Sample records for express transcripts encoding

  1. Tuning of RNA editing by ADAR is required in Drosophila

    PubMed Central

    Keegan, Liam P; Brindle, James; Gallo, Angela; Leroy, Anne; Reenan, Robert A; O'Connell, Mary A

    2005-01-01

    RNA editing increases during development in more than 20 transcripts encoding proteins involved in rapid synaptic neurotransmission in Drosophila central nervous system and muscle. Adar (adenosine deaminase acting on RNA) mutant flies expressing only genome-encoded, unedited isoforms of ion-channel subunits are viable but show severe locomotion defects. The Adar transcript itself is edited in adult wild-type flies to generate an isoform with a serine to glycine substitution close to the ADAR active site. We show that editing restricts ADAR function since the edited isoform of ADAR is less active in vitro and in vivo than the genome-encoded, unedited isoform. Ubiquitous expression in embryos and larvae of an Adar transcript that is resistant to editing is lethal. Expression of this transcript in embryonic muscle is also lethal, with above-normal, adult-like levels of editing at sites in a transcript encoding a muscle voltage-gated calcium channel. PMID:15920480

  2. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  3. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  4. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    PubMed Central

    Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John

    2012-01-01

    Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488

  5. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    USDA-ARS?s Scientific Manuscript database

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  6. Molecular cloning and developmental expression of the catalytic and 65-kDa regulatory subunits of protein phosphatase 2A in Drosophila.

    PubMed Central

    Mayer-Jaekel, R E; Baumgartner, S; Bilbe, G; Ohkura, H; Glover, D M; Hemmings, B A

    1992-01-01

    cDNA clones encoding the catalytic subunit and the 65-kDa regulatory subunit of protein phosphatase 2A (PR65) from Drosophila melanogaster have been isolated by homology screening with the corresponding human cDNAs. The Drosophila clones were used to analyze the spatial and temporal expression of the transcripts encoding these two proteins. The Drosophila PR65 cDNA clones contained an open reading frame of 1773 nucleotides encoding a protein of 65.5 kDa. The predicted amino acid sequence showed 75 and 71% identity to the human PR65 alpha and beta isoforms, respectively. As previously reported for the mammalian PR65 isoforms, Drosophila PR65 is composed of 15 imperfect repeating units of approximately 39 amino acids. The residues contributing to this repeat structure show also the highest sequence conservation between species, indicating a functional importance for these repeats. The gene encoding Drosophila PR65 was located at 29B1,2 on the second chromosome. A major transcript of 2.8 kilobase (kb) encoding the PR65 subunit and two transcripts of 1.6 and 2.5 kb encoding the catalytic subunit could be detected throughout Drosophila development. All of these mRNAs were most abundant during early embryogenesis and were expressed at lower levels in larvae and adult flies. In situ hybridization of different developmental stages showed a colocalization of the PR65 and catalytic subunit transcripts. The mRNA expression is high in the nurse cells and oocytes, consistent with a high equally distributed expression in early embryos. In later embryonal development, the expression remains high in the nervous system and the gonads but the overall transcript levels decrease. In third instar larvae, high levels of mRNA could be observed in brain, imaginal discs, and in salivary glands. These results indicate that protein phosphatase 2A transcript levels change during development in a tissue and in a time-specific manner. Images PMID:1320961

  7. Caste- and development-associated gene expression in a lower termite

    PubMed Central

    Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W

    2003-01-01

    Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197

  8. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    PubMed

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gene Expression Profiling of the Cephalothorax and Eyestalk in Penaeus Monodon during Ovarian Maturation

    PubMed Central

    Brady, Philip; Elizur, Abigail; Williams, Richard; Cummins, Scott F.; Knibb, Wayne

    2012-01-01

    In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-β-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction. PMID:22355268

  10. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  11. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation.

    PubMed

    Tao, Xiang; Fang, Yang; Xiao, Yao; Jin, Yan-Ling; Ma, Xin-Rong; Zhao, Yun; He, Kai-Ze; Zhao, Hai; Wang, Hai-Yan

    2013-05-08

    Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata.

  12. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    PubMed Central

    2013-01-01

    Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata. PMID:23651472

  13. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  14. Transcriptional Modulation of Genes Encoding Structural Characteristics of Differentiating Enterocytes During Development of a Polarized Epithelium In Vitro

    PubMed Central

    Halbleib, Jennifer M.; Sääf, Annika M.

    2007-01-01

    Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590

  15. Cooperative activity of GABP with PU.1 or C/EBPε regulates lamin B receptor gene expression, implicating their roles in granulocyte nuclear maturation1

    PubMed Central

    Malu, Krishnakumar; Garhwal, Rahul; Pelletier, Margery G. H.; Gotur, Deepali; Halene, Stephanie; Zwerger, Monika; Yang, Zhong-Fa; Rosmarin, Alan G.; Gaines, Peter

    2016-01-01

    Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted ETS factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils. PMID:27342846

  16. Transcription Factors of Lotus: Regulation of Isoflavonoid Biosynthesis Requires Coordinated Changes in Transcription Factor Activity1[W][OA

    PubMed Central

    Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L.; Martin, Cathie; Bailey, Paul

    2012-01-01

    Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285

  17. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes. PMID:27855160

  18. Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration.

    PubMed

    Lander, Rachel; Petersen, Christian P

    2016-04-13

    Mechanisms enabling positional identity re-establishment are likely critical for tissue regeneration. Planarians use Wnt/beta-catenin signaling to polarize the termini of their anteroposterior axis, but little is known about how regeneration signaling restores regionalization along body or organ axes. We identify three genes expressed constitutively in overlapping body-wide transcriptional gradients that control trunk-tail positional identity in regeneration. ptk7 encodes a trunk-expressed kinase-dead Wnt co-receptor, wntP-2 encodes a posterior-expressed Wnt ligand, and ndl-3 encodes an anterior-expressed homolog of conserved FGFRL/nou-darake decoy receptors. ptk7 and wntP-2 maintain and allow appropriate regeneration of trunk tissue position independently of canonical Wnt signaling and with suppression of ndl-3 expression in the posterior. These results suggest that restoration of regional identity in regeneration involves the interpretation and re-establishment of axis-wide transcriptional gradients of signaling molecules.

  19. A second cistron in the CACNA1A gene encodes a transcription factor that mediates cerebellar development and SCA6

    PubMed Central

    Du, Xiaofei; Wang, Jun; Zhu, Haipeng; Rinaldo, Lorenzo; Lamar, Kay-Marie; Palmenberg, Ann C.; Hansel, Christian; Gomez, Christopher M.

    2014-01-01

    SUMMARY The CACNA1A gene, encoding the voltage-gated calcium channel subunit α1A, is involved in pre- and postsynaptic Ca2+ signaling, gene expression, and several genetic neurological disorders. We found that CACNA1A employs a novel strategy to directly coordinate a gene expression program, using a bicistronic mRNA bearing a cryptic internal ribosomal entry site (IRES). The first cistron encodes the well-characterized α1A subunit. The second expresses a newly-recognized transcription factor, α1ACT, that coordinates expression of a program of genes involved in neural and Purkinje cell development. α1ACT also contains the polyglutamine (polyQ) tract that, when expanded, causes spinocerebellar ataxia type 6 (SCA6). When expressed as an independent polypeptide, α1ACT, bearing an expanded polyQ tract, lacks transcription factor function and neurite outgrowth properties, causes cell death in culture, and leads to ataxia and cerebellar atrophy in transgenic mice. Suppression of CACNA1A IRES function in SCA6 may be a potential therapeutic strategy. PMID:23827678

  20. A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression.

    PubMed

    Kuhl, U; Lassner, D; Dorner, A; Rohde, M; Escher, F; Seeberg, B; Hertel, E; Tschope, C; Skurk, C; Gross, U M; Schultheiss, H-P; Poller, W

    2013-09-01

    Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.

  1. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  2. Inventory of high-abundance mRNAs in skeletal muscle of normal men.

    PubMed

    Welle, S; Bhatt, K; Thornton, C A

    1999-05-01

    G42875rial analysis of gene expression (SAGE) method was used to generate a catalog of 53,875 short (14 base) expressed sequence tags from polyadenylated RNA obtained from vastus lateralis muscle of healthy young men. Over 12,000 unique tags were detected. The frequency of occurrence of each tag reflects the relative abundance of the corresponding mRNA. The mRNA species that were detected 10 or more times, each comprising >/=0.02% of the mRNA population, accounted for 64% of the mRNA mass but <10% of the total number of mRNA species detected. Almost all of the abundant tags matched mRNA or EST sequences cataloged in GenBank. Mitochondrial transcripts accounted for approximately 20% of the polyadenylated RNA. Transcripts encoding proteins of the myofibrils were the most abundant nuclear-encoded mRNAs. Transcripts encoding ribosomal proteins, and those encoding proteins involved in energy metabolism, also were very abundant. The database can be used as a reference for investigations of alterations in gene expression associated with conditions that influence muscle function, such as muscular dystrophies, aging, and exercise.

  3. Interspecific and host-related gene expression patterns in nematode-trapping fungi.

    PubMed

    Andersson, Karl-Magnus; Kumar, Dharmendra; Bentzer, Johan; Friman, Eva; Ahrén, Dag; Tunlid, Anders

    2014-11-11

    Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii). The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function. This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.

  4. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    PubMed

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  5. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    PubMed Central

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  6. Developmental and sex-specific differences in expression of neuropeptides derived from allatotropin gene in the silkmoth Bombyx mori.

    PubMed

    Bednár, Branislav; Roller, Ladislav; Čižmár, Daniel; Mitrová, Diana; Žitňan, Dušan

    2017-05-01

    Allatotropin (AT) and related neuropeptides are widespread bioactive molecules that regulate development, food intake and muscle contractions in insects and other invertebrates. In moths, alternative splicing of the at gene generates three mRNA precursors encoding AT with different combinations of three structurally similar AT-like peptides (ATLI-III). We used in situ hybridization and immunohistochemistry to map the differential expression of these transcripts during the postembryonic development of Bombyx mori. Transcript encoding AT alone was expressed in numerous neurons of the central nervous system and frontal ganglion, whereas transcripts encoding AT with ATLs were produced by smaller specific subgroups of neurons in larval stages. Metamorphosis was associated with considerable developmental changes and sex-specific differences in the expression of all transcripts. The most notable was the appearance of AT/ATL transcripts (1) in the brain lateral neurosecretory cells producing prothoracicotropic hormone; (2) in the male-specific cluster of about 20 neurons in the posterior region of the terminal abdominal ganglion; (3) in the female-specific medial neurons in the abdominal ganglia AG2-7. Immunohistochemical staining showed that these neurons produced a mixture of various neuropeptides and innervated diverse peripheral organs. Our data suggest that AT/ATL neuropeptides are involved in multiple stage- and sex-specific functions during the development of B. mori.

  7. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana.

    PubMed

    Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo

    2006-01-01

    Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.

  8. Single cell transcriptome analysis of MCF-7 reveals consistently and inconsistently expressed gene groups each associated with distinct cellular localization and functions

    PubMed Central

    Chen, Tzu-Han; Shiau, Hsin-Chieh

    2018-01-01

    Single cell transcriptome (SCT) analysis provides superior resolution to illustrate tumor cell heterogeneity for clinical implications. We characterized four SCTs of MCF-7 using 143 housekeeping genes (HKGs) as control, of which lactate dehydrogenase B (LDHB) expression is silenced. These SCT libraries mapped to 11,423, 11,486, 10,380, and 11,306 RefSeq genes (UCSC), respectively. High consistency in HKG expression levels across all four SCTs, along with transcriptional silencing of LDHB, was observed, suggesting a high sensitivity and reproducibility of the SCT analysis. Cross-library comparison on expression levels by scatter plotting revealed a linear correlation and an 83–94% overlap in transcript isoforms and expressed genes were also observed. To gain insight of transcriptional diversity among the SCTs, expressed genes were split into consistently expressed (CE) (expressed in all SCTs) and inconsistently expressed (IE) (expressed in some but not all SCTs) genes for further characterization, along with the 142 expressed HKGs as a reference. Distinct transcriptional strengths were found among these groups, with averages of 1,612.0, 88.0 and 1.2 FPKM for HKGs, CE and IE, respectively. Comparison between CE and IE groups further indicated that expressions of CE genes vary more significantly than that of IE genes. Gene Ontology analysis indicated that proteins encoded by CE genes are mainly involved in fundamental intracellular activities, while proteins encoded by IE genes are mainly for extracellular activities, especially acting as receptors or ion channels. The diversified gene expressions, especially for those encoded by IE genes, may contribute to cancer drug resistance. PMID:29920548

  9. Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937.

    PubMed Central

    Hugouvieux-Cotte-Pattat, N; Dominguez, H; Robert-Baudouy, J

    1992-01-01

    To depolymerize plant pectin, the phytopathogenic enterobacterium Erwinia chrysanthemi produces a series of enzymes which include a pectin-methyl-esterase encoded by the pem gene and five isoenzymes of pectate lyases encoded by the five genes pelA, pelB, pelC, pelD, and pelE. We have constructed transcriptional fusions between the pectinase gene promoters and the uidA gene, encoding beta-glucuronidase, to study the regulation of these E. chrysanthemi pectinase genes individually. The transcription of the pectinase genes is dependent on many environmental conditions. All the fusions were induced by pectic catabolic products and responded, to different degrees, to growth phase, catabolite repression, temperature, and nitrogen starvation. Transcription of pelA, pelD, and pelE was also increased in anaerobic growth conditions. High osmolarity of the culture medium increased expression of pelE but decreased that of pelD; the other pectinase genes were not affected. The level of expression of each gene was different. Transcription of pelA was very low under all growth conditions. The expression of the pelB, pelC, and pem genes was intermediate. The pelE gene had a high basal level of expression. Expression of pelD was generally the most affected by changes in culture conditions and showed a low basal level but very high induced levels. These differences in the expression of the pectinase genes of E. chrysanthemi 3937 presumably reflect their role during infection of plants, because the degradation of pectic polymers of the plant cell walls is the main determinant of tissue maceration caused by soft rot erwiniae. PMID:1447147

  10. A Role for Iron-Sulfur Clusters in the Regulation of Transcription Factor Yap5-dependent High Iron Transcriptional Responses in Yeast*

    PubMed Central

    Li, Liangtao; Miao, Ren; Bertram, Sophie; Jia, Xuan; Ward, Diane M.; Kaplan, Jerry

    2012-01-01

    Yeast respond to increased cytosolic iron by activating the transcription factor Yap5 increasing transcription of CCC1, which encodes a vacuolar iron importer. Using a genetic screen to identify genes involved in Yap5 iron sensing, we discovered that a mutation in SSQ1, which encodes a mitochondrial chaperone involved in iron-sulfur cluster synthesis, prevented expression of Yap5 target genes. We demonstrated that mutation or reduced expression of other genes involved in mitochondrial iron-sulfur cluster synthesis (YFH1, ISU1) prevented induction of the Yap5 response. We took advantage of the iron-dependent catalytic activity of Pseudaminobacter salicylatoxidans gentisate 1,2-dioxygenase expressed in yeast to measure changes in cytosolic iron. We determined that reductions in iron-sulfur cluster synthesis did not affect the activity of cytosolic gentisate 1,2-dioxygenase. We show that loss of activity of the cytosolic iron-sulfur cluster assembly complex proteins or deletion of cytosolic glutaredoxins did not reduce expression of Yap5 target genes. These results suggest that the high iron transcriptional response, as well as the low iron transcriptional response, senses iron-sulfur clusters. PMID:22915593

  11. Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration

    PubMed Central

    Lander, Rachel; Petersen, Christian P

    2016-01-01

    Mechanisms enabling positional identity re-establishment are likely critical for tissue regeneration. Planarians use Wnt/beta-catenin signaling to polarize the termini of their anteroposterior axis, but little is known about how regeneration signaling restores regionalization along body or organ axes. We identify three genes expressed constitutively in overlapping body-wide transcriptional gradients that control trunk-tail positional identity in regeneration. ptk7 encodes a trunk-expressed kinase-dead Wnt co-receptor, wntP-2 encodes a posterior-expressed Wnt ligand, and ndl-3 encodes an anterior-expressed homolog of conserved FGFRL/nou-darake decoy receptors. ptk7 and wntP-2 maintain and allow appropriate regeneration of trunk tissue position independently of canonical Wnt signaling and with suppression of ndl-3 expression in the posterior. These results suggest that restoration of regional identity in regeneration involves the interpretation and re-establishment of axis-wide transcriptional gradients of signaling molecules. DOI: http://dx.doi.org/10.7554/eLife.12850.001 PMID:27074666

  12. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression.

    PubMed

    Meyer, Irmtraud M

    2017-05-01

    RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive. Copyright © 2017. Published by Elsevier Inc.

  13. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes thatmore » encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.« less

  14. The 2p21 deletion syndrome: characterization of the transcription content.

    PubMed

    Parvari, Ruti; Gonen, Yael; Alshafee, Ismael; Buriakovsky, Sophia; Regev, Kfir; Hershkovitz, Eli

    2005-08-01

    The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.

  15. Global differential gene expression in response to growth temperature alteration in group A Streptococcus.

    PubMed

    Smoot, L M; Smoot, J C; Graham, M R; Somerville, G A; Sturdevant, D E; Migliaccio, C A; Sylva, G L; Musser, J M

    2001-08-28

    Pathogens are exposed to different temperatures during an infection cycle and must regulate gene expression accordingly. However, the extent to which virulent bacteria alter gene expression in response to temperatures encountered in the host is unknown. Group A Streptococcus (GAS) is a human-specific pathogen that is responsible for illnesses ranging from superficial skin infections and pharyngitis to severe invasive infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS survives and multiplies at different temperatures during human infection. DNA microarray analysis was used to investigate the influence of temperature on global gene expression in a serotype M1 strain grown to exponential phase at 29 degrees C and 37 degrees C. Approximately 9% of genes were differentially expressed by at least 1.5-fold at 29 degrees C relative to 37 degrees C, including genes encoding transporter proteins, proteins involved in iron homeostasis, transcriptional regulators, phage-associated proteins, and proteins with no known homologue. Relatively few known virulence genes were differentially expressed at this threshold. However, transcription of 28 genes encoding proteins with predicted secretion signal sequences was altered, indicating that growth temperature substantially influences the extracellular proteome. TaqMan real-time reverse transcription-PCR assays confirmed the microarray data. We also discovered that transcription of genes encoding hemolysins, and proteins with inferred roles in iron regulation, transport, and homeostasis, was influenced by growth at 40 degrees C. Thus, GAS profoundly alters gene expression in response to temperature. The data delineate the spectrum of temperature-regulated gene expression in an important human pathogen and provide many unforeseen lines of pathogenesis investigation.

  16. Regulation of the CgPdr1 Transcription Factor from the Pathogen Candida glabrata ▿

    PubMed Central

    Paul, Sanjoy; Schmidt, Jennifer A.; Moye-Rowley, W. Scott

    2011-01-01

    Candida glabrata is an opportunistic human pathogen that is increasingly associated with candidemia, owing in part to the intrinsic and acquired high tolerance the organism exhibits for the important clinical antifungal drug fluconazole. This elevated fluconazole resistance often develops through gain-of-function mutations in the zinc cluster-containing transcriptional regulator C. glabrata Pdr1 (CgPdr1). CgPdr1 induces the expression of an ATP-binding cassette (ABC) transporter-encoding gene, CgCDR1. Saccharomyces cerevisiae has two CgPdr1 homologues called ScPdr1 and ScPdr3. These factors control the expression of an ABC transporter-encoding gene called ScPDR5, which encodes a homologue of CgCDR1. Loss of the mitochondrial genome (ρ0 cell) or overexpression of the mitochondrial enzyme ScPsd1 induces ScPDR5 expression in a strictly ScPdr3-dependent fashion. ScPdr3 requires the presence of a transcriptional Mediator subunit called Gal11 (Med15) to fully induce ScPDR5 transcription in response to ρ0 signaling. ScPdr1 does not respond to either ρ0 signals or ScPsd1 overproduction. In this study, we employed transcriptional fusions between CgPdr1 target promoters, like CgCDR1, to demonstrate that CgPdr1 stimulates gene expression via binding to elements called pleiotropic drug response elements (PDREs). Deletion mapping and electrophoretic mobility shift assays demonstrated that a single PDRE in the CgCDR1 promoter was capable of supporting ρ0-induced gene expression. Removal of one of the two ScGal11 homologues from C. glabrata caused a major defect in drug-induced expression of CgCDR1 but had a quantitatively minor effect on ρ0-stimulated transcription. These data demonstrate that CgPdr1 appears to combine features of ScPdr1 and ScPdr3 to produce a transcription factor with chimeric regulatory properties. PMID:21131438

  17. Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding l-Asparaginase

    PubMed Central

    Fisher, Susan H.; Wray, Lewis V.

    2002-01-01

    Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression. PMID:11914346

  18. Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.

    PubMed

    Fisher, Susan H; Wray, Lewis V

    2002-04-01

    Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.

  19. Expression Analysis of an R3-Type MYB Transcription Factor CPC-LIKE MYB4 (TRICHOMELESS2) and CPL4-Related Transcripts in Arabidopsis

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka

    2012-01-01

    The CAPRICE (CPC)-like MYB gene family encodes R3-type MYB transcription factors in Arabidopsis. There are six additional CPC-like MYB sequences in the Arabidopsis genome, including TRYPTICHON (TRY), ENHANCER OF TRY AND CPC1 and 2 (ETC1 and ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), and TRICHOMELESS1 and 2 (TCL1 and TCL2). We independently identified CPC-LIKE MYB4 (CPL4), which was found to be identical to TCL2. RT-PCR analysis showed that CPL4 is strongly expressed in shoots, including true leaves, but not in roots. Promoter-GUS analyses indicated that CPL4 is specifically expressed in leaf blades. Although CPC expression was repressed in 35S::ETC1, 35S::ETC2 and 35S::CPL3 backgrounds, CPL4 expression was not affected by ETC1, ETC2 or CPL3 over-expression. Notably, several chimeric transcripts may result from inter-genic alternative splicing of CPL4 and ETC2, two tandemly repeated genes on chromosome II. At least two chimeric transcripts named CPL4-α and CPL4-β are expected to encode complete CPC-like MYB proteins. PMID:22489163

  20. Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w

    PubMed Central

    Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara

    2004-01-01

    In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392

  1. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  2. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Dai, Shunhong (Inventor); Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  3. Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    The secreted proteins encoded by “parasitism genes” expressed within the esophageal glands cells of cyst nematodes play important roles in plant parasitism. Homologous transcripts and encoded proteins of the Heterodera glycines pioneer parasitism genes Hgsyv46, Hg4e02 and Hg5d08 were identified and ...

  4. The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.

    PubMed

    Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W

    2013-01-01

    The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.

  5. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch.

    PubMed

    Doan; Rudi; Olsen

    1999-11-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed.

  6. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    PubMed Central

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  7. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica

    PubMed Central

    Blackman, Leila M.; Cullerne, Darren P.; Torreña, Pernelyn; Taylor, Jen; Hardham, Adrienne R.

    2015-01-01

    RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of β-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response. PMID:26332397

  8. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica.

    PubMed

    Blackman, Leila M; Cullerne, Darren P; Torreña, Pernelyn; Taylor, Jen; Hardham, Adrienne R

    2015-01-01

    RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of β-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response.

  9. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    PubMed

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  10. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar

    PubMed Central

    Andrews, C D; Payne, J F; Rise, M L

    2014-01-01

    Functional genomic studies were carried out on the inner ear of Atlantic salmon Salmo salar following exposure to a seismic airgun. Microarray analyses revealed 79 unique transcripts (passing background threshold), with 42 reproducibly up-regulated and 37 reproducibly down-regulated in exposed v. control fish. Regarding the potential effects on cellular energetics and cellular respiration, altered transcripts included those with roles in oxygen transport, the glycolytic pathway, the Krebs cycle and the electron transport chain. Of these, a number of transcripts encoding haemoglobins that are important in oxygen transport were up-regulated and among the most highly expressed. Up-regulation of transcripts encoding nicotinamide riboside kinase 2, which is also important in energy production and linked to nerve cell damage, points to evidence of neuronal damage in the ear following noise exposure. Transcripts related to protein modification or degradation also indicated potential damaging effects of sound on ear tissues. Notable in this regard were transcripts associated with the proteasome–ubiquitin pathway, which is involved in protein degradation, with the transcript encoding ubiquitin family domain-containing protein 1 displaying the highest response to exposure. The differential expression of transcripts observed for some immune responses could potentially be linked to the rupture of cell membranes. Meanwhile, the altered expression of transcripts for cytoskeletal proteins that contribute to the structural integrity of the inner ear could point to repair or regeneration of ear tissues including auditory hair cells. Regarding potential effects on hormones and vitamins, the protein carrier for thyroxine and retinol (vitamin A), namely transthyretin, was altered at the transcript expression level and it has been suggested from studies in mammalian systems that retinoic acid may play a role in the regeneration of damaged hair cells. The microarray experiment identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure–response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones. PMID:24814183

  11. Functional and evolutionary implications from the molecular characterization of five spermatophore CHH/MIH/GIH genes in the shrimp Fenneropenaeus merguiensis.

    PubMed

    Shi, LiLi; Li, Bin; Zhou, Ting Ting; Wang, Wei; Chan, Siuming F

    2018-01-01

    The recent use of RNA-Seq to study the transcriptomes of different species has helped identify a large number of new genes from different non-model organisms. In this study, five distinctive transcripts encoding for neuropeptide members of the CHH/MIH/GIH family have been identified from the spermatophore transcriptome of the shrimp Fenneropenaeus merguiensis. The size of these transcripts ranged from 531 bp to 1771 bp. Four transcripts encoded different CHH-family subtype I members, and one transcript encoded a subtype II member. RT-PCR and RACE approaches have confirmed the expression of these genes in males. The low degree of amino acid sequence identity among these neuropeptides suggests that they may have different specific function(s). Results from a phylogenetic tree analysis indicated that these neuropeptides were likely derived from a common ancestor gene resulting from mutation and gene duplication. These CHH-family members could be grouped into distinct clusters, indicating a strong structural/functional relationship among these neuropeptides. Eyestalk removal caused a significant increase in the expression of transcript 32710 but decreases in expression for transcript 28020. These findings suggest the possible regulation of these genes by eyestalk factor(s). In summary, the results of this study would justify a re-evaluation of the more generalized and pleiotropic functions of these neuropeptides. This study also represents the first report on the cloning/identification of five CHH family neuropeptides in a non-neuronal tissue from a single crustacean species.

  12. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    PubMed

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  13. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    PubMed

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  14. Mitochondrial genes are altered in blood early in Alzheimer's disease.

    PubMed

    Lunnon, Katie; Keohane, Aoife; Pidsley, Ruth; Newhouse, Stephen; Riddoch-Contreras, Joanna; Thubron, Elisabeth B; Devall, Matthew; Soininen, Hikka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Schalkwyk, Leonard; Dobson, Richard; Malik, Afshan N; Powell, John; Lovestone, Simon; Hodges, Angela

    2017-05-01

    Although mitochondrial dysfunction is a consistent feature of Alzheimer's disease in the brain and blood, the molecular mechanisms behind these phenomena are unknown. Here we have replicated our previous findings demonstrating reduced expression of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and subunits required for the translation of mitochondrial-encoded OXPHOS genes in blood from people with Alzheimer's disease and mild cognitive impairment. Interestingly this was accompanied by increased expression of some mitochondrial-encoded OXPHOS genes, namely those residing closest to the transcription start site of the polycistronic heavy chain mitochondrial transcript (MT-ND1, MT-ND2, MT-ATP6, MT-CO1, MT-CO2, MT-C03) and MT-ND6 transcribed from the light chain. Further we show that mitochondrial DNA copy number was unchanged suggesting no change in steady-state numbers of mitochondria. We suggest that an imbalance in nuclear and mitochondrial genome-encoded OXPHOS transcripts may drive a negative feedback loop reducing mitochondrial translation and compromising OXPHOS efficiency, which is likely to generate damaging reactive oxygen species. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Characterization of Chicken Spleen Transcriptome after Infection with Salmonella enterica Serovar Enteritidis

    PubMed Central

    Matulova, Marta; Rajova, Jana; Vlasatikova, Lenka; Volf, Jiri; Stepanova, Hana; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2012-01-01

    In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens. PMID:23094107

  16. Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin

    PubMed Central

    Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665

  17. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis

    PubMed Central

    Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395

  18. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    PubMed

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed. This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.

  19. Transcriptional Downregulation of ORF50/Rta by Methotrexate Inhibits the Switch of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 from Latency to Lytic Replication

    PubMed Central

    Curreli, Francesca; Cerimele, Francesca; Muralidhar, Sumitra; Rosenthal, Leonard J.; Cesarman, Ethel; Friedman-Kien, Alvin E.; Flore, Ornella

    2002-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies. PMID:11967335

  20. Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus

    PubMed Central

    Dodson, Paul D.; Larvin, Joseph T.; Duffell, James M.; Garas, Farid N.; Doig, Natalie M.; Kessaris, Nicoletta; Duguid, Ian C.; Bogacz, Rafal; Butt, Simon J.B.; Magill, Peter J.

    2015-01-01

    Summary Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets. PMID:25843402

  1. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.

    PubMed

    Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N

    2017-01-01

    We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise

    2009-01-01

    Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885

  3. Cloning and expression of calmodulin gene in Scoparia dulcis.

    PubMed

    Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2007-06-01

    A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.

  4. Identification and molecular characterization of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus genomic region encoding the regulatory genes pkip, p47, lef-12, and gta.

    PubMed

    Lapointe, R; Back, D W; Ding, Q; Carstens, E B

    2000-05-25

    Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV) is a baculovirus pathogenic to spruce budworm, the most damaging insect pest in Canadian forestry. CfMNPV is less virulent to its host insect and its replication cycle is slower than the baculovirus type species Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) but the basis of these characteristics is not known. We have now identified, localized, and determined the sequence of the region of CfMNPV carrying potentially important regulatory genes including p47, lef-12, gta, and pkip. DNA database searches revealed that this region of CfMNPV is most closely related to the homologous OpMNPV genes. Transcription analysis demonstrated that CfMNPV P47 is encoded by a 1.6-kb transcript, LEF-12 is encoded by a 2.6-kb transcript, and GTA is encoded by a 2.1-kb transcript. Transcripts for these genes were detectable at 6 h postinfection but all of them showed a burst in expression levels between 12 and 24 h postinfection corresponding to the time of initiation of CfMNPV DNA replication. A polyclonal antibody, raised against CfMNPV P47, detected a nuclear 43-kDa polypeptide from 12 to 72 h postinfection, demonstrating that the CfMNPV p47 gene product is first expressed at a time corresponding to the burst of transcriptional activity between the early and the late phases. Both AcMNPV and CfMNPV P47 translocate to the nucleus of infected cells. Copyright 2000 Academic Press.

  5. Sequence and Expression Analyses of Ethylene Response Factors Highly Expressed in Latex Cells from Hevea brasiliensis

    PubMed Central

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876

  6. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis.

    PubMed

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.

  7. Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter.

    PubMed

    Pannetier, Maëlle; Renault, Lauriane; Jolivet, Geneviève; Cotinot, Corinne; Pailhoux, Eric

    2005-06-01

    Studies on XX sex reversal in polled goats (PIS mutation: polled intersex syndrome) have led to the discovery of a female-specific locus crucial for ovarian differentiation. This genomic region is composed of at least two genes, FOXL2 and PISRT1, sharing a common transcriptional regulatory region, PIS. In this paper, we describe a third gene, PFOXic (promoter FOXL2 inverse complementary), located near FOXL2 in the opposite orientation. This gene composed of five exons encodes a 1723-bp cDNA, enclosing two repetitive elements in its 3' end. PFOXic mRNA encodes a putative protein of 163 amino acids with no homologies in any of the databases tested. The transcriptional expression of PFOXic is driven by a bidirectional promoter also enhancing FOXL2 transcription. In goats, PFOXic is expressed in developing ovaries, from 36 days postcoitum until adulthood. Ovarian-specific expression of PFOXic is regulated by the PIS region. PFOXic is found conserved only in Bovidae. But, a human gene located in the opposite orientation relative to FOXL2 can be considered a human PFOXic. Finally, we discuss evidence arguing for regulation of the level of FOXL2 transcription via the bidirectional promoter and the level of transcription of PFOXic.

  8. Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1

    PubMed Central

    Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude

    1999-01-01

    A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715

  9. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    PubMed

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  10. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

    PubMed

    Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F

    2009-03-01

    The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.

  11. Did Androgen-Binding Protein Paralogs Undergo Neo- and/or Subfunctionalization as the Abp Gene Region Expanded in the Mouse Genome?

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution. PMID:25531410

  12. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome?

    PubMed

    Karn, Robert C; Chung, Amanda G; Laukaitis, Christina M

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.

  13. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    USDA-ARS?s Scientific Manuscript database

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  14. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Alok, Anshu; Kaur, Navneet; Sharma, Shivani; Lakhwani, Deepika; Asif, Mehar H.; Tiwari, Siddharth; Trivedi, Prabodh K.

    2016-01-01

    The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs. PMID:26870050

  15. Differential mitochondrial DNA and gene expression in inherited retinal dysplasia in miniature Schnauzer dogs.

    PubMed

    Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H

    2006-05-01

    To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that the pathogenesis of the disorder may arise from a lowered energy supply to the retina and RPE.

  16. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing

    PubMed Central

    Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; Martínez de la Vega, Octavio; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C.; Vielle-Calzada, Jean-Philippe

    2012-01-01

    The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies. PMID:22442422

  17. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing.

    PubMed

    Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; de la Vega, Octavio Martínez; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C; Vielle-Calzada, Jean-Philippe

    2012-06-01

    The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies.

  18. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    PubMed

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Regulation of Sulfur Assimilation Pathways in Burkholderia cenocepacia through Control of Genes by the SsuR Transcription Factor▿

    PubMed Central

    Łochowska, Anna; Iwanicka-Nowicka, Roksana; Zielak, Agata; Modelewska, Anna; Thomas, Mark S.; Hryniewicz, Monika M.

    2011-01-01

    The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ∼44 bp of the DNA sequence preceding and/or overlapping the predicted −35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR “recognition motifs” at different responsive promoters appears to be limited. PMID:21317335

  20. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  1. Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant.

    PubMed

    Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B

    2004-11-05

    In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.

  2. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons.

    PubMed

    Uchida, Okiko; Nakano, Hiroyuki; Koga, Makoto; Ohshima, Yasumi

    2003-04-01

    Chemotaxis to water-soluble chemicals such as NaCl is an important behavior of C. elegans when seeking food. ASE chemosensory neurons have a major role in this behavior. We show that che-1, defined by chemotaxis defects, encodes a zinc-finger protein similar to the GLASS transcription factor required for photoreceptor cell differentiation in Drosophila, and that che-1 is essential for specification and function of ASE neurons. Expression of a che-1::gfp fusion construct was predominant in ASE. In che-1 mutants, expression of genes characterizing ASE such as seven-transmembrane receptors, guanylate cyclases and a cyclic-nucleotide gated channel is lost. Ectopic expression of che-1 cDNA induced expression of ASE-specific marker genes, a dye-filling defect in neurons other than ASE and dauer formation.

  3. Protection of germline gene expression by the C. elegans Argonaute CSR-1.

    PubMed

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-23

    In Caenorhabditis elegans, the Piwi-interacting small RNA (piRNA)-mediated germline surveillance system encodes more than 30,000 unique 21-nucleotide piRNAs, which silence a variety of foreign nucleic acids. What mechanisms allow endogenous germline-expressed transcripts to evade silencing by the piRNA pathway? One likely candidate in a protective mechanism is the Argonaute CSR-1, which interacts with 22G-small RNAs that are antisense to nearly all germline-expressed genes. Here, we use an in vivo RNA tethering assay to demonstrate that the recruitment of CSR-1 to a transcript licenses expression of the transcript, protecting it from piRNA-mediated silencing. Licensing occurs mainly at the level of transcription, as we observe changes in pre-mRNA levels consistent with transcriptional activation when CSR-1 is tethered. Furthermore, the recruitment of CSR-1 to a previously silenced locus transcriptionally activates its expression. Together, these results demonstrate a rare positive role for an endogenous Argonaute pathway in heritably licensing and protecting germline transcripts.

  4. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  5. Molecular Cloning and Characterization of Two Pig Vasoactive Intestinal Polypeptide Receptors (VPAC1-R and VPAC2-R)

    PubMed Central

    He, Xiaping; Meng, Fengyan; Wang, Yajun

    2014-01-01

    We here report the cloning, tissue expression, and functional analyses of the two pig vasoactive intestinal polypeptide (VIP) receptors (pVPAC1-R and pVPAC2-R). The cloned full-length pVPAC1-R and pVPAC2-R share high structural similarity with their mammalian counterparts. Functional assay revealed that the full-length pVPAC1-R and pVPAC2-R-expressed Chinese hamster ovary (CHO) cells could be activated by pVIP and pPACAP38 potently, indicating that pVPAC1-R and pVPAC2-R are capable of binding VIP and pituitary adenylate cyclase-activating polypeptide (PACAP). In addition to the identification of the transcripts encoding the two full-length receptors, multiple splice transcript variants were isolated. Comparison with the pig genome database revealed that pVPAC1-R and pVPAC2-R share a unique gene structure with 14 exons different from other vertebrates. Reverse transcription and polymerase chain reaction (RT-PCR) assays further showed that the transcript encoding the full-length pVPAC2-R is widely expressed in all adult tissues whereas the splice variants of pVPAC1-R are predominantly expressed in all tissues instead of the transcript encoding the full-length receptor, hinting that pVPAC2-R may play more important roles than pVPAC1-R in mediating VIP and PACAP actions. Our present findings help to elucidate the important role of VIP and PACAP and promote to rethink of their species-specific physiological roles including their actions in regulation of phenotypic traits in pigs. PMID:24520933

  6. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNAmore » is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.« less

  7. Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase.

    PubMed

    Kang, Dong-Min; Michon, Christophe; Morinaga, Tetsuro; Tanaka, Kosei; Takenaka, Shinji; Ishikawa, Shu; Yoshida, Ken-Ichi

    2017-07-11

    Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD + -dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.

  8. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression.

    PubMed

    González-González, Andrea; Hug, Shaun M; Rodríguez-Verdugo, Alejandra; Patel, Jagdish Suresh; Gaut, Brandon S

    2017-11-01

    Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor.

    PubMed

    Sexton, Jessica A; Brown, Victoria; Johnston, Mark

    2007-10-01

    The ability of the fungal pathogen Candida albicans to cause systemic infections depends in part on the function of Hgt4, a cell surface sugar sensor. The orthologues of Hgt4 in Saccharomyces cerevisiae, Snf3 and Rgt2, initiate a signalling cascade that inactivates Rgt1, a transcriptional repressor of genes encoding hexose transporters. To determine whether Hgt4 functions similarly through the C. albicans orthologue of Rgt1, we analysed Cargt1 deletion mutants. We found that Cargt1 mutants are sensitive to the glucose analogue 2-deoxyglucose, a phenotype probably due to uncontrolled expression of genes encoding glucose transporters. Indeed, transcriptional profiling revealed that expression of about two dozen genes, including multiple HGT genes encoding hexose transporters, is increased in the Cargt1 mutant in the absence of sugars, suggesting that CaRgt1 represses expression of several HGT genes under this condition. Some of the HGT genes (probably encoding high-affinity transporters) are also repressed by high levels of glucose, and we show that this repression is mediated by CaMig1, the orthologue of the major glucose-activated repressor in S. cerevisiae, but not by its paralogue CaMig2. Therefore, CaRgt1 and CaMig1 collaborate to control expression of C. albicans hexose transporters in response to different levels of sugars. We were surprised to find that CaRgt1 also regulates expression of GAL1, suggesting that regulation of galactose metabolism in C. albicans is unconventional. Finally, Cargt1 mutations cause cells to hyperfilament, and suppress the hypofilamented phenotype of an hgt4 mutant, indicating that the Hgt4 glucose sensor may affect filamentation by modulating sugar import and metabolism via CaRgt1. Copyright 2007 John Wiley & Sons, Ltd.

  10. Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene

    PubMed Central

    Geyer, Christopher B.; Eddy, Edward M.

    2008-01-01

    Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325

  11. Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples1

    PubMed Central

    Takos, Adam M.; Jaffé, Felix W.; Jacob, Steele R.; Bogs, Jochen; Robinson, Simon P.; Walker, Amanda R.

    2006-01-01

    Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of flowers and fruits. In apples (Malus domestica Borkh.), several steps of the anthocyanin pathway are coordinately regulated, suggesting control by common transcription factors. A gene encoding an R2R3 MYB transcription factor was isolated from apple (cv Cripps' Pink) and designated MdMYB1. Analysis of the deduced amino acid sequence suggests that this gene encodes an ortholog of anthocyanin regulators in other plants. The expression of MdMYB1 in both Arabidopsis (Arabidopsis thaliana) plants and cultured grape cells induced the ectopic synthesis of anthocyanin. In the grape (Vitis vinifera) cells MdMYB1 stimulated transcription from the promoters of two apple genes encoding anthocyanin biosynthetic enzymes. In ripening apple fruit the transcription of MdMYB1 was correlated with anthocyanin synthesis in red skin sectors of fruit. When dark-grown fruit were exposed to sunlight, MdMYB1 transcript levels increased over several days, correlating with anthocyanin synthesis in the skin. MdMYB1 gene transcripts were more abundant in red skin apple cultivars compared to non-red skin cultivars. Several polymorphisms were identified in the promoter of MdMYB1. A derived cleaved amplified polymorphic sequence marker designed to one of these polymorphisms segregated with the inheritance of skin color in progeny from a cross of an unnamed red skin selection (a sibling of Cripps' Pink) and the non-red skin cultivar Golden Delicious. We conclude that MdMYB1 coordinately regulates genes in the anthocyanin pathway and the expression level of this regulator is the genetic basis for apple skin color. PMID:17012405

  12. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most functions up regulated during VI would lead to cell death. These differences are discussed in the frame of a multilayered response to non self in fungi. PMID:27148175

  13. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    PubMed Central

    Calvanese, Vincenzo; Mallya, Meera; Campbell, R Duncan; Aguado, Begoña

    2008-01-01

    Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD). This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC). This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F) undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C) and not on their own. PMID:18817541

  14. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger.

    PubMed

    Yuan, Xiao-Lian; Roubos, Johannes A; van den Hondel, Cees A M J J; Ram, Arthur F J

    2008-01-01

    The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.

  15. Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae.

    PubMed

    Artico, Sinara; Ribeiro-Alves, Marcelo; Oliveira-Neto, Osmundo Brilhante; de Macedo, Leonardo Lima Pepino; Silveira, Sylvia; Grossi-de-Sa, Maria Fátima; Martinelli, Adriana Pinheiro; Alves-Ferreira, Marcio

    2014-10-04

    Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These data will aid in the selection of target genes to genetically engineer cotton to control the cotton boll weevil.

  16. Proteogenomic characterization of human colon and rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing; Wang, Jing; Wang, Xiaojing

    2014-09-18

    We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less

  17. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  18. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides.

    PubMed

    Gomelsky, Larissa; Moskvin, Oleg V; Stenzel, Rachel A; Jones, Denise F; Donohue, Timothy J; Gomelsky, Mark

    2008-12-01

    In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.

  19. Photocontrol of the expression of genes encoding chlorophyll a/b binding proteins and small subunit of ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (L. ) and Nicotiana tabacum (L. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.

    Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less

  20. Shikimate Induced Transcriptional Activation of Protocatechuate Biosynthesis Genes by QuiR, a LysR-Type Transcriptional Regulator, in Listeria monocytogenes.

    PubMed

    Prezioso, Stephanie M; Xue, Kevin; Leung, Nelly; Gray-Owen, Scott D; Christendat, Dinesh

    2018-04-27

    Listeria monocytogenes is a common foodborne bacterial pathogen that contaminates plant and animal consumable products. The persistent nature of L. monocytogenes is associated with millions of dollars in food recalls annually. Here, we describe the role of shikimate in directly modulating the expression of genes encoding enzymes for the conversion of quinate and shikimate metabolites to protocatechuate. In L. monocytogenes, these genes are found within two operons, named qui1 and qui2. In addition, a gene named quiR, encoding a LysR-Type Transcriptional Regulator (QuiR), is located immediately upstream of the qui1 operon. Transcriptional lacZ-promoter fusion experiments show that QuiR induces gene expression of both qui1 and qui2 operons in the presence of shikimate. Furthermore, co-crystallization of the QuiR effector binding domain in complex with shikimate provides insights into the mechanism of activation of this regulator. Together these data show that upon shikimate accumulation, QuiR activates the transcription of genes encoding enzymes involved in shikimate and quinate utilization for the production of protocatechuate. Furthermore, the accumulation of protocatechuate leads to the inhibition of Listeria growth. Since protocatechuate is not known to be utilized by Listeria, its role is distinct from those established in other bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Expression and RNA interference of salivary polygalacturonase genes in the tarnished plant bug, Lygus lineolaris.

    PubMed

    Walker, William B; Allen, Margaret L

    2010-01-01

    Three genes encoding polygalacturonase (PG) have been identified in Lygus lineolaris (Palisot de Beauvois) (Miridae: Hemiptera). Earlier studies showed that the three PG gene transcripts are exclusively expressed in the feeding stages of L. lineolaris. In this report, it is shown that all three transcripts are specifically expressed in salivary glands indicating that PGs are salivary enzymes. Transcriptional profiles of the three PGs were evaluated with respect to diet, comparing live cotton plant material to artificial diet. PG2 transcript levels were consistently lower in cotton-fed insects than those reared on artificial diet. RNA interference was used to knock down expression of PG1 mRNA in adult salivary glands providing the first demonstration of the use of this method in the non-model insect, L. lineolaris.

  2. Influence of human lactoferrin expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco.

    PubMed

    Kumar, Vinay; Gill, Tejpal; Grover, Sunita; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2013-02-01

    This study was aimed at to check the influence of human lactoferrin (hLF) expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco. Transgenic tobacco expressing hLF cDNA under the control of a CaMV 35S promoter was produced. The iron content as well as chlorophyll content of transgenic tobacco was lower compared to mock and untransformed wild plants. Interestingly, hLF transgenic tobacco showed higher level of transcript expression for genes related to iron content regulation like iron transporter and metal transporter. While expression of genes related to iron storage such as ferritin 1 and ferritin 2 was downregulated. The transcript expression of genes encoding antioxidant enzymes such as glutathione reductase, glutathione-S-transferase, ascorbate peroxidase, and catalase was downregulated in hLF transgenic tobacco compared to controls. Further, the transcript expression of two important genes encoding dihydroflavonol reductase (DFR) and phenylalanine ammonia lyase regulatory enzymes of flavonoid biosynthesis pathway was analyzed. The expression of DFR was found to be downregulated, while PAL expression was upregulated in hLF transgenic tobacco compared to mock and untransformed wild plant. Total phenolics, flavonoids, and proanthocyanidins contents were found to be higher in hLF transgenic tobacco than the mock and untransformed wild plant. Results suggest that hLF expression in transgenic tobacco leads to iron deficiency, downregulation of antioxidant enzymes, and increase in total flavonoids.

  3. A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations.

    PubMed

    Harrison, M J

    1996-04-01

    A cDNA clone encoding a hexose transporter has been isolated from a library prepared from Medicago truncatula roots colonized by the mycorrhizal fungus Glomus versiforme. The clone (Mtst1) represents a M. truncatula gene and expression studies in yeast indicate that the encoded protein transports glucose and fructose but not sucrose. Transcripts corresponding to Mtst1 are expressed in leaves, stems and roots of M. truncatula, with the highest levels of expression in roots. In the roots, Mtst1 transcripts were detected in two distinct locations; the phloem fiber cells of the vascular tissue, and the cells of the root tip. Mtst1 expression in the roots is regulated in response to colonization by G. versiforme; transcript levels increased two- to fourfold in both M. truncatula and M. sativa following colonization by G. versiforme but did not increase during the unsuccessful interaction between G. versiforme and a M. sativa myc- mutant, suggesting that the increase in Mtst1 transcripts in the successful mycorrhizal interaction is correlated with internal growth of the fungus and potentially with a functioning symbiosis. Mtst1 transcripts were also detected in the cortical cells of the mycorrhizal root, specifically in areas of the root that were highly colonized by the mycorrhizal fungus. Thus, the formation of a symbiotic association with a VA mycorrhizal fungus is accompanied by a change in the cell type-specific expression of a transporter that potentially functions to supply sugars to root cells critically involved in the symbiotic association.

  4. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential

    PubMed Central

    Wakeman, Brian S.; Izumiya, Yoshihiro

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50. RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. IMPORTANCE Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. PMID:27795414

  5. Enterohemorrhagic Escherichia coli O157:H7 requires quorum sensing transcriptional regulators QseA and SdiA for colonization and persistence in the bovine intestinal tract

    USDA-ARS?s Scientific Manuscript database

    QseA and SdiA are two of several transcriptional regulators that regulate virulence gene expression of enterohemorrhagic Escherichia coli (EHEC) O157:H7 via quorum sensing (QS). QseA regulates the expression of the locus of enterocyte effacement (LEE). LEE encodes for a type III secretion (T3S) sys...

  6. Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP.

    PubMed

    Wang, Ying; Guo, Dong; Li, Hui-Liang; Peng, Shi-Qing

    2013-10-01

    Small rubber particle protein (SRPP) is a major component of Hevea brasiliensis (H. brasiliensis) latex, which is involved in natural rubber (NR) biosynthesis. However, little information is available on the regulation of SRPP gene (HbSRPP) expression. To study the transcriptional regulation of HbSRPP, the yeast one-hybrid experiment was performed to screen the latex cDNA library using the HbSRPP promoter as bait. One cDNA that encodes the WRKY transcription factor, designated as HbWRKY1, was isolated from H. brasiliensis. HbWRKY1 contains a 1437 bp open reading frame that encodes 478 amino acids. The deduced HbWRKY1 protein was predicted to possess two conserved WRKY domains and a C2H2 zinc-finger motif. HbWRKY1 was expressed at different levels, with the highest transcription in the flower, followed by the bark, latex, and leaf. Furthermore, the co-expression of pHbSRP::GUS with CaMV35S::HbWRKY1 significantly decreased the GUS activity in transgenic tobacco, indicating that HbWRKY1 significantly suppressed the HbSRPP promoter. These results suggested that HbWRKY1 maybe a negative transcription regulator of HbSRPP involved in NR biosynthesis in H. brasiliensis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Differential gene expression in ripening banana fruit.

    PubMed Central

    Clendennen, S K; May, G D

    1997-01-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  8. Expression of the genes for insecticidal crystal proteins in Bacillus thuringiensis: cryIVA, not cryIVB, is transcribed by RNA polymerase containing sigma H and that containing sigma E.

    PubMed

    Yoshisue, H; Ihara, K; Nishimoto, T; Sakai, H; Komano, T

    1995-03-15

    To investigate the mechanism of transcriptional regulation of cryIVA and cryIVB, encoding 130-kDa dipteran-active crystal proteins, in Bacillus thuringiensis subsp. israelensis, we introduced each gene into several sporulation mutants of Bacillus subtilis. A spoIIG mutation, the wild-type gene of which encodes sigma E precursor, completely blocked the cryIVB transcription. In contrast, low but detectable transcription of cryIVA was observed in the spoIIG mutant. In the wild-type B. subtilis, no transcription of cryIVB was detected before T2 (2 h after the onset of stationary phase), while the cryIVA transcription started at the late exponential phase at low levels. Furthermore, in a wild-type strain of B. thuringiensis subsp. israelensis, transcription of cryIVA began earlier than that of genes encoding other crystal components, cryIVB and cytA. A consensus sequence recognized by an RNA polymerase containing sigma H of B. subtilis was found upstream of the transcription start point of cryIVA, which overlapped with that recognized by sigma E.

  9. Methanol Expression Regulator 1 (Mxr1p) Is Essential for the Utilization of Amino Acids as the Sole Source of Carbon by the Methylotrophic Yeast, Pichia pastoris.

    PubMed

    Sahu, Umakant; Rangarajan, Pundi N

    2016-09-23

    Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  11. Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland.

    PubMed

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.

  12. Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei.

    PubMed

    Abrahão-Neto, J; Rossini, C H; el-Gogary, S; Henrique-Silva, F; Crivellaro, O; el-Dorry, H

    1995-08-22

    We examined the effects of inhibition of mitochondrial functions on the expression of two nuclear genes encoding the extracellular cellobiohydrolase I (cbh1) and endoglucanase I (egl1) of the cellulase system of the filamentous fungus Trichoderma reesei. The cbh1 and egl1 transcripts are repressed at a low oxygen tension, and by glucose at a concentration known to repress mitochondrial respiration. The transcripts are also down-regulated by chemical agents known to dissipate the proton electrochemical gradient of the inner mitochondrial membrane and blocking of the electron-transport chain, such as DNP and KCN, respectively. These results suggest that expression of those transcripts is influenced by the physiological state of the mitochondria. In addition, heterologous gene fusion shows that the sensitivity of the expression of those transcripts to the functional state of the mitochondria is transcriptionally controlled through the 5'-flanking DNA sequence of those genes.

  13. Homeobox Genes and Melatonin Synthesis: Regulatory Roles of the Cone-Rod Homeobox Transcription Factor in the Rodent Pineal Gland

    PubMed Central

    Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production. PMID:24877149

  14. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    PubMed

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  15. Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic Competence

    PubMed Central

    van der Ploeg, Jan R.

    2005-01-01

    In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci. PMID:15937160

  16. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    PubMed

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD enzymes of the GA pathway in wheat and barley will provide the basis for a better understanding of GA-regulated development in these species. This analysis revealed the existence of a novel, endosperm-specific GA 1-oxidase in wheat and a related GA 3,18-dihydroxylase enzyme in barley that may play important roles during grain expansion and development.

  17. A Genetic Approach to Promoter Recognition during Trans Induction of Viral Gene Expression

    NASA Astrophysics Data System (ADS)

    Coen, Donald M.; Weinheimer, Steven P.; McKnight, Steven L.

    1986-10-01

    Viral infection of mammalian cells entails the regulated induction of viral gene expression. The induction of many viral genes, including the herpes simplex virus gene encoding thymidine kinase (tk), depends on viral regulatory proteins that act in trans. Because recognition of the tk promoter by cellular transcription factors is well understood, its trans induction by viral regulatory proteins may serve as a useful model for the regulation of eukaryotic gene expression. A comprehensive set of mutations was therefore introduced into the chromosome of herpes simplex virus at the tk promoter to directly analyze the effects of promoter mutations on tk transcription. The promoter domains required for efficient tk expression under conditions of trans induction corresponded to those important for recognition by cellular transcription factors. Thus, trans induction of tk expression may be catalyzed initially by the interaction of viral regulatory proteins with cellular transcription factors.

  18. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target

    PubMed Central

    Watanabe, Hideo; Francis, Joshua M.; Woo, Michele S.; Etemad, Banafsheh; Lin, Wenchu; Fries, Daniel F.; Peng, Shouyong; Snyder, Eric L.; Tata, Purushothama Rao; Izzo, Francesca; Schinzel, Anna C.; Cho, Jeonghee; Hammerman, Peter S.; Verhaak, Roel G.; Hahn, William C.; Rajagopal, Jayaraj; Jacks, Tyler; Meyerson, Matthew

    2013-01-01

    The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas. PMID:23322301

  19. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia

    PubMed Central

    Kramer, Martha F.; Jurak, Igor; Pesola, Jean M.; Boissel, Sandrine; Knipe, David M.; Coen, Donald M.

    2013-01-01

    Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it. PMID:21782205

  20. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis. PMID:22086422

  1. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.

  2. Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae).

    PubMed

    Baek, Ji Hyeong; Lee, Si Hyeock

    2010-06-01

    To search for novel transcripts encoding biologically active venom components, a subtractive cDNA library specific to the venom gland and sac (gland/sac) of a solitary hunting wasp species, Eumenes pomiformis Fabricius (1781), was constructed by suppression subtractive hybridization. A total of 541 expressed sequence tags (ESTs) were clustered and assembled into 102 contigs (31 multiple sequences and 71 singletons). In total, 37 cDNAs were found in the library via BLASTx searching and manual annotation. Eight contigs (337 ESTs) encoding short venom peptides (10 to 16 amino acids) occupied 62% of the library. The deduced amino acid sequence (78 amino acids) of a novel venom peptide transcript shared sequence similarity with trypsin inhibitors and dendrotoxin-like venom peptides known to be K(+) channel blockers, implying that this novel peptide may play a role in the paralysis of prey. In addition to phospholipase A2 and hyaluronidase, which are known to be the main components of wasp venoms, several transcripts encoding enzymes, including three metallopeptidases and a decarboxylase likely involved in the processing and activation of venomous proteins, peptides, amines, and neurotransmitters, were also isolated from the library. The presence of a transcript encoding a putative insulin/insulin-like peptide binding protein suggests that solitary hunting wasps use their venom to control their prey, leading to larval growth cessation. The abundance of these venom components in the venom gland/sac and in the alimentary canal was confirmed by quantitative real-time PCR. Discovery of venom gland/sac-specific transcripts should promote further studies on biologically active components in the venom of solitary hunting wasps. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family.

    PubMed

    Galarneau, L; Paré, J F; Allard, D; Hamel, D; Levesque, L; Tugwood, J D; Green, S; Bélanger, L

    1996-07-01

    The alpha1-fetoprotein (AFP) gene is located between the albumin and alpha-albumin genes and is activated by transcription factor FTF (fetoprotein transcription factor), presumed to transduce early developmental signals to the albumin gene cluster. We have identified FTF as an orphan nuclear receptor of the Drosophila FTZ-F1 family. FTF recognizes the DNA sequence 5'-TCAAGGTCA-3', the canonical recognition motif for FTZ-F1 receptors. cDNA sequence homologies indicate that rat FTF is the ortholog of mouse LRH-1 and Xenopus xFF1rA. Rodent FTF is encoded by a single-copy gene, related to the gene encoding steroidogenic factor 1 (SF-1). The 5.2-kb FTF transcript is translated from several in-frame initiator codons into FTF isoforms (54 to 64 kDa) which appear to bind DNA as monomers, with no need for a specific ligand, similar KdS (approximately equal 3 x 10(-10) M), and similar transcriptional effects. FTF activates the AFP promoter without the use of an amino-terminal activation domain; carboxy-terminus-truncated FTF exerts strong dominant negative effects. In the AFP promoter, FTF recruits an accessory trans-activator which imparts glucocorticoid reactivity upon the AFP gene. FTF binding sites are found in the promoters of other liver-expressed genes, some encoding liver transcription factors; FTF, liver alpha1-antitrypsin promoter factor LFB2, and HNF-3beta promoter factor UF2-H3beta are probably the same factor. FTF is also abundantly expressed in the pancreas and may exert differentiation functions in endodermal sublineages, similar to SF-1 in steroidogenic tissues. HepG2 hepatoma cells seem to express a mutated form of FTF.

  4. Expression and RNA Interference of Salivary Polygalacturonase Genes in the Tarnished Plant Bug, Lygus lineolaris

    PubMed Central

    Walker, William B.; Allen, Margaret L.

    2010-01-01

    Three genes encoding polygalacturonase (PG) have been identified in Lygus lineolaris (Palisot de Beauvois) (Miridae: Hemiptera). Earlier studies showed that the three PG gene transcripts are exclusively expressed in the feeding stages of L. lineolaris. In this report, it is shown that all three transcripts are specifically expressed in salivary glands indicating that PGs are salivary enzymes. Transcriptional profiles of the three PGs were evaluated with respect to diet, comparing live cotton plant material to artificial diet. PG2 transcript levels were consistently lower in cotton-fed insects than those reared on artificial diet. RNA interference was used to knock down expression of PG1 mRNA in adult salivary glands providing the first demonstration of the use of this method in the non-model insect, L. lineolaris. PMID:21062205

  5. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    PubMed

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  6. Quantitative Analysis of the KSHV Transcriptome Following Primary Infection of Blood and Lymphatic Endothelial Cells

    PubMed Central

    Bruce, A. Gregory; Barcy, Serge; DiMaio, Terri; Gan, Emilia; Garrigues, H. Jacques; Lagunoff, Michael; Rose, Timothy M.

    2017-01-01

    The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression. PMID:28335496

  7. Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Saveliev, Alexei; Zhu, Fan; Yuan, Yan

    2002-08-01

    Viral immediate-early (IE) genes are the first class of viral genes expressed during primary infection or reactivation from latency. They usually encode regulatory proteins that play crucial roles in viral life cycle. In a previous study, four regions in the KSHV genome were found to be actively transcribed in the immediate-early stage of viral reactivation in primary effusion lymphoma cells. Three immediate-early transcripts were characterized in these regions, as follows: mRNAs for ORF50 (KIE-1), ORF-45 (KIE-2), and ORF K4.2 (KIE-3) (F. X. Zhu, T. Cusano, and Y. Yuan, 1999, J. Virol. 73, 5556-5567). In the present study, we further analyzed the expression of genes in these IE regions in BC-1 and BCBL-1 cells. One of the immediate-early regions (KIE-1) that encompasses ORF50 and other genes was intensively studied to establish a detailed transcription map and expression patterns of genes in this region. This study led to identification of several novel IE transcripts in this region. They include a 2.6-kb mRNA which encodes ORF48/ORF29b, a family of transcripts that are complementary to ORF50 mRNA and a novel K8 IE mRNA of 1.5 kb. Together with the IE mRNA for ORF50 which was identified previously, four immediate-early genes have been mapped to KIE-1 region. Therefore, we would designate KIE-1 the major immediate-early region of KSHV. In addition, we showed that transcription of K8 gene is controlled by two promoters, yielding two transcripts, an immediate-early mRNA of 1.5 kb and a delayed-early mRNA of 1.3 kb.

  8. Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex.

    PubMed

    Chow, Keng-See; Wan, Kiew-Lian; Isa, Mohd Noor Mat; Bahari, Azlina; Tan, Siang-Hee; Harikrishna, K; Yeang, Hoong-Yeet

    2007-01-01

    Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.

  9. Modulation of TCRβ surface expression during TCR revision.

    PubMed

    Simmons, Kalynn B; Wubeshet, Maramawit; Ames, Kristina T; McMahan, Catherine J; Hale, J Scott; Fink, Pamela J

    2012-01-01

    TCR revision is a tolerance mechanism by which self-reactive TCRs expressed by mature CD4(+) peripheral T cells are replaced by receptors encoded by genes generated by post-thymic DNA rearrangement. The downmodulation of surface TCR expression initiates TCR revision, and serves as a likely trigger for the induction of the recombinase machinery. We show here in a Vβ5 transgenic mouse model system that downregulation of the self-reactive transgene-encoded TCR is not maintained by transgene loss or diminished transcription or translation. The downregulation of surface TCR expression likely occurs in two stages, only one of which requires tolerogen expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Recombinant hosts suitable for simultaneous saccharification and fermentation

    DOEpatents

    Ingram, Lonnie O'Neal; Zhou, Shengde

    2007-06-05

    The invention provides recombinant host cells containing at least one heterologous polynucleotide encoding a polysaccharase under the transcriptional control of a surrogate promoter capable of increasing the expression of the polysaccharase. In addition, the invention further provides such hosts with genes encoding secretory protein/s to facilitate the secretion of the expressed polysaccharase. Preferred hosts of the invention are ethanologenic and capable of carrying out simultaneous saccharification fermentation resulting in the production of ethanol from complex cellulose substrates.

  11. Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities.

    PubMed

    Liu, Xuan; Trakooljul, Nares; Hadlich, Frieder; Murani, Eduard; Wimmers, Klaus; Ponsuksili, Siriluck

    2017-10-25

    Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.

  12. Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk.

    PubMed

    Liu, Yanhong; Ream, Amy

    2008-11-01

    To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.

  13. Identification and Characterization of a Cis-Encoded Antisense RNA Associated with the Replication Process of Salmonella enterica Serovar Typhi

    PubMed Central

    Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang

    2013-01-01

    Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise whiles others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned. PMID:23637809

  14. BadR and BadM Proteins Transcriptionally Regulate Two Operons Needed for Anaerobic Benzoate Degradation by Rhodopseudomonas palustris

    PubMed Central

    Hirakawa, Hidetada; Hirakawa, Yuko; Greenberg, E. Peter

    2015-01-01

    The bacterium Rhodopseudomonas palustris grows with the aromatic acid benzoate and the alicyclic acid cyclohexanecarboxylate (CHC) as sole carbon sources. The enzymatic steps in an oxygen-independent pathway for CHC degradation have been elucidated, but it was unknown how the CHC operon (badHI aliAB badK) encoding the enzymes for CHC degradation was regulated. aliA and aliB encode enzymes for the conversion of CHC to cyclohex-1-enecarboxyl–coenzyme A (CHene-CoA). At this point, the pathway for CHC degradation merges with the pathway for anaerobic benzoate degradation, as CHene-CoA is an intermediate in both degradation pathways. Three enzymes, encoded by badK, badH, and badI, prepare and cleave the alicyclic ring of CHene-CoA to yield pimelyl-CoA. Here, we show that the MarR transcription factor family member, BadR, represses transcription of the CHC operon by binding near the transcription start site of badH. 2-Ketocyclohexane-1-carboxyl–CoA, an intermediate of CHC and benzoate degradation, interacts with BadR to abrogate repression. We also present evidence that the transcription factor BadM binds to the promoter of the badDEFGAB (Bad) operon for the anaerobic conversion of benzoate to CHene-CoA to repress its expression. Contrary to previous reports, BadR does not appear to control expression of the Bad operon. These data enhance our view of the transcriptional regulation of anaerobic benzoate degradation by R. palustris. PMID:25888170

  15. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh.

    PubMed

    Sheikh, Alaullah; Charles, Richelle C; Sharmeen, Nusrat; Rollins, Sean M; Harris, Jason B; Bhuiyan, Md Saruar; Arifuzzaman, Mohammad; Khanam, Farhana; Bukka, Archana; Kalsy, Anuj; Porwollik, Steffen; Leung, Daniel T; Brooks, W Abdullah; LaRocque, Regina C; Hohmann, Elizabeth L; Cravioto, Alejandro; Logvinenko, Tanya; Calderwood, Stephen B; McClelland, Michael; Graham, James E; Qadri, Firdausi; Ryan, Edward T

    2011-12-01

    Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection.

  16. ERP, a new member of the ets transcription factor/oncoprotein family: cloning, characterization, and differential expression during B-lymphocyte development.

    PubMed

    Lopez, M; Oettgen, P; Akbarali, Y; Dendorfer, U; Libermann, T A

    1994-05-01

    The ets gene family encodes a group of proteins which function as transcription factors under physiological conditions and, if aberrantly expressed, can cause cellular transformation. We have recently identified two regulatory elements in the murine immunoglobulin heavy-chain (IgH) enhancer, pi and microB, which exhibit striking similarity to binding sites for ets-related proteins. To identify ets-related transcriptional regulators expressed in pre-B lymphocytes that may interact with either the pi or the microB site, we have used a PCR approach with degenerate oligonucleotides encoding conserved sequences in all members of the ets family. We have cloned the gene for a new ets-related transcription factor, ERP (ets-related protein), from the murine pre-B cell line BASC 6C2 and from mouse lung tissue. The ERP protein contains a region of high homology with the ETS DNA-binding domain common to all members of the ets transcription factor/oncoprotein family. Three additional smaller regions show homology to the ELK-1 and SAP-1 genes, a subgroup of the ets gene family that interacts with the serum response factor. Full-length ERP expresses only negligible DNA-binding activity by itself. Removal of the carboxy terminus enables ERP to interact with a variety of ets-binding sites including the E74 site, the IgH enhancer pi site, and the lck promoter ets site, suggesting a carboxy-terminal negative regulatory domain. At least three ERP-related transcripts are expressed in a variety of tissues. However, within the B-cell lineage, ERP is highly expressed primarily at early stages of B-lymphocyte development, and expression declines drastically upon B-cell maturation, correlating with the enhancer activity of the IgH pi site. These data suggest that ERP might play a role in B-cell development and in IgH gene regulation.

  17. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens.

    PubMed

    Islam, Md Zaherul; Yun, Hae Keun

    2016-08-01

    Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.

  18. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

    PubMed Central

    Islam, Md. Zaherul; Yun, Hae Keun

    2016-01-01

    Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines. PMID:27493610

  19. Mitochondrial transcription: Lessons from mouse models

    PubMed Central

    Peralta, Susana; Wang, Xiao; Moraes, Carlos T.

    2012-01-01

    Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174

  20. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans.

    PubMed

    Eshghi, Azad; Becam, Jérôme; Lambert, Ambroise; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Wunder, Elsio A; Ko, Albert I; Coppee, Jean-Yves; Goarant, Cyrille; Picardeau, Mathieu

    2014-06-01

    Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139(-) mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.

  1. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection.

    PubMed

    Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong

    2015-08-18

    p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection.

  2. Identification of novel serine proteinase gene transcripts in the midguts of two tropical insect pests, Scirpophaga incertulas (Wk.) and Helicoverpa armigera (Hb.).

    PubMed

    Mazumdar-Leighton, S; Babu, C R; Bennett, J

    2000-01-01

    We have used RT PCR and 3'RACE to identify diverse serine proteinase genes expressed in the midguts of the rice yellow stem borer (Scirpophaga incertulas) and Asian corn borer (Helicoverpa armigera). The RT-PCR primers encoded the conserved regions around the active site histidine57 and serine195 of Drosophila melanogaster alpha trypsin, including aspartate189 of the specificity pocket. These primers amplified three transcripts (SiP1-3) from midguts of S. incertulas, and two transcripts (HaP1-2) from midguts of H. armigera. The five RT PCR products were sequenced to permit design of gene-specific forward primers for use with anchored oligo dT primers in 3'RACE. Sequencing of the 3'RACE products indicated that SiP1, SiP2 and HaP1 encoded trypsin-like serine proteinases, while HaP2 encoded a chymotrypsin-like serine proteinases. The SiP3 transcript proved to be an abundant 960 nt mRNA encoding a trypsin-like protein in which the active site serine195 was replaced by aspartate. The possible functions of this unusual protein are discussed.

  3. Genetic and Functional Investigation of Zn2Cys6 Transcription Factors RSE2 and RSE3 in Podospora anserina

    PubMed Central

    Bovier, Elodie; Sellem, Carole H.; Humbert, Adeline

    2014-01-01

    In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools. PMID:24186951

  4. Identification of transcript polymorphisms for seed quality improvement by exploring soybean genetic diversity

    USDA-ARS?s Scientific Manuscript database

    The difference in seed oil composition and content among soybean genotypes could be mostly attributed to transcript sequence and/or expression variations of oil-related genes that that lead to changes in the functions of the proteins that they encode and/or their accumulation in seeds. We sequenced ...

  5. The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana.

    PubMed

    Zhang, Ting; Qu, Yixin; Wang, Haibin; Wang, Jingjing; Song, Aiping; Hu, Yueheng; Chen, Sumei; Jiang, Jiafu; Chen, Fadi

    2017-06-01

    TCP transcription factors are important for plant growth and development, but their activity in chrysanthemum (Chrysanthemum morifolium) has not been thoroughly explored. Here, a chrysanthemum TCP-P sequence, which encodes a protein harboring the conserved basic helix-loop-helix (bHLH) motif, was shown to be related phylogenetically to the Arabidopsis thaliana gene AtTCP14. A yeast-one hybrid assay showed that the encoding protein had no transcriptional activation ability, and a localization experiment indicated that it was localized in the nucleus. Transcription profiling established that the gene was most active in the stem and leaf. Its heterologous expression in A. thaliana down-regulated certain cell cycle-related genes, reduced the size of various organs and increased the chlorophyll and carotenoid contents of the leaf which led to delayed senescence and a prolonged flowering period. Moreover, by screening the cDNA library of chrysanthemum, we found that the CmTCP14 can interact with CmFTL2 and some CmDELLAs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation.

    PubMed

    Renovell, Agueda; Gago, Selma; Ruiz-Ruiz, Susana; Velázquez, Karelia; Navarro, Luis; Moreno, Pedro; Vives, Mari Carmen; Guerri, José

    2010-10-25

    Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Mutations in the sigma subunit of E. coli RNA polymerase which affect positive control of transcription.

    PubMed

    Hu, J C; Gross, C A

    1985-01-01

    The sigma subunits of bacterial RNA polymerases are required for the selective initiation of transcription. We have isolated and characterized mutations in rpoD, the gene which encodes the major form of sigma in E. coli, which affect the selectivity of transcription. These mutations increase the expression of araBAD up to 12-fold in the absence of CAP-cAMP. Expression of lac is unaffected, while expression of malT-activated operons is decreased. We determined the DNA sequence of 17 independently isolated mutations, and found that they consist of three different changes in a single CGC arginine codon at position 596 in the sigma polypeptide.

  8. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    PubMed

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  9. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    PubMed

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  10. Inactivation of DNA-Binding Response Regulator Sak189 Abrogates β-Antigen Expression and Affects Virulence of Streptococcus agalactiae

    PubMed Central

    Rozhdestvenskaya, Anastasia S.; Totolian, Artem A.; Dmitriev, Alexander V.

    2010-01-01

    Background Streptococcus agalactiae is able to colonize numerous tissues employing different mechanisms of gene regulation, particularly via two-component regulatory systems. These systems sense the environmental stimuli and regulate expression of the genes including virulence genes. Recently, the novel two-component regulatory system Sak188/Sak189 was identified. In S. agalactiae genome, it was adjacent to the bac gene encoding for β-antigen, an important virulence factor. Methodology/Principal Findings In this study, the sak188 and sak189 genes were inactivated, and the functional role of Sak188/Sak189 two-component system in regulation of the β-antigen expression was investigated. It was demonstrated that both transcription of bac gene and expression of encoded β-antigen were controlled by Sak189 response regulator, but not Sak188 histidine kinase. It was also found that the regulation occurred at transcriptional level. Finally, insertional inactivation of sak189 gene, but not sak188 gene, significantly affected virulent properties of S. agalactiae. Conclusions/Significance Sak189 response regulator is necessary for activation of bac gene transcription. It also controls the virulent properties of S. agalactiae. Given that the primary functional role of Sak188/Sak189 two-component systems is a control of bac gene transcription, this system can be annotated as BgrR/S (bac gene regulatory system). PMID:20419089

  11. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress.

    PubMed

    Schor-Fumbarov, Tamar; Goldsbrough, Peter B; Adam, Zach; Tel-Or, Elisha

    2005-12-01

    A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd(+2), Cu(+2), Zn(+2) and Ni(+2) to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd(2+) and Ni(2+) induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

  12. Isolation and expression analysis of FTZ-F1 encoding gene of black rock fish ( Sebastes schlegelii)

    NASA Astrophysics Data System (ADS)

    Shafi, Muhammad; Wang, Yanan; Zhou, Xiaosu; Ma, Liman; Muhammad, Faiz; Qi, Jie; Zhang, Quanqi

    2013-03-01

    Sex related FTZ-F1 is a transcriptional factor regulating the expression of fushi tarazu (a member of the orphan nuclear receptors) gene. In this study, FTZ-F1 gene ( FTZ-F1) was isolated from the testis of black rockfish ( Sebastes schlegeli) by homology cloning. The full-length cDNA of S. schlegeli FTZ-F1 ( ssFTZ-F1) contained a 232bp 5' UTR, a 1449bp ORF encoding FTZ-F1 (482 amino acid residules in length) with an estimated molecular weight of 5.4kD and a 105bp 3' UTR. Sequence, tissue distribution and phylogenic analysis showed that ssFTZ-F1 belonged to FTZ group, holding highly conserved regions including I, II and III FTZ-F1 boxes and an AF-2 hexamer. Relatively high expression was observed at different larva stages. In juveniles (105 days old), the transcript of ssFTZ-F1 can be detected in all tissues and the abuncance of the gene transcript in testis, ovary, spleen and brain was higher than that in other tissues. In mature fish, the abundance of gene transcript was higher in testis, ovary, spleen and brain than that in liver (trace amount), and the gene was not transcribed in other tissues. The highest abundance of gene transcript was always observed in gonads of both juvenile and mature fish. In addition, the abundance of gene transcript in male tissues were higher than that in female tissue counterparts ( P<0.05).

  13. The First Step of Gibberellin Biosynthesis in Pumpkin Is Catalyzed by at Least Two Copalyl Diphosphate Synthases Encoded by Differentially Regulated Genes

    PubMed Central

    Smith, Maria W.; Yamaguchi, Shinjiro; Ait-Ali, Tahar; Kamiya, Yuji

    1998-01-01

    The first step in gibberellin biosynthesis is catalyzed by copalyl diphosphate synthase (CPS) and ent-kaurene synthase. We have cloned from pumpkin (Cucurbita maxima L.) two cDNAs, CmCPS1 and CmCPS2, that each encode a CPS. Both recombinant fusion CmCPS proteins were active in vitro. CPS are translocated into plastids and processed by cleavage of transit peptides. For CmCPS1 and CmCPS2, the putative transit peptides cannot exceed the first 99 and 107 amino acids, respectively, because longer N-terminal deletions abolished activity. Levels of both CmCPS transcripts were strictly regulated in an organ-specific and developmental manner. Both transcripts were almost undetectable in leaves and were abundant in petioles. CmCPS1 transcript levels were high in young cotyledons and low in roots. In contrast, CmCPS2 transcripts were undetectable in cotyledons but present at significant levels in roots. In hypocotyls, apices, and petioles, CmCPS1 transcript levels decreased with age much more rapidly than those of CmCPS2. We speculate that CmCPS1 expression is correlated with the early stages of organ development, whereas CmCPS2 expression is correlated with subsequent growth. In contrast, C. maxima ent-kaurene synthase transcripts were detected in every organ at almost constant levels. Thus, ent-kaurene biosynthesis may be regulated through control of CPS expression. PMID:9847116

  14. HNF1β Is Essential for Nephron Segmentation during Nephrogenesis

    PubMed Central

    Naylor, Richard W.; Przepiorski, Aneta; Ren, Qun; Yu, Jing

    2012-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms’ tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis. PMID:23160512

  15. HNF1β is essential for nephron segmentation during nephrogenesis.

    PubMed

    Naylor, Richard W; Przepiorski, Aneta; Ren, Qun; Yu, Jing; Davidson, Alan J

    2013-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms' tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis.

  16. Aberrant termination of reproduction-related TMEM30C transcripts in the hominoids.

    PubMed

    Osada, Naoki; Hashimoto, Katsuyuki; Hirai, Momoki; Kusuda, Jun

    2007-05-01

    Finding genetic novelties that may contribute to human-specific physiology and diseases is a key issue of current biomedical studies. TMEM30C is a gene containing two transmembrane (TM) domains and homologous to the yeast CDC50 family, which is related to polarized cell division. It is conserved among mammals along with two other paralogs, TMEM30A and TMEM30B. We found that TMEM30C is expressed specifically in the testis of mammals, in contrast to the relatively wide expression distributions of the other paralogs. While macaques expressed two alternative splicing isoforms which include one or two TM domains, humans and chimpanzees predominantly expressed truncated transcripts because of the mutations in the splicing and/or poly(A) signal sites. The major transcript in humans harbored non-stop ORF (open reading frame) while the chimpanzee counterpart encoded a protein with one TM domain. The difference was due to the 1-bp indel upstream of the poly(A) signal site. In addition, both the hominoids expressed minor transcripts encoding short proteins with one TM domain. Phylogenetic analysis has showed the acceleration of amino acid substitution after the human and chimpanzee divergence, which may have been caused by a recent relaxation in functional constraints or positive selection on TMEM30C. Elucidating the precise reproductive function of TMEM30C in mammals will be important to the foundation of divergence in higher primates at a molecular level.

  17. Functional analysis of alternative transcripts of the soybean Rj2 gene that restricts nodulation with specific rhizobial strains.

    PubMed

    Tang, F; Yang, S; Zhu, H

    2016-05-01

    The Rj2 gene is a TIR-NBS-LRR-type resistance gene in soybean (Glycine max) that restricts root nodule symbiosis with a group of Bradyrhizobium japonicum strains including USDA122. Rj2 generates two distinct transcript variants in its expression profile through alternative splicing. Alternative splicing of Rj2 is caused by the retention of the 86-bp intron 4. Inclusion of intron 4 in mature mRNA introduces an in-frame stop codon; as such, the alternative transcript is predicted to encode a truncated protein consisting of the entire portion of the TIR, NBS and LRR domains but missing the C-terminal domain of the full-length Rj2 protein encoded by the regular transcript. Since alternative splicing has been shown to be essential for full activity of several plant R genes, we attempted to test whether the alternative splicing is required for Rj2-mediated nodulation restriction. Here we demonstrated that the Rj2-mediated nodulation restriction does not require the combined presence of the regular and alternative transcripts, and the expression of the regular transcript alone is sufficient to confer nodulation restriction. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Characterization and developmental expression of genes encoding the early carotenoid biosynthetic enzymes in Citrus paradisi Macf.

    PubMed

    Costa, Marcio G C; Moreira, Cristina D; Melton, John R; Otoni, Wagner C; Moore, Gloria A

    2012-02-01

    In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.

  19. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    PubMed

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines. Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation.

  20. Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression

    PubMed Central

    Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi

    2000-01-01

    The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660

  1. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. Copyright © 2016 American Society for Microbiology.

  2. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics

    PubMed Central

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-01-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083

  3. A role for tachykinins in female mouse and rat reproductive function.

    PubMed

    Pintado, C Oscar; Pinto, Francisco M; Pennefather, Jocelyn N; Hidalgo, Agustin; Baamonde, Ana; Sanchez, Teresa; Candenas, M Luz

    2003-09-01

    Tachykinins may be involved in reproduction. A reverse transcription-polymerase chain reaction assay was used to analyze the expression of tachykinins and tachykinin receptors in different types of reproductive cells from mice. The preprotachykinin (PPT) genes, PPT-A, PPT-B and PPT-C, that encode substance P/neurokinin A, neurokinin B, and hemokinin-1, respectively, and the genes that encode the tachykinin NK1, NK2, and NK3 receptors were all expressed, at different levels, in the uterus of superovulated, unfertilized mice. The mRNA of neprilysin (NEP), the main enzyme involved in tachykinin metabolism, was also expressed in the uterus. Isolated cumulus granulosa cells expressed PPT-A, PPT-B, PPT-C, and NEP and low levels of the tachykinin NK1 and NK2 receptors. Mouse oocytes expressed PPT-A and -B mRNA transcripts. A low expression of the three tachykinin receptors was observed but PPT-C and NEP were undetectable. Two- and 8- to 16-cell mouse embryos expressed only a low-abundance transcript corresponding to the NK1 receptor. However, the mRNAs of PPT-B, PPT-C and NEP appeared in blastocyst-stage embryos. A low-abundance transcript corresponding to the NK2 receptor was the only target gene detected in mice sperm. Female mice or rats treated neonatally with capsaicin showed a reduced fertility. A reduction in litter size was observed in female rats treated in vivo with the tachykinin NK3 receptor antagonist SR 142801. These data show that tachykinins of both neuronal and nonneuronal origin are differentially expressed in various types of reproductive cells and may play a role in female reproductive function.

  4. Structural and transcriptional characterization of a novel member of the soybean urease gene family.

    PubMed

    Wiebke-Strohm, Beatriz; Ligabue-Braun, Rodrigo; Rechenmacher, Ciliana; De Oliveira-Busatto, Luisa Abruzzi; Carlini, Célia Regina; Bodanese-Zanettini, Maria Helena

    2016-04-01

    In plants, ureases have been related to urea degradation, to defense against pathogenic fungi and phytophagous insects, and to the soybean-Bradyrhizobium japonicum symbiosis. Two urease isoforms have been described for soybean: the embryo-specific, encoded by Eu1 gene, and the ubiquitous urease, encoded by Eu4. A third urease-encoding locus exists in the completed soybean genome. The gene was designated Eu5 and the putative product of its ORF as SBU-III. Phylogenetic analysis shows that 41 plant, moss and algal ureases have diverged from a common ancestor protein, but ureases from monocots, eudicots and ancient species have evolved independently. Genomes of ancient organisms present a single urease-encoding gene and urease-encoding gene duplication has occurred independently along the evolution of some eudicot species. SBU-III has a shorter amino acid sequence, since many gaps are found when compared to other sequences. A mutation in a highly conserved amino acid residue suggests absence of ureolytic activity, but the overall protein architecture remains very similar to the other ureases. The expression profile of urease-encoding genes in different organs and developmental stages was determined by RT-qPCR. Eu5 transcripts were detected in seeds one day after dormancy break, roots of young plants and embryos of developing seeds. Eu1 and Eu4 transcripts were found in all analyzed organs, but Eu4 expression was more prominent in seeds one day after dormancy break whereas Eu1 predominated in developing seeds. The evidence suggests that SBU-III may not be involved in nitrogen availability to plants, but it could be involved in other biological role(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    PubMed

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Identification of Viral MicroRNAs Expressed in Human Sacral Ganglia Latently Infected with Herpes Simplex Virus 2▿

    PubMed Central

    Umbach, Jennifer L.; Wang, Kening; Tang, Shuang; Krause, Philip R.; Mont, Erik K.; Cohen, Jeffrey I.; Cullen, Bryan R.

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (UL) region of the genome, 3′ to the UL15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT. PMID:19889786

  7. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2.

    PubMed

    Umbach, Jennifer L; Wang, Kening; Tang, Shuang; Krause, Philip R; Mont, Erik K; Cohen, Jeffrey I; Cullen, Bryan R

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.

  8. Peroxisome Proliferator-Activated Receptor γ Target Gene Encoding a Novel Angiopoietin-Related Protein Associated with Adipose Differentiation

    PubMed Central

    Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.

    2000-01-01

    The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690

  9. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  10. Alternative RNA processing events in human calcitonin/calcitonin gene-related peptide gene expression.

    PubMed Central

    Jonas, V; Lin, C R; Kawashima, E; Semon, D; Swanson, L W; Mermod, J J; Evans, R M; Rosenfeld, M G

    1985-01-01

    Two mRNAs generated as a consequence of alternative RNA processing events in expression of the human calcitonin gene encode the protein precursors of either calcitonin or calcitonin gene-related peptide (CGRP). Both calcitonin and CGRP RNAs and their encoded peptide products are expressed in the human pituitary and in medullary thyroid tumors. On the basis of sequence comparison, it is suggested that both the calcitonin and CGRP exons arose from a common primordial sequence, suggesting that duplication and rearrangement events are responsible for the generation of this complex transcription unit. Images PMID:3872459

  11. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  12. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    PubMed

    Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.

  13. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts1[W][OPEN

    PubMed Central

    Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-01-01

    Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831

  14. Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA

    PubMed Central

    LeBlanc, Jason; Weil, Jason; Beemon, Karen

    2013-01-01

    After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases. PMID:23754689

  15. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation.

    PubMed

    Jordan, B R; Chow, W S; Strid, A; Anderson, J M

    1991-06-17

    The cab and psb A RNA transcript levels have been determined in Pisum sativum leaves exposed to supplementary ultraviolet-B radiation. The nuclear-encoded cab transcripts are reduced to low levels after only 4 h of UV-B treatment and are undetectable after 3 days exposure. In contrast, the chloroplast-encoded psb A transcript levels, although reduced, are present for at least 3 days. After short periods of UV-B exposure (4 h or 8 h), followed by recovery under control conditions, cab RNA transcript levels had not recovered after 1 day, but were re-established to ca. 60% of control levels after 2 more days. Increased irradiance during exposure to UV-B reduced the effect upon cab transcripts, although the decrease was still substantial. These results indicate rapid changes in the cellular regulation of gene expression in response to supplementary UV-B and suggest increased UV-B radiation may have profound consequences for future productivity of sensitive crop species.

  16. Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.

    PubMed

    Tang, Binhua; Wang, Xin

    2015-01-01

    DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.

  17. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    PubMed Central

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  18. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit.

    PubMed

    Chen, Jiao; Chen, Jian-Ye; Wang, Jun-Ning; Kuang, Jian-Fei; Shan, Wei; Lu, Wang-Jin

    2012-04-01

    CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Increased mitochondrial-encoded gene transcription in immortal DF-1 cells.

    PubMed

    Kim, H; You, S; Kim, I J; Farris, J; Foster, L K; Foster, D N

    2001-05-01

    We have established, in continuous cell culture, a spontaneously immortalized chicken embryo fibroblast (CEF) cell line (DF-1) as well as several other immortal CEF cell lines. The immortal DF-1 cells divided more rapidly than primary and other immortal CEF cells. To identify the genes involved in rapidly dividing DF-1 cells, we have used differential display RT-PCR. Of the numerous genes analyzed, three mitochondrial-encoded genes (ATPase 8/6, 16S rRNA, and cytochrome b) were shown to express at higher levels in DF-1 cells compared to primary and other immortal CEF cells. The inhibition of mitochondrial translation by treatment with chloramphenicol markedly decreased ATP production and cell proliferation in DF-1 cells, while not affecting growth in either primary or other immortal CEF cells. This result suggests a correlation between rapid cell proliferation and the increased mitochondrial respiratory functions. We also determined that the increased transcription of mitochondrial-encoded genes in DF-1 cells is due to increased de novo transcript synthesis as shown by mitochondrial run-on assays, and not the result of either increased mitochondrial biogenesis or mitochondrial transcript half-lives. Together, the present studies suggest that the transcriptional activation of mitochondrial-encoded genes and the elevated respiratory function should be one of the characteristics of rapidly dividing immortal cells. Copyright 2001 Academic Press.

  20. The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons.

    PubMed

    Koga, Makoto; Ohshima, Yasumi

    2004-02-20

    Chemotaxis to water-soluble chemicals such as sodium ion is an important behavior of Caenorhabditis elegans for seeking food, and ASE chemosensory neurons have a major role in this behavior. We isolated mutants defective in chemotaxis to sodium acetate. We show here that among them ks86 had a mutation in the ceh-36 gene. ceh-36 :: gfp reporter constructs were expressed in ASE and AWC neurons. In a mutant of the che-1 gene, which encodes another transcription factor and is required for specification of ASE neurons, expression of the ceh-36 :: gfp reporter in ASE is lost. This indicates that the ceh-36 gene functions downstream of the che-1 gene in ASE. In the ceh-36(ks86) mutant, expression of the tax-2 gene encoding a cyclic nucleotide-gated channel was reduced in ASE and AWC. This affords an explanation for defects of the ceh-36 mutant in the chemotaxis mediated by ASE and AWC. When a ceh-36 cDNA was expressed in an adult ceh-36 mutant by a heat shock promoter, chemotaxis to sodium acetate was recovered. These results suggest that ceh-36 is required for functions, and not for development, of ASE.

  1. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of themore » TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.« less

  2. Novel Variants in ZNF34 and Other Brain-Expressed Transcription Factors are Shared Among Early-Onset MDD Relatives

    PubMed Central

    Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.

    2018-01-01

    There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146

  3. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis1[w

    PubMed Central

    Czechowski, Tomasz; Stitt, Mark; Altmann, Thomas; Udvardi, Michael K.; Scheible, Wolf-Rüdiger

    2005-01-01

    Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies provided the means to identify a new generation of reference genes with very stable expression levels in the model plant species Arabidopsis (Arabidopsis thaliana). Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions. Most of these were expressed at much lower levels than traditional reference genes, making them very suitable for normalization of gene expression over a wide range of transcript levels. Specific and efficient primers were developed for 22 genes and tested on a diverse set of 20 cDNA samples. Quantitative reverse transcription-PCR confirmed superior expression stability and lower absolute expression levels for many of these genes, including genes encoding a protein phosphatase 2A subunit, a coatomer subunit, and an ubiquitin-conjugating enzyme. The developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels in Arabidopsis in the future. PMID:16166256

  4. Bacterial antisense RNAs are mainly the product of transcriptional noise.

    PubMed

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I; Serrano, Luis; Lluch-Senar, Maria

    2016-03-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome.

  5. Bacterial antisense RNAs are mainly the product of transcriptional noise

    PubMed Central

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  6. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.

    PubMed

    Schuhmacher, D A; Klose, K E

    1999-03-01

    The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.

  7. The influence of co-cultivation on expression of the antifungal protein in Aspergillus giganteus.

    PubMed

    Meyer, Vera; Stahl, Ulf

    2003-01-01

    The afp gene of Aspergillus giganteus encodes a small, highly basic polypeptide with antifungal activity, named Antifungal Protein (AFP). The protein is secreted by the mould and inhibits the growth of various filamentous fungi. In this paper we report that co-cultivation of A. giganteus with various microorganisms alters afp expression. It was found that co-cultivation modulates afp expression on the level of transcription, using a reporter system based on the beta-glucuronidase gene. The presence of Fusarium oxysporum triggered afp transcription whereas dual cultures of A. giganteus and A. niger resulted in suppression of afp transcription. Growth tests performed with several carbon and nitrogen sources, revealed that the influence of co-cultivation is strongly dependent on the medium composition.

  8. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes.

    PubMed

    Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W

    2014-04-04

    Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available.

  9. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    PubMed

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  10. Every which way--nanos gene regulation in echinoderms.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  11. Every which way – nanos gene regulation in echinoderms

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  12. Cocaine Administration and Its Withdrawal Enhance the Expression of Genes Encoding Histone-Modifying Enzymes and Histone Acetylation in the Rat Prefrontal Cortex.

    PubMed

    Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Jastrzębska, Joanna; Wydra, Karolina; Miszkiel, Joanna; Sanak, Marek; Filip, Małgorzata

    2017-07-01

    Chronic exposure to cocaine, craving, and relapse are attributed to long-lasting changes in gene expression arising through epigenetic and transcriptional mechanisms. Although several brain regions are involved in these processes, the prefrontal cortex seems to play a crucial role not only in motivation and decision-making but also in extinction and seeking behavior. In this study, we applied cocaine self-administration and extinction training procedures in rats with a yoked triad to determine differentially expressed genes in prefrontal cortex. Microarray analysis showed significant upregulation of several genes encoding histone modification enzymes during early extinction training. Subsequent real-time PCR testing of these genes following cocaine self-administration or early (third day) and late (tenth day) extinction revealed elevated levels of their transcripts. Interestingly, we found the enrichment of Brd1 messenger RNA in rats self-administering cocaine that lasted until extinction training during cocaine withdrawal with concomitant increased acetylation of H3K9 and H4K8. However, despite elevated levels of methyl- and demethyltransferase-encoded transcripts, no changes in global di- and tri-methylation of histone H3 at lysine 4, 9, 27, and 79 were observed. Surprisingly, at the end of extinction training (10 days of cocaine withdrawal), most of the analyzed genes in the rats actively and passively administering cocaine returned to the control level. Together, the alterations identified in the rat prefrontal cortex may suggest enhanced chromatin remodeling and transcriptional activity induced by early cocaine abstinence; however, to know whether they are beneficial or not for the extinction of drug-seeking behavior, further in vivo evaluation is required.

  13. Extensive diversification of IgD-, IgY-, and truncated IgY(δFc)-encoding genes in the red-eared turtle (Trachemys scripta elegans).

    PubMed

    Li, Lingxiao; Wang, Tao; Sun, Yi; Cheng, Gang; Yang, Hui; Wei, Zhiguo; Wang, Ping; Hu, Xiaoxiang; Ren, Liming; Meng, Qingyong; Zhang, Ran; Guo, Ying; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng

    2012-10-15

    IgY(ΔFc), containing only CH1 and CH2 domains, is expressed in the serum of some birds and reptiles, such as ducks and turtles. The duck IgY(ΔFc) is produced by the same υ gene that expresses the intact IgY form (CH1-4) using different transcriptional termination sites. In this study, we show that intact IgY and IgY(ΔFc) are encoded by distinct genes in the red-eared turtle (Trachemys scripta elegans). At least eight IgY and five IgY(ΔFc) transcripts were found in a single turtle. Together with Southern blotting, our data suggest that multiple genes encoding both IgY forms are present in the turtle genome. Both of the IgY forms were detected in the serum using rabbit polyclonal Abs. In addition, we show that multiple copies of the turtle δ gene are present in the genome and that alternative splicing is extensively involved in the generation of both the secretory and membrane-bound forms of the IgD H chain transcripts. Although a single μ gene was identified, the α gene was not identified in this species.

  14. Integrative Bioinformatics and Functional Analyses of GEO, ENCODE, and TCGA Reveal FADD as a Direct Target of the Tumor Suppressor BRCA1.

    PubMed

    Nguyen, Dinh-Duc; Lee, Dong Gyu; Kim, Sinae; Kang, Keunsoo; Rhee, Je-Keun; Chang, Suhwan

    2018-05-14

    BRCA1 is a multifunctional tumor suppressor involved in several essential cellular processes. Although many of these functions are driven by or related to its transcriptional/epigenetic regulator activity, there has been no genome-wide study to reveal the transcriptional/epigenetic targets of BRCA1. Therefore, we conducted a comprehensive analysis of genomics/transcriptomics data to identify novel BRCA1 target genes. We first analyzed ENCODE data with BRCA1 chromatin immunoprecipitation (ChIP)-sequencing results and identified a set of genes with a promoter occupied by BRCA1. We collected 3085 loci with a BRCA1 ChIP signal from four cell lines and calculated the distance between the loci and the nearest gene transcription start site (TSS). Overall, 66.5% of the BRCA1-bound loci fell into a 2-kb region around the TSS, suggesting a role in transcriptional regulation. We selected 45 candidate genes based on gene expression correlation data, obtained from two GEO (Gene Expression Omnibus) datasets and TCGA data of human breast cancer, compared to BRCA1 expression levels. Among them, we further tested three genes ( MEIS2 , CKS1B and FADD ) and verified FADD as a novel direct target of BRCA1 by ChIP, RT-PCR, and a luciferase reporter assay. Collectively, our data demonstrate genome-wide transcriptional regulation by BRCA1 and suggest target genes as biomarker candidates for BRCA1-associated breast cancer.

  15. Gene-breaking: A new paradigm for human retrotransposon-mediated gene evolution

    PubMed Central

    Wheelan, Sarah J.; Aizawa, Yasunori; Han, Jeffrey S.; Boeke, Jef D.

    2005-01-01

    The L1 retrotransposon is the most highly successful autonomous retrotransposon in mammals. This prolific genome parasite may on occasion benefit its host through genome rearrangements or adjustments of host gene expression. In examining possible effects of L1 elements on host gene expression, we investigated whether a full-length L1 element inserted in the antisense orientation into an intron of a cellular gene may actually split the gene's transcript into two smaller transcripts: (1) a transcript containing the upstream exons and terminating in the major antisense polyadenylation site (MAPS) of the L1, and (2) a transcript derived from the L1 antisense promoter (ASP) that includes the downstream exons of the gene. Bioinformatic analysis and experimental follow-up provide evidence for this L1 “gene-breaking” hypothesis. We identified three human genes apparently “broken” by L1 elements, as well as 12 more candidate genes. Most of the inserted L1 elements in our 15 candidate genes predate the human/chimp divergence. If indeed split, the transcripts of these genes may in at least one case encode potentially interacting proteins, and in another case may encode novel proteins. Gene-breaking represents a new mechanism through which L1 elements remodel mammalian genomes. PMID:16024818

  16. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    PubMed Central

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-01-01

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones. PMID:26593905

  17. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    PubMed

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  18. Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia

    PubMed Central

    Li, Yue; Liang, Minggao; Zhang, Zhaolei

    2014-01-01

    Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML prognostic marker. Together, we provided a novel framework that successfully integrated the TCGA and ENCODE data in revealing AML-specific regulatory program at global level. PMID:25340776

  19. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  20. Ectopic expression of homeobox gene NKX2-1 in diffuse large B-cell lymphoma is mediated by aberrant chromatin modifications.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies.

  1. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    PubMed Central

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  2. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU).

    PubMed

    Berends Sexton, T; Jones, J T; Mullet, J E

    1990-05-01

    A 6.25 kbp barley plastid DNA region located between psbA and psbD-psbC were sequenced and RNAs produced from this DNA were analyzed. TrnK(UUU), rps16 and trnQ(UUG) were located upstream of psbA. These genes were transcribed from the same DNA strand as psbA and multiple RNAs hybridized to them. TrnK and rsp16 contained introns; a 504 amino acid open reading frame (ORF504) was located within the trnK intron. Between trnQ and psbD-psbC was a 2.24 kbp region encoding psbK, psbI and trnS(GCU). PsbK and psbI are encoded on the same DNA strand as psbD-psbC whereas trnS(GCU) is transcribed from the opposite strand. Two large RNAs accumulate in barley etioplasts which contain psbK, psbI, anti-sense trnS(GCU) and psbD-psbC sequences. Other RNAs encode psbK and psbI only, or psbK only. The divergent trnS(GCU) located upstream of psbD-psbC and a second divergent trnS(UGA) located downstream of psbD-psbC were both expressed. Furthermore, RNA complementary to psbK and psbI mRNA was detected, suggesting that transcription from divergent overlapping transcription units may modulate expression from this DNA region.

  3. The Drosophila Extradenticle and Homothorax selector proteins control branchless/FGF expression in mesodermal bridge-cells.

    PubMed

    Merabet, Samir; Ebner, Andreas; Affolter, Markus

    2005-08-01

    The stereotyped outgrowth of tubular branches of the Drosophila tracheal system is orchestrated by the local and highly dynamic expression profile of branchless (bnl), which encodes a secreted fibroblast growth factor (FGF)-like molecule. Despite the importance of the spatial and temporal bnl regulation, little is known about the upstream mechanisms that establish its complex expression pattern. Here, we show that the Extradenticle and Homothorax selector proteins control bnl transcription in a single cell per segment, the mesodermal bridge-cell. In addition, we observed that a key determinant of bridge-cell specification, the transcription factor Hunchback, is also required for bnl expression. Therefore, we propose that one of the functions of the bridge-cell is to synthesize and secrete the chemoattractant Bnl. These findings provide a hitherto unknown and interesting link between combinatorial inputs of transcription factors, cell-specific ligand expression and organ morphogenesis.

  4. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    PubMed Central

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  5. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.; Gianfagna, T.

    1998-01-01

    Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.

  6. The Global Regulators GacA and ςS Form Part of a Cascade That Controls Alginate Production in Azotobacter vinelandii

    PubMed Central

    Castañeda, Miguel; Sánchez, Judith; Moreno, Soledad; Núñez, Cinthia; Espín, Guadalupe

    2001-01-01

    Transcription of the Azotobacter vinelandii algD gene, which encodes GDP-mannose dehydrogenase (the rate-limiting enzyme of alginate synthesis), starts from three sites: p1, p2, and p3. The sensor kinase GacS, a member of the two-component regulatory system, is required for transcription of algD from its three sites during the stationary phase. Here we show that algD is expressed constitutively throughout the growth cycle from the p2 and p3 sites and that transcription from p1 started at the transition between the exponential growth phase and stationary phase. We constructed A. vinelandii strains that carried mutations in gacA encoding the cognate response regulator of GacS and in rpoS coding for the stationary-phase ςS factor. The gacA mutation impaired alginate production and transcription of algD from its three promoters. Transcription of rpoS was also abolished by the gacA mutation. The rpoS mutation impaired transcription of algD from the p1 promoter and increased it from the p2 ςE promoter. The results of this study provide evidence for the predominant role of GacA in a regulatory cascade controlling alginate production and gene expression during the stationary phase in A. vinelandii. PMID:11698366

  7. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening[OPEN

    PubMed Central

    Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui

    2017-01-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple (Malus domestica). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1, an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2, encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3, encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1. This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1. Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. PMID:28550149

  8. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening.

    PubMed

    Li, Tong; Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui; Wang, Aide

    2017-06-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple ( Malus domestica ). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1 , an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2 , encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3 , encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1 This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1 Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. © 2017 American Society of Plant Biologists. All rights reserved.

  9. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets.

    PubMed

    Geib, Scott M; Calla, Bernarda; Hall, Brian; Hou, Shaobin; Manoukis, Nicholas C

    2014-10-28

    The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences present in Drosophila melanogaster. We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing 20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data. Through characterizing the transcriptome of B. dorsalis through its life history and comparing the transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research that will focus on improving our understanding of the physiology and biology of this species at the molecular level. This knowledge can also be applied towards developing improved methods for control, survey, and eradication of this important pest.

  10. Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an ...

  11. A knotted1-like homeobox protein regulates abscission in tomato by modulating the auxin pathway

    USDA-ARS?s Scientific Manuscript database

    KD1, a gene encoding a KNOTTED1-LIKE HOMEOBOX transcription factor is known to be involved, in tomato, in ontogeny of the compound leaf. KD1 is also highly expressed in both leaf and flower abscission zones. Reducing abundance of transcripts of this gene in tomato, using both virus induced gene sile...

  12. Identification of Mycoparasitism-Related Genes in Trichoderma atroviride ▿ † ‡

    PubMed Central

    Reithner, Barbara; Ibarra-Laclette, Enrique; Mach, Robert L.; Herrera-Estrella, Alfredo

    2011-01-01

    A high-throughput sequencing approach was utilized to carry out a comparative transcriptome analysis of Trichoderma atroviride IMI206040 during mycoparasitic interactions with the plant-pathogenic fungus Rhizoctonia solani. In this study, transcript fragments of 7,797 Trichoderma genes were sequenced, 175 of which were host responsive. According to the functional annotation of these genes by KOG (eukaryotic orthologous groups), the most abundant group during direct contact was “metabolism.” Quantitative reverse transcription (RT)-PCR confirmed the differential transcription of 13 genes (including swo1, encoding an expansin-like protein; axe1, coding for an acetyl xylan esterase; and homologs of genes encoding the aspartyl protease papA and a trypsin-like protease, pra1) in the presence of R. solani. An additional relative gene expression analysis of these genes, conducted at different stages of mycoparasitism against Botrytis cinerea and Phytophthora capsici, revealed a synergistic transcription of various genes involved in cell wall degradation. The similarities in expression patterns and the occurrence of regulatory binding sites in the corresponding promoter regions suggest a possible analog regulation of these genes during the mycoparasitism of T. atroviride. Furthermore, a chitin- and distance-dependent induction of pra1 was demonstrated. PMID:21531825

  13. Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors.

    PubMed

    Koblas, Tomas; Leontovyc, Ivan; Loukotova, Sarka; Kosinova, Lucie; Saudek, Frantisek

    2016-05-17

    Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation-Pdx1, Neurogenin3, and MafA-efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2'-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2'-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.

  14. Control of Flagellar Gene Regulation in Legionella pneumophila and Its Relation to Growth Phase▿ †

    PubMed Central

    Albert-Weissenberger, Christiane; Sahr, Tobias; Sismeiro, Odile; Hacker, Jörg; Heuner, Klaus; Buchrieser, Carmen

    2010-01-01

    The bacterial pathogen Legionella pneumophila responds to environmental changes by differentiation. At least two forms are well described: replicative bacteria are avirulent; in contrast, transmissive bacteria express virulence traits and flagella. Phenotypic analysis, Western blotting, and electron microscopy of mutants of the regulatory genes encoding RpoN, FleQ, FleR, and FliA demonstrated that flagellin expression is strongly repressed and that the mutants are nonflagellated in the transmissive phase. Transcriptome analyses elucidated that RpoN, together with FleQ, enhances transcription of 14 out of 31 flagellar class II genes, which code for the basal body, hook, and regulatory proteins. Unexpectedly, FleQ independent of RpoN enhances the transcription of fliA encoding sigma 28. Expression analysis of a fliA mutant showed that FliA activates three out of the five remaining flagellar class III genes and the flagellar class IV genes. Surprisingly, FleR does not induce but inhibits expression of at least 14 flagellar class III genes on the transcriptional level. Thus, we propose that flagellar class II genes are controlled by FleQ and RpoN, whereas the transcription of the class III gene fliA is controlled in a FleQ-dependent but RpoN-independent manner. However, RpoN and FleR might influence flagellin synthesis on a posttranscriptional level. In contrast to the commonly accepted view that enhancer-binding proteins such as FleQ always interact with RpoN to fullfill their regulatory functions, our results strongly indicate that FleQ regulates gene expression that is RpoN dependent and RpoN independent. Finally, FliA induces expression of flagellar class III and IV genes leading to the complete synthesis of the flagellum. PMID:19915024

  15. De novo assembly and characterization of the Trichuris trichiura adult worm transcriptome using Ion Torrent sequencing.

    PubMed

    Santos, Leonardo N; Silva, Eduardo S; Santos, André S; De Sá, Pablo H; Ramos, Rommel T; Silva, Artur; Cooper, Philip J; Barreto, Maurício L; Loureiro, Sebastião; Pinheiro, Carina S; Alcantara-Neves, Neuza M; Pacheco, Luis G C

    2016-07-01

    Infection with helminthic parasites, including the soil-transmitted helminth Trichuris trichiura (human whipworm), has been shown to modulate host immune responses and, consequently, to have an impact on the development and manifestation of chronic human inflammatory diseases. De novo derivation of helminth proteomes from sequencing of transcriptomes will provide valuable data to aid identification of parasite proteins that could be evaluated as potential immunotherapeutic molecules in near future. Herein, we characterized the transcriptome of the adult stage of the human whipworm T. trichiura, using next-generation sequencing technology and a de novo assembly strategy. Nearly 17.6 million high-quality clean reads were assembled into 6414 contiguous sequences, with an N50 of 1606bp. In total, 5673 protein-encoding sequences were confidentially identified in the T. trichiura adult worm transcriptome; of these, 1013 sequences represent potential newly discovered proteins for the species, most of which presenting orthologs already annotated in the related species T. suis. A number of transcripts representing probable novel non-coding transcripts for the species T. trichiura were also identified. Among the most abundant transcripts, we found sequences that code for proteins involved in lipid transport, such as vitellogenins, and several chitin-binding proteins. Through a cross-species expression analysis of gene orthologs shared by T. trichiura and the closely related parasites T. suis and T. muris it was possible to find twenty-six protein-encoding genes that are consistently highly expressed in the adult stages of the three helminth species. Additionally, twenty transcripts could be identified that code for proteins previously detected by mass spectrometry analysis of protein fractions of the whipworm somatic extract that present immunomodulatory activities. Five of these transcripts were amongst the most highly expressed protein-encoding sequences in the T. trichiura adult worm. Besides, orthologs of proteins demonstrated to have potent immunomodulatory properties in related parasitic helminths were also predicted from the T. trichiura de novo assembled transcriptome. Copyright © 2016. Published by Elsevier B.V.

  16. Expression of bacteriocin LsbB is dependent on a transcription terminator.

    PubMed

    Uzelac, Gordana; Miljkovic, Marija; Lozo, Jelena; Radulovic, Zorica; Tosic, Natasa; Kojic, Milan

    2015-10-01

    The production of LsbB, leaderless class II bacteriocin, is encoded by genes (lsbB and lmrB) located on plasmid pMN5 in Lactococcus lactis BGMN1-5. Heterologous expression of the lsbB gene using the pAZIL vector (pAZIL-lsbB) in L. lactis subsp. cremoris MG7284 resulted in a significant reduction (more than 30 times) of bacteriocin LsbB expression. Subcloning and deletion experiments with plasmid pMN5 revealed that full expression of LsbB requires the presence of a complete transcription terminator located downstream of the lsbB gene. RNA stability analysis revealed that the presence of a transcription terminator increased the RNA stability by three times and the expression of LsbB by 30 times. The study of the influence of transcription terminator on the expression of other bacteriocin genes (lcnB, for lactococcin B production) indicated that this translational terminator likely functions in a lsbB-specific manner rather than in a general manner. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta.

    PubMed

    Malassiné, André; Frendo, Jean-Louis; Blaise, Sandra; Handschuh, Karen; Gerbaud, Pascale; Tsatsaris, Vassilis; Heidmann, Thierry; Evain-Brion, Danièle

    2008-01-23

    Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies.

  18. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta

    PubMed Central

    Malassiné, André; Frendo, Jean-Louis; Blaise, Sandra; Handschuh, Karen; Gerbaud, Pascale; Tsatsaris, Vassilis; Heidmann, Thierry; Evain-Brion, Danièle

    2008-01-01

    Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies. PMID:18215254

  19. Analysis of expression of the argC and argD genes in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed Central

    Floriano, B; Herrero, A; Flores, E

    1994-01-01

    A cloned DNA fragment from Anabaena sp. strain PCC 7120 that complements an arginine auxotrophic mutant from the same organism was found to include an open reading frame encoding a 427-residue polypeptide that is homologous to N-acetylornithine aminotransferase from Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. The gene encoding N-acetylornithine aminotransferase in bacteria has been named argD. The expression of Anabaena sp. strain PCC 7120 argD, as well as of argC, was analyzed at the mRNA level. Both genes were transcribed as monocistronic mRNAs, and their expression was not affected by exogenously added arginine. Primer extension analysis identified transcription start points for both genes which were preceded by sequences similar to that of the E. coli RNA polymerase sigma 70 consensus promoter. A second transcription start point for the argD gene that is not preceded by a sigma 70 consensus promoter was detected in dinitrogen-grown cultures. Images PMID:7929012

  20. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development.

    PubMed

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1alpha, NRF-1alpha and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for themore » first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.« less

  2. AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2: expression during pharyngeal development

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Linda Z.; Jamrich, Milan; Blitz, Ira L.; Hollan, Nicholas D.

    2002-01-01

    The full-length sequence and developmental expression of amphioxus AmphiFoxE4 are described. Transcripts of the gene are first detected in the pharyngeal endoderm, where the club-shaped gland is forming and subsequently in the definitive gland itself. AmphiFoxE4 is closely related to vertebrate genes encoding the thyroid-specific transcription factor-2 (TTF2), which plays an early developmental role in the morphogenesis of the thyroid gland and a later role in hormone-mediated control of thyroid function. In amphioxus, AmphiFoxE4 expression is not thyroid specific because the club-shaped gland, the only structure expressing the gene, is not homologous to the vertebrate thyroid; instead, the thyroid homologue of amphioxus is a specialized region of the pharyngeal endoderm called the endostyle. We propose that (a) the pharynx of an amphioxus-like ancestor of the vertebrates included a club-shaped gland that expressed FoxE4 as well as an endostyle that did not, and (b) the club-shaped gland soon disappeared in the vertebrate line of descent but (c) not before there was a homeogenetic transfer of FoxE4 expression from the club-shaped gland to the nearby endostyle. Such a transfer could have provided part of the genetic program enabling the endostyle to separate from the pharyngeal endoderm and migrate away as the rudiment of the thyroid gland.

  3. An AlgU-regulated antisense transcript encoded within the Pseudomonas syringae fleQ gene has a positive effect on motility

    USDA-ARS?s Scientific Manuscript database

    Bacterial flagella production is controlled by a multi-tiered regulatory system that coordinates expression of 40-50 subunits and correct assembly of these complicated structures. Flagellar expression is environmentally controlled, presumably to optimize the benefits and liabilities of flagellar ex...

  4. Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients

    USDA-ARS?s Scientific Manuscript database

    More than 85% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked MECP2 gene which encodes methyl-CpG-binding protein 2, a transcriptional repressor that binds methylated CpG sites. Because MECP2 is subject to X chromosome inactivation (XCI), girls with RTT express either the...

  5. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salido, E.C.; Yen, P.H.; Koprivnikar, K.

    1992-02-01

    Amelogenins, a family of extracellular matrix proteins of the dental enamel, are transiently but abundantly expressed by ameloblasts during tooth development. In this paper the authors report the characterization of the AMGX and AMGY genes on the short arms of the human X and Y chromosomes which encode the amelogenins. Their studies on the expression of the amelogenin genes in male developing tooth buds showed that both the AMGX and AMGY genes are transcriptionally active and encode potentially functional proteins. They have isolated genomic and cDNA clones form both the AMGX and AMGY loci and have studied the sequence organizationmore » of these two genes. Reverse transcriptase (RT)PCR amplification of the 5[prime] portion of the amelogenin transcripts revealed several alternatively spliced products. This information will be useful for studying the molecular basis of X-linked amelogenesis imperfecta, for understanding the evolution and regulation of gene expression on the mammalian sex chromosomes, and for investigating the role of amelogenin genes during tooth development.« less

  6. Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH†

    PubMed Central

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm, Eric; Wan, Xiu-Feng; Arkin, Adam; Brown, Steven D.; Wu, Liyou; Yan, Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2006-01-01

    The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expression of genes functionally linked to amino acid metabolism, transcriptional regulation and signal transduction, transport, cell membrane structure, and oxidative stress protection. Response to acid stress included the elevated expression of genes encoding glycogen biosynthetic enzymes, phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS), whereas the molecular response to alkaline pH was characterized by upregulation of nhaA and nhaR, which are predicted to encode an Na+/H+ antiporter and transcriptional activator, respectively, as well as sulfate transport and sulfur metabolism genes. Collectively, these results suggest that S. oneidensis modulates multiple transporters, cell envelope components, and pathways of amino acid consumption and central intermediary metabolism as part of its transcriptome response to changing external pH conditions. PMID:16452448

  7. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress.

    PubMed

    Zaelzer, Cristian; Hua, Pierce; Prager-Khoutorsky, Masha; Ciura, Sorana; Voisin, Daniel L; Liedtke, Wolfgang; Bourque, Charles W

    2015-10-06

    Thirst and antidiuretic hormone secretion occur during hyperthermia or hypertonicity to preserve body hydration. These vital responses are triggered when hypothalamic osmoregulatory neurons become depolarized by ion channels encoded by an unknown product of the transient receptor potential vanilloid-1 gene (Trpv1). Here, we show that rodent osmoregulatory neurons express a transcript of Trpv1 that mediates the selective translation of a TRPV1 variant that lacks a significant portion of the channel's amino terminus (ΔN-TRPV1). The mRNA transcript encoding this variant (Trpv1dn) is widely expressed in the brains of osmoregulating vertebrates, including the human hypothalamus. Transfection of Trpv1dn into heterologous cells induced the expression of ion channels that could be activated by either hypertonicity or by heating in the physiological range. Moreover, expression of Trpv1dn rescued the osmosensory and thermosensory responses of single hypothalamic neurons obtained from Trpv1 knockout mice. ΔN-TRPV1 is therefore a co-detector of core body temperature and fluid tonicity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum.

    PubMed Central

    Scherf, A; Hernandez-Rivas, R; Buffet, P; Bottius, E; Benatar, C; Pouvelle, B; Gysin, J; Lanzer, M

    1998-01-01

    Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation. PMID:9736619

  9. Transcriptional and functional studies of Human Endogenous Retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Amandine, E-mail: amandine.vargas@voila.fr; Thiery, Maxime, E-mail: thiery.maxime@courrier.uqam.ca; Lafond, Julie, E-mail: lafond.julie@uqam.ca

    2012-03-30

    HERV (Human Endogenous Retrovirus)-encoded envelope proteins are implicated in the development of the placenta. Indeed, Syncytin-1 and -2 play a crucial role in the fusion of human trophoblasts, a key step in placentation. Other studies have identified two other HERV env proteins, namely EnvP(b) and EnvV, both expressed in the placenta. In this study, we have fully characterized both env transcripts and their expression pattern and have assessed their implication in trophoblast fusion. Through RACE analyses, standard spliced transcripts were detected, while EnvV transcripts demonstrated alternative splicing at its 3 Prime end. Promoter activity and expression of both genes weremore » induced in forskolin-stimulated BeWo cells and in primary trophoblasts. Although we have confirmed the fusogenic activity of EnvP(b), overexpression or silencing experiments revealed no impact of this protein on trophoblast fusion. Our results demonstrate that both env genes are expressed in human trophoblasts but are not required for syncytialization.« less

  10. HAND2 Targets Define a Network of Transcriptional Regulators that Compartmentalize the Early Limb Bud Mesenchyme

    DOE PAGES

    Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; ...

    2014-11-10

    The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart, and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior andmore » posterior polarity of the nascent limb bud mesenchyme by impacting Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. In conclusion, our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling.« less

  11. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development

    PubMed Central

    Sehra, Bhupinder; Franks, Robert G.

    2017-01-01

    In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379

  12. Expression of Candida glabrata adhesins following exposure to chemical preservatives

    PubMed Central

    Mundy, Renee Domergue; Cormack, Brendan

    2014-01-01

    In Candida glabrata, an opportunistic yeast pathogen, adherence to host cells is mediated in part by the Epa family of adhesins, which are encoded largely at subtelomeric loci where they are subject to transcriptional silencing. In analyzing the regulation of the subtelomeric EPA6 gene, we found that its transcription is highly induced after exposure to methylparaben, propylparaben or sorbate. These weak acid-related chemicals are widely used as antifungal preservatives in many consumer goods, including over-the-counter (OTC) vaginal products. Culture of C. glabrata in a variety of vaginal products induced expression of EPA6, leading to increased adherence to cultured human cells as well as primary human vaginal epithelial cells. We present evidence that paraben/sorbate-induction of EPA6 expression involves both preservative stress and growth under hypoxic conditions. We further show that activation of EPA6 transcription depends on the Flo8 and Mss11 transcription factors and does not require the classical weak acid transcription factors War1 or Msn2/Msn4. We conclude that exposure of C. glabrata to commonly used preservatives can alter expression of virulence-related genes. PMID:19426114

  13. Length bias correction in gene ontology enrichment analysis using logistic regression.

    PubMed

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  14. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells.

    PubMed

    Steward, N; Kusano, T; Sano, H

    2000-09-01

    A cDNA fragment encoding part of a DNA methyltransferase was isolated from maize. The putative amino acid sequence identically matched that deduced from a genomic sequence in the database (accession no. AF063403), and the corresponding gene was designated as ZmMET1. Bacterially expressed ZmMET1 actively methylated DNA in vitro. Transcripts of ZmMET1 could be shown to exclusively accumulate in actively proliferating cells of the meristems of mesocotyls and root apices, suggesting ZmMET1 expression to be associated with DNA replication. This was confirmed by simultaneous decrease of transcripts of ZmMET1 and histone H3, a marker for DNA replication, in seedlings exposed to wounding, desiccation and salinity, all of which suppress cell division. Cold stress also depressed both transcripts in root tissues. In contrast, however, accumulation of ZmMET1 transcripts in shoot mesocotyls was not affected by cold stress, whereas those for H3 sharply decreased. Such a differential accumulation of ZmMET1 transcripts was consistent with ZmMET1 protein levels as revealed by western blotting. Expression of ZmMET1 is thus coexistent, but not completely dependent on DNA replication. Southern hybridization analysis with a methylation-sensitive restriction enzyme revealed that cold treatment induced demethylation of DNA in the Ac/Ds transposon region, but not in other genes, and that such demethylation primarily occurred in roots. These results suggested that the methylation level was decreased selectively by cold treatment, and that ZmMET1 may, at least partly, prevent such demethylation.

  15. Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues.

    PubMed

    Giannoulia, K; Haralampidis, K; Poghosyan, Z; Murphy, D J; Hatzopoulos, P

    2000-12-01

    Fatty acids are accumulated in triacylglycerols (TAGs), in specialized organelles of seeds named oil bodies. The major site of TAG accumulation is detected in developing seed and mesocarp of certain species. We have isolated two cDNAs encoding DGAT enzymes from olives. The deduced polypeptides differ by 26 amino acids in size. However, they have high homology and almost identical hydropathy profiles. The DGAT gene is expressed in all tissues that synthesize TAGs. However, higher levels of DGAT transcripts have been detected in seed tissues of developing olive drupe. DGAT expression and mRNA accumulation in drupe tissues is developmentally regulated. Each DGAT transcript shows a distinct profile of accumulation. The existence of two different DGAT transcripts might reflect two different enzymes with discrete function and/or localization.

  16. [Determination of mRNA-transcripts and heat shock proteins HSP70 and HSP90 in retina of the adult Spanish Ribbed Newt Pleurodeles waltl].

    PubMed

    Avdonin, P P; Markitantova, Yu V; Poplinskaya, V A; Grigoryan, E N

    2013-01-01

    Expression of genes and heat shock proteins in normal intact retina of the Spanish Ribbed Newt Pleurodeles waltl was studied using polymerase chain reaction, Western blot hybridization, and immunohistochemistry. It was shown that the proteins HSP70 and HSP90, as well as their encoding transcripts of relevant genes, are constitutively expressed in eye tissues. These proteins were distributed differentially, and they were characterized by expression of different levels in the retina: HSP70 dominated in the external retina, while HSP90 dominated in the internal one, in particular, in Muller glial cells and the optic nerve. Transcripts and heat shock proteins HSP70 and HSP90 were also found in the retinal pigment epithelium and eye growth zone.

  17. The predominant WT1 isoform (+KTS) encodes a DNA-binding protein targeting the planar cell polarity gene Scribble in renal podocytes.

    PubMed

    Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A

    2010-07-01

    WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway.

  18. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    PubMed

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa).

    PubMed

    Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G

    2016-09-01

    In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.

  20. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    PubMed

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  1. Differential conservation of transcriptional domains of mammalian Prophet of Pit-1 proteins revealed by structural studies of the bovine gene and comparative functional analysis of the protein.

    PubMed

    Showalter, Aaron D; Smith, Timothy P L; Bennett, Gary L; Sloop, Kyle W; Whitsett, Julie A; Rhodes, Simon J

    2002-05-29

    The Prophet of Pit-1 (PROP1) gene encodes a paired class homeodomain transcription factor that is exclusively expressed in the developing mammalian pituitary gland. PROP1 function is essential for anterior pituitary organogenesis, and heritable mutations in the gene are associated with combined pituitary hormone deficiency in human patients and animals. By cloning the bovine PROP1 gene and by comparative analysis, we demonstrate that the homeodomains and carboxyl termini of mammalian PROP1 proteins are highly conserved while the amino termini are diverged. Whereas the carboxyl termini of the human and bovine PROP1 proteins contain potent transcriptional activation domains, the amino termini and homeodomains have repressive activities. The bovine PROP1 gene has four exons and three introns and maps to a region of chromosome seven carrying a quantitative trait locus affecting ovulation rate. Two alleles of the bovine gene were found that encode distinct protein products with different DNA binding and transcriptional activities. These experiments demonstrate that mammalian PROP1 genes encode proteins with complex regulatory capacities and that modest changes in protein sequence can significantly alter the activity of this pituitary developmental transcription factor.

  2. Post-transcriptional inducible gene regulation by natural antisense RNA.

    PubMed

    Nishizawa, Mikio; Ikeya, Yukinobu; Okumura, Tadayoshi; Kimura, Tominori

    2015-01-01

    Accumulating data indicate the existence of natural antisense transcripts (asRNAs), frequently transcribed from eukaryotic genes and do not encode proteins in many cases. However, their importance has been overlooked due to their heterogeneity, low expression level, and unknown function. Genes induced in responses to various stimuli are transcriptionally regulated by the activation of a gene promoter and post-transcriptionally regulated by controlling mRNA stability and translatability. A low-copy-number asRNA may post-transcriptionally regulate gene expression with cis-controlling elements on the mRNA. The asRNA itself may act as regulatory RNA in concert with trans-acting factors, including various RNA-binding proteins that bind to cis-controlling elements, microRNAs, and drugs. A novel mechanism that regulates mRNA stability includes the interaction of asRNA with mRNA by hybridization to loops in secondary structures. Furthermore, recent studies have shown that the functional network of mRNAs, asRNAs, and microRNAs finely tunes the levels of mRNA expression. The post-transcriptional mechanisms via these RNA-RNA interactions may play pivotal roles to regulate inducible gene expression and present the possibility of the involvement of asRNAs in various diseases.

  3. Transcriptional analysis of the R locus: Progress report, September 1986 through October 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessler, S.R.

    1987-11-01

    The R locus controls where, when and how much anthocyanins are expressed in at least 11 different tissues of the corn plant and seed. Enormous natural variation has been seen when the phenotypes of different R alleles are compared in a common genetic background. Some alleles have been shown to have a compound structure resulting from gene duplication and divergence. In these complex alleles, each member of the duplication (called R genic elements) has a unique pattern of expression. The function of the R locus is not known; genetic and biochemical analyses suggest that it may encode a protein thatmore » regulates other genes in the anthocyanin pathway. Over the past year we have determined that the genic elements (P), (S), and (Lc) all encode a very rare 2.8 kb transcript that is present in tissue displaying anthocyanin pigmentation. cDNA libraries have been constructed using mRNA isolated from tissues shown by Northern blots to be enriched for the R transcript. Full-length cDNAs will be sequenced and compared to each other.« less

  4. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  5. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly

    PubMed Central

    Zapata, Juan C.; Campilongo, Federica; Barclay, Robert A.; DeMarino, Catherine; Iglesias-Ussel, Maria D.; Kashanchi, Fatah; Romerio, Fabio

    2017-01-01

    Various epigenetic marks at the HIV-1 5′LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3′LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5′LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5′LTR and proviral latency through the PRC2 pathway. PMID:28340355

  6. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly.

    PubMed

    Zapata, Juan C; Campilongo, Federica; Barclay, Robert A; DeMarino, Catherine; Iglesias-Ussel, Maria D; Kashanchi, Fatah; Romerio, Fabio

    2017-06-01

    Various epigenetic marks at the HIV-1 5'LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3'LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5'LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5'LTR and proviral latency through the PRC2 pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP

    PubMed Central

    Wickramasinghe, Vihandha O.; Andrews, Robert; Ellis, Peter; Langford, Cordelia; Gurdon, John B.; Stewart, Murray; Venkitaraman, Ashok R.; Laskey, Ronald A.

    2014-01-01

    The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. PMID:24510098

  8. Decursin and decursinol angelate improve wound healing by upregulating transcription of genes encoding extracellular matrix remodeling proteins, inflammatory cytokines, and growth factors in human keratinocytes.

    PubMed

    Han, Jisu; Jin, Wook; Ho, Ngoc Anh; Hong, Jeongpyo; Kim, Yoon Ju; Shin, Yungyeong; Lee, Hanki; Suh, Joo-Won

    2018-05-23

    The coumarins decursin and decursinol angelate, which are found in Angelica gigas Nakai, have a variety of biological functions. Here, we show that treatment with these compounds improves wound healing by HaCaT human keratinocytes. Wound healing was increased by treatment with up to a threshold concentration of decursin, decursinol angelate, a mixture of both, and a nano-emulsion of these compounds, but inhibited by treatment with higher concentrations. Immunoblotting and fluorescence imaging of cells expressing an epidermal growth factor receptor (EGFR) biosensor demonstrated that these compounds did not stimulate wound healing by inducing EGFR phosphorylation. Rather, transcriptional analysis revealed that decursin and decursinol angelate improved wound healing by upregulating the expression of genes encoding extracellular matrix remodeling proteins, inflammatory cytokines, and growth factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP.

    PubMed

    Li, Hui-Liang; Wei, Li-Ran; Guo, Dong; Wang, Ying; Zhu, Jia-Hong; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4 , was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.

  10. Regulation of the yeast EKI1-encoded ethanolamine kinase by inositol and choline.

    PubMed

    Kersting, Michael C; Choi, Hyeon-Son; Carman, George M

    2004-08-20

    Regulation of the EKI1-encoded ethanolamine kinase by inositol and choline was examined in Saccharomyces cerevisiae. Transcription of the EKI1 gene was monitored by following the expression of beta-galactosidase activity driven by a P(EKI1)-lacZ reporter gene. The addition of inositol to the growth medium resulted in a dose-dependent decrease in EKI1 expression. Supplementation of choline to inositol-containing growth medium brought about a further decrease in expression, whereas choline supplementation alone had no effect. Analysis of EKI1 expression in ino2Delta, ino4Delta, and opi1Delta mutants indicated that the transcription factors Ino2p, Ino4p, and Opi1p played a role in this regulation. Moreover, mutational analysis showed that the UAS(INO) element in the EKI1 promoter was required for the inositol-mediated regulation. The regulation of EKI1 expression by inositol and choline was confirmed by corresponding changes in ethanolamine kinase mRNA, protein, and activity levels. The repression of ethanolamine kinase by inositol supplementation correlated with a decrease in the incorporation of ethanolamine into CDP-ethanolamine pathway intermediates and into phosphatidylethanolamine and phosphatidylcholine.

  11. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    PubMed

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  12. CEM-designer: design of custom expression microarrays in the post-ENCODE Era.

    PubMed

    Arnold, Christian; Externbrink, Fabian; Hackermüller, Jörg; Reiche, Kristin

    2014-11-10

    Microarrays are widely used in gene expression studies, and custom expression microarrays are popular to monitor expression changes of a customer-defined set of genes. However, the complexity of transcriptomes uncovered recently make custom expression microarray design a non-trivial task. Pervasive transcription and alternative processing of transcripts generate a wealth of interweaved transcripts that requires well-considered probe design strategies and is largely neglected in existing approaches. We developed the web server CEM-Designer that facilitates microarray platform independent design of custom expression microarrays for complex transcriptomes. CEM-Designer covers (i) the collection and generation of a set of unique target sequences from different sources and (ii) the selection of a set of sensitive and specific probes that optimally represents the target sequences. Probe design itself is left to third party software to ensure that probes meet provider-specific constraints. CEM-Designer is available at http://designpipeline.bioinf.uni-leipzig.de. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Transcriptional analysis of the multicopy hao gene coding for hydroxylamine oxidoreductase in Nitrosomonas sp. strain ENI-11.

    PubMed

    Hirota, Ryuichi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao; Kato, Junichi

    2006-08-01

    The nitrifying bacterium Nitrosomonas sp. strain ENI-11 has three copies of the gene encoding hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)) on its genome. Broad-host-range reporter plasmids containing transcriptional fusion genes between hao copies and lacZ were constructed to analyze the expression of each hydroxylamine oxidoreductase gene (hao) copy individually and quantitatively. beta-Galactosidase assays of ENI-11 harboring reporter plasmids revealed that all hao copies were transcribed in the wild-type strain. Promoter analysis of hao copies revealed that transcription of hao(3) was highest among the hao copies. Expression levels of hao(1) and hao(2) were 40% and 62% of that of hao(3) respectively. Transcription of hao(1) was negatively regulated, whereas a portion of hao(3) transcription was read through transcription from the rpsT promoter. When energy-depleted cells were incubated in the growth medium, only hao(3) expression increased. This result suggests that it is hao(3) that is responsible for recovery from energy-depleted conditions in Nitrosomonas sp. strain ENI-11.

  14. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  15. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  16. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  17. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    PubMed Central

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  18. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    PubMed

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development. © 2016 Federation of European Biochemical Societies.

  19. Measurement of messenger RNA encoding the alpha-chain, polymeric immunoglobulin receptor, and J-chain in duodenal mucosa from dogs with and without chronic diarrhea by use of quantitative real-time reverse transcription-polymerase chain reaction assays.

    PubMed

    Peters, Iain R; Helps, Chris R; Calvert, Emma L; Hall, Edward J; Day, Michael J

    2005-01-01

    To examine the difference in expression of messenger RNA (mRNA) transcripts for polymeric immunoglobulin receptor (plgR), alpha-chain, and J-chain determined by use of quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) assays in duodenal biopsy specimens obtained from dogs with and without chronic diarrhea. Biopsy specimens of the proximal portion of the duodenum were obtained endoscopically from 39 dogs evaluated because of chronic diarrhea (12 German Shepherd Dogs and 27 non-German Shepherd Dog breeds); specimens were also obtained from a control group of 7 dogs evaluated because of other gastrointestinal tract diseases and 2 dogs that were euthanatized as a result of nongastrointestinal tract disease. Dogs were anesthetized, and multiple mucosal biopsy specimens were obtained endoscopically at the level of the caudal duodenal flexure by use of biopsy forceps; in 2 control dogs, samples were obtained from the descending duodenum within 5 minutes of euthanasia. One-step QRT-PCR was used to quantify the level of expression of transcripts for the housekeeper gene glyceraldehyde-3-phosphate dehydrogenase, plgR, alpha-chain, and J-chain in duodenal mucosal tissue. There was no significant difference in the level of expression of any transcript among non-German Shepherd Dog breeds without diarrhea (control group), non-German Shepherd Dog breeds with chronic diarrhea, and German Shepherd Dogs with chronic diarrhea. Conclusions and Clinical Relevance-Results indicated that the susceptibility of German Shepherd Dogs to chronic diarrhea is not a result of simple failure of transcription of the key genes that encode molecules involved in mucosal IgA secretion.

  20. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.

    PubMed

    Moon, Hyuk; Ju, Hye-Lim; Chung, Sook In; Cho, Kyung Joo; Eun, Jung Woo; Nam, Suk Woo; Han, Kwang-Hyub; Calvisi, Diego F; Ro, Simon Weonsang

    2017-11-01

    Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRAS G12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRAS G12V and MYC, or those encoding HRAS G12V and TAZ S89A , to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRAS G12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. In analyses of transgenic mice, we found TGF-β signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-β target that is required for hepatic tumorigenesis in these models. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts.

    PubMed

    Lapp, Stacey A; Korir-Morrison, Cindy; Jiang, Jianlin; Bai, Yaohui; Corredor, Vladimir; Galinski, Mary R

    2013-01-01

    Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera. We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry. SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying antigenic variation in the context of the host environment.

  2. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    PubMed

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons.

    PubMed

    Ugawa, Shinya; Ueda, Takashi; Yamamura, Hisao; Shimada, Shoichi

    2005-05-20

    The activation of nociceptors by protons plays a crucial role in the initiation and maintenance of acidosis-linked pain. Acid-sensing ion channel (ASIC) and transient receptor potential/vanilloid receptor subtype-1 (TRPV1) encode proton-activated cation channels expressed by nociceptors and the opening of these channels results in nociceptor excitation. Histological relations among ASIC clones and the colocalization of each ASIC subunit and TRPV1 within single sensory neurons were examined on serial sections of rat dorsal root ganglia (DRG) using in situ hybridization histochemistry. ASIC1a transcripts were expressed in 20-25% of the DRG neurons, and most of the neurons had small (<30 microm)-diameter cell bodies. ASIC1b transcripts and ASIC3 transcripts were expressed in approximately 10% and 30-35% of the DRG neurons, respectively, and the greater part of each population was located in small-to-medium (30-50 microm)-diameter cells. The ASIC1a transcripts and ASIC1b transcripts were basically localized in the distinct populations of the DRG neurons, while approximately 20% of the ASIC1a-positive neurons and approximately 10% of the ASIC1b-positive neurons expressed ASIC3 transcripts. TRPV1 transcripts were expressed in 35-40% of the DRG neurons, and most of the TRPV1-positive neurons had small-diameter cell bodies. Intense expression signals for ASIC1a transcripts were detected in 40-45% of the TRPV1-positive neurons. Neurons expressing both ASIC1b and TRPV1 transcripts were barely detected in the DRG. Approximately 30% of the TRPV1-positive neurons expressed ASIC3 transcripts, and the double-labeled neurons were comprised of both small-diameter and medium-diameter cells. Approximately 13% of the TRPV1-positive neurons expressed both ASIC1a and ASIC3 transcripts.

  4. Ectopic Expression of Homeobox Gene NKX2-1 in Diffuse Large B-Cell Lymphoma Is Mediated by Aberrant Chromatin Modifications

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies. PMID:23637834

  5. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress.

    PubMed

    Sripinyowanich, Siriporn; Chamnanmanoontham, Nontalee; Udomchalothorn, Thanikarn; Maneeprasopsuk, Somporn; Santawee, Panudda; Buaboocha, Teerapong; Qu, Li-Jia; Gu, Hongya; Chadchawan, Supachitra

    2013-12-01

    The rice (Oryza sativa L.) nucleolin gene, OsNUC1, transcripts were expressed in rice leaves, flowers, seeds and roots but differentially expressed within and between two pairs of salt-sensitive and salt-resistant rice lines when subjected to salt stress. Salt-resistant lines exhibited higher OsNUC1 transcript expression levels than salt-sensitive lines during 0.5% (w/v) NaCl salt stress for 6d. Two sizes of OsNUC1 full-length cDNA were found in the rice genome database and northern blot analysis confirmed their existence in rice tissues. The longer transcript (OsNUC1-L) putatively encodes for a protein with a serine rich N-terminal, RNA recognition motifs in the central domain and a glycine- and arginine-rich repeat in the C-terminal domain, while the shorter one (OsNUC1-S) putatively encodes for the similar protein without the N-terminus. Without salt stress, OsNUC1-L expressing Arabidopsis thaliana Atnuc1-L1 plants displayed a substantial but incomplete revertant phenotype, whereas OsNUC1-S expression only induced a weak effect. However, under 0.5% (w/v) NaCl salt stress they displayed a higher relative growth rate, longer root length and a lower H2O2 level than the wild type plants, suggesting a higher salt resistance. Moreover, they displayed elevated AtSOS1 and AtP5CS1 transcript levels. We propose that OsNUC1-S plays an important role in salt resistance during salt stress, a new role for nucleolin in plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. LacR Is a Repressor of lacABCD and LacT Is an Activator of lacTFEG, Constituting the lac Gene Cluster in Streptococcus pneumoniae

    PubMed Central

    Afzal, Muhammad; Shafeeq, Sulman

    2014-01-01

    Comparison of the transcriptome of Streptococcus pneumoniae strain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including the lac gene cluster, which is organized into two operons, i.e., lac operon I (lacABCD) and lac operon II (lacTFEG). Deletion of the DeoR family transcriptional regulator lacR that is present downstream of the lac gene cluster revealed elevated expression of lac operon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor of lac operon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion of lacR did not affect the expression of lac operon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZ and PlacT-lacZ in the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation of lac operon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator of lac operon II in the presence of lactose and CcpA-independent regulation of the lac gene cluster in S. pneumoniae. PMID:24951784

  7. Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pedneault, Estelle; Galand, Pierre E.; Potvin, Marianne; Tremblay, Jean-Éric; Lovejoy, Connie

    2014-04-01

    Thaumarchaeota and the gene encoding for a subunit of ammonia monooxygenase (amoA) are ubiquitous in Polar Seas, and some Thaumarchaeota also have a gene coding for ureC, diagnostic for urease. Using quantitative PCR we investigated the occurrence of genes and transcripts of ureC and amoA in Arctic samples from winter, spring and summer. AmoA genes, ureC genes and amoA transcripts were always present, but ureC transcripts were rarely detected. Over a 48 h light manipulation experiment amoA transcripts persisted under light and dark conditions, but not ureC transcripts. In addition, maxima for amoA transcript were nearer the surface compared to amoA genes. Clone libraries using DNA template recovered shallow and deep amoA clades but only the shallow clade was recovered from cDNA (from RNA). These results imply environmental control of amoA expression with direct or indirect light effects, and rare ureC expression despite its widespread occurrence in the Arctic Ocean.

  8. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  9. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B.

    PubMed

    Lieto, L D; Maasho, K; West, D; Borrego, F; Coligan, J E

    2006-01-01

    CD94/NKG2A is an inhibitory receptor expressed by natural killer (NK) cells and a subset of CD8+ T cells. Ligation of CD94/NKG2A by its ligand HLA-E results in tyrosine phosphorylation of the NKG2A immunoreceptor tyrosine-based inhibitory motifs, and recruitment and activation of the SH2 domain-bearing tyrosine phosphatase-1, which in turn suppresses activation signals. The nkg2a gene encodes two isoforms, NKG2A and NKG2B, with the latter lacking the stem region. We identified three new alternative transcripts of the cd94 gene in addition to the originally described canonical CD94Full. One of the transcripts, termed CD94-T4, lacks the portion that encodes the stem region. CD94-T4 associates with both NKG2A and NKG2B, but preferentially associates with the latter. This is probably due to the absence of a stem region in both CD94-T4 and NKG2B. CD94-T4/NKG2B is capable of binding HLA-E and, when expressed in E6-1 Jurkat T cells, inhibits TCR mediated signals, demonstrating that this heterodimer is functional. Coevolution of stemless isoforms of CD94 and NKG2A that preferentially pair with each other to produce a functional heterodimer indicates that this may be more than a serendipitous event. CD94-T4/NKG2B may contribute to the plasticity of the NK immunological synapse by insuring an adequate inhibitory signal.

  10. Streptomyces coelicolor encodes a urate-responsive transcriptional regulator with homology to PecS from plant pathogens.

    PubMed

    Huang, Hao; Mackel, Brian J; Grove, Anne

    2013-11-01

    Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.

  11. Streptomyces coelicolor Encodes a Urate-Responsive Transcriptional Regulator with Homology to PecS from Plant Pathogens

    PubMed Central

    Huang, Hao; Mackel, Brian J.

    2013-01-01

    Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress. PMID:23995633

  12. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  13. Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.

    PubMed

    Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas

    2017-01-01

    Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.

  14. Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development

    PubMed Central

    Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas

    2017-01-01

    Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type. PMID:28154576

  15. The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by σ54 and a Cognate Transcriptional Regulator▿†

    PubMed Central

    Fiévet, Anouchka; My, Laetitia; Cascales, Eric; Ansaldi, Mireille; Pauleta, Sofia R.; Moura, Isabel; Dermoun, Zorah; Bernard, Christophe S.; Dolla, Alain; Aubert, Corinne

    2011-01-01

    Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the σ54-RNA polymerase. We further demonstrate that the σ54-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with σ54-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the σ70-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed. PMID:21531797

  16. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    PubMed Central

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  17. Cloning of a long HIV-1 readthrough transcript and detection of an increased level of early growth response protein-1 (Egr-1) mRNA in chronically infected U937 cells.

    PubMed

    Dron, M; Hameau, L; Benboudjema, L; Guymarho, J; Cajean-Feroldi, C; Rizza, P; Godard, C; Jasmin, C; Tovey, M G; Lang, M C

    1999-01-01

    To identify the pathways involved in HIV-1 modification of cellular gene expression, chronically infected U937 cells were screened by mRNA differential display. A chimeric transcript consisting of the 3' end of the LTR of a HIV-1 provirus, followed by 3.7 kb of cellular RNA was identified suggesting that long readthrough transcription might be one of the mechanisms by which gene expression could be modified in individual infected cells. Such a phenomenon may also be the first step towards the potential transduction of cellular sequences. Furthermore, the mRNA encoding for the transcription factor Egr-1 was detected as an over-represented transcript in infected cells. Northern blot analysis confirmed the increase of Egr-1 mRNA content in both HIV-1 infected promonocytic U937 cells and T cell lines such as Jurkat and CEM. Interestingly a similar increase of Egr-1 mRNA has previously been reported to occur in HTLV-1 and HTLV-2 infected T cell lines. Despite the consistent increase in the level of Egr-1 mRNA, the amount of the encoded protein did not appear to be modified in HIV-1 infected cells, suggesting an increased turn over of the protein in chronically infected cells.

  18. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  19. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    PubMed

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey.

    PubMed

    Almeida, Diego D; Scortecci, Katia C; Kobashi, Leonardo S; Agnez-Lima, Lucymara F; Medeiros, Silvia R B; Silva-Junior, Arnóbio A; Junqueira-de-Azevedo, Inácio de L M; Fernandes-Pedrosa, Matheus de F

    2012-08-01

    The scorpion Tityus stigmurus is widely distributed in Northeastern Brazil and known to cause severe human envenoming, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the gene expression profile from the non-stimulated venom gland of Tityus stigmurus scorpion. A cDNA library was constructed and 540 clones were sequenced and grouped into 153 clusters, with one or more ESTs (expressed sequence tags). Forty-one percent of ESTs belong to recognized toxin-coding sequences, with transcripts encoding antimicrobial toxins (AMP-like) being the most abundant, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% of the transcripts encode "other possible venom molecules", which correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. This investigation provides the first global view of gene expression of the venom gland from Tityus stigmurus under resting conditions. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or non yet described types of venom peptides and proteins from the Buthidae family.

  1. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling.

    PubMed

    Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M

    2002-10-15

    Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.

  2. Functional substitution for TAF(II)250 by a retroposed homolog that is expressed in human spermatogenesis.

    PubMed

    Wang, P Jeremy; Page, David C

    2002-09-15

    TAF(II)250, the largest subunit of the general transcription factor TFIID, is expressed from the human X chromosome, at least in somatic cells. In male meiosis, however, the sex chromosomes are transcriptionally silenced, while the autosomes remain active. How then are protein-encoding genes transcribed during human male meiosis? Here we present a novel autosomal human gene, TAF1L, which is homologous to TAF(II)250 and is expressed specifically in the testis, apparently in germ cells. We hypothesize that during male meiosis, transcription of protein-encoding genes relies upon TAF1L as a functional substitute for TAF(II)250. Like TAF(II)250, the human TAF1L protein can bind directly to TATA-binding protein, an essential component of TFIID. Most importantly, transfection with human TAF1L rescued the temperature-sensitive lethality of a hamster cell line mutant in TAF(II)250. TAF1L lacks introns and evidently arose by retroposition of a processed TAF(II)250 mRNA during primate evolution. The observation that TAF1L can functionally replace TAF(II)250 provides experimental support for the hypothesis that during male meiosis, autosomes provide cellular functions usually supplied by the X chromosome in somatic cells.

  3. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    PubMed

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  4. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. Copyright © 2017 American Society for Microbiology.

  5. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. PMID:28115379

  6. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes

    PubMed Central

    2014-01-01

    Background Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Results Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Conclusions Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available. PMID:24708064

  7. Over-expression of phage HK022 Nun protein is toxic for Escherichia coli

    PubMed Central

    Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.

    2008-01-01

    The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198

  8. Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort.

    PubMed

    Sun, Kelian; Cui, Yuehua; Hauser, Bernard A

    2005-11-01

    Environmental stress dramatically reduces plant reproduction. Previous results showed that placing roots in 200 mM NaCl for 12 h caused 90% of the developing Arabidopsis ovules to abort (Sun et al. in Plant Physiol 135:2358-2367, 2004). To discover the molecular responses that occur during ovule abortion, gene expression was monitored using Affymetrix 24k genome arrays. Transcript levels were measured in pistils that were stressed for 6, 12, 18, and 24 h, then compared with the levels in healthy pistils. Over the course of this experiment, a total of 535 salt-responsive genes were identified. Cluster analysis showed that differentially expressed genes exhibited reproducible changes in expression. The expression of 65 transcription factors, some of which are known to be involved in stress responses, were modulated during ovule abortion. In flowers, salt stress led to a 30-fold increase in Na+ ions and modest, but significant, decreases in the accumulation of other ions. The expression of cation exchangers and ion transporters were induced, presumably to reestablish ion homeostasis following salt stress. Genes that encode enzymes that detoxify reactive oxygen species (ROS), including ascorbate peroxidase and peroxidase, were downregulated after ovules committed to abort. These changes in gene expression coincided with the synthesis of ROS in female gametophytes. One day after salt stress, ROS spread from the gametophytes to the maternal chalaza and integuments. In addition, genes encoding proteins that regulate ethylene responses, including ethylene biosynthesis, ethylene signal transduction and ethylene-responsive transcription factors, were upregulated after stress. Hypotheses are proposed on the basis of this expression analysis, which will be evaluated further in future experiments.

  9. NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis[W

    PubMed Central

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-01-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall–loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. PMID:24363315

  10. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis.

    PubMed

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-12-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.

  11. New insights into the Saccharomyces cerevisiae fermentation switch: Dynamic transcriptional response to anaerobicity and glucose-excess

    PubMed Central

    van den Brink, Joost; Daran-Lapujade, Pascale; Pronk, Jack T; de Winde, Johannes H

    2008-01-01

    Background The capacity of respiring cultures of Saccharomyces cerevisiae to immediately switch to fast alcoholic fermentation upon a transfer to anaerobic sugar-excess conditions is a key characteristic of Saccharomyces cerevisiae in many of its industrial applications. This transition was studied by exposing aerobic glucose-limited chemostat cultures grown at a low specific growth rate to two simultaneous perturbations: oxygen depletion and relief of glucose limitation. Results The shift towards fully fermentative conditions caused a massive transcriptional reprogramming, where one third of all genes within the genome were transcribed differentially. The changes in transcript levels were mostly driven by relief from glucose-limitation. After an initial strong response to the addition of glucose, the expression profile of most transcriptionally regulated genes displayed a clear switch at 30 minutes. In this respect, a striking difference was observed between the transcript profiles of genes encoding ribosomal proteins and those encoding ribosomal biogenesis components. Not all regulated genes responded with this binary profile. A group of 87 genes showed a delayed and steady increase in expression that specifically responded to anaerobiosis. Conclusion Our study demonstrated that, despite the complexity of this multiple-input perturbation, the transcriptional responses could be categorized and biologically interpreted. By comparing this study with public datasets representing dynamic and steady conditions, 14 up-regulated and 11 down-regulated genes were determined to be anaerobic specific. Therefore, these can be seen as true "signature" transcripts for anaerobicity under dynamic as well as under steady state conditions. PMID:18304306

  12. Cell-type specific features of circular RNA expression.

    PubMed

    Salzman, Julia; Chen, Raymond E; Olsen, Mari N; Wang, Peter L; Brown, Patrick O

    2013-01-01

    Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.

  13. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    PubMed Central

    2010-01-01

    Background Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration. PMID:20598158

  14. Gene encoding gamma-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7.

    PubMed

    Kaur, Simarjot; Mishra, Mukti N; Tripathi, Anil K

    2010-07-04

    Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (gamma-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only gamma-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one beta-CA and two gamma-CAs. One of the putative gamma-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-gamma-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a gamma-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized gamma-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  15. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects. PMID:23894529

  16. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  17. Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units.

    PubMed

    Rennick, Linda J; Duprex, W Paul; Rima, Bert K

    2007-10-01

    Transcription from morbillivirus genomes commences at a single promoter in the 3' non-coding terminus, with the six genes being transcribed sequentially. The 3' and 5' untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5' UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5' UTRs. Insertions into the 5' UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5' UTR, govern this decreased expression from TU2.

  18. Koi herpesvirus encodes and expresses a functional interleukin-10.

    PubMed

    Sunarto, Agus; Liongue, Clifford; McColl, Kenneth A; Adams, Mathew M; Bulach, Dieter; Crane, Mark St J; Schat, Karel A; Slobedman, Barry; Barnes, Andrew C; Ward, Alister C; Walker, Peter J

    2012-11-01

    Koi herpesvirus (KHV) (species Cyprinid herpesvirus 3) ORF134 was shown to transcribe a spliced transcript encoding a 179-amino-acid (aa) interleukin-10 (IL-10) homolog (khvIL-10) in koi fin (KF-1) cells. Pairwise sequence alignment indicated that the expressed product shares 25% identity with carp IL-10, 22 to 24% identity with mammalian (including primate) IL-10s, and 19.1% identity with European eel herpesvirus IL-10 (ahvIL-10). In phylogenetic analyses, khvIL-10 fell in a divergent position from all host IL-10 sequences, indicating extensive structural divergence following capture from the host. In KHV-infected fish, khvIL-10 transcripts were observed to be highly expressed during the acute and reactivation phases but to be expressed at very low levels during low-temperature-induced persistence. Similarly, KHV early (helicase [Hel] and DNA polymerase [DNAP]) and late (intercapsomeric triplex protein [ITP] and major capsid protein [MCP]) genes were also expressed at high levels during the acute and reactivation phases, but only low-level expression of the ITP gene was detected during the persistent phase. Injection of khvIL-10 mRNA into zebrafish (Danio rerio) embryos increased the number of lysozyme-positive cells to a similar degree as zebrafish IL-10. Downregulation of the IL-10 receptor long chain (IL-10R1) using a specific morpholino abrogated the response to both khvIL-10 and zebrafish IL-10 transcripts, indicating that, despite the structural divergence, khvIL-10 functions via this receptor. This is the first report describing the characteristics of a functional viral IL-10 gene in the Alloherpesviridae.

  19. Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a Serine/Threonine Kinase and Phosphatase

    PubMed Central

    Burnside, Kellie; Lembo, Annalisa; de los Reyes, Melissa; Iliuk, Anton; BinhTran, Nguyen-Thao; Connelly, James E.; Lin, Wan-Jung; Schmidt, Byron Z.; Richardson, Anthony R.; Fang, Ferric C.; Tao, Weiguo Andy; Rajagopal, Lakshmi

    2010-01-01

    Exotoxins, including the hemolysins known as the alpha (α) and beta (β) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding α toxin was decreased in a Δstp1 mutant strain and increased in a Δstk1 strain. Microarray analysis of a Δstk1 mutant revealed increased transcription of additional exotoxins. A Δstp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Δstk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Δstk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence. PMID:20552019

  20. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.

    PubMed

    Carbonell-Bejerano, Pablo; Santa María, Eva; Torres-Pérez, Rafael; Royo, Carolina; Lijavetzky, Diego; Bravo, Gema; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Antolín, M Carmen; Martínez-Zapater, José M

    2013-07-01

    Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.

  1. Locus ceruleus control of state-dependent gene expression.

    PubMed

    Cirelli, Chiara; Tononi, Giulio

    2004-06-09

    Wakefulness and sleep are accompanied by changes in behavior and neural activity, as well as by the upregulation of different functional categories of genes. However, the mechanisms responsible for such state-dependent changes in gene expression are unknown. Here we investigate to what extent state-dependent changes in gene expression depend on the central noradrenergic (NA) system, which is active in wakefulness and reduces its firing during sleep. We measured the levels of approximately 5000 transcripts expressed in the cerebral cortex of control rats and in rats pretreated with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a neurotoxin that removes the noradrenergic innervation of the cortex. We found that NA depletion reduces the expression of approximately 20% of known wakefulness-related transcripts. Most of these transcripts are involved in synaptic plasticity and in the cellular response to stress. In contrast, NA depletion increased the expression of the sleep-related gene encoding the translation elongation factor 2. These results indicate that the activity of the central NA system during wakefulness modulates neuronal transcription to favor synaptic potentiation and counteract cellular stress, whereas its inactivity during sleep may play a permissive role to enhance brain protein synthesis.

  2. Molecular characterization of the rhesus rhadinovirus (RRV) ORF4 gene and the RRV complement control protein it encodes.

    PubMed

    Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J

    2007-04-01

    The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.

  3. Structural and functional characterisation of FOXO/Acan-DAF-16 from the parasitic nematode Angiostrongylus cantonensis.

    PubMed

    Yan, Baolong; Sun, Weiwei; Yan, Lanzhu; Zhang, Liangliang; Zheng, Yuan; Zeng, Yuzhen; Huang, Huicong; Liang, Shaohui

    2016-12-01

    Fork head box transcription factors subfamily O (FoxO) is regarded to be significant in cell-cycle control, cell differentiation, ageing, stress response, apoptosis, tumour formation and DNA damage repair. In the free-living nematode Caenorhabditis elegans, the FoxO transcription factor is encoded by Ce-daf-16, which is negatively regulated by insulin-like signaling (IIS) and involved in promoting dauer formation through bringing about its hundreds of downstream genes expression. In nematode parasites, orthologues of daf-16 from several species have been identified, with functions in rescue of dauer phenotypes determined in a surrogate system C. elegans. In this study, we identified the FoxO encoding gene, Acan-daf-16, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. Acan-daf-16 encodes two proteins, Acan-DAF-16A and Acan-DAF-16B, consisting of 555 and 491 amino acids, respectively. Both isoforms possess the highly conserved fork head domains. Acan-daf-16A and Acan-daf-16B are expressed from distinct promoters. The expression patterns of Acan-daf-16 isoforms in the C. elegans surrogate system showed that p Acan-daf-16a:gfp was expressed in all cells of C. elegans, including the pharynx, and the expression of p Acan-daf-16b:gfp was restricted to the pharynx. In addition to the same genomic organization to the orthologue in C. elegans, Ce-daf-16, both Acan-DAF-16 isoforms could restore the C. elegans daf-16(mg54) mutation in longevity, dauer formation and stress resistance, in spite of the partial complementation of Acan-DAF-16B isoform in longevity. These findings provide further evidence of the functional conservation of DAF-16s between parasitic nematodes and the free-living nematode C. elegans. Copyright © 2016. Published by Elsevier B.V.

  4. Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development.

    PubMed

    Hogenkamp, David G; Arakane, Yasuyuki; Zimoch, Lars; Merzendorfer, Hans; Kramer, Karl J; Beeman, Richard W; Kanost, Michael R; Specht, Charles A; Muthukrishnan, Subbaratnam

    2005-06-01

    Chitin, the linear homopolymer of beta-1,4-linked N-acetylglucosamine, is produced by the enzyme chitin synthase (CHS). In general, this insoluble polysaccharide is found in two major extracellular structures in insects, the cuticle that overlays the epidermis and the peritrophic membrane (PM) that lines the midgut. Based on amino acid sequence similarities, insect CHSs are divided into two classes, A and B, and to date no more than two CHS genes have been identified in any single insect species. In species where both CHSs have been identified, one class A CHS and one class B CHS are always present. This finding suggests that these two genes may encode enzymes that synthesize chitin in different epithelial tissues. In our laboratory, we previously characterized transcripts for a class A CHS gene (MsCHS1) from the tobacco hornworm, Manduca sexta. We observed the expression of this gene in the larval epidermis, suggesting that the encoded enzyme functions to synthesize cuticular chitin. In this paper, we characterize a second chitin synthase gene (MsCHS2) belonging to class B and its cDNA from Manduca and show that it is expressed only in the midgut. This cDNA contains an open reading frame of 4575 nucleotides, which encodes a conceptual protein that is 1524 amino acids in length and is predicted to contain 16 transmembrane spans. Northern blot analysis of RNA isolated from anterior, medial, and posterior sections of the midgut from feeding larvae indicate that MsCHS2 is primarily expressed in the anterior midgut, with transcript levels tapering off in the medial and posterior midgut. Analysis of the MsCHS2 gene sequence indicates the absence of an alternate exon in contrast to the MsCHS1 gene, which yields two transcripts, MsCHS1a and MsCHS1b. RT-PCR analysis of the differential expression of these alternately spliced transcripts reveals that both splice variants are present in the epidermis. However, the ratio of the two alternately spliced transcripts varies during development, with MsCHS1a being generally more predominant. Southern blot analysis using a probe specific for CHS indicated that Manduca has only two CHS genes, akin to other insect species. Results from an analysis of expression of both genes in different tissues and developmental times indicate that the MsCHS1 enzyme is used for the synthesis of chitin in the cuticle and tracheae, whereas MsCHS2 is utilized exclusively for the synthesis of PM-associated chitin in the midgut.

  5. Identification of the WBSCR9 gene, encoding a novel transcriptional regulator, in the Williams-Beuren syndrome deletion at 7q11.23.

    PubMed

    Peoples, R J; Cisco, M J; Kaplan, P; Francke, U

    1998-01-01

    We have identified a novel gene (WBSCR9) within the common Williams-Beuren syndrome (WBS) deletion by interspecies sequence conservation. The WBSCR9 gene encodes a roughly 7-kb transcript with an open reading frame of 1483 amino acids and a predicted protein product size of 170.8 kDa. WBSCR9 is comprised of at least 20 exons extending over 60 kb. The transcript is expressed ubiquitously throughout development and is subject to alternative splicing. Functional motifs identified by sequence homology searches include a bromodomain; a PHD, or C4HC3, finger; several putative nuclear localization signals; four nuclear receptor binding motifs; a polyglutamate stretch and two PEST sequences. Bromodomains, PHD motifs and nuclear receptor binding motifs are cardinal features of proteins that are involved in chromatin remodeling and modulation of transcription. Haploinsufficiency for WBSCR9 gene products may contribute to the complex phenotype of WBS by interacting with tissue-specific regulatory factors during development.

  6. Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.

    PubMed

    Davis, R J; Bennicelli, J L; Macina, R A; Nycum, L M; Biegel, J A; Barr, F G

    1995-12-01

    The FKHR gene, which contains a forkhead DNA-binding motif, is fused to either PAX3 or PAX7 by the t(2;13) or t(1;13) translocation in alveolar rhabdomyosarcoma,respectively. These tumors express chimeric transcripts encoding the N-terminal portion of either PAX protein fused to the C-terminal portion of FKHR. To understand the structural basis and functional consequences of these translocations, we characterized the wild-type FKHR gene and its rearrangement in alveolar rhabdomyosarcomas. By isolating and analyzing phage, cosmid and YAC clones, we determined that FKHR consists of three exons spanning 140 kb and that several highly similar loci are present in other genomic regions. Exon 1 encodes the N-terminus of the forkhead domain and is embedded within demethylated CpG island. RNA analyses reveal FKHR transcripts initiate from a TATA-less promoter within this island. Exon 2 encodes the C-terminus of the forkhead domain and a transcription activation domain, whereas exon 3 encodes a large 3' untranslated region. The intron 1-exon 2 boundary precisely matches the FHKR fusion point in the chimeric transcripts found in alveolar rhabdomyosarcomas. Using pulsed-field and fluorescence in situ hybridization analyses, we demonstrate that the 130kb FKHR intron 1 is rearranged in t(2;13)-containing alveolar rhabdomyosarcomas. Our findings indicate that FKHR intron 1 provides a large target for DNA rearrangemnt. Rearrangement of this intron with PAX3 produces two important functional consequences: in-frame fusion of N-terminal PAX3 sequences to the FKHR transcriptional activation domain and disruption of the FKHR DNA binding domain.

  7. Genome wide interactions of wild-type and activator bypass forms of σ54.

    PubMed

    Schaefer, Jorrit; Engl, Christoph; Zhang, Nan; Lawton, Edward; Buck, Martin

    2015-09-03

    Enhancer-dependent transcription involving the promoter specificity factor σ(54) is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ(54)-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ(54) promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ(54) were evident, indicating loss of rpoN (encoding σ(54)) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ(54)-dependence in vivo not readily correlated with conventional σ(54) binding-sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Genome wide interactions of wild-type and activator bypass forms of σ54

    PubMed Central

    Schaefer, Jorrit; Engl, Christoph; Zhang, Nan; Lawton, Edward; Buck, Martin

    2015-01-01

    Enhancer-dependent transcription involving the promoter specificity factor σ54 is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ54-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ54 promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ54 were evident, indicating loss of rpoN (encoding σ54) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ54-dependence in vivo not readily correlated with conventional σ54 binding-sites. PMID:26082500

  9. Diverse expression levels of two codon-optimized genes that encode human papilloma virus type 16 major protein L1 in Hansenula polymorpha.

    PubMed

    Liu, Cunbao; Yang, Xu; Yao, Yufeng; Huang, Weiwei; Sun, Wenjia; Ma, Yanbing

    2014-05-01

    Two versions of an optimized gene that encodes human papilloma virus type 16 major protein L1 were designed according to the codon usage frequency of Pichia pastoris. Y16 was highly expressed in both P. pastoris and Hansenula polymorpha. M16 expression was as efficient as that of Y16 in P. pastoris, but merely detectable in H. polymorpha even though transcription levels of M16 and Y16 were similar. H. polymorpha had a unique codon usage frequency that contains many more rare codons than Saccharomyces cerevisiae or P. pastoris. These findings indicate that even codon-optimized genes that are expressed well in S. cerevisiae and P. pastoris may be inefficiently expressed in H. polymorpha; thus rare codons must be avoided when universal optimized gene versions are designed to facilitate expression in a variety of yeast expression systems, especially H. polymorpha is involved.

  10. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function.

    PubMed

    Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J

    2011-08-15

    We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.

  11. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    PubMed

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  12. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR.

    PubMed

    Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min

    2002-09-01

    A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.

  13. Regulation of glutamine synthetase II activity in Rhizobium meliloti 104A14.

    PubMed Central

    Shatters, R G; Somerville, J E; Kahn, M L

    1989-01-01

    Most rhizobia contain two glutamine synthetase (GS) enzymes: GSI, encoded by glnA, and GSII, encoded by glnII. We have found that WSU414, a Rhizobium meliloti 104A14 glutamine auxotroph derived from a glnA parental strain, is an ntrA mutant. The R. meliloti glnII promoter region contains DNA sequences similar to those found in front of other genes that require ntrA for their transcription. No GSII was found in the glnA ntrA mutant, and when a translational fusion of glnII to the Escherichia coli lacZ gene was introduced into WSU414, no beta-galactosidase was expressed. These results indicate that ntrA is required for glnII expression. The ntrA mutation did not prevent the expression of GSI. In free-living culture, the level of GSII and of the glnII-lacZ fusion protein was regulated by altering transcription in response to available nitrogen. No GSII protein was detected in alfalfa, pea, or soybean nodules when anti-GSII-specific antiserum was used. Images PMID:2570059

  14. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    PubMed

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  15. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii

    PubMed Central

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C.; Zhang, Baohong

    2014-01-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence. PMID:25322260

  16. Regulation of rice root development by a retrotransposon acting as a microRNA sponge.

    PubMed

    Cho, Jungnam; Paszkowski, Jerzy

    2017-08-26

    It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.

  17. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action

    PubMed Central

    Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben

    2007-01-01

    In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527

  18. Use of CYP52A2A promoter to increase gene expression in yeast

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  19. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.

    PubMed Central

    Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B

    1995-01-01

    Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359

  20. LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313

    DOE PAGES

    Wilson, Charlotte M.; Klingeman, Dawn M.; Schlachter, Caleb; ...

    2016-12-21

    Organisms regulate gene expression in response to the environment to coordinate metabolic reactions.Clostridium thermocellumexpresses enzymes for both lignocellulose solubilization and its fermentation to produce ethanol. In one LacI regulator termed GlyR3 inC. thermocellumATCC 27405 we identified a repressor of neighboring genes with repression relieved by laminaribiose (a β-1,3 disaccharide). To better understand the threeC. thermocellumLacI regulons, deletion mutants were constructed using the genetically tractable DSM1313 strain. DSM1313lacIgenes Clo1313_2023, Clo1313_0089, and Clo1313_0396 encode homologs of GlyR1, GlyR2, and GlyR3 from strain ATCC 27405, respectively. Furthermore, growth on cellobiose or pretreated switchgrass was unaffected by any of the gene deletions under controlled-pHmore » fermentations. Global gene expression patterns from time course analyses identified glycoside hydrolase genes encoding hemicellulases, including cellulosomal enzymes, that were highly upregulated (5- to 100-fold) in the absence of each LacI regulator, suggesting that these were repressed under wild-type conditions and that relatively few genes were controlled by each regulator under the conditions tested. Clo1313_2022, encoding lichenase enzyme LicB, was derepressed in a ΔglyR1strain. Higher expression of Clo1313_1398, which encodes the Man5A mannanase, was observed in a ΔglyR2strain, and α-mannobiose was identified as a probable inducer for GlyR2-regulated genes. For the ΔglyR3strain, upregulation of the two genes adjacent toglyR3in thecelC-glyR3-licAoperon was consistent with earlier studies. Electrophoretic mobility shift assays have confirmed LacI transcription factor binding to specific regions of gene promoters. IMPORTANCEUnderstandingC. thermocellumgene regulation is of importance for improved fundamental knowledge of this industrially relevant bacterium. Most LacI transcription factors regulate local genomic regions; however, a small number of those genes encode global regulatory proteins with extensive regulons. This study indicates that there are small specificC. thermocellumLacI regulons. Finally, the identification of LacI repressor activity for hemicellulase gene expression is a key result of this work and will add to the small body of existing literature on the area of gene regulation inC. thermocellum.« less

  1. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni

    PubMed Central

    Anderson, Letícia; Gomes, Monete Rajão; daSilva, Lucas Ferreira; Pereira, Adriana da Silva Andrade; Mourão, Marina M.; Romier, Christophe; Pierce, Raymond

    2017-01-01

    Background Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. Methodology/Principal findings TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Conclusions/Significance Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression of dozens of histone reader genes involved in regulation of the epigenetic program in S. mansoni can be used as a starting point to look for possible novel schistosomicidal targets. PMID:28406899

  2. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, R.D. Jr.; Wessler, S.R.

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open readingmore » frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.« less

  3. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets

    PubMed Central

    2017-01-01

    CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089

  4. PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans

    PubMed Central

    Tenenhaus, Christina; Subramaniam, Kuppuswamy; Dunn, Melanie A.; Seydoux, Geraldine

    2001-01-01

    The CCCH zinc finger protein PIE-1 is an essential regulator of germ cell fate that segregates with the germ lineage during the first cleavages of the Caenorhabditis elegans embryo. We have shown previously that one function of PIE-1 is to inhibit mRNA transcription. Here we show that PIE-1 has a second function in germ cells; it is required for efficient expression of the maternally encoded Nanos homolog NOS-2. This second function is genetically separable from PIE-1's inhibitory effect on transcription. A mutation in PIE-1's second CCCH finger reduces NOS-2 expression without affecting transcriptional repression and causes primordial germ cells to stray away from the somatic gonad, occasionally exiting the embryo entirely. Our results indicate that PIE-1 promotes germ cell fate by two independent mechanisms as follows: (1) inhibition of transcription, which blocks zygotic programs that drive somatic development, and (2) activation of protein expression from nos-2 and possibly other maternal RNAs, which promotes primordial germ cell development. PMID:11316796

  5. Differential Expression of Anthocyanin Biosynthetic Genes and Transcription Factor PcMYB10 in Pears (Pyrus communis L.)

    PubMed Central

    Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong

    2012-01-01

    Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. ‘Wujiuxiang’), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in ‘Wujiuxiang’ pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in ‘Wujiuxiang’ pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants. PMID:23029391

  6. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism1[OPEN

    PubMed Central

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  7. Structure and Function of AmtR in Mycobacterium smegmatis: Implications for Post-Transcriptional Regulation of Urea Metabolism through a Small Antisense RNA.

    PubMed

    Petridis, Michael; Vickers, Chelsea; Robson, Jennifer; McKenzie, Joanna L; Bereza, Magdalena; Sharrock, Abigail; Aung, Htin Lin; Arcus, Vickery L; Cook, Gregory M

    2016-10-23

    Soil-dwelling bacteria of the phylum actinomycetes generally harbor either GlnR or AmtR as a global regulator of nitrogen metabolism. Mycobacterium smegmatis harbors both of these canonical regulators; GlnR regulates the expression of key genes involved in nitrogen metabolism, while the function and signal transduction pathway of AmtR in M. smegmatis remains largely unknown. Here, we report the structure and function of the M. smegmatis AmtR and describe the role of AmtR in the regulation of nitrogen metabolism in response to nitrogen availability. To determine the function of AmtR in M. smegmatis, we performed genome-wide expression profiling comparing the wild-type versus an ∆amtR mutant and identified significant changes in the expression of 11 genes, including an operon involved in urea degradation. An AmtR consensus-binding motif (CTGTC-N 4 -GACAG) was identified in the promoter region of this operon, and ligand-independent, high-affinity AmtR binding was validated by both electrophoretic mobility shift assays and surface plasmon resonance measurements. We confirmed the transcription of a cis-encoded small RNA complementary to the gene encoding AmtR under nitrogen excess, and we propose a post-transcriptional regulatory mechanism for AmtR. The three-dimensional X-ray structure of AmtR at 2.0Å revealed an overall TetR-like dimeric structure, and the alignment of the M. smegmatis AmtR and Corynebacterium glutamicum AmtR regulatory domains showed poor structural conservation, providing a potential explanation for the lack of M. smegmatis AmtR interaction with the adenylylated P II protein. Taken together, our data suggest an AmtR (repressor)/GlnR (activator) competitive binding mechanism for transcriptional regulation of urea metabolism that is controlled by a cis-encoded small antisense RNA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    PubMed Central

    Fassah, Dilla Mareistia; Jeong, Jin Young

    2018-01-01

    Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition. PMID:29502393

  9. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls.

    PubMed

    Fassah, Dilla Mareistia; Jeong, Jin Young; Baik, Myunggi

    2018-04-01

    This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnova, Anna S.; Morgun, Andrey; Shulzhenko, Natalia

    Two transcript variants (TV) of the T cell immune regulator gene 1 (TCIRG1) have already been characterized. TV1 encodes a subunit of the osteoclast vacuolar proton pump and TV2 encodes a T cell inhibitory receptor. Based on the search in dbEST, we validated by RT-PCR six new alternative splice events in TCIRG1 in most of the 28 human tissues studied. In addition, we observed that transcripts using the TV1 transcription start site and two splice forms previously described in a patient with infantile malignant osteopetrosis are also expressed in various tissues of healthy individuals. Studies of these nine splice formsmore » in cytoplasmic RNA of peripheral blood mononuclear cells showed that at least six of them could be efficiently exported from the nucleus. Since various products with nearly ubiquitous tissue distribution are generated from TCIRG1, this gene may be involved in other processes besides immune response and bone resorption.« less

  11. The predominant WT1 isoform (+KTS) encodes a DNA binding protein targeting the planar cell polarity gene Scribble in renal podocytes

    PubMed Central

    Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.

    2010-01-01

    WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064

  12. Characterization of cDNA encoding molt-inhibiting hormone of the crab, Cancer pagurus; expression of MIH in non-X-organ tissues.

    PubMed

    Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C

    2001-10-31

    Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.

  13. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    PubMed Central

    Bojanovič, Klara; D'Arrigo, Isotta

    2017-01-01

    ABSTRACT Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization. PMID:28130298

  14. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    PubMed

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos

    PubMed Central

    Yeung, Fan; Chung, Eunhee; Guess, Martin G.; Bell, Matthew L.; Leinwand, Leslie A.

    2012-01-01

    The sarcomeric myosin gene, Myh7b, encodes an intronic microRNA, miR-499, which regulates cardiac and skeletal muscle biology, yet little is known about its transcriptional regulation. To identify the transcription factors involved in regulating Myh7b/miR-499 gene expression, we have mapped the transcriptional start sites and identified an upstream 6.2 kb region of the mouse Myh7b gene whose activity mimics the expression pattern of the endogenous Myh7b gene both in vitro and in vivo. Through promoter deletion analysis, we have mapped a distal E-box element and a proximal Ikaros site that are essential for Myh7b promoter activity in muscle cells. We show that the myogenic regulatory factors, MyoD, Myf5 and Myogenin, bind to the E-box, while a lymphoid transcription factor, Ikaros 4 (Eos), binds to the Ikaros motif. Further, we show that through physical interaction, MyoD and Eos form an active transcriptional complex on the chromatin to regulate the expression of the endogenous Myh7b/miR-499 gene in muscle cells. We also provide the first evidence that Eos can regulate expression of additional myosin genes (Myosin 1 and β-Myosin) via the miR-499/Sox6 pathway. Therefore, our results indicate a novel role for Eos in the regulation of the myofiber gene program. PMID:22638570

  16. Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance.

    PubMed

    Dinakar, Challabathula; Bartels, Dorothea

    2012-08-01

    In the present study, three closely related Linderniaceae species which differ in their sensitivity to desiccation are compared in response to light and oxidative stress defence. Lindernia brevidens, a desiccation-tolerant plant, displayed intense purple pigmentation in leaves under long-day conditions in contrast to Craterostigma plantagineum (desiccation tolerant) and Lindernia subracemosa (desiccation sensitive). The intense pigmentation in leaves does not affect the desiccation tolerance behaviour but seems to be related to oxidative stress protection. Green leaves of short-day and purple leaves of long-day plants provided suitable material for comparing basic photosynthetic parameters. An increase in non-photochemical quenching in purple leaves appears to prevent photoinhibition. Treatment with methyl viologen decreased the photochemical activities in both long-day and short-day plants but long-day plants which accumulate anthocyanins maintained a higher non-photochemical quenching than short-day plants. No differences were seen in the expression of desiccation-induced proteins and proteins involved in carbohydrate metabolism in short-day and long-day grown plants, whereas differences were observed in the expression of transcripts encoding chloroplast-localised stress proteins and transcripts encoding antioxidant enzymes. While the expression of genes encoding antioxidant enzymes were either constitutive or up-regulated during desiccation in C. plantagineum, the expression was down-regulated in L. subracemosa. RNA expression analysis indicated degradation of mRNA during desiccation in L. subracemosa but not in desiccation tolerant species. These results indicate that a better oxidative stress management and mRNA stability are correlated with desiccation tolerance.

  17. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  18. Transcriptional Regulatory Networks in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Lee, Tong Ihn; Rinaldi, Nicola J.; Robert, François; Odom, Duncan T.; Bar-Joseph, Ziv; Gerber, Georg K.; Hannett, Nancy M.; Harbison, Christopher T.; Thompson, Craig M.; Simon, Itamar; Zeitlinger, Julia; Jennings, Ezra G.; Murray, Heather L.; Gordon, D. Benjamin; Ren, Bing; Wyrick, John J.; Tagne, Jean-Bosco; Volkert, Thomas L.; Fraenkel, Ernest; Gifford, David K.; Young, Richard A.

    2002-10-01

    We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.

  19. A deep learning method for lincRNA detection using auto-encoder algorithm.

    PubMed

    Yu, Ning; Yu, Zeng; Pan, Yi

    2017-12-06

    RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.

  20. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element.

    PubMed

    Vetukuri, Ramesh R; Tian, Zhendong; Avrova, Anna O; Savenkov, Eugene I; Dixelius, Christina; Whisson, Stephen C

    2011-12-01

    Phytophthora infestans is the notorious oomycete causing late blight of potato and tomato. A large proportion of the P. infestans genome is composed of transposable elements, the activity of which may be controlled by RNA silencing. Accumulation of small RNAs is one of the hallmarks of RNA silencing. Here we demonstrate the presence of small RNAs corresponding to the sequence of a short interspersed retrotransposable element (SINE) suggesting that small RNAs might be involved in silencing of SINEs in P. infestans. This notion was exploited to develop novel tools for gene silencing in P. infestans by engineering transcriptional fusions of the PiAvr3a gene, encoding an RXLR avirulence effector, to the infSINEm retroelement. Transgenic P. infestans lines expressing either 5'-infSINEm::PiAvr3a-3' or 5'-PiAvr3a::SINEm-3' chimeric transcripts initially exhibited partial silencing of PiAvr3a. Over time, PiAvr3a either recovered wild type transcript levels in some lines, or became fully silenced in others. Introduction of an inverted repeat construct was also successful in yielding P. infestans transgenic lines silenced for PiAvr3a. In contrast, constructs expressing antisense or aberrant RNA transcripts failed to initiate silencing of PiAvr3a. Lines exhibiting the most effective silencing of PiAvr3a were either weakly or non-pathogenic on susceptible potato cv. Bintje. This study expands the repertoire of reverse genetics tools available for P. infestans research, and provides insights into a possible mode of variation in effector expression through spread of silencing from adjacent retroelements. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    PubMed Central

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  2. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    PubMed Central

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  3. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation.

    PubMed

    Petridis, Antonios; Döll, Stefanie; Nichelmann, Lars; Bilger, Wolfgang; Mock, Hans-Peter

    2016-08-01

    Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells.

    PubMed

    Biase, Fernando H; Kimble, Katelyn M

    2018-05-10

    The maturation and successful acquisition of developmental competence by an oocyte, the female gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework to determine interdependencies at the transcript level. We overlapped our transcriptome data with putative protein-protein interactions and identified hundreds of ligand-receptor pairs that can transduce paracrine signaling between an oocyte and cumulus cells. We determined that 499 ligand-encoding genes expressed in oocytes and cumulus cells are functionally associated with transcription regulation (FDR < 0.05). Ligand-encoding genes with specific expression in oocytes or cumulus cells were enriched for biological functions that are likely associated with the coordinated formation of transzonal projections from cumulus cells that reach the oocyte's membrane. Thousands of gene pairs exhibit significant linear co-expression (absolute correlation > 0.85, FDR < 1.8 × 10 - 5 ) patterns between oocytes and cumulus cells. Hundreds of co-expressing genes showed clustering patterns associated with biological functions (FDR < 0.5) necessary for a coordinated function between the oocyte and cumulus cells during folliculogenesis (i.e. regulation of transcription, translation, apoptosis, cell differentiation and transport). Our analyses revealed a complex and functional gene regulatory circuit between the oocyte and surrounding cumulus cells. The regulatory profile of each cumulus-oocyte complex is likely associated with the oocytes' developmental potential to derive an embryo.

  5. Post-Transcriptional Regulation of the Trypanosome Heat Shock Response by a Zinc Finger Protein

    PubMed Central

    Droll, Dorothea; Minia, Igor; Fadda, Abeer; Singh, Aditi; Stewart, Mhairi; Queiroz, Rafael; Clayton, Christine

    2013-01-01

    In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3′-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures. PMID:23592996

  6. The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply*

    PubMed Central

    Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R.; Aro, Eva-Mari

    2012-01-01

    The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon. PMID:22854963

  7. An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo.

    PubMed

    Rizzo, Francesca; Coffman, James A; Arnone, Maria Ina

    2016-08-01

    Elk proteins are Ets family transcription factors that regulate cell proliferation, survival, and differentiation in response to ERK (extracellular-signal regulated kinase)-mediated phosphorylation. Here we report the embryonic expression and function of Sp-Elk, the single Elk gene of the sea urchin Strongylocentrotus purpuratus. Sp-Elk is zygotically expressed throughout the embryo beginning at late cleavage stage, with peak expression occurring at blastula stage. Morpholino antisense-mediated knockdown of Sp-Elk causes blastula-stage developmental arrest and embryo disintegration due to apoptosis, a phenotype that is rescued by wild-type Elk mRNA. Development is also rescued by Elk mRNA encoding a serine to aspartic acid substitution (S402D) that mimics ERK-mediated phosphorylation of a conserved site that enhances DNA binding, but not by Elk mRNA encoding an alanine substitution at the same site (S402A). This demonstrates both that the apoptotic phenotype of the morphants is specifically caused by Elk depletion, and that phosphorylation of serine 402 of Sp-Elk is critical for its anti-apoptotic function. Knockdown of Sp-Elk results in under-expression of several regulatory genes involved in cell fate specification, cell cycle control, and survival signaling, including the transcriptional regulator Sp-Runt-1 and its target Sp-PKC1, both of which were shown previously to be required for cell survival during embryogenesis. Both Sp-Runt-1 and Sp-PKC1 have sequences upstream of their transcription start sites that specifically bind Sp-Elk. These results indicate that Sp-Elk is the signal-dependent activator of a feed-forward gene regulatory circuit, consisting also of Sp-Runt-1 and Sp-PKC1, which actively suppresses apoptosis in the early embryo. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels.

    PubMed

    Hernández-Prieto, Miguel A; Lin, Yuankui; Chen, Min

    2017-02-09

    Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina , multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA , we detected a similar transcriptional pattern for psbJ and psbU , which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. Copyright © 2017 Hernandez-Prieto et al.

  9. Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Gao, Ye; Kim, Donghyuk; Szubin, Richard; Yang, Jina; Cho, Byung-Kwan; Palsson, Bernhard O

    2017-05-19

    A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.

  10. The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels

    PubMed Central

    Hernández-Prieto, Miguel A.; Lin, Yuankui; Chen, Min

    2016-01-01

    Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. PMID:27974439

  11. TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.

    PubMed

    Yang, Tongren; Hao, Lin; Yao, Sufei; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai

    2016-07-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) comprise a large TF family and act as crucial regulators in various biological processes in plants. Here, we report the functional characterization of TabHLH1, a bHLH TF member in wheat (Triticum aestivum). TabHLH1 shares conserved bHLH domain and targets to nucleus with transactivation activity. Upon Pi and N deprivation, the expression of TabHLH1 was up-regulated in roots and leaves, showing a pattern to be gradually increased within 23-h treatment regimes. The lines with overexpression of TabHLH1 exhibited drastically improved tolerance to Pi and N deprivation, showing larger plant phenotype, more biomass, higher concentration and more accumulation of P and N than wild type (WT) upon the Pi- and N-starvation stresses. NtPT1 and NtNRT2.2, the genes encoding phosphate transporter (PT) and nitrate transporter (NRT) in tobacco, respectively, showed up-regulated expression in TabHLH1-overexpressing plants; knockdown expression of them led to deteriorated growth feature, lowered biomass, and decreased nutrient accumulation of plants under Pi- and N-deficient conditions. Compared with WT, the TabHLH1-overexpressing plants also showed lowered reactive oxygen species (ROS) accumulation and improved antioxidant enzyme (AE) activities, such as those of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). NtSOD1, NtCAT1, and NtPOD1;6 that encode SOD, CAT, and POD, respectively, were up-regulated in TabHLH1-overexpressing plants. Further knockdown of these AE gene expression caused reduced antioxidant enzymatic activities, indicative of their crucial roles in mediating cellular ROS homeostasis in Pi- and N-starvation conditions. Together, TabHLH1 plays an important role in mediating adaptation to the Pi- and N-starvation stresses through transcriptional regulation of a set of genes encoding PT, NRT and AEs that mediate the taken up of Pi and N and the cellular homeostasis of ROS initiated by the nutrient stresses. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis.

    PubMed

    Ovesná, Jaroslava; Kučera, Ladislav; Vaculová, Kateřina; Štrymplová, Kamila; Svobodová, Ilona; Milella, Luigi

    2012-01-01

    Reverse transcription coupled with real-time quantitative PCR (RT-qPCR) is a frequently used method for gene expression profiling. Reference genes (RGs) are commonly employed to normalize gene expression data. A limited information exist on the gene expression and profiling in developing barley caryopsis. Expression stability was assessed by measuring the cycle threshold (Ct) range and applying both the GeNorm (pair-wise comparison of geometric means) and Normfinder (model-based approach) principles for the calculation. Here, we have identified a set of four RGs suitable for studying gene expression in the developing barley caryopsis. These encode the proteins GAPDH, HSP90, HSP70 and ubiquitin. We found a correlation between the frequency of occurrence of a transcript in silico and its suitability as an RG. This set of RGs was tested by comparing the normalized level of β-amylase (β-amy1) transcript with directly measured quantities of the BMY1 gene product in the developing barley caryopsis. This panel of genes could be used for other gene expression studies, as well as to optimize β-amy1 analysis for study of the impact of β-amy1 expression upon barley end-use quality.

  13. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  14. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    PubMed

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic evidence for N- but not P-limitation in K. brevis. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.

  15. Alternative Polyadenylation and Nonsense-Mediated Decay Coordinately Regulate the Human HFE mRNA Levels

    PubMed Central

    Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa

    2012-01-01

    Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its protein expression according to the physiological cellular requirements. PMID:22530027

  16. Jr-ZFP2, encoding a Cys2/His2-type transcription factor, is involved in the early stages of the mechano-perception pathway and specifically expressed in mechanically stimulated tissues in woody plants.

    PubMed

    Leblanc-Fournier, Nathalie; Coutand, Catherine; Crouzet, Jerome; Brunel, Nicole; Lenne, Catherine; Moulia, Bruno; Julien, Jean-Louis

    2008-06-01

    Plants respond to environmental mechanical stimulation, such as wind, by modifying their growth and development. To study the molecular effects of stem bending on 3-week-old walnut trees, a cDNA-AFLP approach was developed. This study allowed the identification of a cDNA, known as Jr-ZFP2, encoding a Cys2/His2-type two-zinc-fingered transcription factor. Reverse transcriptase-polymerase chain reaction analysis confirmed that Jr-ZFP2 mRNA accumulation is rapidly and transiently induced after mechanical stimulation. After bending, Jr-ZFP2 transcript increase was restricted to the stem, the organ where the mechanical solicitation was applied. Furthermore, other abiotic factors, such as cold or salt, did not modify Jr-ZFP2 mRNA accumulation in walnut stems under our experimental conditions, whereas growth studies demonstrated that salt stress was actually perceived by the plants. These results suggest that the regulation of Jr-ZFP2 expression is more sensitive to mechanical stimulus. This gene will be a good marker for studying the early stages of mechanical perception in woody plants.

  17. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation.

    PubMed

    Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J

    2016-11-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.

  18. Developmentally regulated expression of APG-1, a member of heat shock protein 110 family in murine male germ cells.

    PubMed

    Kaneko, Y; Kimura, T; Nishiyama, H; Noda, Y; Fujita, J

    1997-04-07

    Apg-1 encodes a heat shock protein belonging to the heat shock protein 110 family, and is inducible by a 32 degrees C to 39 degrees C heat shock. Northern blot analysis of the testis from immature and adult mice, and of the purified germ cells revealed the quantitative change of the apg-1 transcripts during germ cell development. By in situ hybridization histochemistry the expressions of the apg-1 transcripts were detected in germ cells at specific stages of development including spermatocytes and spermatids. Although heat-induction of the apg-1 transcripts was observed in W/Wv mutant testis lacking germ cells, it was not detected in wild-type testis nor in the purified germ cells. Thus, the apg-1 expression is not heat-regulated but developmentally regulated in germ cells, suggesting that APG-1 plays a role in normal development of germ cells.

  19. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance

    PubMed Central

    Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang

    2002-01-01

    Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572

  20. Tissue-specific promoter utilisation of the kallikrein-related peptidase genes, KLK5 and KLK7, and cellular localisation of the encoded proteins suggest roles in exocrine pancreatic function.

    PubMed

    Dong, Ying; Matigian, Nick; Harvey, Tracey J; Samaratunga, Hemamali; Hooper, John D; Clements, Judith A

    2008-02-01

    Abstract Tissue kallikrein (kallikrein 1) was first identified in pancreas and is the namesake of the kallikrein-related peptidase (KLK) family. KLK1 and the other 14 members of the human KLK family are encoded by 15 serine protease genes clustered at chromosome 19q13.4. Our Northern blot analysis of 19 normal human tissues for expression of KLK4 to KLK15 identified pancreas as a common expression site for the gene cluster spanning KLK5 to KLK13, as well as for KLK15 which is located adjacent to KLK1. Consistent with previous reports detailing the ability of KLK genes to generate organ- and disease-specific transcripts, detailed molecular and in silico analyses indicated that KLK5 and KLK7 generate transcripts in pancreas variant from those in skin or ovary. Consistently, we identified in the promoters of these KLK genes motifs which conform with consensus binding sites for transcription factors conferring pancreatic expression. In addition, immunohistochemical analysis revealed predominant localisation of KLK5 and KLK7 in acinar cells of the exocrine pancreas, suggesting roles for these enzymes in digestion. Our data also support expression patterns derived from gene duplication events in the human KLK cluster. These findings suggest that, in addition to KLK1, other related KLK enzymes will function in the exocrine pancreas.

  1. Molecular cloning, sequence characterization and expression analysis of a CD63 homologue from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo

    2013-10-15

    CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic "Cys-Cys-Gly" motif and "Cys188" residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.

  2. Molecular Cloning, Sequence Characterization and Expression Analysis of a CD63 Homologue from the Coleopteran Beetle, Tenebrio molitor

    PubMed Central

    Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo

    2013-01-01

    CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic “Cys-Cys-Gly” motif and “Cys188” residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%–56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens. PMID:24132157

  3. SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila.

    PubMed

    Hovel-Miner, Galadriel; Pampou, Sergey; Faucher, Sebastien P; Clarke, Margaret; Morozova, Irina; Morozov, Pavel; Russo, James J; Shuman, Howard A; Kalachikov, Sergey

    2009-04-01

    Legionella pneumophila is the causative agent of the severe and potentially fatal pneumonia Legionnaires' disease. L. pneumophila is able to replicate within macrophages and protozoa by establishing a replicative compartment in a process that requires the Icm/Dot type IVB secretion system. The signals and regulatory pathways required for Legionella infection and intracellular replication are poorly understood. Mutation of the rpoS gene, which encodes sigma(S), does not affect growth in rich medium but severely decreases L. pneumophila intracellular multiplication within protozoan hosts. To gain insight into the intracellular multiplication defect of an rpoS mutant, we examined its pattern of gene expression during exponential and postexponential growth. We found that sigma(S) affects distinct groups of genes that contribute to Legionella intracellular multiplication. We demonstrate that rpoS mutants have a functional Icm/Dot system yet are defective for the expression of many genes encoding Icm/Dot-translocated substrates. We also show that sigma(S) affects the transcription of the cpxR and pmrA genes, which encode two-component response regulators that directly affect the transcription of Icm/Dot substrates. Our characterization of the L. pneumophila small RNA csrB homologs, rsmY and rsmZ, introduces a link between sigma(S) and the posttranscriptional regulator CsrA. We analyzed the network of sigma(S)-controlled genes by mutational analysis of transcriptional regulators affected by sigma(S). One of these, encoding the L. pneumophila arginine repressor homolog gene, argR, is required for maximal intracellular growth in amoebae. These data show that sigma(S) is a key regulator of multiple pathways required for L. pneumophila intracellular multiplication.

  4. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    PubMed

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.

  5. SAGE analysis of early oogenesis in the silkworm, Bombyx mori.

    PubMed

    Funaguma, Shunsuke; Hashimoto, Shin-ichi; Suzuki, Yutaka; Omuro, Naoko; Sugano, Sumio; Mita, Kazuei; Katsuma, Susumu; Shimada, Toru

    2007-02-01

    To identify genes involved in the differentiation of Bombyx cystoblast, we constructed two 3' long serial analysis of gene expression (Long SAGE) libraries from stage 1-3 or stage 2-3 egg chambers and compared their gene expression profiles. In both libraries, the most frequent tags were derived from the same novel transcript. The transcript does not have any open reading frame capable of encoding a protein with over 100 amino acids in length. RNA blot analysis revealed that this transcript is specifically and abundantly expressed in the Bombyx ovary, mainly the germ line cells in the ovarioles. These results suggest that Bombyx oogenesis may be regulated by a previously unidentified non-coding RNA. Comparison of the gene expression profiles between the stage 1-3 and stage 2-3 egg chamber libraries revealed that 272 tags were significantly more abundant in stage 1-3 egg chambers (p<0.05 and at least two-fold change) than in library 2. Among the differentially expressed transcripts were the sequences that correspond to ATP synthase subunit d (3.1-fold enriched) and ATP synthase coupling factor 6 (9.1-fold enriched), suggesting that they are involved in regulation of cell cycle of cystocytes.

  6. CsrA Represses Translation of sdiA, Which Encodes the N-Acylhomoserine-l-Lactone Receptor of Escherichia coli, by Binding Exclusively within the Coding Region of sdiA mRNA ▿ †

    PubMed Central

    Yakhnin, Helen; Baker, Carol S.; Berezin, Igor; Evangelista, Michael A.; Rassin, Alisa; Romeo, Tony; Babitzke, Paul

    2011-01-01

    The RNA binding protein CsrA is the central component of a conserved global regulatory system that activates or represses gene expression posttranscriptionally. In every known example of CsrA-mediated translational control, CsrA binds to the 5′ untranslated region of target transcripts, thereby repressing translation initiation and/or altering the stability of the RNA. Furthermore, with few exceptions, repression by CsrA involves binding directly to the Shine-Dalgarno sequence and blocking ribosome binding. sdiA encodes the quorum-sensing receptor for N-acyl-l-homoserine lactone in Escherichia coli. Because sdiA indirectly stimulates transcription of csrB, which encodes a small RNA (sRNA) antagonist of CsrA, we further explored the relationship between sdiA and the Csr system. Primer extension analysis revealed four putative transcription start sites within 85 nucleotides of the sdiA initiation codon. Potential σ70-dependent promoters were identified for each of these primer extension products. In addition, two CsrA binding sites were predicted in the initially translated region of sdiA. Expression of chromosomally integrated sdiA′-′lacZ translational fusions containing the entire promoter and CsrA binding site regions indicates that CsrA represses sdiA expression. The results from gel shift and footprint studies demonstrate that tight binding of CsrA requires both of these sites. Furthermore, the results from toeprint and in vitro translation experiments indicate that CsrA represses translation of sdiA by directly competing with 30S ribosomal subunit binding. Thus, this represents the first example of CsrA preventing translation by interacting solely within the coding region of an mRNA target. PMID:21908661

  7. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas.

    PubMed

    Calin, George A; Liu, Chang-gong; Ferracin, Manuela; Hyslop, Terry; Spizzo, Riccardo; Sevignani, Cinzia; Fabbri, Muller; Cimmino, Amelia; Lee, Eun Joo; Wojcik, Sylwia E; Shimizu, Masayoshi; Tili, Esmerina; Rossi, Simona; Taccioli, Cristian; Pichiorri, Flavia; Liu, Xiuping; Zupo, Simona; Herlea, Vlad; Gramantieri, Laura; Lanza, Giovanni; Alder, Hansjuerg; Rassenti, Laura; Volinia, Stefano; Schmittgen, Thomas D; Kipps, Thomas J; Negrini, Massimo; Croce, Carlo M

    2007-09-01

    Noncoding RNA (ncRNA) transcripts are thought to be involved in human tumorigenesis. We report that a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Genome-wide profiling revealed that UCRs have distinct signatures in human leukemias and carcinomas. UCRs are frequently located at fragile sites and genomic regions involved in cancers. We identified certain UCRs whose expression may be regulated by microRNAs abnormally expressed in human chronic lymphocytic leukemia, and we proved that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. Our findings argue that ncRNAs and interaction between noncoding genes are involved in tumorigenesis to a greater extent than previously thought.

  8. Molecular cloning of ADIR, a novel interferon responsive gene encoding a protein related to the torsins.

    PubMed

    Dron, Michel; Meritet, Jean François; Dandoy-Dron, Françoise; Meyniel, Jean-Philippe; Maury, Chantal; Tovey, Michael G

    2002-03-01

    The expression of the previously uncharacterized gene Adir (for ATP dependent interferon responsive gene) was increased by 5- to 15-fold in tissue of the oral cavity or in spleen and liver of mice treated orally or intraperitoneally with IFN-alpha, and in mouse cells treated in vitro with IFN-alpha or IFN-gamma. The level of Adir mRNA was also increased 20- to 40-fold in the brains of animals infected with encephalomyocarditis virus. Adir is expressed ubiquitously in mouse tissues as 1.9-, 2.4-, and 3.5-kb mRNA transcripts encoding a 385-amino-acid protein with a conserved ATP binding domain containing typical nucleotide and Mg(2+) binding sites. We also characterized the human ortholog, ADIR, which is located on chromosome 1q25-q31 and contains six exons encoding a 397-amino-acid protein with 80% homology to the mouse protein. A single 2.3-kb mRNA was detected in all human tissues examined, except for placenta, which also contained a 1.25-kb tissue-specific transcript generated by alternative splicing and encoding a putative 336-amino-acid protein. Although ADIR exhibits low homology to DYT1 and TOR1B, the deduced ADIR protein sequences are highly homologous to torsin A and torsin B and more distantly related to members of the Clp/HSP100 family of proteins, suggesting that ADIR, like torsins, is related to the AAA chaperone-like family of ATPases. An ADIR-EGFP fusion protein expressed in HeLa cells was shown to be associated with the endoplasmic reticulum.

  9. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  10. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  11. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease.

    PubMed

    Zhang, Qiulei; Li, Yang; Zhang, Yi; Wu, Chuanbao; Wang, Shengnan; Hao, Li; Wang, Shengyuan; Li, Tianzhong

    2017-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple ( Malus × domestica ). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1 , and MdPR10-2 . In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26 . In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.

  12. Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH.

    PubMed

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-10-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.

  13. Cloning, Production and Characterization of a Glycoside Hydrolase Family 7 Enzyme from the Gut Microbiota of the Termite Coptotermes curvignathus.

    PubMed

    Woon, James Sy-Keen; King, Patricia Jie Hung; Mackeen, Mukram Mohamed; Mahadi, Nor Muhammad; Wan Seman, Wan Mohd Khairulikhsan; Broughton, William J; Abdul Murad, Abdul Munir; Abu Bakar, Farah Diba

    2017-07-01

    Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-β-D-cellobioside, 4-nitrophenyl-β-D-cellobioside and 4-nitrophenyl-β-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.

  14. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    PubMed

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  15. Cell-Type Specific Features of Circular RNA Expression

    PubMed Central

    Salzman, Julia; Chen, Raymond E.; Olsen, Mari N.; Wang, Peter L.; Brown, Patrick O.

    2013-01-01

    Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program. PMID:24039610

  16. Regulation of MET by FOXP2, genes implicated in higher cognitive dysfunction and autism risk.

    PubMed

    Mukamel, Zohar; Konopka, Genevieve; Wexler, Eric; Osborn, Gregory E; Dong, Hongmei; Bergman, Mica Y; Levitt, Pat; Geschwind, Daniel H

    2011-08-10

    Autism spectrum disorder (ASD) is a highly heritable, behaviorally defined, heterogeneous disorder of unknown pathogenesis. Several genetic risk genes have been identified, including the gene encoding the receptor tyrosine kinase MET, which regulates neuronal differentiation and growth. An ASD-associated polymorphism disrupts MET gene transcription, and there are reduced levels of MET protein expression in the mature temporal cortex of subjects with ASD. To address the possible neurodevelopmental contribution of MET to ASD pathogenesis, we examined the expression and transcriptional regulation of MET by a transcription factor, FOXP2, which is implicated in regulation of cognition and language, two functions altered in ASD. MET mRNA expression in the midgestation human fetal cerebral cortex is strikingly restricted, localized to portions of the temporal and occipital lobes. Within the cortical plate of the temporal lobe, the pattern of MET expression is highly complementary to the expression pattern of FOXP2, suggesting the latter may play a role in repression of gene expression. Consistent with this, MET and FOXP2 also are reciprocally expressed by differentiating normal human neuronal progenitor cells (NHNPs) in vitro, leading us to assess whether FOXP2 transcriptionally regulates MET. Indeed, FOXP2 binds directly to the 5' regulatory region of MET, and overexpression of FOXP2 results in transcriptional repression of MET. The expression of MET in restricted human neocortical regions, and its regulation in part by FOXP2, is consistent with genetic evidence for MET contributing to ASD risk.

  17. Gene network reconstruction from transcriptional dynamics under kinetic model uncertainty: a case for the second derivative

    PubMed Central

    Bickel, David R.; Montazeri, Zahra; Hsieh, Pei-Chun; Beatty, Mary; Lawit, Shai J.; Bate, Nicholas J.

    2009-01-01

    Motivation: Measurements of gene expression over time enable the reconstruction of transcriptional networks. However, Bayesian networks and many other current reconstruction methods rely on assumptions that conflict with the differential equations that describe transcriptional kinetics. Practical approximations of kinetic models would enable inferring causal relationships between genes from expression data of microarray, tag-based and conventional platforms, but conclusions are sensitive to the assumptions made. Results: The representation of a sufficiently large portion of genome enables computation of an upper bound on how much confidence one may place in influences between genes on the basis of expression data. Information about which genes encode transcription factors is not necessary but may be incorporated if available. The methodology is generalized to cover cases in which expression measurements are missing for many of the genes that might control the transcription of the genes of interest. The assumption that the gene expression level is roughly proportional to the rate of translation led to better empirical performance than did either the assumption that the gene expression level is roughly proportional to the protein level or the Bayesian model average of both assumptions. Availability: http://www.oisb.ca points to R code implementing the methods (R Development Core Team 2004). Contact: dbickel@uottawa.ca Supplementary information: http://www.davidbickel.com PMID:19218351

  18. DD-RT-PCR identifies 7-dehydrocholesterol reductase as a key marker of early Leydig cell steroidogenesis.

    PubMed

    Anbalagan, M; Yashwanth, R; Jagannadha Rao, A

    2004-04-30

    Postnatal Leydig cell development in rat involves an initial phase of proliferation of progenitor Leydig cells (PLCs) and subsequent differentiation of these cells into immature Leydig cells (ILCs) and adult Leydig cells (ALCs). With an objective to identify the molecular changes associated with Leydig cell differentiation, the mRNA population in PLCs and ILCs were analyzed by the technique of differential display reverse transcription polymerase chain reaction (DD-RT-PCR). Results revealed differential expression of several transcripts in PLCs and ILCs. Of the several differentially expressed transcripts, the expression of transcripts corresponding to collagen IV alpha6 (Col IV alpha6) and ribosomal protein L 41 (RpL41) decreased during the differentiation of PLC to ILC. Also there was an increase in the expression of transcripts encoding enzymes such as microsomal glutathione-S-transferase (mGST 1) and 7-dehydrocholesterol reductase (7-DHCR) during this process. While Col IV alpha6 and RpL41 are known to be involved in cellular proliferation, mGST 1 and 7-DHCR are essential for normal Leydig cell steroidogenesis. A detailed study on 7-DHCR expression in Leydig cells revealed that this enzyme plays a crucial role in steroidogenesis. Interestingly expression of this enzyme is not under acute regulation by Luteinizing hormone (LH). Copyright 2004 Elsevier Ireland Ltd.

  19. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation

    NASA Technical Reports Server (NTRS)

    Romano, Laura A.; Wray, Gregory A.

    2003-01-01

    Evolutionary changes in transcriptional regulation undoubtedly play an important role in creating morphological diversity. However, there is little information about the evolutionary dynamics of cis-regulatory sequences. This study examines the functional consequence of evolutionary changes in the Endo16 promoter of sea urchins. The Endo16 gene encodes a large extracellular protein that is expressed in the endoderm and may play a role in cell adhesion. Its promoter has been characterized in exceptional detail in the purple sea urchin, Strongylocentrotus purpuratus. We have characterized the structure and function of the Endo16 promoter from a second sea urchin species, Lytechinus variegatus. The Endo16 promoter sequences have evolved in a strongly mosaic manner since these species diverged approximately 35 million years ago: the most proximal region (module A) is conserved, but the remaining modules (B-G) are unalignable. Despite extensive divergence in promoter sequences, the pattern of Endo16 transcription is largely conserved during embryonic and larval development. Transient expression assays demonstrate that 2.2 kb of upstream sequence in either species is sufficient to drive GFP reporter expression that correctly mimics this pattern of Endo16 transcription. Reciprocal cross-species transient expression assays imply that changes have also evolved in the set of transcription factors that interact with the Endo16 promoter. Taken together, these results suggest that stabilizing selection on the transcriptional output may have operated to maintain a similar pattern of Endo16 expression in S. purpuratus and L. variegatus, despite dramatic divergence in promoter sequence and mechanisms of transcriptional regulation.

  20. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    PubMed

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.

  1. Brassica rapa Has Three Genes That Encode Proteins Associated with Different Neutral Lipids in Plastids of Specific Tissues1

    PubMed Central

    Kim, Hyun Uk; Wu, Sherry S.H.; Ratnayake, Chandra; Huang, Anthony H.C.

    2001-01-01

    Plastid lipid-associated protein (PAP), a predominant structural protein associated with carotenoids and other non-green neutral lipids in plastids, was shown to be encoded by a single nuclear gene in several species. Here we report three PAP genes in the diploid Brassica rapa; the three PAPs are associated with different lipids in specific tissues. Pap1 and Pap2 are more similar to each other (84% amino acid sequence identity) than to Pap3 (46% and 44%, respectively) in the encoded mature proteins. Pap1 transcript was most abundant in the maturing anthers (tapetum) and in lesser amounts in leaves, fruit coats, seeds, and sepals; Pap2 transcript was abundant only in the petals; and Pap3 transcript had a wide distribution, but at minimal levels in numerous organs. Immunoblotting after sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that most organs had several nanograms of PAP1 or PAP2 per milligram of total protein, the highest amounts being in the anthers (10.9 μg mg−1 PAP1) and petals (6.6 μg mg−1 PAP2), and that they had much less PAP3 (<0.02 μg mg−1). In these organs PAP was localized in isolated plastid fractions. Plants were subjected to abiotic stresses; drought and ozone reduced the levels of the three Pap transcripts, whereas mechanical wounding and altering the light intensity enhanced their levels. We conclude that the PAP gene family consists of several members whose proteins are associated with different lipids and whose expressions are controlled by distinct mechanisms. Earlier reports of the expression of one Pap gene in various organs in a species need to be re-examined. PMID:11351096

  2. The Transcriptional Regulators NorG and MgrA Modulate Resistance to both Quinolones and β-Lactams in Staphylococcus aureus▿

    PubMed Central

    Truong-Bolduc, Que Chi; Hooper, David C.

    2007-01-01

    MgrA is a known regulator of the expression of several multidrug transporters in Staphylococcus aureus. We identified another regulator of multiple efflux pumps, NorG, by its ability, like that of MgrA, to bind specifically to the promoter of the gene encoding the NorA efflux pump. NorG is a member of the family of the GntR-like transcriptional regulators, and it binds specifically to the putative promoters of the genes encoding multidrug efflux pumps NorA, NorB, NorC, and AbcA. Overexpression of norG produces a threefold increase in norB transcripts associated with a fourfold increase in the level of resistance to quinolones. In contrast, disruption of norG produces no change in the level of transcripts of norA, norB, and norC but causes an increase of at least threefold in the transcript level of abcA, associated with a fourfold increase in resistance to methicillin, cefotaxime, penicillin G, and nafcillin. Overexpression of cloned abcA caused an 8- to 128-fold increase in the level of resistance to all four β-lactam antibiotics. Furthermore, MgrA and NorG have opposite effects on norB and abcA expression. MgrA acts as an indirect repressor for norB and a direct activator for abcA, whereas NorG acts as a direct activator for norB and a direct repressor for abcA. PMID:17277059

  3. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.

  4. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  5. TGMS in Rapeseed (Brassica napus) Resulted in Aberrant Transcriptional Regulation, Asynchronous Microsporocyte Meiosis, Defective Tapetum, and Fused Sexine

    PubMed Central

    Liu, Xi-Qiong; Liu, Zhi-Quan; Yu, Cheng-Yu; Dong, Jun-Gang; Hu, Sheng-Wu; Xu, Ai-Xia

    2017-01-01

    The thermo-sensitive genic male sterility (TGMS) line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine) formation and sexine fusion in the tetrad. The nexine (foot layer of exine) was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs) were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2′-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress-associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR) protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation. PMID:28775729

  6. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase

    PubMed Central

    Brockmann-Gretza, Olaf; Kalinowski, Jörn

    2006-01-01

    Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (p)ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (p)ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex transcriptional patterns detected in the rel mutant when compared directly with its rel-proficient parent strain. Conclusion In C. glutamicum the stringent response enfolds a fast answer to an induced amino acid starvation on the transcriptome level. It also showed some significant differences to the transcriptional reactions occuring in Escherichia coli and Bacillus subtilis. Notable are the rel-dependent regulation of the nitrogen metabolism genes and the rel-independent regulation of the genes encoding ribosomal proteins. PMID:16961923

  7. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements.

    PubMed

    Lippok, Bernadette; Birkenbihl, Rainer P; Rivory, Gaelle; Brümmer, Janna; Schmelzer, Elmon; Logemann, Elke; Somssich, Imre E

    2007-04-01

    WRKY transcription factors regulate distinct parts of the plant defense transcriptome. Expression of many WRKY genes themselves is induced by pathogens or pathogen-mimicking molecules. Here, we demonstrate that Arabidopsis WRKY33 responds to various stimuli associated with plant defense as well as to different kinds of phytopathogens. Although rapid pathogen-induced AtWRKY33 expression does not require salicylic acid (SA) signaling, it is dependent on PAD4, a key regulator upstream of SA. Activation of AtWRKY33 is independent of de novo protein synthesis, suggesting that it is at least partly under negative regulatory control. We show that a set of three WRKY-specific cis-acting DNA elements (W boxes) within the AtWRKY33 promoter is required for efficient pathogen- or PAMP-triggered gene activation. This strongly indicates that WRKY transcription factors are major components of the regulatory machinery modulating immediate to early expression of this gene in response to pathogen attack.

  8. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein.

    PubMed Central

    Ballario, P; Vittorioso, P; Magrelli, A; Talora, C; Cabibbo, A; Macino, G

    1996-01-01

    The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation. Images PMID:8612589

  9. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.

    PubMed

    Johnson, Jeremiah G; Murphy, Caitlin N; Sippy, Jean; Johnson, Tylor J; Clegg, Steven

    2011-07-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.

  10. Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae▿

    PubMed Central

    Johnson, Jeremiah G.; Murphy, Caitlin N.; Sippy, Jean; Johnson, Tylor J.; Clegg, Steven

    2011-01-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression. PMID:21571997

  11. Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.).

    PubMed

    Qin, Xiaobo; Lin, Fanrong; Lii, Yifan; Gou, Chunbao; Chen, Fang

    2011-03-01

    A cDNA clone designated arf1 was isolated from a physic nut (Jatropha curcas L.) endosperm cDNA library which encodes a small GTP-binding protein and has significant homology to ADP-ribosylation factors (ARF) in plants, animals and microbes. The cDNA contains an open reading frame that encodes a polypeptide of 181 amino acids with a calculated molecular mass of 20.7 kDa. The deduced amino acid sequence showed high homology to known ARFs from other organisms. The products of the arf1 obtained by overexpression in E. coli revealed the specific binding activity toward GTP. The expression of arf1 was observed in flowers, roots, stems and leaves as analyzed by RT-PCR, and its transcriptional level was highest in flowers. In particular, the accumulation of arf1 transcripts was different under various environmental stresses in seedlings. The results suggest that arf1 plays distinct physiological roles in Jatropha curcas cells.

  12. Transcriptional Profiling of Caulobacter crescentus during Growth on Complex and Minimal Media

    PubMed Central

    Hottes, Alison K.; Meewan, Maliwan; Yang, Desiree; Arana, Naomi; Romero, Pedro; McAdams, Harley H.; Stephens, Craig

    2004-01-01

    Microarray analysis was used to examine gene expression in the freshwater oligotrophic bacterium Caulobacter crescentus during growth on three standard laboratory media, including peptone-yeast extract medium (PYE) and minimal salts medium with glucose or xylose as the carbon source. Nearly 400 genes (approximately 10% of the genome) varied significantly in expression between at least two of these media. The differentially expressed genes included many encoding transport systems, most notably diverse TonB-dependent outer membrane channels of unknown substrate specificity. Amino acid degradation pathways constituted the largest class of genes induced in PYE. In contrast, many of the genes upregulated in minimal media encoded enzymes for synthesis of amino acids, including incorporation of ammonia and sulfate into glutamate and cysteine. Glucose availability induced expression of genes encoding enzymes of the Entner-Doudoroff pathway, which was demonstrated here through mutational analysis to be essential in C. crescentus for growth on glucose. Xylose induced expression of genes encoding several hydrolytic exoenzymes as well as an operon that may encode a novel pathway for xylose catabolism. A conserved DNA motif upstream of many xylose-induced genes was identified and shown to confer xylose-specific expression. Xylose is an abundant component of xylan in plant cell walls, and the microarray data suggest that in addition to serving as a carbon source for growth of C. crescentus, this pentose may be interpreted as a signal to produce enzymes associated with plant polymer degradation. PMID:14973021

  13. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation.

    PubMed

    Castro-Prego, Raquel; Lamas-Maceiras, Mónica; Soengas, Pilar; Carneiro, Isabel; González-Siso, Isabel; Cerdán, M Esperanza

    2009-12-14

    Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1-Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides -557 to -376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.

  14. Assessing gene expression during pathogenesis: Use of qRT-PCR to follow toxin production in the entomopathogenic fungus Beauveria bassiana during infection and immune response of the insect host Triatoma infestans.

    PubMed

    Lobo, Luciana S; Luz, Christian; Fernandes, Éverton K K; Juárez, M Patricia; Pedrini, Nicolás

    2015-06-01

    Entomopathogenic fungi secrete toxic secondary metabolites during the invasion of the insect hemocoel as part of the infection process. Although these compounds have been frequently mentioned as virulence factors, the roles of many of them remain poorly understood, including the question of whether they are expressed during the infection process. A major hurdle to this issue remains the low sensitivity of biochemical detection techniques (e.g., HPLC) within the complex samples that may contain trace quantities of fungal molecules inside the insect. In this study, quantitative reverse transcription real-time PCR (qRT-PCR) was used to measure the transcript levels within the insect fungal pathogen Beauveria bassiana, that encode for the synthetase enzymes of the secondary metabolites tenellin (BbtenS), beauvericin (BbbeaS) and bassianolide (BbbslS) during the infection of Triatoma infestans, a Chagas disease insect vector. Absolute quantification was performed at different time periods after insect treatment with various concentrations of propagules, either by immersing the insects in conidial suspensions or by injecting them with blastospores. Both BbtenS and BbbeaS were highly expressed in conidia-treated insects at days 3 and 12 post-treatment. In blastospore-injected insects, BbtenS and BbbeaS expression peaked at 24h post-injection and were also highly expressed in insect cadavers. The levels of BbbslS transcripts were much lower in all conditions tested. The expression patterns of insect genes encoding proteins that belong to the T. infestans humoral immune system were also evaluated with the same technique. This qPCR-based methodology can contribute to decifering the dynamics of entomopathogenic fungal infection at the molecular level. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.

    PubMed

    Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M

    1992-01-01

    The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.

  16. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    PubMed Central

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  17. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli

    PubMed Central

    Berger, Michael; Gerganova, Veneta; Berger, Petya; Rapiteanu, Radu; Lisicovas, Viktoras; Dobrindt, Ulrich

    2016-01-01

    The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling. PMID:27545593

  18. Aiding and Abetting Cancer: mRNA export and the nuclear pore

    PubMed Central

    Culjkovic-Kraljacic, Biljana; Borden, Katherine L.B

    2013-01-01

    mRNA export is a critical step in gene expression. Export of transcripts can be modulated in response to cellular signaling or stress. Consistently, mRNA export is dysregulated in primary human specimens derived from many different forms of cancer. Aberrant expression of export factors can alter export of specific transcripts encoding proteins involved in proliferation, survival and oncogenesis. These specific factors, which are not used for bulk mRNA export, are obvious therapeutic targets. Indeed, given the emerging role of mRNA export in cancer, it is not surprising that efforts to target different aspects of this pathway have reached the clinical trial stage. Thus, like transcription and translation, mRNA export may also play a critical role in cancer genesis and maintenance. PMID:23582887

  19. The early transcriptional response of human granulocytes to infection with Candida albicans is not essential for killing but reflects cellular communications.

    PubMed

    Fradin, Chantal; Mavor, Abigail L; Weindl, Günther; Schaller, Martin; Hanke, Karin; Kaufmann, Stefan H E; Mollenkopf, Hans; Hube, Bernhard

    2007-03-01

    Candida albicans is a polymorphic opportunistic fungus that can cause life-threatening systemic infections following hematogenous dissemination in patients susceptible to nosocomial infection. Neutrophils form part of the innate immune response, which is the first line of defense against microbes and is particularly important in C. albicans infections. To compare the transcriptional response of leukocytes exposed to C. albicans, we investigated the expression of key cytokine genes in polymorphonuclear and mononuclear leukocytes after incubation with C. albicans for 1 h. Isolated mononuclear cells expressed high levels of genes encoding proinflammatory signaling molecules, whereas neutrophils exhibited much lower levels, similar to those observed in whole blood. The global transcriptional profile of neutrophils was examined by using an immunology-biased human microarray to determine whether different morphological forms or the viability of C. albicans altered the transcriptome. Hyphal cells appeared to have the broadest effect, although the most strongly induced genes were regulated independently of morphology or viability. These genes were involved in proinflammatory cell-cell signaling, cell signal transduction, and cell growth. Generally, genes encoding known components of neutrophil granules showed no upregulation at this time point; however, lactoferrin, a well-known candidacidal peptide, was secreted by neutrophils. Addition to inhibitors of RNA or protein de novo synthesis did not influence the killing activity within 30 min. These results support the general notion that neutrophils do not require gene transcription to mount an immediate and direct attack against microbes. However, neutrophils exposed to C. albicans express genes involved in communication with other immune cells.

  20. Characterization of a fungal protein kinase from Cryphonectria parasitica and its transcriptional upregulation by hypovirus.

    PubMed

    Kim, Myoung-Ju; Choi, Jin-Won; Park, Seung-Moon; Cha, Byeong-Jin; Yang, Moon-Sik; Kim, Dae-Hyuk

    2002-08-01

    The chestnut blight fungus Cryphonectria parasitica and its hypovirus comprise useful model system to study the mechanisms of hypoviral infection. We used degenerate primers based on fungal protein kinases to isolate a gene, cppk1, which encodes a novel Ser/Thr protein kinase of C. parasitica. The gene showed highest homology to ptk1, a Ser/Thr protein kinase from Trichoderma reesei. The encoded protein had a predicted mass of 70.5 kDa and a pI of 7.45. Northern blot analyses revealed that the cppk1 transcript was expressed from the beginning of culture, with a slight increase by 5 days of culture. However, its expression was specifically affected by the presence of virus, and it was transcriptionally upregulated in the fungal strain infected with the hypovirus. A kinase assay using Escherichia coli-derived CpPK1 revealed CpPK1-specific phosphorylated proteins with estimated masses of 50 kDa and 44 kDa. In addition, the phosphorylation of both proteins was higher in a cell-free extract from the hypovirulent strain. The increased expression of cppk1 by the introduction of an additional copy results in a subset of viral symptoms of reduced pigmentation and conidiation in a virus-free isolate. cppk1 overexpression also causes the downregulation of mating factor genes Mf2/1 and Mf2/2, resulting in female sterility. The present study suggests that the hypovirus disturbs fungal signalling by transcriptional upregulation of cppk1, which results in reduced pigmentation and conidiation and female sterility.

  1. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses.

    PubMed

    Esmon, C Alex; Tinsley, Amanda G; Ljung, Karin; Sandberg, Goran; Hearne, Leonard B; Liscum, Emmanuel

    2006-01-03

    Plants, although sessile, can reorient growth axes in response to changing environmental conditions. Phototropism and gravitropism represent adaptive growth responses induced by changes in light direction and growth axis orientation relative to gravitational direction, respectively. The nearly 80-year-old Cholodny-Went theory [Went, F. W. & Thimann, K. V. (1937) Phytohormones (Macmillan, New York)] predicts that formation of a gradient of the plant morphogen auxin is central to the establishment of tropic curvature. Loss of tropic responses in seedling stems of Arabidopsis thaliana mutants lacking the auxin-regulated transcriptional activator NPH4/ARF7 has further suggested that a gradient of gene expression represents an essential output from the auxin gradient. Yet the molecular identities of such output components, which are likely to encode proteins directly involved in growth control, have remained elusive. Here we report the discovery of a suite of tropic stimulus-induced genes in Brassica oleracea that are responsive to an auxin gradient and exhibit morphologically graded expression concomitant with, or before, observable curvature responses. These results provide compelling molecular support for the Cholodny-Went theory and suggest that morphologically graded transcription represents an important mechanism for interpreting tropically stimulated gradients of auxin. Intriguingly, two of the tropic stimulus-induced genes, EXPA1 and EXPA8, encode enzymes involved in cell wall extension, a response prerequisite for differential growth leading to curvatures, and are up-regulated before curvature in the flank that will elongate. This observation suggests that morphologically graded transcription likely leads to the graded expression of proteins whose activities can directly regulate the establishment and modulation of tropic curvatures.

  2. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.

    PubMed

    Gruben, Birgit S; Mäkelä, Miia R; Kowalczyk, Joanna E; Zhou, Miaomiao; Benoit-Gelber, Isabelle; De Vries, Ronald P

    2017-11-23

    The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes.

  3. Coordination of flower development by homeotic master regulators.

    PubMed

    Ito, Toshiro

    2011-02-01

    Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Specialized sugar sensing in diverse fungi.

    PubMed

    Brown, Victoria; Sabina, Jeffrey; Johnston, Mark

    2009-03-10

    S. cerevisiae senses glucose and galactose differently. Glucose is detected through sensors that reside in the cellular plasma membrane. When activated, the sensors initiate a signal-transduction cascade that ultimately inactivates the Rgt1 transcriptional repressor by causing degradation of its corepressors Mth1 and Std1. This results in the expression of many HXT genes encoding glucose transporters. The ensuing flood of glucose into the cell activates Mig1, a transcriptional repressor that mediates "glucose repression" of many genes, including the GAL genes; hence, glucose sensing hinders galactose utilization. Galactose is sensed in the cytoplasm via Gal3. Upon binding galactose (and ATP), Gal3 sequesters the Gal80 protein, thereby emancipating the Gal4 transcriptional activator of the GAL genes. Gal4 also activates expression of MTH1, encoding a corepressor critical for Rgt1 function. Thus, galactose inhibits glucose assimilation by encouraging repression of HXT genes. C. albicans senses glucose similarly to S. cerevisiae but does not sense galactose through Gal3-Gal80-Gal4. Its genome harbors no GAL80 ortholog, and the severely truncated CaGal4 does not regulate CaGAL genes. We present evidence that C. albicans senses galactose with its Hgt4 glucose sensor, a capability that is enabled by transcriptional "rewiring" of its sugar-sensing signal-transduction pathways. We suggest that galactose sensing through Hgt4 is ancestral in fungi.

  5. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  6. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu; Minnesota Obesity Center, Saint Paul, MN 55108; Fredriksson, Robert

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance throughmore » a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.« less

  7. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism.

    PubMed

    Mehta, Ameeta; Dattani, Mehul T

    2008-02-01

    The pituitary gland is a complex organ secreting six hormones from five different cell types. It is the end product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism or more complex disorders such as septo-optic dysplasia and holoprosencephaly. However, the overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified; characterization of these will further elucidate the pathogenesis of this complex condition and also shed light on normal pituitary development and function.

  8. Heterologous expression of the Phycomyces blakesleeanus phytoene dehydrogenase gene (carB) in Mucor circinelloides.

    PubMed

    Ruiz-Hidalgo, M J; Eslava, A P; Alvarez, M I; Benito, E P

    1999-11-01

    A phytoene dehydrogenase-deficient mutant of Mucor circinelloides accumulating only phytoene was transformed with the gene encoding the corresponding enzyme (carB gene) of Phycomyces blakesleeanus. Carotenoids derived from phytoene were detected in the transformants showing that the P. blakesleeanus carB gene complements the M. circinelloides carB mutation. These newly formed carotenoids accumulated in low quantities, indicating that functional complementation was poor. carB mRNA molecules correctly transcribed were detected in the transformants, but they represented a small proportion of the total population of carB-derived mRNAs, mostly constituted by truncated transcripts and by transcripts longer than the transcript that is functional in Phycomyces. These results showed that the P. blakesleeanus carB gene was expressed in M. circinelloides and suggested that the poor complementation observed was owing, at least in part, to the lack of specificity in the recognition of the transcription initiation and termination signals of the P. blakesleeanus carB gene by the M. circinelloides transcriptional machinery.

  9. Mediated Plastid RNA Editing in Plant Immunity

    PubMed Central

    García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo

    2013-01-01

    Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264

  10. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars.

    PubMed

    Ferreira, Rita; Borges, Vítor; Borrego, Maria José; Gomes, João Paulo

    2017-07-01

    Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis . By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i ) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii ) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii ) the median of the half-life time (t 1/2 ) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv ) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v ) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.

  11. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer.

    PubMed

    Castillo, Sandra D; Angulo, Barbara; Suarez-Gauthier, Ana; Melchor, Lorenzo; Medina, Pedro P; Sanchez-Verde, Lydia; Torres-Lanzas, Juan; Pita, Guillermo; Benitez, Javier; Sanchez-Cespedes, Montse

    2010-09-01

    The search for novel oncogenes is important because they could be the target of future specific anticancer therapies. In the present paper we report the identification of novel amplified genes in lung cancer by means of global gene expression analysis. To screen for amplicons, we aligned the gene expression data according to the position of transcripts in the human genome and searched for clusters of over-expressed genes. We found several clusters with gene over-expression, suggesting an underlying genomic amplification. FISH and microarray analysis for DNA copy number in two clusters, at chromosomes 11q12 and 13q34, confirmed the presence of amplifications spanning about 0.4 and 1 Mb for 11q12 and 13q34, respectively. Amplification at these regions each occurred at a frequency of 3%. Moreover, quantitative RT-PCR of each individual transcript within the amplicons allowed us to verify the increased in gene expression of several genes. The p120ctn and DP1 proteins, encoded by two candidate oncogenes, CTNND1 and TFDP1, at 11q12 and 13q amplicons, respectively, showed very strong immunostaining in lung tumours with gene amplification. We then focused on the 13q34 amplicon and in the TFDP1 candidate oncogene. To further determine the oncogenic properties of DP1, we searched for lung cancer cell lines carrying TFDP1 amplification. Depletion of TFDP1 expression by small interference RNA in a lung cancer cell line (HCC33) with TFDP1 amplification and protein over-expression reduced cell viability by 50%. In conclusion, we report the identification of two novel amplicons, at 13q34 and 11q12, each occurring at a frequency of 3% of non-small cell lung cancers. TFDP1, which encodes the E2F-associated transcription factor DP1 is a candidate oncogene at 13q34. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession No. GSE21168.

  12. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  13. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  14. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  15. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  16. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  17. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    PubMed

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Identification and embryonic expression of a new AP-2 transcription factor, AP-2 epsilon.

    PubMed

    Wang, Hao-Ven; Vaupel, Kristina; Buettner, Reinhard; Bosserhoff, Anja-Katrin; Moser, Markus

    2004-09-01

    AP-2 proteins comprise a family of highly related transcription factors, which are expressed during mouse embryogenesis in a variety of ectodermal, neuroectodermal, and mesenchymal tissues. AP-2 transcription factors were shown to be involved in morphogenesis of craniofacial, urogenital, neural crest-derived, and placental tissues. By means of a partial cDNA fragment identified during an expressed sequence tag search for AP-2 genes, we identified a fifth, previously unknown AP-2-related gene, AP-2 epsilon. AP-2 epsilon encodes an open reading frame of 434 amino acids, which reveals the typical modular structure of AP-2 transcription factors with highly conserved C-terminal DNA binding and dimerization domains. Although the N-terminally localized activation domain is less homologous, position and identity of amino acids essential for transcriptional transactivation are conserved. Reverse transcriptase-polymerase chain reaction analyses of murine embryos revealed AP-2 epsilon expression from gestational stage embryonic day 7.5 throughout all later embryonic stages until birth. Whole-mount in situ hybridization using a specific AP-2 epsilon cDNA fragment demonstrated that during embryogenesis, expression of AP-2 epsilon is mainly restricted to neural tissue, especially the midbrain, hindbrain, and olfactory bulb. This expression pattern was confirmed by immunohistochemistry with an AP-2 epsilon-specific antiserum. By using this antiserum, we could further localize AP-2 epsilon expression in a hypothalamic nucleus and the neuroepithelium of the vomeronasal organ, suggesting an important function of AP-2 epsilon for the development of the olfactory system.

  19. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch.

    PubMed

    Yin, Jing; Li, Xin; Zhan, Yaguang; Li, Ying; Qu, Ziyue; Sun, Lu; Wang, Siyao; Yang, Jie; Xiao, Jialei

    2017-11-21

    Birch (Betula platyphylla Suk.) contains triterpenoids with anti-HIV and anti-tumor pharmacological activities. However, the natural abundance of these triterpenoids is low, and their chemical synthesis is costly. Transcription factors have the ability to regulate the metabolite pathways of triterpenoids via multi-gene control, thereby improving metabolite yield. Thus, transcription factors have the potential to facilitate the production of birch triterpenoids. Plant bHLH (basic helix-loop-helix) transcription factors play important roles in stress response and secondary metabolism. In this study, we cloned two genes, BpMYC4 and BpbHLH9, that encode bHLH transcription factors in Betula platyphylla Suk. The open reading frame (ORF) of BpMYC4 was 1452 bp and encoded 483 amino acids, while the ORF of BpbHLH9 was 1140 bp and encoded 379 amino acids. The proteins of BpMYC4 and BpbHLH9 were localized in the cell membrane and nucleus. The tissue-specific expression patterns revealed that BpMYC4 expression in leaves was similar to that in the stem and higher than in the roots. The expression of BpbHLH9 was higher in the leaves than in the root and stem. The expressions of BpMYC4 and BpbHLH9 increased after treatment with abscisic acid, methyl jasmonate, and gibberellin and decreased after treatment with ethephon. The promoters of BpMYC4 and BpbHLH9 were isolated using a genome walking approach, and 900-bp and 1064-bp promoter sequences were obtained for BpMYC4 and BpbHLH9, respectively. The ORF of BpbHLH9 was ligated into yeast expression plasmid pYES3 and introduced into INVScl and INVScl1-pYES2-SS yeast strains. The squalene and total triterpenoid contents in the different INVScl1 transformants decreased in the following order INVScl1-pYES-SS-bHLH9 > INVScl1-pYES3-bHLH9 > INVScl1-pYES2- BpSS > INVScl-pYES2. In BpbHLH9 transgenic birch, the relative expression of the genes that encodes for enzymes critical for triterpenoid synthesis showed a different level of up-regulation compair with wild birch(control), and the contents of betulinic acid, oleanolic acid and betulin in bHLH9-8 transgenic birch were increased by 11.35%, 88.34% and 23.02% compared to in wild birch, respectively. Our results showed that the modulation of BpbHLH9 by different hormones affected triterpenoid synthesis and triterpenoid contents. This is the first report of the cloning of BpbHLH9, and the findings are important for understanding the regulatory role of BpbHLH9 in the synthesis of birch triterpenoids.

  20. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.

    PubMed

    Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G

    2004-04-29

    Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  1. Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.

    USDA-ARS?s Scientific Manuscript database

    Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...

  2. Cloning of a methanol-inducible moxF promoter and its analysis in moxB mutants of Methylobacterium extorquens AM1rif.

    PubMed Central

    Morris, C J; Lidstrom, M E

    1992-01-01

    In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436

  3. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  4. Prostate Cancer Evaluation: Design, Synthesis, and Evaluation of Novel Enzyme-Activated Proton MRI Contrast Agents

    DTIC Science & Technology

    2006-10-01

    colored plates: ALL DTIC reproductions will be in black and white. 14. ABSTRACT The lacZ gene encoding E . coli beta-gal has already been...transcriptional activation, protein expression, and protein interaction, lacZ gene encoding E . coli β-gal has already been recognized as the most commonly...Cancer Facts and Figures, 2004. (www.cancer.org). 2. Jemal A, Thomas A, Murray T, Thun M, 2002 Cancer statistics, 2002, CA Cancer J. Clin., 52, 23-47

  5. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shucai; Li, Eryang; Porth, Ilga

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding setsmore » of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.« less

  6. Repressed expression of a gene for a basic helix-loop-helix protein causes a white flower phenotype in carnation

    PubMed Central

    Totsuka, Akane; Okamoto, Emi; Miyahara, Taira; Kouno, Takanobu; Cano, Emilio A.; Sasaki, Nobuhiro; Watanabe, Aiko; Tasaki, Keisuke; Nishihara, Masahiro; Ozeki, Yoshihiro

    2018-01-01

    In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes. PMID:29681756

  7. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113.

    PubMed

    Barret, Matthieu; Egan, Frank; Moynihan, Jennifer; Morrissey, John P; Lesouhaitier, Olivier; O'Gara, Fergal

    2013-06-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Expression of the ribulose-1,5-bisphosphate carboxylase large subunit gene and three small subunit genes in two cell types of maize leaves

    PubMed Central

    Sheen, Jenq-Yunn; Bogorad, Lawrence

    1986-01-01

    Transcripts of three distinct ribulose-1,5-bisphosphate carboxylase (RuBPC) small subunit (SS) genes account for ∼90% of the mRNA for this protein in maize leaves. Transcripts of two of them constitute >80% of the SS mRNA in 24-h greening maize leaves. The third gene contribute ∼10%. Transcripts of all three nuclear-encoded SS genes are detectable in bundle sheath (BSC) and mesophyll cells (MC) of etiolated maize leaves. The level of mRNA for each gene is different in etioplasts of MC but all drop during photoregulated development of chloroplasts in MC and follow a pattern of transitory rise and fall in BSC. The amounts of LS and SS proteins continue to increase steadily well after the mRNA levels reach their peaks in BSC. The molar ratio of mRNA for chloroplast-encoded RuBPC large subunit (LS) to the nuclear genome encoded SS is about 10:1 although LS and SS proteins are present in about equimolar amounts. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453739

  9. Molecular constituents of the extracellular matrix in rat liver mounting a hepatic progenitor cell response for tissue repair

    PubMed Central

    2013-01-01

    Background Tissue repair in the adult mammalian liver occurs in two distinct processes, referred to as the first and second tiers of defense. We undertook to characterize the changes in molecular constituents of the extracellular matrix when hepatic progenitor cells (HPCs) respond in a second tier of defense to liver injury. Results We used transcriptional profiling on rat livers responding by a first tier (surgical removal of 70% of the liver mass (PHx protocol)) and a second tier (70% hepatectomy combined with exposure to 2-acetylaminofluorene (AAF/PHx protocol)) of defense to liver injury and compared the transcriptional signatures in untreated rat liver (control) with those from livers of day 1, day 5 and day 9 post hepatectomy in both protocols. Numerous transcripts encoding specific subunits of collagens, laminins, integrins, and various other extracellular matrix structural components were differentially up- or down-modulated (P < 0.01). The levels of a number of transcripts were significantly up-modulated, mainly in the second tier of defense (Agrn, Bgn, Fbn1, Col4a1, Col8a1, Col9a3, Lama5, Lamb1, Lamb2, Itga4, Igtb2, Itgb4, Itgb6, Nid2), and their signal intensities showed a strong or very strong correlation with Krt1-19, a well-established marker of a ductular/HPC reaction. Furthermore, a significant up-modulation and very strong correlation between the transcriptional profiles of Krt1-19 and St14 encoding matriptase, a component of a novel protease system, was found in the second tier of defense. Real-time PCR confirmed the modulation of St14 transcript levels and strong correlation to Krt-19 and also showed a significant up-modulation and strong correlation to Spint1 encoding HAI-1, a cognate inhibitor of matriptase. Immunodetection and three-dimensional reconstructions showed that laminin, Collagen1a1, agrin and nidogen1 surrounded bile ducts, proliferating cholangiocytes, and HPCs in ductular reactions regardless of the nature of defense. Similarly, matriptase and HAI-1 were expressed in cholangiocytes regardless of the tier of defense, but in the second tier of defense, a subpopulation of HPCs in ductular reactions co-expressed HAI-1 and the fetal hepatocyte marker Dlk1. Conclusion Transcriptional profiling and immunodetection, including three-dimensional reconstruction, generated a detailed overview of the extracellular matrix constituents expressed in a second tier of defense to liver injury. PMID:24359594

  10. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    PubMed

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  11. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA

    PubMed Central

    Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.

    2013-01-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928

  12. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation.

    PubMed

    Huang, Ming-Der; Wei, Fu-Jin; Wu, Cheng-Cheih; Hsing, Yue-Ie Caroline; Huang, Anthony H C

    2009-02-01

    The anthers in flowers perform important functions in sexual reproduction. Several recent studies used microarrays to study anther transcriptomes to explore genes controlling anther development. To analyze the secretion and other functions of the tapetum, we produced transcriptomes of anthers of rice (Oryza sativa subsp. japonica) at six progressive developmental stages and pollen with sequencing-by-synthesis technology. The transcriptomes included at least 18,000 unique transcripts, about 25% of which had antisense transcripts. In silico anther-minus-pollen subtraction produced transcripts largely unique to the tapetum; these transcripts include all the reported tapetum-specific transcripts of orthologs in other species. The differential developmental profiles of the transcripts and their antisense transcripts signify extensive regulation of gene expression in the anther, especially the tapetum, during development. The transcriptomes were used to dissect two major cell/biochemical functions of the tapetum. First, we categorized and charted the developmental profiles of all transcripts encoding secretory proteins present in the cellular exterior; these transcripts represent about 12% and 30% of the those transcripts having more than 100 and 1,000 transcripts per million, respectively. Second, we successfully selected from hundreds of transcripts several transcripts encoding potential proteins for lipid exine synthesis during early anther development. These proteins include cytochrome P450, acyltransferases, and lipid transfer proteins in our hypothesized mechanism of exine synthesis in and export from the tapetum. Putative functioning of these proteins in exine formation is consistent with proteins and metabolites detected in the anther locule fluid obtained by micropipetting.

  13. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  14. Mitochondrial targeting of HIF-1α inhibits hypoxia-induced apoptosis independently of its transcriptional activity.

    PubMed

    Li, Hong-Sheng; Zhou, Yan-Ni; Li, Lu; Li, Sheng-Fu; Long, Dan; Chen, Xue-Lu; Zhang, Jia-Bi; Li, You-Ping; Feng, Li

    2018-04-25

    The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates adaptive responses to hypoxia by nuclear translocation and regulation of gene expression. Mitochondrial changes are critical for the adaptive response to hypoxia. However, the transcriptional and non-transcriptional mechanisms by which HIF-1α regulates mitochondria under hypoxia are poorly understood. Here, we examined the subcellular localization of HIF-1α in human cells and identified a small fraction of HIF-1α that translocated to the mitochondria after exposure to hypoxia or hypoxia-mimicking pharmacological agents. To probe the function of this HIF-1α population, we ectopically expressed a mitochondrial-targeted form of HIF-1α (mito-HIF-1α). Expression of mito-HIF-1α was sufficient to attenuate apoptosis induced by exposure to hypoxia or H 2 O 2 -induced oxidative stress. Moreover, mito-HIF-1α expression reduced the production of reactive oxygen species, the collapse of mitochondrial membrane potential, and the expression of mitochondrial DNA-encoded mRNA in response to hypoxia. However, these functions of mito-HIF-1α were independent of its conventional transcriptional activity. Finally, the livers of mice with CCl 4 -induced fibrosis showed a progressive increase in HIF-1α association with the mitochondria, indicating the clinical relevance of this finding. These data suggested that mitochondrial HIF-1α protects against apoptosis independently of its well-known role as a transcription factor. Copyright © 2018. Published by Elsevier Inc.

  15. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    PubMed

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms.

  16. Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: Cloning and transcriptional analysis in different maturation stages, temperatures, and putative reproductive hormones.

    PubMed

    Lee, Soo Rin; Lee, Ji-Hyun; Kim, Ah Ran; Kim, Sanghee; Park, Hyun; Baek, Hea Ja; Kim, Hyun-Woo

    2016-02-01

    Three full-length cDNAs encoding lipoprotein homologs were identified in Tigriopus kingsejongensis, a newly identified copepod from Antarctica. Structural and transcriptional analyses revealed homology with two vitellogenin-like proteins, Tik-Vg1 and Tik-Vg2, which were 1855 and 1795 amino acids in length, respectively, along with a third protein, Tik-MEP, which produced a 1517-residue protein with similarity to a melanin engaging protein (MEP) in insects Phylogenetic analysis showed that Vgs in Maxillopods including two Tik-Vgs belong to the arthropod vitellogenin-like clade, which includes clottable proteins (CPs) in decapod crustaceans and vitellogenins in insects. Tik-MEP clustered together with insect MEPs, which appear to have evolved before the apoB-like and arthropod Vg-like clades. Interestingly, no genes orthologous to those found in the apoB clade were identified in Maxillopoda, suggesting that functions of large lipid transfer proteins (LLTPs) in reproduction and lipid metabolism may be different from those in insect and decapod crustaceans. As suggested by phylogenetic analyses, the two Tik-Vgs belonging to the arthropod Vg-like clade appear to play major roles in oocyte maturation, while Vgs belonging to the apoB clade function primarily in the reproduction of decapod crustaceans. Transcriptional analysis of Tik-Vg expression revealed a 24-fold increase in mature and ovigerous females compared with immature female, whereas expression of Tik-MEP remained low through all reproductive stages. Acute temperature changes did not affect the transcription of Tik-Vg genes, whereas Tik-MEP appeared to be affected by temperature change. Among the three hormones thought to be involved in molting and reproduction in arthropods, only farnesoic acid (FA) induced transcription of the two Tik-Vg genes. Regardless of developmental stage and hormone treatment, Tik-Vg1 and Tik-Vg2 exhibited a strong positive correlation in expression, suggesting that expression of these genes may be regulated by the same transcriptional machinery. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    PubMed

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  18. Nesfatin-1-Like Peptide Encoded in Nucleobindin-1 in Goldfish is a Novel Anorexigen Modulated by Sex Steroids, Macronutrients and Daily Rhythm

    PubMed Central

    Sundarrajan, Lakshminarasimhan; Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Ramesh, Naresh; Canosa, Luis Fabián; Unniappan, Suraj

    2016-01-01

    Nesfatin-1 is an 82 amino acid anorexigen encoded in a secreted precursor nucleobindin-2 (NUCB2). NUCB2 was named so due to its high sequence similarity with nucleobindin-1 (NUCB1). It was recently reported that NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP) in mice. Here, we aimed to characterize NLP in fish. RT- qPCR showed NUCB1 expression in both central and peripheral tissues. Western blot analysis and/or fluorescence immunohistochemistry determined NUCB1/NLP in the brain, pituitary, testis, ovary and gut of goldfish. NUCB1 mRNA expression in goldfish pituitary and gut displayed a daily rhythmic pattern of expression. Pituitary NUCB1 mRNA expression was downregulated by estradiol, while testosterone upregulated its expression in female goldfish brain. High carbohydrate and fat suppressed NUCB1 mRNA expression in the brain and gut. Intraperitoneal injection of synthetic rat NLP and goldfish NLP at 10 and 100 ng/g body weight doses caused potent inhibition of food intake in goldfish. NLP injection also downregulated the expression of mRNAs encoding orexigens, preproghrelin and orexin-A, and upregulated anorexigen cocaine and amphetamine regulated transcript mRNA in goldfish brain. Collectively, these results provide the first set of results supporting the anorectic action of NLP, and the regulation of tissue specific expression of goldfish NUCB1. PMID:27329836

  19. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis.

    PubMed

    Srinivasan, Dayalan G; Abdelhady, Ahmed; Stern, David L

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.

  20. Gene Expression Analysis of Parthenogenetic Embryonic Development of the Pea Aphid, Acyrthosiphon pisum, Suggests That Aphid Parthenogenesis Evolved from Meiotic Oogenesis

    PubMed Central

    Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006

  1. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  2. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor.

    PubMed

    Gasmi, Najla; Jacques, Pierre-Etienne; Klimova, Natalia; Guo, Xiao; Ricciardi, Alessandra; Robert, François; Turcotte, Bernard

    2014-10-01

    In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis. Interestingly, in the presence of ethanol, Ert1 is a repressor of PDC1 encoding an important enzyme for fermentation. We also show that Ert1 binds directly to the PCK1 and PDC1 promoters. In summary, Ert1 is a novel factor involved in the regulation of gluconeogenesis as well as a key fermentation gene. Copyright © 2014 by the Genetics Society of America.

  3. Dextransucrase Expression Is Concomitant with that of Replication and Maintenance Functions of the pMN1 Plasmid in Lactobacillus sakei MN1

    PubMed Central

    Nácher-Vázquez, Montserrat; Ruiz-Masó, José A.; Mohedano, María L.; del Solar, Gloria; Aznar, Rosa; López, Paloma

    2017-01-01

    The exopolysaccharide synthesized by Lactobacillus sakei MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the dsrLS gene, which encodes the dextransucrase involved in dextran synthesis. DNA sequencing of the 11,126 kbp plasmid (pMN1) revealed that it belongs to a family which replicates by the theta mechanism, whose prototype is pUCL287. The plasmid comprises the origin of replication, repA, repB, and dsrLS genes, as well as seven open reading frames of uncharacterized function. Lb. sakei MN1 produces dextran when sucrose, but not glucose, is present in the growth medium. Therefore, plasmid copy number and stability, as well as dsrLS expression, were investigated in cultures grown in the presence of either sucrose or glucose. The results revealed that pMN1 is a stable low-copy-number plasmid in both conditions. Gene expression studies showed that dsrLS is constitutively expressed, irrespective of the carbon source present in the medium. Moreover, dsrLS is expressed from a monocistronic transcript as well as from a polycistronic repA-repB-orf1-dsrLS mRNA. To our knowledge, this is the first report of a plasmid-borne dextransucrase-encoding gene, as well as the first time that co-transcription of genes involved in plasmid maintenance and replication with a gene encoding an enzyme has been established. PMID:29209293

  4. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    PubMed

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Evaluation of the capability of the PCV2 genome to encode miRNAs: lack of viral miRNA expression in an experimental infection.

    PubMed

    Núñez-Hernández, Fernando; Pérez, Lester J; Vera, Gonzalo; Córdoba, Sarai; Segalés, Joaquim; Sánchez, Armand; Núñez, José I

    2015-05-01

    Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express miRNAs in an in vivo subclinical infection.

  6. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    PubMed

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  7. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    PubMed

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  8. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome.

    PubMed

    Judelson, Howard S; Ah-Fong, Audrey M V; Aux, George; Avrova, Anna O; Bruce, Catherine; Cakir, Cahid; da Cunha, Luis; Grenville-Briggs, Laura; Latijnhouwers, Maita; Ligterink, Wilco; Meijer, Harold J G; Roberts, Samuel; Thurber, Carrie S; Whisson, Stephen C; Birch, Paul R J; Govers, Francine; Kamoun, Sophien; van West, Pieter; Windass, John

    2008-04-01

    Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.

  9. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout.

    PubMed

    Al-Tobasei, Rafet; Paneru, Bam; Salem, Mohamed

    2016-01-01

    The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1-2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200 nt. Emerging evidence indicates that lncRNAs play critical roles in various cellular processes including regulation of gene expression. LncRNAs show low levels of gene expression and sequence conservation, which make their computational identification in genomes difficult. In this study, more than two billion Illumina sequence reads were mapped to the genome reference using the TopHat and Cufflinks software. Transcripts shorter than 200 nt, with more than 83-100 amino acids ORF, or with significant homologies to the NCBI nr-protein database were removed. In addition, a computational pipeline was used to filter the remaining transcripts based on a protein-coding-score test. Depending on the filtering stringency conditions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and 3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout genome and provides a valuable resource for functional genomics research in salmonids.

  10. Zinc-Responsive Regulation of Alternative Ribosomal Protein Genes in Streptomyces coelicolor Involves Zur and σR▿ †

    PubMed Central

    Owen, Gillian A.; Pascoe, Ben; Kallifidas, Dimitris; Paget, Mark S. B.

    2007-01-01

    Streptomyces coelicolor contains paralogous versions of seven ribosomal proteins (S14, S18, L28, L31, L32, L33, and L36), which differ in their potential to bind structural zinc. The paralogues are termed C+ or C− on the basis of the presence or absence of putative cysteine ligands. Here, mutational studies suggest that the C− version of L31 can functionally replace its C+ paralogue only when expressed at an artificially elevated level. We show that the level of expression of four transcriptional units encoding C− proteins is elevated under conditions of zinc deprivation. Zur controls the expression of three transcriptional units (including rpmG2, rpmE2, rpmB2, rpsN2, rpmF2, and possibly rpsR2). Zur also controls the expression of the znuACB operon, which is predicted to encode a high-affinity zinc transport system. Surprisingly, the zinc-responsive control of the rpmG3-rpmJ2 operon is dictated by σR, a sigma factor that was previously shown to control the response to disulfide stress in S. coelicolor. The induction of σR activity during zinc limitation establishes an important link between thiol-disulfide metabolism and zinc homeostasis. PMID:17400736

  11. Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR.

    PubMed

    Owen, Gillian A; Pascoe, Ben; Kallifidas, Dimitris; Paget, Mark S B

    2007-06-01

    Streptomyces coelicolor contains paralogous versions of seven ribosomal proteins (S14, S18, L28, L31, L32, L33, and L36), which differ in their potential to bind structural zinc. The paralogues are termed C(+) or C(-) on the basis of the presence or absence of putative cysteine ligands. Here, mutational studies suggest that the C(-) version of L31 can functionally replace its C(+) paralogue only when expressed at an artificially elevated level. We show that the level of expression of four transcriptional units encoding C(-) proteins is elevated under conditions of zinc deprivation. Zur controls the expression of three transcriptional units (including rpmG2, rpmE2, rpmB2, rpsN2, rpmF2, and possibly rpsR2). Zur also controls the expression of the znuACB operon, which is predicted to encode a high-affinity zinc transport system. Surprisingly, the zinc-responsive control of the rpmG3-rpmJ2 operon is dictated by sigma(R), a sigma factor that was previously shown to control the response to disulfide stress in S. coelicolor. The induction of sigma(R) activity during zinc limitation establishes an important link between thiol-disulfide metabolism and zinc homeostasis.

  12. Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis.

    PubMed

    Joubert, D Albert; de Lorenzo, Giulia; Vivier, Melané A

    2013-03-01

    Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.

  13. Molecular Characterization of the Rhesus Rhadinovirus (RRV) ORF4 Gene and the RRV Complement Control Protein It Encodes▿

    PubMed Central

    Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.

    2007-01-01

    The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274

  14. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase.

    PubMed Central

    Zhang, B; Marcus, S L; Sajjadi, F G; Alvares, K; Reddy, J K; Subramani, S; Rachubinski, R A; Capone, J P

    1992-01-01

    Ciprofibrate, a hypolipidemic drug that acts as a peroxisome proliferator, induces the transcription of genes encoding peroxisomal beta-oxidation enzymes. To identify cis-acting promoter elements involved in this induction, 5.8 kilobase pairs of promoter sequence from the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (EC 4.2.1.17/EC 1.1.1.35) was inserted upstream of a luciferase reporter gene. Transfection of this expression vector into rat hepatoma H4IIEC3 cells in the presence of ciprofibrate resulted in a 5- to 10-fold, cell type-specific increase in luciferase activity as compared to cells transfected in the absence of drug. A peroxisome proliferator-responsive element (PPRE) was localized to a 196-nucleotide region centered at position -2943 from the transcription start site. This PPRE conferred ciprofibrate responsiveness on a heterologous promoter and functioned independently of orientation or position. Gel retardation analysis with nuclear extracts demonstrated that ciprofibrate-treated or untreated H4IIEC3 cells, but not HeLa cells or monkey kidney cells, contained sequence-specific DNA binding factors that interact with the PPRE. These results have implications for understanding the mechanisms of coordinated transcriptional induction of genes encoding peroxisomal proteins by hypolipidemic agents and other peroxisome proliferators. Images PMID:1502166

  15. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination.

    PubMed

    Gonzalez, E; Pitre, F E; Pagé, A P; Marleau, J; Guidi Nissim, W; St-Arnaud, M; Labrecque, M; Joly, S; Yergeau, E; Brereton, N J B

    2018-03-21

    One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.

  16. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals

    PubMed Central

    Arenas-Mena, Cesar; Coffman, James A.

    2016-01-01

    Summary It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency. PMID:26173445

  17. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons

    PubMed Central

    Wang, W.; Wildes, C. P.; Pattarabanjird, T.; Sanchez, M. I.; Glober, G.F.; Matthews, G. A.; Tye, K. M.; Ting, A. Y

    2017-01-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically-encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally-applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high-to-low calcium signal ratio of 10 after 10 minutes of stimulation. Channelrhodopsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium. PMID:28650461

  18. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

    PubMed

    Wang, Wenjing; Wildes, Craig P; Pattarabanjird, Tanyaporn; Sanchez, Mateo I; Glober, Gordon F; Matthews, Gillian A; Tye, Kay M; Ting, Alice Y

    2017-09-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.

  19. The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants

    PubMed Central

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-01-01

    NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses. PMID:26834757

  20. The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants.

    PubMed

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2015-01-01

    NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses.

  1. Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satinsky, Brandon M.; Smith, Christa B.; Sharma, Shalabh

    Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Obidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy-1) across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajos River and near the Tocantins River at Belem had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher) and iron acquisition and ammonia oxidation (lower). Environmentalmore » parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary- influenced stations at Tapajos and Belem. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world’s largest river system.« less

  2. Expression of the tachykinin receptor mRNAs in healthy human colon.

    PubMed

    Jaafari, Nadia; Hua, Guoqiang; Adélaïde, José; Julé, Yvon; Imbert, Jean

    2008-12-03

    Tachykinins are a family of neuropeptides, involved in a variety of physiological and pathological processes occurring in the gastrointestinal tract. They act via three distinct types of receptors, tachykinin NK(1), NK(2), and NK(3) receptors, which belong to the family of G protein-coupled receptors. The aim of the present study was to characterize, for the first time in the healthy human colon, the TACR(1), TACR(2) and TACR(3) mRNAs encoding the three different tachykinin receptors and to measure their relative expression by quantitative reverse transcription-PCR assay. Our results confirm the broad distribution of the tachykinin receptors but evidenced significant differences in the expression level of their respective mRNAs. A higher expression level of the TACR2 mRNA alpha isoform, the gene encoding the functional tachykinin NK(2) receptor, was observed in comparison to TACR1 and TACR3 mRNAs genes encoding for NK(1) and NK(3) receptors respectively. The prevalence of the TACR2 mRNA alpha isoform strongly suggests a major involvement of tachykinin NK(2) receptor in the regulation of human colonic functions.

  3. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish.

    PubMed

    Busby, Ellen R; Mommsen, Thomas P

    2016-09-01

    In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  5. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?

    PubMed Central

    Knap, Primoz; Tebaldi, Toma; Di Leva, Francesca; Biagioli, Marta; Dalla Serra, Mauro; Viero, Gabriella

    2017-01-01

    Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e., host translation—to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections. PMID:29469820

  6. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization.

    PubMed

    Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L

    2002-07-24

    mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.

  7. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    USDA-ARS?s Scientific Manuscript database

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  8. Production of Functional Proteins: Balance of Shear Stress and Gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Haysen, James Howard (Inventor)

    2005-01-01

    The present invention provides for a method of culturing cells and inducing the expression of at least one gene in the cell culture. The method provides for contacting the cell with a transcription factor decoy oligonucleotide sequence directed against a nucleotide sequence encoding a shear stress response element.

  9. Pre and postprandial changes in orexigenic and anorexigenic factors in channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    We examined pre- and postprandial changes in the expression of plasma ghrelin (GHRL) and mRNAs encoding GRLN, cocaine and amphetamine regulated transcript (CART), neuropeptide Y (NPY), and cholecystokinin (CCK) in channel catfish. Fish were either offered feed (Fed) or fasted (Unfed). Feeding incr...

  10. Pre and postprandial changes in orexigenic and anorexigenic factors in channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Ghrelin (GRLN), cocaine and amphetamine regulated transcript (CART), neuropeptide Y (NPY), and cholecystokinin (CCK) are neuropeptides involved in the regulation of appetite and feeding in vertebrates. We examined pre- and postprandial changes in the expression of plasma GHRL and mRNAs encoding GRL...

  11. A mutation in a new gene bglJ, activates the bgl operon in Escherichia coli K-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giel, M.; Desnoyer, M.; Lopilato, J.

    1996-06-01

    A new mutation , bglJ4, has been characterized that results in the expression of the silent bgl operon. The bgl operon encodes proteins necessary for the transport and utilization of the aromatic {beta}-glucosides arbutin and salicin. A variety of mutations activate the operon and result in a Bgl{sup +} phenotype. Activating mutations are located upstream of the bgl promoter and in genes located elsewhere on the chromosome. Mutations outside of the bgl operon occur in the genes encoding DNA gyrase and in the gene encoding the nucleoid associated protein H-NS. The mutation described here, bglJ4, has been mapped to amore » new locus at min 99 on the Escherichia coli K-12 genetic map. The putative protein encoded by the bglJ gene has homology to a family of transcriptional activators. Evidence is presented that increased expression of the bglJ product is needed for activation of the bgl operon. 56 refs., 3 figs., 3 tabs.« less

  12. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Pöggeler, S

    2000-06-01

    In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.

  13. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  14. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  15. Transcription factors YY1, Sp1 and Sp3 modulate dystrophin Dp71 gene expression in hepatic cells.

    PubMed

    Peñuelas-Urquides, Katia; Becerril-Esquivel, Carolina; Mendoza-de-León, Laura C; Silva-Ramírez, Beatriz; Dávila-Velderrain, José; Cisneros, Bulmaro; de León, Mario Bermúdez

    2016-07-01

    Dystrophin Dp71, the smallest product encoded by the Duchenne muscular dystrophy gene, is ubiquitously expressed in all non-muscle cells. Although Dp71 is involved in various cellular processes, the mechanisms underlying its expression have been little studied. In hepatic cells, Dp71 expression is down-regulated by the xenobiotic β-naphthoflavone. However, the effectors of this regulation remain unknown. In the present study we aimed at identifying DNA elements and transcription factors involved in Dp71 expression in hepatic cells. Relevant DNA elements on the Dp71 promoter were identified by comparing Dp71 5'-end flanking regions between species. The functionality of these elements was demonstrated by site-directed mutagenesis. Using EMSAs and ChIP, we showed that the Sp1 (specificity protein 1), Sp3 (specificity protein 3) and YY1 (Yin and Yang 1) transcription factors bind to the Dp71 promoter region. Knockdown of Sp1, Sp3 and YY1 in hepatic cells increased endogenous Dp71 expression, but reduced Dp71 promoter activity. In summary, Dp71 expression in hepatic cells is carried out, in part, by YY1-, Sp1- and Sp3-mediated transcription from the Dp71 promoter. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics.

    PubMed

    Deshpande, Ashish B; Anamika, Krishanpal; Jha, Vineet; Chidley, Hemangi G; Oak, Pranjali S; Kadoo, Narendra Y; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2017-08-18

    Alphonso is known as the "King of mangos" due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb. Importantly, 20,755 unique transcripts were annotated and 4,611 were assigned enzyme commission numbers, which encoded 142 biological pathways. These included ethylene and flavor related secondary metabolite biosynthesis pathways, as well as those involved in metabolism of starch, sucrose, amino acids and fatty acids. Differential regulation (p-value ≤ 0.05) of thousands of transcripts was evident in various stages of fruit development and ripening. Novel transcripts for biosynthesis of mono-terpenes, sesqui-terpenes, di-terpenes, lactones and furanones involved in flavor formation were identified. Large number of transcripts encoding cell wall modifying enzymes was found to be steady in their expression, while few were differentially regulated through these stages. Novel 79 transcripts of inhibitors of cell wall modifying enzymes were simultaneously detected throughout Alphonso fruit development and ripening, suggesting controlled activity of these enzymes involved in fruit softening.

  17. Disruption of the psbA gene by the copy correction mechanism reveals that the expression of plastid-encoded genes is regulated by photosynthesis activity.

    PubMed

    Khan, Muhammad Sarwar; Hameed, Waqar; Nozoe, Mikio; Shiina, Takashi

    2007-05-01

    The functional analysis of genes encoded by the chloroplast genome of tobacco by reverse genetics is routine. Nevertheless, for a small number of genes their deletion generates heteroplasmic genotypes, complicating their analysis. There is thus the need for additional strategies to develop deletion mutants for these genes. We have developed a homologous copy correction-based strategy for deleting/mutating genes encoded on the chloroplast genome. This system was used to produce psbA knockouts. The resulting plants are homoplasmic and lack photosystem II (PSII) activity. Further, the deletion mutants exhibit a distinct phenotype; young leaves are green, whereas older leaves are bleached, irrespective of light conditions. This suggests that senescence is promoted by the absence of psbA. Analysis of the transcript levels indicates that NEP (nuclear-encoded plastid RNA polymerase)-dependent plastid genes are up regulated in the psbA deletion mutants, whereas the bleached leaves retain plastid-encoded plastid RNA polymerase activity. Hence, the expression of NEP-dependent plastid genes may be regulated by photosynthesis, either directly or indirectly.

  18. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    PubMed

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  19. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.

    PubMed

    Ishida, Tetsuya; Hattori, Sayoko; Sano, Ryosuke; Inoue, Kayoko; Shirano, Yumiko; Hayashi, Hiroaki; Shibata, Daisuke; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Okada, Kiyotaka; Wada, Takuji

    2007-08-01

    Arabidopsis thaliana TRANSPARENT TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is expressed in young leaves, trichomes, seed coats, and root hairless cells. An examination of several trichome and root hair mutants indicates that MYB and bHLH genes regulate TTG2 expression. Two MYB binding sites in the TTG2 5' regulatory region act as cis regulatory elements and as direct targets of R2R3 MYB transcription factors such as WEREWOLF, GLABRA1, and TRANSPARENT TESTA2. Mutations in TTG2 cause phenotypic defects in trichome development and seed color pigmentation. Transgenic plants expressing a chimeric repressor version of the TTG2 protein (TTG2:SRDX) showed defects in trichome formation, anthocyanin accumulation, seed color pigmentation, and differentiation of root hairless cells. GLABRA2 (GL2) expression was markedly reduced in roots of ProTTG2:TTG2:SRDX transgenic plants, suggesting that TTG2 is involved in the regulation of GL2 expression, although GL2 expression in the ttg2 mutant was similar to that in the wild type. Our analysis suggests a new step in a regulatory cascade of epidermal differentiation, in which complexes containing R2R3 MYB and bHLH transcription factors regulate the expression of TTG2, which then regulates GL2 expression with complexes containing R2R3 MYB and bHLH in the differentiation of trichomes and root hairless cells.

  20. Arabidopsis TRANSPARENT TESTA GLABRA2 Is Directly Regulated by R2R3 MYB Transcription Factors and Is Involved in Regulation of GLABRA2 Transcription in Epidermal Differentiation[W

    PubMed Central

    Ishida, Tetsuya; Hattori, Sayoko; Sano, Ryosuke; Inoue, Kayoko; Shirano, Yumiko; Hayashi, Hiroaki; Shibata, Daisuke; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Okada, Kiyotaka; Wada, Takuji

    2007-01-01

    Arabidopsis thaliana TRANSPARENT TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is expressed in young leaves, trichomes, seed coats, and root hairless cells. An examination of several trichome and root hair mutants indicates that MYB and bHLH genes regulate TTG2 expression. Two MYB binding sites in the TTG2 5′ regulatory region act as cis regulatory elements and as direct targets of R2R3 MYB transcription factors such as WEREWOLF, GLABRA1, and TRANSPARENT TESTA2. Mutations in TTG2 cause phenotypic defects in trichome development and seed color pigmentation. Transgenic plants expressing a chimeric repressor version of the TTG2 protein (TTG2:SRDX) showed defects in trichome formation, anthocyanin accumulation, seed color pigmentation, and differentiation of root hairless cells. GLABRA2 (GL2) expression was markedly reduced in roots of ProTTG2:TTG2:SRDX transgenic plants, suggesting that TTG2 is involved in the regulation of GL2 expression, although GL2 expression in the ttg2 mutant was similar to that in the wild type. Our analysis suggests a new step in a regulatory cascade of epidermal differentiation, in which complexes containing R2R3 MYB and bHLH transcription factors regulate the expression of TTG2, which then regulates GL2 expression with complexes containing R2R3 MYB and bHLH in the differentiation of trichomes and root hairless cells. PMID:17766401

  1. Unique gene expression profiles of donor-matched human retinal and choroidal vascular endothelial cells.

    PubMed

    Smith, Justine R; Choi, Dongseok; Chipps, Timothy J; Pan, Yuzhen; Zamora, David O; Davies, Michael H; Babra, Bobby; Powers, Michael R; Planck, Stephen R; Rosenbaum, James T

    2007-06-01

    Consistent with clinical observations that posterior uveitis frequently involves the retinal vasculature and recent recognition of vascular heterogeneity, the hypothesis for this study was that retinal vascular endothelium was a cell population of unique molecular phenotype. Donor-matched cultures of primary retinal and choroidal endothelial cells from six human cadavers were incubated with either Toxoplasma gondii tachyzoites (10:1, parasites per cell) or Escherichia coli lipopolysaccharide (100 ng/mL); control cultures were simultaneously incubated with medium. Gene expression profiling of endothelial cells was performed using oligonucleotide arrays containing probes designed to detect 8746 human transcripts. After normalization, differential gene expression was assessed by the significance analysis of microarrays, with the false-discovery rate set at 5%. For selected genes, differences in the level of expression between retinal and choroidal cells were evaluated by real-time RT-PCR. Graphic descriptive analysis demonstrated a strong correlation between gene expression of unstimulated retinal and choroidal endothelial cells, but also highlighted distinctly different patterns of expression that were greater than differences noted between donors or between unstimulated and stimulated cells. Overall, 779 (8.9%) of 8746 transcripts were differentially represented. Of note, the 330 transcripts that were present at higher levels in retinal cells included a larger percentage of transcripts encoding molecules involved in the immune response. Differential gene expression was confirmed for 12 transcripts by RT-PCR. Retinal and choroidal vascular endothelial cells display distinctive gene expression profiles. The findings suggest the possibility of treating posterior uveitis by targeting specific interactions between the retinal endothelial cell and an infiltrating leukocyte.

  2. Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

  3. Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages.

    PubMed

    Shanks, John; Burtnick, Mary N; Brett, Paul J; Waag, David M; Spurgers, Kevin B; Ribot, Wilson J; Schell, Mark A; Panchal, Rekha G; Gherardini, Frank C; Wilkinson, Keith D; Deshazer, David

    2009-04-01

    Burkholderia mallei, a category B biothreat agent, is a facultative intracellular pathogen that causes the zoonotic disease glanders. The B. mallei VirAG two-component regulatory system activates the transcription of approximately 60 genes, including a large virulence gene cluster encoding a type VI secretion system (T6SS). The B. mallei tssM gene encodes a putative ubiquitin-specific protease that is physically linked to, and transcriptionally coregulated with, the T6SS gene cluster. Mass spectrometry and immunoblot analysis demonstrated that TssM was secreted in a virAG-dependent manner in vitro. Surprisingly, the T6SS was found to be dispensable for the secretion of TssM. The C-terminal half of TssM, which contains Cys and His box motifs conserved in eukaryotic deubiquitinases, was purified and biochemically characterized. Recombinant TssM hydrolyzed multiple ubiquitinated substrates and the cysteine at position 102 was critical for enzymatic activity. The tssM gene was expressed within 1 h after uptake of B. mallei into RAW 264.7 murine macrophages, suggesting that the TssM deubiquitinase is produced in this intracellular niche. Although the physiological substrate(s) is currently unknown, the TssM deubiquitinase may provide B. mallei a selective advantage in the intracellular environment during infection.

  4. Insertional Mutations in the Hydrogenase vhc and frc Operons Encoding Selenium-Free Hydrogenases in Methanococcus voltae

    PubMed Central

    Berghofer, Y.; Klein, A.

    1995-01-01

    Methanococcus voltae, which contains four different gene groups that encode [NiFe]-hydrogenases, was transformed with integration vectors to achieve polar inactivation of two of the four hydrogenase operons that encode the selenium-free enzymes Vhc and Frc. Transformants which were selected by their acquired puromycin resistance showed site-specific insertions in either the vhc or frc operon by single crossover events. Southern hybridization revealed tandem integrations of whole vectors in the vhc operon, whereas only one vector copy was found in the frc operon. Northern (RNA) hybridizations showed a pac transcript of defined size, indicating strong termination in front of the hydrogenase genes downstream. In spite of the apparent abolition of expression of selenium-free hydrogenases through these polar insertions, they were not lethal to cells upon growth in selenium-deprived minimal medium, which we had previously shown to strongly induce transcription of the respective operons in M. voltae. Instead, like wild-type control cultures, transformants responded to selenium deprivation only with a reduction in growth rate. We conclude that loss of the potential to express a selenium-free hydrogenase can nevertheless be balanced by very small amounts of selenium hydrogenases under laboratory conditions in which the hydrogen supply is not likely to be a limiting growth factor. PMID:16535019

  5. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- andmore » tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions of {approx}40% of the protein and nonprotein-coding genes [FlyBase 5.12 (4)] have been determined from cDNA collections (5, 6), manual curation of gene models (7), gene mutations and comprehensive genome-wide RNA interference screens (8-10), and comparative genomic analyses (11, 12). The Drosophila modENCODE project has generated more than 700 data sets that profile transcripts, histone modifications and physical nucleosome properties, general and specific transcription factors (TFs), and replication programs in cell lines, isolated tissues, and whole organisms across several developmental stages (Fig. 1). Here, we computationally integrate these data sets and report (i) improved and additional genome annotations, including full-length proteincoding genes and peptides as short as 21 amino acids; (ii) noncoding transcripts, including 132 candidate structural RNAs and 1608 nonstructural transcripts; (iii) additional Argonaute (Ago)-associated small RNA genes and pathways, including new microRNAs (miRNAs) encoded within protein-coding exons and endogenous small interfering RNAs (siRNAs) from 3-inch untranslated regions; (iv) chromatin 'states' defined by combinatorial patterns of 18 chromatin marks that are associated with distinct functions and properties; (v) regions of high TF occupancy and replication activity with likely epigenetic regulation; (vi)mixed TF and miRNA regulatory networks with hierarchical structure and enriched feed-forward loops; (vii) coexpression- and co-regulation-based functional annotations for nearly 3000 genes; (viii) stage- and tissue-specific regulators; and (ix) predictive models of gene expression levels and regulator function.« less

  6. Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of Botrytis cinerea

    PubMed Central

    2018-01-01

    ABSTRACT Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were entirely sterile, while mutants in the other two MAT genes were able to develop stipes but never formed an apothecial disk. Little was known about the reprogramming of gene expression during apothecium development. We analyzed transcriptomes of sclerotia, three stages of apothecium development (primordia, stipes, and apothecial disks), and ascospores by RNA sequencing. Ten secondary metabolite gene clusters were upregulated at the onset of sexual development and downregulated in ascospores released from apothecia. Notably, more than 3,900 genes were differentially expressed in ascospores compared to mature apothecial disks. Among the genes that were upregulated in ascospores were numerous genes encoding virulence factors, which reveals that ascospores are transcriptionally primed for infection prior to their arrival on a host plant. Strikingly, the massive transcriptional changes at the initiation and completion of the sexual cycle often affected clusters of genes, rather than randomly dispersed genes. Thirty-five clusters of genes were jointly upregulated during the onset of sexual reproduction, while 99 clusters of genes (comprising >900 genes) were jointly downregulated in ascospores. These transcriptional changes coincided with changes in expression of genes encoding enzymes participating in chromatin organization, hinting at the occurrence of massive epigenetic regulation of gene expression during sexual reproduction. PMID:29440571

  7. The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation.

    PubMed

    Zhang, Yufan; Clemens, Adam; Maximova, Siela N; Guiltinan, Mark J

    2014-04-24

    The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm.

  8. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator

    PubMed Central

    2012-01-01

    Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri. PMID:23035718

  9. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator.

    PubMed

    Caballero, Valeria C; Toledo, Viviana P; Maturana, Cristian; Fisher, Carolyn R; Payne, Shelley M; Salazar, Juan Carlos

    2012-10-05

    Glutamyl queuosine-tRNA(Asp) synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNA(Asp). Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.

  10. Temporal regulation of expression of immediate early and second phase transcripts by endothelin-1 in cardiomyocytes

    PubMed Central

    Cullingford, Timothy E; Markou, Thomais; Fuller, Stephen J; Giraldo, Alejandro; Pikkarainen, Sampsa; Zoumpoulidou, Georgia; Alsafi, Ali; Ekere, Collins; Kemp, Timothy J; Dennis, Jayne L; Game, Laurence; Sugden, Peter H; Clerk, Angela

    2008-01-01

    Background Endothelin-1 stimulates Gq protein-coupled receptors to promote proliferation in dividing cells or hypertrophy in terminally differentiated cardiomyocytes. In cardiomyocytes, endothelin-1 rapidly (within minutes) stimulates protein kinase signaling, including extracellular-signal regulated kinases 1/2 (ERK1/2; though not ERK5), with phenotypic/physiological changes developing from approximately 12 h. Hypertrophy is associated with changes in mRNA/protein expression, presumably consequent to protein kinase signaling, but the connections between early, transient signaling events and developed hypertrophy are unknown. Results Using microarrays, we defined the early transcriptional responses of neonatal rat cardiomyocytes to endothelin-1 over 4 h, differentiating between immediate early gene (IEG) and second phase RNAs with cycloheximide. IEGs exhibited differential temporal and transient regulation, with expression of second phase RNAs within 1 h. Of transcripts upregulated at 30 minutes encoding established proteins, 28 were inhibited >50% by U0126 (which inhibits ERK1/2/5 signaling), with 9 inhibited 25-50%. Expression of only four transcripts was not inhibited. At 1 h, most RNAs (approximately 67%) were equally changed in total and polysomal RNA with approximately 17% of transcripts increased to a greater extent in polysomes. Thus, changes in expression of most protein-coding RNAs should be reflected in protein synthesis. However, approximately 16% of transcripts were essentially excluded from the polysomes, including some protein-coding mRNAs, presumably inefficiently translated. Conclusion The phasic, temporal regulation of early transcriptional responses induced by endothelin-1 in cardiomyocytes indicates that, even in terminally differentiated cells, signals are propagated beyond the primary signaling pathways through transcriptional networks leading to phenotypic changes (that is, hypertrophy). Furthermore, ERK1/2 signaling plays a major role in this response. PMID:18275597

  11. Altered Expression of Porcine Piwi Genes and piRNA during Development

    PubMed Central

    Kowalczykiewicz, Dorota; Pawlak, Piotr; Lechniak, Dorota; Wrzesinski, Jan

    2012-01-01

    Three Sus scrofa Piwi genes (Piwil1, Piwil2 and Piwil4) encoding proteins of 861, 985 and 853 aminoacids, respectively, were cloned and sequenced. Alignment of the Piwi proteins showed the high identity between Sus scrofa and Homo sapiens. Relative transcript abundance of porcine Piwil1, Piwil2 and Piwil4 genes in testes, ovaries and oocytes derived from sexually immature and mature animals was examined using Real-Time PCR. Expression of the three Piwi mRNAs was proved to be tissue specific and restricted exclusively to the gonads. In testes of adult pigs the highest relative transcript abundance was observed for the Sus scrofa Piwil1 gene. On the other hand, in testes of neonatal pigs the Piwil1 transcript level was over 2–fold reduced while the level of Piwil2 transcript was higher. As regards the expression of the Piwil4 transcript, its level was 34-fold elevated in testes of neonatal piglet when compared to adult male. In ovaries of prepubertal and pubertal female pigs transcript abundance of the three Piwi genes was significantly reduced in comparison with testes. However, similarly to testes, in ovaries of neonatal pigs the Piwil2 gene was characterized by the highest relative transcript abundance among the three Piwi genes analysed. In prepubertal and pubertal oocytes Piwil1 transcript was the most abundant whereas the expression of Piwil4 was undetectable. We also demonstrated that expression of piRNA occurs preferentially in the gonads of adult male and female pigs. Moreover, a piRNA subset isolated from ovaries was 2–3 nucleotides longer than the piRNA from testes. PMID:22952772

  12. Non-Equilibrium Thermodynamics of Transcriptional Bursts

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique

    Gene transcription or Gene Expression (GE) is the process which transforms the information encoded in DNA into a functional RNA message. It is known that GE can occur in bursts or pulses. Transcription is irregular, with strong periods of activity, interspersed by long periods of inactivity. If we consider the average behavior over millions of cells, this process appears to be continuous. But at the individual cell level, there is considerable variability, and for most genes, very little activity at any one time. Some have claimed that GE bursting can account for the high variability in gene expression occurring between cells in isogenic populations. This variability has a big impact on cell behavior and thus on phenotypic conditions and disease. In view of these facts, the development of a thermodynamic framework to study gene expression and transcriptional regulation to integrate the vast amount of molecular biophysical GE data is appealing. Application of such thermodynamic formalism is useful to observe various dissipative phenomena in GE regulatory dynamics. In this chapter we will examine at some detail the complex phenomena of transcriptional bursts (specially of a certain class of anomalous bursts) in the context of a non-equilibrium thermodynamics formalism and will make some initial comments on the relevance of some irreversible processes that may be connected to anomalous transcriptional bursts.

  13. Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis.

    PubMed

    Amaradasa, Bimal S; Amundsen, Keenan

    2016-01-01

    Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.

  14. Modulation of benzylisoquinoline alkaloid biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells

    PubMed Central

    Shimada, Tomoe; Motomura, Yukiya; Sato, Fumihiko

    2017-01-01

    Transcription factors control many processes in plants and have high potentials to manipulate specialized metabolic pathways. Transcriptional regulation of the biosynthesis of monoterpenoid indole alkaloids (MIAs), nicotine alkaloids, and benzylisoquinoline alkaloids (BIAs) has been characterized using Catharanthus roseus, Nicotiana and Coptis plants. However, metabolic engineering in which specific transcription factors are used in alkaloid biosynthesis is limited. In this study, we characterized the effects of ectopic expression of CjWRKY1, which is a transcriptional activator with many targets in BIA biosynthesis in Coptis japonica (Ranunculaceae) and Eschscholzia californica (California poppy, Papaveraceae). Heterologous expression of CjWRKY1 in cultured California poppy cells induced increases in transcripts of several genes encoding BIA biosynthetic enzymes. Metabolite analyses indicated that the overexpression of the CjWRKY1 gene also induced increases in the accumulation of BIAs such as sanguinarine, chelerythrine, chelirubine, protopine, allocryptopine, and 10-hydroxychelerythrine in the culture medium. Previous characterization of EcbHLH1 and current results indicated that both transcription factors, WRKY1 and bHLH1, are substantially involved in the regulation of BIA biosynthesis. We discuss the function of CjWRKY1 in E. californica cells and its potential for metabolic engineering in BIA biosynthesis. PMID:29077729

  15. The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c.

    PubMed

    Yashiro, Takuya; Kasakura, Kazumi; Oda, Yoshihito; Kitamura, Nao; Inoue, Akihito; Nakamura, Shusuke; Yokoyama, Hokuto; Fukuyama, Kanako; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu

    2017-02-01

    PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription

    PubMed Central

    Tidwell, Josephine A.; Schmidt, Christian; Heaton, Phillip; Wilson, Van; Tucker, Philip W.

    2011-01-01

    Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of VH promoters and the Eµ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression--in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright. PMID:21955986

  17. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.

    PubMed

    Nakabayashi, Kazumi; Bartsch, Melanie; Ding, Jia; Soppe, Wim J J

    2015-12-01

    The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.

  18. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.

    PubMed

    Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S

    2017-04-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization. Copyright © 2017 American Society for Microbiology.

  19. Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize

    PubMed Central

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-01-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance. PMID:22279089

  20. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    PubMed

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

Top