 2 months may be adequate.

  2. Enhancing exposure-based therapy from a translational research perspective.

    PubMed

    Hofmann, Stefan G

    2007-09-01

    Combining an effective psychological treatment with conventional anxiolytic medication is typically not more effective than unimodal therapy for treating anxiety disorders. However, recent advances in the neuroscience of fear reduction have led to novel approaches for combining psychological therapy and pharmacological agents. Exposure-based treatments in humans partly rely on extinction to reduce the fear response in anxiety disorders. Animal studies have shown that D-cycloserine (DCS), a partial agonist at the glycine recognition site of the glutamatergic N-methyl-D-aspartate receptor facilitates extinction learning. Similarly, recent human trials have shown that DCS enhances fear reduction during exposure therapy of some anxiety disorders. This article discusses the biological and psychological mechanisms of extinction learning and the therapeutic value of DCS as an augmentation strategy for exposure therapy. Areas of future research will be identified.

  3. Enhancing exposure-based therapy from a translational research perspective

    PubMed Central

    Hofmann, Stefan G.

    2007-01-01

    Combining an effective psychological treatment with conventional anxiolytic medication is typically not more effective than unimodal therapy for treating anxiety disorders. However, recent advances in the neuroscience of fear reduction have led to novel approaches for combining psychological therapy and pharmacological agents. Exposure-based treatments in humans partly rely on extinction to reduce the fear response in anxiety disorders. Animal studies have shown that d-cycloserine (DCS), a partial agonist at the glycine recognition site of the glutamatergic N-methyl- d-aspartate receptor facilitates extinction learning. Similarly, recent human trials have shown that DCS enhances fear reduction during exposure therapy of some anxiety disorders. This article discusses the biological and psychological mechanisms of extinction learning and the therapeutic value of DCS as an augmentation strategy for exposure therapy. Areas of future research will be identified. PMID:17659253

  4. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling

    PubMed Central

    Leonard, Jeremy A.; Tan, Yu-Mei; Gilbert, Mary; Isaacs, Kristin; El-Masri, Hisham

    2016-01-01

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T4) and triiodothyronine (T3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T4 and T3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses. PMID:26865668

  5. Linear pharmacokinetic models for evaluating unusual work schedules, exposure limits and body burdens of pollutants

    SciTech Connect

    Saltzman, B.E.

    1988-05-01

    The adverse effects of workplace exposures to pollutants relate more accurately to the concentrations of pollutants in the body than in the environment. In many cases pharmacokinetic models may represent the external to internal concentration relationships with useful accuracy. Simplified equations are presented for stepwise calculations on a series of time-averaged, external concentrations to give a corresponding series of internal concentrations. Accurate results were obtained for averaging times not exceeding one-fourth of the biological half-life of the pollutant. A convenient measure of internal concentration is the external concentration that would be at in vivo equilibrium with it (termed biologically effective concentration). Three measures of damage burden are proposed, each appropriate for different toxic mechanisms. The calculations readily may be carried out on a programmable calculator or microcomputer. Illustrative examples show how unusual work schedules may be compared with an 8 hr/day, 5 days/week schedule and how appropriate short- and long-term exposure limits may be determined. Other examples, illustrated for lead, relate absorbed mass rates to body concentrations and body burdens in a two-compartment kinetic model. These calculations should provide a more accurate evaluation of fluctuating concentrations, which can be handled easily.

  6. Predicting Cortisol Exposure from Paediatric Hydrocortisone Formulation Using a Semi-Mechanistic Pharmacokinetic Model Established in Healthy Adults.

    PubMed

    Melin, Johanna; Parra-Guillen, Zinnia P; Hartung, Niklas; Huisinga, Wilhelm; Ross, Richard J; Whitaker, Martin J; Kloft, Charlotte

    2017-07-31

    Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort(®) oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort(®) or 20 mg of Infacort(®)/hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline cort,15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing <20 kg. Our semi-mechanistic population pharmacokinetic model for hydrocortisone captures the complex pharmacokinetics of hydrocortisone in a simplified but comprehensive framework. The predicted cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing <20 kg. EudraCT number: 2013-000260-28, 2013-000259-42.

  7. Intravenous oxycodone for pain relief in the first stage of labour--maternal pharmacokinetics and neonatal exposure.

    PubMed

    Kokki, Merja; Franco, Maria Gonzalez; Raatikainen, Kaisa; Välitalo, Pyry; Sankilampi, Ulla; Heinonen, Seppo; Neuvonen, Pertti J; Kokki, Hannu

    2012-09-01

    Physiological changes during pregnancy may change pharmacokinetics of compounds. Oxycodone is an increasingly used opioid agonist in acute pain management but its pharmacokinetics in labouring women has not been established. We studied the maternal pharmacokinetics and neonatal exposure of intravenous oxycodone for pain relief in the first stage of labour. The study was prospective, open-labelled and with a control group. After informed consent, 15 nulliparous parturients and newborns, and newborns in a control group were studied. In the study group, oxycodone boluses of 1 mg i.v., up to a cumulative dose of 5 mg, was administered when labour pain score was 5/10 or higher. As the control group, 30 other newborns after uncomplicated deliveries with no systemic opioids were assessed for the neonatal outcome. In the study group, maternal pharmacokinetics of oxycodone was measured from plasma concentrations during labour, and neonatal exposure was assessed from umbilical plasma samples using population pharmacokinetic methods. Maternal plasma oxycodone concentration decreased with a median half-life of 2.6 hr (range, 1.8-2.8). Oxycodone concentrations in the umbilical plasma 2.7 μg/l (0.3-14.5) were similar as in maternal plasma 2.4 (0.1-14.8) μg/l at the time of birth. No severe or unexpected adverse effects were noted. To conclude, firstly, maternal elimination half-life of i.v. oxycodone was significantly shorter than that reported in non-pregnant women, and secondly, maternal plasma oxycodone at the birth correlated well with neonatal umbilical concentrations and may, thus, be used as an estimate of neonatal exposure.

  8. TREXMO: A Translation Tool to Support the Use of Regulatory Occupational Exposure Models.

    PubMed

    Savic, Nenad; Racordon, Dimitri; Buchs, Didier; Gasic, Bojan; Vernez, David

    2016-10-01

    Occupational exposure models vary significantly in their complexity, purpose, and the level of expertise required from the user. Different parameters in the same model may lead to different exposure estimates for the same exposure situation. This paper presents a tool developed to deal with this concern-TREXMO or TRanslation of EXposure MOdels. TREXMO integrates six commonly used occupational exposure models, namely, ART v.1.5, STOFFENMANAGER(®) v.5.1, ECETOC TRA v.3, MEASE v.1.02.01, EMKG-EXPO-TOOL, and EASE v.2.0. By enabling a semi-automatic translation between the parameters of these six models, TREXMO facilitates their simultaneous use. For a given exposure situation, defined by a set of parameters in one of the models, TREXMO provides the user with the most appropriate parameters to use in the other exposure models. Results showed that, once an exposure situation and parameters were set in ART, TREXMO reduced the number of possible outcomes in the other models by 1-4 orders of magnitude. The tool should manage to reduce the uncertain entry or selection of parameters in the six models, improve between-user reliability, and reduce the time required for running several models for a given exposure situation. In addition to these advantages, registrants of chemicals and authorities should benefit from more reliable exposure estimates for the risk characterization of dangerous chemicals under Regulation, Evaluation, Authorisation and restriction of CHemicals (REACH).

  9. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers.

    PubMed

    Huang, Liusheng; Parikh, Sunil; Rosenthal, Philip J; Lizak, Patricia; Marzan, Florence; Dorsey, Grant; Havlir, Diane; Aweeka, Francesca T

    2012-11-01

    The antiretroviral drug efavirenz (EFV) and the antimalarial artemisinin-based combination therapy artemether-lumefantrine (AL) are commonly co-administered to treat HIV and malaria. EFV is a known inducer of cytochrome P450 3A4, which converts artemether to dihydroartemisinin (DHA) that is also active and metabolizes longer acting lumefantrine (LR). A study in healthy volunteers was completed to address the concern that EFV impacts AL pharmacokinetics (PKs). Adults received AL (80/480 mg twice daily) for 3-days before and during EFV co-administration (600 mg daily for 26 days) with intensive PK for artemether, DHA, and LR conducted after the last AL dose for each period. EFV PK was evaluated with and without AL. PK parameters were estimated using noncompartmental methods. Twelve subjects completed the 2-period study. PK exposure for artemether, DHA, and LR [as estimated by the area under the concentration time curve (AUClast)] decreased or trended toward decrease with EFV, compared with when administered alone [-51% (P = 0.084), -46% (P = 0.005), and -21% (P = 0.102), respectively]. Day-7 LR levels, previously deemed predictive of treatment success, were 46% lower (P = 0.002) with EFV, but the LR half-life was unchanged. EFV PK exposure was minimally altered after AL co-administration [AUC0-24 hrs decreased by 17% (P = 0.034)]. Exposure to DHA, but not LR, was significantly lower during EFV-AL co-administration compared with that during administration of AL alone. These findings may have implications for the treatment efficacy of AL, particularly in children. However, the observed modest changes probably do not warrant dosage adjustment during co-administration of AL with EFV.

  10. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers

    PubMed Central

    Huang, Liusheng; Parikh, Sunil; Rosenthal, Philip J.; Lizak, Patricia; Marzan, Florence; Dorsey, Grant; Havlir, Diane; Aweeka, Francesca T.

    2012-01-01

    Background The antiretroviral drug efavirenz (EFV) and the antimalarial artemisinin-based combination therapy (ACT) artemether-lumefantrine (AL) are commonly co-administered to treat HIV and malaria. EFV is a known inducer of cytochrome P450 3A4, which converts artemether to dihydroartemisinin (DHA) that is also active and metabolizes longer acting lumefantrine (LR). A study in healthy volunteers was completed to address the concern that EFV impacts AL pharmacokinetics (PK). Methods Adults received AL (80/480 mg BID) for 3-days prior to and during EFV co-administration (600 mg daily for 26-days) with intensive PK for artemether, DHA, and LR conducted after the last AL dose for each period. EFV PK was evaluated with and without AL. PK parameters were estimated using non-compartmental methods. Results Twelve subjects completed the two-period study. PK exposure for artemether, DHA, and LR [as estimated by the area under the concentration time curve (AUClast)] decreased or trended toward decrease with EFV, compared to when administered alone [−51% (p=0.084), −46% (p=0.005), and −21% (p=0.102), respectively]. Day 7 LR levels, previously deemed predictive of treatment success, were 46% lower (p=0.002) with EFV, but the LR half-life was unchanged. EFV PK exposure was minimally altered following AL co-administration [AUC0–24h decreased by 17% (p=0.034)]. Conclusions Exposure to DHA, but not LR, was significantly lower during EFV-AL co-administration compared to that during administration of AL alone. These findings may have implications for the treatment efficacy of AL, particularly in children. However, the observed modest changes probably do not warrant dosage adjustment during co-administration of AL with EFV. PMID:22918158

  11. Comparative pharmacokinetic study of the role of gender and developmental differences in occupational and environmental exposure to benzene. Master's thesis

    SciTech Connect

    Brown, E.A.

    1994-09-01

    The purpose of this study is two-fold. First, it shows that physiological differences between men and women result in gender-specific exposures with respect to benzene. Second, it assesses the potential for a lactating woman's occupational and personal benzene exposure to impact a nursing infant's exposure, highlighting the possibility of subjecting an infant to the effects of industrial chemicals via breast feeding. This study employs physiologically based pharmacokinetic (PBPK) modeling to investigate the influence of physiological parameters and to evaluate the ability of inhaled benzene to transfer from mother to infant through breastmilk. The models are run through scenarios that simulate occupational, smoking, and background exposures. The gender comparison is facilitated by a sensitivity analysis. The blood/air partition coefficient and maximum velocity of metabolism were found to substantially impact model output. These values were both higher in women and caused an increase in the percentage of benzene metabolized in all of the exposure scenarios. The study of lactating women and infants is essentially theoretical. There is evidence that over 65% of an infant's benzene exposure can be attributed to contaminated breastmilk. A large portion of the ingested exposure can be eliminated by adjusting the mother's working or nursing schedule. Benzene, Physiologically based pharmacokinetics, PBPK.

  12. Population Pharmacokinetics and Exposure-Response Relationship of Carfilzomib in Patients With Multiple Myeloma.

    PubMed

    Ou, Ying; Doshi, Sameer; Nguyen, Anh; Jonsson, Fredrik; Aggarwal, Sanjay; Rajangam, Kanya; Dimopoulos, Meletios A; Stewart, A Keith; Badros, Ashraf; Papadopoulos, Kyriakos P; Siegel, David; Jagannath, Sundar; Vij, Ravi; Niesvizky, Ruben; Graham, Richard; Visich, Jenn

    2016-12-07

    A population pharmacokinetic (PK) model and exposure-response (E-R) analysis was developed using data collected from 5 phase 1b/2 and 2 phase 3 studies in subjects with multiple myeloma. Subjects receiving intravenous infusion on 2 consecutive days each week for 3 weeks (days 1, 2, 8, 9, 15, and 16) in each cycle at doses ranging from 15 to 20/56 mg/m(2) (20 mg/m(2) in cycle 1 and, if tolerated, escalated to 56 mg/m(2) on day 8 of cycle 1). The population PK analysis indicated that among all the covariates tested, the only statistically significant covariate was body surface area on carfilzomib clearance; however, this covariate was unlikely to be clinically significant. Despite inclusion of different populations (relapsed or relapsed/refractory), treatments (carfilzomib monotherapy or combination therapy), infusion lengths (2 to 10 minutes or 30 minutes), and different doses, the E-R analysis of efficacy showed that after adjusting for baseline characteristics, higher area under the concentration-time curve was associated with improved overall response rate (ORR), from 15 to 20/56 mg/m(2) . No positive relationships between maximum concentration and ORR were identified, indicating that ORR would not be expected to be impacted by infusion length. For safety end points, no statistically significant relationship between exposure and increasing risk of adverse events was identified. The results of an E-R analysis provided strong support for a carfilzomib dose at 20/56 mg/m(2) as a 30-minute infusion for monotherapy and combination therapy. This article illustrates an example of application of E-R analysis to support labeling dose recommendation in the absence of extensive clinical data.

  13. Similarity of Bisphenol A Pharmacokinetics in Rhesus Monkeys and Mice: Relevance for Human Exposure

    PubMed Central

    Taylor, Julia A.; vom Saal, Frederick S.; Welshons, Wade V.; Drury, Bertram; Rottinghaus, George; Hunt, Patricia A.; Toutain, Pierre-Louis; Laffont, Céline M.; VandeVoort, Catherine A.

    2011-01-01

    Objective Daily adult human exposure to bisphenol A (BPA) has been estimated at < 1 μg/kg, with virtually complete first-pass conjugation in the liver in primates but not in mice. We measured unconjugated and conjugated BPA levels in serum from adult female rhesus monkeys and adult female mice after oral administration of BPA and compared findings in mice and monkeys with prior published data in women. Methods Eleven adult female rhesus macaques were fed 400 μg/kg deuterated BPA (dBPA) daily for 7 days. Levels of serum dBPA were analyzed by isotope-dilution liquid chromatography–mass spectrometry (0.2 ng/mL limit of quantitation) over 24 hr on day 1 and on day 7. The same dose of BPA was fed to adult female CD-1 mice; other female mice were administered 3H-BPA at doses ranging from 2 to 100,000 μg/kg. Results In monkeys, the maximum unconjugated serum dBPA concentration of 4 ng/mL was reached 1 hr after feeding and declined to low levels by 24 hr, with no significant bioaccumulation after seven daily doses. Mice and monkeys cleared unconjugated serum BPA at virtually identical rates. We observed a linear (proportional) relationship between administered dose and serum BPA in mice. Conclusions BPA pharmacokinetics in women, female monkeys, and mice is very similar. By comparison with approximately 2 ng/mL unconjugated serum BPA reported in multiple human studies, the average 24-hr unconjugated serum BPA concentration of 0.5 ng/mL in both monkeys and mice after a 400 μg/kg oral dose suggests that total daily human exposure is via multiple routes and is much higher than previously assumed. PMID:20855240

  14. Nicotine pharmacokinetics and subjective effects of three potential reduced exposure products, moist snuff and nicotine lozenge

    PubMed Central

    Kotlyar, Michael; Mendoza‐Baumgart, M Irene; Li, Zhong‐ze; Pentel, Paul R; Barnett, Brianne C; Feuer, Rachel M; Smith, Erin A; Hatsukami, Dorothy K

    2007-01-01

    Objective To compare nicotine pharmacokinetics and subjective effects of three new smokeless tobacco potential reduced exposure products (PREPs; Ariva, Revel and Stonewall) with moist snuff (Copenhagen) and medicinal nicotine (Commit lozenge). Methods 10 subjects completed a randomised, within‐subject, crossover study. Subjects used one product for 30 min at each of the five laboratory sessions. Maximal nicotine concentration (Cmax) was determined and area under the concentration time curve (AUC) was calculated for a 90‐min period (during use and 60 min after use). Nicotine craving, withdrawal symptoms and ratings of product effects and liking were measured during product use. Results Nicotine AUC and Cmax were higher for Copenhagen than for any other product (p<0.002) and higher for Commit than for either Ariva or Revel (p<0.001). Cmax for Commit was also higher than for Stonewall (p = 0.03). Craving was lowest during use of Copenhagen (p<0.03). Craving during use of Stonewall, Ariva and Commit was lower than during use of Revel (p<0.05). Withdrawal symptom score during use of Copenhagen was lower than during use of Revel (p = 0.009). Copenhagen scores were higher (p<0.005) than all other products in several measures of drug effects and liking (feel good effects, satisfaction, liking and desire for product, and strength of product). Conclusion The new smokeless tobacco PREPs result in lower nicotine concentrations and equivalent or lower reductions in subjective measures compared with medicinal nicotine. Since health effects of PREPs are largely unknown, medicinal nicotine should be preferentially encouraged for smokers or smokeless tobacco users wishing to switch to lower‐risk products. PMID:17400953

  15. COMPARISON OF THE USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL AND A CLASSICAL PHARMACOKINETIC MODEL FOR DIOXIN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    In epidemiological studies, exposure assessments to TCDD, known as a possible human carcinogen, assume mono or biphasic elimination rates. Recent data suggests a dose dependent elimination rate for TCDD. A PBPK model, which uses a body burden dependent elimination rate, was dev...

  16. COMPARISON OF THE USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL AND A CLASSICAL PHARMACOKINETIC MODEL FOR DIOXIN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    In epidemiological studies, exposure assessments to TCDD, known as a possible human carcinogen, assume mono or biphasic elimination rates. Recent data suggests a dose dependent elimination rate for TCDD. A PBPK model, which uses a body burden dependent elimination rate, was dev...

  17. Understanding variability in posaconazole exposure using an integrated population pharmacokinetic analysis.

    PubMed

    Dolton, Michael J; Brüggemann, Roger J M; Burger, David M; McLachlan, Andrew J

    2014-11-01

    Posaconazole oral suspension is widely used for antifungal prophylaxis and treatment in immunocompromised patients, with highly variable pharmacokinetics reported in patients due to inconsistent oral absorption. This study aimed to characterize the pharmacokinetics of posaconazole in adults and investigate factors that influence posaconazole pharmacokinetics byusing a population pharmacokinetic approach. Nonlinear mixed-effects modeling was undertaken for two posaconazole studies in patients and healthy volunteers. The influences of demographic and clinical characteristics, such as mucositis, diarrhea, and drug-drug interactions, on posaconazole pharmacokinetics were investigated using a stepwise forward inclusion/backwards deletion procedure. A total of 905 posaconazole concentration measurements from 102 participants were analyzed. A one-compartment pharmacokinetic model with first-order oral absorption with lag time and first-order elimination best described posaconazole pharmacokinetics. Posaconazole relative bioavailability was 55% lower in patients who received posaconazole than in healthy volunteers. Coadministration of proton pump inhibitors (PPIs) or metoclopramide, as well as the occurrence of mucositis or diarrhea, reduced posaconazole relative bioavailability by 45%, 35%, 58%, and 45%, respectively, whereas concomitant ingestion of a nutritional supplement significantly increased bioavailability (129% relative increase). Coadministration of rifampin or phenytoin increased apparent posaconazole clearance by more than 600%, with a smaller increase observed with fosamprenavir (34%). Participant age, weight, or sex did not significantly affect posaconazole pharmacokinetics. Posaconazole absorption was reduced by a range of commonly coadministered medicines and clinical complications, such as mucositis and diarrhea. Avoidance of PPIs and metoclopramide and administration with food or a nutritional supplement are effective strategies to increase posaconazole

  18. Application of pharmacokinetic modelling for 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure assessment.

    PubMed

    Ruiz, P; Aylward, L L; Mumtaz, M

    2014-01-01

    Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (dioxin-like PCBs) are identified as a family or group of organic compounds known as 'dioxins' or dioxin-like chemicals (DLCs). The most toxic member of this group is 2,3,7,8-tetrachlorodibenzo-(p)-dioxin (TCDD). Historically, DLCs have caused a variety of negative human health effects, but a disfiguring skin condition known as chloracne is the only health effect reported consistently. As part of translational research to make computerized models accessible to health risk assessors, the Concentration- and Age-Dependent Model (CADM) for TCDD was recoded in the Berkeley Madonna simulation language. The US Agency for Toxic Substances and Disease Registry's computational toxicology laboratory used the recoded model to predict TCDD tissue concentrations at different exposure levels. The model simulations successfully reproduced the National Health and Nutrition Examination Survey (NHANES) 2001-2002 TCDD data in age groups from 6 to 60 years and older, as well as in other human datasets. The model also enabled the estimation of lipid-normalized serum TCDD concentrations in breastfed infants. The model performed best for low background exposures over time compared with a high acute poisoning case that could due to the large dose and associated liver toxicity. Hence, this model may be useful for interpreting human biomonitoring data as a part of an overall DLC risk assessment.

  19. THE DEVELOPMENT AND TESTING OF A DERMAL EXPOSURE SYSTEM FOR PHARMACOKINETIC STUDIES OF ADMINISTERED AND AMBIENT WATER CONTAMINANTS: METHODS AND RESULTS

    EPA Science Inventory


    INTRODUCTION: In order to investigate the pharmacokinetics of water-borne chemicals while eliminating exposures by other routes, a dermal exposure system was developed to expose the hand and forearm of human subjects. METHODS: The goal was, primarily, to study the dermal phar...

  20. THE DEVELOPMENT AND TESTING OF A DERMAL EXPOSURE SYSTEM FOR PHARMACOKINETIC STUDIES OF ADMINISTERED AND AMBIENT WATER CONTAMINANTS: METHODS AND RESULTS

    EPA Science Inventory


    INTRODUCTION: In order to investigate the pharmacokinetics of water-borne chemicals while eliminating exposures by other routes, a dermal exposure system was developed to expose the hand and forearm of human subjects. METHODS: The goal was, primarily, to study the dermal phar...

  1. Pharmacokinetic-pharmacodynamic assessment of the interrelationships between tesaglitazar exposure and renal function in patients with type 2 diabetes mellitus.

    PubMed

    Hamrén, Bengt; Ohman, K Peter; Svensson, Maria K; Karlsson, Mats O

    2012-09-01

    The effects of tesaglitazar on renal function (assessed as urinary clearance of 125I-sodium iothalamate or estimated by the modification of diet in renal disease formula) were studied in a 24-week open-label trial in type 2 diabetes mellitus patients randomized to daily doses of either tesaglitazar 2 mg or pioglitazone 45 mg. The aim of the analysis was to develop a population pharmacokinetic-pharmacodynamic model that could simultaneously describe the interrelationship between tesaglitazar exposure and reduction in renal function over time in patients with type 2 diabetes mellitus. The pharmacokinetic-pharmacodynamic model could adequately describe the interplay between tesaglitazar and glomerular filtration rate. A one-compartment model in which the apparent clearance was influenced by glomerular filtration rate characterized the pharmacokinetics of tesaglitazar. An indirect-response model was used for the slow time course of change in glomerular filtration rate, which decreased from 100 to 78 mL/min/1.73m(2) after 12 weeks of treatment. All tesaglitazar-treated patients had a reduction in glomerular filtration rate, and available demographic variables could not explain differences in response. Patients treated with an angiotensin converting enzyme inhibitor were more sensitive to tesaglitazar and had larger glomerular filtration rate decrease compared to nontreated patients. Approximately 8 weeks after discontinuing treatment, mean glomerular filtration rate had returned towards baseline. The model and data give valuable insights into the dynamic changes in glomerular filtration rate over time.

  2. Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development.

    PubMed

    Yoon, Miyoung; Schroeter, Jeffry D; Nong, Andy; Taylor, Michael D; Dorman, David C; Andersen, Melvin E; Clewell, Harvey J

    2011-08-01

    Concerns for potential vulnerability to manganese (Mn) neurotoxicity during fetal and neonatal development have been raised due to increased needs for Mn for normal growth, different sources of exposure to Mn, and pharmacokinetic differences between the young and adults. A physiologically based pharmacokinetic (PBPK) model for Mn during human gestation and lactation was developed to predict Mn in fetal and neonatal brain using a parallelogram approach based upon extrapolation across life stages in rats and cross-species extrapolation to humans. Based on the rodent modeling, key physiological processes controlling Mn kinetics during gestation and lactation were incorporated, including alterations in Mn uptake, excretion, tissue-specific distributions, and placental and lactational transfer of Mn. Parameters for Mn kinetics were estimated based on human Mn data for milk, placenta, and fetal/neonatal tissues, along with allometric scaling from the human adult model. The model was evaluated by comparison with published Mn levels in cord blood, milk, and infant blood. Maternal Mn homeostasis during pregnancy and lactation, placenta and milk Mn, and fetal/neonatal tissue Mn were simulated for normal dietary intake and with inhalation exposure to environmental Mn. Model predictions indicate similar or lower internal exposures to Mn in the brains of fetus/neonate compared with the adult at or above typical environmental air Mn concentrations. This PBPK approach can assess expected Mn tissue concentration during early life and compares contributions of different Mn sources, such as breast or cow milk, formula, food, drinking water, and inhalation, with tissue concentration.

  3. Influence of tobacco smoke exposure on pharmacokinetics of ethyl alcohol in alcohol preferring and non-preferring rats.

    PubMed

    Florek, Ewa; Kulza, Maksymilian; Piekoszewski, Wojciech; Gomółka, Ewa; Jawień, Wojciech; Teżyk, Artur; Napierała, Marta

    2015-10-01

    A vast majority of people who abuse alcohol are also defined as "heavy smokers". Tobacco smokes induces CYP1A1, CYP1A2, CYP2A6 isoenzymes, but on the other hand, ethanol activates CYP2E1, which can be important during combined, chronic use of both of them. The aim of the study was to evaluate the influence of tobacco smoke xenobiotics on ethanol pharmacokinetics and the level of its metabolites in alcohol preferring and non-preferring rats. Ethanol, acetaldehyde, methanol, n-propanol and n-butanol were determined in whole blood by means of gas chromatography. Cotinine in serum was determined by LC-MS/MS. A non-compartmental analysis (cotinine, acetaldehyde) and Widmark equation (ethanol) were used for pharmacokinetic parameters calculation. Ethanol levels were lower in animals exposed to tobacco smoke compared to rats receiving this xenobiotic, without a prior exposure to tobacco smoke. Lower values of the studied pharmacokinetic parameters were observed in the alcohol preferring males compared to the non-alcohol preferring rats. Both n-propanol and n-butanol had higher values of the pharmacokinetic parameters analyzed in the animals exposed to tobacco smoke and ethanol compared to those, which ethanol was administered only once. An increase in maximum concentration and the area under concentration-time curve for ethanol after its administration to rats preferring alcohol and exposed to tobacco smoke are accompanied by a decrease in the volume of distribution. The changes in the volume of distribution may be caused by an increase in the first-pass effect, in the intestinal tract and/or in the liver. The acetaldehyde elimination rate constant was significantly higher in alcohol-preferring animals. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Electronic Health Records and Pharmacokinetic Modeling to Assess the Relationship between Ampicillin Exposure and Seizure Risk in Neonates.

    PubMed

    Hornik, Christoph P; Benjamin, Daniel K; Smith, P Brian; Pencina, Michael J; Tremoulet, Adriana H; Capparelli, Edmund V; Ericson, Jessica E; Clark, Reese H; Cohen-Wolkowiez, Michael

    2016-11-01

    To evaluate the relationship between ampicillin dosing, exposure, and seizures. This was a retrospective observational cohort study of electronic health record (EHR) data combined with pharmacokinetic model derived drug exposure predictions. We used the EHR from 348 Pediatrix Medical Group neonatal intensive care units from 1997 to 2012. We included all infants 24-41 weeks gestational age, 500-5400 g birth weight, first exposed to ampicillin prior to 25 days postnatal age. Using a 1-compartment pharmacokinetic model and EHR data, we simulated maximum ampicillin concentration at steady state (Cmaxss, µg/mL) and area under the concentration time curve from 0 to 24 hours (AUC24, µg*h/dL). Using multivariable logistic regression, we evaluated association between ampicillin dosing, exposure, and seizures as documented in the EHR. We identified 131 723 infants receiving 134 041 courses of ampicillin for 653 506 infant-days of exposure. The median daily dose was 200 mg/kg/d (25th, 75th percentile; 100, 200). Median Cmaxss and AUC24 were 256.6 µg/mL (164.3, 291.5) and 2593 µg*h/dL (1917, 3334). On multivariable analysis, dosing was not associated with seizures. However increasing Cmaxss (OR = 1.10, 95% CI 1.03, 1.17) and AUC24 (OR 1.11, 95% CI 1.05, 1.18) were associated with increased odds of seizures. In this cohort of hospitalized infants, higher ampicillin exposure was associated with seizures as documented in the EHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pharmacokinetic Evaluation of the Equivalency of Gavage, Dietary, and Drinking Water Exposure to Manganese in F344 Rats

    PubMed Central

    Foster, Melanie L.; Bartnikas, Thomas B.; Johnson, Laura C.; Herrera, Carolina; Pettiglio, Michael A.; Keene, Athena M.; Taylor, Michael D.; Dorman, David C.

    2015-01-01

    Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl2) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures. PMID:25724921

  6. Pharmacokinetic evaluation of the equivalency of gavage, dietary, and drinking water exposure to manganese in F344 rats.

    PubMed

    Foster, Melanie L; Bartnikas, Thomas B; Johnson, Laura C; Herrera, Carolina; Pettiglio, Michael A; Keene, Athena M; Taylor, Michael D; Dorman, David C

    2015-06-01

    Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl(2)) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  8. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  9. The effect of obesity and repeated exposure on pharmacokinetic response to grape polyphenols in humans

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with lower circulating nutrients, though the reason is unclear. Since obesity may affect intestinal function, differential absorption may play a role. We investigated the pharmacokinetic response of polyphenols in obese/overweight and lean individuals from a dose of grape poly...

  10. Feasibility of Metabolic Parameter Estimation in Pharmacokinetic Models of Carbon Tetrachloride Exposure in Rats

    EPA Science Inventory

    Carbon tetrachloride (CCl4) is a toxic chemical that was once used in degreasers and detergents, and some remnants of the chemical may be present in the water supply. Physiologically based pharmacokinetic (PBPK) modeling can assist in understanding resulting internal d...

  11. Use of a Simple Pharmacokinetic Model to Characterize Exposure to Perchlorate [ Journal Article

    EPA Science Inventory

    This article is about how a simple two-compartment first-order pharmacokinetic model that predicts concentrations of perchlorate in blood and urine was constructed and validated. The model was validated using data from a high-dose experiment in humans where doses and resulting co...

  12. Feasibility of Metabolic Parameter Estimation in Pharmacokinetic Models of Carbon Tetrachloride Exposure in Rats

    EPA Science Inventory

    Carbon tetrachloride (CCl4) is a toxic chemical that was once used in degreasers and detergents, and some remnants of the chemical may be present in the water supply. Physiologically based pharmacokinetic (PBPK) modeling can assist in understanding resulting internal d...

  13. CO2 exposure as translational cross-species experimental model for panic

    PubMed Central

    Leibold, N K; van den Hove, D L A; Viechtbauer, W; Buchanan, G F; Goossens, L; Lange, I; Knuts, I; Lesch, K P; Steinbusch, H W M; Schruers, K R J

    2016-01-01

    The current diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders are being challenged by the heterogeneity and the symptom overlap of psychiatric disorders. Therefore, a framework toward a more etiology-based classification has been initiated by the US National Institute of Mental Health, the research domain criteria project. The basic neurobiology of human psychiatric disorders is often studied in rodent models. However, the differences in outcome measurements hamper the translation of knowledge. Here, we aimed to present a translational panic model by using the same stimulus and by quantitatively comparing the same outcome measurements in rodents, healthy human subjects and panic disorder patients within one large project. We measured the behavioral–emotional and bodily response to CO2 exposure in all three samples, allowing for a reliable cross-species comparison. We show that CO2 exposure causes a robust fear response in terms of behavior in mice and panic symptom ratings in healthy volunteers and panic disorder patients. To improve comparability, we next assessed the respiratory and cardiovascular response to CO2, demonstrating corresponding respiratory and cardiovascular effects across both species. This project bridges the gap between basic and human research to improve the translation of knowledge between these disciplines. This will allow significant progress in unraveling the etiological basis of panic disorder and will be highly beneficial for refining the diagnostic categories as well as treatment strategies. PMID:27598969

  14. Population Pharmacokinetic Modelling and Bayesian Estimation of Tacrolimus Exposure: Is this Clinically Useful for Dosage Prediction Yet?

    PubMed

    Brooks, Emily; Tett, Susan E; Isbel, Nicole M; Staatz, Christine E

    2016-11-01

    This review summarises the available data on the population pharmacokinetics of tacrolimus and use of Maximum A Posteriori (MAP) Bayesian estimation to predict tacrolimus exposure and subsequent drug dosage requirements in solid organ transplant recipients. A literature search was conducted which identified 56 studies that assessed the population pharmacokinetics of tacrolimus based on non-linear mixed effects modelling and 14 studies that assessed the predictive performance of MAP Bayesian estimation of tacrolimus area under the plasma concentration-time curve (AUC) from time zero to the end of the dosing interval. Studies were most commonly undertaken in adult kidney transplant recipients and investigated the immediate-release formulation. The pharmacokinetics of tacrolimus were described using one- and two-compartment disposition models with first-order elimination in 61 and 39 % of population pharmacokinetic studies, respectively. Variability in tacrolimus whole blood apparent clearance amongst transplant recipients was most commonly related to cytochrome P450 (CYP) 3A5 genotype (rs776746), patient haematocrit, patient weight, post-operative day and hepatic function (aspartate aminotransferase). Bias, as calculated using estimation of the mean predictive error (MPE) or mean percentage predictive error (MPPE) associated with prediction of the tacrolimus AUC, ranged from -15 to 9.95 %. Imprecision, as calculated through estimation of the root mean squared error (RMSE) or mean absolute prediction error (MAPE), was generally much poorer overall, ranging from 0.81 to 40. r (2) values ranged from 0.27 to 0.99 %. Of the Bayesian forecasting strategies that used two or more tacrolimus concentrations, 71 % showed bias of 10 % or less; however, only 39 % showed imprecision of 10 % or less. The combination of sampling times at 0, 1 and 3 h post-dose consistently showed bias and imprecision values of less than 15 %. No studies to date have examined how closely MAP

  15. Inhibitory learning approaches to exposure therapy: A critical review and translation to obsessive-compulsive disorder.

    PubMed

    Jacoby, Ryan J; Abramowitz, Jonathan S

    2016-11-01

    The majority of treatment research on OCD has focused on pre/post treatment efficacy of exposure-based interventions, with less attention directed towards (a) understanding mechanisms of change, and (b) maximizing long-term effectiveness. Inhibitory learning theory (ILT) provides a novel foundation for understanding how exposure therapy reduces fear. Moreover, ILT is consistent with empirical evidence that raises questions about the more traditional (i.e., habituation) explanation for exposure therapy's efficacy. Yet ILT has yet to be applied to understanding the treatment of OCD and its heterogeneity. The current review is an examination of human experimental research on ILT that seeks to translate laboratory findings on fear extinction to exposure therapy across empirically established OCD symptom dimensions. We provide an up-to-date critical review of the existing evidence for a series of strategies derived from ILT that have been proposed for the treatment of fear, discuss the limitations of existing studies, and provide suggestions for future research within this rapidly accelerating area of study. We also offer conceptual considerations for applying these principles to the treatment of OCD symptom dimensions. A common theme is the idea of introducing "desirable difficulties" into the implementation of exposure in order to foster more durable long-term learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Amino Acid Promoieties Alter Valproic Acid Pharmacokinetics and Enable Extended Brain Exposure.

    PubMed

    Gynther, Mikko; Peura, Lauri; Vernerová, Monika; Leppänen, Jukka; Kärkkäinen, Jussi; Lehtonen, Marko; Rautio, Jarkko; Huttunen, Kristiina M

    2016-10-01

    Valproic acid (VPA) has been used to treat epileptic seizures for decades, but it may also possess therapeutic potential in other nervous system diseases. However, VPA is extensively bound to plasma proteins, asymmetrically transported across the blood-brain barrier and metabolized to toxic species in the liver, which all contribute to its severe off-target adverse effects and possible drug-drug interactions. In this study, we evaluated seven amino acid prodrugs of VPA that were targeted to utilize L-type amino acid transporter 1 (LAT1), if they could alter the brain uptake mechanism and systemic pharmacokinetics of VPA. All prodrugs had affinity for LAT1 studied as competitive inhibition of [(14)C]-L-leucine in human breast cancer (MCF-7) cell line. However, since the ester prodrugs were unstable they were not studied further, instead the corresponding amide prodrugs were used to evaluate their systemic pharmacokinetics in rats and the uptake mechanism via LAT1 into the rat brain. All amide prodrugs were bound to a lesser extent to plasma proteins than VPA and this being independent of the prodrug concentration. Amide prodrugs were also delivered into the brain after intravenous bolus injection. One of the prodrug showed greater brain uptake and high selectivity for LAT1 and it was able to release VPA slowly within the brain. Therefore, it was concluded that the VPA brain concentrations can be stabilized as well as the problematic pharmacokinetic profile can be altered by a LAT1-selective prodrug.

  17. Methods for CT automatic exposure control protocol translation between scanner platforms.

    PubMed

    McKenney, Sarah E; Seibert, J Anthony; Lamba, Ramit; Boone, John M

    2014-03-01

    An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. Protocol translation on the basis of

  18. Serum Bisphenol A Pharmacokinetics and Prostate Neoplastic Responses following Oral and Subcutaneous Exposures in Neonatal Sprague-Dawley Rats

    PubMed Central

    Prins, Gail S.; Ye, Shu-Hua; Birch, Lynn; Ho, Shuk-mei; Kannan, Kurunthachalam

    2010-01-01

    The present study examines BPA pharmacokinetics in neonatal rats following s.c. injection or oral delivery of 10μg BPA/kg BW and compares susceptibility to estrogen-induced prostate intraepithelial neoplasia (PIN) following either exposure route. Serum BPA in PND3 rats was measured using HPLC-MS-MS. Free and total BPA at Cmax were 1.77 and 2.0 ng/ml, respectively following injection and 0.26 and 1.02 ng/ml, respectively following oral exposure. The AUC0-2 for free and total BPA was 4.1-fold and 1.8-fold greater, respectively, in s.c. versus oral delivery. While exposure route affected BPA metabolism, internal dosimetry following s.c. injection of 10μg BPA/kg BW is similar to BPA levels observed in humans. Prostates from aged rats given s.c. or oral BPA neonatally and T+E implants as adults exhibited nearly identical, heightened susceptibility to PIN incidence and score as compared to neonatal oil-controls. These findings on prostate health are directly relevant to humans at current BPA exposure levels. PMID:20887781

  19. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300m.

    PubMed

    Luo, Bingfeng; Wang, Rong; Li, Wenbin; Yang, Tao; Wang, Chang; Lu, Hui; Zhao, Anpeng; Zhang, Juanhong; Jia, Zhengping

    2017-05-01

    This study was to investigate the influence of physiological changes and the expression of MRP2 efflux transporter on the pharmacokinetics of norfloxacin after acute exposure to high altitude 4300m. The rats were randomly divided into high altitude group and plain group. Blood gas and biochemical analysis showed that the physiological parameters significantly changed at high altitude. The mRNA and protein expression of MRP2 in high altitude group were higher than plain group in rat small intestine and kidney, while was reduced in rat liver. The AUC, Ka and Cmax of norfloxacin were significantly reduced in high altitude group (p<0.05). However, the MRT, CL, t1/2 and Vd were significantly increased (p<0.05). These results indicate that physiological indicators and expression levels of drug transporters MRP2 are changed in responded to high altitude, to severely affect norfloxacin pharmacokinetics. These changes may provide basis and new ideas to adjust the dosage and administration, so as to promote rational drug use in the high altitude. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  1. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  2. Phase 1 Study of Safety, Tolerability, and Pharmacokinetics of PTC299, an Inhibitor of Stress-Regulated Protein Translation.

    PubMed

    Weetall, Marla; Davis, Thomas; Elfring, Gary; Northcutt, Valerie; Cao, Liangxian; Moon, Young-Choon; Riebling, Peter; Dali, Mandar; Hirawat, Samit; Babiak, John; Colacino, Joseph; Almstead, Neil; Spiegel, Robert; Peltz, Stuart W

    2016-07-01

    PTC299 is a novel small molecule that specifically blocks the production of protein from selected mRNAs that under certain conditions use noncanonical ribosomal translational pathways. Hypoxia, oncogenic transformation, and viral infections limit normal translation and turn on these noncanonical translation pathways that are sensitive to PTC299. Vascular endothelial cell growth factor (VEGF) is an example of a transcript that is posttranscriptionally regulated. Single doses of PTC299 (0.03 to 3 mg/kg) were administered orally to healthy volunteers in a phase 1 single ascending-dose study. In a subsequent multiple ascending-dose study in healthy volunteers, multiple-dose regimens (0.3 to 1.2 mg/kg twice a day or 1.6 mg/kg 3 times a day for 7 days) were evaluated. PTC299 was well tolerated in these studies. As expected in healthy volunteers, mean plasma VEGF levels did not change. Increases in Cmax and AUC of PTC299 were dose-proportional. The target trough plasma concentration associated with preclinical efficacy was achieved within 7 days at doses of 0.6 mg/kg twice daily and above. These data demonstrate that PTC299 is orally bioavailable and well tolerated and support clinical evaluation of PTC299 in cancer, certain viral infections, or other diseases in which deregulation of translational control is a causal factor.

  3. Physiologically based pharmacokinetic modeling of human exposure to perfluorooctanoic acid suggests historical non drinking-water exposures are important for predicting current serum concentrations.

    PubMed

    Worley, Rachel Rogers; Yang, Xiaoxia; Fisher, Jeffrey

    2017-09-01

    Manufacturing of perfluorooctanoic acid (PFOA), a synthetic chemical with a long half-life in humans, peaked between 1970 and 2002, and has since diminished. In the United States, PFOA is detected in the blood of >99% of people tested, but serum concentrations have decreased since 1999. Much is known about exposure to PFOA in drinking water; however, the impact of non-drinking water PFOA exposure on serum PFOA concentrations is not well characterized. The objective of this research is to apply physiologically based pharmacokinetic (PBPK) modeling and Monte Carlo analysis to evaluate the impact of historic non-drinking water PFOA exposure on serum PFOA concentrations. In vitro to in vivo extrapolation was utilized to inform descriptions of PFOA transport in the kidney. Monte Carlo simulations were incorporated to evaluate factors that account for the large inter-individual variability of serum PFOA concentrations measured in individuals from North Alabama in 2010 and 2016, and the Mid-Ohio River Valley between 2005 and 2008. Predicted serum PFOA concentrations were within two-fold of experimental data. With incorporation of Monte Carlo simulations, the model successfully tracked the large variability of serum PFOA concentrations measured in populations from the Mid-Ohio River Valley. Simulation of exposure in a population of 45 adults from North Alabama successfully predicted 98% of individual serum PFOA concentrations measured in 2010 and 2016, respectively, when non-drinking water ingestion of PFOA exposure was included. Variation in serum PFOA concentrations may be due to inter-individual variability in the disposition of PFOA and potentially elevated historical non-drinking water exposures. Published by Elsevier Inc.

  4. Combined analysis of pharmacokinetic and efficacy data of preclinical studies with statins markedly improves translation of drug efficacy to human trials.

    PubMed

    van de Steeg, E; Kleemann, R; Jansen, H T; van Duyvenvoorde, W; Offerman, E H; Wortelboer, H M; Degroot, J

    2013-12-01

    Correct prediction of human pharmacokinetics (PK) and the safety and efficacy of novel compounds based on preclinical data, is essential but often fails. In the current study, we aimed to improve the predictive value of ApoE*3Leiden (E3L) transgenic mice regarding the cholesterol-lowering efficacy of various statins in humans by combining pharmacokinetic with efficacy data. The efficacy of five currently marketed statins (atorvastatin, simvastatin, lovastatin, pravastatin, and rosuvastatin) in hypercholesterolemic patients (low-density lipoprotein ≥ 160 mg/dl) was ranked based on meta-analysis of published human trials. Additionally, a preclinical combined PK efficacy data set for these five statins was established in E3L mice that were fed a high-cholesterol diet for 4 weeks, followed by 6 weeks of drug intervention in which statins were supplemented to the diet. Plasma and tissue levels of the statins were determined on administration of (radiolabeled) drugs (10 mg/kg p.o.). As expected, all statins reduced plasma cholesterol in the preclinical model, but a direct correlation between cholesterol lowering efficacy of the different statins in mice and in humans did not reach statistical significance (R(2) = 0.11, P < 0.57). It is noteworthy that, when murine data were corrected for effective liver uptake of the different statins, the correlation markedly increased (R(2) = 0.89, P < 0.05). Here we show for the first time that hepatic uptake of statins is related to their cholesterol-lowering efficacy and provide evidence that combined PK and efficacy studies can substantially improve the translational value of the E3L mouse model in the case of statin treatment. This strategy may also be applicable for other classes of drugs and other preclinical models.

  5. Using physiologically based pharmacokinetic modeling and benchmark dose methods to derive an occupational exposure limit for N-methylpyrrolidone.

    PubMed

    Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R

    2016-04-01

    The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A comparative pharmacokinetic estimate of mercury in U.S. Infants following yearly exposures to inactivated influenza vaccines containing thimerosal.

    PubMed

    Mitkus, Robert J; King, David B; Walderhaug, Mark O; Forshee, Richard A

    2014-04-01

    The use of thimerosal preservative in childhood vaccines has been largely eliminated over the past decade in the United States because vaccines have been reformulated in single-dose vials that do not require preservative. An exception is the inactivated influenza vaccines, which are formulated in both multidose vials requiring preservative and preservative-free single-dose vials. As part of an ongoing evaluation by USFDA of the safety of biologics throughout their lifecycle, the infant body burden of mercury following scheduled exposures to thimerosal preservative in inactivated influenza vaccines in the United States was estimated and compared to the infant body burden of mercury following daily exposures to dietary methylmercury at the reference dose established by the USEPA. Body burdens were estimated using kinetic parameters derived from experiments conducted in infant monkeys that were exposed episodically to thimerosal or MeHg at identical doses. We found that the body burden of mercury (AUC) in infants (including low birth weight) over the first 4.5 years of life following yearly exposures to thimerosal was two orders of magnitude lower than that estimated for exposures to the lowest regulatory threshold for MeHg over the same time period. In addition, peak body burdens of mercury following episodic exposures to thimerosal in this worst-case analysis did not exceed the corresponding safe body burden of mercury from methylmercury at any time, even for low-birth-weight infants. Our pharmacokinetic analysis supports the acknowledged safety of thimerosal when used as a preservative at current levels in certain multidose infant vaccines in the United States.

  7. Data gaps limit the translational potential of preclinical research.

    PubMed

    Kleiman, Robin J; Ehlers, Michael D

    2016-01-06

    The absence of mouse pharmacokinetic reference data hinders translation. An analysis of recent literature highlights a systematic lack of discussion regarding rationale for the selection of dosing paradigms in preclinical studies, and in particular for neuroscience studies in which the lack of brain penetration can limit target-organ exposure. We propose solutions to improve study design.

  8. When Bioequivalence in Healthy Volunteers May not Translate to Bioequivalence in Patients: Differential Effects of Increased Gastric pH on the Pharmacokinetics of Levothyroxine Capsules and Tablets.

    PubMed

    Seng Yue, Corinne; Benvenga, Salvatore; Scarsi, Claudia; Loprete, Luca; Ducharme, Murray P

    2015-01-01

    Clinical studies have suggested that proton pump inhibitors may decrease levothyroxine absorption and an in vitro study suggested that the effect of pH on dissolution may differ with formulation. To determine the impact of formulation on the pharmacokinetics of levothyroxine in altered gastric pH conditions, this study compared the pharmacokinetics of levothyroxine capsules and tablets, two formulations deemed bioequivalent in healthy volunteers under fasting conditions, when taken with or without esomeprazole. Two clinical studies were conducted in healthy volunteers given single dose levothyroxine (600 mg) with a 45-day washout period. In Study 1 (parallel-design/two-way crossover), 16 subjects received either levothyroxine capsules or tablets, each group with or without prior administration of intravenous esomeprazole (maximum dose of 80 mg). In Study 2 (two-way crossover), 16 subjects received both capsules or tablets after intravenous esomeprazole. Blood samples were collected pre-dose and up to 24 hours post-dose. Baseline-adjusted pharmacokinetic parameters were calculated: Cmax (maximal concentration), Tmax (time to Cmax), AUC0-t (area under the concentration-time curve from 0 to the last detectable concentration), AUC0-6 and AUC0-12 (areas under the curve from 0 to 6 and 12 hours, respectively). Analyses of variance were conducted to compare ln-transformed Cmax and AUC. Non-parametric Tmax analyses were done. In Study 1, esomeprazole caused a greater decrease in overall levothyroxine exposure of tablets vs. capsules (13% vs 6% for Cmax, 18% vs. 14% for AUC(0-6), 17% vs. 5% for AUC(0-12) and 10% vs. 8% for AUC(0-t)). In Study 2 esomeprazole administration resulted in a 16% smaller levothyroxine exposure with tablets vs. capsules. No statistically significant differences in Tmax were found. Although both formulations are considered "bioequivalent" in healthy volunteers, they may not necessarily be bioequivalent in patients with impaired gastric pH conditions

  9. Translation of mechanical exposure in the workplace into common metrics for meta-analysis: a reliability and validity study.

    PubMed

    Griffith, Lauren E; Wells, Richard P; Shannon, Harry S; Walter, Stephen D; Cole, Donald C; Côté, Pierre; Frank, John; Hogg-Johnson, Sheilah; Langlois, Lacey E

    2011-08-01

    We previously assessed inter-rater reliability of expert raters using six scales to estimate the intensity of literature-based mechanical exposures. The objectives of this study were to estimate the impact on the inter-rater reliability of using non-expert (NE) raters and to assess the validity of our scales. We used 7-point scales to represent three dimensions of mechanical exposures at work: 1) trunk posture, 2) weight lifted or force exerted and 3) spinal loading. We estimated both peak and cumulative loads and called this an "interpretive translation" of exposure. A second method, "algorithmic translation", used the original units in which the exposure data was collected. These data were used to assess the inter-rater reliability and validity of the NE interpretive translation of exposure. The NE inter-rater reliability for the scales ranged from 0.24 to 0.46. The correlation between the means of the NE and expert ratings were >0.7. Although there was a strong relationship between the NE interpretive and the algorithmic translation, there was some evidence that the interpretive translation plateaus at higher level of exposure. This study supports using NE raters to estimate the intensity of literature-based mechanical exposure metrics using a common set of scales which can be applied across epidemiologic studies. We would need to average the ratings of at least five NE raters to have an acceptable level of reliability (>0.7). These metrics may be useful to quantify the relationship between workplace mechanical exposure and low back pain in a systematic review and meta-analysis.

  10. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    PubMed

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability.

  11. EXPOSURE RECONSTRUCTION FOR REDUCING UNCERTAINTY IN RISK ASSESSMENT: EXAMPLE USING MTBE BIOMARKERS AND SIMPLE PHARMACOKINETIC MODEL

    EPA Science Inventory

    Adverse health risks from environmental agents are generally related to average (long term) exposures. We used results from a series of controlled human exposure tests and classical first order rate kinetics calculations to estimate how well spot measurements of methyl tertiary ...

  12. EXPOSURE RECONSTRUCTION FOR REDUCING UNCERTAINTY IN RISK ASSESSMENT: EXAMPLE USING MTBE BIOMARKERS AND SIMPLE PHARMACOKINETIC MODEL

    EPA Science Inventory

    Adverse health risks from environmental agents are generally related to average (long term) exposures. We used results from a series of controlled human exposure tests and classical first order rate kinetics calculations to estimate how well spot measurements of methyl tertiary ...

  13. Using a physiologically based pharmacokinetic model to link urinary biomarker concentrations to dietary exposure of perchlorate

    EPA Science Inventory

    Exposure to perchlorate is widespread in the United States and many studies have attempted to character the perchlorate exposure by estimating the average daily intakes of perchlorate. These approaches provided population-based estimates, but did not provide individual-level exp...

  14. Using a physiologically based pharmacokinetic model to link urinary biomarker concentrations to dietary exposure of perchlorate

    EPA Science Inventory

    Exposure to perchlorate is widespread in the United States and many studies have attempted to character the perchlorate exposure by estimating the average daily intakes of perchlorate. These approaches provided population-based estimates, but did not provide individual-level exp...

  15. Levothyroxine soft capsules demonstrate bioequivalent pharmacokinetic exposure with the European reference tablets in healthy volunteers under fasting conditions.

    PubMed

    Al-Numani, Dina; Scarsi, Claudia; Ducharme, Murray P

    2016-02-01

    To assess the bioequivalence (BE) potential under fasting conditions between levothyroxine soft capsules and the European reference tablet formulation. Two studies were conducted to assess the BE potential as per European regulations. Study 1 was a two-way crossover BE study comparing a high strength of levothyroxine soft capsules versus levothyroxine tablets (200 μg), while study 2 was a three-way crossover dosage form proportionality study between low, medium, and high strengths of soft capsules. 70 healthy adult subjects participated in the two studies. Each treatment consisted of a 600-μg dose of levothyroxine sodium, administered under fasting conditions. Blood samples were collected for levothyroxine (T4) assay prior to dosing and up to 72 hours post dose. A washout of 35 days separated treatments in each study. Pharmacokinetics was assessed using noncompartmental methods. A total of 61 subjects completed the studies. Baseline-adjusted total T4 ratios (test/reference) and 90% confidence intervals (CIs) between soft capsules and tablets were within 80.00 - 125.00%. Comparison of the three strengths of soft capsules indicated pharmacokinetic equivalence between them (ratios and 90% CIs were contained within 80.00 - 125.00%). Overall, levothyroxine sodium was well tolerated with all products when given as single oral doses of 600 μg, except for 1 serious adverse event of secondary bacteremia reported in study 2, deemed not to be related to treatment. Levothyroxine soft capsules meet BE criteria in terms of systemic exposure when compared to a European reference tablet under fasting conditions in healthy volunteers.

  16. Clinical pharmacokinetics and exposure-toxicity relationship of a folate-Vinca alkaloid conjugate EC145 in cancer patients.

    PubMed

    Li, Jing; Sausville, Edward A; Klein, Patrick J; Morgenstern, David; Leamon, Christopher P; Messmann, Richard A; LoRusso, Patricia

    2009-12-01

    The clinical pharmacokinetics and exposure-toxicity relationship were determined for EC145, a conjugate of folic acid and the Vinca alkaloid desacetylvinblastine hydrazide (DAVLBH), in cancer patients. EC145 plasma concentration and toxicity data were obtained from a first-in-man phase I study and analyzed by nonlinear mixed effect modeling with NONMEM. EC145 concentration-time profile after intravenous administration was well described by a 2-compartment model with a first-order elimination process from the central compartment. BSA was identified as a significant covariate on EC145 clearance, accounting for 14.6% of interindividual variation on EC145 clearance. Population estimates for the clearance, steady-state volume of distribution, distribution, and elimination half-lives were 56.1 L/h, 26.1 L, 6 minutes, and 26 minutes, respectively. Constipation and peripheral neuropathy were the most common and clinically relevant toxicities. The clearance and area under the concentration-time curve (AUC) were significant predictors for the incidence of EC145-induced constipation but not peripheral neuropathy. In conclusion, EC145 is rapidly distributed and eliminated in cancer patients. BSA is a statistically significant covariate on EC145 clearance, but its clinical relevance remains to be defined. EC145-induced constipation occurs at a higher frequency in the patients with lower EC145 clearance, where the drug exposure tends to be higher.

  17. Human inhalation exposures to toluene, ethylbenzene, and m-xylene and physiologically based pharmacokinetic modeling of exposure biomarkers in exhaled air, blood, and urine.

    PubMed

    Marchand, Axelle; Aranda-Rodriguez, Rocio; Tardif, Robert; Nong, Andy; Haddad, Sami

    2015-04-01

    Urinary biomarkers of exposure are used widely in biomonitoring studies. The commonly used urinary biomarkers for the aromatic solvents toluene (T), ethylbenzene (E), and m-xylene (X) are o-cresol, mandelic acid, and m-methylhippuric acid. The toxicokinetics of these biomarkers following inhalation exposure have yet to be described by physiologically based pharmacokinetic (PBPK) modeling. Five male volunteers were exposed for 6 h in an inhalation chamber to 1/8 or 1/4 of the time-weighted average exposure value (TWAEV) for each solvent: toluene, ethylbenzene, and m-xylene were quantified in blood and exhaled air and their corresponding urine biomarkers were measured in urine. Published PBPK model for parent compounds was used and simulations were compared with experimental blood and exhaled air concentration data. If discrepancies existed, Vmax and Km were optimized. Urinary excretion was modeled using parameters found in literature assuming simply stoichiometric yields from parent compound metabolism and first-order urinary excretion rate. Alternative models were also tested for (1) the possibility that CYP1A2 is the only enzyme implicated in o-cresol and (2) a 2-step model for describing serial metabolic steps for mandelic acid. Models adapted in this study for urinary excretion will be further used to interpret urinary biomarker kinetic data from mixed exposures of these solvents. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Predicting Lactational and Early Post-Weaning Exposures in Rats Using Biologically Based Pharmacokinetic Modeling

    EPA Science Inventory

    Risk and safety assessments for early life exposures to environmental chemicals or pharmaceuticals based on cross-species extrapolation would greatly benefit from information on chemical dosimetry in the young.

  19. Bisphenol A (BPA) pharmacokinetics with daily oral bolus or continuous exposure via silastic capsules in pregnant rhesus monkeys: Relevance for human exposures.

    PubMed

    Vom Saal, Frederick S; VandeVoort, Catherine A; Taylor, Julia A; Welshons, Wade V; Toutain, Pierre-Louis; Hunt, Patricia A

    2014-06-01

    We measured serum dBPA in non-pregnant and pregnant female rhesus monkeys, fetuses and amniotic fluid. dBPA was administered by a daily oral bolus or sc implantation of Silastic capsules; both resulted in daily average serum unconjugated dBPA concentrations of <1ng/ml. We observed lower serum concentrations of unconjugated dBPA in pregnant females relative to pre-pregnancy values, and generally lower concentrations in fetal serum than in maternal serum. Differences in pharmacokinetics of dBPA were evident between pre-pregnancy, early and late pregnancy, likely reflecting changes in maternal, fetal and placental physiology. The serum ratio of conjugated to unconjugated dBPA after continuous sc release of dBPA was similar to values reported in human biomonitoring studies and markedly lower than with oral administration, suggesting oral bolus exposure is not an appropriate human exposure model. We report elsewhere that there were numerous adverse effects on fetuses exposed to very low serum dBPA in these studies.

  20. Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury

    USGS Publications Warehouse

    Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.

    2007-01-01

    A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.

  1. Enhancement of Exposure and Reduction of Elimination for Paeoniflorin or Albiflorin via Co-Administration with Total Peony Glucosides and Hypoxic Pharmacokinetics Comparison.

    PubMed

    Xu, Weizhe; Zhao, Yan; Qin, Yi; Ge, Beikang; Gong, Wenwen; Wu, Yingting; Li, Xiaorong; Zhao, Yuming; Xu, Pingxiang; Xue, Ming

    2016-07-01

    There is evidence suggesting that herbal extracts demonstrate greater bioactivities than their isolated constituents at an equivalent dose. This phenomenon could be attributed to the absence of interacting substances present in the extracts. By measuring the pharmacokinetic parameters of paeoniflorin (PF) and albiflorin (AF) after being orally administered to rats in isolated form, in combination with each other and within total peony glucosides (TPG), respectively, the current study aimed to identify positive pharmacokinetic interactions between components of peony radix extracts. Moreover, the pharmacokinetic profiles of PF and AF under normoxia and hypoxia were also investigated and compared. In order to achieve these goals, a highly sensitive and reproducible ultra-peformance liquid chromatography-mass spectrometry (UPLC-MS) method was developed and validated for simultaneously quantitation of PF and AF in rat plasma. This study found that compared with that of single component (PF/AF), the exposure of PF in rat plasma after combination administration or TPG administration was significantly increased, meanwhile the elimination of PF/AF was remarkably reduced. It was also noticed that AUC and Cmax of PF in hypoxia rats were significantly decreased compared with that of normaxia rats, suggesting that there was a decreased exposure of PF in rats under hypoxia. The current study, for the first time, revealed the pharmacokinetic interactions between PF/AF and other constitutes in TGP and the pharmacokinetic profiles of PF and AF under hypoxia. In view of the current findings, it could be supposed that the clinical performance of total peony glucosides would be better than that of single constitute (PF/AF). The outcomes of this animal study are expected to serve as a basis for development of clinical guidelines on total peony glucosides usage.

  2. PRELIMINARY ASSESSMENTS OF IN VITRO PHARMACOKINETIC DATA AND EXPOSURE INFORMATION FOR THE TOXCAST PHASE II CHEMICALS

    EPA Science Inventory

    Momentum has been growing in Toxicology to assess the utility of high-throughput screening (HTS) assays in the determination of chemical testing priorities. However, in vitro potencies determined in these assays do not consider in vivo bioavailability, clearance or exposure estim...

  3. PRELIMINARY ASSESSMENTS OF IN VITRO PHARMACOKINETIC DATA AND EXPOSURE INFORMATION FOR THE TOXCAST PHASE II CHEMICALS

    EPA Science Inventory

    Momentum has been growing in Toxicology to assess the utility of high-throughput screening (HTS) assays in the determination of chemical testing priorities. However, in vitro potencies determined in these assays do not consider in vivo bioavailability, clearance or exposure estim...

  4. Association Between Arsenic Exposure and Global Post-translational Histone Modifications Among Adults in Bangladesh

    PubMed Central

    Chervona, Yana; Hall, Megan N.; Arita, Adriana; Wu, Fen; Sun, Hong; Tseng, Hsiang-Chi; Ali, Eunus; Uddin, Mohammad Nasir; Liu, Xinhua; Zoroddu, Maria Antonietta; Gamble, Mary V.; Costa, Max

    2012-01-01

    Background Exposure to arsenic (As) is associated with an increased risk of several cancers, as well as, cardiovascular disease, and childhood neuro-developmental deficits. Arsenic compounds are weakly mutagenic, alter gene expression and post-translational histone modifications (PTHMs) in vitro. Methods Water and urinary As concentrations, as well as, global levels of histone 3 lysine 9 di-methylation and acetylation (H3K9me2 and H3K9ac), histone 3 lysine 27 trimethylation and acetylation (H3K27me3 and H3K27ac), histone 3 lysine 18 acetylation (H3K18ac) and histone 3 lysine 4 trimethylation (H3K4me3) were measured in peripheral blood mononuclear cells (PBMCs) from a subset of participants (N=40) of a folate clinical trial in Bangladesh (FACT study). Results Total urinary As (uAs) was positively correlated with H3K9me2 (r=0.36, p=0.02) and inversely with H3K9ac (r= -0.47, p=0.002). The associations between As and other PTHMs differed in a gender-dependent manner. Water As (wAs) was positively correlated with H3K4me3 (r=0.45, p=0.05) and H3K27me3 (r=0.50, p=0.03) among females and negatively correlated among males (H3K4me3: r= -0.44, p=0.05; H3K27me3: r= -0.34, p=0.14). Conversely, wAs was inversely associated with H3K27ac among females (r= -0.44, p=0.05) and positively associated among males (r=0.29, p=0.21). A similar pattern was observed for H3K18ac (females: r= -0.22, p=0.36; males: r=0.27, p=0.24). Conclusion Exposure to As is associated with alterations of global PTHMs; gender-specific patterns of association were observed between As exposure and several histone marks. Impact These findings contribute to the growing body of evidence linking As exposure to epigenetic dysregulation, which may play a role in the pathogenesis of As toxicity. PMID:23064002

  5. Pharmacokinetics of IDX184, a liver-targeted oral prodrug of 2'-methylguanosine-5'-monophosphate, in the monkey and formulation optimization for human exposure.

    PubMed

    Pan-Zhou, Xin-Ru; Mayes, Benjamin A; Rashidzadeh, Hassan; Gasparac, Rahela; Smith, Steven; Bhadresa, Sanjeev; Gupta, Kusum; Cohen, Marita Larsson; Bu, Charlie; Good, Steven S; Moussa, Adel; Rush, Roger

    2016-10-01

    IDX184 is a phosphoramidate prodrug of 2'-methylguanosine-5'-monophosphate, developed to treat patients infected with hepatitis C virus. A mass balance study of radiolabeled IDX184 and pharmacokinetic studies of IDX184 in portal vein-cannulated monkeys revealed relatively low IDX184 absorption but higher exposure of IDX184 in the portal vein than in the systemic circulation, indicating >90 % of the absorbed dose was subject to hepatic extraction. Systemic exposures to the main metabolite, 2'-methylguanosine (2'-MeG), were used as a surrogate for liver levels of the pharmacologically active entity 2'-MeG triphosphate, and accordingly, systemic levels of 2'-MeG in the monkey were used to optimize formulations for further clinical development of IDX184. Capsule formulations of IDX184 delivered acceptable levels of 2'-MeG in humans; however, the encapsulation process introduced low levels of the genotoxic impurity ethylene sulfide (ES), which necessitated formulation optimization. Animal pharmacokinetic data guided the development of a tablet with trace levels of ES and pharmacokinetic performance equal to that of the clinical capsule in the monkey. Under fed conditions in humans, the new tablet formulation showed similar exposure to the capsule used in prior clinical trials.

  6. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.

    PubMed

    Allen, Bruce C; Hack, C Eric; Clewell, Harvey J

    2007-08-01

    A Bayesian approach, implemented using Markov Chain Monte Carlo (MCMC) analysis, was applied with a physiologically-based pharmacokinetic (PBPK) model of methylmercury (MeHg) to evaluate the variability of MeHg exposure in women of childbearing age in the U.S. population. The analysis made use of the newly available National Health and Nutrition Survey (NHANES) blood and hair mercury concentration data for women of age 16-49 years (sample size, 1,582). Bayesian analysis was performed to estimate the population variability in MeHg exposure (daily ingestion rate) implied by the variation in blood and hair concentrations of mercury in the NHANES database. The measured variability in the NHANES blood and hair data represents the result of a process that includes interindividual variation in exposure to MeHg and interindividual variation in the pharmacokinetics (distribution, clearance) of MeHg. The PBPK model includes a number of pharmacokinetic parameters (e.g., tissue volumes, partition coefficients, rate constants for metabolism and elimination) that can vary from individual to individual within the subpopulation of interest. Using MCMC analysis, it was possible to combine prior distributions of the PBPK model parameters with the NHANES blood and hair data, as well as with kinetic data from controlled human exposures to MeHg, to derive posterior distributions that refine the estimates of both the population exposure distribution and the pharmacokinetic parameters. In general, based on the populations surveyed by NHANES, the results of the MCMC analysis indicate that a small fraction, less than 1%, of the U.S. population of women of childbearing age may have mercury exposures greater than the EPA RfD for MeHg of 0.1 microg/kg/day, and that there are few, if any, exposures greater than the ATSDR MRL of 0.3 microg/kg/day. The analysis also indicates that typical exposures may be greater than previously estimated from food consumption surveys, but that the variability

  7. The Pharmacokinetic Exposure to Fexofenadine is Volume‐Dependently Reduced in Healthy Subjects Following Oral Administration With Apple Juice

    PubMed Central

    Luo, J; Ohyama, T; Hashimoto, S; Hasunuma, T; Inoue, Y; Kotegawa, T; Ohashi, K; Uemura, N

    2016-01-01

    Pharmacokinetic exposures to fexofenadine (FEX) are reduced by apple juice (AJ); however, the relationship between the AJ volume and the degree of AJ‐FEX interaction has not been understood. In this crossover study, 10 healthy subjects received single doses of FEX 60 mg with different volumes (150, 300, and 600 mL) of AJ or water (control). To identify an AJ volume lacking clinically meaningful interaction, we tested a hypothesis that the 90% confidence interval (CI) for geometric mean ratio (GMR) of FEX AUCAJ/AUCwater is contained within a biocomparability bound of 0.5–2.0, with at least one tested volume of AJ. GMR (90% CI) of AUCAJ 150mL/AUCwater, AUCAJ 300mL/AUCwater, and AUCAJ 600mL/AUCwater were 0.903 (0.752–1.085), 0.593 (0.494–0.712), and 0.385 (0.321–0.462), respectively. While a moderate to large AJ‐FEX interaction is caused by a larger volumes of AJ (e.g., 300 to 600 mL), the effect of a small volume (e.g., 150 mL) appears to be not meaningful. PMID:27197662

  8. Predicting HIV Pre-exposure Prophylaxis Efficacy for Women using a Preclinical Pharmacokinetic-Pharmacodynamic In Vivo Model

    PubMed Central

    Wahl, Angela; Ho, Phong T.; Denton, Paul W.; Garrett, Katy L.; Hudgens, Michael G.; Swartz, Glenn; O’Neill, Cynthia; Veronese, Fulvia; Kashuba, Angela D.; Garcia, J. Victor

    2017-01-01

    The efficacy of HIV pre-exposure prophylaxis (PrEP) relies on adherence and may also depend on the route of HIV acquisition. Clinical studies of systemic tenofovir disoproxil fumarate (TDF) PrEP revealed reduced efficacy in women compared to men with similar degrees of adherence. To select the most effective PrEP strategies, preclinical studies are critically needed to establish correlations between drug concentrations (pharmacokinetics [PK]) and protective efficacy (pharmacodynamics [PD]). We utilized an in vivo preclinical model to perform a PK-PD analysis of systemic TDF PrEP for vaginal HIV acquisition. TDF PrEP prevented vaginal HIV acquisition in a dose-dependent manner. PK-PD modeling of tenofovir (TFV) in plasma, female reproductive tract tissue, cervicovaginal lavage fluid and its intracellular metabolite (TFV diphosphate) revealed that TDF PrEP efficacy was best described by plasma TFV levels. When administered at 50 mg/kg, TDF achieved plasma TFV concentrations (370 ng/ml) that closely mimicked those observed in humans and demonstrated the same risk reduction (70%) previously attained in women with high adherence. This PK-PD model mimics the human condition and can be applied to other PrEP approaches and routes of HIV acquisition, accelerating clinical implementation of the most efficacious PrEP strategies. PMID:28145472

  9. Population Pharmacokinetics of Obinutuzumab (GA101) in Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkin's Lymphoma and Exposure-Response in CLL.

    PubMed

    Gibiansky, E; Gibiansky, L; Carlile, D J; Jamois, C; Buchheit, V; Frey, N

    2014-10-29

    Treatment regimens involving obinutuzumab (GA101) demonstrated increased efficacy to rituximab in clinical trials for non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). However, the pharmacokinetic (PK) properties and the exposure-response relationships of obinutuzumab still need to be fully described. Data from four clinical trials of obinutuzumab were analyzed to describe the PK properties in patients with NHL or CLL and the pharmacodynamic (PD) properties in patients with CLL. A population PK model with linear time-dependent clearance described the obinutuzumab concentration-time course. Diagnosis, baseline tumor size (BSIZ), body weight, and gender were the main covariates affecting obinutuzumab exposure. In patients with CLL, exposure was not associated with safety but showed positive trends of correlation with efficacy. Although efficacy correlated positively with exposure, since both efficacy and exposure correlated negatively with BSIZ, it was not possible to determine with certainty whether it would be beneficial to adjust the dose according to BSIZ.

  10. Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs.

    PubMed

    McGinnity, D F; Collington, J; Austin, R P; Riley, R J

    2007-06-01

    In this article approaches to predict human pharmacokinetics (PK) are discussed and the capability of the exemplified methodologies to estimate individual PK parameters and therapeutic dose for a set of marketed oral drugs has been assessed. For a set of 63 drugs where the minimum efficacious concentration (MEC) and human PK were known, the clinical dose was shown to be well predicted or in some cases over-estimated using a simple one-compartment oral PK model. For a subset of these drugs, in vitro potency against the primary human targets was gathered, and compared to the observed MEC. When corrected for plasma protein binding, the MEC of the majority of compounds was < or=3 fold over the respective in vitro target potency value. A series of in vitro and in vivo experiments were conducted to predict the human PK parameters. Metabolic clearance was generally predicted well from human hepatocytes. Interestingly, for this compound set, allometry or glomerular filtration rate (GFR) ratio methods appeared to be applicable for renal CL even where CL(renal) > GFR. For approximately 90% of compounds studied, the predicted CL using in vitro-in vivo (IVIV) extrapolation together with a CL(renal) estimate, where appropriate, was within 2-fold of that observed clinically. Encouragingly volume of distribution at steady state (V(ss)) estimated in preclinical species (rat and dog) when corrected for plasma protein binding, predicted human V(ss) successfully on the majority of occasions--73% of compounds within 2-fold. In this laboratory, absorption estimated from oral rat PK studies was lower than the observed human absorption for most drugs, even when solubility and permeability appeared not to be limiting. Preliminary data indicate absorption in the dog may be more representative of human for compounds absorbed via the transcellular pathway. Using predicted PK and MEC values estimated from in vitro potency assays there was a good correlation between predicted and observed dose

  11. Design and evaluation of a novel series of 2,3-oxidosqualene cyclase inhibitors with low systemic exposure, relationship between pharmacokinetic properties and ocular toxicity.

    PubMed

    Fouchet, Marie-Hélène; Donche, Frédéric; Martin, Christelle; Bouillot, Anne; Junot, Christophe; Boullay, Anne-Bénédicte; Potvain, Florent; Magny, Sylvie Demaria; Coste, Hervé; Walker, Max; Issandou, Marc; Dodic, Nérina

    2008-06-01

    We describe the discovery of novel potent inhibitors of 2,3-oxidosqualene:lanosterol cyclase inhibitors (OSCi) from a focused pharmacophore-based screen. Optimization of the most tractable hits gave a series of compounds showing inhibition of cholesterol biosynthesis at 2mg/kg in the rat with distinct pharmacokinetic profiles. Two compounds were selected for toxicological study in the rat for 21 days in order to test the hypothesis that low systemic exposure could be used as a strategy to avoid the ocular side effects previously described with OSCi. We demonstrate that for this series of inhibitors, a reduction of systemic exposure is not sufficient to circumvent cataract liabilities.

  12. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies.

    PubMed

    Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Schwanke, R C; Siqueira, J M; Freitas, C S; Marcon, R; Calixto, J B

    2016-12-12

    The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose.

  13. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies

    PubMed Central

    Andrade, E.L.; Bento, A.F.; Cavalli, J.; Oliveira, S.K.; Schwanke, R.C.; Siqueira, J.M.; Freitas, C.S.; Marcon, R.; Calixto, J.B.

    2016-01-01

    The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose. PMID:27982281

  14. No Need for Lopinavir Dose Adjustment during Pregnancy: a Population Pharmacokinetic and Exposure-Response Analysis in Pregnant and Nonpregnant HIV-Infected Subjects

    PubMed Central

    Jones, Aksana Kaefer; Santini-Oliveira, Marilia; Taylor, Graham P.; Patterson, Kristine B.; Nilius, Angela M.; Klein, Cheri Enders

    2015-01-01

    Lopinavir-ritonavir is frequently prescribed to HIV-1-infected women during pregnancy. Decreased lopinavir exposure has been reported during pregnancy, but the clinical significance of this reduction is uncertain. This analysis aimed to evaluate the need for lopinavir dose adjustment during pregnancy. We conducted a population pharmacokinetic analysis of lopinavir and ritonavir concentrations collected from 84 pregnant and 595 nonpregnant treatment-naive and -experienced HIV-1-infected subjects enrolled in six clinical studies. Lopinavir-ritonavir doses in the studies ranged between 400/100 and 600/150 mg twice daily. In addition, linear mixed-effect analysis was used to compare the area under the concentration-time curve from 0 to 12 h (AUC0–12) and concentration prior to dosing (Cpredose) in pregnant women and nonpregnant subjects. The relationship between lopinavir exposure and virologic suppression in pregnant women and nonpregnant subjects was evaluated. Population pharmacokinetic analysis estimated 17% higher lopinavir clearance in pregnant women than in nonpregnant subjects. Lopinavir clearance values postpartum were 26.4% and 37.1% lower than in nonpregnant subjects and pregnant women, respectively. As the tablet formulation was estimated to be 20% more bioavailable than the capsule formulation, no statistically significant differences between lopinavir exposure in pregnant women receiving the tablet formulation and nonpregnant subjects receiving the capsule formulation were identified. In the range of lopinavir AUC0–12 or Cpredose values observed in the third trimester, there was no correlation between lopinavir exposure and viral load or proportion of subjects with virologic suppression. Similar efficacy was observed between pregnant women and nonpregnant subjects receiving lopinavir-ritonavir at 400/100 mg twice daily. The pharmacokinetic and pharmacodynamic results support the use of a lopinavir-ritonavir 400/100-mg twice-daily dose during pregnancy

  15. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling.

    PubMed

    Hisaka, Akihiro; Kusama, Makiko; Ohno, Yoshiyuki; Sugiyama, Yuichi; Suzuki, Hiroshi

    2009-01-01

    Pharmacokinetic drug-drug interactions (DDIs) are one of the major causes of adverse events in pharmacotherapy, and systematic prediction of the clinical relevance of DDIs is an issue of significant clinical importance. In a previous study, total exposure changes of many substrate drugs of cytochrome P450 (CYP) 3A4 caused by coadministration of inhibitor drugs were successfully predicted by using in vivo information. In order to exploit these predictions in daily pharmacotherapy, the clinical significance of the pharmacokinetic changes needs to be carefully evaluated. The aim of the present study was to construct a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered with pharmacokinetic changes in a systematic manner. Furthermore, the classifications proposed by PISCS were compared in a detailed manner with current alert classifications in the product labelling or the summary of product characteristics used in Japan, the US and the UK. A matrix table was composed by stratifying two basic parameters of the prediction: the contribution ratio of CYP3A4 to the oral clearance of substrates (CR), and the inhibition ratio of inhibitors (IR). The total exposure increase was estimated for each cell in the table by associating CR and IR values, and the cells were categorized into nine zones according to the magnitude of the exposure increase. Then, correspondences between the DDI significance and the zones were determined for each drug group considering the observed exposure changes and the current classification in the product labelling. Substrate drugs of CYP3A4 selected from three therapeutic groups, i.e. HMG-CoA reductase inhibitors (statins), calcium-channel antagonists/blockers (CCBs) and benzodiazepines (BZPs), were analysed as representative examples. The product labelling descriptions of drugs in Japan, US and UK were obtained from the websites of each regulatory body. Among 220

  16. Uso de los Datos de Biomonitoreo para Informar sobre la Evaluacion Infantil (American translation is: USING BIOMONITORING DATA TO INFORM EXPOSURE ASSESSMENT IN CHILDREN)

    EPA Science Inventory

    Discussing the challenges associated with estimating and interpreting toxicant exposures and health risks from biomonitoring data. This extended abstract was translated in Spanish and published in Acta Toxicologica Argentina.

  17. Uso de los Datos de Biomonitoreo para Informar sobre la Evaluacion Infantil (American translation is: USING BIOMONITORING DATA TO INFORM EXPOSURE ASSESSMENT IN CHILDREN)

    EPA Science Inventory

    Discussing the challenges associated with estimating and interpreting toxicant exposures and health risks from biomonitoring data. This extended abstract was translated in Spanish and published in Acta Toxicologica Argentina.

  18. Organophosphorus Insecticide Pharmacokinetics

    SciTech Connect

    Timchalk, Charles

    2010-01-01

    This chapter highlights a number of current and future applications of pharmacokinetics to assess organophosphate (OP) insecticide dosimetry, biological response and risk in humans exposed to these agents. Organophosphates represent a large family of pesticides where insecticidal as well as toxicological mode of action is associated with their ability to target and inhibit acetylcholinesterase (AChE). Pharmacokinetics entails the quantitative integration of physiological and metabolic processes associated with the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics. Pharmacokinetic studies provide important data on the amount of toxicant delivered to a target site as well as species-, age-, gender-specific and dose-dependent differences in biological response. These studies have been conducted with organophosphorus insecticides in multiple species, at various dose levels, and across different routes of exposure to understand their in vivo pharmacokinetics and how they contribute to the observed toxicological response. To access human exposure to organophosphorus insecticides, human pharmacokinetic studies have been conducted and used to develop biological monitoring strategies based on the quantitation of key metabolites in biological fluids. Pharmacokinetic studies with these insecticides are also useful to facilitate extrapolation of dosimetry and biological response from animals to humans and for the assessment of human health risk. In this regard, physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models are being utilized to assess risk and understand the toxicological implications of known or suspected exposures to various insecticides. In this chapter a number of examples are presented that illustrate the utility and limitation of pharmacokinetic studies to address human health concerns associated with organophosphorus insecticides.

  19. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios.

    PubMed

    Williams, J Andrew; Hyland, Ruth; Jones, Barry C; Smith, Dennis A; Hurst, Susan; Goosen, Theunis C; Peterkin, Vincent; Koup, Jeffrey R; Ball, Simon E

    2004-11-01

    Glucuronidation is a listed clearance mechanism for 1 in 10 of the top 200 prescribed drugs. The objective of this article is to encourage those studying ligand interactions with UDP-glucuronosyltransferases (UGTs) to adequately consider the potential consequences of in vitro UGT inhibition in humans. Spurred on by interest in developing potent and selective inhibitors for improved confidence around UGT reaction phenotyping, and the increased availability of recombinant forms of human UGTs, several recent studies have reported in vitro inhibition of UGT enzymes. In some cases, the observed potency of UGT inhibitors in vitro has been interpreted as having potential relevance in humans via pharmacokinetic drug-drug interactions. Although there are reported examples of clinically relevant drug-drug interactions for UGT substrates, exposure increases of the aglycone are rarely greater than 100% in the presence of an inhibitor relative to its absence (i.e., AUCi/AUC < or = 2). This small magnitude in change is in contrast to drugs primarily cleared by cytochrome P450 enzymes, where exposures have been reported to increase as much as 35-fold on coadministration with an inhibitor (e.g., ketoconazole inhibition of CYP3A4-catalyzed terfenadine metabolism). In this article the evidence for purported clinical relevance of potent in vitro inhibition of UGT enzymes will be assessed, taking the following into account: in vitro data on the enzymology of glucuronide formation from aglycone, pharmacokinetic principles based on empirical data for inhibition of metabolism, and clinical data on the pharmacokinetic drug-drug interactions of drugs primarily cleared by glucuronidation.

  20. Experimental strategy for translational studies of organophosphorus pesticide neurotoxicity based on real-world occupational exposures to chlorpyrifos

    PubMed Central

    Lein, Pamela J.; Bonner, Matthew R.; Farahat, Fayssal M.; Olson, James R.; Rohlman, Diane S.; Fenske, Richard A.; Lattal, K. Matthew; Lasarev, Michael R.; Galvin, Kit; Farahat, Taghreed M.; Anger, W. Kent

    2012-01-01

    Translational research is needed to understand and predict the neurotoxic consequences associated with repeated occupational exposures to organophosphorus pesticides (OPs). In this report, we describe a research strategy for identifying biomarkers of OP neurotoxicity, and we characterize pesticide application workers in Egypt’s Menoufia Governorate who serve as our anchor human population for developing a parallel animal model with similar exposures and behavioral deficits and for examining the influence of human polymorphisms in cytochrome P450 (CYP) and paraoxonase 1 (PON1) enzymes on OP metabolism and toxicity. This population has previously been shown to have high occupational exposures and to exhibit a broad range of neurobehavioral deficits. In addition to observational studies of work practices in the field, questionnaires on demographics, lifestyle and work practices were administered to 146 Egyptian pesticide application workers applying pesticides to the cotton crop. Survey results indicated that the application workforce uses standard operating procedures and standardized equipment provided by Egypt’s Ministry of Agriculture, which provides a workforce with a stable work history. We also found that few workers report using personal protective equipment (PPE), which likely contributes to the relatively high exposures reported in these application workers. In summary, this population provides a unique opportunity for identifying biomarkers of OP-induced neurotoxicity associated with occupational exposure. PMID:22240005

  1. Experimental strategy for translational studies of organophosphorus pesticide neurotoxicity based on real-world occupational exposures to chlorpyrifos.

    PubMed

    Lein, Pamela J; Bonner, Matthew R; Farahat, Fayssal M; Olson, James R; Rohlman, Diane S; Fenske, Richard A; Lattal, K Matthew; Lasarev, Michael R; Galvin, Kit; Farahat, Taghreed M; Anger, W Kent

    2012-08-01

    Translational research is needed to understand and predict the neurotoxic consequences associated with repeated occupational exposures to organophosphorus pesticides (OPs). In this report, we describe a research strategy for identifying biomarkers of OP neurotoxicity, and we characterize pesticide application workers in Egypt's Menoufia Governorate who serve as our anchor human population for developing a parallel animal model with similar exposures and behavioral deficits and for examining the influence of human polymorphisms in cytochrome P450 (CYP) and paraoxonase 1 (PON1) enzymes on OP metabolism and toxicity. This population has previously been shown to have high occupational exposures and to exhibit a broad range of neurobehavioral deficits. In addition to observational studies of work practices in the field, questionnaires on demographics, lifestyle and work practices were administered to 146 Egyptian pesticide application workers applying pesticides to the cotton crop. Survey results indicated that the application workforce uses standard operating procedures and standardized equipment provided by Egypt's Ministry of Agriculture, which provides a workforce with a stable work history. We also found that few workers report using personal protective equipment (PPE), which likely contributes to the relatively high exposures reported in these application workers. In summary, this population provides a unique opportunity for identifying biomarkers of OP-induced neurotoxicity associated with occupational exposure.

  2. Translational toxicology in setting occupational exposure limits for dusts and hazard classification - a critical evaluation of a recent approach to translate dust overload findings from rats to humans.

    PubMed

    Morfeld, Peter; Bruch, Joachim; Levy, Len; Ngiewih, Yufanyi; Chaudhuri, Ishrat; Muranko, Henry J; Myerson, Ross; McCunney, Robert J

    2015-04-23

    We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of "granular biopersistent particles without known specific toxicity" (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK's human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial

  3. Preserved pharmacokinetic exposure and distinct glycemic effects of insulin degludec and liraglutide in IDegLira, a fixed-ratio combination therapy.

    PubMed

    Kapitza, Christoph; Bode, Bruce; Ingwersen, Steen Hvass; Jacobsen, Lisbeth Vestergård; Poulsen, Pernille

    2015-12-01

    Insulin degludec/liraglutide (IDegLira) is a novel fixed-ratio combination of the basal insulin insulin degludec (IDeg) and liraglutide, a glucagon-like peptide-1 analog. The pharmacokinetics (PK) and pharmacodynamics of IDegLira were assessed versus its components. A single-dose, randomized, 4-period crossover clinical pharmacology study in healthy subjects compared the bioavailability of IDegLira with its monocomponents. Dose proportionality, covariate effects on exposure, and exposure-response for change in glycated hemoglobin were analyzed based on data from a randomized treat-to-target phase 3 study in subjects with type 2 diabetes. Overall, the PK properties of IDeg and liraglutide were preserved for IDegLira. Liraglutide exposure was lower when dosed as IDegLira but met the criterion for equivalence. No relevant deviations from dose proportionality for the IDegLira components were observed. Covariate effects on exposure were consistent with previous results. Glycemic response to IDegLira was larger than with IDeg or liraglutide alone, reflecting their distinct glucose-lowering effects throughout the dose/exposure range.

  4. [Translation and cross-cultural adaptation of the Quick Environmental Exposure and Sensitivity Inventory for use in the Spanish population].

    PubMed

    Mena, Guillermo; Sequera, Victor-Guillermo; Nogué-Xarau, Santiago; Ríos, José; Bertran, Maria Jesús; Trilla, Antoni

    2013-04-15

    To perform the translation and cross-cultural adaptation of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) for the Spanish population. Seventy-seven patients diagnosed with multiple chemical sensitivity (MCS) and 154 subjects without the syndrome, matched by sex and age, were included in this cross-sectional study. A translation, back-translation and a cross-cultural adaptation of the original questionnaire were performed. Subsequently, the Mann-Whitney test was used to compare the median score by scale between the subjects previously diagnosed and undiagnosed. Internal consistency by scale was analyzed (Cronbach's α). Significant higher median score was found in subjects previously diagnosed on 4 out of 5 scales (P<.001). Good internal consistency was found in these 4 scales. Previously diagnosed subjects presented lower median scores on the Masking Index scale (P<.001). Except for the Masking Index, the scales present strong potential for detecting cases of MCS among symptomatic subjects. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. Population Pharmacokinetics and Exposure-Response of a Fixed-Dose Combination of Azilsartan Medoxomil and Chlorthalidone in Patients With Stage 2 Hypertension.

    PubMed

    Tsai, Max C; Wu, Jingtao; Kupfer, Stuart; Vakilynejad, Majid

    2016-08-01

    Population pharmacokinetic and exposure-response models for azilsartan medoxomil (AZL-M) and chlorthalidone (CLD) were developed using data from an 8-week placebo-controlled phase 3, factorial study of 20, 40, and 80 mg AZL-M every day (QD) and 12.5 and 25 mg CLD QD in fixed-dose combination (FDC) in subjects with moderate to severe essential hypertension. A 2-compartment model with first-order absorption and elimination was developed to describe pharmacokinetics. An Emax model for exposure-response analysis evaluated AZL-M/CLD effects on ambulatory systolic blood pressure (SBP). Estimated oral clearance and apparent volume of distribution (central compartment) were 1.47 L/h and 3.98 L for AZL, and 4.13 L/h and 62.1 L for CLD. Age as a covariate had the largest effect on AZL and CLD exposure (±20% change). Predicted maximal SBP responses (Emax ) were -15.6 and -23.9 mm Hg for AZL and CLD. Subgroup analysis identified statistically significant Emax differences for black vs nonblack subjects, whereby the reduced AZL response in black subjects was offset by greater response to CLD. The estimated Emax for AZL and CLD was generally greater in subjects with higher baseline BP. In conclusion, no dose adjustments to AZL-M or CLD are warranted based on identified covariates, and antihypertensive efficacy of AZL-M/CLD combination therapy is comparable in black and nonblack subjects. © 2015, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  6. DNA damage and translational response during detoxification from copper exposure in a wild population of Chironomus riparius.

    PubMed

    Bernabò, Paola; Gaglio, Matteo; Bellamoli, Francesco; Viero, Gabriella; Lencioni, Valeria

    2017-04-01

    Copper is one of the predominant components of pesticides employed in agriculture and known to be highly toxic once it reaches aquatic organisms. The impact of sublethal concentrations of this metal on wild insects is not yet completely understood. Studies addressing alterations in different levels of gene expression are still lacking. We previously demonstrated that in a wild population of Chironomus riparius, HSP and CYP families of genes were up-regulated at the transcriptional level after copper exposure. Here, we analyse the impact of copper at the genomic, translational and protein functional level, obtaining a comprehensive picture of the molecular reply to this metal. We studied genotoxicity in C. riparius larvae by Comet Assay, the translational response by polysomal profiling and the detoxification capacity by the CYP450 enzymes activity. Fourth-instar larvae from a mountain stream polluted by agricultural land run-off (NE-Italy) were exposed for 3 h copper concentrations ≤ LC50. We report DNA damage induced by copper, even at sublethal levels, as demonstrated by significant increases in all the comet parameters at concentrations ≥1 mg L(-1). By estimating the transcript-specific translational efficiency, we observe a specific up-regulation of CYP4G. Furthermore, the enzymatic activity of CYP450 enzymes is increased at all sublethal copper concentrations, confirming the role of this protein family in the detoxification processes. Surprisingly, the HSP transcripts are up-regulated at the transcriptional level, but these changes are buffered at the translational level suggesting the existence of still unknown post-transcriptional controls that may be connected to survival processes.

  7. Effects on Pharmacokinetics of Propranolol and Other Factors in Rats After Acute Exposure to High Altitude at 4,010 m.

    PubMed

    Wenbin, Li; Rong, Wang; Hua, Xie; Juanhong, Zhang; Xiaoyu, Wu; Zhengping, Jia

    2015-05-01

    A series of pathological, physiological, and biochemical changes, even anatomical histological changes happen while humans arrive at the high plateau region from plain area. There is a certain relationship between the body's compensatory or decompensated adjustments to the environment and the changes of absorption, distribution, metabolism, and excretion of drugs. The objective of the study is to observe the effects of acute exposure to high altitude at 4,010 m on pharmacokinetics of propranolol in rats, and to provide basis and new ideas to adjust drug dosage and administration, so as to promote rational drug use in high altitude. 28 healthy male wistar rats were randomly divided into four groups, group A and B which were in plain area; group C and D which were acutely exposed to high altitude by aviation; group A and C were used for pharmacokinetics determination of propranolol, while group B and D had no drug administration for physiological and pathological changes research at high altitude. The pharmacokinetics of propranolol significantly changed; area under curve, C max (the peak concentration), mean residence time, and t 1/2 (the biological half-life) increased significantly by 481.72, 398.94, 44.87, and 58.77 %, respectively; clearance and V (apparent volume of distribution) decreased by 81.50 and 70.56 %, respectively, after acute exposure to high altitude at 4,010 m; Analytic results show that pH, buffer base, base excess, ctCO2 (content of total carbon dioxide), sO2 (oxygen saturation of arterial blood), pO2 (oxygen tension of arterial blood), and cNa(+) severely decreased by 2.43, 630.00, 311.00, 11.48, 91.38, 76.22, and 2.82 %, respectively, while pCO2 (carbon dioxide tension of arterial blood) and cCl(-) significantly increased by 47.40 and 6.76 %. Lactate dehydrogenase and total protein significantly decreased by 58.44 and 26.82 %, while total bilirubin and alkaline phosphatase severely increased by 338 and 24.94 % after acute exposure to high

  8. Linearity of eprinomectin pharmacokinetics in lactating dairy sheep following pour-on administration: excretion in milk and exposure of suckling lambs.

    PubMed

    Hodoscek, Lena; Grabnar, Iztok; Milcinski, Luka; Süssinger, Adica; Erzen, Nevenka Kozuh; Zadnik, Tomaz; Pogacnik, Milan; Cerkvenik-Flajs, Vesna

    2008-06-14

    Pharmacokinetics of eprinomectin (EPR) were studied in blood plasma and milk in two groups of six Istrian Pramenka dairy sheep and their suckling lambs following pour-on administration of EPR to ewes at dose levels of 0.5 and 1mg/kg. Maximum concentration in plasma was 2.22 and 5.25 microg/l, and AUC was 13.6 and 33.7 microg day/l for the 0.5 and 1.0mg/kg dose, respectively. These results indicate that drug exposure with a dose of 0.5mg/kg, which is commonly used in cattle, may be subtherapeutic. The concentration time course in milk paralleled plasma concentrations. In the dose range studied, linear pharmacokinetics of EPR were demonstrated. Milk-to-plasma AUC ratio was 0.79+/-0.12 and 1.12+/-0.43; the fraction of dose recovered in milk was 0.037+/-0.011 and 0.058+/-0.027% for the low and high dose, respectively. Maximum residual levels in milk were below the maximum acceptable level of 20 microg/kg; however, EPR was detected in all samples investigated. Despite low permeability in milk, AUC in plasma of suckling lambs was between 20 and 30% of the AUC in plasma of ewes.

  9. Understanding the translation of scientific knowledge about arsenic risk exposure among private well water users in Nova Scotia.

    PubMed

    Chappells, Heather; Campbell, Norma; Drage, John; Fernandez, Conrad V; Parker, Louise; Dummer, Trevor J B

    2015-02-01

    Arsenic is a class I human carcinogen that has been identified as the second most important global health concern in groundwater supplies after contamination by pathogenic organisms. Hydrogeological assessments have shown naturally occurring arsenic to be widespread in groundwater across the northeastern United States and eastern Canada. Knowledge of arsenic risk exposure among private well users in these arsenic endemic areas has not yet been fully explored but research on water quality perceptions indicates a consistent misalignment between public and scientific assessments of environmental risk. This paper evaluates knowledge of arsenic risk exposure among a demographic cross-section of well users residing in 5 areas of Nova Scotia assessed to be at variable risk (high-low) of arsenic occurrence in groundwater based on water sample analysis. An integrated knowledge-to-action (KTA) methodological approach is utilized to comprehensively assess the personal, social and local factors shaping perception of well water contaminant risks and the translation of knowledge into routine water testing behaviors. Analysis of well user survey data (n=420) reveals a high level of confidence in well water quality that is unrelated to the relative risk of arsenic exposure or homeowner adherence to government testing recommendations. Further analysis from the survey and in-depth well user interviews (n=32) finds that well users' assessments of risk are influenced by personal experience, local knowledge, social networks and convenience of infrastructure rather than by formal information channels, which are largely failing to reach their target audiences. Insights from interviews with stakeholders representing government health and environment agencies (n=15) are used to reflect on the institutional barriers that mediate the translation of scientific knowledge into public awareness and stewardship behaviors. The utilization of local knowledge brokers, community-based networks and

  10. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: Translating lessons from murine models.

    PubMed

    Bruner-Tran, Kaylon L; Gnecco, Juan; Ding, Tianbing; Glore, Dana R; Pensabene, Virginia; Osteen, Kevin G

    2017-03-01

    Humans and other animals are exposed to a wide array of man-made toxicants, many of which act as endocrine disruptors that exhibit differential effects across the lifespan. In humans, while the impact of adult exposure is known for some compounds, the potential consequences of developmental exposure to endocrine disrupting chemicals (EDCs) is more difficult to ascertain. Animal studies have revealed that exposure to EDCs prior to puberty can lead to adult reproductive disease and dysfunction. Specifically, in adult female mice with an early life exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), we demonstrated a transgenerational occurrence of several reproductive diseases that have been linked to endometriosis in women. Herein, we review the evidence for TCDD-associated development of adult reproductive disease as well as known epigenetic alterations associated with TCDD and/or endometriosis. We will also introduce new "Organ-on-Chip" models which, combined with our established murine model, are expected to further enhance our ability to examine alterations in gene-environment interactions that lead to heritable disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A tissue dose-based comparative exposure assessment of manganese using physiologically based pharmacokinetic modeling-The importance of homeostatic control for an essential metal.

    PubMed

    Gentry, P Robinan; Van Landingham, Cynthia; Fuller, William G; Sulsky, Sandra I; Greene, Tracy B; Clewell, Harvey J; Andersen, Melvin E; Roels, Harry A; Taylor, Michael D; Keene, Athena M

    2017-02-22

    A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposures into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. >10μg/m(3)) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to "convert" an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls.

  12. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration

    PubMed Central

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-01-01

    BACKGROUND AND PURPOSE Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds’ pharmacokinetics. EXPERIMENTAL APPROACH Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. KEY RESULTS Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. CONCLUSION AND IMPLICATIONS Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. PMID:23808355

  13. Improved physiologically based pharmacokinetic model for oral exposures to chromium in mice, rats, and humans to address temporal variation and sensitive populations.

    PubMed

    Kirman, C R; Suh, M; Proctor, D M; Hays, S M

    2017-06-15

    A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression

    PubMed Central

    ANDERSEN, SUSAN L.

    2017-01-01

    The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer–peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep–wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence. PMID:25997766

  15. Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression.

    PubMed

    Andersen, Susan L

    2015-05-01

    The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.

  16. INTEGRATED PROBABILISTIC AND DETERMINISTIC MODELING TECHNIQUES IN ESTIMATING EXPOSURE TO WATER-BORNE CONTAMINANTS: PART 2 PHARMACOKINETIC MODELING

    EPA Science Inventory

    The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...

  17. INTEGRATED PROBABILISTIC AND DETERMINISTIC MODELING TECHNIQUES IN ESTIMATING EXPOSURE TO WATER-BORNE CONTAMINANTS: PART 2 PHARMACOKINETIC MODELING

    EPA Science Inventory

    The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...

  18. Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure.

    PubMed

    Leclerc, Eric; Hamon, Jeremy; Legendre, Audrey; Bois, Frederic Y

    2014-10-01

    We present a systems biology analysis of rat primary hepatocytes response after exposure to 10 μM and 100 μM flutamide in liver microfluidic biochips. We coupled an in vitro pharmacokinetic (PK) model of flutamide to a system biology model of its reactive oxygen species (ROS) production and scavenging by the Nrf2 regulated glutathione production. The PK model was calibrated using data on flutamide kinetics, hydroxyflutamide and glutathione conjugates formation in microfluidic conditions. The parameters of Nrf2-related gene activities and the subsequent glutathione depletion were calibrated using microarray data from our microfluidic experiments and literature information. Following a 10 μM flutamide exposure, the model predicted a recovery time to baseline levels of glutathione (GSH) and ROS in agreement with our experimental observations. At 100 μM, the model predicted that metabolism saturation led to an important accumulation of flutamide in cells, a high ROS production and complete GSH depletion. The high levels of ROS predicted were consistent with the necrotic switch observed by transcriptomics, and the high cell mortality we had experimentally observed. The model predicted a transition between recoverable GSH depletion and deep GSH depletion at about 12.5 μM of flutamide (single perfusion exposure). Our work shows that in vitro biochip experiments can provide supporting information for complex in silico modeling including data from extra cellular and intra cellular levels. We believe that this approach can be an efficient strategy for a global integrated methodology in predictive toxicology.

  19. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    PubMed Central

    Phillips, Martin B.; Leonard, Jeremy A.; Grulke, Christopher M.; Chang, Daniel T.; Edwards, Stephen W.; Brooks, Raina; Goldsmith, Michael-Rock; El-Masri, Hisham; Tan, Yu-Mei

    2015-01-01

    Background Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. Objectives We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. Methods Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. Results Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. Conclusions The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 “low-priority” chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible “false negatives.” Citation Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ

  20. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.

    PubMed

    Valcke, Mathieu; Haddad, Sami

    2015-01-01

    The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.

  1. Translational Efficacy of Humanized Exposures of Cefepime, Ertapenem, and Levofloxacin against Extended Spectrum β-lactamase (ESBL) producing E. coli in a Murine Complicated Urinary Tract Infection Model.

    PubMed

    Monogue, Marguerite L; Nicolau, David P

    2017-08-28

    Validated animal models are required as bridging tools to assess the utility of novel therapies and potential microbiologic outcomes. Herein, we utilized uropathogenic ESBL/non-ESBL E. coli in the neutropenic murine cUTI model with humanized exposures of cefepime, ertapenem, and levofloxacin to assess its translation value to human outcomes. Our data support the translational utility of this murine model to cUTI in man as humanized exposures produced microbiologic outcomes consistent with phenotypic profiles of the organisms. Copyright © 2017 American Society for Microbiology.

  2. Influence of virtual height exposure on postural reactions to support surface translations.

    PubMed

    Cleworth, Taylor W; Chua, Romeo; Inglis, J Timothy; Carpenter, Mark G

    2016-06-01

    As fear of falling is related to the increased likelihood of falls, it is important to understand the effects of threat-related factors (fear, anxiety and confidence) on dynamic postural reactions. Previous studies designed to examine threat effects on dynamic postural reactions have methodological limitations and lack a comprehensive analysis of simultaneous kinetic, kinematic and electromyographical recordings. The current study addressed these limitations by examining postural reactions of 26 healthy young adults to unpredictable anterior-posterior support-surface translations (acceleration=0.6m/s(2), constant velocity=0.25m/s, total displacement=0.75m) while standing on a narrow virtual surface at Low (0.4cm) and High (3.2m) virtual heights. Standing at virtual height increased fear and anxiety, and decreased confidence. Prior to perturbations, threat led to increased tonic muscle activity in tibialis anterior, resulting in a higher co-contraction index between lower leg muscles. For backward perturbations, muscle activity in the lower leg and arm, and center of pressure peak displacements, were earlier and larger when standing at virtual height. In addition, arm flexion significantly increased while leg, trunk and center of mass displacements remained unchanged across heights. When controlling for leaning, threat-related factors can influence the neuro-mechanical responses to an unpredictable perturbation, causing specific characteristics of postural reactions to be facilitated in young adults when their balance is threatened. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Use of In Vitro Data and Physiologically-Based Pharmacokinetic Modeling to Predict Drug Metabolite Exposure: Desipramine Exposure in Cytochrome P4502D6 Extensive and Poor Metabolizers Following Administration of Imipramine.

    PubMed

    Nguyen, Hoa Q; Callegari, Ernesto; Obach, R Scott

    2016-10-01

    Major circulating drug metabolites can be as important as the drugs themselves in efficacy and safety, so establishing methods whereby exposure to major metabolites following administration of parent drug can be predicted is important. In this study, imipramine, a tricyclic antidepressant, and its major metabolite desipramine were selected as a model system to develop metabolite prediction methods. Imipramine undergoes N-demethylation to form the active metabolite desipramine, and both imipramine and desipramine are converted to hydroxylated metabolites by the polymorphic enzyme CYP2D6. The objective of the present study is to determine whether the human pharmacokinetics of desipramine following dosing of imipramine can be predicted using static and dynamic physiologically-based pharmacokinetic (PBPK) models from in vitro input data for CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) populations. The intrinsic metabolic clearances of parent drug and metabolite were estimated using human liver microsomes (CYP2D6 PM and EM) and hepatocytes. Passive diffusion clearance of desipramine, used in the estimation of availability of the metabolite, was predicted from passive permeability and hepatocyte surface area. The predicted area under the curve (AUCm/AUCp) of desipramine/imipramine was 12- to 20-fold higher in PM compared with EM subjects following i.v. or oral doses of imipramine using the static model. Moreover, the PBPK model was able to recover simultaneously plasma profiles of imipramine and desipramine in populations with different phenotypes of CYP2D6. This example suggested that mechanistic PBPK modeling combined with information obtained from in vitro studies can provide quantitative solutions to predict in vivo pharmacokinetics of drugs and major metabolites in a target human population.

  4. Effect of Short-Term Drinking Water Exposure to Dichloroacetate on its Pharmacokinetics and Oral Bioavailability in Human Volunteers: A Stable Isotope Study

    SciTech Connect

    Schultz, Irv R.; Shangraw, Robert E.

    2006-06-21

    Dichloroacetic acid (DCAA) is a by-product of drinking water disinfection, a known rodent hepatocarcinogen and is also used therapeutically to treat a variety of metabolic disorders in humans. We measured DCAA bioavailability in 16 human volunteers (8 male, 8 female) after simultaneous administration of oral and iv DCAA doses. Volunteers consumed DCAA-free bottled water for 2 weeks to wash out background effects of DCAA. Subsequently, each subject drank 12C-DCAA (2 mg/kg) in 500 ml water over three minutes. Five minutes after the start of the 12C-DCAA consumption, 13C-labeled DCAA (0.3 mg/kg) was administered iv over 20 seconds, and plasma 12C/13C-DCAA concentrations measured at predetermined time points over 4 h. Volunteers subsequently consumed DCAA 0.02 mg/kg/day in 500 ml water for 14 consecutive days to simulate a low-level chronic DCAA intake. Afterwards, the 12C/13C-DCAA administrations was repeated. Study endpoints were calculation of AUC0??, apparent volume of distribution (Vss), total body clearance (Clb), plasma elimination half-life (t?,?), oral absorption rate (Ka), and oral bioavailability. Oral bioavailability was estimated from dose-adjusted AUC ratios, and by using a compartmental pharmacokinetic model after simultaneous fitting of oral and iv DCAA concentration-time profiles. DCAA bioavailability had large inter-individual variation, ranging from 28 ? 100 %. In the absence of prior DCAA intake, there were no significant differences (p>0.05) in any pharmacokinetic parameters between male and female volunteers, although there was a trend that women absorbed DCAA was more rapidly (increased Ka), and cleared DCAA more slowly (decreased Clb), than men. Only women were affected by previous 14 d DCAA exposure, which increased the AUC0?? for both oral and i.v. DCAA doses (P<0.04; 0.014 respectively) with a corresponding decrease in the Clb.

  5. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum

    PubMed Central

    Biever, Anne; Boubaker-Vitre, Jihane; Cutando, Laura; Gracia-Rubio, Irene; Costa-Mattioli, Mauro; Puighermanal, Emma; Valjent, Emmanuel

    2017-01-01

    Repeated psychostimulant exposure induces persistent gene expression modifications that contribute to enduring changes in striatal GABAergic spiny projecting neurons (SPNs). However, it remains unclear whether changes in the control of mRNA translation are required for the establishment of these durable modifications. Here we report that repeated exposure to D-amphetamine decreases global striatal mRNA translation. This effect is paralleled by an enhanced phosphorylation of the translation factors, eIF2α and eEF2, and by the concomitant increased translation of a subset of mRNAs, among which the mRNA encoding for the activity regulated cytoskeleton-associated protein, also known as activity regulated gene 3.1 (Arc/Arg3.1). The enrichment of Arc/Arg3.1 mRNA in the polysomal fraction is accompanied by a robust increase of Arc/Arg3.1 protein levels within the striatum. Immunofluorescence analysis revealed that this increase occurred preferentially in D1R-expressing SPNs localized in striosome compartments. Our results suggest that the decreased global protein synthesis following repeated exposure to D-amphetamine favors the translation of a specific subset of mRNAs in the striatum. PMID:28119566

  6. Alterations in cellular pharmacokinetics and pharmacodynamics of elvitegravir in response to ethanol exposure in HIV-1 infected monocytic (U1) cells

    PubMed Central

    Midde, Narasimha M.; Sinha, Namita; Lukka, Pradeep B.; Meibohm, Bernd

    2017-01-01

    Ethanol consumption is negatively associated with antiretroviral therapy (ART) adherence and general health in HIV positive individuals. Previously, we demonstrated ethanol-mediated alterations to metabolism of elvitegravir (EVG) in human liver microsomes. In the current study, we investigated ethanol influence on the pharmacokinetic and pharmacodynamic interactions of EVG in HIV infected monocytic (U1) cells. U1 cells were treated with 5 μM EVG, 2 μM Cobicistat (COBI), a booster drug, and 20 mM ethanol for up to 24 hours. EVG, HIV p24 levels, alterations in cytochrome P450 (CYP) 3A4, MRP1, and MDR1 protein expressions were measured. Presence of ethanol demonstrated a significant effect on the total exposures of both EVG and EVG in combination with COBI. Ethanol also increased the HIV replication despite the presence of drugs and this elevated HIV replication was reduced in the presence of MRP1 and MDR1 inhibitors. Consequently, a slight increase in EVG concentration was observed in the presence of MRP1 inhibitor but not with MDR1 inhibitor. Furthermore, CYP3A4, MRP1 and MDR1 protein levels were significantly induced in treatment groups which included ethanol compared to those with no treatment. In summary, these findings suggest that Ethanol reduces intra cellular EVG exposure by modifying drug metabolism and transporter protein expression. This study provides valuable evidence for further investigation of ethanol effects on the intracellular concentration of EVG in ex vivo or in vivo studies. PMID:28231276

  7. EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) A PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC ( PBPK/PD ) MODEL FOR ASSESSING HUMAN EXPOSURE AND RISK

    EPA Science Inventory

    The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...

  8. EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) A PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC ( PBPK/PD ) MODEL FOR ASSESSING HUMAN EXPOSURE AND RISK

    EPA Science Inventory

    The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...

  9. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model.

    PubMed

    Ngamprasertwong, Pornswan; Dong, Min; Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A; Sadhasivam, Senthilkumar

    2016-01-01

    Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart rate has an

  10. Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos

    SciTech Connect

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.

    2006-03-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. The pharmacokinetics of CPF, TCP, and the extent of blood (plasma/RBC), and brain ChE inhibition in rats were determined on postnatal days (PND) -5, -12, and -17 following oral gavage administration of 1 and 10 mg CPF/kg of body weight. For all neonatal ages the blood TCP exceeded the CPF concentration, and within each age group there was no evidence of non-linear kinetics over the dose range evaluated. Younger animals demonstrated a greater sensitivity to ChE inhibition as evident by the dose- and age-dependent inhibition of plasma, RBC, and brain ChE. Of particular importance was the observation that even in rats as young as PND-5, the CYP450 metabolic capacity was adequate to metabolize CPF to both TCP and CPF-oxon based on the detection of TCP in blood and extensive ChE inhibition (biomarker of CPF-oxon) at all ages. In addition, the increase in the blood TCP concentration ({approx}3-fold) in PND-17 rats relative to the response in the younger animals, and the higher blood concentrations of CPF in neonatal rats (1.7 to 7.5-fold) relative to adults was consistent with an increase in CYP450 metabolic capacity with age. This is the first reported study that evaluated both the pharmacokinetics of the parent pesticide, the major metabolite and the extent of ChE inhibition dynamics in the same animals as a function of neonatal age. The results suggest that in the neonatal rat, CPF was rapidly absorbed and metabolized, and the extent of metabolism was age-dependent.

  11. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model

    PubMed Central

    Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2016-01-01

    Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms

  12. Prenatal mercury exposure, autism, and developmental delay, using pharmacokinetic combination of newborn blood concentrations and questionnaire data: a case control study.

    PubMed

    McKean, Stephen J; Bartell, Scott M; Hansen, Robin L; Barfod, Gry H; Green, Peter G; Hertz-Picciotto, Irva

    2015-07-22

    Methylmercury (MeHg), known for well over a century as a neurotoxin in adults, has more recently been studied for potential detrimental effects during early brain development. While several studies have estimated mercury exposure, they usually rely on either a single biomarker or questionnaire data, each of which has limitations. The goal of this paper was to develop a toxicokinetic model that incorporates both biomarker and questionnaire data to estimate the cumulative exposure to MeHg through seafood consumption using data collected from the Childhood Autism Risks from Genetics and the Environment (CHARGE) study. We utilized a previously described discrete-time model that estimates blood MeHg concentration given a piecewise-constant ingestion rate and single-compartment pharmacokinetics. We measured newborn bloodspot Hg concentrations and obtained information pertaining to maternal fish consumption using a questionnaire. Using MeHg concentration estimates from the toxicokinetic model, cumulative MeHg exposure was estimated in children with autism, children with developmental delay, and typically developing children. Median estimated cumulative MeHg was compared among diagnostic groups using the Kruskal-Wallis Test. Multinomial logistic regression models were constructed to assess the association between cumulative MeHg concentration and the risk of autism and developmental delay (vs. typical development). The estimated average MeHg concentration of for all fish species consumed by mothers was 42 ppb. Median cumulative MeHg over gestation was similar across diagnostic groups (p-values raged from 0.91 to 0.98). After adjusting for potential confounding, we found no association between cumulative MeHg exposure and the risk of autism (OR = 0.95, 95% CI: 0.95, 1.12) or developmental delay (OR = 1.00, 95% CI: 0.89, 1.13). The toxicokinetic model described in this paper yielded fish MeHg concentration estimates that are consistent with fish species containing

  13. Metabolite pharmacokinetics of soman, sarin, and GF in rats and biological monitoring of exposure to toxic organophosphorus agents

    SciTech Connect

    Shih, M.L.; McMonagle, J.D.; Dolzine, T.W.; Gresham, V.C.

    1993-05-13

    This study reports on the pharmacokinetics of the elimination of the metabolites of three toxic organophosphorus compounds (Soman, sarin, and GF). Urine, blood, and lung tissue were collected from rats dosed via subcutaneous route at 75 ug/Kg. Urinary excretion of the metabolite was the major elimination route for these three compounds. The major differences among them were primarily the extent and rate of excretion. The hydrolyzed form, alkylmethylphosphonic acid, was the single major metabolite formed and excreted in urine by a nonsaturable mechanism. Nearly total recoveries of the given doses for sarin and GF in metabolite form were obtained from the urine. The terminal elimination half-lives in urine were 6 and 15 hours for sarin and GF, respectively. Soman metabolite showed a biphasic elimination curve with terminal half-lives of 24 and 14 hours approximately. Soman was excreted at a slower rate with a recovery of only about 60%. Lung was the major organ of accumulation for soman. In blood the toxic agents were concentrated more in red blood cells than in plasma.

  14. A pharmacokinetic model of cis- and trans-permethrin disposition in rats and humans with aggregate exposure application

    EPA Science Inventory

    Permethrin is a broad-spectrum pyrethroid insecticide and among the most widely used insecticides in homes and crops. Managing the risks for pesticides such as permethrin depends on the ability to consider diverse exposure scenarios and their relative risks. Physiologically-base...

  15. A pharmacokinetic model of cis- and trans-permethrin disposition in rats and humans with aggregate exposure application

    EPA Science Inventory

    Permethrin is a broad-spectrum pyrethroid insecticide and among the most widely used insecticides in homes and crops. Managing the risks for pesticides such as permethrin depends on the ability to consider diverse exposure scenarios and their relative risks. Physiologically-base...

  16. THE UNIQUE VALUE OF BREATH BIOMARKERS FOR ESTIMATING PHARMACOKINETIC RATE CONSTANTS AND BODY BURDEN FROM ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Although detection of breath odor is the oldest of the medical diagnostic techniques, blood and urine biomarker measurements are the current "gold standard" for modern exposure and health assessments. Of late, it has been recognized that collecting exhaled breath is an attractiv...

  17. THE UNIQUE VALUE OF BREATH BIOMARKERS FOR ESTIMATING PHARMACOKINETIC RATE CONSTANTS AND BODY BURDEN FROM ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Although detection of breath odor is the oldest of the medical diagnostic techniques, blood and urine biomarker measurements are the current "gold standard" for modern exposure and health assessments. Of late, it has been recognized that collecting exhaled breath is an attractiv...

  18. A PHARMACOKINETIC MODEL FOR ESTIMATING EXPOSURE OF AMERICANS TO DIOXIN-LIKE COMPOUNDS IN THE PAST, PRESENT, AND FUTURE

    EPA Science Inventory

    Empirical evidence suggests that exposure of Americans to dioxin-like compounds was low during the early decades of the 20th century, then increased during the 1940s and 1950s reaching a peak in the 1960s and 1970s, and progressively decreased to lower levels in the 1980s and 199...

  19. A PHARMACOKINETIC MODEL FOR ESTIMATING EXPOSURE OF AMERICANS TO DIOXIN-LIKE COMPOUNDS IN THE PAST, PRESENT, AND FUTURE

    EPA Science Inventory

    Empirical evidence suggests that exposure of Americans to dioxin-like compounds was low during the early decades of the 20th century, then increased during the 1940s and 1950s reaching a peak in the 1960s and 1970s, and progressively decreased to lower levels in the 1980s and 199...

  20. The application of global sensitivity analysis in the development of a physiologically based pharmacokinetic model for m-xylene and ethanol co-exposure in humans

    PubMed Central

    Loizou, George D.; McNally, Kevin; Jones, Kate; Cocker, John

    2015-01-01

    Global sensitivity analysis (SA) was used during the development phase of a binary chemical physiologically based pharmacokinetic (PBPK) model used for the analysis of m-xylene and ethanol co-exposure in humans. SA was used to identify those parameters which had the most significant impact on variability of venous blood and exhaled m-xylene and urinary excretion of the major metabolite of m-xylene metabolism, 3-methyl hippuric acid. This analysis informed the selection of parameters for estimation/calibration by fitting to measured biological monitoring (BM) data in a Bayesian framework using Markov chain Monte Carlo (MCMC) simulation. Data generated in controlled human studies were shown to be useful for investigating the structure and quantitative outputs of PBPK models as well as the biological plausibility and variability of parameters for which measured values were not available. This approach ensured that a priori knowledge in the form of prior distributions was ascribed only to those parameters that were identified as having the greatest impact on variability. This is an efficient approach which helps reduce computational cost. PMID:26175688

  1. Use of simple pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonic acid.

    PubMed

    Thompson, Jack; Lorber, Matthew; Toms, Leisa-Maree L; Kato, Kayoko; Calafat, Antonia M; Mueller, Jochen F

    2010-05-01

    Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex

  2. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models from acslX™ to Berkeley Madonna™, MATLAB®, and R language: Oxytetracycline and Gold Nanoparticles as Case Examples.

    PubMed

    Lin, Zhoumeng; Jaberi-Douraki, Majid; He, Chunla; Jin, Shiqiang; Yang, Raymond S H; Fisher, Jeffrey W; Riviere, Jim E

    2017-04-08

    Many physiologically based pharmacokinetic (PBPK) models for environmental chemicals, drugs, and nanomaterials have been developed to aid risk and safety assessments using acslXTM. However, acslXTM has been rendered sunset since November 2015. Alternative modeling tools and tutorials are needed for future PBPK applications. This forum article aimed to: (1) demonstrate the performance of four PBPK modeling software packages (acslXTM, Berkeley MadonnaTM, MATLAB®, and R language) tested using two existing models (oxytetracycline and gold nanoparticles); (2) provide a tutorial of PBPK model code conversion from acslXTM to Berkeley MadonnaTM, MATLAB®, and R language; (3) discuss the advantages and disadvantages of each software package in the implementation of PBPK models in toxicology, and (4) share our perspective about future direction in this field. Simulation results of plasma/tissue concentrations/amounts of oxytetracycline and gold from different models were compared visually and statistically with linear regression analyses. Simulation results from the original models were correlated well with results from the recoded models, with time-concentration/amount curves nearly superimposable and determination coefficients of 0.86-1.00. Step-by-step explanations of the recoding of the models in different software programs are provided in the Supplementary Data. In summary, this article presents a tutorial of PBPK model code conversion for a small molecule and a nanoparticle among four software packages, and a performance comparison of these software packages in PBPK model implementation. This tutorial helps beginners learn PBPK modeling, provides suggestions for selecting a suitable tool for future projects, and may lead to the transition from acslXTM to alternative modeling tools.

  3. Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure.

    PubMed

    Lenhard, Justin R; Brown, Tanya; Rybak, Michael J; Meaney, Calvin J; Norgard, Nicholas B; Bulman, Zackery P; Brazeau, Daniel A; Gill, Steven R; Tsuji, Brian T

    2015-12-28

    Staphylococcus aureus possesses exceptional virulence and a remarkable ability to adapt in the face of antibiotic therapy. We examined the in vitro evolution of S. aureus in response to escalating vancomycin exposure by evaluating bacterial killing and the progression of resistance. A hollow-fiber infection model was utilized to simulate human doses of vancomycin increasing from 0.5 to 4 g every 12 h (q12h) versus a high inoculum (10(8) CFU/ml) of methicillin-resistant S. aureus (MRSA) USA300 and USA400. Host-pathogen interactions using Galleria mellonella and accessory gene regulator (agr) expression were studied in serially obtained isolates. In both USA300 and USA400 MRSA isolates, vancomycin exposure up to 2 g q12h resulted in persistence and regrowth, whereas 4 g administered q12h achieved sustained killing against both strains. As vancomycin exposure increased from 0.5 to 2 g q12h, the bacterial population shifted toward vancomycin-intermediate resistance, and collateral increases in the MICs of daptomycin and televancin were observed over 10 days. Guideline-recommended exposure of a ratio of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (fAUC/MIC ratio) of 200 displayed a 0.344-log bacterial reduction in area, whereas fAUC/MICs of 371 and 554 were needed to achieve 1.00- and 2.00-log reductions in area, respectively. The stepwise increase in resistance paralleled a decrease in G. mellonella mortality (P = 0.021) and a gradual decline of RNAIII expression over 10 days. Currently recommended doses of vancomycin resulted in amplification of resistance and collateral damage to other antibiotics. Decreases in agr expression and virulence during therapy may be an adaptive mechanism of S. aureus persistence. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    PubMed Central

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers. PMID:26674514

  5. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure.

    PubMed

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu; Kitchin, Kirk T

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.

  6. Effect of short-term drinking water exposure to dichloroacetate on its pharmacokinetics and oral bioavailability in human volunteers: a stable isotope study.

    PubMed

    Schultz, Irvin R; Shangraw, Robert E

    2006-07-01

    Dichloroacetic acid (DCAA) is a by-product of drinking water disinfection, is a known rodent hepatocarcinogen, and is also used therapeutically to treat a variety of metabolic disorders in humans. We measured DCAA bioavailability in 16 human volunteers (eight men, eight women) after simultaneous administration of oral and iv DCAA doses. Volunteers consumed DCAA-free bottled water for 2 weeks to wash out background effects of DCAA. Subsequently, each subject consumed (12)C-DCAA (2 mg/kg) dissolved in 500 ml water over a period of 3 min. Five minutes after the start of the (12)C-DCAA consumption, (13)C-labeled DCAA (0.3 mg/kg) was administered iv over 20 s and plasma (12)C/(13)C-DCAA concentrations measured at predetermined time points over 4 h. Volunteers subsequently consumed for 14 consecutive days DCAA 0.02 microg/kg/day dissolved in 500 ml water to simulate a low-level chronic DCAA intake. Afterward, the (12)C/(13)C-DCAA administrations were repeated. Study end points were calculation of AUC(0-->infinity), apparent volume of distribution (V(ss)), total body clearance (Cl(b)), plasma elimination half-life (t((1/2),beta)), oral absorption rate (K(a)), and oral bioavailability. Oral bioavailability was estimated from dose-adjusted AUC ratios and by using a compartmental pharmacokinetic model after simultaneous fitting of oral and iv DCAA concentration-time profiles. DCAA bioavailability had large interindividual variation, ranging from 27 to 100%. In the absence of prior DCAA intake, there were no significant differences (p > 0.05) in any pharmacokinetic parameters between male and female volunteers, although there was a trend that women absorbed DCAA more rapidly (increased K(a)), and cleared DCAA more slowly (decreased Cl(b)), than men. Only women were affected by previous 14-day DCAA exposure, which increased the AUC(0-->infinity) for both oral and iv DCAA doses (p < 0.04 and p < 0.014, respectively) with a corresponding decrease in the Cl(b).

  7. Estimation of the impact of noncompliance on pharmacokinetics: an analysis of the influence of dosing regimens

    PubMed Central

    Hughes, Dyfrig A

    2008-01-01

    AIMS To determine whether, for oxybutynin and risperidone, drug exposure is better with less frequent dosing regimens than with regimens that require more frequent dosing. METHODS Pharmacokinetic models of oxybutynin (5 mg twice-daily and 10 mg once-daily) and risperidone (2 mg once-daily orally and 25 mg fortnightly intramuscular injection) were developed. Simulations of multiple doses were performed by use of stochastic models of dose-taking compliance and clinic visit attendance. RESULTS At therapeutic concentrations and with typical patterns of noncompliance, intramuscular injections of risperidone resulted in a 41% (SD 12%) greater pharmacokinetic coverage than the oral dose, 76% (SD 10%) vs. 35% (SD 7%). No discernable differences were evident between once- and twice-daily formulations of oxybutynin, 29.2% (SD 10%) vs. 29.0% (SD 13%). CONCLUSIONS For equivalent doses for each drug, the longer acting preparation of risperidone, but not oxybutynin, is pharmacokinetically more forgiving of noncompliance than the shorter acting counterparts. Further analysis is required to confirm whether these observations are valid clinically. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Patient compliance is better with formulations that require less frequent dosing than with formulations that require more frequent dosing. Intramuscular risperidone and long-acting oxybutynin are two examples of medicines reformulated for less frequent dosing. However, it is not clear whether better compliance with less frequent dosing regimens translates to improved therapeutic outcome. WHAT THIS STUDY ADDS At equivalent daily doses and typical patterns of compliance, fortnightly intramuscular depot administrations of risperidone provide better pharmacokinetic coverage than once-daily oral dosing.Once-daily dosing of oxybutynin is no better at maintaining pharmacokinetic exposure than twice-daily dosing at half strength.The use of simulated compliance data as input to pharmacokinetic models is

  8. Estimation of the impact of noncompliance on pharmacokinetics: an analysis of the influence of dosing regimens.

    PubMed

    Hughes, Dyfrig A

    2008-06-01

    Patient compliance is better with formulations that require less frequent dosing than with formulations that require more frequent dosing. Intramuscular risperidone and long-acting oxybutynin are two examples of medicines reformulated for less frequent dosing. However, it is not clear whether better compliance with less frequent dosing regimens translates to improved therapeutic outcome. At equivalent daily doses and typical patterns of compliance, fortnightly intramuscular depot administrations of risperidone provide better pharmacokinetic coverage than once-daily oral dosing. Once-daily dosing of oxybutynin is no better at maintaining pharmacokinetic exposure than twice-daily dosing at half strength. The use of simulated compliance data as input to pharmacokinetic models is useful to assess the impact of noncompliance on internal drug exposure. To determine whether, for oxybutynin and risperidone, drug exposure is better with less frequent dosing regimens than with regimens that require more frequent dosing. Pharmacokinetic models of oxybutynin (5 mg twice-daily and 10 mg once-daily) and risperidone (2 mg once-daily orally and 25 mg fortnightly intramuscular injection) were developed. Simulations of multiple doses were performed by use of stochastic models of dose-taking compliance and clinic visit attendance. At therapeutic concentrations and with typical patterns of noncompliance, intramuscular injections of risperidone resulted in a 41% (SD 12%) greater pharmacokinetic coverage than the oral dose, 76% (SD 10%) vs. 35% (SD 7%). No discernable differences were evident between once- and twice-daily formulations of oxybutynin, 29.2% (SD 10%) vs. 29.0% (SD 13%). For equivalent doses for each drug, the longer acting preparation of risperidone, but not oxybutynin, is pharmacokinetically more forgiving of noncompliance than the shorter acting counterparts. Further analysis is required to confirm whether these observations are valid clinically.

  9. Clinical pharmacokinetics of frovatriptan.

    PubMed

    Buchan, P; Keywood, C; Wade, A; Ward, C

    2002-04-01

    To review available data on the clinical pharmacokinetics of frovatriptan. Preclinical data suggest that the pharmacokinetic profile of frovatriptan may differ from that of the currently available triptans. Studies of healthy volunteers, subjects with renal or hepatic impairment, elderly subjects, and patients with migraine during and between attacks were reviewed. Oral bioavailability of frovatriptan is 22% to 30%, and although the time to maximum concentration is typically 2 to 3 hours, approximately 60% to 70% of plasma maximum concentration is achieved within 1 hour of dosing. Frovatriptan distributes into erythrocytes, with binding reversible and time dependent. The relatively long terminal elimination half-life (about 26 hours) confers good systemic exposure and may produce a long duration of therapeutic action, thus reducing migraine recurrence and the need for redosing. Systemic exposure to frovatriptan generally correlates with dose between 1 and 100 mg. Blood and plasma frovatriptan concentrations are consistently higher in females, but there is no need to adjust dose according to gender. Pharmacokinetics are essentially unaffected by food and were predictable after repeat dosing; steady state is approached in about 4 to 5 days. Pharmacokinetics were changed only slightly in subjects with renal impairment or mild-to-moderate hepatic impairment, elderly individuals, and during migraine attacks. Frovatriptan is principally metabolized by the CYP1A2 isoenzyme of cytochrome P-450 and is cleared by the kidney and liver, each having sufficient capacity to compensate for impairment of the other. Frovatriptan can be taken without regard for food intake, and because of the large therapeutic margin and shallow dose-response curve, there is no need for dosage adjustment in the elderly, in women taking a combined oral contraceptive, in patients with mild-to-severe renal impairment, mild-to-moderate hepatic impairment, or according to gender. The long duration of

  10. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

    PubMed

    Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H

    2017-06-07

    PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Safety and Pharmacokinetics of Carprofen, Flunixin and Phenylbutazone in the Cape Vulture (Gyps coprotheres) following Oral Exposure

    PubMed Central

    Fourie, Tamsyn; Cromarty, Duncan; Duncan, Neil; Wolter, Kerri; Naidoo, Vinny

    2015-01-01

    The following study evaluates the overt toxic potential of carprofen (CRP), flunixin (FXN) and phenylbutazone (PBZ) in Old world vultures in relation to historic toxicity data for diclofenac and ketoprofen, with the Cape vulture (Gyps coprotheres) being the indicator species. The toxic potential of a single oral dose of CRP (11.5 mg/kg), FXN (1 mg/kg),PBZ (1.7 mg/kg) or water was evaluated by means of a four-way parallel study (n = 2), as means of ascertaining if these drugs were as toxic as diclofenac in the vulture. No unscheduled deaths or pathological lesions were noted following exposure. Clinical signs of lethargy and depression were, however, noted in one CRP, two FXN and one PBZ treated birds. Mild reversible inhibition of UA excretion was evident in all three groups, although UA remained within the population reference interval in contrast to the effects previously described for diclofenac and ketoprofen. All treatment groups had a drug concentration responsive increase in alanine transferase activity. CRP, FXN and PBZ were characterised by a maximum plasma concentration (Cmax) of 1051.8 ± 620.7 ng/ml, 335.9 ± 36.3 ng/ml and 11150 ± 2474.9 ng/ml at 4 ± 4.3, 0.45 ± 0.02 and 5.3 ± 5.2 hours (Tmax) respectively and a half-life of elimination of 13.3 ±5, 1.8±1 and 18.7 ±11.4 hours respectively. While we could not demonstrate a lethal effect of the tested substances, the presence of toxic clinical signs, clinical pathological changes and/or long half-lives of elimination suggests that all three drugs have a potential for toxicity in a larger population or on repeat administration. In conclusion while the studied substances were not as overtly toxic as diclofenac, they are of safety concern. PMID:26512724

  12. The Safety and Pharmacokinetics of Carprofen, Flunixin and Phenylbutazone in the Cape Vulture (Gyps coprotheres) following Oral Exposure.

    PubMed

    Fourie, Tamsyn; Cromarty, Duncan; Duncan, Neil; Wolter, Kerri; Naidoo, Vinny

    2015-01-01

    The following study evaluates the overt toxic potential of carprofen (CRP), flunixin (FXN) and phenylbutazone (PBZ) in Old world vultures in relation to historic toxicity data for diclofenac and ketoprofen, with the Cape vulture (Gyps coprotheres) being the indicator species. The toxic potential of a single oral dose of CRP (11.5 mg/kg), FXN (1 mg/kg),PBZ (1.7 mg/kg) or water was evaluated by means of a four-way parallel study (n = 2), as means of ascertaining if these drugs were as toxic as diclofenac in the vulture. No unscheduled deaths or pathological lesions were noted following exposure. Clinical signs of lethargy and depression were, however, noted in one CRP, two FXN and one PBZ treated birds. Mild reversible inhibition of UA excretion was evident in all three groups, although UA remained within the population reference interval in contrast to the effects previously described for diclofenac and ketoprofen. All treatment groups had a drug concentration responsive increase in alanine transferase activity. CRP, FXN and PBZ were characterised by a maximum plasma concentration (Cmax) of 1051.8 ± 620.7 ng/ml, 335.9 ± 36.3 ng/ml and 11150 ± 2474.9 ng/ml at 4 ± 4.3, 0.45 ± 0.02 and 5.3 ± 5.2 hours (Tmax) respectively and a half-life of elimination of 13.3 ±5, 1.8±1 and 18.7 ±11.4 hours respectively. While we could not demonstrate a lethal effect of the tested substances, the presence of toxic clinical signs, clinical pathological changes and/or long half-lives of elimination suggests that all three drugs have a potential for toxicity in a larger population or on repeat administration. In conclusion while the studied substances were not as overtly toxic as diclofenac, they are of safety concern.

  13. Cortical responses to amphetamine exposure studied by pCASL MRI and pharmacokinetic/pharmacodynamic dose modeling.

    PubMed

    Nordin, Love Engström; Li, Tie-Qiang; Brogren, Jacob; Johansson, Patrik; Sjögren, Niclas; Hannesdottir, Kristin; Björk, Charlotta; Segerdahl, Märta; Wang, Danny J J; Julin, Per

    2013-03-01

    Perfusion measurement by arterial spin labeling (ASL) techniques is well suited for pharmaceutical magnetic resonance imaging (phMRI) studies to investigate how drugs change the cerebral perfusion status and further, neuronal activity. Twelve healthy normal male volunteers participated in the study which was based on a double blinded design. Six subjects were randomly selected to receive a single oral dose of 20mg d-amphetamine and six were given placebo. Perfusion measurements by pseudo-continuous ASL (pCASL) technique were repeatedly performed at 10 different time points with a 3T clinical MRI scanner during a 10 hour period after dose together with physiologic data and blood sample collections. The dynamic changes in cerebral perfusion in response to the plasma concentration variations of d-amphetamine were analyzed at voxel-level and for regions of interest. Compared to the placebo group a 20% reduction in cerebral blood flow (CBF) was observed in gray matter for the subjects that received d-amphetamine. The most significant reduction of regional CBF (rCBF) was detected in the basal ganglia, frontal region and insular cortex using voxel based analysis. A relation between d-amphetamine exposure and CBF response was found using PK/PD modeling, which predicted on average a 15% decrease of the CBF in gray matter at a plasma concentration of 30 ng/ml. In this study we have demonstrated that repeated perfusion measurements by pCASL technique was sufficiently robust to differentiate the neurological response between the groups that received d-amphetamine and placebo. Quantitative and repetitive CBF measurements can be used for PK/PD modeling of CNS drug responses in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Pharmacokinetics & Neurophysiology

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Salpekar, Jay A.

    2009-01-01

    Medications administered in clinical practice obtain their therapeutic effect only to the extent that the drug is present in the appropriate concentration at the desired site. To achieve this goal, the prescribing clinician must be aware of how a drug may interact with the physiology of the patient. Pharmacokinetics is the study of this process…

  15. Pharmacokinetics & Neurophysiology

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Salpekar, Jay A.

    2009-01-01

    Medications administered in clinical practice obtain their therapeutic effect only to the extent that the drug is present in the appropriate concentration at the desired site. To achieve this goal, the prescribing clinician must be aware of how a drug may interact with the physiology of the patient. Pharmacokinetics is the study of this process…

  16. Correlating pharmacokinetics and teratogenic endpoints.

    PubMed

    Kimmel, C A; Young, J F

    1983-01-01

    The use of pharmacokinetics can improve the extrapolation of animal teratology data for human risk evaluation. Before one can extrapolate between species, however, the pharmacokinetic model must be predictable within the species for which it was developed. This article summarizes an approach being used for correlating pharmacokinetics and teratology endpoints in the same animal and predicting the teratogenic outcome for other animals of the same species. With the aid of micro-sampling procedures, and sensitive and rapid analytical techniques, blood, urine and feces samples are obtained from individual animals following dosing and the data are simulated using a hybrid computer to develop a pharmacokinetic model. The model is validated in other animals by measuring the parent compound and metabolites in various "compartments" predicted by the model. Then the pharmacokinetic model is tested by predicting the teratogenic outcome in single ani-analyses indicated the most predictive pharmacokinetic parameters to be two maternal blood concentration values. Prediction of the teratogenic outcome based on these parameters was accurate for 74% of the litters in the 95% confidence interval. This approach is discussed as it relates to its utility for other exposure routes and for extrapolation to other species.

  17. Historical human exposure to perfluoroalkyl acids in the United States and Australia reconstructed from biomonitoring data using population-based pharmacokinetic modelling.

    PubMed

    Gomis, Melissa I; Vestergren, Robin; MacLeod, Matthew; Mueller, Jochen F; Cousins, Ian T

    2017-08-14

    Perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) are found in the blood of humans and wildlife worldwide. Since the beginning of the 21st century, a downward trend in the human body burden, especially for PFOS and PFOA, has been observed while there is no clear temporal trend in wildlife. The inconsistency between the concentration decline in human serum and in wildlife could be indicative of a historical exposure pathway for humans linked to consumer products that has been reduced or eliminated. In this study, we reconstruct the past human exposure trends in two different regions, USA and Australia, by inferring the historical intake from cross-sectional biomonitoring data of PFOS, PFOA and PFHxS using a population-based pharmacokinetic model. For PFOS in the USA, the reconstructed daily intake peaked at 4.5ng/kg-bw/day between 1988 and 1999 while in Australia it peaked at 4.0ng/kg-bw/day between 1984 and 1996. For PFOA in the USA and Australia, the peak reconstructed daily intake was 1.1ng/kg-bw/day in 1995 and 3.6ng/kg-bw/day in 1992, respectively, and started to decline in 2000 and 1995, respectively. The model could not be satisfactorily fitted to the biomonitoring data for PFHxS within reasonable boundaries for its intrinsic elimination half-life, and thus reconstructing intakes of PFHxS was not possible. Our results indicate that humans experienced similar exposure levels and trends to PFOS and PFOA in the USA and Australia. Our findings support the hypothesis that near-field consumer product exposure pathways were likely dominant prior to the phase-out in industrialized countries. The intrinsic elimination half-life, which represents elimination processes that are common for all humans, and elimination processes unique to women (i.e., menstruation, cord-blood transfer and breastfeeding) were also investigated. The intrinsic elimination half-lives for PFOS and PFOA derived from model fitting for men

  18. Translations and Translators.

    ERIC Educational Resources Information Center

    Nida, Eugene A.

    1979-01-01

    The necessity for stylistic appropriateness in translation as well as correct content is discussed. To acquire this skill, translators must be trained in stylistics through close examination of their own language and must have practice in translating for different audiences at different levels. (PMJ)

  19. Optimization of human dose prediction by using quantitative and translational pharmacology in drug discovery.

    PubMed

    Bueters, Tjerk; Gibson, Christopher; Visser, Sandra A G

    2015-01-01

    In this perspective article, we explain how quantitative and translational pharmacology, when well-implemented, is believed to lead to improved clinical candidates and drug targets that are differentiated from current treatment options. Quantitative and translational pharmacology aims to build and continuously improve the quantitative relationship between drug exposure, target engagement, efficacy, safety and its interspecies relationship at every phase of drug discovery. Drug hunters should consider and apply these concepts to develop compounds with a higher probability of interrogating the clinical biological hypothesis. We offer different approaches to set an initial effective concentration or pharmacokinetic-pharmacodynamic target in man and to predict human pharmacokinetics that determine together the predicted human dose and dose schedule. All concepts are illustrated with ample literature examples.

  20. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    PubMed

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation.

  1. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    PubMed Central

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  2. [Delta-9-tetrahydrocannabinol pharmacokinetics].

    PubMed

    Goullé, J-P; Saussereau, E; Lacroix, C

    2008-08-01

    Delta-9-tetrahydrocannabinol (Delta-9-THC) is the main psychoactive ingredient of cannabis. Smoking is currently most common use of cannabis. The present review focuses on the pharmacokinetics of THC. The variability of THC in plant material which has significantly increased in recent years leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. This variability of THC content has an important impact on drug pharmacokinetics and pharmacology. After smoking THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level near 160 ng/mL occurs approximately 10 min after inhalation. THC is eliminated quickly from plasma in a multiphasic manner and is widely distributed to tissues, which is responsible for its pharmacologic effects. Body fat then serves as a long-term storage site. This particular pharmacokinetics explains the noncorrelation between THC blood level and clinical effects as is observed for ethanol. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20 and 100% of parent, respectively). The elimination of THC and its many metabolites, mainly THC-COOH, occurs via the feces and urine for several weeks. Thus, to confirm abstinence, urine THC-COOH analysis would be a useful tool. A positive result could be checked by gas chromatography-mass spectrometry THC blood analysis, indicative of a recent cannabis exposure.

  3. Quinolone pharmacokinetics.

    PubMed

    Robson, R A

    1992-12-01

    Fluoroquinolones have broad antibacterial spectra and are active against most Gram-negative and many Gram-positive species. They exhibit excellent oral bioavailability, extensive tissue penetration, low protein binding, and a long elimination half-life. This review compares and contrasts the pharmakonetics of some quinolone antibiotics - especially pefloxacin, ciprofloxacin, enoxacin, norfloxacin, ofloxacin, fleroxacin and lomefloxacin - in terms of their adsorption, distribution, metabolism, elimination, and interactions with other drugs and with food. In addition, the pharmacokinetics of these agents in the elderly and in patients with renal or hepatic impairment is discussed. The fluoroquinolones are established as a major class of antibiotics in the treatment of infections but pharmacokinetics factors should be considered when deciding on the most appropriate of these agents to use in individual patients.

  4. Impact of the Superoxide Dismutase 2 Val16Ala Polymorphism on the Relationship between Valproic Acid Exposure and Elevation of γ-Glutamyltransferase in Patients with Epilepsy: A Population Pharmacokinetic-Pharmacodynamic Analysis

    PubMed Central

    Ogusu, Naoki; Saruwatari, Junji; Nakashima, Hiroo; Noai, Madoka; Nishimura, Miki; Deguchi, Mariko; Oniki, Kentaro; Yasui-Furukori, Norio; Kaneko, Sunao; Ishitsu, Takateru; Nakagaswa, Kazuko

    2014-01-01

    Background There has been accumulating evidence that there are associations among γ-glutamyltransferase (γ-GT) elevation and all-cause mortality, cardiovascular diseases and metabolic diseases, including nonalcoholic fatty liver disease. The primary objective of this study was to evaluate the impact of the most common and potentially functional polymorphisms of antioxidant enzyme genes, i.e. superoxide dismutase 2 (SOD2), glutathione S-transferase M1 and glutathione S-transferase T1, on the γ-GT elevation during valproic acid (VPA) therapy. Methods and Findings This retrospective study included 237 and 169 VPA-treated Japanese patients with epilepsy for population pharmacokinetic and pharmacokinetic-pharmacodynamic analyses, respectively. A nonlinear mixed-effect model represented the pharmacokinetics of VPA and the relationships between VPA exposure and γ-GT elevation. A one-compartment model of the pharmacokinetic parameters of VPA adequately described the data; while the model for the probability of the γ-GT elevation was fitted using a logistic regression model, in which the logit function of the probability was a linear function of VPA exposure. The SOD2 Val16Ala polymorphism and complication with intellectual disability were found to be significant covariates influencing the intercept of the logit function for the probability of an elevated γ-GT level. The predicted mean percentages of the subjects with γ-GT elevation were about 2- to 3-fold, 3- to 4-fold and 4- to 8-fold greater in patients with the SOD2 Val/Val genotype but without any intellectual disability, those with the SOD2 Val/Ala or Ala/Ala genotype and intellectual disability and those with the SOD2 Val/Val genotype and intellectual disability, respectively, compared to those with the SOD2 Val/Ala or Ala/Ala genotype without intellectual disability. Conclusion Our results showed that the SOD2 Val16Ala polymorphism has an impact on the relationship between VPA exposure and γ-GT elevation in

  5. A PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC (PBPK/PD) MODEL FOR ESTIMATION OF CUMULATIVE RISK FROM EXPOSURE TO THREE N-METHYL CARBAMATES: CARBARYL, ALDICARB, AND CARBOFURAN

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for a mixture of N-methyl carbamate pesticides was developed based on single chemical models. The model was used to compare urinary metabolite concentrations to levels from National Health and Nutrition Examination Survey (NHA...

  6. Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards

    EPA Science Inventory

    A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolat...

  7. Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards

    EPA Science Inventory

    A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolat...

  8. A PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC (PBPK/PD) MODEL FOR ESTIMATION OF CUMULATIVE RISK FROM EXPOSURE TO THREE N-METHYL CARBAMATES: CARBARYL, ALDICARB, AND CARBOFURAN

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for a mixture of N-methyl carbamate pesticides was developed based on single chemical models. The model was used to compare urinary metabolite concentrations to levels from National Health and Nutrition Examination Survey (NHA...

  9. Pharmacokinetics and pharmacodynamics utilizing unbound target tissue exposure as part of a disposition-based rationale for lead optimization of benzoxaboroles in the treatment of Stage 2 Human African Trypanosomiasis.

    PubMed

    Wring, Stephen; Gaukel, Eric; Nare, Bakela; Jacobs, Robert; Beaudet, Beth; Bowling, Tana; Mercer, Luke; Bacchi, Cyrus; Yarlett, Nigel; Randolph, Ryan; Parham, Robin; Rewerts, Cindy; Platner, Jacob; Don, Robert

    2014-01-01

    SUMMARY This review presents a progression strategy for the discovery of new anti-parasitic drugs that uses in vitro susceptibility, time-kill and reversibility measures to define the therapeutically relevant exposure required in target tissues of animal infection models. The strategy is exemplified by the discovery of SCYX-7158 as a potential oral treatment for stage 2 (CNS) Human African Trypanosomiasis (HAT). A critique of current treatments for stage 2 HAT is included to provide context for the challenges of achieving target tissue disposition and the need for establishing pharmacokinetic-pharmacodynamic (PK-PD) measures early in the discovery paradigm. The strategy comprises 3 stages. Initially, compounds demonstrating promising in vitro activity and selectivity for the target organism over mammalian cells are advanced to in vitro metabolic stability, barrier permeability and tissue binding assays to establish that they will likely achieve and maintain therapeutic concentrations during in-life efficacy studies. Secondly, in vitro time-kill and reversibility kinetics are employed to correlate exposure (based on unbound concentrations) with in vitro activity, and to identify pharmacodynamic measures that would best predict efficacy. Lastly, this information is used to design dosing regimens for pivotal pharmacokinetic-pharmacodyamic studies in animal infection models.

  10. Translation of associative learning models into extinction reminders delivered via mobile phones during cue exposure interventions for substance use.

    PubMed

    Rosenthal, M Zachary; Kutlu, Munir G

    2014-09-01

    Despite experimental findings and some treatment research supporting the use of cues as a means to induce and extinguish cravings, interventions using cue exposure have not been well integrated into contemporary substance abuse treatments. A primary problem with exposure-based interventions for addiction is that after learning not to use substances in the presence of addiction cues inside the clinic (i.e., extinction), stimuli in the naturalistic setting outside the clinic may continue to elicit craving, drug use, or other maladaptive conditioned responses. For exposure-based substance use interventions to be efficacious, new approaches are needed that can prevent relapse by directly generalizing learning from the therapeutic setting into naturalistic settings associated with a high risk for relapse. Basic research suggests that extinction reminders (ERs) can be paired with the context of learning new and more adaptive conditioned responses to substance abuse cues in exposure therapies for addiction. Using mobile phones and automated dialing and data collection software, ERs can be delivered in everyday high-risk settings to inhibit conditioned responses to substance-use-related stimuli. In this review, we describe how associative learning mechanisms (e.g., conditioned inhibition) can inform how ERs are conceptualized, learned, and implemented to prevent substance use when delivered via mobile phones. This approach, exposure with portable reminders of extinction, is introduced as an adjunctive intervention that uses brief automated ERs between clinic visits when individuals are in high-risk settings for drug use.

  11. Translation of Associative Learning Models into Extinction Reminders Delivered via Mobile Phones During Cue Exposure Interventions for Substance Use

    PubMed Central

    Rosenthal, M. Zachary; Kutlu, Munir G.

    2014-01-01

    Despite experimental findings and some treatment research supporting the use of cues as a means to induce and extinguish cravings, interventions using cue exposure have not been well integrated into contemporary substance abuse treatments. A primary problem with exposure-based interventions for addiction is that after learning not to use substances in the presence of addiction cues inside the clinic (i.e., extinction), stimuli in the naturalistic setting outside the clinic may continue to elicit craving, drug use, or other maladaptive conditioned responses. For exposure-based substance use interventions to be efficacious, new approaches are needed that can prevent relapse by directly generalizing learning from the therapeutic setting into naturalistic settings associated with a high-risk for relapse. Basic research suggests that extinction reminders (ERs) can be paired with the context of learning new and more adaptive conditioned responses to substance abuse cues in exposure therapies for addiction. Using mobile phones and automated dialing and data collection software, ERs can be delivered in everyday high-risk settings to inhibit conditioned responses to substance use-related stimuli. In this review, we describe how associative learning mechanisms (e.g., conditioned inhibition) can inform how ERs are conceptualized, learned, and implemented to prevent substance use when delivered via mobile phones. This approach, exposure with portable reminders of extinction, is introduced as an adjunctive intervention that uses brief automated ERs between clinic visits when individuals are in high-risk settings for drug use. PMID:25134055

  12. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    PubMed

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17

  13. Evaluation of Pharmacokinetic Models for the Disposition of Lead (Pb) in Humans, in Support of Application to Occupational Exposure Limit Derivation

    DTIC Science & Technology

    2015-11-09

    OH 45433-7955 8. PERFORMING ORGANIZATION REPORT NUMBER Report No. NAMRU-D-16-11 8. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10...Health Command (USAPHC, 2014). Mechanistic models for prediction of blood Pb, such as biokinetic or physiologically- based pharmacokinetic (PBPK) models...Prepared by Lisa M. Sweeney, Ph.D., DABT Naval Medical Research Unit Dayton (NAMRU-Dayton) Wright-Patterson Air Force Base , OH On behalf of the Office of

  14. Application of physiologically based pharmacokinetic models in chemical risk assessment.

    PubMed

    Mumtaz, Moiz; Fisher, Jeffrey; Blount, Benjamin; Ruiz, Patricia

    2012-01-01

    Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting "in silico" tools such as physiologically based pharmacokinetic (PBPK) models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application-health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The "human PBPK model toolkit" is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures.

  15. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    PubMed Central

    Mumtaz, Moiz; Fisher, Jeffrey; Blount, Benjamin; Ruiz, Patricia

    2012-01-01

    Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK) models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures. PMID:22523493

  16. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    PubMed

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  17. Efficacy of the GluK1/AMPA Receptor Antagonist LY293558 against Seizures and Neuropathology in a Soman-Exposure Model without Pretreatment and its Pharmacokinetics after Intramuscular Administration

    PubMed Central

    Apland, James P.; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H.; Green, Carol E.; Swezey, Robert; Yang, Chun; Qashu, Felicia

    2013-01-01

    Control of brain seizures after exposure to nerve agents is imperative for the prevention of brain damage and death. Animal models of nerve agent exposure make use of pretreatments, or medication administered within 1 minute after exposure, in order to prevent rapid death from peripheral toxic effects and respiratory failure, which then allows the testing of anticonvulsant compounds. However, in a real-case scenario of an unexpected attack with nerve agents, pretreatment would not be possible, and medical assistance may not be available immediately. To determine if control of seizures and survival are still possible without pretreatment or immediate pharmacologic intervention, we studied the anticonvulsant efficacy of the GluK1 (GluR5)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid (LY293558) in rats that did not receive any treatment until 20 minutes after exposure to the nerve agent soman. We injected LY293558 intramuscularly, as this would be the most likely route of administration to humans. LY293558 (15 mg/kg), injected along with atropine and the oxime HI-6 at 20 minutes after soman exposure, stopped seizures and increased survival rate from 64% to 100%. LY293558 also prevented neuronal loss in the amygdala and hippocampus, and reduced neurodegeneration in a number of brain regions studied 7 days after soman exposure. Analysis of the LY293558 pharmacokinetics after intramuscular administration showed that this compound readily crosses the blood–brain barrier. There was good correspondence between the time course of seizure suppression by LY293558 and the brain levels of the compound. PMID:23042954

  18. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this

  19. Physiologically Based Pharmacokinetic Modeling of the Lactating Rat and Nursing Pup: a Multiroute Exposure Model for Trichloroethylene and its Metabolite, Trichloroacetic Acid

    DTIC Science & Technology

    1990-01-01

    determined by vial equilibration, and metabolic costants for TICE oxidation, by gas uptake methods. i7the blood/air and the fat /blood PCs for the dam were...methods. The blood/air and the fat /blood PCs for the dam were 13.1 and 34.2, and for the pup, 10.6 and 42.3, respectively. The milk/ blood PC for the...pups were killed. The PHYSIOLOGICALLY BASED PHARMACOKINETIC MOL&LING IN LACTATION 499 ADULT PUP ALVEOLAR ALVEOLAR SPACE SPACE LUNG LOOD LUNG BLOOD FAT

  20. Gene Expression Changes Triggered by Exposure of Haemophilus influenzae to Novobiocin or Ciprofloxacin: Combined Transcription and Translation Analysis

    PubMed Central

    Gmuender, Hans; Kuratli, Karin; Di Padova, Karin; Gray, Christopher P.; Keck, Wolfgang; Evers, Stefan

    2001-01-01

    The responses of Haemophilus influenzae to DNA gyrase inhibitors were analyzed at the transcriptional and the translational level. High-density microarrays based on the genomic sequence were used to monitor the expression levels of >80% of the genes in this bacterium. In parallel the proteins were analyzed by two-dimensional electrophoresis. DNA gyrase inhibitors of two different functional classes were used. Novobiocin, as a representative of one class, inhibits the ATPase activity of the enzyme, thereby indirectly changing the degree of DNA supercoiling. Ciprofloxacin, a representative of the second class, obstructs supercoiling by inhibiting the DNA cleavage-resealing reaction. Our results clearly show that different responses can be observed. Treatment with the ATPase inhibitor Novobiocin changed the expression rates of many genes, reflecting the fact that the initiation of transcription for many genes is sensitive to DNA supercoiling. Ciprofloxacin mainly stimulated the expression of DNA repair systems as a response to the DNA damage caused by the stable ternary complexes. In addition, changed expression levels were also observed for some genes coding for proteins either annotated as “unknown function” or “hypothetical” or for proteins not directly involved in DNA topology or repair. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AJ297131 and AL135960.] PMID:11156613

  1. Validation and Application of Pharmacokinetic Models for Interspecies Extrapolations in Toxicity Risk Assessments of Volatile Organics

    DTIC Science & Technology

    1989-07-21

    GROUP SUB-GROUP Physiologically-based pharmacokinetic model Saturable metab- olism, Respiratory eliminationi Ialocarbon Inhalation expo- sure, H...nlocarbon oral exposure, Interspecles extrapolations, Pharmacokinetics , l,l,]-trichloroethane, 1,l-dichloroethylene, 19 ABSTRACT (Continue on reverse if...necessary and identify by block number) In pursuit of the goal of establishing a scientific basis for the interspecies extrapo- lation of pharmacokinetic

  2. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  3. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  4. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood–CSF barrier in vitro

    PubMed Central

    Li, G. Jane; Zhao, Qiuqu; Zheng, Wei

    2014-01-01

    Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood–brain barrier and/or blood–CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing iron transport at the blood–CSF barrier. A primary culture of choroidal epithelial cells was adapted to grow on a permeable membrane sandwiched between two culture chambers to mimic blood–CSF barrier. Trace 59Fe was used to determine the transepithelial transport of iron. Following manganese treatment (100 µM for 24 h), the initial flux rate constant (Ki) of iron was increased by 34%, whereas the storage of iron in cells was reduced by 58%, as compared to controls. A gel shift assay demonstrated that manganese exposure increased the binding of IRP1 and IRP2 to the stem loop-containing mRNAs. Consequently, the cellular concentrations of TfR proteins were increased by 84% in comparison to controls. Assays utilizing RT-PCR, quantitative real-time reverse transcriptase-PCR, and nuclear run off techniques showed that manganese treatment did not affect the level of heterogeneous nuclear RNA (hnRNA) encoding TfR, nor did it affect the level of nascent TfR mRNA. However, manganese exposure resulted in a significantly increased level of TfR mRNA and reduced levels of ferritin mRNA. Taken together, these results suggest that manganese exposure increases iron transport at the blood–CSF barrier; the effect is likely due to manganese action on translational events relevant to the production of TfR, but not due to its action on transcriptional, gene expression of TfR. The disrupted protein–TfR mRNA interaction in the choroidal epithelial cells may explain the toxicity of manganese at the blood–CSF barrier. PMID:15893546

  5. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro

    SciTech Connect

    Li, G. Jane; Zhao Qiuqu; Zheng Wei . E-mail: wzheng@purdue.edu

    2005-06-01

    Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood-brain barrier and/or blood-CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing iron transport at the blood-CSF barrier. A primary culture of choroidal epithelial cells was adapted to grow on a permeable membrane sandwiched between two culture chambers to mimic blood-CSF barrier. Trace {sup 59}Fe was used to determine the transepithelial transport of iron. Following manganese treatment (100 {mu}M for 24 h), the initial flux rate constant (K {sub i}) of iron was increased by 34%, whereas the storage of iron in cells was reduced by 58%, as compared to controls. A gel shift assay demonstrated that manganese exposure increased the binding of IRP1 and IRP2 to the stem loop-containing mRNAs. Consequently, the cellular concentrations of TfR proteins were increased by 84% in comparison to controls. Assays utilizing RT-PCR, quantitative real-time reverse transcriptase-PCR, and nuclear run off techniques showed that manganese treatment did not affect the level of heterogeneous nuclear RNA (hnRNA) encoding TfR, nor did it affect the level of nascent TfR mRNA. However, manganese exposure resulted in a significantly increased level of TfR mRNA and reduced levels of ferritin mRNA. Taken together, these results suggest that manganese exposure increases iron transport at the blood-CSF barrier; the effect is likely due to manganese action on translational events relevant to the production of TfR, but not due to its action on transcriptional, gene expression of TfR. The disrupted protein-TfR mRNA interaction in the choroidal epithelial cells may explain the toxicity of manganese at the blood-CSF barrier.

  6. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder

    PubMed Central

    Arnsten, Amy F.T.; Raskind, Murray A.; Taylor, Fletcher B.; Connor, Daniel F.

    2014-01-01

    Research on the neurobiology of the stress response in animals has led to successful new treatments for Post-Traumatic Stress Disorder (PTSD) in humans. Basic research has found that high levels of catecholamine release during stress rapidly impair the top-down cognitive functions of the prefrontal cortex (PFC), while strengthening the emotional and habitual responses of the amygdala and basal ganglia. Chronic stress exposure leads to dendritic atrophy in PFC, dendritic extension in the amygdala, and strengthening of the noradrenergic (NE) system. High levels of NE release during stress engage low affinity alpha-1 adrenoceptors, (and likely beta-1 adrenoceptors), which rapidly reduce the firing of PFC neurons, but strengthen amygdala function. In contrast, moderate levels of NE release during nonstress conditions engage higher affinity alpha-2A receptors, which strengthen PFC, weaken amygdala, and regulate NE cell firing. Thus, either alpha-1 receptor blockade or alpha-2A receptor stimulation can protect PFC function during stress. Patients with PTSD have signs of PFC dysfunction. Clinical studies have found that blocking alpha-1 receptors with prazosin, or stimulating alpha-2A receptors with guanfacine or clonidine can be useful in reducing the symptoms of PTSD. Placebo-controlled trials have shown that prazosin is helpful in veterans, active duty soldiers and civilians with PTSD, including improvement of PFC symptoms such as impaired concentration and impulse control. Open label studies suggest that guanfacine may be especially helpful in treating children and adolescents who have experienced trauma. Thus, understanding the neurobiology of the stress response has begun to help patients with stress disorders. PMID:25436222

  7. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  8. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  9. Insights into drug discovery from natural medicines using reverse pharmacokinetics.

    PubMed

    Hao, Haiping; Zheng, Xiao; Wang, Guangji

    2014-04-01

    Natural medicines (NMs) are indispensable sources for the development of modern drugs. However, the targets for most natural compounds are unknown and the current pharmacokinetic evaluation systems developed for target-defined drugs may not be directly applicable to NM-based drug discovery, which is a major hindrance in bringing natural compounds to the clinic. Here, we propose the concept of 'reverse pharmacokinetics' and discuss how a 'reverse pharmacokinetics' perspective could help clarify key questions in modern drug discovery from NMs with validated clinical benefits, thereby strengthening the translational potential. Reverse pharmacokinetics can provide physiologically relevant clues to the target identification and mechanistic study of NMs, which may also innovate drug discovery for complex diseases. We anticipate that an evolving deep understanding of the novel mode of action of natural compounds with a reverse pharmacokinetic insight may improve discovery of both single ingredient and multiple-component modern drugs from NMs.

  10. Decreased exposure to sunitinib due to concomitant administration of ifosfamide: results of a phase I and pharmacokinetic study on the combination of sunitinib and ifosfamide in patients with advanced solid malignancies

    PubMed Central

    Hamberg, P; Steeghs, N; Loos, W J; van de Biessen, D; den Hollander, M; Tascilar, M; Verweij, J; Gelderblom, H; Sleijfer, S

    2010-01-01

    Background: This study aimed to define the maximally tolerated dose (MTD) of sunitinib combined with two different infusion schedules of ifosfamide. Methods: Patients with advanced solid tumours, good performance score, good organ function, and no standard therapy available were eligible. Continuous once daily sunitinib, in escalating doses per cohort, was combined with ifosfamide, 9 g m−2 for 3 days or 6 g m−2 for 5 days, administered every 3 weeks. Pharmacokinetic (PK) and pharmacodynamic (PD) assessments were performed. Results: With growth-factor support, the MTD of sunitinib combined with either ifosfamide schedule was 12.5 mg in 32 patients enrolled. Neutropenia-related adverse events were dose-limiting toxicities. Sunitinib did not affect ifosfamide PK. Ifosfamide significantly decreased exposure to sunitinib and increased exposure to its metabolite, SU12662. No consistent changes in PD parameters were observed. Conclusion: With growth-factor support, the MTD of sunitinib with both ifosfamide schedules was 12.5 mg. Ifosfamide produced decreased sunitinib blood levels because of CYP3A induction. As PK interactions cannot explain the relatively low sunitinib doses that can be combined with ifosfamide, synergy in toxicity is likely. Whether this also holds true for anti-tumour activity needs to be further explored. PMID:20485286

  11. Experimental exposure of male volunteers to N-methyl-2-pyrrolidone (NMP): acute effects and pharmacokinetics of NMP in plasma and urine.

    PubMed Central

    Akesson, B; Paulsson, K

    1997-01-01

    OBJECTIVES: To study the acute effects of exposure to the increasingly used solvent, N-methyl-2-pyrrolidone (NMP) in male volunteers. Further, to determine the NMP concentration in plasma and urine during and after the exposure. METHODS: Six male volunteers were exposed for eight hours on four different days to 0, 10, 25, and 50 mg/m3 NMP. Plasma was collected and urine was sampled during and after the exposure. Changes in nasal volume were measured by acoustic rhinometry and in airway resistance by spirometry. RESULTS: The eight-hour experimental exposure to 10, 25, and 50 mg/m3 did not induce discomfort to eyes or upper airways. Acute changes in nasal volume were not found, and no changes in the spirometric data could be registered. The elimination curves suggested a non-linear pattern and at the end of exposure showed mean (range) half lifes of NMP in plasma of about 4.0 (2.9-5.8) hours and in urine 4.5 (3.5-6.6) hours. The unmetabolised NMP found in urine samples collected during exposure and at the subsequent 44 hours corresponded to about 2% of the calculated absorbed dose. At the end of the exposure there was a close correlation between exposures and the plasma concentration and urinary excretion of NMP. CONCLUSIONS: NMP was absorbed through the respiratory tract and readily eliminated from the body, mainly by biotransformation to other compounds. Exposure to 10, 25, or 50 mg/m3 NMP did not cause nose, eye, or airway irritation. Thus, NMP is a mild irritant. PMID:9166128

  12. Pharmacokinetics and adhesion of the Agile transdermal contraceptive patch (AG200-15) during daily exposure to external conditions of heat, humidity and exercise.

    PubMed

    Archer, David F; Stanczyk, Frank Z; Rubin, Arkady; Foegh, Marie

    2013-02-01

    This study compares the pharmacokinetic profile, adhesion and safety of the AG200-15 Agile Patch (AP), a novel contraceptive patch releasing low-dose ethinyl estradiol (EE) and levonorgestrel (LNG), during wear under external conditions of heat, humidity and exercise versus normal activities. This open-label, three-period, five-treatment, crossover study randomized 24 healthy women to one of six external condition sequences. Each sequence included one normal wear and two external conditions periods. Participants wore the AP for 7 days under normal conditions or conditions of daily sauna, treadmill, whirlpool or cool water immersion, with a 7-day washout between treatments. Blood samples were collected for pharmacokinetic evaluations. Twenty-four subjects completed the study. For EE, the mean maximum concentration level (Cmax), area under the plasma concentration-time curve from time 0 to 168 h (AUC(0-168)) and area under the plasma concentration-time curve from time 0 to infinity (AUC(0-inf)) were higher during normal conditions compared with all external conditions (geometric means ratio range: 80%-93%), except cool water. Mean steady-state concentrations (C(ss)) of EE were highest under normal conditions, followed by cool water, sauna, whirlpool and treadmill. The LNG mean C(max), AUC(0-168), AUC(0-inf) and C(ss) were higher under normal wear versus all other conditions (geometric means ratios: 75%-82%), with the exception of AUC(0-168), AUC(0-inf) and C(ss) for cold water. Median times to maximum concentration (Tmax) for EE and LNG were comparable across conditions. Patch adhesion was excellent under all conditions. Adverse events were mild, with none serious or leading to discontinuation. Although slightly lower mean drug concentration levels were observed for whirlpool, treadmill and sauna, drug concentrations under all conditions were well within therapeutic ranges established for the AP during normal wear and within ranges reported for low-dose combination

  13. Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) following whole-body exposure.

    PubMed

    Emmen, H H; Hoogendijk, E M; Klöpping-Ketelaars, W A; Muijser, H; Duistermaat, E; Ravensberg, J C; Alexander, D J; Borkhataria, D; Rusch, G M; Schmit, B

    2000-08-01

    HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) are used to replace chlorofluorocarbons (CFCs) in refrigerant and aerosol applications, including medical use in metered-dose inhalers. Production and consumption of CFCs are being phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer. The safety and pharmacokinetics of HFC 134a and HFC 227 were assessed in two separate double-blind studies. Each HFC (hydrofluorocarbon) was administered via whole-body exposure as a vapor to eight (four male and four female) healthy volunteers. Volunteers were exposed, once weekly for 1 h, first to air and then to ascending concentrations of HFC (1000, 2000, 4000, and 8000 parts per million (ppm)), interspersed with a second air exposure and two CFC 12 (dichlorodifluoromethane) exposures (1000 and 4000 ppm). Comparison of either HFC 134a or HFC 227 to CFC 12 or air gave no clinically significant results for any of the measured laboratory parameters. There were no notable adverse events, there was no evidence of effects on the central nervous system, and there were no symptoms of upper respiratory tract irritation. HFC 134a, HFC 227, and CFC 12 blood concentrations increased rapidly and in an exposure-concentration-dependent manner, although not strictly proportionally, and approached steady state. Maximum blood concentrations (C(max)) tended to be higher in males than females; in the HFC 227 study, these were statistically significantly (P < 0. 05) higher in males for each HFC 227 and CFC 12 exposure level. In the HFC 134a study, the gender difference in C(max) was only statistically significant (P < 0.05) for CFC 12 at 4000 ppm and HFC 134a at 8000 ppm. Following the end of exposure, blood concentrations declined rapidly, predominantly biphasically and independent of exposure concentration. For the HFC 134a study, the t(1/2)alpha (alpha elimination half-life) was short for both CFC 12 and HFC 134a (<11 min). The t(1

  14. Pharmacokinetic/ pharmacodynamic-driven drug development.

    PubMed

    Gallo, James M

    2010-01-01

    The drug discovery and development enterprise, traditionally an industrial juggernaut, has spanned into the academic arena that is partially motivated by the National Institutes of Health Roadmap highlighting translational science and medicine. Because drug discovery and development represents a pipeline of basic to clinical investigations, it meshes well with the "bench to the bedside" prime directive of translational medicine. The renewed interest in drug discovery and development in academia provides an opportunity to rethink the hiearchary of studies with the hope of improving the staid approaches that have been criticized for lacking innovation. One area that has received limited attention concerns the use of pharmacokinetic and pharmacodynamic studies in the drug-development process. Using anticancer drug development as a focus, this review will address past and current deficencies in how pharmacokinetic/pharmacodynamic studies are conducted and offer new strategies that might bridge the gap between preclinical and clinical trials. 2010 Mount Sinai School of Medicine.

  15. Physiologically based pharmacokinetic (PBPK) models for lifetime exposure to PCB 153 in male and female harbor porpoises (Phocoena phocoena): model development and evaluation.

    PubMed

    Weijs, Liesbeth; Yang, Raymond S H; Covaci, Adrian; Das, Krishna; Blust, Ronny

    2010-09-15

    Physiologically based pharmacokinetic (PBPK) models were developed for the most persistent polychlorinated biphenyl (PCB 153) in male and female harbor porpoises (Phocoena phocoena) to elucidate processes such as uptake, distribution, and elimination. Due to its limited metabolic capacities, long life span, and top position in marine food chains, this species is highly sensitive to pollution. The models consist of 5 compartments, liver, blubber, kidney, brain, and a compartment which accounts for the rest of the body, all connected through blood. All physiological and biochemical parameters were extracted from the literature, except for the brain/blood partition coefficient and rate of excretion, which were both fitted to data sets used for validation of the models. These data sets were compiled from our own analyses performed with GC-MS on tissue samples of harbor porpoises. The intake of PCB 153 was from milk from birth to 4 months, and after weaning fish was the main food source. Overall, these models reveal that concentrations of PCB 153 in males increase with age but suggest that, as the animals grow older, metabolic transformation can be a possible pathway for elimination as well. In contrast, the model for females confirms that gestation and lactation are key processes for eliminating PCB 153 as body burdens decrease with age. These PBPK models are capable of simulating the bioaccumulation of PCB 153 during the entire life span of approximately 20 years of the harbor porpoises.

  16. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling.

    PubMed

    Moss, Darren Michael; Siccardi, Marco

    2014-09-01

    The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property-distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics. © 2014 The British Pharmacological Society.

  17. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.

    PubMed

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T; Bernabini, Catia; Shuler, Michael L; Hickman, James J

    2014-09-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. © 2014 by the Society for Experimental Biology and Medicine.

  18. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.

  19. Translation Matrices

    NASA Astrophysics Data System (ADS)

    Shurtleff, Richard

    2004-10-01

    Translation matrices together with rotation and boost matrices combine to represent spacetime symmetry transformations. A brief introduction to some of the properties of some not-so-well-known translation and momentum matrices is presented.

  20. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways, OpenTox USA 2015 Poster

    EPA Science Inventory

    Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...

  1. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways, OpenTox USA 2015 Poster

    EPA Science Inventory

    Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...

  2. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach.

    PubMed

    Sidhu, Pardeep; Peng, Henry T; Cheung, Bob; Edginton, Andrea

    2011-05-01

    Under extreme conditions of heat exposure and exercise stress, the human body undergoes major physiological changes. Perturbations in organ blood flows, gastrointestinal properties, and vascular physiology may impact the body's ability to absorb, distribute, and eliminate drugs. Clinical studies on the effect of these stressors on drug pharmacokinetics demonstrate that the likelihood of pharmacokinetic alteration is dependent on drug properties and the intensity of the stressor. The objectives of this study were to use literature data to quantify the correlation between exercise and heat exposure intensity to changing physiological parameters and further, to use this information for the parameterization of a whole-body, physiologically based pharmacokinetic model for the purposes of determining those drug properties most likely to demonstrate altered drug pharmacokinetics under stress. Cardiac output and most organ blood flows were correlated with heart rate using regression analysis. Other altered parameters included hematocrit and intravascular albumin concentration. Pharmacokinetic simulations of intravenous and oral administration of hypothetical drugs with either a low or high value of lipophilicity, unbound fraction in plasma, and unbound intrinsic hepatic clearance demonstrated that the area under the curve of those drugs with a high unbound intrinsic clearance was most affected (up to a 130% increase) following intravenous administration, whereas following oral administration, pharmacokinetic changes were smaller (<40% increase in area under the curve) for all hypothetical compounds. A midazolam physiologically based pharmacokinetic model was also used to demonstrate that simulated changes in pharmacokinetic parameters under exercise and heat stress were generally consistent with those reported in the literature.

  3. Attributed Translations

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Rosenkrantz, D. J.; Stearns, R. E.

    Attributed translation grammars are introduced as a means of specifying a translation from strings of input symbols to strings of output symbols. Each of these symbols can have a finite set of attributes, each of which can take on a value from a possibly infinite set. Attributed translation grammars can be applied in depth to practical compiling problems.

  4. Deriving therapies for children with primary CNS tumors using pharmacokinetic modeling and simulation of cerebral microdialysis data.

    PubMed

    Jacus, M O; Throm, S L; Turner, D C; Patel, Y T; Freeman, B B; Morfouace, M; Boulos, N; Stewart, C F

    2014-06-16

    The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to

  5. Deriving Therapies for Children with Primary CNS Tumors Using Pharmacokinetic Modeling and Simulation of Cerebral Microdialysis Data

    PubMed Central

    Jacus, M.O.; Throm, S.L.; Turner, D.C.; Patel, Y.T.; Freeman, B.B.; Morfouace, M.; Boulos, N.; Stewart, C. F.

    2014-01-01

    The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to

  6. Central nervous system pharmacokinetics of the Mdr1 P-glycoprotein substrate CP-615,003: intersite differences and implications for human receptor occupancy projections from cerebrospinal fluid exposures.

    PubMed

    Venkatakrishnan, Karthik; Tseng, Elaine; Nelson, Frederick R; Rollema, Hans; French, Jonathan L; Kaplan, Irina V; Horner, Weldon E; Gibbs, Megan A

    2007-08-01

    The central nervous system (CNS) distribution and transport mechanisms of the investigational drug candidate CP-615,003 (N-[3-fluoro-4-[2-(propylamino)ethoxy]phenyl]-4,5,6,7-tetrahydro-4-oxo-1H-indole-3-carboxamide) and its active metabolite CP-900,725 have been characterized. Brain distribution of CP-615,003 and CP-900,725 was low in rats and mice (brain-to-serum ratio < 0.2). Cerebrospinal fluid (CSF)-to-serum ratios of CP-615,003 were 6- to 8-fold lower than the plasma unbound fraction in rats and dogs. In vitro, CP-615,003 displayed quinidine-like efflux in MDR1-expressing Madin-Darby canine kidney II cells. The brain-to-serum ratio of CP-615,003 in mdr1a/1b (-/-) mice was approximately 7 times that in their wild-type counterparts, confirming that impaired CNS distribution was explained by P-gp efflux transport. In contrast, P-gp efflux did not explain the impaired CNS penetration of CP-900,725. Intracerebral microdialysis was used to characterize rat brain extracellular fluid (ECF) distribution. Interestingly, the ECF-to-serum ratio of the P-gp substrate CP-615,003 was 7-fold below the CSF-to-serum ratio, whereas this disequilibrium was not observed for CP-900,725. In a clinical study, steady-state CSF exposures were measured after administration of 100 mg of CP-615,003 b.i.d. The human CSF-to-plasma ratios of CP-615,003 and CP-900,725 were both approximately 10-fold below their ex vivo plasma unbound fractions, confirming impaired human CNS penetration. Preliminary estimates of CNS receptor occupancy from human CSF concentrations were sensitive to assumptions regarding the magnitude of the CSF-ECF gradient for CP-615,003 in humans. In summary, this case provides an example of intersite differences in CNS pharmacokinetics of a P-gp substrate and potential implications for projection of human CNS receptor occupancy of transporter substrates from CSF pharmacokinetic data when direct imaging-based approaches are not feasible.

  7. Paediatric pharmacokinetics: key considerations

    PubMed Central

    Batchelor, Hannah Katharine; Marriott, John Francis

    2015-01-01

    A number of anatomical and physiological factors determine the pharmacokinetic profile of a drug. Differences in physiology in paediatric populations compared with adults can influence the concentration of drug within the plasma or tissue. Healthcare professionals need to be aware of anatomical and physiological changes that affect pharmacokinetic profiles of drugs to understand consequences of dose adjustments in infants and children. Pharmacokinetic clinical trials in children are complicated owing to the limitations on blood sample volumes and perception of pain in children resulting from blood sampling. There are alternative sampling techniques that can minimize the invasive nature of such trials. Population based models can also limit the sampling required from each individual by increasing the overall sample size to generate robust pharmacokinetic data. This review details key considerations in the design and development of paediatric pharmacokinetic clinical trials. PMID:25855821

  8. Paediatric pharmacokinetics: key considerations.

    PubMed

    Batchelor, Hannah Katharine; Marriott, John Francis

    2015-03-01

    A number of anatomical and physiological factors determine the pharmacokinetic profile of a drug. Differences in physiology in paediatric populations compared with adults can influence the concentration of drug within the plasma or tissue. Healthcare professionals need to be aware of anatomical and physiological changes that affect pharmacokinetic profiles of drugs to understand consequences of dose adjustments in infants and children. Pharmacokinetic clinical trials in children are complicated owing to the limitations on blood sample volumes and perception of pain in children resulting from blood sampling. There are alternative sampling techniques that can minimize the invasive nature of such trials. Population based models can also limit the sampling required from each individual by increasing the overall sample size to generate robust pharmacokinetic data. This review details key considerations in the design and development of paediatric pharmacokinetic clinical trials. © 2014 The British Pharmacological Society.

  9. Clinical Pharmacokinetics and Pharmacodynamics of Afatinib.

    PubMed

    Wind, Sven; Schnell, David; Ebner, Thomas; Freiwald, Matthias; Stopfer, Peter

    2017-03-01

    Afatinib is an oral, irreversible ErbB family blocker that covalently binds to the kinase domains of epidermal growth factor receptor (EGFR), human EGFRs (HER) 2, and HER4, resulting in irreversible inhibition of tyrosine kinase autophosphorylation. Studies in healthy volunteers and patients with advanced solid tumours have shown that once-daily afatinib has time-independent pharmacokinetic characteristics. Maximum plasma concentrations of afatinib are reached approximately 2-5 h after oral administration and thereafter decline, at least bi-exponentially. Food reduces total exposure to afatinib. Over the clinical dose range of 20-50 mg, afatinib exposure increases slightly more than dose proportional. Afatinib metabolism is minimal, with unchanged drug predominantly excreted in the faeces and approximately 5 % in urine. Apart from the parent drug afatinib, the major circulation species in human plasma are the covalently bound adducts to plasma protein. The effective elimination half-life is approximately 37 h, consistent with an accumulation of drug exposure by 2.5- to 3.4-fold based on area under the plasma concentration-time curve (AUC) after multiple dosing. The pharmacokinetic profile of afatinib is consistent across a range of patient populations. Age, ethnicity, smoking status and hepatic function had no influence on afatinib pharmacokinetics, while females and patients with low body weight had increased exposure to afatinib. Renal function is correlated with afatinib exposure, but, as for sex and body weight, the effect size for patients with severe renal impairment (approximately 50 % increase in AUC) is only mildly relative to the extent of unexplained interpatient variability in afatinib exposure. Afatinib has a low potential as a victim or perpetrator of drug-drug interactions, especially with cytochrome P450-modulating agents. However, concomitant treatment with potent inhibitors or inducers of the P-glycoprotein transporter can affect the

  10. Pharmacokinetic enhancers in HIV therapeutics.

    PubMed

    Larson, Kajal B; Wang, Kun; Delille, Cecile; Otofokun, Igho; Acosta, Edward P

    2014-10-01

    Maximal and durable viral load suppression is one of the most important goals of HIV therapy and is directly related to adequate drug exposure. Protease inhibitors (PIs), an important component of the antiretroviral armada, were historically associated with poor oral bioavailability and high pill burden. However, because the PIs are metabolized by cytochrome P450 (CYP) 3A enzymes, intentional inhibition of these enzymes leads to higher drug exposure, lower pill burden, and therefore simplified dosing schedules with this class of drug. This is the basis of pharmacokinetic enhancement. In HIV therapy, two pharmacokinetic enhancers or boosting agents are used: ritonavir and cobicistat. Both agents inhibit CYP3A4, with cobicistat being a more specific CYP inhibitor than ritonavir. Unlike ritonavir, cobicistat does not have antiretroviral activity. Cobicistat has been evaluated in clinical trials and was recently approved in the USA as a fixed-dose combination with the integrase inhibitor, elvitegravir and two nucleos(t)ide analogs. Additional studies are examining cobicistat in fixed-dose combinations with various PIs. In this review, we summarize current knowledge of these agents and clinically relevant drug regimens and ongoing trials. Studies with elvitegravir and the novel PI TMC319011 are also discussed.

  11. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice

    SciTech Connect

    Evans, M.V.; Caldwell, J.C.

    2010-05-01

    Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools for calculation of internal and target organ doses of parent compound and metabolites. PBPK models, coupled with in vivo inhalation gas-uptake data, can be useful to estimate total metabolism. Previously, such an approach was used to make predictions regarding the metabolism and to make subsequent inferences of DCM's mode of action for toxicity. However, current evidence warrants re-examination of this approach. The goal of this work was to examine two different hypotheses for DCM metabolism in mice. One hypothesis describes two metabolic pathways: one involving cytochrome P450 2E1 (CYP2E1) and a second glutathione (GSH). The second metabolic hypothesis describes only one pathway mediated by CYP2E1 that includes multiple binding sites. The results of our analysis show that the in vivo gas-uptake data fit both hypotheses well and the traditional analysis of the chamber concentration data is not sufficient to distinguish between them. Gas-uptake data were re-analyzed by construction of a velocity plot as a function of increasing DCM initial concentration. The velocity (slope) analysis revealed that there are two substantially different phases in velocity, one rate for lower exposures and a different rate for higher exposures. The concept of a 'metabolic switch,' namely that due to conformational changes in the enzyme after one site is occupied - a different metabolic rate is seen - is also consistent with the experimental data. Our analyses raise questions concerning the importance of GSH metabolism for DCM. Recent research results also question the importance of this pathway in the toxicity of DCM. GSH-related DNA adducts were not formed after in vivo DCM exposure in mice and DCM-induced DNA damage has

  12. Lisdexamfetamine: A pharmacokinetic review.

    PubMed

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice.

  13. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling

    PubMed Central

    Moss, Darren Michael; Siccardi, Marco

    2014-01-01

    The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property–distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24467481

  14. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic (PBPK) modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice *

    EPA Science Inventory

    Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools used for cal...

  15. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic (PBPK) modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice *

    EPA Science Inventory

    Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools used for cal...

  16. High Throughput Pharmacokinetics for Environmental Chemicals (FutureToxII)

    EPA Science Inventory

    Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant bio...

  17. High Throughput Pharmacokinetics for Environmental Chemicals (FutureToxII)

    EPA Science Inventory

    Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant bio...

  18. Raltegravir Pharmacokinetics during Pregnancy

    PubMed Central

    Watts, D. Heather; Stek, Alice; Best, Brookie M.; Wang, Jiajia; Capparelli, Edmund V.; Cressey, Tim R.; Aweeka, Francesca; Lizak, Patty; Kreitchmann, Regis; Burchett, Sandra K.; Shapiro, David E.; Hawkins, Elizabeth; Smith, Elizabeth; Mirochnick, Mark

    2014-01-01

    Objective We evaluated the pharmacokinetics (pk) of raltegravir in HIV-infected women during pregnancy and postpartum. Methods IMPAACT 1026s is an on-going prospective study of antiretroviral pk during pregnancy (NCT00042289). Women receiving 400 mg raltegravir twice daily in combination antiretroviral therapy had intensive steady state 12-hour pk profiles performed during pregnancy and at 6–12 weeks postpartum. Targets were trough concentration above 0.035 µg/mL, the estimated tenth percentile in non-pregnant historical controls. Results Median raltegravir AUC was 6.6 µg*hr/mL for second trimester (n= 16), 5.4 µg*hr/mL for third trimester (n=41), and 11.6 µg*hr/mL postpartum (n= 38) (p=0.03 pp vs 2nd trimester, p=0.001 pp vs third trimester). Trough concentrations were above the target in 69%, 80%, and 79% of second trimester, third trimester and postpartum subjects respectively, with wide variability (<0.010–0.917 µg/mL), and no significant difference between third trimester and postpartum trough concentrations was detected. The median ratio of cord blood/maternal raltegravir concentrations was 1.5. HIV RNA levels were < 400 copies/mL in 92% of women at delivery. Adverse events included elevated liver transaminases in one woman and vomiting in one. All infants with known status are HIV-uninfected. Conclusions Median raltegravir AUC was reduced by approximately 50% during pregnancy; trough concentrations were frequently below target both during late pregnancy and postpartum. Raltegravir readily crossed the placenta. High rates of viral suppression at delivery and the lack of a clear relationship between raltegravir concentration and virologic effect in nonpregnant adults suggest that despite the decreased exposure during pregnancy, a higher dose is not necessary. PMID:25162818

  19. Raltegravir pharmacokinetics during pregnancy.

    PubMed

    Watts, D Heather; Stek, Alice; Best, Brookie M; Wang, Jiajia; Capparelli, Edmund V; Cressey, Tim R; Aweeka, Francesca; Lizak, Patty; Kreitchmann, Regis; Burchett, Sandra K; Shapiro, David E; Hawkins, Elizabeth; Smith, Elizabeth; Mirochnick, Mark

    2014-12-01

    We evaluated the pharmacokinetics (PK) of raltegravir in HIV-infected women during pregnancy and postpartum. International Maternal Pediatric Adolescent AIDS Clinical Trials 1026s is an ongoing prospective study of antiretroviral PK during pregnancy (NCT00042289). Women receiving 400 mg raltegravir twice daily in combination antiretroviral therapy had intensive steady-state 12-hour PK profiles performed during pregnancy and at 6- to 12-week postpartum. Targets were trough concentration above 0.035 μg/mL, the estimated 10th percentile in nonpregnant historical controls. Median raltegravir area under the curve was 6.6 μg·h/mL for second trimester (n = 16), 5.4 μg·h/mL for third trimester (n = 41), and 11.6 μg·h/mL postpartum (n = 38) (P = 0.03 postpartum vs second trimester, P = 0.001 pp vs third trimester). Trough concentrations were above the target in 69%, 80%, and 79% of second trimester, third trimester, and postpartum subjects, respectively, with wide variability (<0.010-0.917 μg/mL), and no significant difference between third trimester and postpartum trough concentrations was detected. The median ratio of cord blood/maternal raltegravir concentrations was 1.5. HIV RNA levels were <400 copies per milliliter in 92% of women at delivery. Adverse events included elevated liver transaminases in 1 woman and vomiting in 1. All infants with known status are HIV uninfected. Median raltegravir area under the curve was reduced by approximately 50% during pregnancy; trough concentrations were frequently below target both during late pregnancy and postpartum. Raltegravir readily crossed the placenta. High rates of viral suppression at delivery and the lack of a clear relationship between raltegravir concentration and virologic effect in nonpregnant adults suggest that despite the decreased exposure during pregnancy, a higher dose is not necessary.

  20. Pharmacokinetics and Exposure-response Relationship of Golimumab in Patients with Moderately-to-Severely Active Ulcerative Colitis: Results from Phase 2/3 PURSUIT Induction and Maintenance Studies

    PubMed Central

    Xu, Zhenhua; Marano, Colleen W.; Strauss, Richard; Zhang, Hongyan; Johanns, Jewel; Zhou, Honghui; Davis, Hugh M.; Reinisch, Walter; Feagan, Brian G.; Rutgeerts, Paul; Sandborn, William J.

    2017-01-01

    Background and Aims: To assess golimumab pharmacokinetics [PK] and exposure-response [ER] in adults with moderate-to-severe ulcerative colitis [UC] from the Program of Ulcerative Colitis Research Studies Utilizing an Investigational Treatment [PURSUIT] studies. Methods: We analysed golimumab PK and ER data of patients with moderate-to-severe UC from the PURSUIT-subcutaneous induction [N = 1064] and maintenance [N = 464] studies. Induction analyses evaluated serum golimumab concentration [SGC] and efficacy data through Week [wk] 6 following subcutaneous doses at wk0 and wk2; maintenance analyses assessed data through wk54 following 4-weekly dosing. ER relationships were assessed using trend, logistic regression, and receiver-operating-characteristic curve analyses. Results: Median SGCs peaked at induction wk2 for golimumab 100/50mg, 200/100mg, and 400/200mg. Wk6 median SGCs were 0.78, 1.78, and 4.01 μg/ml, respectively. SGCs were sustained, reaching steady state approximately 8wks after golimumab maintenance commenced [wk14 of golimumab] regardless of induction dose. Median trough SGCs from maintenance wks8–44 ranged from 0.69 to 0.83 µg/ml [50 mg] and 1.33–1.58 µg/ml [100 mg]. SGCs were approximately dose proportional, and higher SGCs were associated with higher efficacy response rates during induction and maintenance. Factors associated with golimumab exposure were body weight, antibody-to-golimumab status, serum albumin, alkaline phosphatase, faecal markers, C-reactive protein, and pancolitis. SGCs of 2.5 µg/ml [induction wk6] and 1.4 µg/ml [maintenance steady-state trough] are potential target concentrations. Immunomodulators had no apparent impact on SGC with golimumab 100mg, whereas drug levels were slightly higher with golimumab 50mg with vs without immunomodulators. Conclusions: SGCs are approximately dose proportional, and a positive SGC-efficacy relationship exists during induction/maintenance golimumab treatment of adult UC patients. Optimal SGC

  1. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure.

    PubMed

    Frederick, C B; Gentry, P R; Bush, M L; Lomax, L G; Black, K A; Finch, L; Kimbell, J S; Morgan, K T; Subramaniam, R P; Morris, J B; Ultman, J S

    2001-05-01

    To assist in interspecies dosimetry comparisons for risk assessment of the nasal effects of organic acids, a hybrid computational fluid dynamics (CFD) and physiologically based pharmacokinetic (PBPK) dosimetry model was constructed to estimate the regional tissue dose of inhaled vapors in the rat and human nasal cavity. Application to a specific vapor would involve the incorporation of the chemical-specific reactivity, metabolism, partition coefficients, and diffusivity (in both air and tissue phases) of the vapor. This report describes the structure of the CFD-PBPK model and its application to a representative acidic vapor, acrylic acid, for interspecies tissue concentration comparisons to assist in risk assessment. By using the results from a series of short-term in vivo studies combined with computer modeling, regional nasal tissue dose estimates were developed and comparisons of tissue doses between species were conducted. To make these comparisons, the assumption was made that the susceptibilities of human and rat olfactory epithelium to the cytotoxic effects of organic acids were similar, based on similar histological structure and common mode of action considerations. Interspecies differences in response were therefore assumed to be driven primarily by differences in nasal tissue concentrations that result from regional differences in nasal air flow patterns relative to the species-specific distribution of olfactory epithelium in the nasal cavity. The results of simulations with the seven-compartment CFD-PBPK model suggested that the olfactory epithelium of the human nasal cavity would be exposed to tissue concentrations of acrylic acid similar to that of the rat nasal cavity when the exposure conditions are the same. Similar analysis of CFD data and CFD-PBPK model simulations with a simpler one-compartment model of the whole nasal cavities of rats and humans provides comparable results to averaging over the compartments of the seven-compartment model. These

  2. Population pharmacokinetics of micafungin in adult patients.

    PubMed

    Gumbo, Tawanda; Hiemenz, John; Ma, Lei; Keirns, James J; Buell, Donald N; Drusano, George L

    2008-03-01

    We performed population pharmacokinetic analysis of micafungin in adult patients treated with doses between 12.5 and 200 mg/day. Our analysis identified a breakpoint patient weight of 66.3 kg above which serum clearance increased by approximately 50%. Patients with weight >66.3 kg may need larger doses to achieve similar exposures to those <66.3 kg. However, the clinical implications are still unknown.

  3. Binary translation using peephole translation rules

    DOEpatents

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  4. Ethanol Pharmacokinetics in Neonates and Infants

    PubMed Central

    Marek, Elizabeth; Kraft, Walter K.

    2014-01-01

    Introduction Ethanol has been used for years in neonatal and infant liquid medications, yet the pharmacokinetics, pharmacodynamics, and safety of ethanol in this vulnerable population have not been well characterized. The purpose of this review is to raise awareness of ethanol use as an excipient in neonatal and infant medications and to provide insight, based on the available evidence, into clearance rates of ethanol in babies. We also discuss ethanol pharmacokinetics in adults, theoretical pharmacokinetic changes in neonates and infants as it may apply to ethanol disposition, and case reports involving ethanol exposure in neonates and infants. Materials and methods This study was a narrative review in which relevant papers were selected using databases and scientific search engines such as PubMed with the key words ethanol, infant, and newborninfant. Results It remains unclear what ethanol exposure is safe for neonates and infants. The Food and Drug Administration and American Academy of Pediatrics have both taken action, by either setting limits of ethanol content in over-the-counter medications or by recommending restricted exposure to ethanol-containing pediatric formulations. Conclusions Until the short- and long-term health effects of chronic ethanol administration can be further characterized, ethanol-containing medications should be used with caution. PMID:25379066

  5. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  6. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  7. Obstetric Pharmacokinetic Dosing Studies are Urgently Needed

    PubMed Central

    McCormack, Shelley A.; Best, Brookie M.

    2014-01-01

    Use of pharmacotherapy during pregnancy is common and increasing. Physiologic changes during pregnancy may significantly alter the overall systemic drug exposure, necessitating dose changes. A search of PubMed for pharmacokinetic clinical trials showed 494 publications during pregnancy out of 35,921 total pharmacokinetic published studies (1.29%), from the late 1960s through August 31, 2013. Closer examination of pharmacokinetic studies in pregnant women published since 2008 (81 studies) revealed that about a third of the trials were for treatment of acute labor and delivery issues, a third included studies of infectious disease treatment during pregnancy, and the remaining third were for varied ante-partum indications. Approximately, two-thirds of these recent studies were primarily funded by government agencies worldwide, one-quarter were supported by private non-profit foundations or combinations of government and private funding, and slightly <10% were supported by pharmaceutical industry. As highlighted in this review, vast gaps exist in pharmacology information and evidence for appropriate dosing of medications in pregnant women. This lack of knowledge and understanding of drug disposition throughout pregnancy place both the mother and the fetus at risk for avoidable therapeutic misadventures – suboptimal efficacy or excess toxicity – with medication use in pregnancy. Increased efforts to perform and support obstetric dosing and pharmacokinetic studies are greatly needed. PMID:24575394

  8. Population pharmacokinetic and pharmacodynamic analysis of bosutinib.

    PubMed

    Hsyu, Poe-Hirr; Mould, Diane R; Abbas, Richat; Amantea, Michael

    2014-01-01

    Bosutinib is an orally active, competitive inhibitor of Src/Abl tyrosine kinases. A population pharmacokinetic model was developed using data pooled from 3 studies of patients (n = 870) with solid tumors or Philadelphia chromosome-positive leukemia. Patients (aged 18-91 y, weighing 35-221 kg) who received bosutinib 50 to 600 mg orally with food each contributed 6-9 pharmacokinetic samples. The final pharmacokinetic model was a linear two-compartment model with first-order absorption, an absorption lag-time, and dose-dependent bioavailability. Oral absorption was relatively slow, with a half-time of 1.14 h and a lag-time of 0.87 h; time to peak concentration was 5-6 h. Apparent clearance was 120 L/h. The apparent volume of the peripheral compartment was large with a slow turnover; alpha and beta half-lives were 19 h and 290 days, respectively. All parameters were estimated with acceptable precision (standard error <30%). No tested covariate (protocol, baseline demographic/clinical characteristics, or laboratory results) explained the high inter-individual variability of bosutinib pharmacokinetics. Therefore, adjusting bosutinib dose for body size (weight, surface area) would not provide benefit over fixed dosing. Using this exposure model in pharmacodynamic assessment of one study, adverse event incidence was shown to be similar in overall and bosutinib-responsive populations.

  9. Pharmacokinetics of melatonin in preterm infants

    PubMed Central

    Merchant, Nazakat M; Azzopardi, Denis V; Hawwa, Ahmed F; McElnay, James C; Middleton, Benita; Arendt, J; Arichi, Tomoki; Gressens, Pierre; Edwards, A David

    2013-01-01

    Aims Preterm infants are deprived of the normal intra-uterine exposure to maternal melatonin and may benefit from replacement therapy. We conducted a pharmacokinetic study to guide potential therapeutic trials. Methods Melatonin was administered to 18 preterm infants in doses ranging from 0.04–0.6 μg kg−1 over 0.5–6 h. Pharmacokinetic profiles were analyzed individually and by population methods. Results Baseline melatonin was largely undetectable. Infants receiving melatonin at 0.1 μg kg−1 h−1 for 2 h showed a median half-life of 15.82 h and median maximum plasma concentration of 203.3 pg ml−1. On population pharmacokinetics, clearance was 0.045 l h−1, volume of distribution 1.098 l and elimination half-life 16.91 h with gender (P = 0.047) and race (P < 0.0001) as significant covariates. Conclusions A 2 h infusion of 0.1 μg kg−1 h−1 increased blood melatonin from undetectable to approximately peak adult concentrations. Slow clearance makes replacement of a typical maternal circadian rhythm problematic. The pharmacokinetic profile of melatonin in preterm infants differs from that of adults so dosage of melatonin for preterm infants cannot be extrapolated from adult studies. Data from this study can be used to guide therapeutic clinical trials of melatonin in preterm infants. PMID:23432339

  10. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  11. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  12. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data.

    PubMed

    Del Amo, Eva M; Urtti, Arto

    2015-08-01

    Intravitreal administration is the method of choice in drug delivery to the retina and/or choroid. Rabbit is the most commonly used animal species in intravitreal pharmacokinetics, but it has been criticized as being a poor model of human eye. The critique is based on some anatomical differences, properties of the vitreous humor, and observed differences in drug concentrations in the anterior chamber after intravitreal injections. We have systematically analyzed all published information on intravitreal pharmacokinetics in the rabbit and human eye. The analysis revealed major problems in the design of the pharmacokinetic studies. In this review we provide advice for study design. Overall, the pharmacokinetic parameters (clearance, volume of distribution, half-life) in the human and rabbit eye have good correlation and comparable absolute values. Therefore, reliable rabbit-to-man translation of intravitreal pharmacokinetics should be feasible. The relevant anatomical and physiological parameters in rabbit and man show only small differences. Furthermore, the claimed discrepancy between drug concentrations in the human and rabbit aqueous humor is not supported by the data analysis. Based on the available and properly conducted pharmacokinetic studies, the differences in the vitreous structure in rabbits and human patients do not lead to significant pharmacokinetic differences. This review is the first step towards inter-species translation of intravitreal pharmacokinetics. More information is still needed to dissect the roles of drug delivery systems, disease states, age and ocular manipulation on the intravitreal pharmacokinetics in rabbit and man. Anyway, the published data and the derived pharmacokinetic parameters indicate that the rabbit is a useful animal model in intravitreal pharmacokinetics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Pharmacokinetic/Pharmacodynamic-Driven Drug Development

    PubMed Central

    Gallo, James M.

    2010-01-01

    The drug discovery and development enterprise, traditionally an industrial juggernaut, has spanned into the academic arena that is partially motivated by the National Institutes of Health Roadmap highlighting translational science and medicine. Since drug discovery and development represents a pipeline of basic to clinical investigations it meshes well with the prime “bench to the bedside” directive of translational medicine. The renewed interest in drug discovery and develpoment in academia provides an opportunity to rethink the hiearchary of studies with the hope to improve the staid approaches that have been critizied for lacking innovation. One area that has received limited attention concerns the use of pharmacokinetic [PK] and pharmacodynamic [PD] studies in the drug development process. Using anticancer drug development as a focus, this review will address past and current deficencies in how PK/PD studies are conducted and offer new strategies that might bridge the gap between preclinical and clinical trials. PMID:20687184

  14. Pharmacokinetic profile of fesoterodine.

    PubMed

    Malhotra, B; Guan, Z; Wood, N; Gandelman, K

    2008-11-01

    Fesoterodine is a new antimuscarinic agent for the treatment of overactive bladder. Following oral administration, fesoterodine is rapidly and extensively hydrolyzed by nonspecific esterases to its active moiety: 5-hydroxymethyl tolterodine (5-HMT). The cytochrome P450 (CYP) enzymes are not involved in the formation of 5-HMT; however, CYP2D6 and CYP3A4 provide 2 alternative pathways for further metabolism and inactivation of 5-HMT. Single oral doses of 4 mg, 8 mg or 12 mg of fesoterodine sustained-release tablets in the fasted state and 8 mg in a fed state. This single-center, open-label, randomized, crossover study investigated the effects of fesoterodine in healthy volunteers comprised of CYP2D6 extensive metabolizers (EMs; n = 16) and CYP2D6 poor metabolizers (PMs; n = 8) after either an overnight fast or a high-fat and high-calorie breakfast. Adverse events, vital signs, ECG recordings and laboratory tests were monitored for safety assessment. For the principal active moiety, 5-HMT, the maximum plasma concentration (Cmax), area under the concentration-time curve from time zero to time of last measurable concentration (AUC0-t) and amount excreted in urine (Ae) increased proportionally with dose in both EM and PM subjects. The mean Cmax and AUC0-t in PMs were approximately twice those observed in EMs. CYP2D6 status had no effect on time to reach Cmax (5 h), renal clearance (approximately 250 ml/min), or half-life (approximately 8 h). Fesoterodine was well tolerated at all doses. While the incidence of dry mouth increased from 8 - 12 mg, all occurrences were mild-to-moderate. Fesoterodine demonstrated a pharmacokinetic (PK) profile that was favorable for once-daily dosing. The systemic exposure to 5-HMT increased proportionally with dose and was about 2-fold higher in PMs compared with EMs. There was no clinically relevant effect of food on the PK of fesoterodine. Fesoterodine was well tolerated at all dose levels studied.

  15. A CONSISTENT APPROACH FOR THE APPLICATION OF PHARMACOKINETIC MODELING IN CANCER RISK ASSESSMENT

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) modeling provides important capabilities for improving the reliability of the extrapolations across dose, species, and exposure route that are generally required in chemical risk assessment regardless of the toxic endpoint being consid...

  16. Associations between post translational histone modifications, myelomeningocele risk, environmental arsenic exposure, and folate deficiency among participants in a case control study in Bangladesh.

    PubMed

    Tauheed, Jannah; Sanchez-Guerra, Marco; Lee, Jane J; Paul, Ligi; Ibne Hasan, Md Omar Sharif; Quamruzzaman, Quazi; Selhub, Jacob; Wright, Robert O; Christiani, David C; Coull, Brent A; Baccarelli, Andrea A; Mazumdar, Maitreyi

    2017-06-03

    Arsenic exposure may contribute to disease risk in humans through alterations in the epigenome. Previous studies reported that arsenic exposure is associated with changes in plasma histone concentrations. Posttranslational histone modifications have been found to differ between the brain tissue of human embryos with neural tube defects and that of controls. Our objectives were to investigate the relationships between plasma histone 3 levels, history of having an infant with myelomeningocele, biomarkers of arsenic exposure, and maternal folate deficiency. These studies took place in Bangladesh, a country with high environmental arsenic exposure through contaminated drinking water. We performed ELISA assays to investigate plasma concentration of total histone 3 (H3) and the histone modification H3K27me3. The plasma samples were collected from 85 adult women as part of a case-control study of arsenic and myelomeningocele risk in Bangladesh. We found significant associations between plasma %H3K27me3 levels and risk of myelomeningocele (P<0.05). Mothers with higher %H3K27me3 in their plasma had lower risk of having an infant with myelomeningocele (odds ratio: 0.91, 95% confidence interval: 0.84, 0.98). We also found that arsenic exposure, as estimated by arsenic concentration in toenails, was associated with lower total H3 concentrations in plasma, but only among women with folate deficiency (β = -9.99, standard error = 3.91, P=0.02). Our results suggest that %H3K27me3 in maternal plasma differs between mothers of infants with myelomeningocele and mothers of infants without myelomeningocele, and may be a marker for myelomeningocele risk. Women with folate deficiency may be more susceptible to the epigenetic effects of environmental arsenic exposure.

  17. Pharmacokinetics of metronidazole in pregnant patients with bacterial vaginosis.

    PubMed

    Wang, Xin; Nanovskaya, Tatiana N; Zhan, Ying; Abdel-Rahman, Susan M; Jasek, Marlo; Hankins, Gary D V; Ahmed, Mahmoud S

    2011-03-01

    The present study was undertaken to investigate the pharmacokinetics of metronidazole in pregnant patients with bacterial vaginosis. Twenty patients received metronidazole (Flagyl ®, Pfizer, 235 East 42nd Street, NY, NY 10017) oral dose 500 mg twice a day for 3 consecutive days. Pharmacokinetic analyses of metronidazole were performed after a single oral dose on the morning of day 4. Although absolute estimates of metronidazole total body exposure were highest in women during early term pregnancy, weight-corrected estimates of exposure maximum plasma drug concentration (C(max)) and the area under the plasma concentration-versus-time curve (AUC(0-12)), along with apparent oral clearance and distribution volume, were not significantly different between women at early, middle, and late stages of pregnancy and were in the range of reported values for nonpregnant patients receiving a similar dose. The pharmacokinetic profile of metronidazole did not change at the different time points assessed during pregnancy.

  18. Pharmacokinetics of metronidazole in pregnant patients with bacterial vaginosis

    PubMed Central

    Wang, Xin; Nanovskaya, Tatiana N.; Zhan, Ying; Abdel-Rahman, Susan M.; Jasek, Marlo; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2010-01-01

    Objective The present study was undertaken to investigate the pharmacokinetics of metronidazole in pregnant patients with bacterial vaginosis. Methods Twenty patients received metronidazole (Flagyl,® Pfizer, 235 East 42nd Street, NY, NY 10017) oral dose 500 mg twice a day for 3 consecutive days. Pharmacokinetic analyses of metronidazole were performed after a single oral dose on the morning of the day 4. Results Although absolute estimates of metronidazole total body exposure were highest in women during early term pregnancy, weight-corrected estimates of exposure maximum plasma drug concentration (Cmax, ) and the area under the plasma concentration-versus-time curve (AUC0-12), along with apparent oral clearance and distribution volume, were not significantly different between women at early, middle, and late stages of pregnancy and were in the range of reported values for nonpregnant patients receiving a similar dose. Conclusions The pharmacokinetic profile of metronidazole did not change at the different time points assessed during pregnancy. PMID:20608802

  19. Nanodrugs: pharmacokinetics and safety

    PubMed Central

    Onoue, Satomi; Yamada, Shizuo; Chan, Hak-Kim

    2014-01-01

    To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. PMID:24591825

  20. Lumping in pharmacokinetics.

    PubMed

    Brochot, Céline; Tóth, János; Bois, Frédéric Y

    2005-12-01

    Pharmacokinetic (PK) models simplify biological complexity by dividing the body into interconnected compartments. The time course of the chemical's amount (or concentration) in each compartment is then expressed as a system of ordinary differential equations. The complexity of the resulting system of equations can rapidly increase if a precise description of the organism is needed. However, difficulties arise when the PK model contains more variables and parameters than comfortable for mathematical and computational treatment. To overcome such difficulties, mathematical lumping methods are new and powerful tools. Such methods aim at reducing a differential system by aggregating several variables into one. Typically, the lumped model is still a differential equation system, whose variables are interpretable in terms of variables of the original system. In practice, the reduced model is usually required to satisfy some constraints. For example, it may be necessary to keep state variables of interest for prediction unlumped. To accommodate such constraints, constrained lumping methods have are also available. After presenting the theory, we study, here, through practical examples, the potential of such methods in toxico/pharmacokinetics. As a tutorial, we first simplify a 2-compartment pharmacokinetic model by symbolic lumping. We then explore the reduction of a 6-compartment physiologically based pharmacokinetic model for 1,3-butadiene with numerical constrained lumping. The lumping methods presented here can be easily automated, and are applicable to first-order ordinary differential equation systems.

  1. SYMBOLS IN PHARMACOKINETICS1

    PubMed Central

    Rowland, Malcolm; Tucker, Geoffrey

    1982-01-01

    To encourage uniformity in the presentation of pharmacokinetic data, a general nomenclature has been developed. The system has wide application. Flexibility is achieved through the use of general variables, constants, qualifying terms and subscripts. Yet, through the use of implied terms, the symbols describing many common variables and constants are simple.

  2. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  3. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  4. Pharmacokinetics and pharmacodynamics of pegfilgrastim.

    PubMed

    Yang, Bing-Bing; Kido, Anna

    2011-05-01

    Pegfilgrastim is a sustained-duration form of filgrastim, a recombinant methionyl form of human granulocyte colony-stimulating factor (G-CSF), to which a 20  kDa polyethylene glycol molecule is covalently bound to the N-terminal methionine residue. Similar to filgrastim, pegfilgrastim increases the proliferation and differentiation of neutrophils from committed progenitor cells, induces maturation, and enhances the survival and function of mature neutrophils, resulting in dose-dependent increases in neutrophils. After subcutaneous administration, pegfilgrastim exhibits nonlinear pharmacokinetics and exposure to pegfilgrastim increases in more than a dose-proportional manner, suggesting that the clearance of pegfilgrastim decreases with increased dosing. Filgrastim is primarily eliminated by the kidney and neutrophils/neutrophil precursors; the latter presumably involves binding of the growth factor to the G-CSF receptor on the cell surface, internalization of the growth factor-receptor complexes via endocytosis, and subsequent degradation inside the cells. Pegylation of filgrastim renders renal clearance insignificant, which was demonstrated in bilaterally nephrectomized rats and confirmed in subjects with renal impairment. As a result, the neutrophil-mediated clearance is the predominant elimination pathway for pegfilgrastim. During chemotherapy-induced neutropenia, the clearance of pegfilgrastim is significantly reduced and the concentration of pegfilgrastim is sustained until onset of neutrophil recovery. Pegfilgrastim concentrations are sustained longer in patients with profound neutropenia. Evidence supports the use of a postnadir absolute neutrophil count (ANC) of ≥ 1 × 109/L as a surrogate marker threshold for the clearance of pegfilgrastim to subtherapeutic levels. After repeated administration of pegfilgrastim, the peak concentrations of pegfilgrastim decrease, likely due to increased neutrophil and neutrophil precursor mass. A pharmacokinetic

  5. Pharmacokinetics of a pyrethroid insecticide mixture in the rat

    EPA Science Inventory

    Pyrethroid insecticides are used and co-occur in the environment, in residences and day care facilities. Pharmacokinetic models of pyrethroids and assessment of risk from their exposure would be better informed if data are derived from studies using chemical mixtures. The objecti...

  6. Pharmacokinetics of a pyrethroid insecticide mixture in the rat

    EPA Science Inventory

    Pyrethroid insecticides are used and co-occur in the environment, in residences and day care facilities. Pharmacokinetic models of pyrethroids and assessment of risk from their exposure would be better informed if data are derived from studies using chemical mixtures. The objecti...

  7. Systematic Assessment of the Benefits and Caveats in Mining Microbial Post-Translational Modifications from Shotgun Proteomic Data; Response of Shewanella oneidensis to Chromate Exposure

    SciTech Connect

    Thompson, Melissa R; Thompson, Dorothea K; Hettich, Robert {Bob} L

    2008-01-01

    Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations; whereas oxidations have been implicated as an indicator for stress. Shewanella oneidensis MR-1 is a gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The dataset used in this study consisted of tandem mass spectra derived from mid-log phase aerobic cultures of S. oneidensis shocked either with or without 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger, Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a sub-database first from a non-modification search was evaluated with DBDigger. The use of higher scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total dataset using the DBDigger algorithm. However, the FDR climbs to about 50% when considering PTM peptides only. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate (~25%) for the searched spectra. InsPecT was found to have a lower FDR (~9%) than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge.

  8. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children.

    PubMed

    Ansari, M; Lauzon-Joset, J-F; Vachon, M-F; Duval, M; Théoret, Y; Champagne, M A; Krajinovic, M

    2010-02-01

    Busulfan (BU) is a key compound in conditioning myeloablative regimens for children undergoing hematopoietic stem cell transplantation (HSCT). There are wide interindividual differences in BU pharmacokinetics, which increase the risk of veno-occlusive disease, graft rejection and disease relapse. As BU is mainly metabolized by glutathione S-transferase (GST), it is hypothesized that functional polymorphisms in GST genes may explain in part the variability in BU pharmacokinetics. We analyzed polymorphisms in GSTA1 (C-69T, A-513G, G-631T, C-1142G), GSTM1 (deletion) and GSTP1 (A1578G, C2293T) genes in 28 children undergoing HSCT. All patients had individualized dosing based on pharmacokinetics after the first dose of intravenous BU. GSTM1-null individuals had higher drug exposure (P(Cmax)=0.008; P(AUC)=0.003; P(Css)=0.02) and lower clearance (P(CL)=0.001). Multivariate regression models showed that, other than the drug dose and age, the GSTM1 genotype was the best predictor of first-dose pharmacokinetic variability. GSTM1-null patients also received lower cumulative BU doses (P=0.02). No association was found between BU exposure and major GSTA1 or GSTP1 gene variants. In children, GSTM1 polymorphism seems to modify BU pharmacokinetics after intravenous drug administration.

  9. Effect of N-methyl deuteration on metabolism and pharmacokinetics of enzalutamide

    PubMed Central

    Jiang, Jinfang; Pang, Xuehai; Li, Liang; Dai, Xiaojian; Diao, Xingxing; Chen, Xiaoyan; Zhong, Dafang; Wang, Yingwei; Chen, Yuanwei

    2016-01-01

    Background The replacement of hydrogen with deuterium invokes a kinetic isotope effect. Thus, this method is an attractive way to slow down the metabolic rate and modulate pharmacokinetics. Purpose Enzalutamide (ENT) acts as a competitive inhibitor of the androgen receptor and has been approved for the treatment of metastatic castration-resistant prostate cancer by the US Food and Drug Administration in 2012. To attenuate the N-demethylation pathway, hydrogen atoms of the N–CH3 moiety were replaced by the relatively stable isotope deuterium, which showed similar pharmacological activities but exhibited favorable pharmacokinetic properties. Methods We estimated in vitro and in vivo pharmacokinetic parameters for ENT and its deuterated analog (d3-ENT). For in vitro studies, intrinsic primary isotope effects (KH/KD) were determined by the ratio of intrinsic clearance (CLint) obtained for ENT and d3-ENT. The CLint values were obtained by the substrate depletion method. For in vivo studies, ENT and d3-ENT were orally given to male Sprague Dawley rats separately and simultaneously to assess the disposition and metabolism of them. We also investigated the main metabolic pathway of ENT by comparing the rate of oxidation and hydrolysis in vitro. Results The in vitro CLint (maximum velocity/Michaelis constant [Vmax/Km]) of d3-ENT in rat and human liver microsomes were 49.7% and 72.9% lower than those of the non-deuterated compound, corresponding to the KH/KD value of ~2. The maximum observed plasma concentration, Cmax, and area under the plasma concentration -time curve from time zero to the last measurable sampling time point (AUC0–t) were 35% and 102% higher than those of ENT when orally administered to rats (10 mg/kg). The exposure of the N-demethyl metabolite M2 was eightfold lower, whereas that of the amide hydrolysis metabolite M1 and other minor metabolites was unchanged. The observed hydrolysis rate of M2 was at least ten times higher than that of ENT and d3-ENT

  10. USE OF EXPOSURE-RELATED DOSE ESTIMATING MODEL (ERDEM) FOR ASSESSMENT OF AGGREGATE EXPOSURE OF INFANT AND CHILDREN TO N-METHYL CARBAMATE INSECTICIDES

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed within the Exposure Related Dose Estimating Model (ERDEM) framework to investigate selected exposure inputs related to recognized exposure scenarios of infants and children to N-methyl carbamate pesticides as spec...

  11. USE OF EXPOSURE-RELATED DOSE ESTIMATING MODEL (ERDEM) FOR ASSESSMENT OF AGGREGATE EXPOSURE OF INFANT AND CHILDREN TO N-METHYL CARBAMATE INSECTICIDES

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed within the Exposure Related Dose Estimating Model (ERDEM) framework to investigate selected exposure inputs related to recognized exposure scenarios of infants and children to N-methyl carbamate pesticides as spec...

  12. Clinical Pharmacokinetics and Pharmacodynamics of Lenalidomide.

    PubMed

    Chen, Nianhang; Zhou, Simon; Palmisano, Maria

    2017-02-01

    Lenalidomide is a lead therapeutic in multiple myeloma and deletion 5q myelodysplastic syndromes and shows promising activities in other hematologic malignancies. This article presents a comprehensive review of the clinical pharmacokinetics and pharmacodynamics of lenalidomide. Oral lenalidomide is rapidly and highly absorbed (>90 % of dose) under fasting conditions. Food affects oral absorption, reducing area under the concentration-time curve (AUC) by 20 % and maximum concentration (C max) by 50 %. The increase in AUC and C max is dose proportional, and interindividual variability in plasma exposure is low to moderate. Lenalidomide distributes into semen but is undetectable 3 days after stopping treatment. Biotransformation of lenalidomide in humans includes chiral inversion, trivial hydroxylation, and slow non-enzymatic hydrolysis. Approximately 82 % of an oral dose is excreted as lenalidomide in urine within 24 h. Lenalidomide has a short half-life (3-4 h) and does not accumulate in plasma upon repeated dosing. Its pharmacokinetics are consistent across patient populations, regardless of the type of hematologic malignancy. Renal function is the only important factor affecting lenalidomide plasma exposure. Lenalidomide has no QT prolongation risk at approved doses, and higher plasma exposure to lenalidomide is associated with increased risk of neutropenia and thrombocytopenia. Despite being a weak substrate of P-glycoprotein (P-gp) in vitro, lenalidomide does not have clinically significant pharmacokinetic interactions with P-gp substrates/inhibitors in controlled studies. The AUC-matched dose adjustment is recommended for patients with renal impairment at the start of therapy. No dose adjustment for lenalidomide is needed on the basis of age, ethnicity, mild hepatic impairment, or drug-drug interactions.

  13. Antifungal pharmacokinetics and pharmacodynamics.

    PubMed

    Lepak, Alexander J; Andes, David R

    2014-11-10

    Successful treatment of infectious diseases requires choice of the most suitable antimicrobial agent, comprising consideration of drug pharmacokinetics (PK), including penetration into infection site, pathogen susceptibility, optimal route of drug administration, drug dose, frequency of administration, duration of therapy, and drug toxicity. Antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) studies consider these variables and have been useful in drug development, optimizing dosing regimens, determining susceptibility breakpoints, and limiting toxicity of antifungal therapy. Here the concepts of antifungal PK/PD studies are reviewed, with emphasis on methodology and application. The initial sections of this review focus on principles and methodology. Then the pharmacodynamics of each major antifungal drug class (polyenes, flucytosine, azoles, and echinocandins) is discussed. Finally, the review discusses novel areas of pharmacodynamic investigation in the study and application of combination therapy.

  14. Pharmacokinetic consequences of spaceflight

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Cintron, N. M.

    1991-01-01

    Spaceflight induces a wide range of physiological and biochemical changes, including disruption of gastrointestinal (GI) function, fluid and electrolyte balance, circulatory dynamics, and organ blood flow, as well as hormonal and metabolic perturbations. Any of these changes can influence the pharmacokinetics and pharmacodynamics of in-flight medication. That spaceflight may alter bioavailability was proposed when drugs prescribed to alleviate space motion sickness (SMS) had little therapeutic effect. Characterization of the pharmacokinetic and/or pharmacodynamic behavior of operationally critical medications is crucial for their effective use in flight; as a first step, we sought to determine whether drugs administered in space actually reach the site of action at concentrations sufficient to elicit the therapeutic response.

  15. Pharmacokinetic consequences of spaceflight

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Cintron, N. M.

    1991-01-01

    Spaceflight induces a wide range of physiological and biochemical changes, including disruption of gastrointestinal (GI) function, fluid and electrolyte balance, circulatory dynamics, and organ blood flow, as well as hormonal and metabolic perturbations. Any of these changes can influence the pharmacokinetics and pharmacodynamics of in-flight medication. That spaceflight may alter bioavailability was proposed when drugs prescribed to alleviate space motion sickness (SMS) had little therapeutic effect. Characterization of the pharmacokinetic and/or pharmacodynamic behavior of operationally critical medications is crucial for their effective use in flight; as a first step, we sought to determine whether drugs administered in space actually reach the site of action at concentrations sufficient to elicit the therapeutic response.

  16. Pharmacokinetics of milnacipran in liver impairment.

    PubMed

    Puozzo, C; Albin, H; Vinçon, G; Deprez, D; Raymond, J M; Amouretti, M

    1998-01-01

    The pharmacokinetics of single 50 mg oral and intravenous doses of milnacipran, a new non tricyclic antidepressant drug, were compared in 11 chronic liver impaired (LI) subjects and in 6 control subjects. Hepatic impairments, classified according to the PUGH scale were moderate (1 grade A), intermediate (6 grade B) and severe (4 grade C). Concentrations of unchanged drug and its conjugated form (its main metabolite) were measured in plasma and urines. In control subjects, milnacipran present high absolute bioavailability (mean value of 90%). Around 50% of the dose are excreted in urines as unchanged, while around 14% are excreted as glucuroconjugate. The remaining is composed of free and conjugated phase I inactive metabolites. Administration of milnacipran in LI subjects results in non significant changes in its pharmacokinetics, although its variability is increased. Unchanged drug exposure is not modified in LI subjects, while plasma levels of the conjugate are slightly decreased compared to the control group. This could either be due to a slight reduction in the conjugation process, or to a change in the distribution of the drug as urine excretion of both unchanged and conjugated forms are not modified compared to the control group. A few LI subjects present supra-bioavailability resulting in higher drug exposure after oral administration than after intravenous infusion. These modifications are not clinically relevant as drug exposure of the parent drug is not modified. As the unchanged drug is the only compound responsible for the activity of milnacipran, no dosage adjustment is needed in patients presenting liver impairment.

  17. Pharmacokinetics of levodopa.

    PubMed

    Contin, Manuela; Martinelli, Paolo

    2010-11-01

    This paper reviews the clinically relevant determinants of levodopa peripheral pharmacokinetics and main observed changes in the levodopa concentration-effect relationship with Parkinson's disease (PD) progression. Available clinically practical strategies to optimise levodopa pharmacokinetics and pharmacodynamics are briefly discussed. Levodopa shows particular pharmacokinetics including an extensive presystemic metabolism, overcome by the combined use of extracerebral inhibitors of the enzyme L: -amino acid decarboxylase and rapid absorption in the proximal small bowel by a saturable facilitated transport system shared with other large neutral amino acids. Drug transport from plasma to the brain is mediated by the same carriers operating in the intestinal mucosa. The main strategies to assure reproducibility of both intestinal absorption and delivery to the brain, and the clinical effect include standardization of levodopa dosing with respect to meal times and a controlled dietary protein intake. Levodopa plasma half-life is very short, resulting in marked plasma drug concentration fluctuations which are matched, as the disease progresses, to swings in the therapeutic response ("wearing-off" phenomena). "Wearing-off" phenomena can also be associated, at the more advanced disease stages, with a "negative", both parkinsonism-exacerbating and dyskinetic effect of levodopa at low, subtherapeutic plasma concentrations. Dyskinesias may also be related to high-levodopa, excessive plasma concentrations. Recognition of the different levodopa toxic response patterns can be difficult on a clinical basis alone and simultaneous monitoring of the levodopa concentration-effect relationship may prove useful to disclose the underlying mechanism and in planning the correct management. Clinically practical strategies to optimise levodopa pharmacokinetics, and possibly its therapeutic response, include liquid drug solutions, controlled release formulations and the use of inhibitors

  18. Population pharmacokinetics of exenatide

    PubMed Central

    Mager, Donald E.

    2016-01-01

    Aim The aim of the present analysis was to develop a core population pharmacokinetic model for the pharmacokinetic properties of immediate‐release (IR) exenatide, which can be used in subsequent analyses of novel sustained‐release formulations. Methods Data from eight clinical trials, evaluating a wide range of doses and different administration routes, were available for analysis. All modelling and simulations were conducted using the nonlinear mixed‐effect modelling program NONMEM. External model validation was performed using data from the phase III clinical trials programme through standard visual predictive checks. Results The pharmacokinetics of IR exenatide was described by a two‐compartment model, and the absorption of subcutaneous exenatide was described with a sequential zero‐order rate constant followed by a saturable nonlinear absorption process. Drug elimination was characterized by two parallel routes (linear and nonlinear), with significant relationships between renal function and the linear elimination route, and between body weight and volume of distribution. For a subject with normal renal function, the linear clearance was estimated to be 5.06 l hr−1. The nonlinear elimination was quantified with a Michaelis–Menten constant (K m) of 567 pg ml−1 and a maximum rate of metabolism (V max) of 1.6 μg h−1. For subcutaneous administration, 37% of the subcutaneous dose is absorbed via the zero‐order process, and the remaining 63% via the nonlinear pathway. Conclusions The present analysis provides a comprehensive population pharmacokinetic model for exenatide, expanding the elimination process to include both linear and nonlinear components, providing a suitable platform for a broad range of concentrations and patient conditions that can be leveraged in future modelling efforts of sustained‐release exenatide formulations. PMID:27650681

  19. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light.

    PubMed

    Al-Taweel, Khaled; Iwaki, Toshio; Yabuta, Yukinori; Shigeoka, Shigeru; Murata, Norio; Wadano, Akira

    2007-09-01

    During photoinhibition of photosystem II (PSII) in cyanobacteria, salt stress inhibits the repair of photodamaged PSII and, in particular, the synthesis of the D1 protein (D1). We investigated the effects of salt stress on the repair of PSII and the synthesis of D1 in wild-type tobacco (Nicotiana tabacum 'Xanthi') and in transformed plants that harbored the katE gene for catalase from Escherichia coli. Salt stress due to NaCl enhanced the photoinhibition of PSII in leaf discs from both wild-type and katE-transformed plants, but the effect of salt stress was less significant in the transformed plants than in wild-type plants. In the presence of lincomycin, which inhibits protein synthesis in chloroplasts, the activity of PSII decreased rapidly and at similar rates in both types of leaf disc during photoinhibition, and the observation suggests that repair of PSII was protected by the transgene-coded enzyme. Incorporation of [(35)S]methionine into D1 during photoinhibition was inhibited by salt stress, and the transformation mitigated this inhibitory effect. Northern blotting revealed that the level of psbA transcripts was not significantly affected by salt stress or by the transformation. Our results suggest that salt stress enhanced photoinhibition by inhibiting repair of PSII and that the katE transgene increased the resistance of the chloroplast's translational machinery to salt stress by scavenging hydrogen peroxide.

  20. Pharmacokinetics of grepafloxacin.

    PubMed

    Efthymiopoulos, C

    1997-12-01

    Grepafloxacin is a fluoroquinolone antibiotic which is rapidly absorbed in healthy volunteers following oral dosing. It reaches peak plasma levels around 2 h after administration, then declines bi-exponentially, with an extended half-life of around 12 h. Grepafloxacin is eliminated primarily through metabolism and is excreted mainly in the faeces. Renal clearance accounts for only 10-15% of the administered dose. Grepafloxacin plasma concentrations increase disproportionately with increasing doses, but this is unlikely to be of clinical significance over the range of therapeutic doses. The rate and extent of absorption are not affected by food or elevated intragastric pH. The pharmacokinetics of grepafloxacin are affected by gender, with these differences relating to variations in body weight. No effect of age on the pharmacokinetics of grepafloxacin was found. Renal impairment does not affect grepafloxacin pharmacokinetics, whereas peak plasma concentrations, areas under plasma concentration-time curves and renal excretion are increased in patients with hepatic impairment. Grepafloxacin can be co-administered with warfarin and theophylline, though reduction of the theophylline dose is necessary. Following oral administration, higher grepafloxacin concentrations are achieved in lung and genital tissues than in serum, indicating its potential in the treatment of respiratory and sexually transmitted diseases. In addition, it exceeds therapeutically effective levels in bile and gall-bladder tissues, and accumulates in polymorphonuclear leucocytes such that it may be useful against intracellular pathogens.

  1. Pharmacokinetic evaluation of frovatriptan.

    PubMed

    Negro, Andrea; Lionetto, Luana; Casolla, Barbara; Lala, Noemi; Simmaco, Maurizio; Martelletti, Paolo

    2011-11-01

    Migraine is the most common painful neurological disorder, affecting 13% of the general population. Triptans represent a powerful pharmacological tool in acute migraine treatment, however, a significant portion of treated patients cannot have access to this class due to possible adverse affects. Today, a total of seven triptan molecules are available, representing a commonly prescribed migraine treatment. Although there is a need of extensive use of triptans, only 25% of migraine patients are using triptans. This review includes triptans and evidence for the use of frovatriptan. A systematic approach is used to discuss the pharmacodynamic and pharmacokinetic aspects of frovatriptan, considering the emerging data on the clinical efficacy of frovatriptan in the treatment of migraine and cluster headaches. The data were obtained by searching the following key words in MEDLINE: pharmacokinetic, pharmacodynamic, triptans, frovatriptan, migraine, menstrual migraine, relatively to the period 1988 - 2011. Frovatriptan has been developed in order to improve safety and efficacy of triptans. It shows a favorable tolerability and efficacy profile, limited to 24/48-h headache recurrence, when compared with other triptans. Preclinical data suggest that the pharmacokinetic profile of frovatriptan may differ from other available triptans. In fact, among triptans, frovatriptan showed the highest potency at the 5-HT1B receptor (8.2) and the longer half-life (26 h). These parameters determine the clinical properties of frovatriptan; in particular the lowest rate of headache recurrence in comparison with other triptans.

  2. Pharmacokinetics and Pharmacokinetic/Pharmacodynamic Relationships of Etravirine in HIV-1-Infected, Treatment-Experienced Children and Adolescents in PIANO.

    PubMed

    Kakuda, Thomas N; Brochot, Anne; Green, Bruce; Nijs, Steven; Vis, Peter; Opsomer, Magda; Tomaka, Frank L; Hoetelmans, Richard M W

    2016-11-01

    PIANO (NCT00665847) investigated etravirine pharmacokinetics, efficacy, and safety in children and adolescents. Treatment-experienced, HIV-1-infected patients (≥6 to <18 years) received etravirine 5.2 mg/kg twice daily (maximum 200 mg twice daily) plus background antiretrovirals. A population pharmacokinetic model was developed, and etravirine C0h and AUC0-12h were estimated. Relationships among intrinsic/extrinsic factors and etravirine pharmacokinetics and pharmacokinetics with pharmacodynamics were assessed. The best model describing etravirine pharmacokinetics consisted of a single compartment with sequential zero- and first-order absorption following a lag time. Interindividual variability terms were included on clearance (CL/F) and the first-order input rate constant (KA). The final model estimates (coefficient of variation, %) for CL/F and KA were 46.3 (11) L/h and 1.07 (34) h(-1) , respectively. Overall, median (range) estimated etravirine C0h and AUC0-12h were 287 (2-2276) ng/mL and 4560 (62-28,865) ng · h/mL, respectively. Exposure was slightly lower in adolescents vs children. Sex and adherence did not affect etravirine pharmacokinetics. Factors significantly affecting etravirine exposure were body weight (higher with lower weight), race (lower in Asians than in white or black patients), and the use of certain HIV protease inhibitors. Virologic response (<50 copies/mL at week 48) was lower in the lowest etravirine AUC0-12h quartile vs the upper 3 quartiles (41% vs 67% to 76%). Rash occurred more frequently in the highest quartile than in the lower 3 quartiles (52% versus 8% to 20%). Etravirine 5.2 mg/kg twice daily in treatment-experienced, HIV-1-infected children and adolescents provides comparable exposure to that in adults receiving etravirine 200 mg twice daily and is the recommended dose for children and adolescents. © 2016, The American College of Clinical Pharmacology.

  3. Ozone exposure of Flinders Sensitive Line rats is a rodent translational model of neurobiological oxidative stress with relevance for depression and antidepressant response.

    PubMed

    Mokoena, Mmalebuso L; Harvey, Brian H; Viljoen, Francois; Ellis, Susanna M; Brink, Christiaan B

    2015-08-01

    Major depression has been associated with higher levels of air pollution that in turn leads to neurodegeneration via increased oxidative stress. There is a need for suitable translational animal models to study the role of oxidative stress in depression and antidepressant action. Considering the gene X environment hypothesis of depression, the present study investigated the effect of chronic ozone inhalation on depression and anxiety-related behavior, cognition, and brain markers of oxidative stress in the Flinders Sensitive Line (FSL) rat. In addition, response to the antioxidant melatonin, and the antidepressants desipramine or escitalopram, was assessed. Rats were exposed to ozone (0.0 or 0.3 parts per million (ppm)) per inhalation for 4 h daily for a period of 15 days, while simultaneously receiving saline or the above-mentioned drugs. The data indicate that chronic ozone inhalation induced memory impairment, anxiety and depression-like effects, reduced cortical and hippocampal superoxide dismutase and catalase activity, and compromised central monoamine levels similar to that noted in depression. Moreover, the behavioral and neurochemical effects of melatonin, desipramine, and escitalopram were mostly attenuated in the presence of ozone. Thus, genetically susceptible individuals exposed to high levels of oxidative stress are at higher risk of developing mood and/or an anxiety disorders, showing greater redox imbalance and altered behavior. These animals are also more resistant to contemporary antidepressant treatment. The presented model provides robust face, construct, and predictive validity, suitable for studying neuronal oxidative stress in depression, antidepressant action and mechanisms to prevent neuronal oxidative stress.

  4. Pharmacokinetic profile of once-daily cyclobenzaprine extended-release.

    PubMed

    Darwish, Mona; Hellriegel, Edward T

    2010-11-01

    Cyclobenzaprine immediate-release (CIR) is a widely prescribed skeletal muscle relaxant with an established efficacy and safety profile in patients with muscle spasm associated with acute, painful conditions, although it is commonly associated with sedation. CIR is typically prescribed at a dosage of 10 mg three-times-daily. This review focuses on the pharmacokinetic profile of a new formulation, cyclobenzaprine extended-release (CER), which delivers a sustained plasma cyclobenzaprine concentration over 24 h, allowing once-daily dosing. Results from CER pharmacokinetic studies conducted through August 2010 are summarized. This review provides information on the first four studies assessing the single-dose and steady-state pharmacokinetic profile of CER. Once-daily CER 30 mg and three-times-daily CIR 10 mg produced comparable systemic exposures to cyclobenzaprine, but pharmacokinetic profiles were qualitatively different. CER was characterized by a single daily peak in cyclobenzaprine concentration versus three peaks/day for CIR. With once-daily dosing of CER, cyclobenzaprine concentration is sustained over 24 h. CER 30 mg provides approximately twice the exposure as CER 15 mg. Systemic exposure to CER is increased in the presence of food and in elderly subjects. Steady-state is achieved by day 7 of dosing.

  5. Pharmacokinetic Modeling of Paracetamol Uptake and Clearance in Zebrafish Larvae: Expanding the Allometric Scale in Vertebrates with Five Orders of Magnitude

    PubMed Central

    Kantae, Vasudev; Krekels, Elke H.J.; Ordas, Anita; González, Oskar; van Wijk, Rob C.; Harms, Amy C.; Racz, Peter I.; van der Graaf, Piet H.; Spaink, Herman P.

    2016-01-01

    Abstract Zebrafish larvae (Danio rerio) are increasingly used to translate findings regarding drug efficacy and safety from in vitro-based assays to vertebrate species, including humans. However, the limited understanding of drug exposure in this species hampers its implementation in translational research. Using paracetamol as a paradigm compound, we present a novel method to characterize pharmacokinetic processes in zebrafish larvae, by combining sensitive bioanalytical methods and nonlinear mixed effects modeling. The developed method allowed quantification of paracetamol and its two major metabolites, paracetamol-sulfate and paracetamol-glucuronide in pooled samples of five lysed zebrafish larvae of 3 days post-fertilization. Paracetamol drug uptake was quantified to be 0.289 pmole/min and paracetamol clearance was quantified to be 1.7% of the total value of the larvae. With an average volume determined to be 0.290 μL, this yields an absolute clearance of 2.96 × 107 L/h, which scales reasonably well with clearance rates in higher vertebrates. The developed methodology will improve the success rate of drug screens in zebrafish larvae and the translation potential of findings, by allowing the establishment of accurate exposure profiles and thereby also the establishment of concentration–effect relationships. PMID:27632065

  6. Translator's preface.

    PubMed

    Lamiell, James T

    2013-08-01

    Presents a preface from James T. Lamiell, who translates Wilhelm Wundt's Psychology's Struggle for Existence (Die Psychologie im Kampf ums Dasein), in which Wundt advised against the impending divorce of psychology from philosophy, into English. Lamiell comments that more than a decade into the 21st century, it appears that very few psychologists have any interest at all in work at the interface of psychology and philosophy. He notes that one clear indication of this is that the Society for Theoretical and Philosophical Psychology, which is Division 24 of the American Psychological Association (APA), remains one of the smallest of the APA's nearly 60 divisions. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  7. Russian Translation.

    PubMed

    O'dette, R E

    1957-03-29

    This discussion has described the status of the large United States program for translation from the Russian. A partial description of what is being done or planned, and by whom, has been provided as a guide for those who wish to follow the subject further. The urge to pass on useful information has necessarily restricted the space which might also have been profitably devoted to the philosophic aspects of the problem. Although it is not said with any sense of pride in achievement-because much more remains to be done than has been done-it would seem fair to describe the current national translation activity, including all contributions to it, as a phenomenon. Phenomena in scientific communication are not common: a full appreciation of their significance requires more analysis than results from a simple listing of their outward characteristics. But a few observations might be made in conclusion. Most United States scientists probably feel that, as a nation, we are and should be world leaders in science, even though this feeling is neither nurtured nor expressed in a spirit of violent competition. If this assumption is allowed, the point which seems to remain is that the United States will not retain its position casually. Our scientists expect to maintain an awareness of the scientific achievements and failures of the other nations of the world. But we must especially become more aware of the advances of Soviet science, both qualitatively and quantitatively. The evidence points toward this last conclusion, regardless of whether one is concerned with the production of ideas or things, increase in man's knowledge of himself and his environment, conflict between idealisms, or simply the national security.

  8. Pharmacokinetic and pharmacodynamic variability of fluindione in octogenarians

    PubMed Central

    Comets, Emmanuelle; Diquet, Bertrand; Legrain, Sylvie; Huisse, Marie-Geneviève; Godon, Alban; Bruhat, Corinne; Chauveheid, Marie-Paule; Delpierre, Sandrine; Duval, Xavier; Berrut, Gilles; Verstuyft, Céline; Aumont, Marie-Claude; Mentré, France

    2012-01-01

    In the PREPA observational study, we investigated the factors influencing pharmacokinetic and pharmacodynamic variability in the response to fluindione, an oral anticoagulant drug, in a general population of octogenarians inpatients. Measurements of fluindione concentrations and INR (International Normalised Ratio) were obtained from 131 inpatients initiating fluindione treatment. Treatment was adjusted according to routine clinical practice. The data was analysed using non-linear mixed effect models, and the parameters were estimated using MONOLIX 3.2. The pharmacokinetics of fluindione was monocompartmental, while the evolution of INR was modelled according to a turnover model (inhibition of vitamin K recycling). Interindividual variability was very large. Clearance decreased with age and with prior administration of cordarone. Patients who underwent surgery before the study had lower IC50, leading to an increased sensitivity to fluindione. Pharmacokinetic exposure is substantially increased in elderly patients, warranting a lower dose of fluindione. PMID:22472992

  9. A PHARMACOKINETIC MODEL FOR ESTIMATING ...

    EPA Pesticide Factsheets

    Empirical evidence suggests that exposure of Americans to dioxin-like compounds was low during the early decades of the 20th century, then increased during the 1940s and 1950s reaching a peak in the 1960s and 1970s, and progressively decreased to lower levels in the 1980s and 1990s. Such evidence includes dioxin analysis of carbon-dated sediment cores of lakes and rivers, preserved meat samples from different decades of the 20th century, and limited body burden measurements of dioxin-like compounds. Pinsky and Lorber (1998) summarized studies measuring 2,3,7,8-TCDD in blood and adipose tissue finding a range of 10-20 pg/g (ppt) lipid during the 1970s, and 2-10 ppt lipid during the 1980s. This study reviews body burdens of dioxin toxic equivalents, TEQs, to find a range from about 50-80 ppt lipid during the 1970s, 30-50 ppt lipid during the 1980s, and 10-20 ppt lipid during the 1990s (TEQs comprised of the 17 dioxin and furan congeners only). Pinsky and Lorber (1998) investigated historical exposure trends for 2,3,7,8-TCDD by using a single-compartment, first-order pharmacokinetic model. The current study extends this prior effort by modeling dioxin TEQs instead of the single compound, 2,3,7,8-TCDD. TEQs are modeled as though they are a single compound, in contrast to an approach where the individual dioxin and furan congeners are modeled separately. It was found that body burdens of TEQs during the 1970s, 80s, and 90s could be modeled by assuming a histor

  10. Clinical pharmacokinetics of levetiracetam.

    PubMed

    Patsalos, Philip N

    2004-01-01

    Since 1989, eight new antiepileptic drugs (AEDs) have been licensed for clinical use. Levetiracetam is the latest to be licensed and is used as adjunctive therapy for the treatment of adult patients with partial seizures with or without secondary generalisation that are refractory to other established first-line AEDs. Pharmacokinetic studies of levetiracetam have been conducted in healthy volunteers, in adults, children and elderly patients with epilepsy, and in patients with renal and hepatic impairment. After oral ingestion, levetiracetam is rapidly absorbed, with peak concentration occurring after 1.3 hours, and its bioavailability is >95%. Co-ingestion of food slows the rate but not the extent of absorption. Levetiracetam is not bound to plasma proteins and has a volume of distribution of 0.5-0.7 L/kg. Plasma concentrations increase in proportion to dose over the clinically relevant dose range (500-5000 mg) and there is no evidence of accumulation during multiple administration. Steady-state blood concentrations are achieved within 24-48 hours. The elimination half-life in adult volunteers, adults with epilepsy, children with epilepsy and elderly volunteers is 6-8, 6-8, 5-7 and 10-11 hours, respectively. Approximately 34% of a levetiracetam dose is metabolised and 66% is excreted in urine unmetabolised; however, the metabolism is not hepatic but occurs primarily in blood by hydrolysis. Autoinduction is not a feature. As clearance is renal in nature it is directly dependent on creatinine clearance. Consequently, dosage adjustments are necessary for patients with moderate to severe renal impairment. To date, no clinically relevant pharmacokinetic interactions between AEDs and levetiracetam have been identified. Similarly, levetiracetam does not interact with digoxin, warfarin and the low-dose contraceptive pill; however, adverse pharmacodynamic interactions with carbamazepine and topiramate have been demonstrated. Overall, the pharmacokinetic characteristics of

  11. Clinical pharmacokinetics of anticonvulsants.

    PubMed

    Hvidberg, E F; Dam, M

    1976-01-01

    Anticonvulsant therapy was among the first areas to benefit from clinical pharmacokinetic studies. The most important advantage is that the frequent interindividual variation in the plasma level/dose ratio for these drugs can be circumvented by plasma level monitoring. For several anticonvulsants the brain concentration is shown to parallel the plasma concentration. Phenytoin (diphenylhydantoin) is stil the most important anticonvulsant and the one for which kinetics have been thoroughly investigated in man. These investigations have revealed several reasons for the wellknown difficulties in using this drug clinically. The absorption rate and fraction are very much dependent on the pharmaceutical preparation, and changes of brand may alter the plasma level of phenytoin in spite of unaltered dose. The elimination capacity is saturable causing dose dependent kinetics, which again means disproportional changes in plasma level with changes in dose. Great individual variations exist in the rate of metabolism, and several pharmacokinetic drug interactions are known. As an optimum therapeutic plasma concentration range has been established monitoring plasma levels must be strongly advocated. Interpretation of plasma levels in uraemic patients must take into account decreased protein binding of the drug. Carbamazepine is probably as effective as phenytoin. The elimination is a first order process, but the rate of metabolism increases after a few weeks' treatment. An active metabolite (epoxide) may be the cause of some side-effects. Combined treatment with other anticonvulsant drugs decreases the half-life and more frequent dosing may be necessary. An optimum therapeutic concentration range has been suggested and plasma monitoring is advocated, along with that of the active metabolite, the epoxide. Phenobarbitone is still much used but its kinetics have been investigated to a lesser extent. The main problem is the variability in the rate of elimination. In children the half

  12. Translating Translations: Selecting and Using Translated Early Childhood Materials.

    ERIC Educational Resources Information Center

    Santos, Rosa Milagros; Lee, Sung Yoon; Valdivia, Rebeca; Zhang, Chun

    2001-01-01

    This article provides early intervention professionals with strategies for selecting and using translated materials. It stresses the importance of considering both the intended audience of the material and the quality of the translation itself. The article notes that many Web-based translator programs fail to capture the idiomatic usage or…

  13. Pharmacokinetic study of Noni fruit extract.

    PubMed

    Issell, Brian F; Franke, Adrian; Fielding, Robert M

    2008-01-01

    Many different products containing Noni (Morinda citrifolia) fruit extracts are sold throughout the world for health restoration and maintenance. Despite a large business enterprise fueling Noni's popularity, there is a lack of standardization of products and no scientific evidence of Noni's clinical efficacy and safety. There is also no evidence to indicate an optimal therapeutic dose or dosing interval. In an initial volunteer, scopoletin was identified as a bioactive marker of Noni exposure and a candidate for product standardization and pharmacokinetic studies. Subsequently, capsules containing the whole freeze-dried fruit of Noni were orally administered to nine healthy volunteers (3 per group) at doses of 1,500 mg (3 × 500 mg), 2,000 mg (4 × 500 mg) and 2,500 mg (5 × 500 mg). Plasma and urine samples were obtained from each subject prior to dosing and at 0.5, 1, 2, 4 and 8 h after dosing. Concentrations of scopoletin were determined by HPLC with PDA (scanning at 200-700 nm) and MS detection. Scopoletin rapidly enters the plasma after Noni ingestion, maintaining levels in the range of 0.5 to 5 ng/mL for at least 8 h after dosing. Scopoletin bioavailability appears to be low, with significant intersubject variability. We conclude that scopoletin can be used as a relatively specific marker of Noni exposure in the blood and particularly in urine when its pharmacokinetics is considered appropriately.

  14. Fractional dynamics pharmacokinetics-pharmacodynamic models.

    PubMed

    Verotta, Davide

    2010-06-01

    While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics-pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics.

  15. Pharmacokinetics of antiepileptic drugs.

    PubMed

    Tokola, R A; Neuvonen, P J

    1983-01-01

    The rational use of antiepileptic drugs requires the consideration of their pharmacokinetics, which may be influenced by the physiological and pathological factors. Pharmacokinetic interactions between antiepileptic drugs may lead to considerable fluctuation in plasma drug concentration, and monotherapy is often preferable. The absorption of phenytoin depends on pharmaceutical formulation. Phenytoin is highly bound to plasma proteins, thus the changes in the unbound fraction are of clinical significance. The saturation kinetics of its metabolism and drug interactions have further consequences. Carbamazepine is well absorbed and largely metabolized. Due to the autoinduction its half-life shortens in chronic administration. Valproate is highly, but variably bound to plasma proteins. It is eliminated mainly by metabolism. Due to the long half-life of phenobarbital its plasma concentrations change slowly, and time to the steady-state may be up to 30 days, if no loading dose is given. Primidone is partly metabolized to phenobarbital, and at steady-state plasma concentration of phenobarbital often exceeds that of primidone. Diazepam, clonazepam and nitrazepam are largely bound to plasma proteins and extensively metabolized with the half-lives of 20 to 60 hours.

  16. [Pharmacokinetics of carbapenems].

    PubMed

    Suchánková, H; Rychlíčková, J; Urbánek, K

    2012-06-01

    Carbapenems, beta-lactam antibiotics, are ideal candidates for the treatment of serious nosocomial infections including sepsis for their exceptionally broad antibacterial spectrum and high efficiency. They are administered parenterally by intravenous infusion. Carbapenems penetrate well and rapidly into many different tissue compartments and the interstitial fluid. They are metabolized by renal dihydropeptidase-1. Therefore, imipenem must be co-administered with an inhibitor of dihydropeptidase-1. Other carbapenems registered in the Czech Republic (meropenem, ertapenem and doripenem) are more stable to this enzyme. Carbapenems are mainly eliminated via the kidneys and dose adjustment in patients with renal impairment is necessary. The elimination half-life of most carbapenems is around 1 hour with the exception of ertapenem, with 3.8-hour half-life, which allows its once-daily use. Carbapenems are a group of antibiotics with time-dependent effect. Their typical pharmaceutical property is a limited stability in solution after dilution. Administration in the prolonged infusion appears to be a convenient strategy to achieve higher efficiency. Pharmacokinetic parameters of carbapenems may vary individually, especially in critically ill patients and those treated by renal replacement therapy. Therefore, individualization of dosing regimens based on knowledge of pharmacokinetic parameters of individual patients may be useful.

  17. Pharmacokinetics of an Elevated Dosage of Micafungin in Premature Neonates

    PubMed Central

    Smith, P Brian; Walsh, Thomas J; Hope, William; Arrieta, Antonio; Takada, Akitsugu; Kovanda, Laura L; Kearns, Gregory L; Kaufman, David; Sawamoto, T; Buell, Donald N; Benjamin, Daniel K

    2009-01-01

    Background Determining the safety and pharmacokinetics of antifungal agents in neonates is important. A previous single-dose pharmacokinetic study of micafungin in neonates demonstrated that doses of 0.75 to 3 mg/kg produced lower plasma micafungin concentrations than in older patients because of increased apparent plasma clearance of micafungin in neonates. The primary objective of this study was to assess the safety and pharmacokinetics of an increased (15 mg/kg/day) dose of micafungin. Methods A repeated dose, open-label pharmacokinetic and safety trial of intravenous micafungin in 12 preterm neonates > 48 hours of life with suspected systemic infections. Neonates received 15 mg/kg/day of micafungin for 5 days. Blood samples were drawn relative to either the fourth or fifth dose. Systemic exposure was assessed by examination of the plasma area under the curve. Results The median birth weight and gestational age of the neonates were 775 g and 27 weeks, respectively. No adverse events related to micafungin were detected. The mean area under the curve and clearance for the cohort was 437.5 μg · h/mL and 0.575 mL/min/kg, respectively. The calculated clearance and volume of distribution for neonates was greater than that observed in older children and adults. Conclusions These data suggest that 15 mg/kg dosing in premature neonates corresponds to an exposure of approximately 5 mg/kg in adults. No adverse events related to micafungin were observed. PMID:19319022

  18. Pharmacokinetic and pharmacodynamic profile of bendamustine and its metabolites.

    PubMed

    Darwish, Mona; Bond, Mary; Hellriegel, Edward; Robertson, Philmore; Chovan, James P

    2015-06-01

    Bendamustine is a unique alkylating agent indicated for the treatment of chronic lymphocytic leukemia and rituximab-refractory, indolent B cell non-Hodgkin's lymphoma. Despite the extensive experience with bendamustine, its pharmacokinetic profile has only recently been described. This overview summarizes the pharmacokinetics, pharmacokinetic/pharmacodynamic relationships, and drug-drug interactions of bendamustine in adult and pediatric patients with hematologic malignancies. A literature search and data on file (including a human mass balance study, pharmacokinetic population analyses in adult and pediatric patients, and modeling analyses) were evaluated for inclusion. Bendamustine concentrations peak at end of intravenous infusion (~1 h). Subsequent elimination is triphasic, with the intermediate t 1/2 (~40 min) as the effective t 1/2 since the final phase represents <1 % of the area under the curve. Bendamustine is rapidly hydrolyzed to monohydroxy-bendamustine and dihydroxy-bendamustine, which have little or no activity. Cytochrome P450 (CYP) 1A2 oxidation yields the active metabolites γ-hydroxybendamustine and N-desmethyl-bendamustine, at low concentrations, which contribute minimally to cytotoxicity. Minor involvement of CYP1A2 in bendamustine elimination suggests a low likelihood of drug-drug interactions with CYP1A2 inhibitors. Systemic exposure to bendamustine 120 mg/m(2) is comparable between adult and pediatric patients; age, race, and sex have been shown to have no significant effect on systemic exposure in either population. The effect of hepatic/renal impairment on bendamustine pharmacokinetics remains to be elucidated. Higher bendamustine concentrations may be associated with increased probability of nausea or infection. No clear exposure-efficacy response relationship has been observed. Altogether, the findings support dosing based on body surface area for most patient populations.

  19. Physiological, pharmacokinetic and liver metabolism comparisons between 3-, 6-, 12- and 18-month-old male Sprague Dawley rats under ketamine-xylazine anesthesia

    PubMed Central

    Giroux, Marie-Chantal; Santamaria, Raphael; Hélie, Pierre; Burns, Patrick; Beaudry, Francis; Vachon, Pascal

    2015-01-01

    The main objective of this study was to compare the physiological changes (withdrawal and corneal reflexes, respiratory and cardiac frequency, blood oxygen saturation, and rectal temperature) following intraperitoneal administration of ketamine (80 mg/kg) and xylazine (10 mg/kg) to 3-, 6-, 12- and 18-month-old male Sprague Dawley rats (n=6/age group). Plasma pharmacokinetics, liver metabolism, and blood biochemistry were examined for a limited number of animals to better explain anesthetic drug effects. Selected organs were collected for histopathology. The results for the withdrawal and corneal reflexes suggest a shorter duration and decreased depth of anesthesia with aging. Significant cardiac and respiratory depression, as well as decreased blood oxygen saturation, occurred in all age groups however, cardiac frequency was the most affected parameter with aging, since the 6-, 12-, and 18-month-old animals did not recuperate to normal values during recovery from anesthesia. Pharmacokinetic parameters (T1/2 and AUC) increased and drug clearance decreased with aging, which strongly suggests that drug exposure is associated with the physiological results. The findings for liver S9 fractions of 18-month-old rats compared with the other age groups suggest that following a normal ketamine anesthetic dose (80 mg/kg), drug metabolism is impaired, leading to a significant increase of drug exposure. In conclusion, age and related factors have a substantial effect on ketamine and xylazine availability, which is reflected by significant changes in pharmacokinetics and liver metabolism of these drugs, and this translates into shorter and less effective anesthesia with increasing age. PMID:26489361

  20. Elucidating the Plasma and Liver Pharmacokinetics of Simeprevir in Special Populations Using Physiologically Based Pharmacokinetic Modelling.

    PubMed

    Snoeys, Jan; Beumont, Maria; Monshouwer, Mario; Ouwerkerk-Mahadevan, Sivi

    2016-11-29

    The disposition of simeprevir (SMV) in humans is characterised by cytochrome P450 3A4 metabolism and hepatic uptake by organic anion transporting polypeptide 1B1/3 (OATP1B1/3). This study was designed to investigate SMV plasma and liver exposure upon oral administration in subjects infected with hepatitis C virus (HCV), in subjects of Japanese or Chinese origin, subjects with organ impairment and subjects with OATP genetic polymorphisms, using physiologically based pharmacokinetic modelling. Simulations showed that compared with healthy Caucasian subjects, SMV plasma exposure was 2.4-, 1.7-, 2.2- and 2.0-fold higher, respectively, in HCV-infected Caucasian subjects, in healthy Japanese, healthy Chinese and subjects with severe renal impairment. Further simulations showed that compared with HCV-infected Caucasian subjects, SMV plasma exposure was 1.6-fold higher in HCV-infected Japanese subjects. In subjects with OATP1B1 genetic polymorphisms, no noteworthy changes in SMV pharmacokinetics were observed. Simulations suggested that liver concentrations in Caucasians with HCV are 18 times higher than plasma concentrations.

  1. The Translational Repressor T-cell Intracellular Antigen-1 (TIA-1) is a Key Modulator of Th2 and Th17 Responses Driving Pulmonary Inflammation Induced by Exposure to House Dust Mite

    PubMed Central

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L.; Orduña, Antonio; Boyce, Joshua A.; Anderson, Paul J.

    2012-01-01

    T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. PMID:22525013

  2. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite.

    PubMed

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J

    2012-08-30

    T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. APPLICATION OF IN VITRO BIOTRANSFORMATION DATA AND PHARMACOKINETIC MODELING TO RISK ASSESSMENT

    EPA Science Inventory

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the ...

  4. Application of in Vitro Biotransformation Data and Pharmacokinetic Modeling to Risk Assessment

    EPA Science Inventory

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the ...

  5. Application of in Vitro Biotransformation Data and Pharmacokinetic Modeling to Risk Assessment

    EPA Science Inventory

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the ...

  6. Translation Theory and Translation Studies in China

    ERIC Educational Resources Information Center

    Guo, Qin

    2012-01-01

    This dissertation is a comparative study of "translation theory" and "translation studies" in China and the West. Its focus is to investigate whether there is translation theory in the Chinese tradition. My study begins with an examination of the debate in China over whether there has already existed a system of translation…

  7. Translation Theory and Translation Studies in China

    ERIC Educational Resources Information Center

    Guo, Qin

    2012-01-01

    This dissertation is a comparative study of "translation theory" and "translation studies" in China and the West. Its focus is to investigate whether there is translation theory in the Chinese tradition. My study begins with an examination of the debate in China over whether there has already existed a system of translation…

  8. Prediction of human pharmacokinetics in 2013 and beyond.

    PubMed

    Houston, J Brian

    2013-12-01

    The utility of in vitro generated kinetic data to provide quantitative prediction of in vivo pharmacokinetic behavior is well established and forms a cornerstone of many research projects in drug metabolism and disposition, particularly within the pharmaceutical industry. This issue provides several excellent examples of the use of in vitro techniques for prediction of human pharmacokinetics (PK). The general area of in vitro-in vivo extrapolation (IVIVE) is broad and hence the spectrum of topics covers various aspects drug clearance and distribution and drug-drug interactions. Some articles were commissioned whereas others were identified during the reviewing process. Overall they provide a snapshot of activity at the end of 2013. They document that whereas the translation of some in vitro approaches is now established, other areas are in their infancy and need more development.

  9. Malignant Mesothelioma: Time to Translate?

    PubMed Central

    Napolitano, Andrea; Carbone, Michele

    2016-01-01

    Malignant mesothelioma is an aggressive cancer largely associated with asbestos exposure. In this review, we will discuss the significant advancements in our understanding of its genetics and molecular biology and their translational relevance. Remarkable findings included the discovery of germline and somatic mutations of BRCA1 associated protein-1 (BAP1) in patients, and the genome-wide characterization of pathways altered in mesothelioma that could be potentially exploited to design novel therapeutic approaches. Nevertheless, the clinical translation of these molecular findings has been slow and insufficient. In order to rapidly move translation from the bench to the bedside, we believe that cooperative research efforts have to be further endorsed and promoted at all levels. PMID:28603777

  10. Pharmacokinetics of cefixime

    SciTech Connect

    Tonelli, A.P.

    1987-01-01

    The serum protein binding of cefixime, was concentration-dependent. Below 30 mcg/mL, free-fractions (fu) of cefixime in dog serum were approximately 8%. As cefixime concentrations increased, concomitant increases in free-fraction were observed. At 328 mcg/mL almost half of the cefixime in serum was not bound. To examine the effect of this concentration-dependent binding on cefixime's pharmacokinetics, four dogs were administered 50 mg/kg of the carbon 14-labeled drug by the oral and intravenous routes. The absolute bioavailability of cefixime was 48.0 +/- 17% (mean +/- SD). Absorption of radioactivity was 51.9 +/- 18%. Cefixime's elimination was a function of its free-fraction in serum and reabsorption of filtered drug by the kidney.

  11. Age and fentanyl pharmacokinetics.

    PubMed

    Bentley, J B; Borel, J D; Nenad, R E; Gillespie, T J

    1982-12-01

    Fentanyl pharmacokinetics was compared in two groups of adult patients, one group (n = 5) aged less than 50 years, and one group (n = 4) aged greater than 60 years. Despite equivalent doses of fentanyl (10 microgram/kg IV), serum drug concentrations were significantly higher in the older patient group. This was reflected by a prolonged terminal elimination half-life in the elderly compared with the younger patients (945 versus 265 minutes, respectively, p less than 0.005). Volumes of the central compartment and volumes of drug distribution were similar in both patient groups. However, drug clearance was markedly decreased in the elderly (265 versus 991 ml/min, p less than 0.005). These data suggest that a given dose of fentanyl will be clinically effective for a longer period in older patients than in younger patients.

  12. Pharmacokinetic evaluation of pramipexole.

    PubMed

    Antonini, Angelo; Calandrella, Daniela

    2011-10-01

    Immediate-release (IR) pramipexole dihydrochloride is indicated for the treatment of signs and symptoms of idiopathic Parkinson's disease (PD). It is administered alone (without levodopa) or in combination with levodopa, during the entire progress of the disease, up to an advanced stage. Currently, it is also indicated for the treatment of moderate-to-severe primary restless legs syndrome (RLS). An extended-release (ER) formulation of pramipexole has been developed to allow a once-daily administration and to provide more stable dopaminergic stimulation in PD patients. This review summarizes the overall pharmacokinetic profile of pramipexole for both the IR and ER formulations. Also discussed are the clinically relevant determinants of pramipexole peripheral pharmacokinetics and the potential role of genetic and clinical determinants in drug efficacy. Pramipexole is a non-ergot agonist with selective affinity for dopamine receptors of the D2 subfamily, in particular D3. Pramipexole has a very low affinity for serotoninergic 5-HT2A and 5-HT2B receptors, as well as D1-type receptors. Furthermore, it does not carry the risk to induce valvular heart disease or pulmonary and retroperitoneal fibrosis, seen with long-term use of the ergot-derived dopamine agonists. The recent introduction of a once-daily formulation poses significant advantages for patients, reflected by relatively stable plasma levels. The most obvious benefit is convenience of use and better adherence to treatment schedule. Additional advantages could include the opportunity to provide more continuous drug delivery in a fashion that could help minimize dyskinesia risk, if the drug is used early in the disease course.

  13. The pharmacokinetics of meloxicam in vultures.

    PubMed

    Naidoo, V; Wolter, K; Cromarty, A D; Bartels, P; Bekker, L; McGaw, L; Taggart, M A; Cuthbert, R; Swan, G E

    2008-04-01

    Vulture populations across the Asian subcontinent have declined dramatically in the last 15 years and are now on the verge of extinction. Although the cause of the population decline was initially unknown, the decrease has recently been conclusively linked to the use of the nonsteroidal anti-inflammatory drug diclofenac in cattle that inadvertently ended up in the vulture food chain. With the vulture numbers continuing to decline by up to 48% a year, the Indian, Nepali and Pakistan governments have recently banned the manufacture and importation of veterinary diclofenac. They have also suggested meloxicam as an alternate anti-inflammatory for use in cattle. This recommendation was based on extensive acute safety studies in the African White-backed vulture (Gyps africanus), which evaluated worst case scenarios of maximum intake based on a once in three day feeding pattern. However, the possible cumulative pharmacokinetic and pharmacodynamic effects in vultures receiving multiple daily doses of meloxicam over time were not assessed. At present very little pharmacokinetic or pharmacodynamic information is available to add further support for the safety of meloxicam in this animal species. This article discusses the oral and intramuscular pharmacokinetics of meloxicam in Cape Griffon vultures (Gyps coprotheres). Therapeutic drug monitoring was also undertaken in White-backed, Egyptian (Neophron pernopterus) and one Lappet Faced vulture (Torgos tracheliotos). In all these species, meloxicam was characterized by a short half-life of elimination. The rapid metabolism of meloxicam in combination with a short duration of effect in the studied species Gyps vultures shown in this study makes it unlikely that the drug could accumulate. This confirms the safety of repeated exposure to meloxicam in vultures of this genus.

  14. Clinical pharmacokinetics of therapeutic monoclonal antibodies.

    PubMed

    Keizer, Ron J; Huitema, Alwin D R; Schellens, Jan H M; Beijnen, Jos H

    2010-08-01

    Monoclonal antibodies (mAbs) have been used in the treatment of various diseases for over 20 years and combine high specificity with generally low toxicity. Their pharmacokinetic properties differ markedly from those of non-antibody-type drugs, and these properties can have important clinical implications. mAbs are administered intravenously, intramuscularly or subcutaneously. Oral administration is precluded by the molecular size, hydrophilicity and gastric degradation of mAbs. Distribution into tissue is slow because of the molecular size of mAbs, and volumes of distribution are generally low. mAbs are metabolized to peptides and amino acids in several tissues, by circulating phagocytic cells or by their target antigen-containing cells. Antibodies and endogenous immunoglobulins are protected from degradation by binding to protective receptors (the neonatal Fc-receptor [FcRn]), which explains their long elimination half-lives (up to 4 weeks). Population pharmacokinetic analyses have been applied in assessing covariates in the disposition of mAbs. Both linear and nonlinear elimination have been reported for mAbs, which is probably caused by target-mediated disposition. Possible factors influencing elimination of mAbs include the amount of the target antigen, immune reactions to the antibody and patient demographics. Bodyweight and/or body surface area are generally related to clearance of mAbs, but clinical relevance is often low. Metabolic drug-drug interactions are rare for mAbs. Exposure-response relationships have been described for some mAbs. In conclusion, the parenteral administration, slow tissue distribution and long elimination half-life are the most pronounced clinical pharmacokinetic characteristics of mAbs.

  15. Population pharmacokinetics of bevacizumab in cancer patients with external validation.

    PubMed

    Han, Kelong; Peyret, Thomas; Marchand, Mathilde; Quartino, Angelica; Gosselin, Nathalie H; Girish, Sandhya; Allison, David E; Jin, Jin

    2016-08-01

    Bevacizumab is approved for various cancers. This analysis aimed to comprehensively evaluate bevacizumab pharmacokinetics and the influence of patient variables on bevacizumab pharmacokinetics. Rich and sparse bevacizumab serum concentrations were collected from Phase I through IV studies in early and metastatic cancers. Bevacizumab was given intravenously as single agent or in combination with chemotherapy for single- and multiple-dose schedules. Model-building used 8943 bevacizumab concentrations from 1792 patients with colon/colorectal, non-small cell lung, kidney, pancreatic, breast, prostate and brain cancer. Bevacizumab doses ranged from 1 to 20 mg/kg given once every 1, 2 or 3 weeks. A two-compartment model best described the data. The population estimates of clearance (CL), central volume of distribution (V1) and half-life for a typical 70-kg patient were 9.01 mL/h, 2.88 L and 19.6 days. CL and V1 increased with body weight and were higher in males than females by 14 and 18 %, respectively. CL decreased with increasing albumin and decreasing alkaline phosphatase. The final model was externally validated using 1670 concentrations from 146 Japanese patients that were not used for model-building. Mean prediction errors were -2.1, 3.1 and 1.0 % for concentrations, CL and V1, respectively, confirming adequate predictive performance. A robust bevacizumab pharmacokinetic model was developed and externally validated, which may be used to simulate bevacizumab exposure to optimize dosing strategies. Asian and non-Asian patients exhibited similar bevacizumab pharmacokinetics. Given the similarity in pharmacokinetics among monoclonal antibodies, this may inform pharmacokinetic studies in different ethnic groups for other therapeutic antibodies.

  16. Comparative Pharmacokinetics of Chlorpyrifos versus its Major Metabolites Following Oral Administration in the Rat

    SciTech Connect

    Busby-Hjerpe, Andrea L.; Campbell, James A.; Smith, Jordan N.; Lee, Sookwang; Poet, Torka S.; Barr, Dana; Timchalk, Charles

    2010-01-31

    Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of in vivo metabolism and environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. Hence, urinary biomonitoring of TCPy, DEP and DETP may be reflective of an individual’s contact with both the parent pesticide and exposure to these metabolites. In the current study, simultaneous dosing of 13C- or 2H- isotopically labeled CPF (13Clabeled CPF, 5 13C on the TCPy ring; or 2H-labeled CPF, diethyl-D10 (deuterium labeled) on the side chain) were exploited to directly compare the pharmacokinetics and metabolism of CPF with TCPy, and DETP. Individual metabolites were co-administered (oral gavage) with the parent compound at equal molar doses (14 μmol/kg; ~5mg/kg CPF). The key objective in the current study was to quantitatively evaluate the pharmacokinetics of the individual metabolites relative to their formation following a dose of CPF. Major differences in the pharmacokinetics between CPF and metabolites doses were observed within the first 3 h of exposure, due to the required metabolism of CPF to initially form TCPy and DETP. Nonetheless, once a substantial amount of CPF has been metabolized (≥ 3 h post-dosing) pharmacokinetics for both treatment groups and metabolites were very comparable. Urinary excretion rates for orally administered TCPy and DETP relative to 13C-CPF or 2H-CPF derived 13C-TCPy and 2H-DETP were consistent with blood pharmacokinetics, and the urinary clearance of metabolite dosed groups were comparable with the results for the 13C- and 2H-CPF groups. Since the pharmacokinetics of the individual metabolites were not modified by co-exposure to 3 CPF; it suggests that environmental exposure to low dose mixtures of pesticides and metabolites will not impact the pharmacokinetics of either.

  17. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity.

    PubMed

    Ventrice, Pasquale; Ventrice, Domenica; Russo, Emilio; De Sarro, Giovambattista

    2013-07-01

    Phthalates are chemicals widely used in industry and the consequences for human health caused by exposure to these agents are of significant current interest. Phthalate toxicity targets the reproductive and respiratory systems primarily, but they also may be involved in the processes of carcinogenesis and even in autism spectrum disorders. This article discusses the molecular and cellular mechanisms involved in organ toxicity of phthalates; furthermore, pharmacokinetic, chemistry and the European regulation are summarized.

  18. Raltegravir Pharmacokinetics in Neonates Following Maternal Dosing

    PubMed Central

    Clarke, Diana F.; Acosta, Edward P.; Rizk, Matthew L.; Bryson, Yvonne J.; Spector, Stephen A.; Mofenson, Lynne M.; Handelsman, Edward; Teppler, Hedy; Welebob, Carolee; Persaud, Deborah; Cababasay, Mae P.; Wang, JiaJia; Mirochnick, Mark

    2014-01-01

    IMPAACT P1097 was a multicenter trial to determine washout pharmacokinetics and safety of in utero/intrapartum exposure to raltegravir in infants born to HIV-infected pregnant women receiving raltegravir-based antiretroviral therapy. Twenty-two mother-infant pairs were enrolled; evaluable pharmacokinetic data was available from 19 mother-infant pairs. Raltegravir readily crossed the placenta, with median cord blood/maternal delivery plasma raltegravir concentration ratio 1.48 (range, 0.32–4.33). Raltegravir elimination was highly variable and extremely prolonged in some infants; [median t½ 26.6 hours (range 9.3–184 hours)]. Prolonged raltegravir elimination likely reflects low neonatal UGT1A1 enzyme activity and enterohepatic recirculation. Excessive raltegravir concentrations must be avoided in the neonate, since raltegravir at high plasma concentrations may increase the risk of bilirubin neurotoxicity. Sub-therapeutic concentrations, which could lead to inadequate viral suppression and development of raltegravir resistance, must be avoided as well. Two ongoing IMPAACT studies are investigating further the pharmacology of raltegravir in neonates. PMID:25162819

  19. Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse.

    PubMed

    Cho, A K; Melega, W P; Kuczenski, R; Segal, D S

    2001-02-01

    Although the behavioral consequences of methamphetamine (METH) abuse have been extensively documented, a more precise and thorough understanding of underlying neurobiological mechanisms still requires the use of animal models. To study these biochemical processes in experimental animals requires consideration for the broad range of human METH abuse patterns and the many factors that have been identified to profoundly influence the behavioral and neurochemical effects of exposure to METH-like stimulants. One potentially critical issue relates to pharmacokinetic differences between the species. In this review, METH plasma pharmacokinetic profiles after single and multiple dose intravenous METH administration are compared for the rat and human. Significant differences in elimination half-life between the two species (t1/2: rat-70 min, human-12 h) result in markedly dissimilar profiles of METH exposure. However, the plasma profile of a human METH binge pattern can be approximated in the rat by increasing METH dose frequency. Consideration of METH pharmacokinetics in animal models should permit a closer simulation of the temporal profile of METH exposure in the human CNS and should provide further insight into the mechanisms contributing to the addiciton and psychopathology associated with METH abuse.

  20. Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species.

    PubMed

    Lundberg, Alycen P; Francis, Joshua M; Pajak, Malgorzata; Parkinson, Elizabeth I; Wycislo, Kathryn L; Rosol, Thomas J; Brown, Megan E; London, Cheryl A; Dirikolu, Levent; Hergenrother, Paul J; Fan, Timothy M

    2016-12-14

    Isobutyl-deoxynyboquinone (IB-DNQ) is a selective substrate for NAD(P)H:quinone oxidoreductase (NQO1), an enzyme overexpressed in many solid tumors. Following activation by NQO1, IB-DNQ participates in a catalytic futile reduction/reoxidation cycle with consequent toxic reactive oxygen species generation within the tumor microenvironment. To elucidate the potential of IB-DNQ to serve as a novel anticancer agent, in vitro studies coupled with in vivo pharmacokinetic and toxicologic investigations in the domestic felid species were conducted to investigate the tractability of IB-DNQ as a translationally applicable anticancer agent. First, using feline oral squamous cell carcinoma (OSCC) as a comparative cancer model, expressions of NQO1 were characterized in not only human, but also feline OSCC tissue microarrays. Second, IB-DNQ mediated cytotoxicity in three immortalized feline OSCC cell lines were studied under dose-dependent and sequential exposure conditions. Third, the feasibility of administering IB-DNQ at doses predicted to achieve cytotoxic plasma concentrations and biologically relevant durations of exposure were investigated through pharmacokinetic and tolerability studies in healthy research felines. Intravenous administration of IB-DNQ at 1.0-2.0 mg/kg achieved peak plasma concentrations and durations of exposure reaching or exceeding predicted in vitro cytotoxic concentrations. Clinical adverse side effects including ptyalism and tachypnea exhibited during and post-IV infusion of IB-DNQ were transient and tolerable. Additionally, IB-DNQ administration did not produce acute or delayed-onset unacceptable hematologic, non-hematologic, or off-target oxidative toxicities. Collectively, the findings reported here within provide important safety and pharmacokinetic data to support the continued development of IB-DNQ as a novel anticancer strategy for NQO1 expressing cancers.

  1. Literature in Translation.

    ERIC Educational Resources Information Center

    Snodgrass, Mary Ellen

    An examination of literature in translation is vital to literary interpretation and, ultimately, essential to mutual understanding among peoples from different cultures. Teaching translations requires consideration of linguistic, social, and temporal areas. Translations require alterations in language since languages never translate precisely from…

  2. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations.

    PubMed Central

    Dorman, D C; Allen, S L; Byczkowski, J Z; Claudio, L; Fisher, J E; Fisher, J W; Harry, G J; Li, A A; Makris, S L; Padilla, S; Sultatos, L G; Mileson, B E

    2001-01-01

    We review pharmacokinetic and pharmacodynamic factors that should be considered in the design and interpretation of developmental neurotoxicity studies. Toxicologic effects on the developing nervous system depend on the delivered dose, exposure duration, and developmental stage at which exposure occurred. Several pharmacokinetic processes (absorption, distribution, metabolism, and excretion) govern chemical disposition within the dam and the nervous system of the offspring. In addition, unique physical features such as the presence or absence of a placental barrier and the gradual development of the blood--brain barrier influence chemical disposition and thus modulate developmental neurotoxicity. Neonatal exposure may depend on maternal pharmacokinetic processes and transfer of the xenobiotic through the milk, although direct exposure may occur through other routes (e.g., inhalation). Measurement of the xenobiotic in milk and evaluation of biomarkers of exposure or effect following exposure can confirm or characterize neonatal exposure. Physiologically based pharmacokinetic and pharmacodynamic models that incorporate these and other determinants can estimate tissue dose and biologic response following in utero or neonatal exposure. These models can characterize dose--response relationships and improve extrapolation of results from animal studies to humans. In addition, pharmacologic data allow an experimenter to determine whether exposure to the test chemical is adequate, whether exposure occurs during critical periods of nervous system development, whether route and duration of exposure are appropriate, and whether developmental neurotoxicity can be differentiated from direct actions of the xenobiotic. PMID:11250810

  3. Metoprolol Dose Equivalence in Adult Men and Women Based on Gender Differences: Pharmacokinetic Modeling and Simulations

    PubMed Central

    Eugene, Andy R.

    2016-01-01

    Recent meta-analyses and publications over the past 15 years have provided evidence showing there are considerable gender differences in the pharmacokinetics of metoprolol. Throughout this time, there have not been any research articles proposing a gender stratified dose-adjustment resulting in an equivalent total drug exposure. Metoprolol pharmacokinetic data was obtained from a previous publication. Data was modeled using nonlinear mixed effect modeling using the MONOLIX software package to quantify metoprolol concentration–time data. Gender-stratified dosing simulations were conducted to identify equivalent total drug exposure based on a 100 mg dose in adults. Based on the pharmacokinetic modeling and simulations, a 50 mg dose in adult women provides an approximately similar metoprolol drug exposure to a 100 mg dose in adult men. PMID:28035289

  4. Pharmacokinetics and PBPK Models

    SciTech Connect

    Corley, Richard A.

    2010-07-01

    Since the landmark report Pesticides in the Diets of Infants and Children (NRC 1993), children at all stages of development, from fertilization through postnatal maturation, have explicitly been identified as an area of emphasis in human health risk assessments. Exposure to drugs or chemicals at any point in development has the potential for causing irreversible changes that can be unique to each stage of development (Grabowski and Daston 1983; Rodier 1978; Wilson 1973). While exposures of a developing embryo or fetus are mediated by the mother, postnatal exposures consist of maternal influences via breastfeeding as well as environmental factors (Figure 1). As a result, risk assessments for developmental toxicity must consider the sources as well as timing of potential exposures to adequately protect children when they may be the most exposed or the most sensitive to adverse consequences (NRC 1993).

  5. Narcissism lost: on translating and being translated.

    PubMed

    Carneiro, Maria Inês N E; Brakel, Arthur

    2010-08-01

    The authors present a detailed account of the experiences shared in translating and having one's work translated. Carneiro maintains that, in order to communicate with their readers, writers should relinquish the narcissistic satisfaction they derive from their texts in the original. Beyond this, she feels that, owing to a good understanding between her and her translator, the creativity in her original text persists in the translation. Brakel introduces himself to the IJPA readership and shows how he works when translating the cultural and linguistic nuances and peculiarities of Brazilian Portuguese. He concludes with some thoughts about the affect he experiences from his original work and the work he has translated. Copyright © 2009 Institute of Psychoanalysis.

  6. The impact of sex and contraceptive therapy on the plasma and intracellular pharmacokinetics of zidovudine.

    PubMed

    Aweeka, Francesca T; Rosenkranz, Susan L; Segal, Yoninah; Coombs, Robert W; Bardeguez, Arlene; Thevanayagam, Lourdes; Lizak, Patricia; Aberg, Judith; Watts, D Heather

    2006-09-11

    Zidovudine remains part of combination antiretroviral therapy. Pharmacological studies rely on quantitation of active triphosphates in peripheral blood mononuclear cells. This study evaluated the impact of female sex and contraceptive therapy on zidovudine plasma and intracellular pharmacokinetics and the impact of contraceptive therapy on HIV viral load. Serial plasma and intracellular zidovudine pharmacokinetics following oral and intravenous dosing were determined in 18 men and 20 women treated with zidovudine. Women could repeat pharmacokinetics assessment following 2 months oral or injectable contraceptive therapy. Zidovudine plasma and intracellular mono-, di- and triphosphate concentrations were determined by liquid chromatography tandem mass spectrometry. Plasma and cervical viral loads were determined preceding and following 2 months of contraceptive therapy in women. Men exhibited higher area under the concentration versus time curve for intracellular zidovudine and zidovudine-monophosphate following oral and intravenous dosing and higher zidovudine triphosphate following oral dosing. There was no difference between men and women in plasma zidovudine parameters. Furthermore, contraceptive therapy had no effect on zidovudine plasma or intracellular pharmacokinetics or on plasma or cervical HIV-1 RNA levels. Using an optimized pharmacokinetic design, this study indicated men exhibit significantly higher zidovudine-monophosphate and zidovudine-triphosphate exposure following zidovudine oral administration, having implications for drug toxicity and overall tolerance of zidovudine therapy. The lack of an effect of contraceptive therapy on zidovudine pharmacokinetics is surprising in light of previous pharmacokinetic studies for drugs eliminated primarily through glucuronidation. Contraceptive therapy had no effect on plasma or cervical viral load, results consistent with previous findings.

  7. Pyrimethamine pharmacokinetics in human immunodeficiency virus-positive patients seropositive for Toxoplasma gondii.

    PubMed Central

    Jacobson, J M; Davidian, M; Rainey, P M; Hafner, R; Raasch, R H; Luft, B J

    1996-01-01

    Pyrimethamine pharmacokinetics were studied in 11 human immunodeficiency virus (HIV)-positive patients who were seropositive for exposure to Toxoplasma gondii and were taking zidovudine (AIDS Clinical Trials Group Protocol 102). Pyrimethamine was administered at 50 mg daily for 3 weeks to achieve steady state, and pharmacokinetic profiles were determined after administration of the last dose. Noncompartmental and compartmental analyses were performed. Population pharmacokinetic analysis assuming a one-compartment model yielded the following estimates: area under the 24-h concentration-time curve, 42.7 +/- 12.3 micrograms.h/ml; halflife, 139 +/- 34 h; clearance, 1.28 +/- 0.41 liters/h; volume of distribution, 246 +/- 641; and absorption rate constant, 1.5 +/- 1.3 liters/h. These values are similar to those seen in subjects without HIV infection. Pyrimethamine pharmacokinetics did not differ significantly in those subjects who were intravenous drug users. Adverse effects were noted in 73% of those initially enrolled in this study, leading to discontinuation for 38%. No association was noted between pyrimethamine levels and the incidence of adverse events. No significant differences were seen in zidovudine pharmacokinetic parameters obtained from studies performed before and during treatment with pyrimethamine. In summary, pyrimethamine exhibited pharmacokinetics in HIV-infected patients that were similar to those in non-HIV-infected subjects and it did not alter the pharmacokinetics of zidovudine in these patients. PMID:8726001

  8. Pharmacokinetics and Pharmacodynamics in Space

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Cintron, Nitza M.

    1990-01-01

    The Pharmacokinetics and Pharmacodynamics Panel met on 29-30 Aug. 1988 at the Lunar and Planetary Institute in Houston, Texas to discuss pharmacokinetic and pharmacodynamic implications of space flight and make recommendations for operational and research strategies. Based on the knowledge available on the physiological changes that occur during space flight, the dependence of pharmacokinetics on physiological factors, and the therapeutic requirements for future space missions, the panel made several recommendations for research. It was suggested that using medications available with a large (wide) therapeutic window will avoid unforeseen therapeutic consequences during flight. The sequence for conducting research was outlined as follows: (1) identify ground-based simulation models (e.g., antiorthostatic bed rest) for conducting pharmacokinetic and pharmacodynamic research; (2) estimate parametric changes in these models using pharmacologic agents that have different pharmacokinetic characteristics and a narrow therapeutic index; (3) verify these findings during flight; and (4) develop and identify appropriate and effective drug delivery systems, dosage forms, and regimens. The panel recommended gaining a thorough understanding of the pharmacokinetic deviations of medications that have a narrow therapeutic index (e.g. cardiovascular drugs and sedative hypnotics) in order to ensure safe and effective treatment during flight with these agents. It was also suggested that basic information on physiological factors such as organ blood flow, protein composition and binding, tissue distribution, and metabolism by hepatic enzymes must be accumulated by conducting ground-based animal and human studies using models of weightlessness. This information will be useful to construct and identify physiologically based pharmacokinetic models that can provide valuable information on the pharmacodynamic consequences of space flight and aid in identifying appropriate therapeutic

  9. Ocular topotecan pharmacokinetics following topical administration to rabbits for diffused anterior retinoblastoma.

    PubMed

    Taich, Paula; Del Sole, Maria; Buontempo, Fabian; Williams, Gustavo; Winter, Ursula; Sgroi, Mariana; Chantada, Guillermo; Schaiquevich, Paula

    2017-05-01

    We characterized and compared the in-vivo absorption of topotecan into the aqueous humor after instillation of aqueous and ointment formulations. A lanolin/petrolatum ointment was used. New Zealand rabbits were instilled with topotecan solution (6 μg, group A), a single 10 μg dose of topotecan ointment (group B) or with five 10 μg doses of topotecan ointment (group C). Aqueous humor samples were collected at different times. Corneal samples were collected only for group A. Topotecan was quantified using HPLC, and pharmacokinetic parameters were calculated. Acute corneal epithelial toxicity was assessed after multiple instillations of topotecan ointment. Total topotecan maximum aqueous humor concentration (Cmax ) was 16.1, 69.9 and 287 ng/ml in group A, B and C, respectively. A single dose of topotecan ointment increased threefold and sevenfold the aqueous humor Cmax , and exposure compared to the aqueous formulation. Aqueous humor concentrations from group C eyes were substantially above the cytotoxic concentration for retinoblastoma cells. No corneal toxicity was evident after ointment instillation. Topotecan penetrated into the aqueous humor of the rabbit eye after multiple doses of an ointment in concentrations pharmacologically active against retinoblastoma cells without eliciting acute toxicity. Topotecan ointment may translate to the clinical treatment of anterior segment disseminated retinoblastoma. © 2016 Royal Pharmaceutical Society.

  10. Pharmacokinetics and pharmacodynamics of intrathecal ziconotide in chronic pain patients.

    PubMed

    Wermeling, Daniel; Drass, Michael; Ellis, David; Mayo, Martha; McGuire, Dawn; O'Connell, Damian; Hale, Victoria; Chao, Stella

    2003-06-01

    The pharmacokinetics and pharmacodynamics of ziconotide were assessed over a 48-hour period following intrathecal (i.t.) administration (1, 5, 7.5, or 10 micrograms) to 22 patients with chronic, nonmalignant pain. Plasma and cerebrospinal fluid (CSF) samples were obtained over a 24-hour period. Analgesic efficacy was monitored using Visual Analog Scale of Pain Intensity (VASPI) and Category Pain Relief Scores (CPRS) measurements. Pharmacokinetic (PK) parameters were calculated by noncompartmental methods. Plasma ziconotide data were insufficient for PK calculations. In CSF, the median half-life of ziconotide was 4.5 hours. The median CSF clearance and volume of distribution were 0.26 mL/min and 99 mL, respectively. CSF pharmacokinetics of ziconotide were linear, based on cumulative exposure and peak CSF concentrations. A dose-related analgesia was observed. Pharmacokinetic-pharmacodynamic efficacy and safety analyses showed that higher CSF ziconotide concentrations were generally associated with analgesia and increased incidence of nervous system adverse events following a 1-hour i.t. infusion.

  11. Clinical Pharmacokinetics of Antiretroviral Drugs in Older Persons

    PubMed Central

    Schoen, John C.; Erlandson, Kristine Mace

    2013-01-01

    Introduction Combination antiretroviral therapy has enabled HIV infected persons to reach older ages in high numbers. Hepatic and renal changes that normally occur with advancing age occur earlier and with higher incidence in HIV-infected individuals. A limited number of prospective controlled studies have demonstrated small reductions (17% to 41%) in lopinavir, atazanavir, and lamivudine clearance in older versus younger adults. A much larger number of retrospective studies in adults (age range ~20 to 60 years), including all antiretroviral drugs, have evaluated age as a covariate for pharmacokinetics. Most studies did not detect substantial associations between drug exposures and age. Areas Covered This review summarizes antiretroviral drug pharmacokinetics in older persons. The authors review articles from PubMed (search terms: elderly, antiretroviral, pharmacokinetics) in addition to the bibliographies of those selected. Expert Opinion The evidence to date does not support major pharmacokinetic changes in adults between ~20 and 60 years of age. However, additional prospective, well-controlled studies are needed in more persons > 60 years, including those with frailty and comorbidities, with assessment of unbound drug clearance, and incorporation of adherence, pharmacogenetics, and concomitant medications. Until then, guidelines for drug-drug interactions and dosing in renal and hepatic impairment should be followed in older HIV infected individuals. PMID:23514375

  12. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  13. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  14. Pharmacokinetic study of sulbactomax.

    PubMed

    Payasi, Anurag; Chaudhary, Manu; Gupta, Ankush; Dwivedi, Vivek Kumar; Bhatnagar, Anuj

    2010-08-01

    We have evaluated pharmacokinetics of a fixed dose combination (FDC) of ceftriaxone and sulbactam (2:1) or sulbactomax in eight healthy volunteers. A 1.5 g dose of sulbactomax, 1 g dose of ceftriaxone and 0.5 g sulbactam were given intravenously in a balanced two-ways cross-over study. Serially collected plasma sample was analyzed for ceftriaxone and sulbactam by high performance liquid chromatography (HPLC). The mean peaks of ceftriaxone and sulbactam concentrations in plasma were 152.06+/-6.65 microg/ml and 21.32+/-1.80 microg/ml, respectively and plasma half-lives for ceftriaxone and sulbactam were 5.2+/-0.35 hr and 0.94+/-0.038 hr, respectively. The AUC0-24 for ceftriaxone and sulbactam was 760.16+/-27.68 microg.hr/ml and 20.74+/-2.34 microg.hr/ml, respectively, with elimination rate constant of 0.133+/-0.009 hr(-1) and 0.732+/-0.029 hr(-1), respectively. The kinetics of ceftriaxone and sulbactum did not change in combination as compared to the alone treatment. Also, concentration of the ceftriaxone after 24 hr is higher than the minimum inhibitory concentration (MIC) of the most of the gram positive and gram negative bacteria indicating that one dose in a day is sufficient to treat the disease caused by these organisms.

  15. Population pharmacokinetics of daptomycin.

    PubMed

    Dvorchik, Barry; Arbeit, Robert D; Chung, Julia; Liu, Susan; Knebel, William; Kastrissios, Helen

    2004-08-01

    Data from subjects in nine phase 1 (n = 153) and six phase 2/3 (n = 129) clinical trials were combined to identify factors contributing to interindividual variability in daptomycin pharmacokinetics (PK). Over 30 covariates were considered. A two-compartment model with first-order elimination provided the best fit for data on daptomycin concentrations in plasma over time. In the final population PK model, daptomycin plasma clearance (CL) was a function of renal function, body temperature, and sex. Of these factors, renal function contributed most significantly to interindividual variability. CL varied linearly with the estimated creatinine clearance. CL among dialysis subjects was approximately one-third that of healthy subjects (0.27 versus 0.81 liter/h). CL in females was 80% that in males; however, in clinical trials, the outcome was not affected by sex and therefore this effect is not considered clinically meaningful. The relationship with body temperature should be interpreted cautiously since the analysis included only a limited number of subjects who were hyperthermic. The volume of distribution of the peripheral compartment (V2) and intercompartmental clearance (Q) were linearly related to body weight. V2 increased approximately twofold in the presence of an acute infection. No factors were identified that significantly impacted V1. This analysis supports the dosing of daptomycin on a milligram-per-kilogram-of-body-weight basis and suggests that modified dosing regimens are indicated for patients with severe renal disease and for those undergoing dialysis.

  16. Population pharmacokinetics. A regulatory perspective.

    PubMed

    Sun, H; Fadiran, E O; Jones, C D; Lesko, L; Huang, S M; Higgins, K; Hu, C; Machado, S; Maldonado, S; Williams, R; Hossain, M; Ette, E I

    1999-07-01

    The application of population approaches to drug development is recommended in several US Food and Drug Administration (FDA) guidance documents. Population pharmacokinetic (and pharmacodynamic) techniques enable identification of the sources of inter- and intra-individual variability that impinge upon drug safety and efficacy. This article briefly discusses the 2-stage approach to the estimation of population pharmacokinetic parameters, which requires serial multiple measurements on each participant, and comprehensively reviews the nonlinear mixed-effects modelling approach, which can be applied in situations where extensive sampling is not done on all or any of the participants. Certain preliminary information, such as the compartment model used in describing the pharmacokinetics of the drug, is required for a population pharmacokinetic study. The practical design considerations of the location of sampling times, number of samples/participants and the need to sample an individual more than once should be borne in mind. Simulation may be useful for choosing the study design that will best meet study objectives. The objectives of the population pharmacokinetic study can be secondary to the objectives of the primary clinical study (in which case an add-on population pharmacokinetic protocol may be needed) or primary (when a stand-alone protocol is required). Having protocols for population pharmacokinetic studies is an integral part of 'good pharmacometric practice'. Real-time data assembly and analysis permit an ongoing evaluation of site compliance with the study protocol and provide the opportunity to correct violations of study procedures. Adequate policies and procedures should be in place for study blind maintenance. Real-time data assembly creates the opportunity for detecting and correcting errors in concentration-time data, drug administration history and covariate data. Population pharmacokinetic analyses may be undertaken in 3 interwoven steps: exploratory

  17. Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats.

    PubMed

    Cheng, Yung-Yi; Tsai, Tung-Hu

    2017-02-08

    The International Agency for Research on Cancer (IARC) demonstrated rhodamine B as a potential carcinogen in 1978. Nevertheless, rhodamine B has been illegally used as a colorant in food in many countries. Few pharmacokinetic and toxicological investigations have been performed since the first pharmacokinetic study on rhodamine B in 1961. The aims of this study were to develop a simple and sensitive high-performance liquid chromatography method with fluorescence detection for the quantitative detection of rhodamine B in the plasma and organs of rats and to estimate its pharmacokinetics and biodistribution. The results demonstrated that the oral bioavailabilities of rhodamine B were 28.3 and 9.8% for the low-dose and high-dose exposures, respectively. Furthermore, rhodamine B was highly accumulated in the liver and, to a lesser extent, the kidney, but was undetectable in the brain. These results provide useful information for improving the pharmacokinetics and biodistribution of rhodamine B, supporting additional food safety evaluations.

  18. RECONSTRUCTING POPULATION EXPOSURES FROM DOSE BIOMARKERS: INHALATION OF TRICHLOROETHYLENE (TCE) AS A CASE STUDY

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) modeling is a well-established toxicological tool designed to relate exposure to a target tissue dose. The emergence of federal and state programs for environmental health tracking and the availability of exposure monitoring through bi...

  19. RECONSTRUCTING EXPOSURE SCENARIOS USING DOSE BIOMARKERS - AN APPLICATION OF BAYESIAN UNCERTAINTY ANALYSIS

    EPA Science Inventory

    We use Bayesian uncertainty analysis to explore how to estimate pollutant exposures from biomarker concentrations. The growing number of national databases with exposure data makes such an analysis possible. They contain datasets of pharmacokinetic biomarkers for many polluta...

  20. RECONSTRUCTING POPULATION EXPOSURES FROM DOSE BIOMARKERS: INHALATION OF TRICHLOROETHYLENE (TCE) AS A CASE STUDY

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) modeling is a well-established toxicological tool designed to relate exposure to a target tissue dose. The emergence of federal and state programs for environmental health tracking and the availability of exposure monitoring through bi...

  1. RECONSTRUCTING EXPOSURE SCENARIOS USING DOSE BIOMARKERS - AN APPLICATION OF BAYESIAN UNCERTAINTY ANALYSIS

    EPA Science Inventory

    We use Bayesian uncertainty analysis to explore how to estimate pollutant exposures from biomarker concentrations. The growing number of national databases with exposure data makes such an analysis possible. They contain datasets of pharmacokinetic biomarkers for many polluta...

  2. Impact of inhalational exposure to ethanol fuel on the pharmacokinetics of verapamil, ibuprofen and fluoxetine as in vivo probe drugs for CYP3A, CYP2C and CYP2D in rats.

    PubMed

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; de Moraes, Natália Valadares; Lepera, José Salvador

    2015-10-01

    Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats.

  3. Pharmacokinetic interaction of intravenous fentanyl with ketoconazole.

    PubMed

    Ziesenitz, Victoria C; König, Sonja K; Mahlke, Nina S; Skopp, Gisela; Haefeli, Walter E; Mikus, Gerd

    2015-06-01

    Fentanyl is primarily metabolized by CYP3A, but has also been suggested to act as a weak inhibitor of CYP3A. We investigated the influence of CYP3A inhibition by ketoconazole on the pharmacokinetics of intravenously administered fentanyl and the effect of fentanyl on CYP3A activity. A prospective, open-label, randomized, monocentre, crossover study was conducted in 16 healthy volunteers. They received fentanyl alone (5 microgram per kilogram) or fentanyl plus ketoconazole (200 milligram orally B.I.D. over 2 days). Naloxone (2 × 0.2 milligram i.v.) was given simultaneously with fentanyl to mitigate any opioid effect. Midazolam was administered as a CYP3A probe drug. Fentanyl and its metabolites were quantified by LC/MS/MS in blood and urine samples obtained over 24 hour. Exposure of fentanyl (AUC0- ∞ ) was significantly increased to 133% and systemic clearance was reduced to 78% by ketoconazole, norfentanyl formation was significantly delayed and partial metabolic clearance decreased to 18%. Fentanyl had no influence on midazolam exposure and CYP3A activity whereas ketoconazole decreased CYP3A activity to 13%. Although fentanyl N-dealkylation is substantially inhibited by ketoconazole, exposure of fentanyl itself increased by one third only. Clinically fentanyl dosage adjustments may become necessary when ketoconazole or other strong CYP3A inhibitors are given simultaneously. Fentanyl itself does not influence CYP3A activity.

  4. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients.

    PubMed

    Yu, Huixin; van Erp, Nielka; Bins, Sander; Mathijssen, Ron H J; Schellens, Jan H M; Beijnen, Jos H; Steeghs, Neeltje; Huitema, Alwin D R

    2017-03-01

    Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. Pharmacokinetic data were available from 96 patients from three clinical studies. A multi-compartment model including (i) a complex absorption profile, (ii) the potential non-linear dose-concentration relationship and (iii) the potential long-term decrease in exposure was developed. A two-compartment model best described pazopanib pharmacokinetics. The absorption phase was modelled by two first-order processes: 36 % (relative standard error [RSE] 34 %) of the administered dose was absorbed with a relatively fast rate (0.4 h(-1) [RSE 31 %]); after a lag time of 1.0 h (RSE 6 %), the remaining dose was absorbed at a slower rate (0.1 h(-1) [RSE 28 %]). The relative bioavailability (rF) at a dose of 200 mg was fixed to 1. With an increasing dose, the rF was strongly reduced, which was modelled with an E max (maximum effect) model (E max was fixed to 1, the dose at half of maximum effect was estimated as 480 mg [RSE 23 %]). Interestingly, the plasma exposure to pazopanib also decreased over time, modelled on rF with a maximum magnitude of 50 % (RSE 27 %) and a first-order decay constant of 0.15 day(-1) (RSE 43 %). The inter-patient and intra-patient variability on rF were estimated as 36 % (RSE 16 %) and 75 % (RSE 22 %), respectively. A popPK model for pazopanib was developed that illustrated the complex absorption process, the non-linear dose-concentration relationship, the high inter-patient and intra-patient variability, and the first-order decay of pazopanib concentration over time. The developed popPK model can be used in clinical practice to screen covariates and guide therapeutic drug monitoring.

  5. Evaluation of microdosing to assess pharmacokinetic linearity in rats using liquid chromatography-tandem mass spectrometry.

    PubMed

    Balani, Suresh K; Nagaraja, Nelamangala V; Qian, Mark G; Costa, Arnaldo O; Daniels, J Scott; Yang, Hua; Shimoga, Prakash R; Wu, Jing-Tao; Gan, Liang-Shang; Lee, Frank W; Miwa, Gerald T

    2006-03-01

    The microdosing strategy allows for early assessment of human pharmacokinetics of new chemical entities using more limited safety assessment requirements than those requisite for a conventional phase I program. The current choice for evaluating microdosing is accelerator mass spectrometry (AMS) due to its ultrasensitivity for detecting radiotracers. However, the AMS technique is still expensive to be used routinely and requires the preparation of radiolabeled compounds. This report describes a feasibility study with conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology for oral microdosing assessment in rats, a commonly used preclinical species. The nonlabeled drugs fluconazole and tolbutamide were studied because of their similar pharmacokinetics characteristics in rats and humans. We demonstrate that pharmacokinetics can be readily characterized by LC-MS/MS at a microdose of 1 microg/kg for these molecules in rats, and, hence, LC-MS/MS should be adequate in human microdosing studies. The studies also exhibit linearity in exposure between the microdose and >or=1000-fold higher doses in rats for these drugs, which are known to show a linear dose-exposure relationship in the clinic, further substantiating the potential utility of LC-MS/MS in defining pharmacokinetics from the microdose of drugs. These data should increase confidence in the use of LC-MS/MS in microdose pharmacokinetics studies of new chemical entities in humans. Application of this approach is also described for an investigational compound, MLNX, in which the pharmacokinetics in rats were determined to be nonlinear, suggesting that MLNX pharmacokinetics at microdoses in humans also might not reflect those at the therapeutic doses. These preclinical studies demonstrate the potential applicability of using traditional LC-MS/MS for microdose pharmacokinetic assessment in humans.

  6. [Elements of pharmacodynamics and pharmacokinetics].

    PubMed

    Piette, F; Soubrie, C

    1990-05-21

    A knowledge of pharmacokinetic data is particularly important with drugs that have a narrow margin of safety. Exhaustive pre-marketing pharmacokinetic investigations and pharmacokinetic studies in populations are the two principal means of acquiring such knowledge. Although popular, the concept of half-life which decreases with age for many drugs is insufficient to calculate dosage in elderly people. Measurements of creatinine clearance provide an almost mathematical approach to the dosage of drugs that are excreted exclusively by the kidneys. In contrast, changes in hepatic metabolism with age and pathology are difficult to evaluate, and their consequences are often vaguely perceived. Our knowledge of relationships between age and pharmacodynamics is still in infancy. Owing to the wide consumption of medicine by elderly people, drug interactions are frequent at all stages, including absorption, metabolization, transport and site of action.

  7. Clinical pharmacokinetics of metformin.

    PubMed

    Graham, Garry G; Punt, Jeroen; Arora, Manit; Day, Richard O; Doogue, Matthew P; Duong, Janna K; Furlong, Timothy J; Greenfield, Jerry R; Greenup, Louise C; Kirkpatrick, Carl M; Ray, John E; Timmins, Peter; Williams, Kenneth M

    2011-02-01

    Metformin is widely used for the treatment of type 2 diabetes mellitus. It is a biguanide developed from galegine, a guanidine derivative found in Galega officinalis (French lilac). Chemically, it is a hydrophilic base which exists at physiological pH as the cationic species (>99.9%). Consequently, its passive diffusion through cell membranes should be very limited. The mean ± SD fractional oral bioavailability (F) of metformin is 55 ± 16%. It is absorbed predominately from the small intestine. Metformin is excreted unchanged in urine. The elimination half-life (t(½)) of metformin during multiple dosages in patients with good renal function is approximately 5 hours. From published data on the pharmacokinetics of metformin, the population mean of its clearances were calculated. The population mean renal clearance (CL(R)) and apparent total clearance after oral administration (CL/F) of metformin were estimated to be 510 ± 130 mL/min and 1140 ± 330 mL/min, respectively, in healthy subjects and diabetic patients with good renal function. Over a range of renal function, the population mean values of CL(R) and CL/F of metformin are 4.3 ± 1.5 and 10.7 ± 3.5 times as great, respectively, as the clearance of creatinine (CL(CR)). As the CL(R) and CL/F decrease approximately in proportion to CL(CR), the dosage of metformin should be reduced in patients with renal impairment in proportion to the reduced CL(CR). The oral absorption, hepatic uptake and renal excretion of metformin are mediated very largely by organic cation transporters (OCTs). An intron variant of OCT1 (single nucleotide polymorphism [SNP] rs622342) has been associated with a decreased effect on blood glucose in heterozygotes and a lack of effect of metformin on plasma glucose in homozygotes. An intron variant of multidrug and toxin extrusion transporter [MATE1] (G>A, SNP rs2289669) has also been associated with a small increase in antihyperglycaemic effect of metformin. Overall, the effect of

  8. Translational issues for prenatal cocaine studies and the role of environment.

    PubMed

    Dow-Edwards, Diana

    2011-01-01

    Prenatal cocaine exposure produces a wide variety of effects particularly within the nervous system. While not considered a structural teratogen, preclinical studies have documented the biological effects of cocaine exposure during development; effects which to a large extent resemble those described among exposed human populations. This review evaluates the translational value of preclinical studies in terms of three factors: dose of drug administered, timing of events in brain development in the animal compared to human and pharmacokinetics of the drug in animals and humans. Cocaine's effects on cortical development are compared across non-human primate, rabbit and rodent models. Examples of studies utilizing dose-response approaches and clinically relevant plasma drug curves are presented. And lastly, the role of environment in the manifestation of prenatal cocaine effects and published neurochemical effects of enrichment are discussed. The review concludes that there is ample evidence for the biological effects of cocaine on cortical and mesolimbic dopamine system development and that manipulation of the rearing environment can dramatically alter the manifestation of these effects including function of the mesolimbic dopamine reward system. Copyright © 2010. Published by Elsevier Inc.

  9. Translation between representation languages

    NASA Technical Reports Server (NTRS)

    Vanbaalen, Jeffrey

    1994-01-01

    A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.

  10. RATE Exposure Assessment Modules - EXA 408, EXA 409

    EPA Science Inventory

    EXA 408 – Interpreting Biomonitoring Data and Using Pharmacokinetic Modeling in Exposure Assessment Widespread acceptance and use of the CDC's National Health and Nutritional Examination Survey (NHANES) database, which, among other things, reports measured concentrations of...

  11. RATE Exposure Assessment Modules - EXA 408, EXA 409

    EPA Science Inventory

    EXA 408 – Interpreting Biomonitoring Data and Using Pharmacokinetic Modeling in Exposure Assessment Widespread acceptance and use of the CDC's National Health and Nutritional Examination Survey (NHANES) database, which, among other things, reports measured concentrations of...

  12. Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[def,p]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry.

    PubMed

    Madeen, Erin P; Ognibene, Ted J; Corley, Richard A; McQuistan, Tammie J; Henderson, Marilyn C; Baird, William M; Bench, Graham; Turteltaub, Ken W; Williams, David E

    2016-10-17

    Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [(14)C]-DBC by accelerator mass spectrometry (AMS) analysis of total [(14)C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [(14)C] product identified in plasma was unmetabolized [(14)C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [(14)C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [(14)C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [(14)C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [(14)C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [(14)C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.

  13. Pharmacokinetics of mitragynine in man

    PubMed Central

    Trakulsrichai, Satariya; Sathirakul, Korbtham; Auparakkitanon, Saranya; Krongvorakul, Jatupon; Sueajai, Jetjamnong; Noumjad, Nantida; Sukasem, Chonlaphat; Wananukul, Winai

    2015-01-01

    Background Kratom, known botanically as Mitragyna speciosa (Korth.), is an indigenous tree in Southeast Asia. Kratom is currently easily available worldwide via special shops and the Internet to use as a drug of abuse, opioid alternative, or pain killer. So far, the pharmacokinetics of this plant has been studied only in animals, and there is no such study in humans. The major abundant active alkaloid in Kratom, mitragynine, is one of the promising new chemical substances to be developed as a new drug. The aim of this study was to examine the pharmacokinetics of mitragynine and assess the linearity in pharmacokinetics in chronic users. Methods Since Kratom is illegal in Thailand, studies in healthy subjects would be unethical. We therefore conducted a prospective study by enrolling ten chronic, regular, healthy users. We adjusted the steady state in each subject by giving a known amount of Kratom tea for 7 days before commencement of the experiment. We admitted and gave different oral doses to subjects to confirm linearity in pharmacokinetics. The mitragynine blood concentrations at 17 times points and the urine concentrations during the 24-hour period were collected and measured by liquid chromatography-tandem mass spectrometry method. Results Ten male subjects completed the study without adverse reactions. The median duration of abuse was 1.75 years. We analyzed one subject separately due to the abnormal behavior of blood concentration. From data of nine subjects, the pharmacokinetic parameters established were time to reach the maximum plasma concentration (0.83±0.35 hour), terminal half-life (23.24±16.07 hours), and the apparent volume of distribution (38.04±24.32 L/kg). The urine excretion of unchanged form was 0.14%. The pharmacokinetics were observed to be oral two-compartment model. Conclusion This was the first pharmacokinetic study in humans, which demonstrated linearity and was consistent with the oral two-compartment model with a terminal half

  14. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers

    PubMed Central

    Khaliq, Yasmin; Gallicano, Keith; Tisdale, Christine; Carignan, Germain; Cooper, Curtis; McCarthy, Anne

    2001-01-01

    Aims To evaluate the pharmacokinetic interaction between ritonavir and mefloquine. Methods Healthy volunteers participated in two separate, nonfasted, three-treatment, three-period, longitudinal pharmacokinetic studies. Study 1 (12 completed): ritonavir 200 mg twice daily for 7 days, 7 day washout, mefloquine 250 mg once daily for 3 days then once weekly for 4 weeks, ritonavir restarted for 7 days simultaneously with the last mefloquine dose. Study 2 (11 completed): ritonavir 200 mg single dose, mefloquine 250 mg once daily for 3 days then once weekly for 2 weeks, ritonavir single dose repeated 2 days after the last mefloquine dose. Erythromycin breath test (ERMBT) was administered with and without drug treatments in study 2. Results Study 1: Ritonavir caused less than 7% changes with high precision (90% CIs: −12% to 11%) in overall plasma exposure (AUC(0,168 h)) and peak concentration (Cmax) of mefloquine, its two enantiomers, and carboxylic acid metabolite, and in the metabolite/mefloquine and enantiomeric AUC ratios. Mefloquine significantly decreased steady-state ritonavir plasma AUC(0,12 h) by 31%, Cmax by 36%, and predose levels by 43%, and did not affect ritonavir binding to plasma proteins. Study 2: Mefloquine did not alter single-dose ritonavir pharmacokinetics. Less than 8% changes in AUC and Cmax were observed with high variability (90%CIs: −26% to 45%). Mefloquine had no effect on the ERMBT whereas ritonavir decreased activity by 98%. Conclusions Ritonavir minimally affected mefloquine pharmacokinetics despite strong inhibition of CYP3A4 activity from a single 200 mg dose. Mefloquine had variable effects on ritonavir pharmacokinetics that were not explained by hepatic CYP3A4 activity or ritonavir protein binding. PMID:11422019

  15. Modified renal function in pregnancy: impact on emtricitabine pharmacokinetics

    PubMed Central

    Valade, Elodie; Tréluyer, Jean-Marc; Dabis, François; Arrivé, Elise; Pannier, Emmanuelle; Benaboud, Sihem; Fauchet, Floris; Bouazza, Naïm; Foissac, Frantz; Urien, Saïk; Hirt, Déborah

    2014-01-01

    Aims The aims were to describe emtricitabine (FTC) pharmacokinetics in a large population of pregnant women during the different trimesters of pregnancy, and to explain FTC pharmacokinetic variability during pregnancy. Methods FTC plasma concentrations were measured in 103 non-pregnant and 83 pregnant women, including women in the different trimesters of pregnancy and on the day of delivery. A total of 457 plasma concentrations were available for analysis. A population pharmacokinetic model was developed with Monolix 4.1.3. Results FTC pharmacokinetics was best described by a two compartment model. The effect of creatinine clearance on apparent elimination clearance (CL/F) was significant. CL/F in pregnant women was significantly higher compared with non-pregnant women (geometric mean 24.1 vs 20.5 l h−1, P < 0.001), reflecting a modified renal function. FTC daily exposures (AUC) during pregnancy were lower than AUC in non-pregnant women, regardless of the trimester of pregnancy. FTC AUC geometric means were 8.38 mg l−1 h in the second trimester of pregnancy, 8.16 mg l−1 h in the third trimester of pregnancy, 8.30 mg l−1 h on the day of delivery and 9.77 mg l−1 h in non-pregnant women. FTC concentrations 24 h after administration were lower in pregnant women compared with non-pregnant women (0.054 vs. 0.079 mg l−1, P < 0.001) but still above the inhibitory concentration 50%. Conclusions FTC CL/F was increased by 18% during pregnancy, reflecting a modified renal function with 50% increase in estimated glomerular filtration rate. However, the impact of this modified renal function on FTC pharmacokinetics was not sufficiently large to consider dose adjustments during pregnancy. PMID:24995851

  16. Population Pharmacokinetic Model of Sublingual Buprenorphine in Neonatal Abstinence Syndrome

    PubMed Central

    Ng, Chee M.; Dombrowsky, Erin; Lin, Hopi; Erlich, Michelle E.; Moody, David E.; Barrett, Jeffrey S.; Kraft, Walter K.

    2016-01-01

    Objective Neonatal abstinence syndrome (NAS)—a clinical entity of infants from in utero exposure to psychoactive xenobiotic and buprenorphine—has been successfully used to treat NAS. However, nothing is known about the pharmacokinetics (PK) of buprenorphine in neonates with NAS. To our knowledge, this is the first study to investigate the population pharmacokinetic of sublingual buprenorphine in neonates with NAS. Design A retrospective population PK analysis of: (1) neonates with NAS treated with sublingual buprenorphine in randomized, double blinded clinical study and (2) data from healthy adults from a previously published pharmacokinetic study. Setting Neonatal intensive care unit and general clinical research unit. Patients Twenty-four neonates with NAS and five healthy adults. Interventions All participants received sublingual buprenorphine per study protocol. Measurements and Main Results A total of 303 PK data from 29 neonates and adults were used for model development. A population pharmacokinetic analysis was conducted using a first order conditional estimation with interaction in the NONMEM software program. A two-compartment linear PK model with first-order absorption process best described the pharmacokinetics of sublingual buprenorphine in neonates. The apparent clearance (CL) of buprenorphine was linearly related to body weight and matured with increasing age via two distinct saturated pathways. A typical neonate with NAS (body weight, 2.9 kg; postnatal age; 5.4 days) had a CL of 3.5 L/kg/hour and elimination half-life of 11 hours. Phenobarbital did not affect the clearance of buprenorphine compared to neonates of similar age and weight. Conclusions This is the first study to investigate the population PK of sublingual buprenorphine in neonatal NAS. To our knowledge, this is also the first report to describe the age-dependent changes of buprenorphine PK in this patient population. No buprenorphine dose adjustment is needed for neonates with NAS

  17. Population Pharmacokinetic Model of Sublingual Buprenorphine in Neonatal Abstinence Syndrome.

    PubMed

    Ng, Chee M; Dombrowsky, Erin; Lin, Hopi; Erlich, Michelle E; Moody, David E; Barrett, Jeffrey S; Kraft, Walter K

    2015-07-01

    Neonatal abstinence syndrome (NAS)--a clinical entity of infants from in utero exposure to psychoactive xenobiotic and buprenorphine--has been successfully used to treat NAS. However, nothing is known about the pharmacokinetics (PK) of buprenorphine in neonates with NAS. To our knowledge, this is the first study to investigate the population pharmacokinetic of sublingual buprenorphine in neonates with NAS. A retrospective population PK analysis of: (1) neonates with NAS treated with sublingual buprenorphine in randomized, double blinded clinical study and (2) data from healthy adults from a previously published pharmacokinetic study. Neonatal intensive care unit and general clinical research unit. Twenty-four neonates with NAS and five healthy adults. All participants received sublingual buprenorphine per study protocol. A total of 303 PK data from 29 neonates and adults were used for model development. A population pharmacokinetic analysis was conducted using a first order conditional estimation with interaction in the NONMEM software program. A two-compartment linear PK model with first-order absorption process best described the pharmacokinetics of sublingual buprenorphine in neonates. The apparent clearance (CL) of buprenorphine was linearly related to body weight and matured with increasing age via two distinct saturated pathways. A typical neonate with NAS (body weight, 2.9 kg; postnatal age; 5.4 days) had a CL of 3.5 L/kg/hour and elimination half-life of 11 hours. Phenobarbital did not affect the clearance of buprenorphine compared to neonates of similar age and weight. This is the first study to investigate the population PK of sublingual buprenorphine in neonatal NAS. To our knowledge, this is also the first report to describe the age-dependent changes of buprenorphine PK in this patient population. No buprenorphine dose adjustment is needed for neonates with NAS treated with buprenorphine and concurrent phenobarbital. © 2015 Pharmacotherapy Publications

  18. Determinants of translation ambiguity

    PubMed Central

    Degani, Tamar; Prior, Anat; Eddington, Chelsea M.; Arêas da Luz Fontes, Ana B.; Tokowicz, Natasha

    2016-01-01

    Ambiguity in translation is highly prevalent, and has consequences for second-language learning and for bilingual lexical processing. To better understand this phenomenon, the current study compared the determinants of translation ambiguity across four sets of translation norms from English to Spanish, Dutch, German and Hebrew. The number of translations an English word received was correlated across these different languages, and was also correlated with the number of senses the word has in English, demonstrating that translation ambiguity is partially determined by within-language semantic ambiguity. For semantically-ambiguous English words, the probability of the different translations in Spanish and Hebrew was predicted by the meaning-dominance structure in English, beyond the influence of other lexical and semantic factors, for bilinguals translating from their L1, and translating from their L2. These findings are consistent with models postulating direct access to meaning from L2 words for moderately-proficient bilinguals. PMID:27882188

  19. Stylistics in Translation Teaching.

    ERIC Educational Resources Information Center

    Malmkjaer, Kirsten

    1994-01-01

    Suggests that trainee translators can be helped to move between the basic and advanced stages of training through practice in collocational translational stylistics. Describes the method and outlines its differences from monolingual stylistics. Illustrates the method with an example. (HB)

  20. American Translators Association.

    ERIC Educational Resources Information Center

    Berry, Virginia E.; Stern, Charles M.

    1981-01-01

    Presents history of this twenty-one year old organization whose aims are to achieve even higher standards, to improve conditions and payment for translators, and to gain the respect merited for the translating profession. (BK)

  1. Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects.

    PubMed

    Dolder, Patrick C; Schmid, Yasmin; Steuer, Andrea E; Kraemer, Thomas; Rentsch, Katharina M; Hammann, Felix; Liechti, Matthias E

    2017-02-14

    Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. The aim of the present study was to characterize the pharmacokinetics and exposure-response relationship of oral LSD. We analyzed pharmacokinetic data from two published placebo-controlled, double-blind, cross-over studies using oral administration of LSD 100 and 200 µg in 24 and 16 subjects, respectively. The pharmacokinetics of the 100-µg dose is shown for the first time and data for the 200-µg dose were reanalyzed and included. Plasma concentrations of LSD, subjective effects, and vital signs were repeatedly assessed. Pharmacokinetic parameters were determined using compartmental modeling. Concentration-effect relationships were described using pharmacokinetic-pharmacodynamic modeling. Geometric mean (95% confidence interval) maximum plasma concentration values of 1.3 (1.2-1.9) and 3.1 (2.6-4.0) ng/mL were reached 1.4 and 1.5 h after administration of 100 and 200 µg LSD, respectively. The plasma half-life was 2.6 h (2.2-3.4 h). The subjective effects lasted (mean ± standard deviation) 8.2 ± 2.1 and 11.6 ± 1.7 h for the 100- and 200-µg LSD doses, respectively. Subjective peak effects were reached 2.8 and 2.5 h after administration of LSD 100 and 200 µg, respectively. A close relationship was observed between the LSD concentration and subjective response within subjects, with moderate counterclockwise hysteresis. Half-maximal effective concentration values were in the range of 1 ng/mL. No correlations were found between plasma LSD concentrations and the effects of LSD across subjects at or near maximum plasma concentration and within dose groups. The present pharmacokinetic data are important for the evaluation of clinical study findings (e.g., functional magnetic resonance imaging studies) and the interpretation of LSD intoxication. Oral LSD presented dose-proportional pharmacokinetics and first-order elimination up to 12 h. The effects of LSD were related

  2. Clinical pharmacokinetics and pharmacodynamics of linagliptin.

    PubMed

    Graefe-Mody, Ulrike; Retlich, Silke; Friedrich, Christian

    2012-07-01

    attainment of steady state. The majority of linagliptin is eliminated as parent compound, demonstrating that metabolism plays a minor role in the overall pharmacokinetics in humans. The main, pharmacologically inactive S-3-hydroxypiperidinyl metabolite accounted for approximately 17% of the total drug-related compounds in plasma. Linagliptin is eliminated primarily in faeces, with only around 5% of the oral therapeutic dose excreted in the urine at steady state. Linagliptin potently inhibits DPP-4 (inhibition constant 1 nmol/L), and trough drug concentrations achieved with therapeutic dosing inhibit >80% of plasma DPP-4 activity, the threshold associated with maximal antihyperglycaemic effects in animal models. There are no clinically relevant alterations in linagliptin pharmacokinetics resulting from renal impairment, hepatic impairment, coadministration with food, race, body weight, sex or age. In vitro, linagliptin is a weak substrate and weak inhibitor of cytochrome P450 (CYP) 3A4 and permeability glycoprotein (P-gp) but not of other CYP isozymes or ATP-binding cassette transporters. Clinical studies have revealed no relevant drug interactions when coadministered with other drugs commonly prescribed to patients with type 2 diabetes, including the narrow therapeutic index drugs warfarin and digoxin. Linagliptin plasma exposure is reduced by potent inducers of CYP3A4 or P-gp. Linagliptin has demonstrated a large safety window (>100-fold the recommended daily dose) and clinically relevant antihyperglycaemic effects in patients with type 2 diabetes.

  3. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part I: Program Implementation and Lessons Learned

    PubMed Central

    Dorman, David C.; Andersen, Melvin E.; Roper, Jerry M.; Taylor, Michael D.

    2012-01-01

    Concerns have been raised regarding environmental manganese exposure since high exposures have been associated with neurological disorders. The USA Environmental Protection Agency most recent human health risk assessment of inhaled manganese conducted in 1993 identified specific areas of uncertainty regarding manganese pharmacokinetics. This led to the development of a test rule under the USA Clean Air Act that required the generation of pharmacokinetic information on the inorganic manganese combustion products of the organometallic fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT). The Alternative Tier 2 testing program for MMT, described in this paper, has yielded substantial pharmacokinetic data and has enabled the generation of physiologically based pharmacokinetic (PBPK) models for manganese. These models are capable of predicting tissue manganese concentrations across a variety of dose routes, levels, and durations while accounting for factors such as age, gender, and reproductive status, enabling the consideration of tissue dosimetry in future risk assessments. PMID:22545047

  4. Fundamentals of population pharmacokinetic modelling: validation methods.

    PubMed

    Sherwin, Catherine M T; Kiang, Tony K L; Spigarelli, Michael G; Ensom, Mary H H

    2012-09-01

    Population pharmacokinetic modelling is widely used within the field of clinical pharmacology as it helps to define the sources and correlates of pharmacokinetic variability in target patient populations and their impact upon drug disposition; and population pharmacokinetic modelling provides an estimation of drug pharmacokinetic parameters. This method's defined outcome aims to understand how participants in population pharmacokinetic studies are representative of the population as opposed to the healthy volunteers or highly selected patients in traditional pharmacokinetic studies. This review focuses on the fundamentals of population pharmacokinetic modelling and how the results are evaluated and validated. This review defines the common aspects of population pharmacokinetic modelling through a discussion of the literature describing the techniques and placing them in the appropriate context. The concept of validation, as applied to population pharmacokinetic models, is explored focusing on the lack of consensus regarding both terminology and the concept of validation itself. Population pharmacokinetic modelling is a powerful approach where pharmacokinetic variability can be identified in a target patient population receiving a pharmacological agent. Given the lack of consensus on the best approaches in model building and validation, sound fundamentals are required to ensure the selected methodology is suitable for the particular data type and/or patient population. There is a need to further standardize and establish the best approaches in modelling so that any model created can be systematically evaluated and the results relied upon.

  5. Generalizing Word Lattice Translation

    DTIC Science & Technology

    2008-02-01

    demonstrate substantial gains for Chinese -English and Arabic -English translation. Keywords: word lattice translation, phrase-based and hierarchical...introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for Chinese -English and Arabic -English translation. 15...Section 4 presents two applications of the noisier channel paradigm, demonstrating substantial performance gains in Arabic -English and Chinese -English

  6. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  7. Translational ecology for hydrogeology.

    PubMed

    Schlesinger, William H

    2013-01-01

    Translational ecology--a special discipline aimed to improve the accessibility of science to policy makers--will help hydrogeologists contribute to the solution of pressing environmental problems. Patterned after translational medicine, translational ecology is a partnership to ensure that the right science gets done in a timely fashion, so that it can be communicated to those who need it.

  8. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  9. For "Translation and Theories"

    ERIC Educational Resources Information Center

    Ni, Lili

    2009-01-01

    Translation studies stem from comparative literature and contrastive analysis. It involves the transfer of messages between two different language systems and cultures, and Munday (2001, p.1) notes that translation "by its nature" "is multilingual and also interdisciplinary". Translation subjects are the texts in various…

  10. Workshop in Translating Literature

    ERIC Educational Resources Information Center

    Corson, Michael; And Others

    1975-01-01

    A workshop dealing with literature in translation took place in 1974 at the German Department of the University of Cincinnati. This is a report on its procedures and methods. The workshop dealt with discussion of texts, translation of texts, critique of existing translations and interpretation of content. (TL)

  11. Pharmacokinetics in the elderly.

    PubMed Central

    Mayersohn, M

    1994-01-01

    Animals undergo substantial changes in many physiologic and biochemical functions as a natural consequence of aging. In the absence of disease or other pathologic conditions, these changes occur in a gradual manner with time (generally expressed as a fractional or percentage change in that function per year or decade). Furthermore, for any given function and at any given chronologic age, there is large variation in that function among individuals. Given the increase in life expectancy, the substantial increase in the number of elderly (and aged elderly) in the population, and the escalating costs of health care, there is great interest in learning more about the risks associated with aging as a result of toxic exposure. Are the elderly at greater risk than younger adults to the toxic effects of drugs and environmental exposure? Is the elderly population an inherently more sensitive one? PMID:7737036

  12. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    PubMed Central

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to formulate NPs with identical size, shape and surface chemistry, but with variable docetaxel loading. The lower weight loading (9%-NP) of docetaxel was found to have a superior pharmacokinetic profile and enhanced efficacy in a murine cancer model when compared to that of a higher docetaxel loading (20%-NP). The 9%-NP docetaxel increased plasma and tumor docetaxel exposure and reduced liver, spleen and lung exposure when compared to that of 20%-NP docetaxel. PMID:23899444

  13. Pharmacokinetics of Macitentan in Patients With Pulmonary Arterial Hypertension and Comparison With Healthy Subjects.

    PubMed

    Issac, Milena; Dingemanse, Jasper; Sidharta, Patricia N

    2017-08-01

    Macitentan is a worldwide approved dual endothelin receptor antagonist that has demonstrated efficacy in the treatment of pulmonary arterial hypertension (PAH) in a phase 3 clinical trial, SERAPHIN, at a dose of 10 mg once daily. During this trial, trough plasma concentrations (Ctrough ) of macitentan and its active metabolite,  ACT-132577,  were obtained at steady state in 242 patients, indicating that mean Ctrough of both analytes was about 2-fold higher in PAH patients than in healthy subjects. To further investigate the pharmacokinetics (PK) of macitentan and its active metabolite, ACT-132577,  a 24-hour PK profile was recorded at steady state in 20 PAH patients in the open-label extension of SERAPHIN.  A cross-study comparison showed that although Ctrough in PAH patients is higher when compared with a historical reference group of healthy subjects, with geometric mean ratios of 1.45 and 1.36 for macitentan and ACT-132577, respectively, this does not translate to a significant difference in exposure expressed as maximum plasma concentration (Cmax ) or area under the plasma concentration-time curve over a dosing interval (AUCτ ). Geometric mean ratios for Cmax and AUCτ were 1.08 and 1.22, respectively, for macitentan and 1.24 and 1.31, respectively, for ACT-132577. Therefore, overall exposure at steady state to macitentan and ACT-132577 in PAH patients is considered similar to that in healthy subjects. © 2017, The American College of Clinical Pharmacology.

  14. Pharmacokinetics considerations for gout treatments.

    PubMed

    Richette, Pascal; Frazier, Aline; Bardin, Thomas

    2014-07-01

    Patients with gout often have comorbid conditions such as renal failure, cardiovascular disease and metabolic syndrome. The presence and required treatment of these conditions can make the treatment of gout challenging. Knowledge of the pharmacokinetics of the available drugs for the management of gout is mandatory. A MEDLINE PubMed search for articles published in English from January 1990 to January 2014 was completed using the terms: pharmacokinetics, colchicine, canakinumab, allopurinol, febuxostat, pegloticase, gout, toxicity, drug interaction. Colchicine is a drug with a narrow therapeutic-toxicity window. Co-prescription with strong CYP3A4 or P-glycoprotein inhibitors can greatly modify its pharmacokinetics and is to be avoided. Elimination of canakinumab mainly occurs via intracellular catabolism, following receptor mediator endocytosis. Canakinumab appears to be a good alternative for patients with contraindications to colchicine, NSAIDs and corticosteroids. For patients with renal impairment, some authors recommend that the allopurinol maximum dosage should be adjusted to creatinine clearance. If the urate target cannot be achieved, the therapy should be switched to febuxostat, which is appropriate with mild-to-moderate renal failure. Anti-pegloticase antibodies affect the pharmacokinetics of the drug because they increase its clearance, with loss of pegloticase activity.

  15. Aztreonam pharmacokinetics in burn patients.

    PubMed Central

    Friedrich, L V; White, R L; Kays, M B; Brundage, D M; Yarbrough, D

    1991-01-01

    The pharmacokinetics of aztreonam in eight adult patients with severe burn injuries (total body surface area burn, 49% +/- 21% [mean +/- standard deviation]) were studied. The time of initiation of study following burn injury was 7.0 +/- 1.4 days. Four patients at first dose and at steady state were studied. Aztreonam concentrations were measured by high-performance liquid chromatography, and a two-compartment model was used to fit the data. No significant differences in any pharmacokinetic parameters between first dose and steady state were observed. Volume of distribution of the central compartment after first dose (0.14 liters/kg) and volume of distribution at steady state (0.31 liters/kg) were approximately 30% higher than those reported for other patient populations. Total drug clearance and renal drug clearance when normalized to creatinine clearance (CLCR) were similar to those previously reported for other critically ill patients. CLCR was strongly correlated with renal drug clearance (r = 0.94) and total drug clearance (r = 0.95). The extent and degree of burn (percent second or third degree burn) were poorly correlated with all pharmacokinetic parameters with the exception of the volume of distribution at steady state, which was correlated with both total body surface area burn (r = 0.95) and percent second degree burn (r = 0.83). Aztreonam pharmacokinetics are altered as a result of thermal injury; however, CLCR can be used to assess the clearance of aztreonam in burn patients. PMID:2014982

  16. A pharmacokinetic comparison of two voriconazole formulations and the effect of CYP2C19 polymorphism on their pharmacokinetic profiles

    PubMed Central

    Chung, Hyewon; Lee, Howard; Han, HyeKyung; An, Hyungmi; Lim, Kyoung Soo; Lee, Yong Jin; Cho, Joo-Youn; Yoon, Seo Hyun; Jang, In-Jin; Yu, Kyung-Sang

    2015-01-01

    Purpose SYP-1018 is a lyophilized polymeric nanoparticle formulation of voriconazole that is under development for intravenous dosing. This study compared the pharmacokinetic and tolerability profiles of SYP-1018 with those of Vfend®, the marketed formulation of voriconazole. The effect of CYP2C19 polymorphism on the voriconazole pharmacokinetics was also evaluated. Methods An open-label, two-treatment, two-period, two-sequence crossover study was conducted in 52 healthy male volunteers, who randomly received a single intravenous infusion of either of the two voriconazole formulations at 200 mg. Blood samples were collected up to 24 hours after drug administration for pharmacokinetic analysis. The plasma concentrations of voriconazole were determined using liquid chromatography with tandem mass spectrometry, and the pharmacokinetic parameters were estimated using a noncompartmental method. CYP2C19 genotype was identified in 51 subjects. Results The geometric mean ratio (90% confidence interval) of SYP-1018 to Vfend® was 0.99 (0.93–1.04) for the maximum plasma concentrations (Cmax) and 0.97 (0.92–1.01) for the area under the concentration–time curve (AUC) from dosing to the last quantifiable concentration (AUClast). Nineteen homozygous extensive metabolizers (EMs, *1/*1), 19 intermediate metabolizers (IMs, *1/*2 or *1/*3), and ten poor metabolizers (PMs, *2/*2, *2/*3, or *3/*3) were identified, and the pharmacokinetic comparability between SYP-1018 and Vfend® was also noted when analyzed separately by genotype. The systemic exposure to voriconazole was greatest in the PM group, followed by the IM, and then the EM groups. Furthermore, the intrasubject variability for Cmax and AUClast was greater in IMs and PMs than in EMs. No serious adverse event occurred, and both treatments were well tolerated. Conclusion SYP-1018 had comparable pharmacokinetic and tolerability profiles to Vfend® after a single intravenous infusion. CYP2C19 genotype affected not only the

  17. Pharmacokinetics of zidovudine dosed twice daily according to World Health Organization weight bands in Ugandan HIV-infected children.

    PubMed

    Fillekes, Quirine; Kendall, Lindsay; Kitaka, Sabrina; Mugyenyi, Peter; Musoke, Philippa; Ndigendawani, Milly; Bwakura-Dangarembizi, Mutsa; Gibb, Diana M; Burger, David; Walker, Ann Sarah

    2014-05-01

    Data on zidovudine pharmacokinetics in children dosed using World Health Organization weight bands are limited. About 45 HIV-infected, Ugandan children, 3.4 (2.6-6.2) years, had intensive pharmacokinetic sampling. Geometric mean zidovudine AUC0-12h was 3.0 h.mg/L, which is higher than previously observed in adults, and was independently higher in those receiving higher doses, younger and underweight children. Higher exposure was also marginally associated with lower hemoglobin.

  18. Pharmacokinetic/Pharmacodynamic Modeling in Inflammation

    PubMed Central

    Lon, Hoi-Kei; Liu, Dongyang; Jusko, William J.

    2012-01-01

    Inflammation is an array of immune responses to infection and injury. It results from a complex immune cascade and is the basis of many chronic diseases such as arthritis, diabetes, and cancer. Numerous mathematical models have been developed to describe the disease progression and effects of anti-inflammatory drugs. This review illustrates the state of the art in modeling the effects of diverse drugs for treating inflammation, describes relevant biomarkers amenable to modeling, and summarizes major advantages and limitations of the published pharmacokinetic/ pharmacodynamic (PK/PD) models. Simple direct inhibitory models are often used to describe in vitro effects of anti-inflammatory drugs. Indirect response models are more mechanism based and have been widely applied to the turnover of symptoms and biomarkers. These, along with target-mediated and transduction models, have been successfully applied to capture the PK/PD of many anti-inflammatory drugs and describe disease progression of inflammation. Biologics have offered opportunities to address specific mechanisms of action, and evolve small systems models to quantitatively capture the underlying physiological processes. More advanced mechanistic models should allow evaluation of the roles of some key mediators in disease progression, assess drug interactions, and better translate drug properties from in vitro and animal data to patients. PMID:23140121

  19. Translating QT interval prolongation from conscious dogs to humans.

    PubMed

    Dubois, Vincent F S; Smania, Giovanni; Yu, Huixin; Graf, Ramona; Chain, Anne S Y; Danhof, Meindert; Della Pasqua, Oscar

    2017-02-01

    In spite of screening procedures in early drug development, uncertainty remains about the propensity of new chemical entities (NCEs) to prolong the QT/QTc interval. The evaluation of proarrhythmic activity using a comprehensive in vitro proarrhythmia assay does not fully account for pharmacokinetic-pharmacodynamic (PKPD) differences in vivo. In the present study, we evaluated the correlation between drug-specific parameters describing QT interval prolongation in dogs and in humans. Using estimates of the drug-specific parameter, data on the slopes of the PKPD relationships of nine compounds with varying QT-prolonging effects (cisapride, sotalol, moxifloxacin, carabersat, GSK945237, SB237376 and GSK618334, and two anonymized NCEs) were analysed. Mean slope estimates varied between -0.98 ms μM(-1) and 6.1 ms μM(-1) in dogs and -10 ms μM(-1) and 90 ms μM(-1) in humans, indicating a wide range of effects on the QT interval. Linear regression techniques were then applied to characterize the correlation between the parameter estimates across species. For compounds without a mixed ion channel block, a correlation was observed between the drug-specific parameter in dogs and humans (y = -1.709 + 11.6x; R(2)  = 0.989). These results show that per unit concentration, the drug effect on the QT interval in humans is 11.6-fold larger than in dogs. Together with information about the expected therapeutic exposure, the evidence of a correlation between the compound-specific parameter in dogs and in humans represents an opportunity for translating preclinical safety data before progression into the clinic. Whereas further investigation is required to establish the generalizability of our findings, this approach can be used with clinical trial simulations to predict the probability of QT prolongation in humans. © 2016 The British Pharmacological Society.

  20. Translational PK/PD modeling for cardiovascular safety assessment of drug candidates: Methods and examples in drug development.

    PubMed

    Caruso, Antonello; Frances, Nicolas; Meille, Christophe; Greiter-Wilke, Andrea; Hillebrecht, Alexander; Lavé, Thierry

    2014-01-01

    Cardiovascular toxicity is a significant cause of candidate failure in drug development. Pharmacokinetic/pharmacodynamic (PK/PD) modeling may reduce attrition by improving the understanding of the relationship between drug exposure and changes in cardiovascular endpoints. Diverse examples are discussed that elucidate how modeling can facilitate the interpretation of cardiovascular safety data in animals and enable quantitative translation of preclinical findings to man. Twelve compounds under development in diverse therapeutic areas were tested in cardiovascular safety studies in the telemetered beagle dog and cynomolgus monkey. Drug-induced changes observed in different cardiovascular endpoints (QRS complex and QTc interval of the ECG, heart rate, blood pressure, and myocardial contractility) were described by means of PK/PD modeling. A range of direct and indirect effect models were employed to characterize the plasma concentration-cardiovascular effect relationship for each compound. For every drug candidate the proposed PK/PD models appropriately described the cardiovascular effects observed in dog and monkey. Two of the compounds subsequently reached clinical development and cardiovascular data were generated in first-in-human clinical trials. For one drug candidate, a threshold model was used to describe QTc prolongation in the monkey and man. Blood pressure changes induced by the second compound were linked to plasma exposure in dog and human via an indirect response model. In both cases it was found that translational modeling accurately predicted the human response observed during clinical development. In this article, a range of PK/PD models are discussed that successfully described cardiovascular safety findings in the preclinical setting. Where clinical data were available, it was found that translational modeling enabled the accurate prediction of outcomes in man and facilitated the description of the therapeutic index. PK/PD modeling is thus

  1. Population Pharmacokinetics of Bevacizumab in Children with Osteosarcoma: Implications for Dosing

    PubMed Central

    Turner, David C.; Navid, Fariba; Daw, Najat C.; Mao, Shenghua; Wu, Jianrong; Santana, Victor M.; Neel, Michael; Rao, Bhaskar; Willert, Jennifer Reikes; Loeb, David M.; Harstead, K. Elaine; Throm, Stacy L.; Freeman, Burgess B.; Stewart, Clinton F.

    2014-01-01

    Purpose To describe sources of interindividual variability in bevacizumab disposition in pediatric patients and explore associations among bevacizumab pharmacokinetics and clinical wound healing outcomes. Experimental Design Prior to tumor resection, three doses of bevacizumab (15 mg/kg) were administered to patients (median age 12.2 years) enrolled on a multi-institutional osteosarcoma trial. Serial sampling for bevacizumab pharmacokinetics was obtained from 27 patients. A population pharmacokinetic model was fit to the data, and patient demographics and clinical chemistry values were systematically tested as predictive covariates on model parameters. Associations between bevacizumab exposure and wound healing status were evaluated by logistic regression. Results Bevacizumab concentration-time data were adequately described by a two-compartment model. Pharmacokinetic parameter estimates were similar to those previously reported in adults with a long median (range) terminal half-life of 12.2 days (8.6 to 32.4 days) and a volume of distribution indicating confinement primarily to the vascular space,49.1 mL/kg (27.1 to 68.3 mL/kg). Body composition was a key determinant of bevacizumab exposure as body mass index percentile was significantly (p<0.05) correlated to body-weight normalized clearance and volume of distribution. Furthermore, bevacizumab exposure prior to primary tumor resection was associated with increased risk of major wound healing complications after surgery (p<0.05). Conclusion A population pharmacokinetic model for bevacizumab was developed which demonstrated that variability in bevacizumab exposure using weight-based dosing is related to body composition. Bevacizumab dosage scaling using ideal body weight would provide an improved dosing approach in children by minimizing pharmacokinetic variability and reducing likelihood of major wound healing complications. PMID:24637635

  2. [Pharmacokinetics and pharmacodynamics of ceftaroline].

    PubMed

    Grau, Santiago; Sorlí, Luisa; Luque, Sonia

    2014-03-01

    Ceftaroline is administered intravenously in the form of a prodrug, ceftaroline fosamil, which is rapidly hydrolyzed by plasma phosphatases to its active form, ceftaroline. In general, the pharmacokinetics of ceftaroline differ little from those of other cephalosporins. A proportional increase in both the peak plasma concentration (Cmax) and the area under the curve (AUC) have been observed when the drug is administered in increasing doses, which demonstrates its linear pharmacokinetics. Half the dose of ceftaroline is excreted actively through the kidneys. The pharmacokinetic parameters of ceftaroline administered through the intramuscular route in diverse animal species were similar to those observed when the drug was administered intravenously and consequently clinical research into ceftaroline administered through this alternative route would be appropriate. Patients with moderate-severe alterations of renal function and those undergoing hemodialysis require dose adjustments. There is limited experience of the pharmacokinetics of ceftaroline in children, which has given rise to several schedules stratified by age groups. The pharmacodynamics of the drug have been studied in models of animal infection and in in vitro infections caused mainly by Staphylococcus aureus (including methicillin-resistant S. aureus [MRSA], strains with intermediate vancomycin sensitivity [hVISA or hGISA]) and by Streptococcus pneumoniae strains with distinct sensitivities to penicillin. Because ceftaroline is a time-dependent antibiotic, the most widely studied pharmacokinetic/pharmacodynamic (PK/PD) indicator is the time interval during which drug concentrations are maintained above the minimum inhibitory concentration (MIC), calculated both as total drug (T > MIC) and as free fraction of the drug (fT > MIC). The PK/PD simulations carried out in these models, developed on the basis of the concentrations obtained with routine doses in humans, have shown that ceftaroline has a good PK

  3. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  4. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  5. Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation

    PubMed Central

    Chain, Anne SY; Dubois, Vincent FS; Danhof, Meindert; Sturkenboom, Miriam CJM; Della Pasqua, Oscar

    2013-01-01

    Aims Given the similarities in QTc response between dogs and humans, dogs are used in pre-clinical cardiovascular safety studies. The objective of our investigation was to characterize the PKPD relationships and identify translational gaps across species following the administration of three compounds known to cause QTc interval prolongation, namely cisapride, d, l-sotalol and moxifloxacin. Methods Pharmacokinetic and pharmacodynamic data from experiments in conscious dogs and clinical trials were included in this analysis. First, pharmacokinetic modelling and deconvolution methods were applied to derive drug concentrations at the time of each QT measurement. A Bayesian PKPD model was then used to describe QT prolongation, allowing discrimination of drug-specific effects from other physiological factors known to alter QT interval duration. A threshold of ≥10 ms was used to explore the probability of prolongation after drug administration. Results A linear relationship was found to best describe the pro-arrhythmic effects of cisapride, d,l-sotalol and moxifloxacin both in dogs and in humans. The drug-specific parameter (slope) in dogs was statistically significantly different from humans. Despite such differences, our results show that the probability of QTc prolongation ≥10 ms in dogs nears 100% for all three compounds at the therapeutic exposure range in humans. Conclusions Our findings indicate that the slope of PKPD relationship in conscious dogs may be used as the basis for the prediction of drug-induced QTc prolongation in humans. Furthermore, the risk of QTc prolongation can be expressed in terms of the probability associated with an increase ≥10 ms, allowing direct inferences about the clinical relevance of the pro-arrhythmic potential of a molecule. PMID:23351036

  6. Pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion

    PubMed Central

    Fidler, Meredith C; Barshop, Bruce A; Gangoiti, Jon A; Deutsch, Reena; Martin, Michael; Schneider, Jerry A; Dohil, Ranjan

    2007-01-01

    Aims Although cysteamine was first used in the treatment of cystinosis in 1976 and approved by the FDA as cysteamine bitartrate (Cystagon™) in 1994, surprisingly little pharmacological data are available for this compound. Cysteamine and its related drugs are currently being evaluated for the treatment of Huntington’s and Parkinson’s disease. The aim of te study was to understand the pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion. Method Cysteamine bitartrate was delivered through a naso-enteric catheter into the stomach (n = 8), small intestine (n = 8) and caecum (n = 4) of normal subjects. Plasma cysteamine concentrations were determined using LC-MS/MS. Results The rate and extent of drug absorption were assessed by comparing AUC(0, ∞), Cmax and tmax, among the gastrointestinal infusion sites. Total cysteamine exposure, expressed as area under the curve (AUC(0, ∞)) was greatest when the drug was infused into the small intestine (4331.3 ± 1907.6 min × µm) followed by stomach (3901.9 ± 1591.9 min × µm) and caecum (3141.4 ± 1627.6 min × µm). Cysteamine infusion into the small intestine resulted in the most rapid rise to maximal plasma concentrations (tmax = 21 ± 0.56 min); tmax was delayed to 50 ± 26 min and 64 ± 26 min after gastric and caecal infusion, respectively. The maximum cysteamine plasma concentration (Cmax) was reached after infusion of the drug into the small intestine (51 ± 21 µm), which was higher than plasma Cmax concentrations after gastric (39 ± 16 µm) and caecal infusion (23 ± 15 µm). Conclusions The pharmacokinetic data generated help extend our understanding of cysteamine. PMID:17229040

  7. Pharmacokinetics of metoprolol during pregnancy and lactation.

    PubMed

    Ryu, Rachel J; Eyal, Sara; Easterling, Thomas R; Caritis, Steve N; Venkataraman, Raman; Hankins, Gary; Rytting, Erik; Thummel, Kenneth; Kelly, Edward J; Risler, Linda; Phillips, Brian; Honaker, Matthew T; Shen, Danny D; Hebert, Mary F

    2016-05-01

    The objective of this study was to evaluate the steady-state pharmacokinetics of metoprolol during pregnancy and lactation. Serial plasma, urine, and breast milk concentrations of metoprolol and its metabolite, α-hydroxymetoprolol, were measured over 1 dosing interval in women treated with metoprolol (25-750 mg/day) during early pregnancy (n = 4), mid-pregnancy (n = 14), and late pregnancy (n = 15), as well as postpartum (n = 9) with (n = 4) and without (n = 5) lactation. Subjects were genotyped for CYP2D6 loss-of-function allelic variants. Using paired analysis, mean metoprolol apparent oral clearance was significantly higher in mid-pregnancy (361 ± 223 L/h, n = 5, P < .05) and late pregnancy (568 ± 273 L/h, n = 8, P < .05) compared with ≥3 months postpartum (200 ± 131 and 192 ± 98 L/h, respectively). When the comparison was limited to extensive metabolizers (EMs), metoprolol apparent oral clearance was significantly higher during both mid- and late pregnancy (P < .05). Relative infant exposure to metoprolol through breast milk was <1.0% of maternal weight-adjusted dose (n = 3). Because of the large, pregnancy-induced changes in metoprolol pharmacokinetics, if inadequate clinical responses are encountered, clinicians who prescribe metoprolol during pregnancy should be prepared to make aggressive changes in dosage (dose and frequency) or consider using an alternate beta-blocker. © 2015, The American College of Clinical Pharmacology.

  8. Pharmacokinetics of levobupivacaine following infant spinal anesthesia.

    PubMed

    Frawley, Geoff; Hallett, Ben; Velkov, Tony; Bjorksten, Andrew

    2016-06-01

    Infant spinal anesthesia with levobupivacaine has been promoted as a technique to reduce both the risk of postoperative apnea and exposure to volatile anesthesia. There is, however, no pharmacokinetic data to support the currently recommended doses. Our aim was to determine whether infant levobupivacaine spinal anesthesia is associated with plasma concentrations consistent with a low risk of local anesthetic systemic toxicity. This was an open-label pharmacokinetic safety and tolerability study of levobupivacaine spinal anesthesia in infants <55 weeks Post Menstrual Age undergoing lower abdominal surgery. Infants received a spinal anesthetic with levobupivacaine 1 mg·kg(-1) in the left lateral position. Spinal anesthesia was successful in 25 (86.2%) of 29 infants (postmenstrual age 36-52 weeks; weight 2.2-4.7 kg). The median (IQR) total venous levobupivacaine plasma concentrations was 0.33 (0.25-0.42) μg·ml(-1) and unbound venous levobupivacaine was 19.5 (14.5-38) ng·ml(-1) . Median protein binding was 93.5 (91.4-96%). Alpha-1 acid glycoprotein concentrations were 0.25 (0.17-0.37) g·l(-1) and albumin concentrations were 29 (24-32) g·l(-1) . Total plasma concentrations and unbound (free) concentration of levobupivacaine were consistently lower than concentrations reported in cases of pediatric local anesthetic toxicity. In a small number of infants requiring a repeat spinal of 1 mg·kg(-1) was also associated with acceptable total and free concentrations. We conclude that levobupivacaine at 1 mg·kg(-1) is associated with no systemic side effects in infants receiving awake spinal anesthesia. © 2016 John Wiley & Sons Ltd.

  9. Pharmacokinetics of moxidectin and doramectin in goats.

    PubMed

    Escudero, E; Carceles, C M; Diaz, M S; Sutra, J F; Galtier, P; Alvinerie, M

    1999-10-01

    The pharmacokinetic behaviour of doramectin after a single subcutaneous administration and moxidectin following a single subcutaneous or oral drench were studied in goats at a dosage of 0.2 mg kg(-1). The drug plasma concentration-time data were analysed by compartmental pharmacokinetics and non-compartmental methods. Maximum plasma concentrations of moxidectin were attained earlier and to a greater extent than doramectin (shorter t(max) and greater C(max) and AUC than doramectin). MRT of doramectin (4.91 +/- 0.07 days) was also significantly shorter than that of moxidectin (12.43 +/- 1.28 days). Then, the exposure of animals to doramectin in comparison with moxidectin was significantly shorter. The apparent absorption rate of moxidectin was not significantly different after oral and subcutaneous administration but the extent of absorption, reflected in the peak concentration (C(max)) and the area under the concentration-time curve (AUC), of the subcutaneous injection (24.27 +/- 1.99 ng ml(-1) and 136.72 +/- 7.35 ng d ml(-1) respectively) was significantly greater than that of the oral administration (15.53 +/- 1.27 ng ml(-1) and 36.72 +/- 4.05 ng d ml(-1) respectively). The mean residence time (MRT) of moxidectin didn't differ significantly when administered orally or subcutaneously. Therefore low oral bioavailability and the early emergence of resistance in this minor species may be related. These results deserve to be correlated with efficacy studies for refining dosage requirements of endectocides in this species.

  10. Verapamil effect on phenytoin pharmacokinetics in rats.

    PubMed

    Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Rosillo de la Torre, Argelia; Orozco Suárez, Sandra; Rocha, Luisa

    2013-11-01

    Efflux transporter and enzyme overexpression can be induced by certain antiepileptic drugs. Phenytoin (PHT) is at the same time substrate and inducer of CYP2C isoenzymes and efflux carriers. Its inductive effect has been postulated to be concentration and time-dependent. Since verapamil (VPM) is a well known substrate and inhibitor of P-glycoprotein, its administration could modify PHT systemic exposure. The objective of this work was to determine if single doses (40mg/kg) of VPM might change PHT body fate in the same way when given at the beginning or several days after 100mg/kg of PHT daily doses were started. Both drugs were administered intraperitoneally to female Sprague Dawley rats. VPM increased plasma PHT concentrations after one day of treatment, while a decrease in PHT plasma exposure was observed when VPM was added at the fifth day of the antiepileptic treatment. These results suggested that VPM would have different impact on PHT pharmacokinetics, depending on the level of expression of both efflux transporters and enzymes. Before the hepatic cells could acquire a high content of enzymes due to the inductive effect of PHT dosing, VPM decreased the predominant intestinal clearance of PHT. But, once the enzymatic machinery at the hepatocyte became more important than that at the intestine, although ineffective because of the high hepatobiliary efflux transporter overexpression, VPM blockade from the liver resulted in an increased total PHT clearance.

  11. Evaluating Pharmacokinetic and Pharmacodynamic Interactions with Computational Models in Cumulative Risk Assessment

    EPA Science Inventory

    Simultaneous or sequential exposure to multiple chemicals may cause interactions in the pharmacokinetics (PK) and/or pharmacodynamics (PD) of the individual chemicals. Such interactions can cause modification of the internal or target dose/response of one chemical in the mixture ...

  12. Physiologically based pharmacokinetic modeling of ethyl acetate and ethanol in rodents and humans.

    PubMed

    Crowell, S R; Smith, J N; Creim, J A; Faber, W; Teeguarden, J G

    2015-10-01

    A physiologically based pharmacokinetic (PBPK) model was developed and applied to a metabolic series approach for the ethyl series (i.e., ethyl acetate, ethanol, acetaldehyde, and acetate). This approach bases toxicity information on dosimetry analyses for metabolically linked compounds using pharmacokinetic data for each compound and toxicity data for parent or individual compounds. In vivo pharmacokinetic studies of ethyl acetate and ethanol were conducted in rats following IV and inhalation exposure. Regardless of route, ethyl acetate was rapidly converted to ethanol. Blood concentrations of ethyl acetate and ethanol following both IV bolus and infusion suggested linear kinetics across blood concentrations from 0.1 to 10 mM ethyl acetate and 0.01-0.8 mM ethanol. Metabolic parameters were optimized and evaluated based on available pharmacokinetic data. The respiratory bioavailability of ethyl acetate and ethanol were estimated from closed chamber inhalation studies and measured ventilation rates. The resulting ethyl series model successfully reproduces blood ethyl acetate and ethanol kinetics following IV administration and inhalation exposure in rats, and blood ethanol kinetics following inhalation exposure to ethanol in humans. The extrapolated human model was used to derive human equivalent concentrations for the occupational setting of 257-2120 ppm ethyl acetate and 72-517 ppm ethyl acetate for continuous exposure, corresponding to rat LOAELs of 350 and 1500 ppm. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...

  14. In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...

  15. Evaluating Pharmacokinetic and Pharmacodynamic Interactions with Computational Models in Cumulative Risk Assessment

    EPA Science Inventory

    Simultaneous or sequential exposure to multiple chemicals may cause interactions in the pharmacokinetics (PK) and/or pharmacodynamics (PD) of the individual chemicals. Such interactions can cause modification of the internal or target dose/response of one chemical in the mixture ...

  16. Influence of Jiegeng on Pharmacokinetic Properties of Flavonoids and Saponins in Gancao.

    PubMed

    Mao, Yancao; Peng, Linxiu; Kang, An; Xie, Tong; Xu, Jianya; Shen, Cunsi; Ji, Jianjian; Di, Liuqing; Wu, Hao; Shan, Jinjun

    2017-09-21

    Jiegeng Gancao decoction, which is composed of Jiegeng and Gancao at a weight ratio of 1:2, was widely used for treating pharyngalgia and cough for thousands of years. Our previous work indicated that Gancao could increase the systemic exposure of platycodin D and deapio-platycodin D, two main components in Jiegeng. However, whether Jiegeng could alter the pharmacokinetics of the main compounds in Gancao is still unknown. Thus, the purpose of this study was to compare the oral pharmacokinetics of flavonoids and saponins from Gancao alone vs. after co-administration with Jiegeng. Furthermore, Caco-2 cell transport and fecal hydrolysis were investigated to explain the altered pharmacokinetic properties. Pharmacokinetics results suggested that the bioavailability of liquiritin, isoliquiritin, glycyrrhizin and its metabolite, glycyrrhetinic acid, could be improved while bioavailability of liquiritigenin and isoliquiritigenin deteriorated when co-administered with Jiegeng. The Caco-2 transport study showed no significant difference of the Papp values of the main components in Jiegeng Gancao decoction when compared with those in Gancao decoction (p > 0.05). The in vitro metabolism study suggested that saponins and flavonoids glycosides in Gancao were influenced and the metabolic characteristics of most ingredients were consistent with pharmacokinetic results, such as liquiritin and glycyrrhetinic acid. The hydrolysis of liquiritigenin and glycyrrhizin observed with fecal lysate in vitro appeared consistent with the oral pharmacokinetics. Based on experiments, the pharmacokinetic profiles of six components in Gancao were influenced by Jiegeng. The metabolic process might partially contribute to the altered pharmacokinetic behavior. The metabolism of some components of Gancao appeared to be inhibited when coadministered with Jiegeng, possibly by the Jiegeng constituent platycodin.

  17. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics.

    PubMed

    Bosgra, Sieto; Vlaming, Maria L H; Vaes, Wouter H J

    2016-01-01

    Microdosing studies allow clinical investigation of pharmacokinetics earlier in drug development, before all high-dose safety concerns have been sorted out. Furthermore, microdosing allows inclusion of target groups that are inadmissible in high-dose phase I trials. A potential concern when considering a microdosing study is that a particular drug candidate may display non-linear pharmacokinetics. Saturation of, for example, membrane transport or metabolism at exposure levels between the microdose and therapeutic dose may limit the predictivity of high-dose pharmacokinetics from microdose observations. Guidance on the likelihood of appreciable non-linear pharmacokinetics based on preclinical information can be helpful in staging the clinical phase and the place of microdosing in it. We present a decision tree that evaluates concerns about non-linearities raised in the preclinical phase and their potential impact on the proportionality between microdose and intended therapeutic dose as predicted from preclinical information. The expected maximum concentrations at relevant sites are estimated by non-compartmental methods. These are compared with dissolution, Michaelis constants for active or enzymatic processes, and binding protein concentrations to assess the potential saturation of the processes below therapeutic doses. The decision tree was applied to ten published cases comparing microdose and therapeutic dose pharmacokinetics, for which concerns about non-linear pharmacokinetics were raised a priori. The decision tree was able to discriminate cases showing substantial non-linearities from cases displaying dose-proportional pharmacokinetics. The recommendations described in this paper may be useful in deciding whether a microdosing study is a sensible option to gain early insight in clinical pharmacokinetics of drug candidates.

  18. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data.

    PubMed

    Kocis, Petr; Tolar, Martin; Yu, Jeremy; Sinko, William; Ray, Soumya; Blennow, Kaj; Fillit, Howard; Hey, John A

    2017-06-01

    Amyloid beta (Aβ) oligomers play a critical role in the pathogenesis of Alzheimer's disease (AD) and represent a promising target for drug development. Tramiprosate is a small-molecule Aβ anti-aggregation agent that was evaluated in phase III clinical trials for AD but did not meet the primary efficacy endpoints; however, a pre-specified subgroup analysis revealed robust, sustained, and clinically meaningful cognitive and functional effects in patients with AD homozygous for the ε4 allele of apolipoprotein E4 (APOE4/4 homozygotes), who carry an increased risk for the disease. Therefore, to build on this important efficacy attribute and to further improve its pharmaceutical properties, we have developed a prodrug of tramiprosate ALZ-801 that is in advanced stages of clinical development. To elucidate how tramiprosate works, we investigated its molecular mechanism of action (MOA) and the translation to observed clinical outcomes. The two main objectives of this research were to (1) elucidate and characterize the MOA of tramiprosate via an integrated application of three independent molecular methodologies and (2) present an integrated translational analysis that links the MOA, conformation of the target, stoichiometry, and pharmacokinetic dose exposure to the observed clinical outcome in APOE4/4 homozygote subjects. We used three molecular analytical methods-ion mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR), and molecular dynamics-to characterize the concentration-related interactions of tramiprosate versus Aβ42 monomers and the resultant conformational alterations affecting aggregation into oligomers. The molecular stoichiometry of the tramiprosate versus Aβ42 interaction was further analyzed in the context of clinical pharmacokinetic dose exposure and central nervous system Aβ42 levels (i.e., pharmacokinetic-pharmacodynamic translation in humans). We observed a multi-ligand interaction of tramiprosate with monomeric Aβ42

  19. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions.

    PubMed

    Greupink, Rick; Schreurs, Marieke; Benne, Marina S; Huisman, Maarten T; Russel, Frans G M

    2013-08-16

    We studied if the clinical pharmacokinetics and drug-drug interactions (DDIs) of the sulfonylurea-derivative glibenclamide can be simulated via a physiologically-based pharmacokinetic modeling approach. To this end, a glibenclamide PBPK-model was build in Simcyp using in vitro physicochemical and biotransformation data of the drug, and was subsequently optimized using plasma disappearance data observed after i.v. administration. The model was validated against data observed after glibenclamide oral dosing, including DDIs. We found that glibenclamide pharmacokinetics could be adequately modeled if next to CYP metabolism an active hepatic uptake process was assumed. This hepatic uptake process was subsequently included in the model in a non-mechanistic manner. After an oral dose of 0.875 mg predicted Cmax and AUC were 39.7 (95% CI:37.0-42.7)ng/mL and 108 (95% CI: 96.9-120)ng/mLh, respectively, which is in line with observed values of 43.6 (95% CI: 37.7-49.5)ng/mL and 133 (95% CI: 107-159)ng/mLh. For a 1.75 mg oral dose, the predicted and observed values were 82.5 (95% CI:76.6-88.9)ng/mL vs 91.1 (95% CI: 67.9-115.9) for Cmax and 224 (95% CI: 202-248) vs 324 (95% CI: 197-451)ng/mLh for AUC, respectively. The model correctly predicted a decrease in exposure after rifampicin pre-treatment. An increase in glibenclamide exposure after clarithromycin co-treatment was predicted, but the magnitude of the effect was underestimated because part of this DDI is the result of an interaction at the transporter level. Finally, the effects of glibenclamide and fluconazol co-administration were simulated. Our simulations indicated that co-administration of this potent CYP450 inhibitor will profoundly increase glibenclamide exposure, which is in line with clinical observations linking the glibenclamide-fluconazol combination to an increased risk of hypoglycemia. In conclusion, glibenclamide pharmacokinetics and its CYP-mediated DDIs can be simulated via PBPK-modeling. In addition, our

  20. Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein.

    PubMed

    Higgins, J William; Bao, Jing Q; Ke, Alice B; Manro, Jason R; Fallon, John K; Smith, Philip C; Zamek-Gliszczynski, Maciej J

    2014-01-01

    Although organic anion transporting polypeptide (OATP)-mediated hepatic uptake is generally conserved between rodents and humans at a gross pharmacokinetic level, the presence of three major hepatic OATPs with broad overlap in substrate and inhibitor affinity, and absence of rodent-human orthologs preclude clinical translation of single-gene knockout/knockin findings. At present, changes in pharmacokinetics and tissue distribution of pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein were studied in oatp1a/1b-knockout mice lacking the three major hepatic oatp isoforms, and in knockout mice with liver-specific knockin of human OATP1B1 or OATP1B3. Relative to wild-type controls, oatp1a/1b-knockout mice exhibited 1.6- to 19-fold increased intravenous and 2.1- to 115-fold increased oral drug exposure, due to 33%-75% decreased clearance, 14%-60% decreased volume of distribution, and ≤74-fold increased oral bioavailability, with the magnitude of change depending on the contribution of oatp1a/1b to pharmacokinetics. Hepatic drug distribution was 4.2- to 196-fold lower in oatp1a/1b-knockout mice; distributional attenuation was less notable in kidney, brain, cardiac, and skeletal muscle. Knockin of OATP1B1 or OATP1B3 partially restored control clearance, volume, and bioavailability values (24%-142% increase, ≤47% increase, and ≤77% decrease vs. knockout, respectively), such that knockin pharmacokinetic profiles were positioned between knockout and wild-type mice. Consistent with liver-specific humanization, only hepatic drug distribution was partially restored (1.3- to 6.5-fold increase vs. knockout). Exposure and liver distribution changes in OATP1B1-humanized versus knockout mice predicted the clinical impact of OATP1B1 on oral exposure and contribution to human hepatic uptake of statins within 1.7-fold, but only after correcting for human/humanized mouse liver relative protein expression factor (OATP1B1 = 2.2, OATP1B3 = 0.30).

  1. The Role of Translation in Commercial French Courses.

    ERIC Educational Resources Information Center

    Vande Berg, Camille Kennedy

    While the exclusive use of French in commercial language courses has the advantage of maximizing student exposure to the target language, it also has the disadvantage of eliminating translation from pedagogical activities. However, translation can be a valuable instructional tool both for helping students assimilate the vocabulary and concepts of…

  2. Quantitative systems pharmacology: a promising approach for translational pharmacology.

    PubMed

    Gadkar, K; Kirouac, D; Parrott, N; Ramanujan, S

    Biopharmaceutical companies have increasingly been exploring Quantitative Systems Pharmacology (QSP) as a potential avenue to address current challenges in drug development. In this paper, we discuss the application of QSP modeling approaches to address challenges in the translational of preclinical findings to the clinic, a high risk area of drug development. Three cases have been highlighted with QSP models utilized to inform different questions in translational pharmacology. In the first, a mechanism based asthma model is used to evaluate efficacy and inform biomarker strategy for a novel bispecific antibody. In the second case study, a mitogen-activated protein kinase (MAPK) pathway signaling model is used to make translational predictions on clinical response and evaluate novel combination therapies. In the third case study, a physiologically based pharmacokinetic (PBPK) model it used to guide administration of oseltamivir in pediatric patients.

  3. Influence of Differing Analgesic Formulations of Aspirin on Pharmacokinetic Parameters.

    PubMed

    Kanani, Kunal; Gatoulis, Sergio C; Voelker, Michael

    2015-08-03

    Aspirin has been used therapeutically for over 100 years. As the originator and an important marketer of aspirin-containing products, Bayer's clinical trial database contains numerous reports of the pharmacokinetics of various aspirin formulations. These include evaluations of plain tablets, effervescent tablets, granules, chewable tablets, and fast-release tablets. This publication seeks to expand upon the available pharmacokinetic information concerning aspirin formulations. In the pre-systemic circulation, acetylsalicylic acid (ASA) is rapidly converted into its main active metabolite, salicylic acid (SA). Therefore, both substances are measured in plasma and reported in the results. The 500 mg strength of each formulation was chosen for analysis as this is the most commonly used for analgesia. A total of 22 studies were included in the analysis. All formulations of 500 mg aspirin result in comparable plasma exposure to ASA and SA as evidenced by AUC. Tablets and dry granules provide a consistently lower Cmax compared to effervescent, granules in suspension and fast release tablets. Effervescent tablets, fast release tablets, and granules in suspension provide a consistently lower median Tmax compared to dry granules and tablets for both ASA and SA. This report reinforces the importance of formulation differences and their impact on pharmacokinetic parameters.

  4. The Pharmacokinetic Interaction Study between Carvedilol and Bupropion in Rats.

    PubMed

    Abrudan, Maria Bianca; Muntean, Dana Maria; Gheldiu, Ana Maria; Neag, Maria Adriana; Vlase, Laurian

    2017-01-01

    The effects of multiple-dose bupropion on the pharmacokinetics of single-dose carvedilol were investigated in order to evaluate this possible drug-drug interaction. A preclinical study was conducted among white male Wistar rats. Each rat was cannulated on the femoral vein prior to being connected to BASi Culex ABC®. During the reference period, each rat received an intravenous and an oral dose of 3.57 mg/kg body weight (b.w.) carvedilol, at 2 days distance. After 5 days of pretreatment with 21.42 mg/kg b.w. bupropion (by oral route, twice a day - given in order to reach the steady state), during the sixth day, 3.57 mg/kg b.w. carvedilol and 21.42 mg/kg b.w. bupropion were orally co-administrated (test period). After each administration of carvedilol, several samples of 200 µL blood were collected. The pharmacokinetic parameters of carvedilol were analyzed by the noncompartmental method. The 5 days pretreatment with bupropion increased the exposure to carvedilol in rats by 180%, considering the modifications observed in the area under the curve of carvedilol. Carvedilol was shown to have higher plasma concentrations, delay in maximum concentration, and a prolonged half-life, after being pretreated with bupropion. The administration of multiple-dose bupropion influences the pharmacokinetics of carvedilol (single oral dose) in rats. © 2017 S. Karger AG, Basel.

  5. Influence of Differing Analgesic Formulations of Aspirin on Pharmacokinetic Parameters

    PubMed Central

    Kanani, Kunal; Gatoulis, Sergio C.; Voelker, Michael

    2015-01-01

    Aspirin has been used therapeutically for over 100 years. As the originator and an important marketer of aspirin-containing products, Bayer’s clinical trial database contains numerous reports of the pharmacokinetics of various aspirin formulations. These include evaluations of plain tablets, effervescent tablets, granules, chewable tablets, and fast-release tablets. This publication seeks to expand upon the available pharmacokinetic information concerning aspirin formulations. In the pre-systemic circulation, acetylsalicylic acid (ASA) is rapidly converted into its main active metabolite, salicylic acid (SA). Therefore, both substances are measured in plasma and reported in the results. The 500 mg strength of each formulation was chosen for analysis as this is the most commonly used for analgesia. A total of 22 studies were included in the analysis. All formulations of 500 mg aspirin result in comparable plasma exposure to ASA and SA as evidenced by AUC. Tablets and dry granules provide a consistently lower Cmax compared to effervescent, granules in suspension and fast release tablets. Effervescent tablets, fast release tablets, and granules in suspension provide a consistently lower median Tmax compared to dry granules and tablets for both ASA and SA. This report reinforces the importance of formulation differences and their impact on pharmacokinetic parameters. PMID:26247959

  6. [Interspecies differences of noopept pharmacokinetics].

    PubMed

    Boĭko, S S; Korotkov, S A; Zherdev, V P; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A

    2004-01-01

    Significant interspecific differences in the pharmacokinetics of noopept are manifested by a decrease in the drug elimination rate on the passage from rats to rabbits and humans. Very intensive metabolism of noopept was observed upon intravenous administration in rats. In these animals, presystemic elimination mechanisms lead to the formation of a specific metabolite representing a product of drug biotransformation hydroxylated at the phenyl ring. In rabbits, unchanged noopept circulates in the blood for a longer time upon both intravenous and peroral introduction, biotransformation proceeds at a much slower rate, and no metabolites analogous to that found in rats are detected. The noopept pharmacokinetics in humans differs from that in animals by still slower elimination and considerable individual variability. No drug metabolites are found in the human blood plasma, probably because of a relatively small dose and low concentration.

  7. Clinical Pharmacokinetics and Pharmacodynamics of Micafungin.

    PubMed

    Wasmann, Roeland E; Muilwijk, Eline W; Burger, David M; Verweij, Paul E; Knibbe, Catherijne A; Brüggemann, Roger J

    2017-08-08

    Micafungin is a selective inhibitor of the synthesis of fungal 1,3-β-D-glucan, an essential component of the fungal cell wall. It is available as a powder for infusion only and is registered for the treatment of invasive and esophageal candidiasis in addition to prophylaxis of Candida infections in both adults and children. Average exposure after a single intravenous 100 mg dose in healthy adults is 133 mg h/L. Both exposure and maximum plasma concentration show linear dose proportional pharmacokinetics (PK) over a 0.15-8 mg/kg dose range. In healthy adults, the clearance (CL) is 10.4 mL/h/kg and volume of distribution is 0.2 L/kg; both are independent of the dose. Micafungin is metabolized by arylsulfatase, catechol-O-methyltransferase, and several cytochrome P450 (CYP) isoenzymes (3A4, 1A2, 2B6 and 2C), but no dose adjustments are necessary in patients with (severe) hepatic dysfunction. Exposure to micafungin is lower in hematology patients, and is even further lowered in critically ill patients (including burn patients) compared with healthy volunteers, which might have consequences for treatment efficacy. In children, an increased CL has been reported: 40-80 mL/h/kg in premature neonates and 20 mL/h/kg in children >4 months of age. Therefore, relatively higher doses of 4-10 mg/kg in premature neonates and 2-4 mg/kg in children with invasive candidiasis are used. However, these higher CLs may also be explained by the eightfold higher free fraction of unbound micafungin in premature neonates, meaning that an augmented dose might not be required.

  8. Trusted Translation Services

    NASA Astrophysics Data System (ADS)

    Atif, Yacine; Serhani, Mohamed Adel; Campbell, Piers; Mathew, Sujith Samuel

    Administering multilingual Web sites and applications reliably, involves interconnected and multipart tasks, where trust in the involved parties and content translation sources is paramount. Published Web sites may reflect content from databases, content management systems and other repositories to manage related Web content. But a Web site mirrored wholly or selectively onto a target language version requires streamlined trusted processes. Traditionally, files are translated and transferred via FTP, e-mail, or other communication means. Similarly, translation instructions are communicated between involved parties through verbal instruction, e-mail, and instruction files lead to a variety of inconsistencies and lack of trust in the translation process. This paper proposes a Web service approach to streamline the translation processes and an integration of trust properties in the proposed translation Web services. Web Services have been instrumental in handling problems inherent to systems integration, allowing web-based systems to converse and communicate data automatically. The OASIS Translation Web Services Technical Committee has released a standard way for Web Services to serve the translation and localization business. This article proposes a framework to centralize translation services at a reputable source providing a workflow and a mechanism to quantify service trust. An implementation of the framework is also described in the context of a localization case study.

  9. The two faces of pharmacokinetics.

    PubMed

    Rescigno, Aldo

    2010-01-01

    There are two main branches of Mathematics: Calculus and Geometry; in Physics there are Constructive Theories and Principle Theories. Similarly in Pharmacokinetics we can build models with two opposite approaches, the bottom-up and the top-down point of view. In this short opinion article I will try to show, with the help of a few examples, the advantages of each one of the two approaches.

  10. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  11. Pharmacokinetics and RC Circuit Concepts

    NASA Astrophysics Data System (ADS)

    Cock, Mieke De; Janssen, Paul

    2013-11-01

    Most introductory physics courses include a chapter on RC circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such RC circuits. In this contribution, we report on a lab experiment we developed for students majoring in pharmacy, using RC circuits to simulate a pharmacokinetic process.

  12. [Dalbavancin: pharmacokinetic and pharmacodynamic parameters].

    PubMed

    Azanza, José Ramón; Sádaba, Belén; Reis, Joana

    2017-01-01

    Dalbavancin is a new lipoglycopeptide antibiotic whose structure influences its pharmacokinetic profile. It is not absorbed after oral administration and is therefore administered intravenously. It is distributed through intracellular fluid, reaching adequate concentrations in the skin, bone, blister fluid and synovial fluid. Plasma protein binding is very high. Concentrations in brain tissue and cerebrospinal fluid (CSF) are inadequate. Excretion is through non-microsomal metabolism with inactive metabolites and through the kidneys by glomerular filtration. Dalbavancin is eliminated slowly, as shown by its clearance value and its terminal elimination half-life, which exceeds 300 hours. This means that adequate concentrations of the drug remain in plasma and tissues for a prolonged period and explains the dosing regimen: a first dose of 1g followed 7 days later by a 500mg dose. The pharmacokinetics are linear and show little intra- and interindividual variability. There are no pharmacokinetic interactions. Dose adjustment is not required for patients with mild or moderate renal insufficiency (creatinine clearance ≥ 30 to 79ml/min). Dosage adjustment is not required in patients regularly receiving elective haemodialysis (3 times/week) and the drug can be administered without consideration of haemodialysis times. In patients with chronic renal insufficiency, whose creatinine clearance is < 30ml/min and who are not regularly receiving elective haemodialysis, the recommended dose should be reduced to 750mg per week, followed 1 week later by 375mg. Dosage adjustment does not seem necessary in patients with liver failure or in older patients. There is no information on the most appropriate dosage in children. The pharmacokinetic/pharmacodynamics parameter that best describes the effectiveness of dalbavancin is the ratio between the area under the curve and the minimum inhibitory concentration. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  13. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part I

    PubMed Central

    Monchaud, Caroline; Marquet, Pierre

    2009-01-01

    transplantation is presented in this article. Even more so than in other solid organ transplant populations, their pharmacokinetics is characterized by wide inter- and intra-individual variability in thoracic transplant recipients. The pharmacokinetics of cyclosporine in heart and lung transplant recipients has been explored in a number of studies, but less is known about that of mycophenolate and tacrolimus in these populations, while there are also hardly any studies on the pharmacokinetics of sirolimus and everolimus. Given the increased use of these molecules in thoracic transplant recipients, their pharmacokinetics deserves to be explored more in depth. There is very little data, some of which is conflicting, on the practices and outcomes of the TDM of immunosuppressants after thoracic transplantation. The development of sophisticated TDM tools dedicated to thoracic transplantation are awaited, in order to evaluate accurately and precisely patients’ exposure to drugs in general and in particular, to immunosuppre ssants. Finally, large cohort TDM studies definitely need to be conducted in thoracic transplant patients, in order to identify the most predictive exposure indices, and their target values, and to validate the clinical usefulness of improved TDM in these conditions. PMID:19691367

  14. Pharmacokinetics of drugs in pregnancy

    PubMed Central

    Feghali, Maisa; Venkataramanan, Raman; Caritis, Steve

    2016-01-01

    Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications. PMID:26452316

  15. Pharmacokinetics of Amphotericin B Colloidal Dispersion in Critically Ill Patients with Cholestatic Liver Disease

    PubMed Central

    Weiler, Stefan; Überlacher, Elisabeth; Schöfmann, Julia; Stienecke, Eva; Dunzendorfer, Stefan; Joannidis, Michael

    2012-01-01

    The pharmacokinetics of lipid-bound and liberated amphotericin B (AMB) was assessed in 11 critically ill patients with cholestatic liver disease (CSLD) and in 9 subjects with normal liver function treated with AMB colloidal dispersion (ABCD). Exposure to lipid-bound AMB was higher in patients with CSLD. Levels of liberated AMB were elevated by CSLD only after the first dose, whereas its pharmacokinetics was unaffected at steady state. The standard dosage of ABCD is probably adequate for patients with CSLD. PMID:22850517

  16. Population pharmacokinetic analysis of axitinib in healthy volunteers

    PubMed Central

    Garrett, May; Poland, Bill; Brennan, Meghan; Hee, Brian; Pithavala, Yazdi K; Amantea, Michael A

    2014-01-01

    AIMS Axitinib is a potent and selective second generation inhibitor of vascular endothelial growth factor receptors 1, 2 and 3 approved for second line treatment of advanced renal cell carcinoma. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in axitinib disposition following single dose administration in healthy volunteers. METHODS Plasma concentration–time data from 337 healthy volunteers in 10 phase I studies were analyzed, using non-linear mixed effects modelling (nonmem) to estimate population pharmacokinetic parameters and evaluate relationships between parameters and food, formulation, demographic factors, measures of renal and hepatic function and metabolic genotypes (UGT1A1*28 and CYP2C19). RESULTS A two compartment structural model with first order absorption and lag time best described axitinib pharmacokinetics. Population estimates for systemic clearance (CL), central volume of distribution (Vc), absorption rate constant (ka) and absolute bioavailability (F) were 17.0 l h−1, 45.3 l, 0.523 h−1 and 46.5%, respectively. With axitinib Form IV, ka and F increased in the fasted state by 207% and 33.8%, respectively. For Form XLI (marketed formulation), F was 15% lower compared with Form IV. CL was not significantly influenced by any of the covariates studied. Body weight significantly affected Vc, but the effect was within the estimated interindividual variability for Vc. CONCLUSIONS The analysis established a model that adequately characterizes axitinib pharmacokinetics in healthy volunteers. Vc was found to increase with body weight. However, no change in plasma exposures is expected with change in body weight; hence no dose adjustment is warranted. PMID:23834452

  17. Gestation time-dependent pharmacokinetics of intravenous (+)-methamphetamine in rats.

    PubMed

    White, Sarah; Laurenzana, Elizabeth; Hendrickson, Howard; Gentry, W Brooks; Owens, S Michael

    2011-09-01

    We tested the hypothesis that differences in (+)-methamphetamine (METH) disposition during late rat pregnancy could lead to increased vulnerability to acute METH effects. The disposition of a single 1 mg/kg i.v. METH dose was studied during early (gestation day 7, GD7) and late (GD21) gestation. Results showed gestation time-dependent pharmacokinetics, characterized by a significantly higher area under the METH serum concentration versus time curve and a lower clearance on GD21 (p < 0.05; total, renal, and nonrenal clearance). The terminal elimination half-life (t(1/2λz)) of METH and (+)-amphetamine (AMP; a pharmacologically active metabolite of METH) were not different on GD7, but by GD21, AMP t(1/2λz) was 37% longer than METH t(1/2λz) (p < 0.05). To identify the mechanism for AMP metabolite changes, intravenous AMP pharmacokinetics on GD21 were compared with AMP metabolite pharmacokinetics after intravenous METH. The intravenous AMP t(1/2λz) was significantly shorter than metabolite AMP t(1/2λz) (p < 0.05), which suggested AMP metabolite formation (not elimination) was the rate-limiting process. To understand the medical consequence of METH use during late-stage pregnancy, timed-pregnant rats received an intravenous dose of saline or METH (1, 3, or 5.6 mg/kg) on GD21, 0 to 2 days antepartum. Although one rat died and another had stillbirths at term after the 5.6-mg/kg dose, the pharmacokinetic values for all of the other animals were not significantly different. In conclusion, late-gestational clearance reductions lengthen METH exposure time, possibly increasing susceptibility to adverse effects, including death.

  18. Gestation Time-Dependent Pharmacokinetics of Intravenous (+)-Methamphetamine in Rats

    PubMed Central

    White, Sarah; Laurenzana, Elizabeth; Hendrickson, Howard; Gentry, W. Brooks

    2011-01-01

    We tested the hypothesis that differences in (+)-methamphetamine (METH) disposition during late rat pregnancy could lead to increased vulnerability to acute METH effects. The disposition of a single 1 mg/kg i.v. METH dose was studied during early (gestation day 7, GD7) and late (GD21) gestation. Results showed gestation time-dependent pharmacokinetics, characterized by a significantly higher area under the METH serum concentration versus time curve and a lower clearance on GD21 (p < 0.05; total, renal, and nonrenal clearance). The terminal elimination half-life (t1/2λz) of METH and (+)-amphetamine (AMP; a pharmacologically active metabolite of METH) were not different on GD7, but by GD21, AMP t1/2λz was 37% longer than METH t1/2λz (p < 0.05). To identify the mechanism for AMP metabolite changes, intravenous AMP pharmacokinetics on GD21 were compared with AMP metabolite pharmacokinetics after intravenous METH. The intravenous AMP t1/2λz was significantly shorter than metabolite AMP t1/2λz (p < 0.05), which suggested AMP metabolite formation (not elimination) was the rate-limiting process. To understand the medical consequence of METH use during late-stage pregnancy, timed-pregnant rats received an intravenous dose of saline or METH (1, 3, or 5.6 mg/kg) on GD21, 0 to 2 days antepartum. Although one rat died and another had stillbirths at term after the 5.6-mg/kg dose, the pharmacokinetic values for all of the other animals were not significantly different. In conclusion, late-gestational clearance reductions lengthen METH exposure time, possibly increasing susceptibility to adverse effects, including death. PMID:21632964

  19. [Tetrahydrocannabinol pharmacokinetics; new synthetic cannabinoids; road safety and cannabis].

    PubMed

    Goullé, Jean-Perre; Guerbet, Michel

    2014-03-01

    Delta-9-tetrahydrocannabinol (THC) is the main psychoactive ingredient of cannabis, a drug which is commonly smoked This paper focuses on the pharmacokinetics of THC. The average THC content in cannabis plant material has risen by a factor offour over the past 20 years, from 4% to 16%. This increase has important implications not only for the pharmacokinetics but also for the pharmacology of THC The mean bioavailability of THC in smoked cannabis is about 25%. In a cigarette containing 3.55% of THC, a peak plasma level of about 160 ng/mL occurs approximately 10 min after inhalation. THC is quickly cleared from plasma in a multiphasic manner and is widely distributed to tissues, leading to its pharmacologic effects. Body fat is a long-term storage site. This particular pharmacokinetic behavior explains the lack of correlation between the THC blood level and clinical effects, contrary to ethanol. The main THC metabolites are 11-OH-THC (the only active metabolite) and THC-COOH, which is eliminated in feces and urine over several weeks. Therefore, abstinence can be established by analyzing THC-COOH in urine, while blood THC analysis is used to confirm recent exposure. Cannabis is the main illicit drug found among vehicle drivers. Various traffic safety studies indicate that recent use of this drug at least doubles the risk of causing an accident, and that simultaneous alcohol consumption multiplies this risk by afactor of 14. Since 2009, synthetic cannabinoids have emerged on the illicit drug market. These substances act on the same CB1 receptors as THC, but with higher afinity. Their pharmacokinetics differs from that of THC, as they are metabolized into multiple derivatives, most of which are more active than THC itself.

  20. Clinical pharmacokinetic profile of modafinil.

    PubMed

    Robertson, Philmore; Hellriegel, Edward T

    2003-01-01

    Modafinil is a unique wake-promoting agent for oral administration. Its pharmacological properties are distinct from those of other CNS agents, and it selectively targets neuronal pathways in the sleep/wake centres of the brain. After single or multiple oral doses, modafinil is readily absorbed, reaching maximum plasma concentrations at 2-4 hours after administration and pharmacokinetic steady state within 2-4 days. Its pharmacokinetics are dose-independent between 200 and 600 mg/day. The elimination half-life is approximately 12-15 hours, which is largely reflective of the pharmacokinetics of the longer-lived l-enantiomer. Modafinil is primarily eliminated via metabolism, mainly in the liver, with subsequent excretion in the urine. Less than 10% of the dose is excreted as unchanged drug. Metabolism is largely via amide hydrolysis, with lesser contributions from cytochrome P450 (CYP)-mediated oxidative pathways. In patients who are renally or hepatically compromised, the elimination processes can be slowed, and in a similar manner (although to a lesser extent), elimination in the elderly may be reduced due to normal effects of aging. Because modafinil is administered concomitantly with other medications, the potential for metabolic drug-drug interactions has been examined both in vitro and in vivo. In vitro, modafinil was observed to produce a reversible inhibition of CYP2C19 in human liver microsomes. It also caused a small, but concentration-dependent, induction of CYP1A2, CYP2B6 and CYP3A4 activities and suppression of CYP2C9 activity in primary cultures of human hepatocytes. Clinical studies have been conducted to examine the potential for interactions with methylphenidate, dexamfetamine, warfarin, ethinylestradiol and triazolam. The only substantive interactions observed were with ethinylestradiol and triazolam, apparently through induction of CYP3A4, primarily in the gastrointestinal system. Overall, the results of the interaction studies suggest that

  1. Lack of pharmacokinetic interaction for ISIS 113715, a 2'-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone.

    PubMed

    Geary, Richard S; Bradley, JoAnn D; Watanabe, Tanya; Kwon, Younggil; Wedel, Mark; van Lier, Jan J; VanVliet, André A

    2006-01-01

    ISIS 113715 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that is complementary to the protein tyrosine phosphatase 1B (PTP-1B) messenger RNA and subsequently reduces translation of the PTP-1B protein, a negative regulator of insulin receptor. ISIS 113715 is currently being studied in early phase II clinical studies to determine its ability to improve or restore insulin receptor sensitivity in patients with type 2 diabetes mellitus. Future work will investigate the combination of ISIS 113715 with antidiabetic compounds. In vitro ultrafiltration human plasma protein binding displacement studies and a phase I clinical study were used to characterise the potential for pharmacokinetic interaction of ISIS 113715 and three marketed oral antidiabetic agents. ISIS 113715 was co-incubated with glipizide and rosiglitazone in whole human plasma and tested for increased free drug concentrations. In a phase I clinical study, 23 healthy volunteers received a single oral dose of an antidiabetic compound (either metformin, glipizide or rosiglitazone) both alone and together with subcutaneous ISIS 113715 200 mg in a sequential crossover design. A comparative pharmacokinetic analysis was performed to determine if there were any effects that resulted from coadministration of ISIS 113715 with these antidiabetic compounds. In vitro human plasma protein binding displacement studies showed only minor effects on rosiglitazone and no effect on glipizide when co-incubated with ISIS 113715. The results of the phase I clinical study further indicate that there were no measurable changes in glipizide (5 mg), metformin (500 mg) or rosiglitazone (2 mg) exposure parameters, maximum plasma concentration and the area under the concentration-time curve, or pharmacokinetic parameter, elimination half-life when coadministered with ISIS 113715. Furthermore, there was no effect of ISIS 113715, administered in combination with metformin, on the urinary excretion of metformin. Conversely

  2. Advanced Translation Teaching.

    ERIC Educational Resources Information Center

    Rokkan, Elizabeth

    1980-01-01

    The process of translating demands an attempt to draw on contextual knowledge on all relevant areas of society: literature and the study of society together with the use of idiomatic language. Students can be shown this by direct translations which appear incomprehensible. English-to-Norwegian-to-English examples are given. (Author/PJM)

  3. Translations and Dynamics

    NASA Astrophysics Data System (ADS)

    Tresguerres, Romualdo

    We analyze the role played by local translational symmetry in the context of gauge theories of fundamental interactions. Translational connections and fields are introduced, with special attention being paid to their universal coupling to other variables, as well as to their contributions to field equations and to conserved quantities.

  4. Plurality in Translation.

    ERIC Educational Resources Information Center

    Farahzad, Farzaneh

    This paper discusses factors contributing to differing translations of the same source text, arguing that translation occurs on a continuum rather than having absolute criteria and procedures. Issues examined include the formal properties of the text, the text's "invariant core of meaning," stability in the semantic elements of the text, the text…

  5. Translation as Literary Criticism.

    ERIC Educational Resources Information Center

    di Stefano, B. Follkart

    1982-01-01

    It is proposed that literary translation is intrinsically an act of literary criticism. This theory is illustrated by discussion of specific problems in translating Sartre's "La Nausee" and Leonard Forest's "Le pays de la Sagouine," especially the use of verb tense. (MSE)

  6. Science Explorers Translation Project.

    ERIC Educational Resources Information Center

    Jacobs, Dolores

    This paper describes a pilot project of Los Alamos National Laboratory (New Mexico) to translate a science education curriculum for junior and senior high school students into Navajo. The project consisted of translating a video, a teacher's guide, and an interactive multimedia product on the 1993 hantavirus outbreak in the Four Corners area…

  7. Students' Differentiated Translation Processes

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2014-01-01

    Understanding how students translate between mathematical representations is of both practical and theoretical importance. This study examined students' processes in their generation of symbolic and graphic representations of given polynomial functions. The purpose was to investigate how students perform these translations. The result of the study…

  8. Translation as (Global) Writing

    ERIC Educational Resources Information Center

    Horner, Bruce; Tetreault, Laura

    2016-01-01

    This article explores translation as a useful point of departure and framework for taking a translingual approach to writing engaging globalization. Globalization and the knowledge economy are putting renewed emphasis on translation as a key site of contest between a dominant language ideology of monolingualism aligned with fast capitalist…

  9. Creativity, Culture and Translation

    ERIC Educational Resources Information Center

    Babaee, Siamak; Wan Yahya, Wan Roselezam; Babaee, Ruzbeh

    2014-01-01

    Some scholars (Bassnett-McGuire, Catford, Brislin) suggest that a good piece of translation should be a strict reflection of the style of the original text while some others (Gui, Newmark, Wilss) consider the original text untranslatable unless it is reproduced. Opposing views by different critics suggest that translation is still a challenging…

  10. Translations toward Connected Mathematics

    ERIC Educational Resources Information Center

    Applebaum, Mark; Leikin, Roza

    2010-01-01

    The translation principle allows students to solve problems in different branches of mathematics and thus to develop connectedness in their mathematical knowledge. Successful application of the translation principle depends on the classroom mathematical norms for the development of discussions and the comparison of different solutions to one…

  11. Text Coherence in Translation

    ERIC Educational Resources Information Center

    Zheng, Yanping

    2009-01-01

    In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…

  12. Translation as Literary Criticism.

    ERIC Educational Resources Information Center

    di Stefano, B. Follkart

    1982-01-01

    It is proposed that literary translation is intrinsically an act of literary criticism. This theory is illustrated by discussion of specific problems in translating Sartre's "La Nausee" and Leonard Forest's "Le pays de la Sagouine," especially the use of verb tense. (MSE)

  13. Semantics via Machine Translation

    ERIC Educational Resources Information Center

    Culhane, P. T.

    1977-01-01

    Recent experiments in machine translation have given the semantic elements of collocation in Russian more objective criteria. Soviet linguists in search of semantic relationships have attempted to devise a semantic synthesis for construction of a basic language for machine translation. One such effort is summarized. (CHK)

  14. Terminology, a Translational Discipline.

    ERIC Educational Resources Information Center

    Ahrens, Helga

    1994-01-01

    Discusses the importance of qualified terminology and its implications for terminological activity. Argues that students have to learn how to organize their terminological activity. Suggests that translation is a special kind of intercultural communication and is an indispensable part of translational action. Argues that terminology be examined…

  15. Computer Aids to Translation.

    ERIC Educational Resources Information Center

    Krollmann, Friedrich

    1981-01-01

    Describes the structure and modes of operation of the Bundessprachenamt's (BSprA: Federal Office of Languages of the Federal Republic of Germany) terminology data bank as an aid to translation. Analyzes advantages and disadvantages of each user mode, and discusses probable developments in the immediate future of machine-aided translation. (MES)

  16. A Translation Technique.

    ERIC Educational Resources Information Center

    Eadie, Jacqueline

    1999-01-01

    Encourages readers to look at traditional translation activities in a positive and innovative light. A detailed lesson plan is offered, showing how back translation can be exploited with a monolingual class, whether or not the teacher speaks the students' mother tongue. (Author/VWL)

  17. Terminology, a Translational Discipline.

    ERIC Educational Resources Information Center

    Ahrens, Helga

    1994-01-01

    Discusses the importance of qualified terminology and its implications for terminological activity. Argues that students have to learn how to organize their terminological activity. Suggests that translation is a special kind of intercultural communication and is an indispensable part of translational action. Argues that terminology be examined…

  18. Translating the Folk.

    ERIC Educational Resources Information Center

    Fletcher, Bryan

    2000-01-01

    This article looks at issues affecting Robert Garioch's translation into Scots of a sonnet from Giuseppe Gioachino Belli's Romaneschi collection. It begins with the discussion of a problem involved in writing in dialects with no settled written standard. This 'standardizing' poetry is then looked at in terms of translation and theories of the…

  19. Idioms and Back Translation

    ERIC Educational Resources Information Center

    Griffin, Frank

    2004-01-01

    The challenges of intercultural communication are an integral part of many undergraduate business communication courses. Marketing gaffes clearly illustrate the pitfalls of translation and underscore the importance of a knowledge of the culture with which one is attempting to communicate. A good way to approach the topic of translation pitfalls in…

  20. Advanced Translation Teaching.

    ERIC Educational Resources Information Center

    Rokkan, Elizabeth

    1980-01-01

    The process of translating demands an attempt to draw on contextual knowledge on all relevant areas of society: literature and the study of society together with the use of idiomatic language. Students can be shown this by direct translations which appear incomprehensible. English-to-Norwegian-to-English examples are given. (Author/PJM)

  1. The Problems of Translation.

    ERIC Educational Resources Information Center

    Huntsman, Jeffrey F.

    The problems confronting the translator of American Indian literature are immense. The history of European Indian relations has obscured many original Indian values and attitudes and has substituted a set of simplistic and unreal Anglo attitudes that translators must transcend. Unlike most Western literature, Indian literature does not instruct,…

  2. Students' Differentiated Translation Processes

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2014-01-01

    Understanding how students translate between mathematical representations is of both practical and theoretical importance. This study examined students' processes in their generation of symbolic and graphic representations of given polynomial functions. The purpose was to investigate how students perform these translations. The result of the study…

  3. Translation as (Global) Writing

    ERIC Educational Resources Information Center

    Horner, Bruce; Tetreault, Laura

    2016-01-01

    This article explores translation as a useful point of departure and framework for taking a translingual approach to writing engaging globalization. Globalization and the knowledge economy are putting renewed emphasis on translation as a key site of contest between a dominant language ideology of monolingualism aligned with fast capitalist…

  4. A CASE FOR TRANSLATION.

    ERIC Educational Resources Information Center

    THORNTON-SMITH, C.B.

    MOST OF THE CRITICISMS OF TRANSLATION IN SECONDARY SCHOOL LANGUAGE COURSES FOCUS ON THE SUPPOSEDLY DIFFICULT PROBLEMS OF SELECTING, USING, AND GRADING TRANSLATION TESTS AS OPPOSED TO THE OBJECTIVE TESTS GENERALLY USED BY ADVOCATES OF AUDIOLINGUALISM. BUT MOST OF THESE CRITICISMS FAIL TO RECOGNIZE THAT THE PROCESS OF LEARNING A FOREIGN LANGUAGE…

  5. Pharmacokinetic interactions between lersivirine and zidovudine, tenofovir disoproxil fumarate/emtricitabine and abacavir/lamivudine.

    PubMed

    Vourvahis, Manoli; Davis, John; Langdon, Grant; Layton, Gary; Fang, Juanzhi; Choo, Heng Wee; Hansson, Arne G; Tawadrous, Margaret

    2013-01-01

    To investigate pharmacokinetic interactions associated with coadministration of lersivirine with zidovudine, tenofovir disoproxil fumarate (DF)/emtricitabine (Truvada(®)) or abacavir/lamivudine (Epzicom(®)/Kivexa(®)). Three Phase I, open, crossover studies with two (studies 1 and 3) or three (study 2) treatment periods were conducted in healthy individuals. In study 1, individuals received zidovudine and placebo or zidovudine and lersivirine on days 1-14. In study 2, individuals received lersivirine and tenofovir DF/emtricitabine, lersivirine and placebo or tenofovir DF/emtricitabine and placebo on days 1-10. In study 3, individuals received abacavir/lamivudine only in period 1 (5 days) and abacavir/lamivudine and lersivirine in period 2 (10 days). Blood samples were taken on days 1-14 (study 1) or day of final dose (studies 2 and 3) and analysed using high performance liquid chromatography/dual mass spectrometry. Pharmacokinetic parameters were calculated by standard non-compartmental methods. When coadministered with lersivirine, zidovudine exposure increased by 35%, and exposure of its metabolite zidovudine-glucuronide decreased by 19%. Following coadministration of lersivirine and tenofovir DF/emtricitabine, tenofovir exposure increased by 30%, and lersivirine exposure decreased by 12%. Coadministration of lersivirine and abacavir/lamivudine increased abacavir exposure by 27% and decreased lamivudine exposure by 8%. Adverse events were predominantly mild in these Phase I studies. Coadministration of lersivirine with zidovudine, tenofovir DF/emtricitabine or abacavir/lamivudine influenced the systemic exposure of all nucleoside reverse transcriptase inhibitor agents investigated (except for lamivudine; emtricitabine pharmacokinetics were not assessed). Changes were not considered clinically meaningful for zidovudine and abacavir. The clinical relevance of the effect on tenofovir pharmacokinetics is currently unknown.

  6. Translation Ambiguity but Not Word Class Predicts Translation Performance

    ERIC Educational Resources Information Center

    Prior, Anat; Kroll, Judith F.; Macwhinney, Brian

    2013-01-01

    We investigated the influence of word class and translation ambiguity on cross-linguistic representation and processing. Bilingual speakers of English and Spanish performed translation production and translation recognition tasks on nouns and verbs in both languages. Words either had a single translation or more than one translation. Translation…

  7. Examining English-German Translation Ambiguity Using Primed Translation Recognition

    ERIC Educational Resources Information Center

    Eddington, Chelsea M.; Tokowicz, Natasha

    2013-01-01

    Many words have more than one translation across languages. Such "translation-ambiguous" words are translated more slowly and less accurately than their unambiguous counterparts. We examine the extent to which word context and translation dominance influence the processing of translation-ambiguous words. We further examine how these factors…

  8. Translation Ambiguity but Not Word Class Predicts Translation Performance

    ERIC Educational Resources Information Center

    Prior, Anat; Kroll, Judith F.; Macwhinney, Brian

    2013-01-01

    We investigated the influence of word class and translation ambiguity on cross-linguistic representation and processing. Bilingual speakers of English and Spanish performed translation production and translation recognition tasks on nouns and verbs in both languages. Words either had a single translation or more than one translation. Translation…

  9. Examining English-German Translation Ambiguity Using Primed Translation Recognition

    ERIC Educational Resources Information Center

    Eddington, Chelsea M.; Tokowicz, Natasha

    2013-01-01

    Many words have more than one translation across languages. Such "translation-ambiguous" words are translated more slowly and less accurately than their unambiguous counterparts. We examine the extent to which word context and translation dominance influence the processing of translation-ambiguous words. We further examine how these factors…

  10. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs.

    PubMed

    Dostalek, Miroslav; Akhlaghi, Fatemeh; Puzanovova, Martina

    2012-08-01

    The effects of diabetes mellitus on the pharmacokinetics and pharmacodynamics of drugs have been well described in experimental animal models; however, only minimal data exist for humans and the current knowledge regarding the effects of diabetes on these properties remains unclear. Nevertheless, it has been observed that the pharmacokinetics and pharmacodynamics of drugs are changed in subjects with diabetes. It has been reported that diabetes may affect the pharmacokinetics of various drugs by affecting (i) absorption, due to changes in subcutaneous adipose blood flow, muscle blood flow and gastric emptying; (ii) distribution, due to non-enzymatic glycation of albumin; (iii) biotransformation, due to regulation of enzymes/transporters involved in drug biotransformation; and (iv) excretion, due to nephropathy. Previously published data also suggest that diabetes-mediated changes in the pharmacokinetics of a particular drug cannot be translated to others. Although clinical studies exploring the effect of diabetes on pharmacodynamics are still very limited, there is evidence that disease-mediated effects are not limited only to pharmacokinetics but also alter pharmacodynamics. However, for many drugs it remains unclear whether these influences reflect diabetes-mediated changes in pharmacokinetics rather than pharmacodynamics. In addition, even though diabetes-mediated pharmacokinetics and pharmacodynamics might be anticipated, it is important to study the effect on each drug and not generalize from observed data. The available data indicate that there is a significant variability in drug response in diabetic subjects. The discrepancies between individual clinical studies as well as between ex vivo and clinical studies are probably due to (i) the restricted and focused population of subjects in clinical studies; (ii) failure to consider type, severity and duration of the disease; (iii) histopathological characteristics generally being missing; and (iv) other factors

  11. An integrated pharmacokinetics ontology and corpus for text mining.

    PubMed

    Wu, Heng-Yi; Karnik, Shreyas; Subhadarshini, Abhinita; Wang, Zhiping; Philips, Santosh; Han, Xu; Chiang, Chienwei; Liu, Lei; Boustani, Malaz; Rocha, Luis M; Quinney, Sara K; Flockhart, David; Li, Lang

    2013-02-01

    Drug pharmacokinetics parameters, drug interaction parameters, and pharmacogenetics data have been unevenly collected in different databases and published extensively in the literature. Without appropriate pharmacokinetics ontology and a well annotated pharmacokinetics corpus, it will be difficult to develop text mining tools for pharmacokinetics data collection from the literature and pharmacokinetics data integration from multiple databases. A comprehensive pharmacokinetics ontology was constructed. It can annotate all aspects of in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. It covers all drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK-corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK-corpus was demonstrated by a drug interaction extraction text mining analysis. The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK-corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions.

  12. An integrated pharmacokinetics ontology and corpus for text mining

    PubMed Central

    2013-01-01

    Background Drug pharmacokinetics parameters, drug interaction parameters, and pharmacogenetics data have been unevenly collected in different databases and published extensively in the literature. Without appropriate pharmacokinetics ontology and a well annotated pharmacokinetics corpus, it will be difficult to develop text mining tools for pharmacokinetics data collection from the literature and pharmacokinetics data integration from multiple databases. Description A comprehensive pharmacokinetics ontology was constructed. It can annotate all aspects of in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. It covers all drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK-corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK-corpus was demonstrated by a drug interaction extraction text mining analysis. Conclusions The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK-corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions. PMID:23374886

  13. Clinical Pharmacokinetics and Pharmacodynamics of Bosutinib.

    PubMed

    Abbas, Richat; Hsyu, Poe-Hirr

    2016-10-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative stem cell disorder. Bosutinib is an oral, once-daily SRC/ABL tyrosine kinase inhibitor with very potent inhibitory activity. Bosutinib is effective against all phases of intolerant or resistant Philadelphia chromosome-positive CML that do not harbor the T315I or V299LABL kinase domain mutations. Peak plasma concentrations of bosutinib occur at 4-6 h following oral administration, and dose-proportional increases in exposure are observed at doses ranging from 200 to 800 mg. Absorption of bosutinib increases with food. Bosutinib is distributed extensively into the tissues. It is highly plasma protein bound (94 %) and is primarily metabolized in the liver by cytochrome P450 3A4. Bosutinib is well tolerated overall and has a unique but manageable toxicity profile. This article provides a review of the available clinical pharmacokinetic, pharmacodynamic, and drug-drug interaction data on bosutinib in healthy subjects, patients with CML, and special populations.

  14. Tyramine pharmacokinetics and reduced bioavailability with food.

    PubMed

    VanDenBerg, Chad M; Blob, Lawrence F; Kemper, Eva M; Azzaro, Albert J

    2003-06-01

    Tyramine challenge studies have demonstrated that it requires approximately twice the amount of tyramine administered with a meal compared to administration after a fast to elicit the same effect, suggesting a reduction in bioavailability of tyramine when administered with food. The pharmacokinetics of tyramine when administered in a fasted versus a fed state were studied. A single 200-mg dose of tyramine was administered orally to healthy subjects both after an overnight fast and during a meal. Systemic exposure to tyramine was reduced by 53% (p < 0.05), and the maximum concentration of tyramine was reduced by 72% (p < 0.05) when the dose was administered during a meal. Tyramine maximum serum concentration was observed between 20 minutes and 1 hour when the dose was administered after an overnight fast and appeared to be delayed and/or prolonged by administration during a meal. Tyramine oral clearance was 135 +/- 55.4 L/min, maximum observed serum concentration was 37.7 +/- 26.01 ng/mL, and tyramine elimination half-life was 0.533 (range: 0.330-0.668) hours after administration to fasted subjects. Tyramine bioavailability was significantly reduced when administered with a meal compared to after a fast. The results suggest that larger amounts of dietary tyramine will be required to induce a pressor response equivalent to that following encapsulated tyramine administered in the fasted state.

  15. Theory of Test Translation Error

    ERIC Educational Resources Information Center

    Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel

    2009-01-01

    In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…

  16. Theory of Test Translation Error

    ERIC Educational Resources Information Center

    Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel

    2009-01-01

    In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…

  17. Translation: An Integration of Cultures.

    ERIC Educational Resources Information Center

    Mohanty, Niranjan

    1994-01-01

    Discusses translation in the Indian context. Posits that translation involves cultural transfer in addition to linguistic meaning. Shows that several established models of translation can accommodate the inclusion of cultural features. Illustrates this with two translations of Orissan poetry. Concludes that the translator is a creative agent in…

  18. Population pharmacokinetics of rifapentine and its primary desacetyl metabolite in South African tuberculosis patients.

    PubMed

    Langdon, Grant; Wilkins, Justin; McFadyen, Lynn; McIlleron, Helen; Smith, Peter; Simonsson, Ulrika S H

    2005-11-01

    This study was designed to describe the population pharmacokinetics of rifapentine (RFP) and 25-desacetyl RFP in a South African pulmonary tuberculosis patient population. Special reference was made to studying the influence of previous exposure to rifampin (RIF) and the variability in pharmacokinetic parameters between patients and between occasions and the influence of different covariates. Patients were included in the study if they had been receiving first-line antimycobacterial therapy (rifampin, isoniazid, pyrazinamide, and ethambutol) for not less than 4 weeks and not more than 6 weeks and were divided into three RFP dosage groups based on weight: 600 mg, <45 kg; 750 mg, 46 to 55 kg; and 900 mg, >55 kg. Participants received a single oral dose of RFP together with concomitant antimycobacterial agents, excluding RIF, on study days 1 and 5 after they ingested a soup-based meal. The RFP and 25-desacetyl RFP concentration-time data were analyzed by nonlinear mixed-effect modeling using NONMEM. The pharmacokinetics of the parent drug were modeled separately, and the individual pharmacokinetic parameters were used as inputs for the 25-desacetyl RFP pharmacokinetic model. A one-compartment disposition model was found to best describe the data for both the parent and the metabolite, and the metabolite was assumed to be formed only from the central compartment of the parent drug. Prior treatment with RIF did not alter the pharmacokinetics of RFP but appeared to increase the excretion of 25-desacetyl RFP in a nonlinear fashion. The RFP oral clearance and volume of distribution were found to increase by 0.049 liter/h and 0.691 liter, respectively, with a 1-kg increase from the median weight of 50 kg. The oral clearance of 25-desacetyl RFP was found to be 35% lower in female patients. The model developed here describes the population pharmacokinetics of RFP and its primary metabolite in tuberculosis patients and includes the effects of prior administration with RIF and

  19. Population Pharmacokinetics of Rifapentine and Its Primary Desacetyl Metabolite in South African Tuberculosis Patients

    PubMed Central

    Langdon, Grant; Wilkins, Justin; McFadyen, Lynn; McIlleron, Helen; Smith, Peter; Simonsson, Ulrika S. H.

    2005-01-01

    This study was designed to describe the population pharmacokinetics of rifapentine (RFP) and 25-desacetyl RFP in a South African pulmonary tuberculosis patient population. Special reference was made to studying the influence of previous exposure to rifampin (RIF) and the variability in pharmacokinetic parameters between patients and between occasions and the influence of different covariates. Patients were included in the study if they had been receiving first-line antimycobacterial therapy (rifampin, isoniazid, pyrazinamide, and ethambutol) for not less than 4 weeks and not more than 6 weeks and were divided into three RFP dosage groups based on weight: 600 mg, <45 kg; 750 mg, 46 to 55 kg; and 900 mg, >55 kg. Participants received a single oral dose of RFP together with concomitant antimycobacterial agents, excluding RIF, on study days 1 and 5 after they ingested a soup-based meal. The RFP and 25-desacetyl RFP concentration-time data were analyzed by nonlinear mixed-effect modeling using NONMEM. The pharmacokinetics of the parent drug were modeled separately, and the individual pharmacokinetic parameters were used as inputs for the 25-desacetyl RFP pharmacokinetic model. A one-compartment disposition model was found to best describe the data for both the parent and the metabolite, and the metabolite was assumed to be formed only from the central compartment of the parent drug. Prior treatment with RIF did not alter the pharmacokinetics of RFP but appeared to increase the excretion of 25-desacetyl RFP in a nonlinear fashion. The RFP oral clearance and volume of distribution were found to increase by 0.049 liter/h and 0.691 liter, respectively, with a 1-kg increase from the median weight of 50 kg. The oral clearance of 25-desacetyl RFP was found to be 35% lower in female patients. The model developed here describes the population pharmacokinetics of RFP and its primary metabolite in tuberculosis patients and includes the effects of prior administration with RIF and

  20. VKORC1-dependent pharmacokinetics of intravenous and oral phylloquinone (vitamin K1) mixed micelles formulation.

    PubMed

    Marinova, Milka; Lütjohann, Dieter; Breuer, Olof; Kölsch, Heike; Westhofen, Philipp; Watzka, Matthias; Mengel, Martin; Stoffel-Wagner, Birgit; Hartmann, Gunther; Coch, Christoph; Oldenburg, Johannes

    2013-03-01

    The pharmacokinetics of phylloquinone (vitamin K1) were evaluated in healthy human adult volunteers (15 male and 15 female) following oral and intravenous administration of a mixed micelles formulation (Konakion MM 2 mg) in an open label study design. The subjects were allocated to one of three genotype-specific groups (n = 10 in each group) in terms of VKORC1 promoter polymorphism c.-1639 G > A to explore the relationship between genotype and pharmacokinetic parameters. Blood samples were collected for up to 24 h after administration. Phylloquinone serum levels were determined by reversed phase HPLC with fluorometric detection after post-column zinc reduction. Pharmacokinetic evaluation was performed using non-compartmental analysis. Pharmacokinetic analysis of serum phylloquinone concentration versus time profiles revealed significant differences in the main pharmacokinetic parameters between groups. Upon oral administration, VKORC1 AG carriers showed 41 % higher mean bioavailability (p = 0.01) compared with homozygous AA individuals. Furthermore, AG subjects exhibited 30 % (p = 0.042) and 36 % (p = 0.021) higher mean AUC compared with GG and AA respectively. Terminal half-life was 32 % and 27 % longer for AG carriers in comparison to GG (p = 0.004) and AA (p = 0.015) genotypes respectively. Pharmacokinetic differences indicated significant inter-individual variance of vitamin K fate in the human body. The influence of the VKORC1 promoter polymorphism c.-1639 G > A on the pharmacokinetic properties of phylloquinone could be demonstrated in humans. To gain deeper insight in other potential genetic determinants of systemic vitamin K exposure, further correlation of the phenotype-genotype relationship of different players in vitamin K turnover has to be gained.

  1. Population pharmacokinetics of abacavir in pregnant women.

    PubMed

    Fauchet, Floris; Treluyer, Jean-Marc; Préta, Laure-Helene; Valade, Elodie; Pannier, Emmanuelle; Urien, Saik; Hirt, Déborah

    2014-10-01

    For the first time, a population approach was used to describe abacavir (ABC) pharmacokinetics in HIV-infected pregnant and nonpregnant women. A total of 266 samples from 150 women were obtained. No covariate effect (from age, body weight, pregnancy, or gestational age) on ABC pharmacokinetics was found. Thus, it seems unnecessary to adapt the ABC dosing regimen during pregnancy.

  2. Applying pharmacokinetics to veterinary clinical practice.

    PubMed

    Trepanier, Lauren A

    2013-09-01

    This article describes clinical examples in which pharmacokinetic parameters can be used to optimize veterinary patient care. Specific applications include extrapolating drug dosages, optimizing therapy with therapeutic drug monitoring, interpreting pharmacokinetic information provided by drug labels and pharmaceutical companies, and adjusting drug dosages in patients with hepatic or renal failure.

  3. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  4. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  5. [Application of morpheme translation method in english translation of TCM].

    PubMed

    Diao, Xiang; Hu, You-Ping

    2006-03-01

    In this paper, application of morpheme translation method in English translation of TCM was introduced, and its superiorities and limitations were analyzed in order to promote the standardization and improve the confused current status of the English translation of TCM.

  6. Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment.

    PubMed Central

    Krewski, D; Withey, J R; Ku, L F; Andersen, M E

    1994-01-01

    The use of physiologically based pharmacokinetic (PBPK) models has been proposed as a means of estimating the dose of the reactive metabolites of carcinogenic xenobiotics reaching target tissues, thereby affording an opportunity to base estimates of potential cancer risk on tissue dose rather than external levels of exposure. In this article, we demonstrate how a PBPK model can be constructed by specifying mass-balance equations for each physiological compartment included in the model. In general, this leads to a system of nonlinear partial differential equations with which to characterize the compartment system. These equations then can be solved numerically to determine the concentration of metabolites in each compartment as functions of time. In the special case of a linear pharmacokinetic system, we present simple closed-form expressions for the area under the concentration-time curves (AUC) in individual tissue compartments. A general relationship between the AUC in blood and other tissue compartments is also established. These results are of use in identifying those parameters in the models that characterize the integrated tissue dose, and which should therefore be the primary focus of sensitivity analyses. Applications of PBPK modeling for purposes of tissue dosimetry are reviewed, including models developed for methylene chloride, ethylene oxide, 1,4-dioxane, 1-nitropyrene, as well as polychlorinated biphenyls, dioxins, and furans. Special considerations in PBPK modeling related to aging, topical absorption, pregnancy, and mixed exposures are discussed. The linkage between pharmacokinetic models used for tissue dosimetry and pharmacodynamic models for neoplastic transformation of stem cells in the target tissue is explored. PMID:7737040

  7. Translational Epidemiology in Psychiatry

    PubMed Central

    Weissman, Myrna M.; Brown, Alan S.; Talati, Ardesheer

    2012-01-01

    Translational research generally refers to the application of knowledge generated by advances in basic sciences research translated into new approaches for diagnosis, prevention, and treatment of disease. This direction is called bench-to-bedside. Psychiatry has similarly emphasized the basic sciences as the starting point of translational research. This article introduces the term translational epidemiology for psychiatry research as a bidirectional concept in which the knowledge generated from the bedside or the population can also be translated to the benches of laboratory science. Epidemiologic studies are primarily observational but can generate representative samples, novel designs, and hypotheses that can be translated into more tractable experimental approaches in the clinical and basic sciences. This bedside-to-bench concept has not been explicated in psychiatry, although there are an increasing number of examples in the research literature. This article describes selected epidemiologic designs, providing examples and opportunities for translational research from community surveys and prospective, birth cohort, and family-based designs. Rapid developments in informatics, emphases on large sample collection for genetic and biomarker studies, and interest in personalized medicine—which requires information on relative and absolute risk factors—make this topic timely. The approach described has implications for providing fresh metaphors to communicate complex issues in interdisciplinary collaborations and for training in epidemiology and other sciences in psychiatry. PMID:21646577

  8. Translational regulation in nutrigenomics.

    PubMed

    Liu, Botao; Qian, Shu-Bing

    2011-11-01

    The emergence of genome-wide analysis to interrogate cellular DNA, RNA, and protein content has revolutionized the study of the control network that mediates cellular homeostasis. Nutrigenomics addresses the effect of nutrients on gene expression, which provides a basis for understanding the biological activity of dietary components. Translation of mRNAs represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular, under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are influenced by nutrient signaling. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during pathophysiological conditions by translation of selective mRNAs. Here we describe recent advances in our understanding of translational control, nutrient signaling, and their dysregulation in aging and cancer. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.

  9. Pharmacokinetic interaction between telaprevir and methadone.

    PubMed

    van Heeswijk, Rolf; Verboven, Peter; Vandevoorde, Ann; Vinck, Petra; Snoeys, Jan; Boogaerts, Griet; De Paepe, Els; Van Solingen-Ristea, Rodica; Witek, James; Garg, Varun

    2013-05-01

    Hepatitis C virus (HCV) antibody is present in most patients enrolled in methadone maintenance programs. Therefore, interactions between the HCV protease inhibitor telaprevir and methadone were investigated. The pharmacokinetics of R- and S-methadone were measured after administration of methadone alone and after 7 days of telaprevir (750 mg every 8 h [q8h]) coadministration in HCV-negative subjects on stable, individualized methadone therapy. Unbound R-methadone was measured in predose plasma samples before and during telaprevir coadministration. Safety and symptoms of opioid withdrawal were evaluated throughout the study. In total, 18 subjects were enrolled; 2 discontinued prior to receiving telaprevir. The minimum plasma concentration in the dosing interval (C(min)), the maximum plasma concentration (Cmax), and the area under the plasma concentration-time curve from h 0 (time of administration) to 24 h postdose (AUC(0-24)) for R-methadone were reduced by 31%, 29%, and 29%, respectively, in the presence of telaprevir. The AUC0-24 ratio of S-methadone/R-methadone was not altered. The median unbound percentage of R-methadone increased by 26% in the presence of telaprevir. The R-methadone median (absolute) unbound C(min) values in the absence (10.63 ng/ml) and presence (10.45 ng/ml) of telaprevir were similar. There were no symptoms of opioid withdrawal and no discontinuations due to adverse events. In summary, exposure to total R-methadone was reduced by approximately 30% in the presence of telaprevir, while the exposure to unbound R-methadone was unchanged. No symptoms of opioid withdrawal were observed. These results suggest that dose adjustment of methadone is not required when initiating telaprevir treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT00933283.).

  10. Reporting guidelines for population pharmacokinetic analyses.

    PubMed

    Dykstra, Kevin; Mehrotra, Nitin; Tornøe, Christoffer Wenzel; Kastrissios, Helen; Patel, Bela; Al-Huniti, Nidal; Jadhav, Pravin; Wang, Yaning; Byon, Wonkyung

    2015-06-01

    The purpose of this work was to develop a consolidated set of guiding principles for reporting of population pharmacokinetic (PK) analyses based on input from a survey of practitioners as well as discussions between industry, consulting and regulatory scientists. The survey found that identification of population covariate effects on drug exposure and support for dose selection (where population PK frequently serves as preparatory analysis to exposure-response modeling) are the main areas of influence for population PK analysis. The proposed guidelines consider two main purposes of population PK reports (1) to present key analysis findings and their impact on drug development decisions, and (2) as documentation of the analysis methods for the dual purpose of enabling review of the analysis and facilitating future use of the models. This work also identified two main audiences for the reports: (1) a technically competent group responsible for in-depth review of the data, methodology, and results, and (2) a scientifically literate, but not technically adept group, whose main interest is in the implications of the analysis for the broader drug development program. We recommend a generalized question-based approach with six questions that need to be addressed throughout the report. We recommend eight sections (Synopsis, Introduction, Data, Methods, Results, Discussion, Conclusions, Appendix) with suggestions for the target audience and level of detail for each section. A section providing general expectations regarding population PK reporting from a regulatory perspective is also included. We consider this an important step towards industrialization of the field of pharmacometrics such that non-technical audience also understands the role of pharmacometrics analyses in decision making. Population PK reports were chosen as representative reports to derive these recommendations; however, the guiding principles presented here are applicable for all pharmacometric reports

  11. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    SciTech Connect

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro; Hishikawa, Junko; Chan, Melissa Pui Ling; Nakayama, Aki; Morisawa, Shinsuke

    2007-10-15

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated tim